xref: /linux/drivers/usb/gadget/udc/tegra-xudc.c (revision 8004d08330e1aa7ae797778509e864f7ac3da687)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NVIDIA Tegra XUSB device mode controller
4  *
5  * Copyright (c) 2013-2022, NVIDIA CORPORATION.  All rights reserved.
6  * Copyright (c) 2015, Google Inc.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmapool.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19 #include <linux/phy/phy.h>
20 #include <linux/phy/tegra/xusb.h>
21 #include <linux/pm_domain.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/reset.h>
26 #include <linux/usb/ch9.h>
27 #include <linux/usb/gadget.h>
28 #include <linux/usb/otg.h>
29 #include <linux/usb/role.h>
30 #include <linux/usb/phy.h>
31 #include <linux/workqueue.h>
32 
33 /* XUSB_DEV registers */
34 #define DB 0x004
35 #define  DB_TARGET_MASK GENMASK(15, 8)
36 #define  DB_TARGET(x) (((x) << 8) & DB_TARGET_MASK)
37 #define  DB_STREAMID_MASK GENMASK(31, 16)
38 #define  DB_STREAMID(x) (((x) << 16) & DB_STREAMID_MASK)
39 #define ERSTSZ 0x008
40 #define  ERSTSZ_ERSTXSZ_SHIFT(x) ((x) * 16)
41 #define  ERSTSZ_ERSTXSZ_MASK GENMASK(15, 0)
42 #define ERSTXBALO(x) (0x010 + 8 * (x))
43 #define ERSTXBAHI(x) (0x014 + 8 * (x))
44 #define ERDPLO 0x020
45 #define  ERDPLO_EHB BIT(3)
46 #define ERDPHI 0x024
47 #define EREPLO 0x028
48 #define  EREPLO_ECS BIT(0)
49 #define  EREPLO_SEGI BIT(1)
50 #define EREPHI 0x02c
51 #define CTRL 0x030
52 #define  CTRL_RUN BIT(0)
53 #define  CTRL_LSE BIT(1)
54 #define  CTRL_IE BIT(4)
55 #define  CTRL_SMI_EVT BIT(5)
56 #define  CTRL_SMI_DSE BIT(6)
57 #define  CTRL_EWE BIT(7)
58 #define  CTRL_DEVADDR_MASK GENMASK(30, 24)
59 #define  CTRL_DEVADDR(x) (((x) << 24) & CTRL_DEVADDR_MASK)
60 #define  CTRL_ENABLE BIT(31)
61 #define ST 0x034
62 #define  ST_RC BIT(0)
63 #define  ST_IP BIT(4)
64 #define RT_IMOD	0x038
65 #define  RT_IMOD_IMODI_MASK GENMASK(15, 0)
66 #define  RT_IMOD_IMODI(x) ((x) & RT_IMOD_IMODI_MASK)
67 #define  RT_IMOD_IMODC_MASK GENMASK(31, 16)
68 #define  RT_IMOD_IMODC(x) (((x) << 16) & RT_IMOD_IMODC_MASK)
69 #define PORTSC 0x03c
70 #define  PORTSC_CCS BIT(0)
71 #define  PORTSC_PED BIT(1)
72 #define  PORTSC_PR BIT(4)
73 #define  PORTSC_PLS_SHIFT 5
74 #define  PORTSC_PLS_MASK GENMASK(8, 5)
75 #define  PORTSC_PLS_U0 0x0
76 #define  PORTSC_PLS_U2 0x2
77 #define  PORTSC_PLS_U3 0x3
78 #define  PORTSC_PLS_DISABLED 0x4
79 #define  PORTSC_PLS_RXDETECT 0x5
80 #define  PORTSC_PLS_INACTIVE 0x6
81 #define  PORTSC_PLS_RESUME 0xf
82 #define  PORTSC_PLS(x) (((x) << PORTSC_PLS_SHIFT) & PORTSC_PLS_MASK)
83 #define  PORTSC_PS_SHIFT 10
84 #define  PORTSC_PS_MASK GENMASK(13, 10)
85 #define  PORTSC_PS_UNDEFINED 0x0
86 #define  PORTSC_PS_FS 0x1
87 #define  PORTSC_PS_LS 0x2
88 #define  PORTSC_PS_HS 0x3
89 #define  PORTSC_PS_SS 0x4
90 #define  PORTSC_LWS BIT(16)
91 #define  PORTSC_CSC BIT(17)
92 #define  PORTSC_WRC BIT(19)
93 #define  PORTSC_PRC BIT(21)
94 #define  PORTSC_PLC BIT(22)
95 #define  PORTSC_CEC BIT(23)
96 #define  PORTSC_WPR BIT(30)
97 #define  PORTSC_CHANGE_MASK (PORTSC_CSC | PORTSC_WRC | PORTSC_PRC | \
98 			     PORTSC_PLC | PORTSC_CEC)
99 #define ECPLO 0x040
100 #define ECPHI 0x044
101 #define MFINDEX 0x048
102 #define  MFINDEX_FRAME_SHIFT 3
103 #define  MFINDEX_FRAME_MASK GENMASK(13, 3)
104 #define PORTPM 0x04c
105 #define  PORTPM_L1S_MASK GENMASK(1, 0)
106 #define  PORTPM_L1S_DROP 0x0
107 #define  PORTPM_L1S_ACCEPT 0x1
108 #define  PORTPM_L1S_NYET 0x2
109 #define  PORTPM_L1S_STALL 0x3
110 #define  PORTPM_L1S(x) ((x) & PORTPM_L1S_MASK)
111 #define  PORTPM_RWE BIT(3)
112 #define  PORTPM_U2TIMEOUT_MASK GENMASK(15, 8)
113 #define  PORTPM_U1TIMEOUT_MASK GENMASK(23, 16)
114 #define  PORTPM_FLA BIT(24)
115 #define  PORTPM_VBA BIT(25)
116 #define  PORTPM_WOC BIT(26)
117 #define  PORTPM_WOD BIT(27)
118 #define  PORTPM_U1E BIT(28)
119 #define  PORTPM_U2E BIT(29)
120 #define  PORTPM_FRWE BIT(30)
121 #define  PORTPM_PNG_CYA BIT(31)
122 #define EP_HALT 0x050
123 #define EP_PAUSE 0x054
124 #define EP_RELOAD 0x058
125 #define EP_STCHG 0x05c
126 #define DEVNOTIF_LO 0x064
127 #define  DEVNOTIF_LO_TRIG BIT(0)
128 #define  DEVNOTIF_LO_TYPE_MASK GENMASK(7, 4)
129 #define  DEVNOTIF_LO_TYPE(x) (((x) << 4)  & DEVNOTIF_LO_TYPE_MASK)
130 #define  DEVNOTIF_LO_TYPE_FUNCTION_WAKE 0x1
131 #define DEVNOTIF_HI 0x068
132 #define PORTHALT 0x06c
133 #define  PORTHALT_HALT_LTSSM BIT(0)
134 #define  PORTHALT_HALT_REJECT BIT(1)
135 #define  PORTHALT_STCHG_REQ BIT(20)
136 #define  PORTHALT_STCHG_INTR_EN BIT(24)
137 #define PORT_TM	0x070
138 #define EP_THREAD_ACTIVE 0x074
139 #define EP_STOPPED 0x078
140 #define HSFSPI_COUNT0 0x100
141 #define HSFSPI_COUNT13 0x134
142 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK GENMASK(29, 0)
143 #define  HSFSPI_COUNT13_U2_RESUME_K_DURATION(x) ((x) & \
144 				HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK)
145 #define BLCG 0x840
146 #define SSPX_CORE_CNT0 0x610
147 #define  SSPX_CORE_CNT0_PING_TBURST_MASK GENMASK(7, 0)
148 #define  SSPX_CORE_CNT0_PING_TBURST(x) ((x) & SSPX_CORE_CNT0_PING_TBURST_MASK)
149 #define SSPX_CORE_CNT30 0x688
150 #define  SSPX_CORE_CNT30_LMPITP_TIMER_MASK GENMASK(19, 0)
151 #define  SSPX_CORE_CNT30_LMPITP_TIMER(x) ((x) & \
152 					SSPX_CORE_CNT30_LMPITP_TIMER_MASK)
153 #define SSPX_CORE_CNT32 0x690
154 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK GENMASK(7, 0)
155 #define  SSPX_CORE_CNT32_POLL_TBURST_MAX(x) ((x) & \
156 					SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK)
157 #define SSPX_CORE_CNT56 0x6fc
158 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK GENMASK(19, 0)
159 #define  SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(x) ((x) & \
160 				SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK)
161 #define SSPX_CORE_CNT57 0x700
162 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK GENMASK(19, 0)
163 #define  SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(x) ((x) & \
164 				SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK)
165 #define SSPX_CORE_CNT65 0x720
166 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK GENMASK(19, 0)
167 #define  SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(x) ((x) & \
168 				SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK)
169 #define SSPX_CORE_CNT66 0x724
170 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK GENMASK(19, 0)
171 #define  SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(x) ((x) & \
172 				SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK)
173 #define SSPX_CORE_CNT67 0x728
174 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK GENMASK(19, 0)
175 #define  SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(x) ((x) & \
176 				SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK)
177 #define SSPX_CORE_CNT72 0x73c
178 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK GENMASK(19, 0)
179 #define  SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(x) ((x) & \
180 				SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK)
181 #define SSPX_CORE_PADCTL4 0x750
182 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK GENMASK(19, 0)
183 #define  SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(x) ((x) & \
184 				SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK)
185 #define  BLCG_DFPCI BIT(0)
186 #define  BLCG_UFPCI BIT(1)
187 #define  BLCG_FE BIT(2)
188 #define  BLCG_COREPLL_PWRDN BIT(8)
189 #define  BLCG_IOPLL_0_PWRDN BIT(9)
190 #define  BLCG_IOPLL_1_PWRDN BIT(10)
191 #define  BLCG_IOPLL_2_PWRDN BIT(11)
192 #define  BLCG_ALL 0x1ff
193 #define CFG_DEV_SSPI_XFER 0x858
194 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK GENMASK(31, 0)
195 #define  CFG_DEV_SSPI_XFER_ACKTIMEOUT(x) ((x) & \
196 					CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK)
197 #define CFG_DEV_FE 0x85c
198 #define  CFG_DEV_FE_PORTREGSEL_MASK GENMASK(1, 0)
199 #define  CFG_DEV_FE_PORTREGSEL_SS_PI 1
200 #define  CFG_DEV_FE_PORTREGSEL_HSFS_PI 2
201 #define  CFG_DEV_FE_PORTREGSEL(x) ((x) & CFG_DEV_FE_PORTREGSEL_MASK)
202 #define  CFG_DEV_FE_INFINITE_SS_RETRY BIT(29)
203 
204 /* FPCI registers */
205 #define XUSB_DEV_CFG_1 0x004
206 #define  XUSB_DEV_CFG_1_IO_SPACE_EN BIT(0)
207 #define  XUSB_DEV_CFG_1_MEMORY_SPACE_EN BIT(1)
208 #define  XUSB_DEV_CFG_1_BUS_MASTER_EN BIT(2)
209 #define XUSB_DEV_CFG_4 0x010
210 #define  XUSB_DEV_CFG_4_BASE_ADDR_MASK GENMASK(31, 15)
211 #define XUSB_DEV_CFG_5 0x014
212 
213 /* IPFS registers */
214 #define XUSB_DEV_CONFIGURATION_0 0x180
215 #define  XUSB_DEV_CONFIGURATION_0_EN_FPCI BIT(0)
216 #define XUSB_DEV_INTR_MASK_0 0x188
217 #define  XUSB_DEV_INTR_MASK_0_IP_INT_MASK BIT(16)
218 
219 struct tegra_xudc_ep_context {
220 	__le32 info0;
221 	__le32 info1;
222 	__le32 deq_lo;
223 	__le32 deq_hi;
224 	__le32 tx_info;
225 	__le32 rsvd[11];
226 };
227 
228 #define EP_STATE_DISABLED 0
229 #define EP_STATE_RUNNING 1
230 #define EP_STATE_HALTED 2
231 #define EP_STATE_STOPPED 3
232 #define EP_STATE_ERROR 4
233 
234 #define EP_TYPE_INVALID 0
235 #define EP_TYPE_ISOCH_OUT 1
236 #define EP_TYPE_BULK_OUT 2
237 #define EP_TYPE_INTERRUPT_OUT 3
238 #define EP_TYPE_CONTROL 4
239 #define EP_TYPE_ISCOH_IN 5
240 #define EP_TYPE_BULK_IN 6
241 #define EP_TYPE_INTERRUPT_IN 7
242 
243 #define BUILD_EP_CONTEXT_RW(name, member, shift, mask)			\
244 static inline u32 ep_ctx_read_##name(struct tegra_xudc_ep_context *ctx)	\
245 {									\
246 	return (le32_to_cpu(ctx->member) >> (shift)) & (mask);		\
247 }									\
248 static inline void							\
249 ep_ctx_write_##name(struct tegra_xudc_ep_context *ctx, u32 val)		\
250 {									\
251 	u32 tmp;							\
252 									\
253 	tmp = le32_to_cpu(ctx->member) & ~((mask) << (shift));		\
254 	tmp |= (val & (mask)) << (shift);				\
255 	ctx->member = cpu_to_le32(tmp);					\
256 }
257 
258 BUILD_EP_CONTEXT_RW(state, info0, 0, 0x7)
259 BUILD_EP_CONTEXT_RW(mult, info0, 8, 0x3)
260 BUILD_EP_CONTEXT_RW(max_pstreams, info0, 10, 0x1f)
261 BUILD_EP_CONTEXT_RW(lsa, info0, 15, 0x1)
262 BUILD_EP_CONTEXT_RW(interval, info0, 16, 0xff)
263 BUILD_EP_CONTEXT_RW(cerr, info1, 1, 0x3)
264 BUILD_EP_CONTEXT_RW(type, info1, 3, 0x7)
265 BUILD_EP_CONTEXT_RW(hid, info1, 7, 0x1)
266 BUILD_EP_CONTEXT_RW(max_burst_size, info1, 8, 0xff)
267 BUILD_EP_CONTEXT_RW(max_packet_size, info1, 16, 0xffff)
268 BUILD_EP_CONTEXT_RW(dcs, deq_lo, 0, 0x1)
269 BUILD_EP_CONTEXT_RW(deq_lo, deq_lo, 4, 0xfffffff)
270 BUILD_EP_CONTEXT_RW(deq_hi, deq_hi, 0, 0xffffffff)
271 BUILD_EP_CONTEXT_RW(avg_trb_len, tx_info, 0, 0xffff)
272 BUILD_EP_CONTEXT_RW(max_esit_payload, tx_info, 16, 0xffff)
273 BUILD_EP_CONTEXT_RW(edtla, rsvd[0], 0, 0xffffff)
274 BUILD_EP_CONTEXT_RW(rsvd, rsvd[0], 24, 0x1)
275 BUILD_EP_CONTEXT_RW(partial_td, rsvd[0], 25, 0x1)
276 BUILD_EP_CONTEXT_RW(splitxstate, rsvd[0], 26, 0x1)
277 BUILD_EP_CONTEXT_RW(seq_num, rsvd[0], 27, 0x1f)
278 BUILD_EP_CONTEXT_RW(cerrcnt, rsvd[1], 18, 0x3)
279 BUILD_EP_CONTEXT_RW(data_offset, rsvd[2], 0, 0x1ffff)
280 BUILD_EP_CONTEXT_RW(numtrbs, rsvd[2], 22, 0x1f)
281 BUILD_EP_CONTEXT_RW(devaddr, rsvd[6], 0, 0x7f)
282 
ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context * ctx)283 static inline u64 ep_ctx_read_deq_ptr(struct tegra_xudc_ep_context *ctx)
284 {
285 	return ((u64)ep_ctx_read_deq_hi(ctx) << 32) |
286 		(ep_ctx_read_deq_lo(ctx) << 4);
287 }
288 
289 static inline void
ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context * ctx,u64 addr)290 ep_ctx_write_deq_ptr(struct tegra_xudc_ep_context *ctx, u64 addr)
291 {
292 	ep_ctx_write_deq_lo(ctx, lower_32_bits(addr) >> 4);
293 	ep_ctx_write_deq_hi(ctx, upper_32_bits(addr));
294 }
295 
296 struct tegra_xudc_trb {
297 	__le32 data_lo;
298 	__le32 data_hi;
299 	__le32 status;
300 	__le32 control;
301 };
302 
303 #define TRB_TYPE_RSVD 0
304 #define TRB_TYPE_NORMAL 1
305 #define TRB_TYPE_SETUP_STAGE 2
306 #define TRB_TYPE_DATA_STAGE 3
307 #define TRB_TYPE_STATUS_STAGE 4
308 #define TRB_TYPE_ISOCH 5
309 #define TRB_TYPE_LINK 6
310 #define TRB_TYPE_TRANSFER_EVENT 32
311 #define TRB_TYPE_PORT_STATUS_CHANGE_EVENT 34
312 #define TRB_TYPE_STREAM 48
313 #define TRB_TYPE_SETUP_PACKET_EVENT 63
314 
315 #define TRB_CMPL_CODE_INVALID 0
316 #define TRB_CMPL_CODE_SUCCESS 1
317 #define TRB_CMPL_CODE_DATA_BUFFER_ERR 2
318 #define TRB_CMPL_CODE_BABBLE_DETECTED_ERR 3
319 #define TRB_CMPL_CODE_USB_TRANS_ERR 4
320 #define TRB_CMPL_CODE_TRB_ERR 5
321 #define TRB_CMPL_CODE_STALL 6
322 #define TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR 10
323 #define TRB_CMPL_CODE_SHORT_PACKET 13
324 #define TRB_CMPL_CODE_RING_UNDERRUN 14
325 #define TRB_CMPL_CODE_RING_OVERRUN 15
326 #define TRB_CMPL_CODE_EVENT_RING_FULL_ERR 21
327 #define TRB_CMPL_CODE_STOPPED 26
328 #define TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN 31
329 #define TRB_CMPL_CODE_STREAM_NUMP_ERROR 219
330 #define TRB_CMPL_CODE_PRIME_PIPE_RECEIVED 220
331 #define TRB_CMPL_CODE_HOST_REJECTED 221
332 #define TRB_CMPL_CODE_CTRL_DIR_ERR 222
333 #define TRB_CMPL_CODE_CTRL_SEQNUM_ERR 223
334 
335 #define BUILD_TRB_RW(name, member, shift, mask)				\
336 static inline u32 trb_read_##name(struct tegra_xudc_trb *trb)		\
337 {									\
338 	return (le32_to_cpu(trb->member) >> (shift)) & (mask);		\
339 }									\
340 static inline void							\
341 trb_write_##name(struct tegra_xudc_trb *trb, u32 val)			\
342 {									\
343 	u32 tmp;							\
344 									\
345 	tmp = le32_to_cpu(trb->member) & ~((mask) << (shift));		\
346 	tmp |= (val & (mask)) << (shift);				\
347 	trb->member = cpu_to_le32(tmp);					\
348 }
349 
350 BUILD_TRB_RW(data_lo, data_lo, 0, 0xffffffff)
351 BUILD_TRB_RW(data_hi, data_hi, 0, 0xffffffff)
352 BUILD_TRB_RW(seq_num, status, 0, 0xffff)
353 BUILD_TRB_RW(transfer_len, status, 0, 0xffffff)
354 BUILD_TRB_RW(td_size, status, 17, 0x1f)
355 BUILD_TRB_RW(cmpl_code, status, 24, 0xff)
356 BUILD_TRB_RW(cycle, control, 0, 0x1)
357 BUILD_TRB_RW(toggle_cycle, control, 1, 0x1)
358 BUILD_TRB_RW(isp, control, 2, 0x1)
359 BUILD_TRB_RW(chain, control, 4, 0x1)
360 BUILD_TRB_RW(ioc, control, 5, 0x1)
361 BUILD_TRB_RW(type, control, 10, 0x3f)
362 BUILD_TRB_RW(stream_id, control, 16, 0xffff)
363 BUILD_TRB_RW(endpoint_id, control, 16, 0x1f)
364 BUILD_TRB_RW(tlbpc, control, 16, 0xf)
365 BUILD_TRB_RW(data_stage_dir, control, 16, 0x1)
366 BUILD_TRB_RW(frame_id, control, 20, 0x7ff)
367 BUILD_TRB_RW(sia, control, 31, 0x1)
368 
trb_read_data_ptr(struct tegra_xudc_trb * trb)369 static inline u64 trb_read_data_ptr(struct tegra_xudc_trb *trb)
370 {
371 	return ((u64)trb_read_data_hi(trb) << 32) |
372 		trb_read_data_lo(trb);
373 }
374 
trb_write_data_ptr(struct tegra_xudc_trb * trb,u64 addr)375 static inline void trb_write_data_ptr(struct tegra_xudc_trb *trb, u64 addr)
376 {
377 	trb_write_data_lo(trb, lower_32_bits(addr));
378 	trb_write_data_hi(trb, upper_32_bits(addr));
379 }
380 
381 struct tegra_xudc_request {
382 	struct usb_request usb_req;
383 
384 	size_t buf_queued;
385 	unsigned int trbs_queued;
386 	unsigned int trbs_needed;
387 	bool need_zlp;
388 
389 	struct tegra_xudc_trb *first_trb;
390 	struct tegra_xudc_trb *last_trb;
391 
392 	struct list_head list;
393 };
394 
395 struct tegra_xudc_ep {
396 	struct tegra_xudc *xudc;
397 	struct usb_ep usb_ep;
398 	unsigned int index;
399 	char name[8];
400 
401 	struct tegra_xudc_ep_context *context;
402 
403 #define XUDC_TRANSFER_RING_SIZE 64
404 	struct tegra_xudc_trb *transfer_ring;
405 	dma_addr_t transfer_ring_phys;
406 
407 	unsigned int enq_ptr;
408 	unsigned int deq_ptr;
409 	bool pcs;
410 	bool ring_full;
411 	bool stream_rejected;
412 
413 	struct list_head queue;
414 	const struct usb_endpoint_descriptor *desc;
415 	const struct usb_ss_ep_comp_descriptor *comp_desc;
416 };
417 
418 struct tegra_xudc_sel_timing {
419 	__u8 u1sel;
420 	__u8 u1pel;
421 	__le16 u2sel;
422 	__le16 u2pel;
423 };
424 
425 enum tegra_xudc_setup_state {
426 	WAIT_FOR_SETUP,
427 	DATA_STAGE_XFER,
428 	DATA_STAGE_RECV,
429 	STATUS_STAGE_XFER,
430 	STATUS_STAGE_RECV,
431 };
432 
433 struct tegra_xudc_setup_packet {
434 	struct usb_ctrlrequest ctrl_req;
435 	unsigned int seq_num;
436 };
437 
438 struct tegra_xudc_save_regs {
439 	u32 ctrl;
440 	u32 portpm;
441 };
442 
443 struct tegra_xudc {
444 	struct device *dev;
445 	const struct tegra_xudc_soc *soc;
446 	struct tegra_xusb_padctl *padctl;
447 
448 	spinlock_t lock;
449 
450 	struct usb_gadget gadget;
451 	struct usb_gadget_driver *driver;
452 
453 #define XUDC_NR_EVENT_RINGS 2
454 #define XUDC_EVENT_RING_SIZE 4096
455 	struct tegra_xudc_trb *event_ring[XUDC_NR_EVENT_RINGS];
456 	dma_addr_t event_ring_phys[XUDC_NR_EVENT_RINGS];
457 	unsigned int event_ring_index;
458 	unsigned int event_ring_deq_ptr;
459 	bool ccs;
460 
461 #define XUDC_NR_EPS 32
462 	struct tegra_xudc_ep ep[XUDC_NR_EPS];
463 	struct tegra_xudc_ep_context *ep_context;
464 	dma_addr_t ep_context_phys;
465 
466 	struct device *genpd_dev_device;
467 	struct device *genpd_dev_ss;
468 	struct device_link *genpd_dl_device;
469 	struct device_link *genpd_dl_ss;
470 
471 	struct dma_pool *transfer_ring_pool;
472 
473 	bool queued_setup_packet;
474 	struct tegra_xudc_setup_packet setup_packet;
475 	enum tegra_xudc_setup_state setup_state;
476 	u16 setup_seq_num;
477 
478 	u16 dev_addr;
479 	u16 isoch_delay;
480 	struct tegra_xudc_sel_timing sel_timing;
481 	u8 test_mode_pattern;
482 	u16 status_buf;
483 	struct tegra_xudc_request *ep0_req;
484 
485 	bool pullup;
486 
487 	unsigned int nr_enabled_eps;
488 	unsigned int nr_isoch_eps;
489 
490 	unsigned int device_state;
491 	unsigned int resume_state;
492 
493 	int irq;
494 
495 	void __iomem *base;
496 	resource_size_t phys_base;
497 	void __iomem *ipfs;
498 	void __iomem *fpci;
499 
500 	struct regulator_bulk_data *supplies;
501 
502 	struct clk_bulk_data *clks;
503 
504 	bool device_mode;
505 	bool current_device_mode;
506 	struct work_struct usb_role_sw_work;
507 
508 	struct phy **usb3_phy;
509 	struct phy *curr_usb3_phy;
510 	struct phy **utmi_phy;
511 	struct phy *curr_utmi_phy;
512 
513 	struct tegra_xudc_save_regs saved_regs;
514 	bool suspended;
515 	bool powergated;
516 
517 	struct usb_phy **usbphy;
518 	struct usb_phy *curr_usbphy;
519 	struct notifier_block vbus_nb;
520 
521 	struct completion disconnect_complete;
522 
523 	bool selfpowered;
524 
525 #define TOGGLE_VBUS_WAIT_MS 100
526 	struct delayed_work plc_reset_work;
527 	bool wait_csc;
528 
529 	struct delayed_work port_reset_war_work;
530 	bool wait_for_sec_prc;
531 };
532 
533 #define XUDC_TRB_MAX_BUFFER_SIZE 65536
534 #define XUDC_MAX_ISOCH_EPS 4
535 #define XUDC_INTERRUPT_MODERATION_US 0
536 
537 static struct usb_endpoint_descriptor tegra_xudc_ep0_desc = {
538 	.bLength = USB_DT_ENDPOINT_SIZE,
539 	.bDescriptorType = USB_DT_ENDPOINT,
540 	.bEndpointAddress = 0,
541 	.bmAttributes = USB_ENDPOINT_XFER_CONTROL,
542 	.wMaxPacketSize = cpu_to_le16(64),
543 };
544 
545 struct tegra_xudc_soc {
546 	const char * const *supply_names;
547 	unsigned int num_supplies;
548 	const char * const *clock_names;
549 	unsigned int num_clks;
550 	unsigned int num_phys;
551 	bool u1_enable;
552 	bool u2_enable;
553 	bool lpm_enable;
554 	bool invalid_seq_num;
555 	bool pls_quirk;
556 	bool port_reset_quirk;
557 	bool port_speed_quirk;
558 	bool has_ipfs;
559 };
560 
fpci_readl(struct tegra_xudc * xudc,unsigned int offset)561 static inline u32 fpci_readl(struct tegra_xudc *xudc, unsigned int offset)
562 {
563 	return readl(xudc->fpci + offset);
564 }
565 
fpci_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)566 static inline void fpci_writel(struct tegra_xudc *xudc, u32 val,
567 			       unsigned int offset)
568 {
569 	writel(val, xudc->fpci + offset);
570 }
571 
ipfs_readl(struct tegra_xudc * xudc,unsigned int offset)572 static inline u32 ipfs_readl(struct tegra_xudc *xudc, unsigned int offset)
573 {
574 	return readl(xudc->ipfs + offset);
575 }
576 
ipfs_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)577 static inline void ipfs_writel(struct tegra_xudc *xudc, u32 val,
578 			       unsigned int offset)
579 {
580 	writel(val, xudc->ipfs + offset);
581 }
582 
xudc_readl(struct tegra_xudc * xudc,unsigned int offset)583 static inline u32 xudc_readl(struct tegra_xudc *xudc, unsigned int offset)
584 {
585 	return readl(xudc->base + offset);
586 }
587 
xudc_writel(struct tegra_xudc * xudc,u32 val,unsigned int offset)588 static inline void xudc_writel(struct tegra_xudc *xudc, u32 val,
589 			       unsigned int offset)
590 {
591 	writel(val, xudc->base + offset);
592 }
593 
xudc_readl_poll(struct tegra_xudc * xudc,unsigned int offset,u32 mask,u32 val)594 static inline int xudc_readl_poll(struct tegra_xudc *xudc,
595 				  unsigned int offset, u32 mask, u32 val)
596 {
597 	u32 regval;
598 
599 	return readl_poll_timeout_atomic(xudc->base + offset, regval,
600 					 (regval & mask) == val, 1, 100);
601 }
602 
to_xudc(struct usb_gadget * gadget)603 static inline struct tegra_xudc *to_xudc(struct usb_gadget *gadget)
604 {
605 	return container_of(gadget, struct tegra_xudc, gadget);
606 }
607 
to_xudc_ep(struct usb_ep * ep)608 static inline struct tegra_xudc_ep *to_xudc_ep(struct usb_ep *ep)
609 {
610 	return container_of(ep, struct tegra_xudc_ep, usb_ep);
611 }
612 
to_xudc_req(struct usb_request * req)613 static inline struct tegra_xudc_request *to_xudc_req(struct usb_request *req)
614 {
615 	return container_of(req, struct tegra_xudc_request, usb_req);
616 }
617 
dump_trb(struct tegra_xudc * xudc,const char * type,struct tegra_xudc_trb * trb)618 static inline void dump_trb(struct tegra_xudc *xudc, const char *type,
619 			    struct tegra_xudc_trb *trb)
620 {
621 	dev_dbg(xudc->dev,
622 		"%s: %p, lo = %#x, hi = %#x, status = %#x, control = %#x\n",
623 		type, trb, trb->data_lo, trb->data_hi, trb->status,
624 		trb->control);
625 }
626 
tegra_xudc_limit_port_speed(struct tegra_xudc * xudc)627 static void tegra_xudc_limit_port_speed(struct tegra_xudc *xudc)
628 {
629 	u32 val;
630 
631 	/* limit port speed to gen 1 */
632 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
633 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
634 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x260);
635 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
636 
637 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
638 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
639 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x6D6);
640 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
641 
642 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
643 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
644 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0x4B0);
645 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
646 
647 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
648 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
649 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x4B0);
650 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
651 
652 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
653 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
654 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x4B0);
655 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
656 
657 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
658 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
659 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x10);
660 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
661 }
662 
tegra_xudc_restore_port_speed(struct tegra_xudc * xudc)663 static void tegra_xudc_restore_port_speed(struct tegra_xudc *xudc)
664 {
665 	u32 val;
666 
667 	/* restore port speed to gen2 */
668 	val = xudc_readl(xudc, SSPX_CORE_CNT56);
669 	val &= ~(SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX_MASK);
670 	val |= SSPX_CORE_CNT56_SCD_BIT0_TRPT_MAX(0x438);
671 	xudc_writel(xudc, val, SSPX_CORE_CNT56);
672 
673 	val = xudc_readl(xudc, SSPX_CORE_CNT57);
674 	val &= ~(SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX_MASK);
675 	val |= SSPX_CORE_CNT57_SCD_BIT1_TRPT_MAX(0x528);
676 	xudc_writel(xudc, val, SSPX_CORE_CNT57);
677 
678 	val = xudc_readl(xudc, SSPX_CORE_CNT65);
679 	val &= ~(SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID_MASK);
680 	val |= SSPX_CORE_CNT65_TX_SCD_END_TRPT_MID(0xE10);
681 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
682 
683 	val = xudc_readl(xudc, SSPX_CORE_CNT66);
684 	val &= ~(SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID_MASK);
685 	val |= SSPX_CORE_CNT66_TX_SCD_BIT0_TRPT_MID(0x348);
686 	xudc_writel(xudc, val, SSPX_CORE_CNT66);
687 
688 	val = xudc_readl(xudc, SSPX_CORE_CNT67);
689 	val &= ~(SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID_MASK);
690 	val |= SSPX_CORE_CNT67_TX_SCD_BIT1_TRPT_MID(0x5a0);
691 	xudc_writel(xudc, val, SSPX_CORE_CNT67);
692 
693 	val = xudc_readl(xudc, SSPX_CORE_CNT72);
694 	val &= ~(SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT_MASK);
695 	val |= SSPX_CORE_CNT72_SCD_LFPS_TIMEOUT(0x1c21);
696 	xudc_writel(xudc, val, SSPX_CORE_CNT72);
697 }
698 
tegra_xudc_device_mode_on(struct tegra_xudc * xudc)699 static void tegra_xudc_device_mode_on(struct tegra_xudc *xudc)
700 {
701 	int err;
702 
703 	pm_runtime_get_sync(xudc->dev);
704 
705 	tegra_phy_xusb_utmi_pad_power_on(xudc->curr_utmi_phy);
706 
707 	err = phy_power_on(xudc->curr_utmi_phy);
708 	if (err < 0)
709 		dev_err(xudc->dev, "UTMI power on failed: %d\n", err);
710 
711 	err = phy_power_on(xudc->curr_usb3_phy);
712 	if (err < 0)
713 		dev_err(xudc->dev, "USB3 PHY power on failed: %d\n", err);
714 
715 	dev_dbg(xudc->dev, "device mode on\n");
716 
717 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
718 			 USB_ROLE_DEVICE);
719 
720 	xudc->current_device_mode = true;
721 }
722 
tegra_xudc_device_mode_off(struct tegra_xudc * xudc)723 static void tegra_xudc_device_mode_off(struct tegra_xudc *xudc)
724 {
725 	bool connected = false;
726 	u32 pls, val;
727 	int err;
728 
729 	dev_dbg(xudc->dev, "device mode off\n");
730 
731 	xudc->current_device_mode = false;
732 
733 	connected = !!(xudc_readl(xudc, PORTSC) & PORTSC_CCS);
734 
735 	reinit_completion(&xudc->disconnect_complete);
736 
737 	if (xudc->soc->port_speed_quirk)
738 		tegra_xudc_restore_port_speed(xudc);
739 
740 	phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG, USB_ROLE_NONE);
741 
742 	pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
743 		PORTSC_PLS_SHIFT;
744 
745 	/* Direct link to U0 if disconnected in RESUME or U2. */
746 	if (xudc->soc->pls_quirk && xudc->gadget.speed == USB_SPEED_SUPER &&
747 	    (pls == PORTSC_PLS_RESUME || pls == PORTSC_PLS_U2)) {
748 		val = xudc_readl(xudc, PORTPM);
749 		val |= PORTPM_FRWE;
750 		xudc_writel(xudc, val, PORTPM);
751 
752 		val = xudc_readl(xudc, PORTSC);
753 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
754 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
755 		xudc_writel(xudc, val, PORTSC);
756 	}
757 
758 	/* Wait for disconnect event. */
759 	if (connected)
760 		wait_for_completion(&xudc->disconnect_complete);
761 
762 	/* Make sure interrupt handler has completed before powergating. */
763 	synchronize_irq(xudc->irq);
764 
765 	tegra_phy_xusb_utmi_pad_power_down(xudc->curr_utmi_phy);
766 
767 	err = phy_power_off(xudc->curr_utmi_phy);
768 	if (err < 0)
769 		dev_err(xudc->dev, "UTMI PHY power off failed: %d\n", err);
770 
771 	err = phy_power_off(xudc->curr_usb3_phy);
772 	if (err < 0)
773 		dev_err(xudc->dev, "USB3 PHY power off failed: %d\n", err);
774 
775 	pm_runtime_put(xudc->dev);
776 }
777 
tegra_xudc_usb_role_sw_work(struct work_struct * work)778 static void tegra_xudc_usb_role_sw_work(struct work_struct *work)
779 {
780 	struct tegra_xudc *xudc = container_of(work, struct tegra_xudc,
781 					       usb_role_sw_work);
782 
783 	if (xudc->device_mode)
784 		tegra_xudc_device_mode_on(xudc);
785 	else
786 		tegra_xudc_device_mode_off(xudc);
787 }
788 
tegra_xudc_get_phy_index(struct tegra_xudc * xudc,struct usb_phy * usbphy)789 static int tegra_xudc_get_phy_index(struct tegra_xudc *xudc,
790 					      struct usb_phy *usbphy)
791 {
792 	unsigned int i;
793 
794 	for (i = 0; i < xudc->soc->num_phys; i++) {
795 		if (xudc->usbphy[i] && usbphy == xudc->usbphy[i])
796 			return i;
797 	}
798 
799 	dev_info(xudc->dev, "phy index could not be found for shared USB PHY");
800 	return -1;
801 }
802 
tegra_xudc_update_data_role(struct tegra_xudc * xudc,struct usb_phy * usbphy)803 static void tegra_xudc_update_data_role(struct tegra_xudc *xudc,
804 					      struct usb_phy *usbphy)
805 {
806 	int phy_index;
807 
808 	if ((xudc->device_mode && usbphy->last_event == USB_EVENT_VBUS) ||
809 	    (!xudc->device_mode && usbphy->last_event != USB_EVENT_VBUS)) {
810 		dev_dbg(xudc->dev, "Same role(%d) received. Ignore",
811 			xudc->device_mode);
812 		return;
813 	}
814 
815 	xudc->device_mode = (usbphy->last_event == USB_EVENT_VBUS) ? true :
816 								     false;
817 
818 	phy_index = tegra_xudc_get_phy_index(xudc, usbphy);
819 	dev_dbg(xudc->dev, "%s(): current phy index is %d\n", __func__,
820 		phy_index);
821 
822 	if (!xudc->suspended && phy_index != -1) {
823 		xudc->curr_utmi_phy = xudc->utmi_phy[phy_index];
824 		xudc->curr_usb3_phy = xudc->usb3_phy[phy_index];
825 		xudc->curr_usbphy = usbphy;
826 		schedule_work(&xudc->usb_role_sw_work);
827 	}
828 }
829 
tegra_xudc_vbus_notify(struct notifier_block * nb,unsigned long action,void * data)830 static int tegra_xudc_vbus_notify(struct notifier_block *nb,
831 					 unsigned long action, void *data)
832 {
833 	struct tegra_xudc *xudc = container_of(nb, struct tegra_xudc,
834 					       vbus_nb);
835 	struct usb_phy *usbphy = (struct usb_phy *)data;
836 
837 	dev_dbg(xudc->dev, "%s(): event is %d\n", __func__, usbphy->last_event);
838 
839 	tegra_xudc_update_data_role(xudc, usbphy);
840 
841 	return NOTIFY_OK;
842 }
843 
tegra_xudc_plc_reset_work(struct work_struct * work)844 static void tegra_xudc_plc_reset_work(struct work_struct *work)
845 {
846 	struct delayed_work *dwork = to_delayed_work(work);
847 	struct tegra_xudc *xudc = container_of(dwork, struct tegra_xudc,
848 					       plc_reset_work);
849 	unsigned long flags;
850 
851 	spin_lock_irqsave(&xudc->lock, flags);
852 
853 	if (xudc->wait_csc) {
854 		u32 pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
855 			PORTSC_PLS_SHIFT;
856 
857 		if (pls == PORTSC_PLS_INACTIVE) {
858 			dev_info(xudc->dev, "PLS = Inactive. Toggle VBUS\n");
859 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
860 					 USB_ROLE_NONE);
861 			phy_set_mode_ext(xudc->curr_utmi_phy, PHY_MODE_USB_OTG,
862 					 USB_ROLE_DEVICE);
863 
864 			xudc->wait_csc = false;
865 		}
866 	}
867 
868 	spin_unlock_irqrestore(&xudc->lock, flags);
869 }
870 
tegra_xudc_port_reset_war_work(struct work_struct * work)871 static void tegra_xudc_port_reset_war_work(struct work_struct *work)
872 {
873 	struct delayed_work *dwork = to_delayed_work(work);
874 	struct tegra_xudc *xudc =
875 		container_of(dwork, struct tegra_xudc, port_reset_war_work);
876 	unsigned long flags;
877 	u32 pls;
878 	int ret;
879 
880 	spin_lock_irqsave(&xudc->lock, flags);
881 
882 	if (xudc->device_mode && xudc->wait_for_sec_prc) {
883 		pls = (xudc_readl(xudc, PORTSC) & PORTSC_PLS_MASK) >>
884 			PORTSC_PLS_SHIFT;
885 		dev_dbg(xudc->dev, "pls = %x\n", pls);
886 
887 		if (pls == PORTSC_PLS_DISABLED) {
888 			dev_dbg(xudc->dev, "toggle vbus\n");
889 			/* PRC doesn't complete in 100ms, toggle the vbus */
890 			ret = tegra_phy_xusb_utmi_port_reset(
891 				xudc->curr_utmi_phy);
892 			if (ret == 1)
893 				xudc->wait_for_sec_prc = 0;
894 		}
895 	}
896 
897 	spin_unlock_irqrestore(&xudc->lock, flags);
898 }
899 
trb_virt_to_phys(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)900 static dma_addr_t trb_virt_to_phys(struct tegra_xudc_ep *ep,
901 				   struct tegra_xudc_trb *trb)
902 {
903 	unsigned int index;
904 
905 	index = trb - ep->transfer_ring;
906 
907 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
908 		return 0;
909 
910 	return (ep->transfer_ring_phys + index * sizeof(*trb));
911 }
912 
trb_phys_to_virt(struct tegra_xudc_ep * ep,dma_addr_t addr)913 static struct tegra_xudc_trb *trb_phys_to_virt(struct tegra_xudc_ep *ep,
914 					       dma_addr_t addr)
915 {
916 	struct tegra_xudc_trb *trb;
917 	unsigned int index;
918 
919 	index = (addr - ep->transfer_ring_phys) / sizeof(*trb);
920 
921 	if (WARN_ON(index >= XUDC_TRANSFER_RING_SIZE))
922 		return NULL;
923 
924 	trb = &ep->transfer_ring[index];
925 
926 	return trb;
927 }
928 
ep_reload(struct tegra_xudc * xudc,unsigned int ep)929 static void ep_reload(struct tegra_xudc *xudc, unsigned int ep)
930 {
931 	xudc_writel(xudc, BIT(ep), EP_RELOAD);
932 	xudc_readl_poll(xudc, EP_RELOAD, BIT(ep), 0);
933 }
934 
ep_pause(struct tegra_xudc * xudc,unsigned int ep)935 static void ep_pause(struct tegra_xudc *xudc, unsigned int ep)
936 {
937 	u32 val;
938 
939 	val = xudc_readl(xudc, EP_PAUSE);
940 	if (val & BIT(ep))
941 		return;
942 	val |= BIT(ep);
943 
944 	xudc_writel(xudc, val, EP_PAUSE);
945 
946 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
947 
948 	xudc_writel(xudc, BIT(ep), EP_STCHG);
949 }
950 
ep_unpause(struct tegra_xudc * xudc,unsigned int ep)951 static void ep_unpause(struct tegra_xudc *xudc, unsigned int ep)
952 {
953 	u32 val;
954 
955 	val = xudc_readl(xudc, EP_PAUSE);
956 	if (!(val & BIT(ep)))
957 		return;
958 	val &= ~BIT(ep);
959 
960 	xudc_writel(xudc, val, EP_PAUSE);
961 
962 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
963 
964 	xudc_writel(xudc, BIT(ep), EP_STCHG);
965 }
966 
ep_unpause_all(struct tegra_xudc * xudc)967 static void ep_unpause_all(struct tegra_xudc *xudc)
968 {
969 	u32 val;
970 
971 	val = xudc_readl(xudc, EP_PAUSE);
972 
973 	xudc_writel(xudc, 0, EP_PAUSE);
974 
975 	xudc_readl_poll(xudc, EP_STCHG, val, val);
976 
977 	xudc_writel(xudc, val, EP_STCHG);
978 }
979 
ep_halt(struct tegra_xudc * xudc,unsigned int ep)980 static void ep_halt(struct tegra_xudc *xudc, unsigned int ep)
981 {
982 	u32 val;
983 
984 	val = xudc_readl(xudc, EP_HALT);
985 	if (val & BIT(ep))
986 		return;
987 	val |= BIT(ep);
988 	xudc_writel(xudc, val, EP_HALT);
989 
990 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
991 
992 	xudc_writel(xudc, BIT(ep), EP_STCHG);
993 }
994 
ep_unhalt(struct tegra_xudc * xudc,unsigned int ep)995 static void ep_unhalt(struct tegra_xudc *xudc, unsigned int ep)
996 {
997 	u32 val;
998 
999 	val = xudc_readl(xudc, EP_HALT);
1000 	if (!(val & BIT(ep)))
1001 		return;
1002 	val &= ~BIT(ep);
1003 	xudc_writel(xudc, val, EP_HALT);
1004 
1005 	xudc_readl_poll(xudc, EP_STCHG, BIT(ep), BIT(ep));
1006 
1007 	xudc_writel(xudc, BIT(ep), EP_STCHG);
1008 }
1009 
ep_unhalt_all(struct tegra_xudc * xudc)1010 static void ep_unhalt_all(struct tegra_xudc *xudc)
1011 {
1012 	u32 val;
1013 
1014 	val = xudc_readl(xudc, EP_HALT);
1015 	if (!val)
1016 		return;
1017 	xudc_writel(xudc, 0, EP_HALT);
1018 
1019 	xudc_readl_poll(xudc, EP_STCHG, val, val);
1020 
1021 	xudc_writel(xudc, val, EP_STCHG);
1022 }
1023 
ep_wait_for_stopped(struct tegra_xudc * xudc,unsigned int ep)1024 static void ep_wait_for_stopped(struct tegra_xudc *xudc, unsigned int ep)
1025 {
1026 	xudc_readl_poll(xudc, EP_STOPPED, BIT(ep), BIT(ep));
1027 	xudc_writel(xudc, BIT(ep), EP_STOPPED);
1028 }
1029 
ep_wait_for_inactive(struct tegra_xudc * xudc,unsigned int ep)1030 static void ep_wait_for_inactive(struct tegra_xudc *xudc, unsigned int ep)
1031 {
1032 	xudc_readl_poll(xudc, EP_THREAD_ACTIVE, BIT(ep), 0);
1033 }
1034 
tegra_xudc_req_done(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,int status)1035 static void tegra_xudc_req_done(struct tegra_xudc_ep *ep,
1036 				struct tegra_xudc_request *req, int status)
1037 {
1038 	struct tegra_xudc *xudc = ep->xudc;
1039 
1040 	dev_dbg(xudc->dev, "completing request %p on EP %u with status %d\n",
1041 		 req, ep->index, status);
1042 
1043 	if (likely(req->usb_req.status == -EINPROGRESS))
1044 		req->usb_req.status = status;
1045 
1046 	list_del_init(&req->list);
1047 
1048 	if (usb_endpoint_xfer_control(ep->desc)) {
1049 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1050 					 (xudc->setup_state ==
1051 					  DATA_STAGE_XFER));
1052 	} else {
1053 		usb_gadget_unmap_request(&xudc->gadget, &req->usb_req,
1054 					 usb_endpoint_dir_in(ep->desc));
1055 	}
1056 
1057 	spin_unlock(&xudc->lock);
1058 	usb_gadget_giveback_request(&ep->usb_ep, &req->usb_req);
1059 	spin_lock(&xudc->lock);
1060 }
1061 
tegra_xudc_ep_nuke(struct tegra_xudc_ep * ep,int status)1062 static void tegra_xudc_ep_nuke(struct tegra_xudc_ep *ep, int status)
1063 {
1064 	struct tegra_xudc_request *req;
1065 
1066 	while (!list_empty(&ep->queue)) {
1067 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1068 				       list);
1069 		tegra_xudc_req_done(ep, req, status);
1070 	}
1071 }
1072 
ep_available_trbs(struct tegra_xudc_ep * ep)1073 static unsigned int ep_available_trbs(struct tegra_xudc_ep *ep)
1074 {
1075 	if (ep->ring_full)
1076 		return 0;
1077 
1078 	if (ep->deq_ptr > ep->enq_ptr)
1079 		return ep->deq_ptr - ep->enq_ptr - 1;
1080 
1081 	return XUDC_TRANSFER_RING_SIZE - (ep->enq_ptr - ep->deq_ptr) - 2;
1082 }
1083 
tegra_xudc_queue_one_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb,bool ioc)1084 static void tegra_xudc_queue_one_trb(struct tegra_xudc_ep *ep,
1085 				     struct tegra_xudc_request *req,
1086 				     struct tegra_xudc_trb *trb,
1087 				     bool ioc)
1088 {
1089 	struct tegra_xudc *xudc = ep->xudc;
1090 	dma_addr_t buf_addr;
1091 	size_t len;
1092 
1093 	len = min_t(size_t, XUDC_TRB_MAX_BUFFER_SIZE, req->usb_req.length -
1094 		    req->buf_queued);
1095 	if (len > 0)
1096 		buf_addr = req->usb_req.dma + req->buf_queued;
1097 	else
1098 		buf_addr = 0;
1099 
1100 	trb_write_data_ptr(trb, buf_addr);
1101 
1102 	trb_write_transfer_len(trb, len);
1103 	trb_write_td_size(trb, req->trbs_needed - req->trbs_queued - 1);
1104 
1105 	if (req->trbs_queued == req->trbs_needed - 1 ||
1106 		(req->need_zlp && req->trbs_queued == req->trbs_needed - 2))
1107 		trb_write_chain(trb, 0);
1108 	else
1109 		trb_write_chain(trb, 1);
1110 
1111 	trb_write_ioc(trb, ioc);
1112 
1113 	if (usb_endpoint_dir_out(ep->desc) ||
1114 	    (usb_endpoint_xfer_control(ep->desc) &&
1115 	     (xudc->setup_state == DATA_STAGE_RECV)))
1116 		trb_write_isp(trb, 1);
1117 	else
1118 		trb_write_isp(trb, 0);
1119 
1120 	if (usb_endpoint_xfer_control(ep->desc)) {
1121 		if (xudc->setup_state == DATA_STAGE_XFER ||
1122 		    xudc->setup_state == DATA_STAGE_RECV)
1123 			trb_write_type(trb, TRB_TYPE_DATA_STAGE);
1124 		else
1125 			trb_write_type(trb, TRB_TYPE_STATUS_STAGE);
1126 
1127 		if (xudc->setup_state == DATA_STAGE_XFER ||
1128 		    xudc->setup_state == STATUS_STAGE_XFER)
1129 			trb_write_data_stage_dir(trb, 1);
1130 		else
1131 			trb_write_data_stage_dir(trb, 0);
1132 	} else if (usb_endpoint_xfer_isoc(ep->desc)) {
1133 		trb_write_type(trb, TRB_TYPE_ISOCH);
1134 		trb_write_sia(trb, 1);
1135 		trb_write_frame_id(trb, 0);
1136 		trb_write_tlbpc(trb, 0);
1137 	} else if (usb_ss_max_streams(ep->comp_desc)) {
1138 		trb_write_type(trb, TRB_TYPE_STREAM);
1139 		trb_write_stream_id(trb, req->usb_req.stream_id);
1140 	} else {
1141 		trb_write_type(trb, TRB_TYPE_NORMAL);
1142 		trb_write_stream_id(trb, 0);
1143 	}
1144 
1145 	trb_write_cycle(trb, ep->pcs);
1146 
1147 	req->trbs_queued++;
1148 	req->buf_queued += len;
1149 
1150 	dump_trb(xudc, "TRANSFER", trb);
1151 }
1152 
tegra_xudc_queue_trbs(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1153 static unsigned int tegra_xudc_queue_trbs(struct tegra_xudc_ep *ep,
1154 					  struct tegra_xudc_request *req)
1155 {
1156 	unsigned int i, count, available;
1157 	bool wait_td = false;
1158 
1159 	available = ep_available_trbs(ep);
1160 	count = req->trbs_needed - req->trbs_queued;
1161 	if (available < count) {
1162 		count = available;
1163 		ep->ring_full = true;
1164 	}
1165 
1166 	/*
1167 	 * To generate zero-length packet on USB bus, SW needs schedule a
1168 	 * standalone zero-length TD. According to HW's behavior, SW needs
1169 	 * to schedule TDs in different ways for different endpoint types.
1170 	 *
1171 	 * For control endpoint:
1172 	 * - Data stage TD (IOC = 1, CH = 0)
1173 	 * - Ring doorbell and wait transfer event
1174 	 * - Data stage TD for ZLP (IOC = 1, CH = 0)
1175 	 * - Ring doorbell
1176 	 *
1177 	 * For bulk and interrupt endpoints:
1178 	 * - Normal transfer TD (IOC = 0, CH = 0)
1179 	 * - Normal transfer TD for ZLP (IOC = 1, CH = 0)
1180 	 * - Ring doorbell
1181 	 */
1182 
1183 	if (req->need_zlp && usb_endpoint_xfer_control(ep->desc) && count > 1)
1184 		wait_td = true;
1185 
1186 	if (!req->first_trb)
1187 		req->first_trb = &ep->transfer_ring[ep->enq_ptr];
1188 
1189 	for (i = 0; i < count; i++) {
1190 		struct tegra_xudc_trb *trb = &ep->transfer_ring[ep->enq_ptr];
1191 		bool ioc = false;
1192 
1193 		if ((i == count - 1) || (wait_td && i == count - 2))
1194 			ioc = true;
1195 
1196 		tegra_xudc_queue_one_trb(ep, req, trb, ioc);
1197 		req->last_trb = trb;
1198 
1199 		ep->enq_ptr++;
1200 		if (ep->enq_ptr == XUDC_TRANSFER_RING_SIZE - 1) {
1201 			trb = &ep->transfer_ring[ep->enq_ptr];
1202 			trb_write_cycle(trb, ep->pcs);
1203 			ep->pcs = !ep->pcs;
1204 			ep->enq_ptr = 0;
1205 		}
1206 
1207 		if (ioc)
1208 			break;
1209 	}
1210 
1211 	return count;
1212 }
1213 
tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep * ep)1214 static void tegra_xudc_ep_ring_doorbell(struct tegra_xudc_ep *ep)
1215 {
1216 	struct tegra_xudc *xudc = ep->xudc;
1217 	u32 val;
1218 
1219 	if (list_empty(&ep->queue))
1220 		return;
1221 
1222 	val = DB_TARGET(ep->index);
1223 	if (usb_endpoint_xfer_control(ep->desc)) {
1224 		val |= DB_STREAMID(xudc->setup_seq_num);
1225 	} else if (usb_ss_max_streams(ep->comp_desc) > 0) {
1226 		struct tegra_xudc_request *req;
1227 
1228 		/* Don't ring doorbell if the stream has been rejected. */
1229 		if (ep->stream_rejected)
1230 			return;
1231 
1232 		req = list_first_entry(&ep->queue, struct tegra_xudc_request,
1233 				       list);
1234 		val |= DB_STREAMID(req->usb_req.stream_id);
1235 	}
1236 
1237 	dev_dbg(xudc->dev, "ring doorbell: %#x\n", val);
1238 	xudc_writel(xudc, val, DB);
1239 }
1240 
tegra_xudc_ep_kick_queue(struct tegra_xudc_ep * ep)1241 static void tegra_xudc_ep_kick_queue(struct tegra_xudc_ep *ep)
1242 {
1243 	struct tegra_xudc_request *req;
1244 	bool trbs_queued = false;
1245 
1246 	list_for_each_entry(req, &ep->queue, list) {
1247 		if (ep->ring_full)
1248 			break;
1249 
1250 		if (tegra_xudc_queue_trbs(ep, req) > 0)
1251 			trbs_queued = true;
1252 	}
1253 
1254 	if (trbs_queued)
1255 		tegra_xudc_ep_ring_doorbell(ep);
1256 }
1257 
1258 static int
__tegra_xudc_ep_queue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1259 __tegra_xudc_ep_queue(struct tegra_xudc_ep *ep, struct tegra_xudc_request *req)
1260 {
1261 	struct tegra_xudc *xudc = ep->xudc;
1262 	int err;
1263 
1264 	if (usb_endpoint_xfer_control(ep->desc) && !list_empty(&ep->queue)) {
1265 		dev_err(xudc->dev, "control EP has pending transfers\n");
1266 		return -EINVAL;
1267 	}
1268 
1269 	if (usb_endpoint_xfer_control(ep->desc)) {
1270 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1271 					     (xudc->setup_state ==
1272 					      DATA_STAGE_XFER));
1273 	} else {
1274 		err = usb_gadget_map_request(&xudc->gadget, &req->usb_req,
1275 					     usb_endpoint_dir_in(ep->desc));
1276 	}
1277 
1278 	if (err < 0) {
1279 		dev_err(xudc->dev, "failed to map request: %d\n", err);
1280 		return err;
1281 	}
1282 
1283 	req->first_trb = NULL;
1284 	req->last_trb = NULL;
1285 	req->buf_queued = 0;
1286 	req->trbs_queued = 0;
1287 	req->need_zlp = false;
1288 	req->trbs_needed = DIV_ROUND_UP(req->usb_req.length,
1289 					XUDC_TRB_MAX_BUFFER_SIZE);
1290 	if (req->usb_req.length == 0)
1291 		req->trbs_needed++;
1292 
1293 	if (!usb_endpoint_xfer_isoc(ep->desc) &&
1294 	    req->usb_req.zero && req->usb_req.length &&
1295 	    ((req->usb_req.length % ep->usb_ep.maxpacket) == 0)) {
1296 		req->trbs_needed++;
1297 		req->need_zlp = true;
1298 	}
1299 
1300 	req->usb_req.status = -EINPROGRESS;
1301 	req->usb_req.actual = 0;
1302 
1303 	list_add_tail(&req->list, &ep->queue);
1304 
1305 	tegra_xudc_ep_kick_queue(ep);
1306 
1307 	return 0;
1308 }
1309 
1310 static int
tegra_xudc_ep_queue(struct usb_ep * usb_ep,struct usb_request * usb_req,gfp_t gfp)1311 tegra_xudc_ep_queue(struct usb_ep *usb_ep, struct usb_request *usb_req,
1312 		    gfp_t gfp)
1313 {
1314 	struct tegra_xudc_request *req;
1315 	struct tegra_xudc_ep *ep;
1316 	struct tegra_xudc *xudc;
1317 	unsigned long flags;
1318 	int ret;
1319 
1320 	if (!usb_ep || !usb_req)
1321 		return -EINVAL;
1322 
1323 	ep = to_xudc_ep(usb_ep);
1324 	req = to_xudc_req(usb_req);
1325 	xudc = ep->xudc;
1326 
1327 	spin_lock_irqsave(&xudc->lock, flags);
1328 	if (xudc->powergated || !ep->desc) {
1329 		ret = -ESHUTDOWN;
1330 		goto unlock;
1331 	}
1332 
1333 	ret = __tegra_xudc_ep_queue(ep, req);
1334 unlock:
1335 	spin_unlock_irqrestore(&xudc->lock, flags);
1336 
1337 	return ret;
1338 }
1339 
squeeze_transfer_ring(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1340 static void squeeze_transfer_ring(struct tegra_xudc_ep *ep,
1341 				  struct tegra_xudc_request *req)
1342 {
1343 	struct tegra_xudc_trb *trb = req->first_trb;
1344 	bool pcs_enq = trb_read_cycle(trb);
1345 	bool pcs;
1346 
1347 	/*
1348 	 * Clear out all the TRBs part of or after the cancelled request,
1349 	 * and must correct trb cycle bit to the last un-enqueued state.
1350 	 */
1351 	while (trb != &ep->transfer_ring[ep->enq_ptr]) {
1352 		pcs = trb_read_cycle(trb);
1353 		memset(trb, 0, sizeof(*trb));
1354 		trb_write_cycle(trb, !pcs);
1355 		trb++;
1356 
1357 		if (trb_read_type(trb) == TRB_TYPE_LINK)
1358 			trb = ep->transfer_ring;
1359 	}
1360 
1361 	/* Requests will be re-queued at the start of the cancelled request. */
1362 	ep->enq_ptr = req->first_trb - ep->transfer_ring;
1363 	/*
1364 	 * Retrieve the correct cycle bit state from the first trb of
1365 	 * the cancelled request.
1366 	 */
1367 	ep->pcs = pcs_enq;
1368 	ep->ring_full = false;
1369 	list_for_each_entry_continue(req, &ep->queue, list) {
1370 		req->usb_req.status = -EINPROGRESS;
1371 		req->usb_req.actual = 0;
1372 
1373 		req->first_trb = NULL;
1374 		req->last_trb = NULL;
1375 		req->buf_queued = 0;
1376 		req->trbs_queued = 0;
1377 	}
1378 }
1379 
1380 /*
1381  * Determine if the given TRB is in the range [first trb, last trb] for the
1382  * given request.
1383  */
trb_in_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1384 static bool trb_in_request(struct tegra_xudc_ep *ep,
1385 			   struct tegra_xudc_request *req,
1386 			   struct tegra_xudc_trb *trb)
1387 {
1388 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; trb %p\n", __func__,
1389 		req->first_trb, req->last_trb, trb);
1390 
1391 	if (trb >= req->first_trb && (trb <= req->last_trb ||
1392 				      req->last_trb < req->first_trb))
1393 		return true;
1394 
1395 	if (trb < req->first_trb && trb <= req->last_trb &&
1396 	    req->last_trb < req->first_trb)
1397 		return true;
1398 
1399 	return false;
1400 }
1401 
1402 /*
1403  * Determine if the given TRB is in the range [EP enqueue pointer, first TRB)
1404  * for the given endpoint and request.
1405  */
trb_before_request(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req,struct tegra_xudc_trb * trb)1406 static bool trb_before_request(struct tegra_xudc_ep *ep,
1407 			       struct tegra_xudc_request *req,
1408 			       struct tegra_xudc_trb *trb)
1409 {
1410 	struct tegra_xudc_trb *enq_trb = &ep->transfer_ring[ep->enq_ptr];
1411 
1412 	dev_dbg(ep->xudc->dev, "%s: request %p -> %p; enq ptr: %p; trb %p\n",
1413 		__func__, req->first_trb, req->last_trb, enq_trb, trb);
1414 
1415 	if (trb < req->first_trb && (enq_trb <= trb ||
1416 				     req->first_trb < enq_trb))
1417 		return true;
1418 
1419 	if (trb > req->first_trb && req->first_trb < enq_trb && enq_trb <= trb)
1420 		return true;
1421 
1422 	return false;
1423 }
1424 
1425 static int
__tegra_xudc_ep_dequeue(struct tegra_xudc_ep * ep,struct tegra_xudc_request * req)1426 __tegra_xudc_ep_dequeue(struct tegra_xudc_ep *ep,
1427 			struct tegra_xudc_request *req)
1428 {
1429 	struct tegra_xudc *xudc = ep->xudc;
1430 	struct tegra_xudc_request *r = NULL, *iter;
1431 	struct tegra_xudc_trb *deq_trb;
1432 	bool busy, kick_queue = false;
1433 	int ret = 0;
1434 
1435 	/* Make sure the request is actually queued to this endpoint. */
1436 	list_for_each_entry(iter, &ep->queue, list) {
1437 		if (iter != req)
1438 			continue;
1439 		r = iter;
1440 		break;
1441 	}
1442 
1443 	if (!r)
1444 		return -EINVAL;
1445 
1446 	/* Request hasn't been queued in the transfer ring yet. */
1447 	if (!req->trbs_queued) {
1448 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1449 		return 0;
1450 	}
1451 
1452 	/* Halt DMA for this endpoint. */
1453 	if (ep_ctx_read_state(ep->context) == EP_STATE_RUNNING) {
1454 		ep_pause(xudc, ep->index);
1455 		ep_wait_for_inactive(xudc, ep->index);
1456 	}
1457 
1458 	deq_trb = trb_phys_to_virt(ep, ep_ctx_read_deq_ptr(ep->context));
1459 	/* Is the hardware processing the TRB at the dequeue pointer? */
1460 	busy = (trb_read_cycle(deq_trb) == ep_ctx_read_dcs(ep->context));
1461 
1462 	if (trb_in_request(ep, req, deq_trb) && busy) {
1463 		/*
1464 		 * Request has been partially completed or it hasn't
1465 		 * started processing yet.
1466 		 */
1467 		dma_addr_t deq_ptr;
1468 
1469 		squeeze_transfer_ring(ep, req);
1470 
1471 		req->usb_req.actual = ep_ctx_read_edtla(ep->context);
1472 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1473 		kick_queue = true;
1474 
1475 		/* EDTLA is > 0: request has been partially completed */
1476 		if (req->usb_req.actual > 0) {
1477 			/*
1478 			 * Abort the pending transfer and update the dequeue
1479 			 * pointer
1480 			 */
1481 			ep_ctx_write_edtla(ep->context, 0);
1482 			ep_ctx_write_partial_td(ep->context, 0);
1483 			ep_ctx_write_data_offset(ep->context, 0);
1484 
1485 			deq_ptr = trb_virt_to_phys(ep,
1486 					&ep->transfer_ring[ep->enq_ptr]);
1487 
1488 			if (dma_mapping_error(xudc->dev, deq_ptr)) {
1489 				ret = -EINVAL;
1490 			} else {
1491 				ep_ctx_write_deq_ptr(ep->context, deq_ptr);
1492 				ep_ctx_write_dcs(ep->context, ep->pcs);
1493 				ep_reload(xudc, ep->index);
1494 			}
1495 		}
1496 	} else if (trb_before_request(ep, req, deq_trb) && busy) {
1497 		/* Request hasn't started processing yet. */
1498 		squeeze_transfer_ring(ep, req);
1499 
1500 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1501 		kick_queue = true;
1502 	} else {
1503 		/*
1504 		 * Request has completed, but we haven't processed the
1505 		 * completion event yet.
1506 		 */
1507 		tegra_xudc_req_done(ep, req, -ECONNRESET);
1508 		ret = -EINVAL;
1509 	}
1510 
1511 	/* Resume the endpoint. */
1512 	ep_unpause(xudc, ep->index);
1513 
1514 	if (kick_queue)
1515 		tegra_xudc_ep_kick_queue(ep);
1516 
1517 	return ret;
1518 }
1519 
1520 static int
tegra_xudc_ep_dequeue(struct usb_ep * usb_ep,struct usb_request * usb_req)1521 tegra_xudc_ep_dequeue(struct usb_ep *usb_ep, struct usb_request *usb_req)
1522 {
1523 	struct tegra_xudc_request *req;
1524 	struct tegra_xudc_ep *ep;
1525 	struct tegra_xudc *xudc;
1526 	unsigned long flags;
1527 	int ret;
1528 
1529 	if (!usb_ep || !usb_req)
1530 		return -EINVAL;
1531 
1532 	ep = to_xudc_ep(usb_ep);
1533 	req = to_xudc_req(usb_req);
1534 	xudc = ep->xudc;
1535 
1536 	spin_lock_irqsave(&xudc->lock, flags);
1537 
1538 	if (xudc->powergated || !ep->desc) {
1539 		ret = -ESHUTDOWN;
1540 		goto unlock;
1541 	}
1542 
1543 	ret = __tegra_xudc_ep_dequeue(ep, req);
1544 unlock:
1545 	spin_unlock_irqrestore(&xudc->lock, flags);
1546 
1547 	return ret;
1548 }
1549 
__tegra_xudc_ep_set_halt(struct tegra_xudc_ep * ep,bool halt)1550 static int __tegra_xudc_ep_set_halt(struct tegra_xudc_ep *ep, bool halt)
1551 {
1552 	struct tegra_xudc *xudc = ep->xudc;
1553 
1554 	if (!ep->desc)
1555 		return -EINVAL;
1556 
1557 	if (usb_endpoint_xfer_isoc(ep->desc)) {
1558 		dev_err(xudc->dev, "can't halt isochronous EP\n");
1559 		return -ENOTSUPP;
1560 	}
1561 
1562 	if (!!(xudc_readl(xudc, EP_HALT) & BIT(ep->index)) == halt) {
1563 		dev_dbg(xudc->dev, "EP %u already %s\n", ep->index,
1564 			halt ? "halted" : "not halted");
1565 		return 0;
1566 	}
1567 
1568 	if (halt) {
1569 		ep_halt(xudc, ep->index);
1570 	} else {
1571 		ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1572 
1573 		ep_reload(xudc, ep->index);
1574 
1575 		ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1576 		ep_ctx_write_rsvd(ep->context, 0);
1577 		ep_ctx_write_partial_td(ep->context, 0);
1578 		ep_ctx_write_splitxstate(ep->context, 0);
1579 		ep_ctx_write_seq_num(ep->context, 0);
1580 
1581 		ep_reload(xudc, ep->index);
1582 		ep_unpause(xudc, ep->index);
1583 		ep_unhalt(xudc, ep->index);
1584 
1585 		tegra_xudc_ep_ring_doorbell(ep);
1586 	}
1587 
1588 	return 0;
1589 }
1590 
tegra_xudc_ep_set_halt(struct usb_ep * usb_ep,int value)1591 static int tegra_xudc_ep_set_halt(struct usb_ep *usb_ep, int value)
1592 {
1593 	struct tegra_xudc_ep *ep;
1594 	struct tegra_xudc *xudc;
1595 	unsigned long flags;
1596 	int ret;
1597 
1598 	if (!usb_ep)
1599 		return -EINVAL;
1600 
1601 	ep = to_xudc_ep(usb_ep);
1602 	xudc = ep->xudc;
1603 
1604 	spin_lock_irqsave(&xudc->lock, flags);
1605 	if (xudc->powergated) {
1606 		ret = -ESHUTDOWN;
1607 		goto unlock;
1608 	}
1609 
1610 	if (value && usb_endpoint_dir_in(ep->desc) &&
1611 	    !list_empty(&ep->queue)) {
1612 		dev_err(xudc->dev, "can't halt EP with requests pending\n");
1613 		ret = -EAGAIN;
1614 		goto unlock;
1615 	}
1616 
1617 	ret = __tegra_xudc_ep_set_halt(ep, value);
1618 unlock:
1619 	spin_unlock_irqrestore(&xudc->lock, flags);
1620 
1621 	return ret;
1622 }
1623 
tegra_xudc_ep_context_setup(struct tegra_xudc_ep * ep)1624 static void tegra_xudc_ep_context_setup(struct tegra_xudc_ep *ep)
1625 {
1626 	const struct usb_endpoint_descriptor *desc = ep->desc;
1627 	const struct usb_ss_ep_comp_descriptor *comp_desc = ep->comp_desc;
1628 	struct tegra_xudc *xudc = ep->xudc;
1629 	u16 maxpacket, maxburst = 0, esit = 0;
1630 	u32 val;
1631 
1632 	maxpacket = usb_endpoint_maxp(desc);
1633 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1634 		if (!usb_endpoint_xfer_control(desc))
1635 			maxburst = comp_desc->bMaxBurst;
1636 
1637 		if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc))
1638 			esit = le16_to_cpu(comp_desc->wBytesPerInterval);
1639 	} else if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
1640 		   (usb_endpoint_xfer_int(desc) ||
1641 		    usb_endpoint_xfer_isoc(desc))) {
1642 		if (xudc->gadget.speed == USB_SPEED_HIGH) {
1643 			maxburst = usb_endpoint_maxp_mult(desc) - 1;
1644 			if (maxburst == 0x3) {
1645 				dev_warn(xudc->dev,
1646 					 "invalid endpoint maxburst\n");
1647 				maxburst = 0x2;
1648 			}
1649 		}
1650 		esit = maxpacket * (maxburst + 1);
1651 	}
1652 
1653 	memset(ep->context, 0, sizeof(*ep->context));
1654 
1655 	ep_ctx_write_state(ep->context, EP_STATE_RUNNING);
1656 	ep_ctx_write_interval(ep->context, desc->bInterval);
1657 	if (xudc->gadget.speed == USB_SPEED_SUPER) {
1658 		if (usb_endpoint_xfer_isoc(desc)) {
1659 			ep_ctx_write_mult(ep->context,
1660 					  comp_desc->bmAttributes & 0x3);
1661 		}
1662 
1663 		if (usb_endpoint_xfer_bulk(desc)) {
1664 			ep_ctx_write_max_pstreams(ep->context,
1665 						  comp_desc->bmAttributes &
1666 						  0x1f);
1667 			ep_ctx_write_lsa(ep->context, 1);
1668 		}
1669 	}
1670 
1671 	if (!usb_endpoint_xfer_control(desc) && usb_endpoint_dir_out(desc))
1672 		val = usb_endpoint_type(desc);
1673 	else
1674 		val = usb_endpoint_type(desc) + EP_TYPE_CONTROL;
1675 
1676 	ep_ctx_write_type(ep->context, val);
1677 	ep_ctx_write_cerr(ep->context, 0x3);
1678 	ep_ctx_write_max_packet_size(ep->context, maxpacket);
1679 	ep_ctx_write_max_burst_size(ep->context, maxburst);
1680 
1681 	ep_ctx_write_deq_ptr(ep->context, ep->transfer_ring_phys);
1682 	ep_ctx_write_dcs(ep->context, ep->pcs);
1683 
1684 	/* Select a reasonable average TRB length based on endpoint type. */
1685 	switch (usb_endpoint_type(desc)) {
1686 	case USB_ENDPOINT_XFER_CONTROL:
1687 		val = 8;
1688 		break;
1689 	case USB_ENDPOINT_XFER_INT:
1690 		val = 1024;
1691 		break;
1692 	case USB_ENDPOINT_XFER_BULK:
1693 	case USB_ENDPOINT_XFER_ISOC:
1694 	default:
1695 		val = 3072;
1696 		break;
1697 	}
1698 
1699 	ep_ctx_write_avg_trb_len(ep->context, val);
1700 	ep_ctx_write_max_esit_payload(ep->context, esit);
1701 
1702 	ep_ctx_write_cerrcnt(ep->context, 0x3);
1703 }
1704 
setup_link_trb(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)1705 static void setup_link_trb(struct tegra_xudc_ep *ep,
1706 			   struct tegra_xudc_trb *trb)
1707 {
1708 	trb_write_data_ptr(trb, ep->transfer_ring_phys);
1709 	trb_write_type(trb, TRB_TYPE_LINK);
1710 	trb_write_toggle_cycle(trb, 1);
1711 }
1712 
__tegra_xudc_ep_disable(struct tegra_xudc_ep * ep)1713 static int __tegra_xudc_ep_disable(struct tegra_xudc_ep *ep)
1714 {
1715 	struct tegra_xudc *xudc = ep->xudc;
1716 
1717 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
1718 		dev_err(xudc->dev, "endpoint %u already disabled\n",
1719 			ep->index);
1720 		return -EINVAL;
1721 	}
1722 
1723 	ep_ctx_write_state(ep->context, EP_STATE_DISABLED);
1724 
1725 	ep_reload(xudc, ep->index);
1726 
1727 	tegra_xudc_ep_nuke(ep, -ESHUTDOWN);
1728 
1729 	xudc->nr_enabled_eps--;
1730 	if (usb_endpoint_xfer_isoc(ep->desc))
1731 		xudc->nr_isoch_eps--;
1732 
1733 	ep->desc = NULL;
1734 	ep->comp_desc = NULL;
1735 
1736 	memset(ep->context, 0, sizeof(*ep->context));
1737 
1738 	ep_unpause(xudc, ep->index);
1739 	ep_unhalt(xudc, ep->index);
1740 	if (xudc_readl(xudc, EP_STOPPED) & BIT(ep->index))
1741 		xudc_writel(xudc, BIT(ep->index), EP_STOPPED);
1742 
1743 	/*
1744 	 * If this is the last endpoint disabled in a de-configure request,
1745 	 * switch back to address state.
1746 	 */
1747 	if ((xudc->device_state == USB_STATE_CONFIGURED) &&
1748 	    (xudc->nr_enabled_eps == 1)) {
1749 		u32 val;
1750 
1751 		xudc->device_state = USB_STATE_ADDRESS;
1752 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1753 
1754 		val = xudc_readl(xudc, CTRL);
1755 		val &= ~CTRL_RUN;
1756 		xudc_writel(xudc, val, CTRL);
1757 
1758 		val = xudc_readl(xudc, ST);
1759 		if (val & ST_RC)
1760 			xudc_writel(xudc, ST_RC, ST);
1761 	}
1762 
1763 	dev_info(xudc->dev, "ep %u disabled\n", ep->index);
1764 
1765 	return 0;
1766 }
1767 
tegra_xudc_ep_disable(struct usb_ep * usb_ep)1768 static int tegra_xudc_ep_disable(struct usb_ep *usb_ep)
1769 {
1770 	struct tegra_xudc_ep *ep;
1771 	struct tegra_xudc *xudc;
1772 	unsigned long flags;
1773 	int ret;
1774 
1775 	if (!usb_ep)
1776 		return -EINVAL;
1777 
1778 	ep = to_xudc_ep(usb_ep);
1779 	xudc = ep->xudc;
1780 
1781 	spin_lock_irqsave(&xudc->lock, flags);
1782 	if (xudc->powergated) {
1783 		ret = -ESHUTDOWN;
1784 		goto unlock;
1785 	}
1786 
1787 	ret = __tegra_xudc_ep_disable(ep);
1788 unlock:
1789 	spin_unlock_irqrestore(&xudc->lock, flags);
1790 
1791 	return ret;
1792 }
1793 
__tegra_xudc_ep_enable(struct tegra_xudc_ep * ep,const struct usb_endpoint_descriptor * desc)1794 static int __tegra_xudc_ep_enable(struct tegra_xudc_ep *ep,
1795 				  const struct usb_endpoint_descriptor *desc)
1796 {
1797 	struct tegra_xudc *xudc = ep->xudc;
1798 	unsigned int i;
1799 	u32 val;
1800 
1801 	if (xudc->gadget.speed == USB_SPEED_SUPER &&
1802 		!usb_endpoint_xfer_control(desc) && !ep->usb_ep.comp_desc)
1803 		return -EINVAL;
1804 
1805 	/* Disable the EP if it is not disabled */
1806 	if (ep_ctx_read_state(ep->context) != EP_STATE_DISABLED)
1807 		__tegra_xudc_ep_disable(ep);
1808 
1809 	ep->desc = desc;
1810 	ep->comp_desc = ep->usb_ep.comp_desc;
1811 
1812 	if (usb_endpoint_xfer_isoc(desc)) {
1813 		if (xudc->nr_isoch_eps > XUDC_MAX_ISOCH_EPS) {
1814 			dev_err(xudc->dev, "too many isochronous endpoints\n");
1815 			return -EBUSY;
1816 		}
1817 		xudc->nr_isoch_eps++;
1818 	}
1819 
1820 	memset(ep->transfer_ring, 0, XUDC_TRANSFER_RING_SIZE *
1821 	       sizeof(*ep->transfer_ring));
1822 	setup_link_trb(ep, &ep->transfer_ring[XUDC_TRANSFER_RING_SIZE - 1]);
1823 
1824 	ep->enq_ptr = 0;
1825 	ep->deq_ptr = 0;
1826 	ep->pcs = true;
1827 	ep->ring_full = false;
1828 	xudc->nr_enabled_eps++;
1829 
1830 	tegra_xudc_ep_context_setup(ep);
1831 
1832 	/*
1833 	 * No need to reload and un-halt EP0.  This will be done automatically
1834 	 * once a valid SETUP packet is received.
1835 	 */
1836 	if (usb_endpoint_xfer_control(desc))
1837 		goto out;
1838 
1839 	/*
1840 	 * Transition to configured state once the first non-control
1841 	 * endpoint is enabled.
1842 	 */
1843 	if (xudc->device_state == USB_STATE_ADDRESS) {
1844 		val = xudc_readl(xudc, CTRL);
1845 		val |= CTRL_RUN;
1846 		xudc_writel(xudc, val, CTRL);
1847 
1848 		xudc->device_state = USB_STATE_CONFIGURED;
1849 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
1850 	}
1851 
1852 	if (usb_endpoint_xfer_isoc(desc)) {
1853 		/*
1854 		 * Pause all bulk endpoints when enabling an isoch endpoint
1855 		 * to ensure the isoch endpoint is allocated enough bandwidth.
1856 		 */
1857 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1858 			if (xudc->ep[i].desc &&
1859 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1860 				ep_pause(xudc, i);
1861 		}
1862 	}
1863 
1864 	ep_reload(xudc, ep->index);
1865 	ep_unpause(xudc, ep->index);
1866 	ep_unhalt(xudc, ep->index);
1867 
1868 	if (usb_endpoint_xfer_isoc(desc)) {
1869 		for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
1870 			if (xudc->ep[i].desc &&
1871 			    usb_endpoint_xfer_bulk(xudc->ep[i].desc))
1872 				ep_unpause(xudc, i);
1873 		}
1874 	}
1875 
1876 out:
1877 	dev_info(xudc->dev, "EP %u (type: %s, dir: %s) enabled\n", ep->index,
1878 		 usb_ep_type_string(usb_endpoint_type(ep->desc)),
1879 		 usb_endpoint_dir_in(ep->desc) ? "in" : "out");
1880 
1881 	return 0;
1882 }
1883 
tegra_xudc_ep_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1884 static int tegra_xudc_ep_enable(struct usb_ep *usb_ep,
1885 				const struct usb_endpoint_descriptor *desc)
1886 {
1887 	struct tegra_xudc_ep *ep;
1888 	struct tegra_xudc *xudc;
1889 	unsigned long flags;
1890 	int ret;
1891 
1892 	if  (!usb_ep || !desc || (desc->bDescriptorType != USB_DT_ENDPOINT))
1893 		return -EINVAL;
1894 
1895 	ep = to_xudc_ep(usb_ep);
1896 	xudc = ep->xudc;
1897 
1898 	spin_lock_irqsave(&xudc->lock, flags);
1899 	if (xudc->powergated) {
1900 		ret = -ESHUTDOWN;
1901 		goto unlock;
1902 	}
1903 
1904 	ret = __tegra_xudc_ep_enable(ep, desc);
1905 unlock:
1906 	spin_unlock_irqrestore(&xudc->lock, flags);
1907 
1908 	return ret;
1909 }
1910 
1911 static struct usb_request *
tegra_xudc_ep_alloc_request(struct usb_ep * usb_ep,gfp_t gfp)1912 tegra_xudc_ep_alloc_request(struct usb_ep *usb_ep, gfp_t gfp)
1913 {
1914 	struct tegra_xudc_request *req;
1915 
1916 	req = kzalloc(sizeof(*req), gfp);
1917 	if (!req)
1918 		return NULL;
1919 
1920 	INIT_LIST_HEAD(&req->list);
1921 
1922 	return &req->usb_req;
1923 }
1924 
tegra_xudc_ep_free_request(struct usb_ep * usb_ep,struct usb_request * usb_req)1925 static void tegra_xudc_ep_free_request(struct usb_ep *usb_ep,
1926 				       struct usb_request *usb_req)
1927 {
1928 	struct tegra_xudc_request *req = to_xudc_req(usb_req);
1929 
1930 	kfree(req);
1931 }
1932 
1933 static const struct usb_ep_ops tegra_xudc_ep_ops = {
1934 	.enable = tegra_xudc_ep_enable,
1935 	.disable = tegra_xudc_ep_disable,
1936 	.alloc_request = tegra_xudc_ep_alloc_request,
1937 	.free_request = tegra_xudc_ep_free_request,
1938 	.queue = tegra_xudc_ep_queue,
1939 	.dequeue = tegra_xudc_ep_dequeue,
1940 	.set_halt = tegra_xudc_ep_set_halt,
1941 };
1942 
tegra_xudc_ep0_enable(struct usb_ep * usb_ep,const struct usb_endpoint_descriptor * desc)1943 static int tegra_xudc_ep0_enable(struct usb_ep *usb_ep,
1944 				 const struct usb_endpoint_descriptor *desc)
1945 {
1946 	return -EBUSY;
1947 }
1948 
tegra_xudc_ep0_disable(struct usb_ep * usb_ep)1949 static int tegra_xudc_ep0_disable(struct usb_ep *usb_ep)
1950 {
1951 	return -EBUSY;
1952 }
1953 
1954 static const struct usb_ep_ops tegra_xudc_ep0_ops = {
1955 	.enable = tegra_xudc_ep0_enable,
1956 	.disable = tegra_xudc_ep0_disable,
1957 	.alloc_request = tegra_xudc_ep_alloc_request,
1958 	.free_request = tegra_xudc_ep_free_request,
1959 	.queue = tegra_xudc_ep_queue,
1960 	.dequeue = tegra_xudc_ep_dequeue,
1961 	.set_halt = tegra_xudc_ep_set_halt,
1962 };
1963 
tegra_xudc_gadget_get_frame(struct usb_gadget * gadget)1964 static int tegra_xudc_gadget_get_frame(struct usb_gadget *gadget)
1965 {
1966 	struct tegra_xudc *xudc = to_xudc(gadget);
1967 	unsigned long flags;
1968 	int ret;
1969 
1970 	spin_lock_irqsave(&xudc->lock, flags);
1971 	if (xudc->powergated) {
1972 		ret = -ESHUTDOWN;
1973 		goto unlock;
1974 	}
1975 
1976 	ret = (xudc_readl(xudc, MFINDEX) & MFINDEX_FRAME_MASK) >>
1977 		MFINDEX_FRAME_SHIFT;
1978 unlock:
1979 	spin_unlock_irqrestore(&xudc->lock, flags);
1980 
1981 	return ret;
1982 }
1983 
tegra_xudc_resume_device_state(struct tegra_xudc * xudc)1984 static void tegra_xudc_resume_device_state(struct tegra_xudc *xudc)
1985 {
1986 	unsigned int i;
1987 	u32 val;
1988 
1989 	ep_unpause_all(xudc);
1990 
1991 	/* Direct link to U0. */
1992 	val = xudc_readl(xudc, PORTSC);
1993 	if (((val & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT) != PORTSC_PLS_U0) {
1994 		val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
1995 		val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_U0);
1996 		xudc_writel(xudc, val, PORTSC);
1997 	}
1998 
1999 	if (xudc->device_state == USB_STATE_SUSPENDED) {
2000 		xudc->device_state = xudc->resume_state;
2001 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2002 		xudc->resume_state = 0;
2003 	}
2004 
2005 	/*
2006 	 * Doorbells may be dropped if they are sent too soon (< ~200ns)
2007 	 * after unpausing the endpoint.  Wait for 500ns just to be safe.
2008 	 */
2009 	ndelay(500);
2010 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2011 		tegra_xudc_ep_ring_doorbell(&xudc->ep[i]);
2012 }
2013 
tegra_xudc_gadget_wakeup(struct usb_gadget * gadget)2014 static int tegra_xudc_gadget_wakeup(struct usb_gadget *gadget)
2015 {
2016 	struct tegra_xudc *xudc = to_xudc(gadget);
2017 	unsigned long flags;
2018 	int ret = 0;
2019 	u32 val;
2020 
2021 	spin_lock_irqsave(&xudc->lock, flags);
2022 
2023 	if (xudc->powergated) {
2024 		ret = -ESHUTDOWN;
2025 		goto unlock;
2026 	}
2027 	val = xudc_readl(xudc, PORTPM);
2028 	dev_dbg(xudc->dev, "%s: PORTPM=%#x, speed=%x\n", __func__,
2029 			val, gadget->speed);
2030 
2031 	if (((xudc->gadget.speed <= USB_SPEED_HIGH) &&
2032 	     (val & PORTPM_RWE)) ||
2033 	    ((xudc->gadget.speed == USB_SPEED_SUPER) &&
2034 	     (val & PORTPM_FRWE))) {
2035 		tegra_xudc_resume_device_state(xudc);
2036 
2037 		/* Send Device Notification packet. */
2038 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2039 			val = DEVNOTIF_LO_TYPE(DEVNOTIF_LO_TYPE_FUNCTION_WAKE)
2040 					     | DEVNOTIF_LO_TRIG;
2041 			xudc_writel(xudc, 0, DEVNOTIF_HI);
2042 			xudc_writel(xudc, val, DEVNOTIF_LO);
2043 		}
2044 	}
2045 
2046 unlock:
2047 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2048 	spin_unlock_irqrestore(&xudc->lock, flags);
2049 
2050 	return ret;
2051 }
2052 
tegra_xudc_gadget_pullup(struct usb_gadget * gadget,int is_on)2053 static int tegra_xudc_gadget_pullup(struct usb_gadget *gadget, int is_on)
2054 {
2055 	struct tegra_xudc *xudc = to_xudc(gadget);
2056 	unsigned long flags;
2057 	u32 val;
2058 
2059 	pm_runtime_get_sync(xudc->dev);
2060 
2061 	spin_lock_irqsave(&xudc->lock, flags);
2062 
2063 	if (is_on != xudc->pullup) {
2064 		val = xudc_readl(xudc, CTRL);
2065 		if (is_on)
2066 			val |= CTRL_ENABLE;
2067 		else
2068 			val &= ~CTRL_ENABLE;
2069 		xudc_writel(xudc, val, CTRL);
2070 	}
2071 
2072 	xudc->pullup = is_on;
2073 	dev_dbg(xudc->dev, "%s: pullup:%d", __func__, is_on);
2074 
2075 	spin_unlock_irqrestore(&xudc->lock, flags);
2076 
2077 	pm_runtime_put(xudc->dev);
2078 
2079 	return 0;
2080 }
2081 
tegra_xudc_gadget_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)2082 static int tegra_xudc_gadget_start(struct usb_gadget *gadget,
2083 				   struct usb_gadget_driver *driver)
2084 {
2085 	struct tegra_xudc *xudc = to_xudc(gadget);
2086 	unsigned long flags;
2087 	u32 val;
2088 	int ret;
2089 	unsigned int i;
2090 
2091 	if (!driver)
2092 		return -EINVAL;
2093 
2094 	pm_runtime_get_sync(xudc->dev);
2095 
2096 	spin_lock_irqsave(&xudc->lock, flags);
2097 
2098 	if (xudc->driver) {
2099 		ret = -EBUSY;
2100 		goto unlock;
2101 	}
2102 
2103 	xudc->setup_state = WAIT_FOR_SETUP;
2104 	xudc->device_state = USB_STATE_DEFAULT;
2105 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2106 
2107 	ret = __tegra_xudc_ep_enable(&xudc->ep[0], &tegra_xudc_ep0_desc);
2108 	if (ret < 0)
2109 		goto unlock;
2110 
2111 	val = xudc_readl(xudc, CTRL);
2112 	val |= CTRL_IE | CTRL_LSE;
2113 	xudc_writel(xudc, val, CTRL);
2114 
2115 	val = xudc_readl(xudc, PORTHALT);
2116 	val |= PORTHALT_STCHG_INTR_EN;
2117 	xudc_writel(xudc, val, PORTHALT);
2118 
2119 	if (xudc->pullup) {
2120 		val = xudc_readl(xudc, CTRL);
2121 		val |= CTRL_ENABLE;
2122 		xudc_writel(xudc, val, CTRL);
2123 	}
2124 
2125 	for (i = 0; i < xudc->soc->num_phys; i++)
2126 		if (xudc->usbphy[i])
2127 			otg_set_peripheral(xudc->usbphy[i]->otg, gadget);
2128 
2129 	xudc->driver = driver;
2130 unlock:
2131 	dev_dbg(xudc->dev, "%s: ret value is %d", __func__, ret);
2132 	spin_unlock_irqrestore(&xudc->lock, flags);
2133 
2134 	pm_runtime_put(xudc->dev);
2135 
2136 	return ret;
2137 }
2138 
tegra_xudc_gadget_stop(struct usb_gadget * gadget)2139 static int tegra_xudc_gadget_stop(struct usb_gadget *gadget)
2140 {
2141 	struct tegra_xudc *xudc = to_xudc(gadget);
2142 	unsigned long flags;
2143 	u32 val;
2144 	unsigned int i;
2145 
2146 	pm_runtime_get_sync(xudc->dev);
2147 
2148 	spin_lock_irqsave(&xudc->lock, flags);
2149 
2150 	for (i = 0; i < xudc->soc->num_phys; i++)
2151 		if (xudc->usbphy[i])
2152 			otg_set_peripheral(xudc->usbphy[i]->otg, NULL);
2153 
2154 	val = xudc_readl(xudc, CTRL);
2155 	val &= ~(CTRL_IE | CTRL_ENABLE);
2156 	xudc_writel(xudc, val, CTRL);
2157 
2158 	__tegra_xudc_ep_disable(&xudc->ep[0]);
2159 
2160 	xudc->driver = NULL;
2161 	dev_dbg(xudc->dev, "Gadget stopped");
2162 
2163 	spin_unlock_irqrestore(&xudc->lock, flags);
2164 
2165 	pm_runtime_put(xudc->dev);
2166 
2167 	return 0;
2168 }
2169 
tegra_xudc_gadget_vbus_draw(struct usb_gadget * gadget,unsigned int m_a)2170 static int tegra_xudc_gadget_vbus_draw(struct usb_gadget *gadget,
2171 						unsigned int m_a)
2172 {
2173 	struct tegra_xudc *xudc = to_xudc(gadget);
2174 
2175 	dev_dbg(xudc->dev, "%s: %u mA\n", __func__, m_a);
2176 
2177 	if (xudc->curr_usbphy && xudc->curr_usbphy->chg_type == SDP_TYPE)
2178 		return usb_phy_set_power(xudc->curr_usbphy, m_a);
2179 
2180 	return 0;
2181 }
2182 
tegra_xudc_set_selfpowered(struct usb_gadget * gadget,int is_on)2183 static int tegra_xudc_set_selfpowered(struct usb_gadget *gadget, int is_on)
2184 {
2185 	struct tegra_xudc *xudc = to_xudc(gadget);
2186 
2187 	dev_dbg(xudc->dev, "%s: %d\n", __func__, is_on);
2188 	xudc->selfpowered = !!is_on;
2189 
2190 	return 0;
2191 }
2192 
2193 static const struct usb_gadget_ops tegra_xudc_gadget_ops = {
2194 	.get_frame = tegra_xudc_gadget_get_frame,
2195 	.wakeup = tegra_xudc_gadget_wakeup,
2196 	.pullup = tegra_xudc_gadget_pullup,
2197 	.udc_start = tegra_xudc_gadget_start,
2198 	.udc_stop = tegra_xudc_gadget_stop,
2199 	.vbus_draw = tegra_xudc_gadget_vbus_draw,
2200 	.set_selfpowered = tegra_xudc_set_selfpowered,
2201 };
2202 
no_op_complete(struct usb_ep * ep,struct usb_request * req)2203 static void no_op_complete(struct usb_ep *ep, struct usb_request *req)
2204 {
2205 }
2206 
2207 static int
tegra_xudc_ep0_queue_status(struct tegra_xudc * xudc,void (* cmpl)(struct usb_ep *,struct usb_request *))2208 tegra_xudc_ep0_queue_status(struct tegra_xudc *xudc,
2209 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2210 {
2211 	xudc->ep0_req->usb_req.buf = NULL;
2212 	xudc->ep0_req->usb_req.dma = 0;
2213 	xudc->ep0_req->usb_req.length = 0;
2214 	xudc->ep0_req->usb_req.complete = cmpl;
2215 	xudc->ep0_req->usb_req.context = xudc;
2216 
2217 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2218 }
2219 
2220 static int
tegra_xudc_ep0_queue_data(struct tegra_xudc * xudc,void * buf,size_t len,void (* cmpl)(struct usb_ep *,struct usb_request *))2221 tegra_xudc_ep0_queue_data(struct tegra_xudc *xudc, void *buf, size_t len,
2222 		void (*cmpl)(struct usb_ep *, struct usb_request *))
2223 {
2224 	xudc->ep0_req->usb_req.buf = buf;
2225 	xudc->ep0_req->usb_req.length = len;
2226 	xudc->ep0_req->usb_req.complete = cmpl;
2227 	xudc->ep0_req->usb_req.context = xudc;
2228 
2229 	return __tegra_xudc_ep_queue(&xudc->ep[0], xudc->ep0_req);
2230 }
2231 
tegra_xudc_ep0_req_done(struct tegra_xudc * xudc)2232 static void tegra_xudc_ep0_req_done(struct tegra_xudc *xudc)
2233 {
2234 	switch (xudc->setup_state) {
2235 	case DATA_STAGE_XFER:
2236 		xudc->setup_state = STATUS_STAGE_RECV;
2237 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2238 		break;
2239 	case DATA_STAGE_RECV:
2240 		xudc->setup_state = STATUS_STAGE_XFER;
2241 		tegra_xudc_ep0_queue_status(xudc, no_op_complete);
2242 		break;
2243 	default:
2244 		xudc->setup_state = WAIT_FOR_SETUP;
2245 		break;
2246 	}
2247 }
2248 
tegra_xudc_ep0_delegate_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2249 static int tegra_xudc_ep0_delegate_req(struct tegra_xudc *xudc,
2250 				       struct usb_ctrlrequest *ctrl)
2251 {
2252 	int ret;
2253 
2254 	spin_unlock(&xudc->lock);
2255 	ret = xudc->driver->setup(&xudc->gadget, ctrl);
2256 	spin_lock(&xudc->lock);
2257 
2258 	return ret;
2259 }
2260 
set_feature_complete(struct usb_ep * ep,struct usb_request * req)2261 static void set_feature_complete(struct usb_ep *ep, struct usb_request *req)
2262 {
2263 	struct tegra_xudc *xudc = req->context;
2264 
2265 	if (xudc->test_mode_pattern) {
2266 		xudc_writel(xudc, xudc->test_mode_pattern, PORT_TM);
2267 		xudc->test_mode_pattern = 0;
2268 	}
2269 }
2270 
tegra_xudc_ep0_set_feature(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2271 static int tegra_xudc_ep0_set_feature(struct tegra_xudc *xudc,
2272 				      struct usb_ctrlrequest *ctrl)
2273 {
2274 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
2275 	u32 feature = le16_to_cpu(ctrl->wValue);
2276 	u32 index = le16_to_cpu(ctrl->wIndex);
2277 	u32 val, ep;
2278 	int ret;
2279 
2280 	if (le16_to_cpu(ctrl->wLength) != 0)
2281 		return -EINVAL;
2282 
2283 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2284 	case USB_RECIP_DEVICE:
2285 		switch (feature) {
2286 		case USB_DEVICE_REMOTE_WAKEUP:
2287 			if ((xudc->gadget.speed == USB_SPEED_SUPER) ||
2288 			    (xudc->device_state == USB_STATE_DEFAULT))
2289 				return -EINVAL;
2290 
2291 			val = xudc_readl(xudc, PORTPM);
2292 			if (set)
2293 				val |= PORTPM_RWE;
2294 			else
2295 				val &= ~PORTPM_RWE;
2296 
2297 			xudc_writel(xudc, val, PORTPM);
2298 			break;
2299 		case USB_DEVICE_U1_ENABLE:
2300 		case USB_DEVICE_U2_ENABLE:
2301 			if ((xudc->device_state != USB_STATE_CONFIGURED) ||
2302 			    (xudc->gadget.speed != USB_SPEED_SUPER))
2303 				return -EINVAL;
2304 
2305 			val = xudc_readl(xudc, PORTPM);
2306 			if ((feature == USB_DEVICE_U1_ENABLE) &&
2307 			     xudc->soc->u1_enable) {
2308 				if (set)
2309 					val |= PORTPM_U1E;
2310 				else
2311 					val &= ~PORTPM_U1E;
2312 			}
2313 
2314 			if ((feature == USB_DEVICE_U2_ENABLE) &&
2315 			     xudc->soc->u2_enable) {
2316 				if (set)
2317 					val |= PORTPM_U2E;
2318 				else
2319 					val &= ~PORTPM_U2E;
2320 			}
2321 
2322 			xudc_writel(xudc, val, PORTPM);
2323 			break;
2324 		case USB_DEVICE_TEST_MODE:
2325 			if (xudc->gadget.speed != USB_SPEED_HIGH)
2326 				return -EINVAL;
2327 
2328 			if (!set)
2329 				return -EINVAL;
2330 
2331 			xudc->test_mode_pattern = index >> 8;
2332 			break;
2333 		default:
2334 			return -EINVAL;
2335 		}
2336 
2337 		break;
2338 	case USB_RECIP_INTERFACE:
2339 		if (xudc->device_state != USB_STATE_CONFIGURED)
2340 			return -EINVAL;
2341 
2342 		switch (feature) {
2343 		case USB_INTRF_FUNC_SUSPEND:
2344 			if (set) {
2345 				val = xudc_readl(xudc, PORTPM);
2346 
2347 				if (index & USB_INTRF_FUNC_SUSPEND_RW)
2348 					val |= PORTPM_FRWE;
2349 				else
2350 					val &= ~PORTPM_FRWE;
2351 
2352 				xudc_writel(xudc, val, PORTPM);
2353 			}
2354 
2355 			return tegra_xudc_ep0_delegate_req(xudc, ctrl);
2356 		default:
2357 			return -EINVAL;
2358 		}
2359 
2360 		break;
2361 	case USB_RECIP_ENDPOINT:
2362 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2363 			((index & USB_DIR_IN) ? 1 : 0);
2364 
2365 		if ((xudc->device_state == USB_STATE_DEFAULT) ||
2366 		    ((xudc->device_state == USB_STATE_ADDRESS) &&
2367 		     (index != 0)))
2368 			return -EINVAL;
2369 
2370 		ret = __tegra_xudc_ep_set_halt(&xudc->ep[ep], set);
2371 		if (ret < 0)
2372 			return ret;
2373 		break;
2374 	default:
2375 		return -EINVAL;
2376 	}
2377 
2378 	return tegra_xudc_ep0_queue_status(xudc, set_feature_complete);
2379 }
2380 
tegra_xudc_ep0_get_status(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2381 static int tegra_xudc_ep0_get_status(struct tegra_xudc *xudc,
2382 				     struct usb_ctrlrequest *ctrl)
2383 {
2384 	struct tegra_xudc_ep_context *ep_ctx;
2385 	u32 val, ep, index = le16_to_cpu(ctrl->wIndex);
2386 	u16 status = 0;
2387 
2388 	if (!(ctrl->bRequestType & USB_DIR_IN))
2389 		return -EINVAL;
2390 
2391 	if ((le16_to_cpu(ctrl->wValue) != 0) ||
2392 	    (le16_to_cpu(ctrl->wLength) != 2))
2393 		return -EINVAL;
2394 
2395 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
2396 	case USB_RECIP_DEVICE:
2397 		val = xudc_readl(xudc, PORTPM);
2398 
2399 		if (xudc->selfpowered)
2400 			status |= BIT(USB_DEVICE_SELF_POWERED);
2401 
2402 		if ((xudc->gadget.speed < USB_SPEED_SUPER) &&
2403 		    (val & PORTPM_RWE))
2404 			status |= BIT(USB_DEVICE_REMOTE_WAKEUP);
2405 
2406 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2407 			if (val & PORTPM_U1E)
2408 				status |= BIT(USB_DEV_STAT_U1_ENABLED);
2409 			if (val & PORTPM_U2E)
2410 				status |= BIT(USB_DEV_STAT_U2_ENABLED);
2411 		}
2412 		break;
2413 	case USB_RECIP_INTERFACE:
2414 		if (xudc->gadget.speed == USB_SPEED_SUPER) {
2415 			status |= USB_INTRF_STAT_FUNC_RW_CAP;
2416 			val = xudc_readl(xudc, PORTPM);
2417 			if (val & PORTPM_FRWE)
2418 				status |= USB_INTRF_STAT_FUNC_RW;
2419 		}
2420 		break;
2421 	case USB_RECIP_ENDPOINT:
2422 		ep = (index & USB_ENDPOINT_NUMBER_MASK) * 2 +
2423 			((index & USB_DIR_IN) ? 1 : 0);
2424 		ep_ctx = &xudc->ep_context[ep];
2425 
2426 		if ((xudc->device_state != USB_STATE_CONFIGURED) &&
2427 		    ((xudc->device_state != USB_STATE_ADDRESS) || (ep != 0)))
2428 			return -EINVAL;
2429 
2430 		if (ep_ctx_read_state(ep_ctx) == EP_STATE_DISABLED)
2431 			return -EINVAL;
2432 
2433 		if (xudc_readl(xudc, EP_HALT) & BIT(ep))
2434 			status |= BIT(USB_ENDPOINT_HALT);
2435 		break;
2436 	default:
2437 		return -EINVAL;
2438 	}
2439 
2440 	xudc->status_buf = cpu_to_le16(status);
2441 	return tegra_xudc_ep0_queue_data(xudc, &xudc->status_buf,
2442 					 sizeof(xudc->status_buf),
2443 					 no_op_complete);
2444 }
2445 
set_sel_complete(struct usb_ep * ep,struct usb_request * req)2446 static void set_sel_complete(struct usb_ep *ep, struct usb_request *req)
2447 {
2448 	/* Nothing to do with SEL values */
2449 }
2450 
tegra_xudc_ep0_set_sel(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2451 static int tegra_xudc_ep0_set_sel(struct tegra_xudc *xudc,
2452 				  struct usb_ctrlrequest *ctrl)
2453 {
2454 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2455 				     USB_TYPE_STANDARD))
2456 		return -EINVAL;
2457 
2458 	if (xudc->device_state == USB_STATE_DEFAULT)
2459 		return -EINVAL;
2460 
2461 	if ((le16_to_cpu(ctrl->wIndex) != 0) ||
2462 	    (le16_to_cpu(ctrl->wValue) != 0) ||
2463 	    (le16_to_cpu(ctrl->wLength) != 6))
2464 		return -EINVAL;
2465 
2466 	return tegra_xudc_ep0_queue_data(xudc, &xudc->sel_timing,
2467 					 sizeof(xudc->sel_timing),
2468 					 set_sel_complete);
2469 }
2470 
set_isoch_delay_complete(struct usb_ep * ep,struct usb_request * req)2471 static void set_isoch_delay_complete(struct usb_ep *ep, struct usb_request *req)
2472 {
2473 	/* Nothing to do with isoch delay */
2474 }
2475 
tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2476 static int tegra_xudc_ep0_set_isoch_delay(struct tegra_xudc *xudc,
2477 					  struct usb_ctrlrequest *ctrl)
2478 {
2479 	u32 delay = le16_to_cpu(ctrl->wValue);
2480 
2481 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2482 				   USB_TYPE_STANDARD))
2483 		return -EINVAL;
2484 
2485 	if ((delay > 65535) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2486 	    (le16_to_cpu(ctrl->wLength) != 0))
2487 		return -EINVAL;
2488 
2489 	xudc->isoch_delay = delay;
2490 
2491 	return tegra_xudc_ep0_queue_status(xudc, set_isoch_delay_complete);
2492 }
2493 
set_address_complete(struct usb_ep * ep,struct usb_request * req)2494 static void set_address_complete(struct usb_ep *ep, struct usb_request *req)
2495 {
2496 	struct tegra_xudc *xudc = req->context;
2497 
2498 	if ((xudc->device_state == USB_STATE_DEFAULT) &&
2499 	    (xudc->dev_addr != 0)) {
2500 		xudc->device_state = USB_STATE_ADDRESS;
2501 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2502 	} else if ((xudc->device_state == USB_STATE_ADDRESS) &&
2503 		   (xudc->dev_addr == 0)) {
2504 		xudc->device_state = USB_STATE_DEFAULT;
2505 		usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2506 	}
2507 }
2508 
tegra_xudc_ep0_set_address(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2509 static int tegra_xudc_ep0_set_address(struct tegra_xudc *xudc,
2510 				      struct usb_ctrlrequest *ctrl)
2511 {
2512 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2513 	u32 val, addr = le16_to_cpu(ctrl->wValue);
2514 
2515 	if (ctrl->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE |
2516 				     USB_TYPE_STANDARD))
2517 		return -EINVAL;
2518 
2519 	if ((addr > 127) || (le16_to_cpu(ctrl->wIndex) != 0) ||
2520 	    (le16_to_cpu(ctrl->wLength) != 0))
2521 		return -EINVAL;
2522 
2523 	if (xudc->device_state == USB_STATE_CONFIGURED)
2524 		return -EINVAL;
2525 
2526 	dev_dbg(xudc->dev, "set address: %u\n", addr);
2527 
2528 	xudc->dev_addr = addr;
2529 	val = xudc_readl(xudc, CTRL);
2530 	val &= ~(CTRL_DEVADDR_MASK);
2531 	val |= CTRL_DEVADDR(addr);
2532 	xudc_writel(xudc, val, CTRL);
2533 
2534 	ep_ctx_write_devaddr(ep0->context, addr);
2535 
2536 	return tegra_xudc_ep0_queue_status(xudc, set_address_complete);
2537 }
2538 
tegra_xudc_ep0_standard_req(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl)2539 static int tegra_xudc_ep0_standard_req(struct tegra_xudc *xudc,
2540 				      struct usb_ctrlrequest *ctrl)
2541 {
2542 	int ret;
2543 
2544 	switch (ctrl->bRequest) {
2545 	case USB_REQ_GET_STATUS:
2546 		dev_dbg(xudc->dev, "USB_REQ_GET_STATUS\n");
2547 		ret = tegra_xudc_ep0_get_status(xudc, ctrl);
2548 		break;
2549 	case USB_REQ_SET_ADDRESS:
2550 		dev_dbg(xudc->dev, "USB_REQ_SET_ADDRESS\n");
2551 		ret = tegra_xudc_ep0_set_address(xudc, ctrl);
2552 		break;
2553 	case USB_REQ_SET_SEL:
2554 		dev_dbg(xudc->dev, "USB_REQ_SET_SEL\n");
2555 		ret = tegra_xudc_ep0_set_sel(xudc, ctrl);
2556 		break;
2557 	case USB_REQ_SET_ISOCH_DELAY:
2558 		dev_dbg(xudc->dev, "USB_REQ_SET_ISOCH_DELAY\n");
2559 		ret = tegra_xudc_ep0_set_isoch_delay(xudc, ctrl);
2560 		break;
2561 	case USB_REQ_CLEAR_FEATURE:
2562 	case USB_REQ_SET_FEATURE:
2563 		dev_dbg(xudc->dev, "USB_REQ_CLEAR/SET_FEATURE\n");
2564 		ret = tegra_xudc_ep0_set_feature(xudc, ctrl);
2565 		break;
2566 	case USB_REQ_SET_CONFIGURATION:
2567 		dev_dbg(xudc->dev, "USB_REQ_SET_CONFIGURATION\n");
2568 		/*
2569 		 * In theory we need to clear RUN bit before status stage of
2570 		 * deconfig request sent, but this seems to be causing problems.
2571 		 * Clear RUN once all endpoints are disabled instead.
2572 		 */
2573 		fallthrough;
2574 	default:
2575 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2576 		break;
2577 	}
2578 
2579 	return ret;
2580 }
2581 
tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc * xudc,struct usb_ctrlrequest * ctrl,u16 seq_num)2582 static void tegra_xudc_handle_ep0_setup_packet(struct tegra_xudc *xudc,
2583 					       struct usb_ctrlrequest *ctrl,
2584 					       u16 seq_num)
2585 {
2586 	int ret;
2587 
2588 	xudc->setup_seq_num = seq_num;
2589 
2590 	/* Ensure EP0 is unhalted. */
2591 	ep_unhalt(xudc, 0);
2592 
2593 	/*
2594 	 * On Tegra210, setup packets with sequence numbers 0xfffe or 0xffff
2595 	 * are invalid.  Halt EP0 until we get a valid packet.
2596 	 */
2597 	if (xudc->soc->invalid_seq_num &&
2598 	    (seq_num == 0xfffe || seq_num == 0xffff)) {
2599 		dev_warn(xudc->dev, "invalid sequence number detected\n");
2600 		ep_halt(xudc, 0);
2601 		return;
2602 	}
2603 
2604 	if (ctrl->wLength)
2605 		xudc->setup_state = (ctrl->bRequestType & USB_DIR_IN) ?
2606 			DATA_STAGE_XFER :  DATA_STAGE_RECV;
2607 	else
2608 		xudc->setup_state = STATUS_STAGE_XFER;
2609 
2610 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD)
2611 		ret = tegra_xudc_ep0_standard_req(xudc, ctrl);
2612 	else
2613 		ret = tegra_xudc_ep0_delegate_req(xudc, ctrl);
2614 
2615 	if (ret < 0) {
2616 		dev_warn(xudc->dev, "setup request failed: %d\n", ret);
2617 		xudc->setup_state = WAIT_FOR_SETUP;
2618 		ep_halt(xudc, 0);
2619 	}
2620 }
2621 
tegra_xudc_handle_ep0_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2622 static void tegra_xudc_handle_ep0_event(struct tegra_xudc *xudc,
2623 					struct tegra_xudc_trb *event)
2624 {
2625 	struct usb_ctrlrequest *ctrl = (struct usb_ctrlrequest *)event;
2626 	u16 seq_num = trb_read_seq_num(event);
2627 
2628 	if (xudc->setup_state != WAIT_FOR_SETUP) {
2629 		/*
2630 		 * The controller is in the process of handling another
2631 		 * setup request.  Queue subsequent requests and handle
2632 		 * the last one once the controller reports a sequence
2633 		 * number error.
2634 		 */
2635 		memcpy(&xudc->setup_packet.ctrl_req, ctrl, sizeof(*ctrl));
2636 		xudc->setup_packet.seq_num = seq_num;
2637 		xudc->queued_setup_packet = true;
2638 	} else {
2639 		tegra_xudc_handle_ep0_setup_packet(xudc, ctrl, seq_num);
2640 	}
2641 }
2642 
2643 static struct tegra_xudc_request *
trb_to_request(struct tegra_xudc_ep * ep,struct tegra_xudc_trb * trb)2644 trb_to_request(struct tegra_xudc_ep *ep, struct tegra_xudc_trb *trb)
2645 {
2646 	struct tegra_xudc_request *req;
2647 
2648 	list_for_each_entry(req, &ep->queue, list) {
2649 		if (!req->trbs_queued)
2650 			break;
2651 
2652 		if (trb_in_request(ep, req, trb))
2653 			return req;
2654 	}
2655 
2656 	return NULL;
2657 }
2658 
tegra_xudc_handle_transfer_completion(struct tegra_xudc * xudc,struct tegra_xudc_ep * ep,struct tegra_xudc_trb * event)2659 static void tegra_xudc_handle_transfer_completion(struct tegra_xudc *xudc,
2660 						  struct tegra_xudc_ep *ep,
2661 						  struct tegra_xudc_trb *event)
2662 {
2663 	struct tegra_xudc_request *req;
2664 	struct tegra_xudc_trb *trb;
2665 	bool short_packet;
2666 
2667 	short_packet = (trb_read_cmpl_code(event) ==
2668 			TRB_CMPL_CODE_SHORT_PACKET);
2669 
2670 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2671 	req = trb_to_request(ep, trb);
2672 
2673 	/*
2674 	 * TDs are complete on short packet or when the completed TRB is the
2675 	 * last TRB in the TD (the CHAIN bit is unset).
2676 	 */
2677 	if (req && (short_packet || (!trb_read_chain(trb) &&
2678 		(req->trbs_needed == req->trbs_queued)))) {
2679 		struct tegra_xudc_trb *last = req->last_trb;
2680 		unsigned int residual;
2681 
2682 		residual = trb_read_transfer_len(event);
2683 		req->usb_req.actual = req->usb_req.length - residual;
2684 
2685 		dev_dbg(xudc->dev, "bytes transferred %u / %u\n",
2686 			req->usb_req.actual, req->usb_req.length);
2687 
2688 		tegra_xudc_req_done(ep, req, 0);
2689 
2690 		if (ep->desc && usb_endpoint_xfer_control(ep->desc))
2691 			tegra_xudc_ep0_req_done(xudc);
2692 
2693 		/*
2694 		 * Advance the dequeue pointer past the end of the current TD
2695 		 * on short packet completion.
2696 		 */
2697 		if (short_packet) {
2698 			ep->deq_ptr = (last - ep->transfer_ring) + 1;
2699 			if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2700 				ep->deq_ptr = 0;
2701 		}
2702 	} else if (!req) {
2703 		dev_warn(xudc->dev, "transfer event on dequeued request\n");
2704 	}
2705 
2706 	if (ep->desc)
2707 		tegra_xudc_ep_kick_queue(ep);
2708 }
2709 
tegra_xudc_handle_transfer_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)2710 static void tegra_xudc_handle_transfer_event(struct tegra_xudc *xudc,
2711 					     struct tegra_xudc_trb *event)
2712 {
2713 	unsigned int ep_index = trb_read_endpoint_id(event);
2714 	struct tegra_xudc_ep *ep = &xudc->ep[ep_index];
2715 	struct tegra_xudc_trb *trb;
2716 	u16 comp_code;
2717 
2718 	if (ep_ctx_read_state(ep->context) == EP_STATE_DISABLED) {
2719 		dev_warn(xudc->dev, "transfer event on disabled EP %u\n",
2720 			 ep_index);
2721 		return;
2722 	}
2723 
2724 	/* Update transfer ring dequeue pointer. */
2725 	trb = trb_phys_to_virt(ep, trb_read_data_ptr(event));
2726 	comp_code = trb_read_cmpl_code(event);
2727 	if (comp_code != TRB_CMPL_CODE_BABBLE_DETECTED_ERR) {
2728 		ep->deq_ptr = (trb - ep->transfer_ring) + 1;
2729 
2730 		if (ep->deq_ptr == XUDC_TRANSFER_RING_SIZE - 1)
2731 			ep->deq_ptr = 0;
2732 		ep->ring_full = false;
2733 	}
2734 
2735 	switch (comp_code) {
2736 	case TRB_CMPL_CODE_SUCCESS:
2737 	case TRB_CMPL_CODE_SHORT_PACKET:
2738 		tegra_xudc_handle_transfer_completion(xudc, ep, event);
2739 		break;
2740 	case TRB_CMPL_CODE_HOST_REJECTED:
2741 		dev_info(xudc->dev, "stream rejected on EP %u\n", ep_index);
2742 
2743 		ep->stream_rejected = true;
2744 		break;
2745 	case TRB_CMPL_CODE_PRIME_PIPE_RECEIVED:
2746 		dev_info(xudc->dev, "prime pipe received on EP %u\n", ep_index);
2747 
2748 		if (ep->stream_rejected) {
2749 			ep->stream_rejected = false;
2750 			/*
2751 			 * An EP is stopped when a stream is rejected.  Wait
2752 			 * for the EP to report that it is stopped and then
2753 			 * un-stop it.
2754 			 */
2755 			ep_wait_for_stopped(xudc, ep_index);
2756 		}
2757 		tegra_xudc_ep_ring_doorbell(ep);
2758 		break;
2759 	case TRB_CMPL_CODE_BABBLE_DETECTED_ERR:
2760 		/*
2761 		 * Wait for the EP to be stopped so the controller stops
2762 		 * processing doorbells.
2763 		 */
2764 		ep_wait_for_stopped(xudc, ep_index);
2765 		ep->enq_ptr = ep->deq_ptr;
2766 		tegra_xudc_ep_nuke(ep, -EIO);
2767 		fallthrough;
2768 	case TRB_CMPL_CODE_STREAM_NUMP_ERROR:
2769 	case TRB_CMPL_CODE_CTRL_DIR_ERR:
2770 	case TRB_CMPL_CODE_INVALID_STREAM_TYPE_ERR:
2771 	case TRB_CMPL_CODE_RING_UNDERRUN:
2772 	case TRB_CMPL_CODE_RING_OVERRUN:
2773 	case TRB_CMPL_CODE_ISOCH_BUFFER_OVERRUN:
2774 	case TRB_CMPL_CODE_USB_TRANS_ERR:
2775 	case TRB_CMPL_CODE_TRB_ERR:
2776 		dev_err(xudc->dev, "completion error %#x on EP %u\n",
2777 			comp_code, ep_index);
2778 
2779 		ep_halt(xudc, ep_index);
2780 		break;
2781 	case TRB_CMPL_CODE_CTRL_SEQNUM_ERR:
2782 		dev_info(xudc->dev, "sequence number error\n");
2783 
2784 		/*
2785 		 * Kill any queued control request and skip to the last
2786 		 * setup packet we received.
2787 		 */
2788 		tegra_xudc_ep_nuke(ep, -EINVAL);
2789 		xudc->setup_state = WAIT_FOR_SETUP;
2790 		if (!xudc->queued_setup_packet)
2791 			break;
2792 
2793 		tegra_xudc_handle_ep0_setup_packet(xudc,
2794 						   &xudc->setup_packet.ctrl_req,
2795 						   xudc->setup_packet.seq_num);
2796 		xudc->queued_setup_packet = false;
2797 		break;
2798 	case TRB_CMPL_CODE_STOPPED:
2799 		dev_dbg(xudc->dev, "stop completion code on EP %u\n",
2800 			ep_index);
2801 
2802 		/* Disconnected. */
2803 		tegra_xudc_ep_nuke(ep, -ECONNREFUSED);
2804 		break;
2805 	default:
2806 		dev_dbg(xudc->dev, "completion event %#x on EP %u\n",
2807 			comp_code, ep_index);
2808 		break;
2809 	}
2810 }
2811 
tegra_xudc_reset(struct tegra_xudc * xudc)2812 static void tegra_xudc_reset(struct tegra_xudc *xudc)
2813 {
2814 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2815 	dma_addr_t deq_ptr;
2816 	unsigned int i;
2817 
2818 	xudc->setup_state = WAIT_FOR_SETUP;
2819 	xudc->device_state = USB_STATE_DEFAULT;
2820 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2821 
2822 	ep_unpause_all(xudc);
2823 
2824 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
2825 		tegra_xudc_ep_nuke(&xudc->ep[i], -ESHUTDOWN);
2826 
2827 	/*
2828 	 * Reset sequence number and dequeue pointer to flush the transfer
2829 	 * ring.
2830 	 */
2831 	ep0->deq_ptr = ep0->enq_ptr;
2832 	ep0->ring_full = false;
2833 
2834 	xudc->setup_seq_num = 0;
2835 	xudc->queued_setup_packet = false;
2836 
2837 	ep_ctx_write_rsvd(ep0->context, 0);
2838 	ep_ctx_write_partial_td(ep0->context, 0);
2839 	ep_ctx_write_splitxstate(ep0->context, 0);
2840 	ep_ctx_write_seq_num(ep0->context, 0);
2841 
2842 	deq_ptr = trb_virt_to_phys(ep0, &ep0->transfer_ring[ep0->deq_ptr]);
2843 
2844 	if (!dma_mapping_error(xudc->dev, deq_ptr)) {
2845 		ep_ctx_write_deq_ptr(ep0->context, deq_ptr);
2846 		ep_ctx_write_dcs(ep0->context, ep0->pcs);
2847 	}
2848 
2849 	ep_unhalt_all(xudc);
2850 	ep_reload(xudc, 0);
2851 	ep_unpause(xudc, 0);
2852 }
2853 
tegra_xudc_port_connect(struct tegra_xudc * xudc)2854 static void tegra_xudc_port_connect(struct tegra_xudc *xudc)
2855 {
2856 	struct tegra_xudc_ep *ep0 = &xudc->ep[0];
2857 	u16 maxpacket;
2858 	u32 val;
2859 
2860 	val = (xudc_readl(xudc, PORTSC) & PORTSC_PS_MASK) >> PORTSC_PS_SHIFT;
2861 	switch (val) {
2862 	case PORTSC_PS_LS:
2863 		xudc->gadget.speed = USB_SPEED_LOW;
2864 		break;
2865 	case PORTSC_PS_FS:
2866 		xudc->gadget.speed = USB_SPEED_FULL;
2867 		break;
2868 	case PORTSC_PS_HS:
2869 		xudc->gadget.speed = USB_SPEED_HIGH;
2870 		break;
2871 	case PORTSC_PS_SS:
2872 		xudc->gadget.speed = USB_SPEED_SUPER;
2873 		break;
2874 	default:
2875 		xudc->gadget.speed = USB_SPEED_UNKNOWN;
2876 		break;
2877 	}
2878 
2879 	xudc->device_state = USB_STATE_DEFAULT;
2880 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2881 
2882 	xudc->setup_state = WAIT_FOR_SETUP;
2883 
2884 	if (xudc->gadget.speed == USB_SPEED_SUPER)
2885 		maxpacket = 512;
2886 	else
2887 		maxpacket = 64;
2888 
2889 	ep_ctx_write_max_packet_size(ep0->context, maxpacket);
2890 	tegra_xudc_ep0_desc.wMaxPacketSize = cpu_to_le16(maxpacket);
2891 	usb_ep_set_maxpacket_limit(&ep0->usb_ep, maxpacket);
2892 
2893 	if (!xudc->soc->u1_enable) {
2894 		val = xudc_readl(xudc, PORTPM);
2895 		val &= ~(PORTPM_U1TIMEOUT_MASK);
2896 		xudc_writel(xudc, val, PORTPM);
2897 	}
2898 
2899 	if (!xudc->soc->u2_enable) {
2900 		val = xudc_readl(xudc, PORTPM);
2901 		val &= ~(PORTPM_U2TIMEOUT_MASK);
2902 		xudc_writel(xudc, val, PORTPM);
2903 	}
2904 
2905 	if (xudc->gadget.speed <= USB_SPEED_HIGH) {
2906 		val = xudc_readl(xudc, PORTPM);
2907 		val &= ~(PORTPM_L1S_MASK);
2908 		if (xudc->soc->lpm_enable)
2909 			val |= PORTPM_L1S(PORTPM_L1S_ACCEPT);
2910 		else
2911 			val |= PORTPM_L1S(PORTPM_L1S_NYET);
2912 		xudc_writel(xudc, val, PORTPM);
2913 	}
2914 
2915 	val = xudc_readl(xudc, ST);
2916 	if (val & ST_RC)
2917 		xudc_writel(xudc, ST_RC, ST);
2918 }
2919 
tegra_xudc_port_disconnect(struct tegra_xudc * xudc)2920 static void tegra_xudc_port_disconnect(struct tegra_xudc *xudc)
2921 {
2922 	tegra_xudc_reset(xudc);
2923 
2924 	if (xudc->driver && xudc->driver->disconnect) {
2925 		spin_unlock(&xudc->lock);
2926 		xudc->driver->disconnect(&xudc->gadget);
2927 		spin_lock(&xudc->lock);
2928 	}
2929 
2930 	xudc->device_state = USB_STATE_NOTATTACHED;
2931 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2932 
2933 	complete(&xudc->disconnect_complete);
2934 }
2935 
tegra_xudc_port_reset(struct tegra_xudc * xudc)2936 static void tegra_xudc_port_reset(struct tegra_xudc *xudc)
2937 {
2938 	tegra_xudc_reset(xudc);
2939 
2940 	if (xudc->driver) {
2941 		spin_unlock(&xudc->lock);
2942 		usb_gadget_udc_reset(&xudc->gadget, xudc->driver);
2943 		spin_lock(&xudc->lock);
2944 	}
2945 
2946 	tegra_xudc_port_connect(xudc);
2947 }
2948 
tegra_xudc_port_suspend(struct tegra_xudc * xudc)2949 static void tegra_xudc_port_suspend(struct tegra_xudc *xudc)
2950 {
2951 	dev_dbg(xudc->dev, "port suspend\n");
2952 
2953 	xudc->resume_state = xudc->device_state;
2954 	xudc->device_state = USB_STATE_SUSPENDED;
2955 	usb_gadget_set_state(&xudc->gadget, xudc->device_state);
2956 
2957 	if (xudc->driver->suspend) {
2958 		spin_unlock(&xudc->lock);
2959 		xudc->driver->suspend(&xudc->gadget);
2960 		spin_lock(&xudc->lock);
2961 	}
2962 }
2963 
tegra_xudc_port_resume(struct tegra_xudc * xudc)2964 static void tegra_xudc_port_resume(struct tegra_xudc *xudc)
2965 {
2966 	dev_dbg(xudc->dev, "port resume\n");
2967 
2968 	tegra_xudc_resume_device_state(xudc);
2969 
2970 	if (xudc->driver->resume) {
2971 		spin_unlock(&xudc->lock);
2972 		xudc->driver->resume(&xudc->gadget);
2973 		spin_lock(&xudc->lock);
2974 	}
2975 }
2976 
clear_port_change(struct tegra_xudc * xudc,u32 flag)2977 static inline void clear_port_change(struct tegra_xudc *xudc, u32 flag)
2978 {
2979 	u32 val;
2980 
2981 	val = xudc_readl(xudc, PORTSC);
2982 	val &= ~PORTSC_CHANGE_MASK;
2983 	val |= flag;
2984 	xudc_writel(xudc, val, PORTSC);
2985 }
2986 
__tegra_xudc_handle_port_status(struct tegra_xudc * xudc)2987 static void __tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
2988 {
2989 	u32 portsc, porthalt;
2990 
2991 	porthalt = xudc_readl(xudc, PORTHALT);
2992 	if ((porthalt & PORTHALT_STCHG_REQ) &&
2993 	    (porthalt & PORTHALT_HALT_LTSSM)) {
2994 		dev_dbg(xudc->dev, "STCHG_REQ, PORTHALT = %#x\n", porthalt);
2995 		porthalt &= ~PORTHALT_HALT_LTSSM;
2996 		xudc_writel(xudc, porthalt, PORTHALT);
2997 	}
2998 
2999 	portsc = xudc_readl(xudc, PORTSC);
3000 	if ((portsc & PORTSC_PRC) && (portsc & PORTSC_PR)) {
3001 		dev_dbg(xudc->dev, "PRC, PR, PORTSC = %#x\n", portsc);
3002 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
3003 #define TOGGLE_VBUS_WAIT_MS 100
3004 		if (xudc->soc->port_reset_quirk) {
3005 			schedule_delayed_work(&xudc->port_reset_war_work,
3006 				msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3007 			xudc->wait_for_sec_prc = 1;
3008 		}
3009 	}
3010 
3011 	if ((portsc & PORTSC_PRC) && !(portsc & PORTSC_PR)) {
3012 		dev_dbg(xudc->dev, "PRC, Not PR, PORTSC = %#x\n", portsc);
3013 		clear_port_change(xudc, PORTSC_PRC | PORTSC_PED);
3014 		tegra_xudc_port_reset(xudc);
3015 		cancel_delayed_work(&xudc->port_reset_war_work);
3016 		xudc->wait_for_sec_prc = 0;
3017 	}
3018 
3019 	portsc = xudc_readl(xudc, PORTSC);
3020 	if (portsc & PORTSC_WRC) {
3021 		dev_dbg(xudc->dev, "WRC, PORTSC = %#x\n", portsc);
3022 		clear_port_change(xudc, PORTSC_WRC | PORTSC_PED);
3023 		if (!(xudc_readl(xudc, PORTSC) & PORTSC_WPR))
3024 			tegra_xudc_port_reset(xudc);
3025 	}
3026 
3027 	portsc = xudc_readl(xudc, PORTSC);
3028 	if (portsc & PORTSC_CSC) {
3029 		dev_dbg(xudc->dev, "CSC, PORTSC = %#x\n", portsc);
3030 		clear_port_change(xudc, PORTSC_CSC);
3031 
3032 		if (portsc & PORTSC_CCS)
3033 			tegra_xudc_port_connect(xudc);
3034 		else
3035 			tegra_xudc_port_disconnect(xudc);
3036 
3037 		if (xudc->wait_csc) {
3038 			cancel_delayed_work(&xudc->plc_reset_work);
3039 			xudc->wait_csc = false;
3040 		}
3041 	}
3042 
3043 	portsc = xudc_readl(xudc, PORTSC);
3044 	if (portsc & PORTSC_PLC) {
3045 		u32 pls = (portsc & PORTSC_PLS_MASK) >> PORTSC_PLS_SHIFT;
3046 
3047 		dev_dbg(xudc->dev, "PLC, PORTSC = %#x\n", portsc);
3048 		clear_port_change(xudc, PORTSC_PLC);
3049 		switch (pls) {
3050 		case PORTSC_PLS_U3:
3051 			tegra_xudc_port_suspend(xudc);
3052 			break;
3053 		case PORTSC_PLS_U0:
3054 			if (xudc->gadget.speed < USB_SPEED_SUPER)
3055 				tegra_xudc_port_resume(xudc);
3056 			break;
3057 		case PORTSC_PLS_RESUME:
3058 			if (xudc->gadget.speed == USB_SPEED_SUPER)
3059 				tegra_xudc_port_resume(xudc);
3060 			break;
3061 		case PORTSC_PLS_INACTIVE:
3062 			schedule_delayed_work(&xudc->plc_reset_work,
3063 					msecs_to_jiffies(TOGGLE_VBUS_WAIT_MS));
3064 			xudc->wait_csc = true;
3065 			break;
3066 		default:
3067 			break;
3068 		}
3069 	}
3070 
3071 	if (portsc & PORTSC_CEC) {
3072 		dev_warn(xudc->dev, "CEC, PORTSC = %#x\n", portsc);
3073 		clear_port_change(xudc, PORTSC_CEC);
3074 	}
3075 
3076 	dev_dbg(xudc->dev, "PORTSC = %#x\n", xudc_readl(xudc, PORTSC));
3077 }
3078 
tegra_xudc_handle_port_status(struct tegra_xudc * xudc)3079 static void tegra_xudc_handle_port_status(struct tegra_xudc *xudc)
3080 {
3081 	while ((xudc_readl(xudc, PORTSC) & PORTSC_CHANGE_MASK) ||
3082 	       (xudc_readl(xudc, PORTHALT) & PORTHALT_STCHG_REQ))
3083 		__tegra_xudc_handle_port_status(xudc);
3084 }
3085 
tegra_xudc_handle_event(struct tegra_xudc * xudc,struct tegra_xudc_trb * event)3086 static void tegra_xudc_handle_event(struct tegra_xudc *xudc,
3087 				    struct tegra_xudc_trb *event)
3088 {
3089 	u32 type = trb_read_type(event);
3090 
3091 	dump_trb(xudc, "EVENT", event);
3092 
3093 	switch (type) {
3094 	case TRB_TYPE_PORT_STATUS_CHANGE_EVENT:
3095 		tegra_xudc_handle_port_status(xudc);
3096 		break;
3097 	case TRB_TYPE_TRANSFER_EVENT:
3098 		tegra_xudc_handle_transfer_event(xudc, event);
3099 		break;
3100 	case TRB_TYPE_SETUP_PACKET_EVENT:
3101 		tegra_xudc_handle_ep0_event(xudc, event);
3102 		break;
3103 	default:
3104 		dev_info(xudc->dev, "Unrecognized TRB type = %#x\n", type);
3105 		break;
3106 	}
3107 }
3108 
tegra_xudc_process_event_ring(struct tegra_xudc * xudc)3109 static void tegra_xudc_process_event_ring(struct tegra_xudc *xudc)
3110 {
3111 	struct tegra_xudc_trb *event;
3112 	dma_addr_t erdp;
3113 
3114 	while (true) {
3115 		event = xudc->event_ring[xudc->event_ring_index] +
3116 			xudc->event_ring_deq_ptr;
3117 
3118 		if (trb_read_cycle(event) != xudc->ccs)
3119 			break;
3120 
3121 		tegra_xudc_handle_event(xudc, event);
3122 
3123 		xudc->event_ring_deq_ptr++;
3124 		if (xudc->event_ring_deq_ptr == XUDC_EVENT_RING_SIZE) {
3125 			xudc->event_ring_deq_ptr = 0;
3126 			xudc->event_ring_index++;
3127 		}
3128 
3129 		if (xudc->event_ring_index == XUDC_NR_EVENT_RINGS) {
3130 			xudc->event_ring_index = 0;
3131 			xudc->ccs = !xudc->ccs;
3132 		}
3133 	}
3134 
3135 	erdp = xudc->event_ring_phys[xudc->event_ring_index] +
3136 		xudc->event_ring_deq_ptr * sizeof(*event);
3137 
3138 	xudc_writel(xudc, upper_32_bits(erdp), ERDPHI);
3139 	xudc_writel(xudc, lower_32_bits(erdp) | ERDPLO_EHB, ERDPLO);
3140 }
3141 
tegra_xudc_irq(int irq,void * data)3142 static irqreturn_t tegra_xudc_irq(int irq, void *data)
3143 {
3144 	struct tegra_xudc *xudc = data;
3145 	unsigned long flags;
3146 	u32 val;
3147 
3148 	val = xudc_readl(xudc, ST);
3149 	if (!(val & ST_IP))
3150 		return IRQ_NONE;
3151 	xudc_writel(xudc, ST_IP, ST);
3152 
3153 	spin_lock_irqsave(&xudc->lock, flags);
3154 	tegra_xudc_process_event_ring(xudc);
3155 	spin_unlock_irqrestore(&xudc->lock, flags);
3156 
3157 	return IRQ_HANDLED;
3158 }
3159 
tegra_xudc_alloc_ep(struct tegra_xudc * xudc,unsigned int index)3160 static int tegra_xudc_alloc_ep(struct tegra_xudc *xudc, unsigned int index)
3161 {
3162 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3163 
3164 	ep->xudc = xudc;
3165 	ep->index = index;
3166 	ep->context = &xudc->ep_context[index];
3167 	INIT_LIST_HEAD(&ep->queue);
3168 
3169 	/*
3170 	 * EP1 would be the input endpoint corresponding to EP0, but since
3171 	 * EP0 is bi-directional, EP1 is unused.
3172 	 */
3173 	if (index == 1)
3174 		return 0;
3175 
3176 	ep->transfer_ring = dma_pool_alloc(xudc->transfer_ring_pool,
3177 					   GFP_KERNEL,
3178 					   &ep->transfer_ring_phys);
3179 	if (!ep->transfer_ring)
3180 		return -ENOMEM;
3181 
3182 	if (index) {
3183 		snprintf(ep->name, sizeof(ep->name), "ep%u%s", index / 2,
3184 			 (index % 2 == 0) ? "out" : "in");
3185 		ep->usb_ep.name = ep->name;
3186 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 1024);
3187 		ep->usb_ep.max_streams = 16;
3188 		ep->usb_ep.ops = &tegra_xudc_ep_ops;
3189 		ep->usb_ep.caps.type_bulk = true;
3190 		ep->usb_ep.caps.type_int = true;
3191 		if (index & 1)
3192 			ep->usb_ep.caps.dir_in = true;
3193 		else
3194 			ep->usb_ep.caps.dir_out = true;
3195 		list_add_tail(&ep->usb_ep.ep_list, &xudc->gadget.ep_list);
3196 	} else {
3197 		strscpy(ep->name, "ep0", 3);
3198 		ep->usb_ep.name = ep->name;
3199 		usb_ep_set_maxpacket_limit(&ep->usb_ep, 512);
3200 		ep->usb_ep.ops = &tegra_xudc_ep0_ops;
3201 		ep->usb_ep.caps.type_control = true;
3202 		ep->usb_ep.caps.dir_in = true;
3203 		ep->usb_ep.caps.dir_out = true;
3204 	}
3205 
3206 	return 0;
3207 }
3208 
tegra_xudc_free_ep(struct tegra_xudc * xudc,unsigned int index)3209 static void tegra_xudc_free_ep(struct tegra_xudc *xudc, unsigned int index)
3210 {
3211 	struct tegra_xudc_ep *ep = &xudc->ep[index];
3212 
3213 	/*
3214 	 * EP1 would be the input endpoint corresponding to EP0, but since
3215 	 * EP0 is bi-directional, EP1 is unused.
3216 	 */
3217 	if (index == 1)
3218 		return;
3219 
3220 	dma_pool_free(xudc->transfer_ring_pool, ep->transfer_ring,
3221 		      ep->transfer_ring_phys);
3222 }
3223 
tegra_xudc_alloc_eps(struct tegra_xudc * xudc)3224 static int tegra_xudc_alloc_eps(struct tegra_xudc *xudc)
3225 {
3226 	struct usb_request *req;
3227 	unsigned int i;
3228 	int err;
3229 
3230 	xudc->ep_context =
3231 		dma_alloc_coherent(xudc->dev, XUDC_NR_EPS *
3232 				    sizeof(*xudc->ep_context),
3233 				    &xudc->ep_context_phys, GFP_KERNEL);
3234 	if (!xudc->ep_context)
3235 		return -ENOMEM;
3236 
3237 	xudc->transfer_ring_pool =
3238 		dmam_pool_create(dev_name(xudc->dev), xudc->dev,
3239 				 XUDC_TRANSFER_RING_SIZE *
3240 				 sizeof(struct tegra_xudc_trb),
3241 				 sizeof(struct tegra_xudc_trb), 0);
3242 	if (!xudc->transfer_ring_pool) {
3243 		err = -ENOMEM;
3244 		goto free_ep_context;
3245 	}
3246 
3247 	INIT_LIST_HEAD(&xudc->gadget.ep_list);
3248 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++) {
3249 		err = tegra_xudc_alloc_ep(xudc, i);
3250 		if (err < 0)
3251 			goto free_eps;
3252 	}
3253 
3254 	req = tegra_xudc_ep_alloc_request(&xudc->ep[0].usb_ep, GFP_KERNEL);
3255 	if (!req) {
3256 		err = -ENOMEM;
3257 		goto free_eps;
3258 	}
3259 	xudc->ep0_req = to_xudc_req(req);
3260 
3261 	return 0;
3262 
3263 free_eps:
3264 	for (; i > 0; i--)
3265 		tegra_xudc_free_ep(xudc, i - 1);
3266 free_ep_context:
3267 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3268 			  xudc->ep_context, xudc->ep_context_phys);
3269 	return err;
3270 }
3271 
tegra_xudc_init_eps(struct tegra_xudc * xudc)3272 static void tegra_xudc_init_eps(struct tegra_xudc *xudc)
3273 {
3274 	xudc_writel(xudc, lower_32_bits(xudc->ep_context_phys), ECPLO);
3275 	xudc_writel(xudc, upper_32_bits(xudc->ep_context_phys), ECPHI);
3276 }
3277 
tegra_xudc_free_eps(struct tegra_xudc * xudc)3278 static void tegra_xudc_free_eps(struct tegra_xudc *xudc)
3279 {
3280 	unsigned int i;
3281 
3282 	tegra_xudc_ep_free_request(&xudc->ep[0].usb_ep,
3283 				   &xudc->ep0_req->usb_req);
3284 
3285 	for (i = 0; i < ARRAY_SIZE(xudc->ep); i++)
3286 		tegra_xudc_free_ep(xudc, i);
3287 
3288 	dma_free_coherent(xudc->dev, XUDC_NR_EPS * sizeof(*xudc->ep_context),
3289 			  xudc->ep_context, xudc->ep_context_phys);
3290 }
3291 
tegra_xudc_alloc_event_ring(struct tegra_xudc * xudc)3292 static int tegra_xudc_alloc_event_ring(struct tegra_xudc *xudc)
3293 {
3294 	unsigned int i;
3295 
3296 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3297 		xudc->event_ring[i] =
3298 			dma_alloc_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3299 					   sizeof(*xudc->event_ring[i]),
3300 					   &xudc->event_ring_phys[i],
3301 					   GFP_KERNEL);
3302 		if (!xudc->event_ring[i])
3303 			goto free_dma;
3304 	}
3305 
3306 	return 0;
3307 
3308 free_dma:
3309 	for (; i > 0; i--) {
3310 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3311 				  sizeof(*xudc->event_ring[i - 1]),
3312 				  xudc->event_ring[i - 1],
3313 				  xudc->event_ring_phys[i - 1]);
3314 	}
3315 	return -ENOMEM;
3316 }
3317 
tegra_xudc_init_event_ring(struct tegra_xudc * xudc)3318 static void tegra_xudc_init_event_ring(struct tegra_xudc *xudc)
3319 {
3320 	unsigned int i;
3321 	u32 val;
3322 
3323 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3324 		memset(xudc->event_ring[i], 0, XUDC_EVENT_RING_SIZE *
3325 		       sizeof(*xudc->event_ring[i]));
3326 
3327 		val = xudc_readl(xudc, ERSTSZ);
3328 		val &= ~(ERSTSZ_ERSTXSZ_MASK << ERSTSZ_ERSTXSZ_SHIFT(i));
3329 		val |= XUDC_EVENT_RING_SIZE << ERSTSZ_ERSTXSZ_SHIFT(i);
3330 		xudc_writel(xudc, val, ERSTSZ);
3331 
3332 		xudc_writel(xudc, lower_32_bits(xudc->event_ring_phys[i]),
3333 			    ERSTXBALO(i));
3334 		xudc_writel(xudc, upper_32_bits(xudc->event_ring_phys[i]),
3335 			    ERSTXBAHI(i));
3336 	}
3337 
3338 	val = lower_32_bits(xudc->event_ring_phys[0]);
3339 	xudc_writel(xudc, val, ERDPLO);
3340 	val |= EREPLO_ECS;
3341 	xudc_writel(xudc, val, EREPLO);
3342 
3343 	val = upper_32_bits(xudc->event_ring_phys[0]);
3344 	xudc_writel(xudc, val, ERDPHI);
3345 	xudc_writel(xudc, val, EREPHI);
3346 
3347 	xudc->ccs = true;
3348 	xudc->event_ring_index = 0;
3349 	xudc->event_ring_deq_ptr = 0;
3350 }
3351 
tegra_xudc_free_event_ring(struct tegra_xudc * xudc)3352 static void tegra_xudc_free_event_ring(struct tegra_xudc *xudc)
3353 {
3354 	unsigned int i;
3355 
3356 	for (i = 0; i < ARRAY_SIZE(xudc->event_ring); i++) {
3357 		dma_free_coherent(xudc->dev, XUDC_EVENT_RING_SIZE *
3358 				  sizeof(*xudc->event_ring[i]),
3359 				  xudc->event_ring[i],
3360 				  xudc->event_ring_phys[i]);
3361 	}
3362 }
3363 
tegra_xudc_fpci_ipfs_init(struct tegra_xudc * xudc)3364 static void tegra_xudc_fpci_ipfs_init(struct tegra_xudc *xudc)
3365 {
3366 	u32 val;
3367 
3368 	if (xudc->soc->has_ipfs) {
3369 		val = ipfs_readl(xudc, XUSB_DEV_CONFIGURATION_0);
3370 		val |= XUSB_DEV_CONFIGURATION_0_EN_FPCI;
3371 		ipfs_writel(xudc, val, XUSB_DEV_CONFIGURATION_0);
3372 		usleep_range(10, 15);
3373 	}
3374 
3375 	/* Enable bus master */
3376 	val = XUSB_DEV_CFG_1_IO_SPACE_EN | XUSB_DEV_CFG_1_MEMORY_SPACE_EN |
3377 		XUSB_DEV_CFG_1_BUS_MASTER_EN;
3378 	fpci_writel(xudc, val, XUSB_DEV_CFG_1);
3379 
3380 	/* Program BAR0 space */
3381 	val = fpci_readl(xudc, XUSB_DEV_CFG_4);
3382 	val &= ~(XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3383 	val |= xudc->phys_base & (XUSB_DEV_CFG_4_BASE_ADDR_MASK);
3384 
3385 	fpci_writel(xudc, val, XUSB_DEV_CFG_4);
3386 	fpci_writel(xudc, upper_32_bits(xudc->phys_base), XUSB_DEV_CFG_5);
3387 
3388 	usleep_range(100, 200);
3389 
3390 	if (xudc->soc->has_ipfs) {
3391 		/* Enable interrupt assertion */
3392 		val = ipfs_readl(xudc, XUSB_DEV_INTR_MASK_0);
3393 		val |= XUSB_DEV_INTR_MASK_0_IP_INT_MASK;
3394 		ipfs_writel(xudc, val, XUSB_DEV_INTR_MASK_0);
3395 	}
3396 }
3397 
tegra_xudc_device_params_init(struct tegra_xudc * xudc)3398 static void tegra_xudc_device_params_init(struct tegra_xudc *xudc)
3399 {
3400 	u32 val, imod;
3401 
3402 	if (xudc->soc->has_ipfs) {
3403 		val = xudc_readl(xudc, BLCG);
3404 		val |= BLCG_ALL;
3405 		val &= ~(BLCG_DFPCI | BLCG_UFPCI | BLCG_FE |
3406 				BLCG_COREPLL_PWRDN);
3407 		val |= BLCG_IOPLL_0_PWRDN;
3408 		val |= BLCG_IOPLL_1_PWRDN;
3409 		val |= BLCG_IOPLL_2_PWRDN;
3410 
3411 		xudc_writel(xudc, val, BLCG);
3412 	}
3413 
3414 	if (xudc->soc->port_speed_quirk)
3415 		tegra_xudc_limit_port_speed(xudc);
3416 
3417 	/* Set a reasonable U3 exit timer value. */
3418 	val = xudc_readl(xudc, SSPX_CORE_PADCTL4);
3419 	val &= ~(SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3_MASK);
3420 	val |= SSPX_CORE_PADCTL4_RXDAT_VLD_TIMEOUT_U3(0x5dc0);
3421 	xudc_writel(xudc, val, SSPX_CORE_PADCTL4);
3422 
3423 	/* Default ping LFPS tBurst is too large. */
3424 	val = xudc_readl(xudc, SSPX_CORE_CNT0);
3425 	val &= ~(SSPX_CORE_CNT0_PING_TBURST_MASK);
3426 	val |= SSPX_CORE_CNT0_PING_TBURST(0xa);
3427 	xudc_writel(xudc, val, SSPX_CORE_CNT0);
3428 
3429 	/* Default tPortConfiguration timeout is too small. */
3430 	val = xudc_readl(xudc, SSPX_CORE_CNT30);
3431 	val &= ~(SSPX_CORE_CNT30_LMPITP_TIMER_MASK);
3432 	val |= SSPX_CORE_CNT30_LMPITP_TIMER(0x978);
3433 	xudc_writel(xudc, val, SSPX_CORE_CNT30);
3434 
3435 	if (xudc->soc->lpm_enable) {
3436 		/* Set L1 resume duration to 95 us. */
3437 		val = xudc_readl(xudc, HSFSPI_COUNT13);
3438 		val &= ~(HSFSPI_COUNT13_U2_RESUME_K_DURATION_MASK);
3439 		val |= HSFSPI_COUNT13_U2_RESUME_K_DURATION(0x2c88);
3440 		xudc_writel(xudc, val, HSFSPI_COUNT13);
3441 	}
3442 
3443 	/*
3444 	 * Compliance suite appears to be violating polling LFPS tBurst max
3445 	 * of 1.4us.  Send 1.45us instead.
3446 	 */
3447 	val = xudc_readl(xudc, SSPX_CORE_CNT32);
3448 	val &= ~(SSPX_CORE_CNT32_POLL_TBURST_MAX_MASK);
3449 	val |= SSPX_CORE_CNT32_POLL_TBURST_MAX(0xb0);
3450 	xudc_writel(xudc, val, SSPX_CORE_CNT32);
3451 
3452 	/* Direct HS/FS port instance to RxDetect. */
3453 	val = xudc_readl(xudc, CFG_DEV_FE);
3454 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3455 	val |= CFG_DEV_FE_PORTREGSEL(CFG_DEV_FE_PORTREGSEL_HSFS_PI);
3456 	xudc_writel(xudc, val, CFG_DEV_FE);
3457 
3458 	val = xudc_readl(xudc, PORTSC);
3459 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3460 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3461 	xudc_writel(xudc, val, PORTSC);
3462 
3463 	/* Direct SS port instance to RxDetect. */
3464 	val = xudc_readl(xudc, CFG_DEV_FE);
3465 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3466 	val |= CFG_DEV_FE_PORTREGSEL_SS_PI & CFG_DEV_FE_PORTREGSEL_MASK;
3467 	xudc_writel(xudc, val, CFG_DEV_FE);
3468 
3469 	val = xudc_readl(xudc, PORTSC);
3470 	val &= ~(PORTSC_CHANGE_MASK | PORTSC_PLS_MASK);
3471 	val |= PORTSC_LWS | PORTSC_PLS(PORTSC_PLS_RXDETECT);
3472 	xudc_writel(xudc, val, PORTSC);
3473 
3474 	/* Restore port instance. */
3475 	val = xudc_readl(xudc, CFG_DEV_FE);
3476 	val &= ~(CFG_DEV_FE_PORTREGSEL_MASK);
3477 	xudc_writel(xudc, val, CFG_DEV_FE);
3478 
3479 	/*
3480 	 * Enable INFINITE_SS_RETRY to prevent device from entering
3481 	 * Disabled.Error when attached to buggy SuperSpeed hubs.
3482 	 */
3483 	val = xudc_readl(xudc, CFG_DEV_FE);
3484 	val |= CFG_DEV_FE_INFINITE_SS_RETRY;
3485 	xudc_writel(xudc, val, CFG_DEV_FE);
3486 
3487 	/* Set interrupt moderation. */
3488 	imod = XUDC_INTERRUPT_MODERATION_US * 4;
3489 	val = xudc_readl(xudc, RT_IMOD);
3490 	val &= ~((RT_IMOD_IMODI_MASK) | (RT_IMOD_IMODC_MASK));
3491 	val |= (RT_IMOD_IMODI(imod) | RT_IMOD_IMODC(imod));
3492 	xudc_writel(xudc, val, RT_IMOD);
3493 
3494 	/* increase SSPI transaction timeout from 32us to 512us */
3495 	val = xudc_readl(xudc, CFG_DEV_SSPI_XFER);
3496 	val &= ~(CFG_DEV_SSPI_XFER_ACKTIMEOUT_MASK);
3497 	val |= CFG_DEV_SSPI_XFER_ACKTIMEOUT(0xf000);
3498 	xudc_writel(xudc, val, CFG_DEV_SSPI_XFER);
3499 }
3500 
tegra_xudc_phy_get(struct tegra_xudc * xudc)3501 static int tegra_xudc_phy_get(struct tegra_xudc *xudc)
3502 {
3503 	int err = 0, usb3_companion_port;
3504 	unsigned int i, j;
3505 
3506 	xudc->utmi_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3507 					   sizeof(*xudc->utmi_phy), GFP_KERNEL);
3508 	if (!xudc->utmi_phy)
3509 		return -ENOMEM;
3510 
3511 	xudc->usb3_phy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3512 					   sizeof(*xudc->usb3_phy), GFP_KERNEL);
3513 	if (!xudc->usb3_phy)
3514 		return -ENOMEM;
3515 
3516 	xudc->usbphy = devm_kcalloc(xudc->dev, xudc->soc->num_phys,
3517 					   sizeof(*xudc->usbphy), GFP_KERNEL);
3518 	if (!xudc->usbphy)
3519 		return -ENOMEM;
3520 
3521 	xudc->vbus_nb.notifier_call = tegra_xudc_vbus_notify;
3522 
3523 	for (i = 0; i < xudc->soc->num_phys; i++) {
3524 		char phy_name[] = "usb.-.";
3525 
3526 		/* Get USB2 phy */
3527 		snprintf(phy_name, sizeof(phy_name), "usb2-%d", i);
3528 		xudc->utmi_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3529 		if (IS_ERR(xudc->utmi_phy[i])) {
3530 			err = PTR_ERR(xudc->utmi_phy[i]);
3531 			dev_err_probe(xudc->dev, err,
3532 				"failed to get PHY for phy-name usb2-%d\n", i);
3533 			goto clean_up;
3534 		} else if (xudc->utmi_phy[i]) {
3535 			/* Get usb-phy, if utmi phy is available */
3536 			xudc->usbphy[i] = devm_usb_get_phy_by_node(xudc->dev,
3537 						xudc->utmi_phy[i]->dev.of_node,
3538 						NULL);
3539 			if (IS_ERR(xudc->usbphy[i])) {
3540 				err = PTR_ERR(xudc->usbphy[i]);
3541 				dev_err_probe(xudc->dev, err,
3542 					      "failed to get usbphy-%d\n", i);
3543 				goto clean_up;
3544 			}
3545 		} else if (!xudc->utmi_phy[i]) {
3546 			/* if utmi phy is not available, ignore USB3 phy get */
3547 			continue;
3548 		}
3549 
3550 		/* Get USB3 phy */
3551 		usb3_companion_port = tegra_xusb_padctl_get_usb3_companion(xudc->padctl, i);
3552 		if (usb3_companion_port < 0)
3553 			continue;
3554 
3555 		for (j = 0; j < xudc->soc->num_phys; j++) {
3556 			snprintf(phy_name, sizeof(phy_name), "usb3-%d", j);
3557 			xudc->usb3_phy[i] = devm_phy_optional_get(xudc->dev, phy_name);
3558 			if (IS_ERR(xudc->usb3_phy[i])) {
3559 				err = PTR_ERR(xudc->usb3_phy[i]);
3560 				dev_err_probe(xudc->dev, err,
3561 					"failed to get PHY for phy-name usb3-%d\n", j);
3562 				goto clean_up;
3563 			} else if (xudc->usb3_phy[i]) {
3564 				int usb2_port =
3565 					tegra_xusb_padctl_get_port_number(xudc->utmi_phy[i]);
3566 				int usb3_port =
3567 					tegra_xusb_padctl_get_port_number(xudc->usb3_phy[i]);
3568 				if (usb3_port == usb3_companion_port) {
3569 					dev_dbg(xudc->dev, "USB2 port %d is paired with USB3 port %d for device mode port %d\n",
3570 					 usb2_port, usb3_port, i);
3571 					break;
3572 				}
3573 			}
3574 		}
3575 	}
3576 
3577 	return err;
3578 
3579 clean_up:
3580 	for (i = 0; i < xudc->soc->num_phys; i++) {
3581 		xudc->usb3_phy[i] = NULL;
3582 		xudc->utmi_phy[i] = NULL;
3583 		xudc->usbphy[i] = NULL;
3584 	}
3585 
3586 	return err;
3587 }
3588 
tegra_xudc_phy_exit(struct tegra_xudc * xudc)3589 static void tegra_xudc_phy_exit(struct tegra_xudc *xudc)
3590 {
3591 	unsigned int i;
3592 
3593 	for (i = 0; i < xudc->soc->num_phys; i++) {
3594 		phy_exit(xudc->usb3_phy[i]);
3595 		phy_exit(xudc->utmi_phy[i]);
3596 	}
3597 }
3598 
tegra_xudc_phy_init(struct tegra_xudc * xudc)3599 static int tegra_xudc_phy_init(struct tegra_xudc *xudc)
3600 {
3601 	int err;
3602 	unsigned int i;
3603 
3604 	for (i = 0; i < xudc->soc->num_phys; i++) {
3605 		err = phy_init(xudc->utmi_phy[i]);
3606 		if (err < 0) {
3607 			dev_err(xudc->dev, "UTMI PHY #%u initialization failed: %d\n", i, err);
3608 			goto exit_phy;
3609 		}
3610 
3611 		err = phy_init(xudc->usb3_phy[i]);
3612 		if (err < 0) {
3613 			dev_err(xudc->dev, "USB3 PHY #%u initialization failed: %d\n", i, err);
3614 			goto exit_phy;
3615 		}
3616 	}
3617 	return 0;
3618 
3619 exit_phy:
3620 	tegra_xudc_phy_exit(xudc);
3621 	return err;
3622 }
3623 
3624 static const char * const tegra210_xudc_supply_names[] = {
3625 	"hvdd-usb",
3626 	"avddio-usb",
3627 };
3628 
3629 static const char * const tegra210_xudc_clock_names[] = {
3630 	"dev",
3631 	"ss",
3632 	"ss_src",
3633 	"hs_src",
3634 	"fs_src",
3635 };
3636 
3637 static const char * const tegra186_xudc_clock_names[] = {
3638 	"dev",
3639 	"ss",
3640 	"ss_src",
3641 	"fs_src",
3642 };
3643 
3644 static struct tegra_xudc_soc tegra210_xudc_soc_data = {
3645 	.supply_names = tegra210_xudc_supply_names,
3646 	.num_supplies = ARRAY_SIZE(tegra210_xudc_supply_names),
3647 	.clock_names = tegra210_xudc_clock_names,
3648 	.num_clks = ARRAY_SIZE(tegra210_xudc_clock_names),
3649 	.num_phys = 4,
3650 	.u1_enable = false,
3651 	.u2_enable = true,
3652 	.lpm_enable = false,
3653 	.invalid_seq_num = true,
3654 	.pls_quirk = true,
3655 	.port_reset_quirk = true,
3656 	.port_speed_quirk = false,
3657 	.has_ipfs = true,
3658 };
3659 
3660 static struct tegra_xudc_soc tegra186_xudc_soc_data = {
3661 	.clock_names = tegra186_xudc_clock_names,
3662 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3663 	.num_phys = 4,
3664 	.u1_enable = true,
3665 	.u2_enable = true,
3666 	.lpm_enable = false,
3667 	.invalid_seq_num = false,
3668 	.pls_quirk = false,
3669 	.port_reset_quirk = false,
3670 	.port_speed_quirk = false,
3671 	.has_ipfs = false,
3672 };
3673 
3674 static struct tegra_xudc_soc tegra194_xudc_soc_data = {
3675 	.clock_names = tegra186_xudc_clock_names,
3676 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3677 	.num_phys = 4,
3678 	.u1_enable = true,
3679 	.u2_enable = true,
3680 	.lpm_enable = true,
3681 	.invalid_seq_num = false,
3682 	.pls_quirk = false,
3683 	.port_reset_quirk = false,
3684 	.port_speed_quirk = true,
3685 	.has_ipfs = false,
3686 };
3687 
3688 static struct tegra_xudc_soc tegra234_xudc_soc_data = {
3689 	.clock_names = tegra186_xudc_clock_names,
3690 	.num_clks = ARRAY_SIZE(tegra186_xudc_clock_names),
3691 	.num_phys = 4,
3692 	.u1_enable = true,
3693 	.u2_enable = true,
3694 	.lpm_enable = true,
3695 	.invalid_seq_num = false,
3696 	.pls_quirk = false,
3697 	.port_reset_quirk = false,
3698 	.has_ipfs = false,
3699 };
3700 
3701 static const struct of_device_id tegra_xudc_of_match[] = {
3702 	{
3703 		.compatible = "nvidia,tegra210-xudc",
3704 		.data = &tegra210_xudc_soc_data
3705 	},
3706 	{
3707 		.compatible = "nvidia,tegra186-xudc",
3708 		.data = &tegra186_xudc_soc_data
3709 	},
3710 	{
3711 		.compatible = "nvidia,tegra194-xudc",
3712 		.data = &tegra194_xudc_soc_data
3713 	},
3714 	{
3715 		.compatible = "nvidia,tegra234-xudc",
3716 		.data = &tegra234_xudc_soc_data
3717 	},
3718 	{ }
3719 };
3720 MODULE_DEVICE_TABLE(of, tegra_xudc_of_match);
3721 
tegra_xudc_powerdomain_remove(struct tegra_xudc * xudc)3722 static void tegra_xudc_powerdomain_remove(struct tegra_xudc *xudc)
3723 {
3724 	if (xudc->genpd_dl_ss)
3725 		device_link_del(xudc->genpd_dl_ss);
3726 	if (xudc->genpd_dl_device)
3727 		device_link_del(xudc->genpd_dl_device);
3728 	if (xudc->genpd_dev_ss)
3729 		dev_pm_domain_detach(xudc->genpd_dev_ss, true);
3730 	if (xudc->genpd_dev_device)
3731 		dev_pm_domain_detach(xudc->genpd_dev_device, true);
3732 }
3733 
tegra_xudc_powerdomain_init(struct tegra_xudc * xudc)3734 static int tegra_xudc_powerdomain_init(struct tegra_xudc *xudc)
3735 {
3736 	struct device *dev = xudc->dev;
3737 	int err;
3738 
3739 	xudc->genpd_dev_device = dev_pm_domain_attach_by_name(dev, "dev");
3740 	if (IS_ERR(xudc->genpd_dev_device)) {
3741 		err = PTR_ERR(xudc->genpd_dev_device);
3742 		dev_err(dev, "failed to get device power domain: %d\n", err);
3743 		return err;
3744 	}
3745 
3746 	xudc->genpd_dev_ss = dev_pm_domain_attach_by_name(dev, "ss");
3747 	if (IS_ERR(xudc->genpd_dev_ss)) {
3748 		err = PTR_ERR(xudc->genpd_dev_ss);
3749 		dev_err(dev, "failed to get SuperSpeed power domain: %d\n", err);
3750 		return err;
3751 	}
3752 
3753 	xudc->genpd_dl_device = device_link_add(dev, xudc->genpd_dev_device,
3754 						DL_FLAG_PM_RUNTIME |
3755 						DL_FLAG_STATELESS);
3756 	if (!xudc->genpd_dl_device) {
3757 		dev_err(dev, "failed to add USB device link\n");
3758 		return -ENODEV;
3759 	}
3760 
3761 	xudc->genpd_dl_ss = device_link_add(dev, xudc->genpd_dev_ss,
3762 					    DL_FLAG_PM_RUNTIME |
3763 					    DL_FLAG_STATELESS);
3764 	if (!xudc->genpd_dl_ss) {
3765 		dev_err(dev, "failed to add SuperSpeed device link\n");
3766 		return -ENODEV;
3767 	}
3768 
3769 	return 0;
3770 }
3771 
tegra_xudc_probe(struct platform_device * pdev)3772 static int tegra_xudc_probe(struct platform_device *pdev)
3773 {
3774 	struct tegra_xudc *xudc;
3775 	struct resource *res;
3776 	unsigned int i;
3777 	int err;
3778 
3779 	xudc = devm_kzalloc(&pdev->dev, sizeof(*xudc), GFP_KERNEL);
3780 	if (!xudc)
3781 		return -ENOMEM;
3782 
3783 	xudc->dev = &pdev->dev;
3784 	platform_set_drvdata(pdev, xudc);
3785 
3786 	xudc->soc = of_device_get_match_data(&pdev->dev);
3787 	if (!xudc->soc)
3788 		return -ENODEV;
3789 
3790 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3791 	xudc->base = devm_ioremap_resource(&pdev->dev, res);
3792 	if (IS_ERR(xudc->base))
3793 		return PTR_ERR(xudc->base);
3794 	xudc->phys_base = res->start;
3795 
3796 	xudc->fpci = devm_platform_ioremap_resource_byname(pdev, "fpci");
3797 	if (IS_ERR(xudc->fpci))
3798 		return PTR_ERR(xudc->fpci);
3799 
3800 	if (xudc->soc->has_ipfs) {
3801 		xudc->ipfs = devm_platform_ioremap_resource_byname(pdev, "ipfs");
3802 		if (IS_ERR(xudc->ipfs))
3803 			return PTR_ERR(xudc->ipfs);
3804 	}
3805 
3806 	xudc->irq = platform_get_irq(pdev, 0);
3807 	if (xudc->irq < 0)
3808 		return xudc->irq;
3809 
3810 	err = devm_request_irq(&pdev->dev, xudc->irq, tegra_xudc_irq, 0,
3811 			       dev_name(&pdev->dev), xudc);
3812 	if (err < 0) {
3813 		dev_err(xudc->dev, "failed to claim IRQ#%u: %d\n", xudc->irq,
3814 			err);
3815 		return err;
3816 	}
3817 
3818 	xudc->clks = devm_kcalloc(&pdev->dev, xudc->soc->num_clks, sizeof(*xudc->clks),
3819 				  GFP_KERNEL);
3820 	if (!xudc->clks)
3821 		return -ENOMEM;
3822 
3823 	for (i = 0; i < xudc->soc->num_clks; i++)
3824 		xudc->clks[i].id = xudc->soc->clock_names[i];
3825 
3826 	err = devm_clk_bulk_get(&pdev->dev, xudc->soc->num_clks, xudc->clks);
3827 	if (err) {
3828 		dev_err_probe(xudc->dev, err, "failed to request clocks\n");
3829 		return err;
3830 	}
3831 
3832 	xudc->supplies = devm_kcalloc(&pdev->dev, xudc->soc->num_supplies,
3833 				      sizeof(*xudc->supplies), GFP_KERNEL);
3834 	if (!xudc->supplies)
3835 		return -ENOMEM;
3836 
3837 	for (i = 0; i < xudc->soc->num_supplies; i++)
3838 		xudc->supplies[i].supply = xudc->soc->supply_names[i];
3839 
3840 	err = devm_regulator_bulk_get(&pdev->dev, xudc->soc->num_supplies,
3841 				      xudc->supplies);
3842 	if (err) {
3843 		dev_err_probe(xudc->dev, err, "failed to request regulators\n");
3844 		return err;
3845 	}
3846 
3847 	xudc->padctl = tegra_xusb_padctl_get(&pdev->dev);
3848 	if (IS_ERR(xudc->padctl))
3849 		return PTR_ERR(xudc->padctl);
3850 
3851 	err = regulator_bulk_enable(xudc->soc->num_supplies, xudc->supplies);
3852 	if (err) {
3853 		dev_err(xudc->dev, "failed to enable regulators: %d\n", err);
3854 		goto put_padctl;
3855 	}
3856 
3857 	err = tegra_xudc_phy_get(xudc);
3858 	if (err)
3859 		goto disable_regulator;
3860 
3861 	err = tegra_xudc_powerdomain_init(xudc);
3862 	if (err)
3863 		goto put_powerdomains;
3864 
3865 	err = tegra_xudc_phy_init(xudc);
3866 	if (err)
3867 		goto put_powerdomains;
3868 
3869 	err = tegra_xudc_alloc_event_ring(xudc);
3870 	if (err)
3871 		goto disable_phy;
3872 
3873 	err = tegra_xudc_alloc_eps(xudc);
3874 	if (err)
3875 		goto free_event_ring;
3876 
3877 	spin_lock_init(&xudc->lock);
3878 
3879 	init_completion(&xudc->disconnect_complete);
3880 
3881 	INIT_WORK(&xudc->usb_role_sw_work, tegra_xudc_usb_role_sw_work);
3882 
3883 	INIT_DELAYED_WORK(&xudc->plc_reset_work, tegra_xudc_plc_reset_work);
3884 
3885 	INIT_DELAYED_WORK(&xudc->port_reset_war_work,
3886 				tegra_xudc_port_reset_war_work);
3887 
3888 	pm_runtime_enable(&pdev->dev);
3889 
3890 	xudc->gadget.ops = &tegra_xudc_gadget_ops;
3891 	xudc->gadget.ep0 = &xudc->ep[0].usb_ep;
3892 	xudc->gadget.name = "tegra-xudc";
3893 	xudc->gadget.max_speed = USB_SPEED_SUPER;
3894 
3895 	err = usb_add_gadget_udc(&pdev->dev, &xudc->gadget);
3896 	if (err) {
3897 		dev_err(&pdev->dev, "failed to add USB gadget: %d\n", err);
3898 		goto free_eps;
3899 	}
3900 
3901 	for (i = 0; i < xudc->soc->num_phys; i++) {
3902 		if (!xudc->usbphy[i])
3903 			continue;
3904 
3905 		usb_register_notifier(xudc->usbphy[i], &xudc->vbus_nb);
3906 		tegra_xudc_update_data_role(xudc, xudc->usbphy[i]);
3907 	}
3908 
3909 	return 0;
3910 
3911 free_eps:
3912 	pm_runtime_disable(&pdev->dev);
3913 	tegra_xudc_free_eps(xudc);
3914 free_event_ring:
3915 	tegra_xudc_free_event_ring(xudc);
3916 disable_phy:
3917 	tegra_xudc_phy_exit(xudc);
3918 put_powerdomains:
3919 	tegra_xudc_powerdomain_remove(xudc);
3920 disable_regulator:
3921 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3922 put_padctl:
3923 	tegra_xusb_padctl_put(xudc->padctl);
3924 
3925 	return err;
3926 }
3927 
tegra_xudc_remove(struct platform_device * pdev)3928 static void tegra_xudc_remove(struct platform_device *pdev)
3929 {
3930 	struct tegra_xudc *xudc = platform_get_drvdata(pdev);
3931 	unsigned int i;
3932 
3933 	pm_runtime_get_sync(xudc->dev);
3934 
3935 	cancel_delayed_work_sync(&xudc->plc_reset_work);
3936 	cancel_work_sync(&xudc->usb_role_sw_work);
3937 
3938 	usb_del_gadget_udc(&xudc->gadget);
3939 
3940 	tegra_xudc_free_eps(xudc);
3941 	tegra_xudc_free_event_ring(xudc);
3942 
3943 	tegra_xudc_powerdomain_remove(xudc);
3944 
3945 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3946 
3947 	for (i = 0; i < xudc->soc->num_phys; i++) {
3948 		phy_power_off(xudc->utmi_phy[i]);
3949 		phy_power_off(xudc->usb3_phy[i]);
3950 	}
3951 
3952 	tegra_xudc_phy_exit(xudc);
3953 
3954 	pm_runtime_disable(xudc->dev);
3955 	pm_runtime_put(xudc->dev);
3956 
3957 	tegra_xusb_padctl_put(xudc->padctl);
3958 }
3959 
tegra_xudc_powergate(struct tegra_xudc * xudc)3960 static int __maybe_unused tegra_xudc_powergate(struct tegra_xudc *xudc)
3961 {
3962 	unsigned long flags;
3963 
3964 	dev_dbg(xudc->dev, "entering ELPG\n");
3965 
3966 	spin_lock_irqsave(&xudc->lock, flags);
3967 
3968 	xudc->powergated = true;
3969 	xudc->saved_regs.ctrl = xudc_readl(xudc, CTRL);
3970 	xudc->saved_regs.portpm = xudc_readl(xudc, PORTPM);
3971 	xudc_writel(xudc, 0, CTRL);
3972 
3973 	spin_unlock_irqrestore(&xudc->lock, flags);
3974 
3975 	clk_bulk_disable_unprepare(xudc->soc->num_clks, xudc->clks);
3976 
3977 	regulator_bulk_disable(xudc->soc->num_supplies, xudc->supplies);
3978 
3979 	dev_dbg(xudc->dev, "entering ELPG done\n");
3980 	return 0;
3981 }
3982 
tegra_xudc_unpowergate(struct tegra_xudc * xudc)3983 static int __maybe_unused tegra_xudc_unpowergate(struct tegra_xudc *xudc)
3984 {
3985 	unsigned long flags;
3986 	int err;
3987 
3988 	dev_dbg(xudc->dev, "exiting ELPG\n");
3989 
3990 	err = regulator_bulk_enable(xudc->soc->num_supplies,
3991 			xudc->supplies);
3992 	if (err < 0)
3993 		return err;
3994 
3995 	err = clk_bulk_prepare_enable(xudc->soc->num_clks, xudc->clks);
3996 	if (err < 0)
3997 		return err;
3998 
3999 	tegra_xudc_fpci_ipfs_init(xudc);
4000 
4001 	tegra_xudc_device_params_init(xudc);
4002 
4003 	tegra_xudc_init_event_ring(xudc);
4004 
4005 	tegra_xudc_init_eps(xudc);
4006 
4007 	xudc_writel(xudc, xudc->saved_regs.portpm, PORTPM);
4008 	xudc_writel(xudc, xudc->saved_regs.ctrl, CTRL);
4009 
4010 	spin_lock_irqsave(&xudc->lock, flags);
4011 	xudc->powergated = false;
4012 	spin_unlock_irqrestore(&xudc->lock, flags);
4013 
4014 	dev_dbg(xudc->dev, "exiting ELPG done\n");
4015 	return 0;
4016 }
4017 
tegra_xudc_suspend(struct device * dev)4018 static int __maybe_unused tegra_xudc_suspend(struct device *dev)
4019 {
4020 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4021 	unsigned long flags;
4022 
4023 	spin_lock_irqsave(&xudc->lock, flags);
4024 	xudc->suspended = true;
4025 	spin_unlock_irqrestore(&xudc->lock, flags);
4026 
4027 	flush_work(&xudc->usb_role_sw_work);
4028 
4029 	if (!pm_runtime_status_suspended(dev)) {
4030 		/* Forcibly disconnect before powergating. */
4031 		tegra_xudc_device_mode_off(xudc);
4032 		tegra_xudc_powergate(xudc);
4033 	}
4034 
4035 	pm_runtime_disable(dev);
4036 
4037 	return 0;
4038 }
4039 
tegra_xudc_resume(struct device * dev)4040 static int __maybe_unused tegra_xudc_resume(struct device *dev)
4041 {
4042 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4043 	unsigned long flags;
4044 	int err;
4045 
4046 	err = tegra_xudc_unpowergate(xudc);
4047 	if (err < 0)
4048 		return err;
4049 
4050 	spin_lock_irqsave(&xudc->lock, flags);
4051 	xudc->suspended = false;
4052 	if (xudc->device_mode != xudc->current_device_mode)
4053 		schedule_work(&xudc->usb_role_sw_work);
4054 	spin_unlock_irqrestore(&xudc->lock, flags);
4055 
4056 	pm_runtime_enable(dev);
4057 
4058 	return 0;
4059 }
4060 
tegra_xudc_runtime_suspend(struct device * dev)4061 static int __maybe_unused tegra_xudc_runtime_suspend(struct device *dev)
4062 {
4063 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4064 
4065 	return tegra_xudc_powergate(xudc);
4066 }
4067 
tegra_xudc_runtime_resume(struct device * dev)4068 static int __maybe_unused tegra_xudc_runtime_resume(struct device *dev)
4069 {
4070 	struct tegra_xudc *xudc = dev_get_drvdata(dev);
4071 
4072 	return tegra_xudc_unpowergate(xudc);
4073 }
4074 
4075 static const struct dev_pm_ops tegra_xudc_pm_ops = {
4076 	SET_SYSTEM_SLEEP_PM_OPS(tegra_xudc_suspend, tegra_xudc_resume)
4077 	SET_RUNTIME_PM_OPS(tegra_xudc_runtime_suspend,
4078 			   tegra_xudc_runtime_resume, NULL)
4079 };
4080 
4081 static struct platform_driver tegra_xudc_driver = {
4082 	.probe = tegra_xudc_probe,
4083 	.remove = tegra_xudc_remove,
4084 	.driver = {
4085 		.name = "tegra-xudc",
4086 		.pm = &tegra_xudc_pm_ops,
4087 		.of_match_table = tegra_xudc_of_match,
4088 	},
4089 };
4090 module_platform_driver(tegra_xudc_driver);
4091 
4092 MODULE_DESCRIPTION("NVIDIA Tegra XUSB Device Controller");
4093 MODULE_AUTHOR("Andrew Bresticker <abrestic@chromium.org>");
4094 MODULE_AUTHOR("Hui Fu <hfu@nvidia.com>");
4095 MODULE_AUTHOR("Nagarjuna Kristam <nkristam@nvidia.com>");
4096 MODULE_LICENSE("GPL v2");
4097