1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/unwind_deferred.h>
72 #include <linux/uaccess.h>
73 #include <linux/pidfs.h>
74
75 #include <uapi/linux/wait.h>
76
77 #include <asm/unistd.h>
78 #include <asm/mmu_context.h>
79
80 #include "exit.h"
81
82 /*
83 * The default value should be high enough to not crash a system that randomly
84 * crashes its kernel from time to time, but low enough to at least not permit
85 * overflowing 32-bit refcounts or the ldsem writer count.
86 */
87 static unsigned int oops_limit = 10000;
88
89 #ifdef CONFIG_SYSCTL
90 static const struct ctl_table kern_exit_table[] = {
91 {
92 .procname = "oops_limit",
93 .data = &oops_limit,
94 .maxlen = sizeof(oops_limit),
95 .mode = 0644,
96 .proc_handler = proc_douintvec,
97 },
98 };
99
kernel_exit_sysctls_init(void)100 static __init int kernel_exit_sysctls_init(void)
101 {
102 register_sysctl_init("kernel", kern_exit_table);
103 return 0;
104 }
105 late_initcall(kernel_exit_sysctls_init);
106 #endif
107
108 static atomic_t oops_count = ATOMIC_INIT(0);
109
110 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)111 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112 char *page)
113 {
114 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115 }
116
117 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
kernel_exit_sysfs_init(void)119 static __init int kernel_exit_sysfs_init(void)
120 {
121 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122 return 0;
123 }
124 late_initcall(kernel_exit_sysfs_init);
125 #endif
126
127 /*
128 * For things release_task() would like to do *after* tasklist_lock is released.
129 */
130 struct release_task_post {
131 struct pid *pids[PIDTYPE_MAX];
132 };
133
__unhash_process(struct release_task_post * post,struct task_struct * p,bool group_dead)134 static void __unhash_process(struct release_task_post *post, struct task_struct *p,
135 bool group_dead)
136 {
137 struct pid *pid = task_pid(p);
138
139 nr_threads--;
140
141 detach_pid(post->pids, p, PIDTYPE_PID);
142 wake_up_all(&pid->wait_pidfd);
143
144 if (group_dead) {
145 detach_pid(post->pids, p, PIDTYPE_TGID);
146 detach_pid(post->pids, p, PIDTYPE_PGID);
147 detach_pid(post->pids, p, PIDTYPE_SID);
148
149 list_del_rcu(&p->tasks);
150 list_del_init(&p->sibling);
151 __this_cpu_dec(process_counts);
152 }
153 list_del_rcu(&p->thread_node);
154 }
155
156 /*
157 * This function expects the tasklist_lock write-locked.
158 */
__exit_signal(struct release_task_post * post,struct task_struct * tsk)159 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
160 {
161 struct signal_struct *sig = tsk->signal;
162 bool group_dead = thread_group_leader(tsk);
163 struct sighand_struct *sighand;
164 struct tty_struct *tty;
165 u64 utime, stime;
166
167 sighand = rcu_dereference_check(tsk->sighand,
168 lockdep_tasklist_lock_is_held());
169 spin_lock(&sighand->siglock);
170
171 #ifdef CONFIG_POSIX_TIMERS
172 posix_cpu_timers_exit(tsk);
173 if (group_dead)
174 posix_cpu_timers_exit_group(tsk);
175 #endif
176
177 if (group_dead) {
178 tty = sig->tty;
179 sig->tty = NULL;
180 } else {
181 /*
182 * If there is any task waiting for the group exit
183 * then notify it:
184 */
185 if (sig->notify_count > 0 && !--sig->notify_count)
186 wake_up_process(sig->group_exec_task);
187
188 if (tsk == sig->curr_target)
189 sig->curr_target = next_thread(tsk);
190 }
191
192 /*
193 * Accumulate here the counters for all threads as they die. We could
194 * skip the group leader because it is the last user of signal_struct,
195 * but we want to avoid the race with thread_group_cputime() which can
196 * see the empty ->thread_head list.
197 */
198 task_cputime(tsk, &utime, &stime);
199 write_seqlock(&sig->stats_lock);
200 sig->utime += utime;
201 sig->stime += stime;
202 sig->gtime += task_gtime(tsk);
203 sig->min_flt += tsk->min_flt;
204 sig->maj_flt += tsk->maj_flt;
205 sig->nvcsw += tsk->nvcsw;
206 sig->nivcsw += tsk->nivcsw;
207 sig->inblock += task_io_get_inblock(tsk);
208 sig->oublock += task_io_get_oublock(tsk);
209 task_io_accounting_add(&sig->ioac, &tsk->ioac);
210 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
211 sig->nr_threads--;
212 __unhash_process(post, tsk, group_dead);
213 write_sequnlock(&sig->stats_lock);
214
215 tsk->sighand = NULL;
216 spin_unlock(&sighand->siglock);
217
218 __cleanup_sighand(sighand);
219 if (group_dead)
220 tty_kref_put(tty);
221 }
222
delayed_put_task_struct(struct rcu_head * rhp)223 static void delayed_put_task_struct(struct rcu_head *rhp)
224 {
225 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226
227 kprobe_flush_task(tsk);
228 rethook_flush_task(tsk);
229 perf_event_delayed_put(tsk);
230 trace_sched_process_free(tsk);
231 put_task_struct(tsk);
232 }
233
put_task_struct_rcu_user(struct task_struct * task)234 void put_task_struct_rcu_user(struct task_struct *task)
235 {
236 if (refcount_dec_and_test(&task->rcu_users))
237 call_rcu(&task->rcu, delayed_put_task_struct);
238 }
239
release_thread(struct task_struct * dead_task)240 void __weak release_thread(struct task_struct *dead_task)
241 {
242 }
243
release_task(struct task_struct * p)244 void release_task(struct task_struct *p)
245 {
246 struct release_task_post post;
247 struct task_struct *leader;
248 struct pid *thread_pid;
249 int zap_leader;
250 repeat:
251 memset(&post, 0, sizeof(post));
252
253 /* don't need to get the RCU readlock here - the process is dead and
254 * can't be modifying its own credentials. But shut RCU-lockdep up */
255 rcu_read_lock();
256 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
257 rcu_read_unlock();
258
259 pidfs_exit(p);
260 cgroup_release(p);
261
262 /* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
263 thread_pid = task_pid(p);
264
265 write_lock_irq(&tasklist_lock);
266 ptrace_release_task(p);
267 __exit_signal(&post, p);
268
269 /*
270 * If we are the last non-leader member of the thread
271 * group, and the leader is zombie, then notify the
272 * group leader's parent process. (if it wants notification.)
273 */
274 zap_leader = 0;
275 leader = p->group_leader;
276 if (leader != p && thread_group_empty(leader)
277 && leader->exit_state == EXIT_ZOMBIE) {
278 /* for pidfs_exit() and do_notify_parent() */
279 if (leader->signal->flags & SIGNAL_GROUP_EXIT)
280 leader->exit_code = leader->signal->group_exit_code;
281 /*
282 * If we were the last child thread and the leader has
283 * exited already, and the leader's parent ignores SIGCHLD,
284 * then we are the one who should release the leader.
285 */
286 zap_leader = do_notify_parent(leader, leader->exit_signal);
287 if (zap_leader)
288 leader->exit_state = EXIT_DEAD;
289 }
290
291 write_unlock_irq(&tasklist_lock);
292 /* @thread_pid can't go away until free_pids() below */
293 proc_flush_pid(thread_pid);
294 add_device_randomness(&p->se.sum_exec_runtime,
295 sizeof(p->se.sum_exec_runtime));
296 free_pids(post.pids);
297 release_thread(p);
298 /*
299 * This task was already removed from the process/thread/pid lists
300 * and lock_task_sighand(p) can't succeed. Nobody else can touch
301 * ->pending or, if group dead, signal->shared_pending. We can call
302 * flush_sigqueue() lockless.
303 */
304 flush_sigqueue(&p->pending);
305 if (thread_group_leader(p))
306 flush_sigqueue(&p->signal->shared_pending);
307
308 put_task_struct_rcu_user(p);
309
310 p = leader;
311 if (unlikely(zap_leader))
312 goto repeat;
313 }
314
rcuwait_wake_up(struct rcuwait * w)315 int rcuwait_wake_up(struct rcuwait *w)
316 {
317 int ret = 0;
318 struct task_struct *task;
319
320 rcu_read_lock();
321
322 /*
323 * Order condition vs @task, such that everything prior to the load
324 * of @task is visible. This is the condition as to why the user called
325 * rcuwait_wake() in the first place. Pairs with set_current_state()
326 * barrier (A) in rcuwait_wait_event().
327 *
328 * WAIT WAKE
329 * [S] tsk = current [S] cond = true
330 * MB (A) MB (B)
331 * [L] cond [L] tsk
332 */
333 smp_mb(); /* (B) */
334
335 task = rcu_dereference(w->task);
336 if (task)
337 ret = wake_up_process(task);
338 rcu_read_unlock();
339
340 return ret;
341 }
342 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
343
344 /*
345 * Determine if a process group is "orphaned", according to the POSIX
346 * definition in 2.2.2.52. Orphaned process groups are not to be affected
347 * by terminal-generated stop signals. Newly orphaned process groups are
348 * to receive a SIGHUP and a SIGCONT.
349 *
350 * "I ask you, have you ever known what it is to be an orphan?"
351 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)352 static int will_become_orphaned_pgrp(struct pid *pgrp,
353 struct task_struct *ignored_task)
354 {
355 struct task_struct *p;
356
357 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
358 if ((p == ignored_task) ||
359 (p->exit_state && thread_group_empty(p)) ||
360 is_global_init(p->real_parent))
361 continue;
362
363 if (task_pgrp(p->real_parent) != pgrp &&
364 task_session(p->real_parent) == task_session(p))
365 return 0;
366 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367
368 return 1;
369 }
370
is_current_pgrp_orphaned(void)371 int is_current_pgrp_orphaned(void)
372 {
373 int retval;
374
375 read_lock(&tasklist_lock);
376 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
377 read_unlock(&tasklist_lock);
378
379 return retval;
380 }
381
has_stopped_jobs(struct pid * pgrp)382 static bool has_stopped_jobs(struct pid *pgrp)
383 {
384 struct task_struct *p;
385
386 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
387 if (p->signal->flags & SIGNAL_STOP_STOPPED)
388 return true;
389 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
390
391 return false;
392 }
393
394 /*
395 * Check to see if any process groups have become orphaned as
396 * a result of our exiting, and if they have any stopped jobs,
397 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
398 */
399 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)400 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
401 {
402 struct pid *pgrp = task_pgrp(tsk);
403 struct task_struct *ignored_task = tsk;
404
405 if (!parent)
406 /* exit: our father is in a different pgrp than
407 * we are and we were the only connection outside.
408 */
409 parent = tsk->real_parent;
410 else
411 /* reparent: our child is in a different pgrp than
412 * we are, and it was the only connection outside.
413 */
414 ignored_task = NULL;
415
416 if (task_pgrp(parent) != pgrp &&
417 task_session(parent) == task_session(tsk) &&
418 will_become_orphaned_pgrp(pgrp, ignored_task) &&
419 has_stopped_jobs(pgrp)) {
420 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
421 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
422 }
423 }
424
coredump_task_exit(struct task_struct * tsk,struct core_state * core_state)425 static void coredump_task_exit(struct task_struct *tsk,
426 struct core_state *core_state)
427 {
428 struct core_thread self;
429
430 self.task = tsk;
431 if (self.task->flags & PF_SIGNALED)
432 self.next = xchg(&core_state->dumper.next, &self);
433 else
434 self.task = NULL;
435 /*
436 * Implies mb(), the result of xchg() must be visible
437 * to core_state->dumper.
438 */
439 if (atomic_dec_and_test(&core_state->nr_threads))
440 complete(&core_state->startup);
441
442 for (;;) {
443 set_current_state(TASK_IDLE|TASK_FREEZABLE);
444 if (!self.task) /* see coredump_finish() */
445 break;
446 schedule();
447 }
448 __set_current_state(TASK_RUNNING);
449 }
450
451 #ifdef CONFIG_MEMCG
452 /* drops tasklist_lock if succeeds */
__try_to_set_owner(struct task_struct * tsk,struct mm_struct * mm)453 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
454 {
455 bool ret = false;
456
457 task_lock(tsk);
458 if (likely(tsk->mm == mm)) {
459 /* tsk can't pass exit_mm/exec_mmap and exit */
460 read_unlock(&tasklist_lock);
461 WRITE_ONCE(mm->owner, tsk);
462 lru_gen_migrate_mm(mm);
463 ret = true;
464 }
465 task_unlock(tsk);
466 return ret;
467 }
468
try_to_set_owner(struct task_struct * g,struct mm_struct * mm)469 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
470 {
471 struct task_struct *t;
472
473 for_each_thread(g, t) {
474 struct mm_struct *t_mm = READ_ONCE(t->mm);
475 if (t_mm == mm) {
476 if (__try_to_set_owner(t, mm))
477 return true;
478 } else if (t_mm)
479 break;
480 }
481
482 return false;
483 }
484
485 /*
486 * A task is exiting. If it owned this mm, find a new owner for the mm.
487 */
mm_update_next_owner(struct mm_struct * mm)488 void mm_update_next_owner(struct mm_struct *mm)
489 {
490 struct task_struct *g, *p = current;
491
492 /*
493 * If the exiting or execing task is not the owner, it's
494 * someone else's problem.
495 */
496 if (mm->owner != p)
497 return;
498 /*
499 * The current owner is exiting/execing and there are no other
500 * candidates. Do not leave the mm pointing to a possibly
501 * freed task structure.
502 */
503 if (atomic_read(&mm->mm_users) <= 1) {
504 WRITE_ONCE(mm->owner, NULL);
505 return;
506 }
507
508 read_lock(&tasklist_lock);
509 /*
510 * Search in the children
511 */
512 list_for_each_entry(g, &p->children, sibling) {
513 if (try_to_set_owner(g, mm))
514 goto ret;
515 }
516 /*
517 * Search in the siblings
518 */
519 list_for_each_entry(g, &p->real_parent->children, sibling) {
520 if (try_to_set_owner(g, mm))
521 goto ret;
522 }
523 /*
524 * Search through everything else, we should not get here often.
525 */
526 for_each_process(g) {
527 if (atomic_read(&mm->mm_users) <= 1)
528 break;
529 if (g->flags & PF_KTHREAD)
530 continue;
531 if (try_to_set_owner(g, mm))
532 goto ret;
533 }
534 read_unlock(&tasklist_lock);
535 /*
536 * We found no owner yet mm_users > 1: this implies that we are
537 * most likely racing with swapoff (try_to_unuse()) or /proc or
538 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
539 */
540 WRITE_ONCE(mm->owner, NULL);
541 ret:
542 return;
543
544 }
545 #endif /* CONFIG_MEMCG */
546
547 /*
548 * Turn us into a lazy TLB process if we
549 * aren't already..
550 */
exit_mm(void)551 static void exit_mm(void)
552 {
553 struct mm_struct *mm = current->mm;
554
555 exit_mm_release(current, mm);
556 if (!mm)
557 return;
558 mmap_read_lock(mm);
559 mmgrab_lazy_tlb(mm);
560 BUG_ON(mm != current->active_mm);
561 /* more a memory barrier than a real lock */
562 task_lock(current);
563 /*
564 * When a thread stops operating on an address space, the loop
565 * in membarrier_private_expedited() may not observe that
566 * tsk->mm, and the loop in membarrier_global_expedited() may
567 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
568 * rq->membarrier_state, so those would not issue an IPI.
569 * Membarrier requires a memory barrier after accessing
570 * user-space memory, before clearing tsk->mm or the
571 * rq->membarrier_state.
572 */
573 smp_mb__after_spinlock();
574 local_irq_disable();
575 current->mm = NULL;
576 membarrier_update_current_mm(NULL);
577 enter_lazy_tlb(mm, current);
578 local_irq_enable();
579 task_unlock(current);
580 mmap_read_unlock(mm);
581 mm_update_next_owner(mm);
582 mmput(mm);
583 if (test_thread_flag(TIF_MEMDIE))
584 exit_oom_victim();
585 }
586
find_alive_thread(struct task_struct * p)587 static struct task_struct *find_alive_thread(struct task_struct *p)
588 {
589 struct task_struct *t;
590
591 for_each_thread(p, t) {
592 if (!(t->flags & PF_EXITING))
593 return t;
594 }
595 return NULL;
596 }
597
find_child_reaper(struct task_struct * father,struct list_head * dead)598 static struct task_struct *find_child_reaper(struct task_struct *father,
599 struct list_head *dead)
600 __releases(&tasklist_lock)
601 __acquires(&tasklist_lock)
602 {
603 struct pid_namespace *pid_ns = task_active_pid_ns(father);
604 struct task_struct *reaper = pid_ns->child_reaper;
605 struct task_struct *p, *n;
606
607 if (likely(reaper != father))
608 return reaper;
609
610 reaper = find_alive_thread(father);
611 if (reaper) {
612 pid_ns->child_reaper = reaper;
613 return reaper;
614 }
615
616 write_unlock_irq(&tasklist_lock);
617
618 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
619 list_del_init(&p->ptrace_entry);
620 release_task(p);
621 }
622
623 zap_pid_ns_processes(pid_ns);
624 write_lock_irq(&tasklist_lock);
625
626 return father;
627 }
628
629 /*
630 * When we die, we re-parent all our children, and try to:
631 * 1. give them to another thread in our thread group, if such a member exists
632 * 2. give it to the first ancestor process which prctl'd itself as a
633 * child_subreaper for its children (like a service manager)
634 * 3. give it to the init process (PID 1) in our pid namespace
635 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)636 static struct task_struct *find_new_reaper(struct task_struct *father,
637 struct task_struct *child_reaper)
638 {
639 struct task_struct *thread, *reaper;
640
641 thread = find_alive_thread(father);
642 if (thread)
643 return thread;
644
645 if (father->signal->has_child_subreaper) {
646 unsigned int ns_level = task_pid(father)->level;
647 /*
648 * Find the first ->is_child_subreaper ancestor in our pid_ns.
649 * We can't check reaper != child_reaper to ensure we do not
650 * cross the namespaces, the exiting parent could be injected
651 * by setns() + fork().
652 * We check pid->level, this is slightly more efficient than
653 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
654 */
655 for (reaper = father->real_parent;
656 task_pid(reaper)->level == ns_level;
657 reaper = reaper->real_parent) {
658 if (reaper == &init_task)
659 break;
660 if (!reaper->signal->is_child_subreaper)
661 continue;
662 thread = find_alive_thread(reaper);
663 if (thread)
664 return thread;
665 }
666 }
667
668 return child_reaper;
669 }
670
671 /*
672 * Any that need to be release_task'd are put on the @dead list.
673 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)674 static void reparent_leader(struct task_struct *father, struct task_struct *p,
675 struct list_head *dead)
676 {
677 if (unlikely(p->exit_state == EXIT_DEAD))
678 return;
679
680 /* We don't want people slaying init. */
681 p->exit_signal = SIGCHLD;
682
683 /* If it has exited notify the new parent about this child's death. */
684 if (!p->ptrace &&
685 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
686 if (do_notify_parent(p, p->exit_signal)) {
687 p->exit_state = EXIT_DEAD;
688 list_add(&p->ptrace_entry, dead);
689 }
690 }
691
692 kill_orphaned_pgrp(p, father);
693 }
694
695 /*
696 * Make init inherit all the child processes
697 */
forget_original_parent(struct task_struct * father,struct list_head * dead)698 static void forget_original_parent(struct task_struct *father,
699 struct list_head *dead)
700 {
701 struct task_struct *p, *t, *reaper;
702
703 if (unlikely(!list_empty(&father->ptraced)))
704 exit_ptrace(father, dead);
705
706 /* Can drop and reacquire tasklist_lock */
707 reaper = find_child_reaper(father, dead);
708 if (list_empty(&father->children))
709 return;
710
711 reaper = find_new_reaper(father, reaper);
712 list_for_each_entry(p, &father->children, sibling) {
713 for_each_thread(p, t) {
714 RCU_INIT_POINTER(t->real_parent, reaper);
715 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
716 if (likely(!t->ptrace))
717 t->parent = t->real_parent;
718 if (t->pdeath_signal)
719 group_send_sig_info(t->pdeath_signal,
720 SEND_SIG_NOINFO, t,
721 PIDTYPE_TGID);
722 }
723 /*
724 * If this is a threaded reparent there is no need to
725 * notify anyone anything has happened.
726 */
727 if (!same_thread_group(reaper, father))
728 reparent_leader(father, p, dead);
729 }
730 list_splice_tail_init(&father->children, &reaper->children);
731 }
732
733 /*
734 * Send signals to all our closest relatives so that they know
735 * to properly mourn us..
736 */
exit_notify(struct task_struct * tsk,int group_dead)737 static void exit_notify(struct task_struct *tsk, int group_dead)
738 {
739 bool autoreap;
740 struct task_struct *p, *n;
741 LIST_HEAD(dead);
742
743 write_lock_irq(&tasklist_lock);
744 forget_original_parent(tsk, &dead);
745
746 if (group_dead)
747 kill_orphaned_pgrp(tsk->group_leader, NULL);
748
749 tsk->exit_state = EXIT_ZOMBIE;
750
751 if (unlikely(tsk->ptrace)) {
752 int sig = thread_group_leader(tsk) &&
753 thread_group_empty(tsk) &&
754 !ptrace_reparented(tsk) ?
755 tsk->exit_signal : SIGCHLD;
756 autoreap = do_notify_parent(tsk, sig);
757 } else if (thread_group_leader(tsk)) {
758 autoreap = thread_group_empty(tsk) &&
759 do_notify_parent(tsk, tsk->exit_signal);
760 } else {
761 autoreap = true;
762 /* untraced sub-thread */
763 do_notify_pidfd(tsk);
764 }
765
766 if (autoreap) {
767 tsk->exit_state = EXIT_DEAD;
768 list_add(&tsk->ptrace_entry, &dead);
769 }
770
771 /* mt-exec, de_thread() is waiting for group leader */
772 if (unlikely(tsk->signal->notify_count < 0))
773 wake_up_process(tsk->signal->group_exec_task);
774 write_unlock_irq(&tasklist_lock);
775
776 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
777 list_del_init(&p->ptrace_entry);
778 release_task(p);
779 }
780 }
781
782 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)783 unsigned long stack_not_used(struct task_struct *p)
784 {
785 unsigned long *n = end_of_stack(p);
786
787 do { /* Skip over canary */
788 # ifdef CONFIG_STACK_GROWSUP
789 n--;
790 # else
791 n++;
792 # endif
793 } while (!*n);
794
795 # ifdef CONFIG_STACK_GROWSUP
796 return (unsigned long)end_of_stack(p) - (unsigned long)n;
797 # else
798 return (unsigned long)n - (unsigned long)end_of_stack(p);
799 # endif
800 }
801
802 /* Count the maximum pages reached in kernel stacks */
kstack_histogram(unsigned long used_stack)803 static inline void kstack_histogram(unsigned long used_stack)
804 {
805 #ifdef CONFIG_VM_EVENT_COUNTERS
806 if (used_stack <= 1024)
807 count_vm_event(KSTACK_1K);
808 #if THREAD_SIZE > 1024
809 else if (used_stack <= 2048)
810 count_vm_event(KSTACK_2K);
811 #endif
812 #if THREAD_SIZE > 2048
813 else if (used_stack <= 4096)
814 count_vm_event(KSTACK_4K);
815 #endif
816 #if THREAD_SIZE > 4096
817 else if (used_stack <= 8192)
818 count_vm_event(KSTACK_8K);
819 #endif
820 #if THREAD_SIZE > 8192
821 else if (used_stack <= 16384)
822 count_vm_event(KSTACK_16K);
823 #endif
824 #if THREAD_SIZE > 16384
825 else if (used_stack <= 32768)
826 count_vm_event(KSTACK_32K);
827 #endif
828 #if THREAD_SIZE > 32768
829 else if (used_stack <= 65536)
830 count_vm_event(KSTACK_64K);
831 #endif
832 #if THREAD_SIZE > 65536
833 else
834 count_vm_event(KSTACK_REST);
835 #endif
836 #endif /* CONFIG_VM_EVENT_COUNTERS */
837 }
838
check_stack_usage(void)839 static void check_stack_usage(void)
840 {
841 static DEFINE_SPINLOCK(low_water_lock);
842 static int lowest_to_date = THREAD_SIZE;
843 unsigned long free;
844
845 free = stack_not_used(current);
846 kstack_histogram(THREAD_SIZE - free);
847
848 if (free >= lowest_to_date)
849 return;
850
851 spin_lock(&low_water_lock);
852 if (free < lowest_to_date) {
853 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
854 current->comm, task_pid_nr(current), free);
855 lowest_to_date = free;
856 }
857 spin_unlock(&low_water_lock);
858 }
859 #else
check_stack_usage(void)860 static inline void check_stack_usage(void) {}
861 #endif
862
synchronize_group_exit(struct task_struct * tsk,long code)863 static void synchronize_group_exit(struct task_struct *tsk, long code)
864 {
865 struct sighand_struct *sighand = tsk->sighand;
866 struct signal_struct *signal = tsk->signal;
867 struct core_state *core_state;
868
869 spin_lock_irq(&sighand->siglock);
870 signal->quick_threads--;
871 if ((signal->quick_threads == 0) &&
872 !(signal->flags & SIGNAL_GROUP_EXIT)) {
873 signal->flags = SIGNAL_GROUP_EXIT;
874 signal->group_exit_code = code;
875 signal->group_stop_count = 0;
876 }
877 /*
878 * Serialize with any possible pending coredump.
879 * We must hold siglock around checking core_state
880 * and setting PF_POSTCOREDUMP. The core-inducing thread
881 * will increment ->nr_threads for each thread in the
882 * group without PF_POSTCOREDUMP set.
883 */
884 tsk->flags |= PF_POSTCOREDUMP;
885 core_state = signal->core_state;
886 spin_unlock_irq(&sighand->siglock);
887
888 if (unlikely(core_state))
889 coredump_task_exit(tsk, core_state);
890 }
891
do_exit(long code)892 void __noreturn do_exit(long code)
893 {
894 struct task_struct *tsk = current;
895 int group_dead;
896
897 WARN_ON(irqs_disabled());
898 WARN_ON(tsk->plug);
899
900 kcov_task_exit(tsk);
901 kmsan_task_exit(tsk);
902
903 synchronize_group_exit(tsk, code);
904 ptrace_event(PTRACE_EVENT_EXIT, code);
905 user_events_exit(tsk);
906
907 io_uring_files_cancel();
908 exit_signals(tsk); /* sets PF_EXITING */
909
910 seccomp_filter_release(tsk);
911
912 acct_update_integrals(tsk);
913 group_dead = atomic_dec_and_test(&tsk->signal->live);
914 if (group_dead) {
915 /*
916 * If the last thread of global init has exited, panic
917 * immediately to get a useable coredump.
918 */
919 if (unlikely(is_global_init(tsk)))
920 panic("Attempted to kill init! exitcode=0x%08x\n",
921 tsk->signal->group_exit_code ?: (int)code);
922
923 #ifdef CONFIG_POSIX_TIMERS
924 hrtimer_cancel(&tsk->signal->real_timer);
925 exit_itimers(tsk);
926 #endif
927 if (tsk->mm)
928 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
929 }
930 acct_collect(code, group_dead);
931 if (group_dead)
932 tty_audit_exit();
933 audit_free(tsk);
934
935 tsk->exit_code = code;
936 taskstats_exit(tsk, group_dead);
937 unwind_deferred_task_exit(tsk);
938 trace_sched_process_exit(tsk, group_dead);
939
940 /*
941 * Since sampling can touch ->mm, make sure to stop everything before we
942 * tear it down.
943 *
944 * Also flushes inherited counters to the parent - before the parent
945 * gets woken up by child-exit notifications.
946 */
947 perf_event_exit_task(tsk);
948
949 exit_mm();
950
951 if (group_dead)
952 acct_process();
953
954 exit_sem(tsk);
955 exit_shm(tsk);
956 exit_files(tsk);
957 exit_fs(tsk);
958 if (group_dead)
959 disassociate_ctty(1);
960 exit_task_namespaces(tsk);
961 exit_task_work(tsk);
962 exit_thread(tsk);
963
964 sched_autogroup_exit_task(tsk);
965 cgroup_exit(tsk);
966
967 /*
968 * FIXME: do that only when needed, using sched_exit tracepoint
969 */
970 flush_ptrace_hw_breakpoint(tsk);
971
972 exit_tasks_rcu_start();
973 exit_notify(tsk, group_dead);
974 proc_exit_connector(tsk);
975 mpol_put_task_policy(tsk);
976 #ifdef CONFIG_FUTEX
977 if (unlikely(current->pi_state_cache))
978 kfree(current->pi_state_cache);
979 #endif
980 /*
981 * Make sure we are holding no locks:
982 */
983 debug_check_no_locks_held();
984
985 if (tsk->io_context)
986 exit_io_context(tsk);
987
988 if (tsk->splice_pipe)
989 free_pipe_info(tsk->splice_pipe);
990
991 if (tsk->task_frag.page)
992 put_page(tsk->task_frag.page);
993
994 exit_task_stack_account(tsk);
995
996 check_stack_usage();
997 preempt_disable();
998 if (tsk->nr_dirtied)
999 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1000 exit_rcu();
1001 exit_tasks_rcu_finish();
1002
1003 lockdep_free_task(tsk);
1004 do_task_dead();
1005 }
1006
make_task_dead(int signr)1007 void __noreturn make_task_dead(int signr)
1008 {
1009 /*
1010 * Take the task off the cpu after something catastrophic has
1011 * happened.
1012 *
1013 * We can get here from a kernel oops, sometimes with preemption off.
1014 * Start by checking for critical errors.
1015 * Then fix up important state like USER_DS and preemption.
1016 * Then do everything else.
1017 */
1018 struct task_struct *tsk = current;
1019 unsigned int limit;
1020
1021 if (unlikely(in_interrupt()))
1022 panic("Aiee, killing interrupt handler!");
1023 if (unlikely(!tsk->pid))
1024 panic("Attempted to kill the idle task!");
1025
1026 if (unlikely(irqs_disabled())) {
1027 pr_info("note: %s[%d] exited with irqs disabled\n",
1028 current->comm, task_pid_nr(current));
1029 local_irq_enable();
1030 }
1031 if (unlikely(in_atomic())) {
1032 pr_info("note: %s[%d] exited with preempt_count %d\n",
1033 current->comm, task_pid_nr(current),
1034 preempt_count());
1035 preempt_count_set(PREEMPT_ENABLED);
1036 }
1037
1038 /*
1039 * Every time the system oopses, if the oops happens while a reference
1040 * to an object was held, the reference leaks.
1041 * If the oops doesn't also leak memory, repeated oopsing can cause
1042 * reference counters to wrap around (if they're not using refcount_t).
1043 * This means that repeated oopsing can make unexploitable-looking bugs
1044 * exploitable through repeated oopsing.
1045 * To make sure this can't happen, place an upper bound on how often the
1046 * kernel may oops without panic().
1047 */
1048 limit = READ_ONCE(oops_limit);
1049 if (atomic_inc_return(&oops_count) >= limit && limit)
1050 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1051
1052 /*
1053 * We're taking recursive faults here in make_task_dead. Safest is to just
1054 * leave this task alone and wait for reboot.
1055 */
1056 if (unlikely(tsk->flags & PF_EXITING)) {
1057 pr_alert("Fixing recursive fault but reboot is needed!\n");
1058 futex_exit_recursive(tsk);
1059 tsk->exit_state = EXIT_DEAD;
1060 refcount_inc(&tsk->rcu_users);
1061 do_task_dead();
1062 }
1063
1064 do_exit(signr);
1065 }
1066
SYSCALL_DEFINE1(exit,int,error_code)1067 SYSCALL_DEFINE1(exit, int, error_code)
1068 {
1069 do_exit((error_code&0xff)<<8);
1070 }
1071
1072 /*
1073 * Take down every thread in the group. This is called by fatal signals
1074 * as well as by sys_exit_group (below).
1075 */
1076 void __noreturn
do_group_exit(int exit_code)1077 do_group_exit(int exit_code)
1078 {
1079 struct signal_struct *sig = current->signal;
1080
1081 if (sig->flags & SIGNAL_GROUP_EXIT)
1082 exit_code = sig->group_exit_code;
1083 else if (sig->group_exec_task)
1084 exit_code = 0;
1085 else {
1086 struct sighand_struct *const sighand = current->sighand;
1087
1088 spin_lock_irq(&sighand->siglock);
1089 if (sig->flags & SIGNAL_GROUP_EXIT)
1090 /* Another thread got here before we took the lock. */
1091 exit_code = sig->group_exit_code;
1092 else if (sig->group_exec_task)
1093 exit_code = 0;
1094 else {
1095 sig->group_exit_code = exit_code;
1096 sig->flags = SIGNAL_GROUP_EXIT;
1097 zap_other_threads(current);
1098 }
1099 spin_unlock_irq(&sighand->siglock);
1100 }
1101
1102 do_exit(exit_code);
1103 /* NOTREACHED */
1104 }
1105
1106 /*
1107 * this kills every thread in the thread group. Note that any externally
1108 * wait4()-ing process will get the correct exit code - even if this
1109 * thread is not the thread group leader.
1110 */
SYSCALL_DEFINE1(exit_group,int,error_code)1111 SYSCALL_DEFINE1(exit_group, int, error_code)
1112 {
1113 do_group_exit((error_code & 0xff) << 8);
1114 /* NOTREACHED */
1115 return 0;
1116 }
1117
eligible_pid(struct wait_opts * wo,struct task_struct * p)1118 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1119 {
1120 return wo->wo_type == PIDTYPE_MAX ||
1121 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1122 }
1123
1124 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1125 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1126 {
1127 if (!eligible_pid(wo, p))
1128 return 0;
1129
1130 /*
1131 * Wait for all children (clone and not) if __WALL is set or
1132 * if it is traced by us.
1133 */
1134 if (ptrace || (wo->wo_flags & __WALL))
1135 return 1;
1136
1137 /*
1138 * Otherwise, wait for clone children *only* if __WCLONE is set;
1139 * otherwise, wait for non-clone children *only*.
1140 *
1141 * Note: a "clone" child here is one that reports to its parent
1142 * using a signal other than SIGCHLD, or a non-leader thread which
1143 * we can only see if it is traced by us.
1144 */
1145 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1146 return 0;
1147
1148 return 1;
1149 }
1150
1151 /*
1152 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1153 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1154 * the lock and this task is uninteresting. If we return nonzero, we have
1155 * released the lock and the system call should return.
1156 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1157 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1158 {
1159 int state, status;
1160 pid_t pid = task_pid_vnr(p);
1161 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1162 struct waitid_info *infop;
1163
1164 if (!likely(wo->wo_flags & WEXITED))
1165 return 0;
1166
1167 if (unlikely(wo->wo_flags & WNOWAIT)) {
1168 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1169 ? p->signal->group_exit_code : p->exit_code;
1170 get_task_struct(p);
1171 read_unlock(&tasklist_lock);
1172 sched_annotate_sleep();
1173 if (wo->wo_rusage)
1174 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1175 put_task_struct(p);
1176 goto out_info;
1177 }
1178 /*
1179 * Move the task's state to DEAD/TRACE, only one thread can do this.
1180 */
1181 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1182 EXIT_TRACE : EXIT_DEAD;
1183 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1184 return 0;
1185 /*
1186 * We own this thread, nobody else can reap it.
1187 */
1188 read_unlock(&tasklist_lock);
1189 sched_annotate_sleep();
1190
1191 /*
1192 * Check thread_group_leader() to exclude the traced sub-threads.
1193 */
1194 if (state == EXIT_DEAD && thread_group_leader(p)) {
1195 struct signal_struct *sig = p->signal;
1196 struct signal_struct *psig = current->signal;
1197 unsigned long maxrss;
1198 u64 tgutime, tgstime;
1199
1200 /*
1201 * The resource counters for the group leader are in its
1202 * own task_struct. Those for dead threads in the group
1203 * are in its signal_struct, as are those for the child
1204 * processes it has previously reaped. All these
1205 * accumulate in the parent's signal_struct c* fields.
1206 *
1207 * We don't bother to take a lock here to protect these
1208 * p->signal fields because the whole thread group is dead
1209 * and nobody can change them.
1210 *
1211 * psig->stats_lock also protects us from our sub-threads
1212 * which can reap other children at the same time.
1213 *
1214 * We use thread_group_cputime_adjusted() to get times for
1215 * the thread group, which consolidates times for all threads
1216 * in the group including the group leader.
1217 */
1218 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1219 write_seqlock_irq(&psig->stats_lock);
1220 psig->cutime += tgutime + sig->cutime;
1221 psig->cstime += tgstime + sig->cstime;
1222 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1223 psig->cmin_flt +=
1224 p->min_flt + sig->min_flt + sig->cmin_flt;
1225 psig->cmaj_flt +=
1226 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1227 psig->cnvcsw +=
1228 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1229 psig->cnivcsw +=
1230 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1231 psig->cinblock +=
1232 task_io_get_inblock(p) +
1233 sig->inblock + sig->cinblock;
1234 psig->coublock +=
1235 task_io_get_oublock(p) +
1236 sig->oublock + sig->coublock;
1237 maxrss = max(sig->maxrss, sig->cmaxrss);
1238 if (psig->cmaxrss < maxrss)
1239 psig->cmaxrss = maxrss;
1240 task_io_accounting_add(&psig->ioac, &p->ioac);
1241 task_io_accounting_add(&psig->ioac, &sig->ioac);
1242 write_sequnlock_irq(&psig->stats_lock);
1243 }
1244
1245 if (wo->wo_rusage)
1246 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1247 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1248 ? p->signal->group_exit_code : p->exit_code;
1249 wo->wo_stat = status;
1250
1251 if (state == EXIT_TRACE) {
1252 write_lock_irq(&tasklist_lock);
1253 /* We dropped tasklist, ptracer could die and untrace */
1254 ptrace_unlink(p);
1255
1256 /* If parent wants a zombie, don't release it now */
1257 state = EXIT_ZOMBIE;
1258 if (do_notify_parent(p, p->exit_signal))
1259 state = EXIT_DEAD;
1260 p->exit_state = state;
1261 write_unlock_irq(&tasklist_lock);
1262 }
1263 if (state == EXIT_DEAD)
1264 release_task(p);
1265
1266 out_info:
1267 infop = wo->wo_info;
1268 if (infop) {
1269 if ((status & 0x7f) == 0) {
1270 infop->cause = CLD_EXITED;
1271 infop->status = status >> 8;
1272 } else {
1273 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1274 infop->status = status & 0x7f;
1275 }
1276 infop->pid = pid;
1277 infop->uid = uid;
1278 }
1279
1280 return pid;
1281 }
1282
task_stopped_code(struct task_struct * p,bool ptrace)1283 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1284 {
1285 if (ptrace) {
1286 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1287 return &p->exit_code;
1288 } else {
1289 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1290 return &p->signal->group_exit_code;
1291 }
1292 return NULL;
1293 }
1294
1295 /**
1296 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1297 * @wo: wait options
1298 * @ptrace: is the wait for ptrace
1299 * @p: task to wait for
1300 *
1301 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1302 *
1303 * CONTEXT:
1304 * read_lock(&tasklist_lock), which is released if return value is
1305 * non-zero. Also, grabs and releases @p->sighand->siglock.
1306 *
1307 * RETURNS:
1308 * 0 if wait condition didn't exist and search for other wait conditions
1309 * should continue. Non-zero return, -errno on failure and @p's pid on
1310 * success, implies that tasklist_lock is released and wait condition
1311 * search should terminate.
1312 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1313 static int wait_task_stopped(struct wait_opts *wo,
1314 int ptrace, struct task_struct *p)
1315 {
1316 struct waitid_info *infop;
1317 int exit_code, *p_code, why;
1318 uid_t uid = 0; /* unneeded, required by compiler */
1319 pid_t pid;
1320
1321 /*
1322 * Traditionally we see ptrace'd stopped tasks regardless of options.
1323 */
1324 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1325 return 0;
1326
1327 if (!task_stopped_code(p, ptrace))
1328 return 0;
1329
1330 exit_code = 0;
1331 spin_lock_irq(&p->sighand->siglock);
1332
1333 p_code = task_stopped_code(p, ptrace);
1334 if (unlikely(!p_code))
1335 goto unlock_sig;
1336
1337 exit_code = *p_code;
1338 if (!exit_code)
1339 goto unlock_sig;
1340
1341 if (!unlikely(wo->wo_flags & WNOWAIT))
1342 *p_code = 0;
1343
1344 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1345 unlock_sig:
1346 spin_unlock_irq(&p->sighand->siglock);
1347 if (!exit_code)
1348 return 0;
1349
1350 /*
1351 * Now we are pretty sure this task is interesting.
1352 * Make sure it doesn't get reaped out from under us while we
1353 * give up the lock and then examine it below. We don't want to
1354 * keep holding onto the tasklist_lock while we call getrusage and
1355 * possibly take page faults for user memory.
1356 */
1357 get_task_struct(p);
1358 pid = task_pid_vnr(p);
1359 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1360 read_unlock(&tasklist_lock);
1361 sched_annotate_sleep();
1362 if (wo->wo_rusage)
1363 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1364 put_task_struct(p);
1365
1366 if (likely(!(wo->wo_flags & WNOWAIT)))
1367 wo->wo_stat = (exit_code << 8) | 0x7f;
1368
1369 infop = wo->wo_info;
1370 if (infop) {
1371 infop->cause = why;
1372 infop->status = exit_code;
1373 infop->pid = pid;
1374 infop->uid = uid;
1375 }
1376 return pid;
1377 }
1378
1379 /*
1380 * Handle do_wait work for one task in a live, non-stopped state.
1381 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1382 * the lock and this task is uninteresting. If we return nonzero, we have
1383 * released the lock and the system call should return.
1384 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1385 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1386 {
1387 struct waitid_info *infop;
1388 pid_t pid;
1389 uid_t uid;
1390
1391 if (!unlikely(wo->wo_flags & WCONTINUED))
1392 return 0;
1393
1394 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1395 return 0;
1396
1397 spin_lock_irq(&p->sighand->siglock);
1398 /* Re-check with the lock held. */
1399 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1400 spin_unlock_irq(&p->sighand->siglock);
1401 return 0;
1402 }
1403 if (!unlikely(wo->wo_flags & WNOWAIT))
1404 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1405 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1406 spin_unlock_irq(&p->sighand->siglock);
1407
1408 pid = task_pid_vnr(p);
1409 get_task_struct(p);
1410 read_unlock(&tasklist_lock);
1411 sched_annotate_sleep();
1412 if (wo->wo_rusage)
1413 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1414 put_task_struct(p);
1415
1416 infop = wo->wo_info;
1417 if (!infop) {
1418 wo->wo_stat = 0xffff;
1419 } else {
1420 infop->cause = CLD_CONTINUED;
1421 infop->pid = pid;
1422 infop->uid = uid;
1423 infop->status = SIGCONT;
1424 }
1425 return pid;
1426 }
1427
1428 /*
1429 * Consider @p for a wait by @parent.
1430 *
1431 * -ECHILD should be in ->notask_error before the first call.
1432 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1433 * Returns zero if the search for a child should continue;
1434 * then ->notask_error is 0 if @p is an eligible child,
1435 * or still -ECHILD.
1436 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1437 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1438 struct task_struct *p)
1439 {
1440 /*
1441 * We can race with wait_task_zombie() from another thread.
1442 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1443 * can't confuse the checks below.
1444 */
1445 int exit_state = READ_ONCE(p->exit_state);
1446 int ret;
1447
1448 if (unlikely(exit_state == EXIT_DEAD))
1449 return 0;
1450
1451 ret = eligible_child(wo, ptrace, p);
1452 if (!ret)
1453 return ret;
1454
1455 if (unlikely(exit_state == EXIT_TRACE)) {
1456 /*
1457 * ptrace == 0 means we are the natural parent. In this case
1458 * we should clear notask_error, debugger will notify us.
1459 */
1460 if (likely(!ptrace))
1461 wo->notask_error = 0;
1462 return 0;
1463 }
1464
1465 if (likely(!ptrace) && unlikely(p->ptrace)) {
1466 /*
1467 * If it is traced by its real parent's group, just pretend
1468 * the caller is ptrace_do_wait() and reap this child if it
1469 * is zombie.
1470 *
1471 * This also hides group stop state from real parent; otherwise
1472 * a single stop can be reported twice as group and ptrace stop.
1473 * If a ptracer wants to distinguish these two events for its
1474 * own children it should create a separate process which takes
1475 * the role of real parent.
1476 */
1477 if (!ptrace_reparented(p))
1478 ptrace = 1;
1479 }
1480
1481 /* slay zombie? */
1482 if (exit_state == EXIT_ZOMBIE) {
1483 /* we don't reap group leaders with subthreads */
1484 if (!delay_group_leader(p)) {
1485 /*
1486 * A zombie ptracee is only visible to its ptracer.
1487 * Notification and reaping will be cascaded to the
1488 * real parent when the ptracer detaches.
1489 */
1490 if (unlikely(ptrace) || likely(!p->ptrace))
1491 return wait_task_zombie(wo, p);
1492 }
1493
1494 /*
1495 * Allow access to stopped/continued state via zombie by
1496 * falling through. Clearing of notask_error is complex.
1497 *
1498 * When !@ptrace:
1499 *
1500 * If WEXITED is set, notask_error should naturally be
1501 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1502 * so, if there are live subthreads, there are events to
1503 * wait for. If all subthreads are dead, it's still safe
1504 * to clear - this function will be called again in finite
1505 * amount time once all the subthreads are released and
1506 * will then return without clearing.
1507 *
1508 * When @ptrace:
1509 *
1510 * Stopped state is per-task and thus can't change once the
1511 * target task dies. Only continued and exited can happen.
1512 * Clear notask_error if WCONTINUED | WEXITED.
1513 */
1514 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1515 wo->notask_error = 0;
1516 } else {
1517 /*
1518 * @p is alive and it's gonna stop, continue or exit, so
1519 * there always is something to wait for.
1520 */
1521 wo->notask_error = 0;
1522 }
1523
1524 /*
1525 * Wait for stopped. Depending on @ptrace, different stopped state
1526 * is used and the two don't interact with each other.
1527 */
1528 ret = wait_task_stopped(wo, ptrace, p);
1529 if (ret)
1530 return ret;
1531
1532 /*
1533 * Wait for continued. There's only one continued state and the
1534 * ptracer can consume it which can confuse the real parent. Don't
1535 * use WCONTINUED from ptracer. You don't need or want it.
1536 */
1537 return wait_task_continued(wo, p);
1538 }
1539
1540 /*
1541 * Do the work of do_wait() for one thread in the group, @tsk.
1542 *
1543 * -ECHILD should be in ->notask_error before the first call.
1544 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1545 * Returns zero if the search for a child should continue; then
1546 * ->notask_error is 0 if there were any eligible children,
1547 * or still -ECHILD.
1548 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1549 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1550 {
1551 struct task_struct *p;
1552
1553 list_for_each_entry(p, &tsk->children, sibling) {
1554 int ret = wait_consider_task(wo, 0, p);
1555
1556 if (ret)
1557 return ret;
1558 }
1559
1560 return 0;
1561 }
1562
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1563 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1564 {
1565 struct task_struct *p;
1566
1567 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1568 int ret = wait_consider_task(wo, 1, p);
1569
1570 if (ret)
1571 return ret;
1572 }
1573
1574 return 0;
1575 }
1576
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1577 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1578 {
1579 if (!eligible_pid(wo, p))
1580 return false;
1581
1582 if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1583 return false;
1584
1585 return true;
1586 }
1587
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1588 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1589 int sync, void *key)
1590 {
1591 struct wait_opts *wo = container_of(wait, struct wait_opts,
1592 child_wait);
1593 struct task_struct *p = key;
1594
1595 if (pid_child_should_wake(wo, p))
1596 return default_wake_function(wait, mode, sync, key);
1597
1598 return 0;
1599 }
1600
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1601 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1602 {
1603 __wake_up_sync_key(&parent->signal->wait_chldexit,
1604 TASK_INTERRUPTIBLE, p);
1605 }
1606
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1607 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1608 struct task_struct *target)
1609 {
1610 struct task_struct *parent =
1611 !ptrace ? target->real_parent : target->parent;
1612
1613 return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1614 same_thread_group(current, parent));
1615 }
1616
1617 /*
1618 * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1619 * and tracee lists to find the target task.
1620 */
do_wait_pid(struct wait_opts * wo)1621 static int do_wait_pid(struct wait_opts *wo)
1622 {
1623 bool ptrace;
1624 struct task_struct *target;
1625 int retval;
1626
1627 ptrace = false;
1628 target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1629 if (target && is_effectively_child(wo, ptrace, target)) {
1630 retval = wait_consider_task(wo, ptrace, target);
1631 if (retval)
1632 return retval;
1633 }
1634
1635 ptrace = true;
1636 target = pid_task(wo->wo_pid, PIDTYPE_PID);
1637 if (target && target->ptrace &&
1638 is_effectively_child(wo, ptrace, target)) {
1639 retval = wait_consider_task(wo, ptrace, target);
1640 if (retval)
1641 return retval;
1642 }
1643
1644 return 0;
1645 }
1646
__do_wait(struct wait_opts * wo)1647 long __do_wait(struct wait_opts *wo)
1648 {
1649 long retval;
1650
1651 /*
1652 * If there is nothing that can match our criteria, just get out.
1653 * We will clear ->notask_error to zero if we see any child that
1654 * might later match our criteria, even if we are not able to reap
1655 * it yet.
1656 */
1657 wo->notask_error = -ECHILD;
1658 if ((wo->wo_type < PIDTYPE_MAX) &&
1659 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1660 goto notask;
1661
1662 read_lock(&tasklist_lock);
1663
1664 if (wo->wo_type == PIDTYPE_PID) {
1665 retval = do_wait_pid(wo);
1666 if (retval)
1667 return retval;
1668 } else {
1669 struct task_struct *tsk = current;
1670
1671 do {
1672 retval = do_wait_thread(wo, tsk);
1673 if (retval)
1674 return retval;
1675
1676 retval = ptrace_do_wait(wo, tsk);
1677 if (retval)
1678 return retval;
1679
1680 if (wo->wo_flags & __WNOTHREAD)
1681 break;
1682 } while_each_thread(current, tsk);
1683 }
1684 read_unlock(&tasklist_lock);
1685
1686 notask:
1687 retval = wo->notask_error;
1688 if (!retval && !(wo->wo_flags & WNOHANG))
1689 return -ERESTARTSYS;
1690
1691 return retval;
1692 }
1693
do_wait(struct wait_opts * wo)1694 static long do_wait(struct wait_opts *wo)
1695 {
1696 int retval;
1697
1698 trace_sched_process_wait(wo->wo_pid);
1699
1700 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1701 wo->child_wait.private = current;
1702 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1703
1704 do {
1705 set_current_state(TASK_INTERRUPTIBLE);
1706 retval = __do_wait(wo);
1707 if (retval != -ERESTARTSYS)
1708 break;
1709 if (signal_pending(current))
1710 break;
1711 schedule();
1712 } while (1);
1713
1714 __set_current_state(TASK_RUNNING);
1715 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1716 return retval;
1717 }
1718
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1719 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1720 struct waitid_info *infop, int options,
1721 struct rusage *ru)
1722 {
1723 unsigned int f_flags = 0;
1724 struct pid *pid = NULL;
1725 enum pid_type type;
1726
1727 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1728 __WNOTHREAD|__WCLONE|__WALL))
1729 return -EINVAL;
1730 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1731 return -EINVAL;
1732
1733 switch (which) {
1734 case P_ALL:
1735 type = PIDTYPE_MAX;
1736 break;
1737 case P_PID:
1738 type = PIDTYPE_PID;
1739 if (upid <= 0)
1740 return -EINVAL;
1741
1742 pid = find_get_pid(upid);
1743 break;
1744 case P_PGID:
1745 type = PIDTYPE_PGID;
1746 if (upid < 0)
1747 return -EINVAL;
1748
1749 if (upid)
1750 pid = find_get_pid(upid);
1751 else
1752 pid = get_task_pid(current, PIDTYPE_PGID);
1753 break;
1754 case P_PIDFD:
1755 type = PIDTYPE_PID;
1756 if (upid < 0)
1757 return -EINVAL;
1758
1759 pid = pidfd_get_pid(upid, &f_flags);
1760 if (IS_ERR(pid))
1761 return PTR_ERR(pid);
1762
1763 break;
1764 default:
1765 return -EINVAL;
1766 }
1767
1768 wo->wo_type = type;
1769 wo->wo_pid = pid;
1770 wo->wo_flags = options;
1771 wo->wo_info = infop;
1772 wo->wo_rusage = ru;
1773 if (f_flags & O_NONBLOCK)
1774 wo->wo_flags |= WNOHANG;
1775
1776 return 0;
1777 }
1778
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1779 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1780 int options, struct rusage *ru)
1781 {
1782 struct wait_opts wo;
1783 long ret;
1784
1785 ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1786 if (ret)
1787 return ret;
1788
1789 ret = do_wait(&wo);
1790 if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1791 ret = -EAGAIN;
1792
1793 put_pid(wo.wo_pid);
1794 return ret;
1795 }
1796
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1797 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1798 infop, int, options, struct rusage __user *, ru)
1799 {
1800 struct rusage r;
1801 struct waitid_info info = {.status = 0};
1802 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1803 int signo = 0;
1804
1805 if (err > 0) {
1806 signo = SIGCHLD;
1807 err = 0;
1808 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1809 return -EFAULT;
1810 }
1811 if (!infop)
1812 return err;
1813
1814 if (!user_write_access_begin(infop, sizeof(*infop)))
1815 return -EFAULT;
1816
1817 unsafe_put_user(signo, &infop->si_signo, Efault);
1818 unsafe_put_user(0, &infop->si_errno, Efault);
1819 unsafe_put_user(info.cause, &infop->si_code, Efault);
1820 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1821 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1822 unsafe_put_user(info.status, &infop->si_status, Efault);
1823 user_write_access_end();
1824 return err;
1825 Efault:
1826 user_write_access_end();
1827 return -EFAULT;
1828 }
1829
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1830 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1831 struct rusage *ru)
1832 {
1833 struct wait_opts wo;
1834 struct pid *pid = NULL;
1835 enum pid_type type;
1836 long ret;
1837
1838 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1839 __WNOTHREAD|__WCLONE|__WALL))
1840 return -EINVAL;
1841
1842 /* -INT_MIN is not defined */
1843 if (upid == INT_MIN)
1844 return -ESRCH;
1845
1846 if (upid == -1)
1847 type = PIDTYPE_MAX;
1848 else if (upid < 0) {
1849 type = PIDTYPE_PGID;
1850 pid = find_get_pid(-upid);
1851 } else if (upid == 0) {
1852 type = PIDTYPE_PGID;
1853 pid = get_task_pid(current, PIDTYPE_PGID);
1854 } else /* upid > 0 */ {
1855 type = PIDTYPE_PID;
1856 pid = find_get_pid(upid);
1857 }
1858
1859 wo.wo_type = type;
1860 wo.wo_pid = pid;
1861 wo.wo_flags = options | WEXITED;
1862 wo.wo_info = NULL;
1863 wo.wo_stat = 0;
1864 wo.wo_rusage = ru;
1865 ret = do_wait(&wo);
1866 put_pid(pid);
1867 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1868 ret = -EFAULT;
1869
1870 return ret;
1871 }
1872
kernel_wait(pid_t pid,int * stat)1873 int kernel_wait(pid_t pid, int *stat)
1874 {
1875 struct wait_opts wo = {
1876 .wo_type = PIDTYPE_PID,
1877 .wo_pid = find_get_pid(pid),
1878 .wo_flags = WEXITED,
1879 };
1880 int ret;
1881
1882 ret = do_wait(&wo);
1883 if (ret > 0 && wo.wo_stat)
1884 *stat = wo.wo_stat;
1885 put_pid(wo.wo_pid);
1886 return ret;
1887 }
1888
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1889 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1890 int, options, struct rusage __user *, ru)
1891 {
1892 struct rusage r;
1893 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1894
1895 if (err > 0) {
1896 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1897 return -EFAULT;
1898 }
1899 return err;
1900 }
1901
1902 #ifdef __ARCH_WANT_SYS_WAITPID
1903
1904 /*
1905 * sys_waitpid() remains for compatibility. waitpid() should be
1906 * implemented by calling sys_wait4() from libc.a.
1907 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1908 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1909 {
1910 return kernel_wait4(pid, stat_addr, options, NULL);
1911 }
1912
1913 #endif
1914
1915 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1916 COMPAT_SYSCALL_DEFINE4(wait4,
1917 compat_pid_t, pid,
1918 compat_uint_t __user *, stat_addr,
1919 int, options,
1920 struct compat_rusage __user *, ru)
1921 {
1922 struct rusage r;
1923 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1924 if (err > 0) {
1925 if (ru && put_compat_rusage(&r, ru))
1926 return -EFAULT;
1927 }
1928 return err;
1929 }
1930
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1931 COMPAT_SYSCALL_DEFINE5(waitid,
1932 int, which, compat_pid_t, pid,
1933 struct compat_siginfo __user *, infop, int, options,
1934 struct compat_rusage __user *, uru)
1935 {
1936 struct rusage ru;
1937 struct waitid_info info = {.status = 0};
1938 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1939 int signo = 0;
1940 if (err > 0) {
1941 signo = SIGCHLD;
1942 err = 0;
1943 if (uru) {
1944 /* kernel_waitid() overwrites everything in ru */
1945 if (COMPAT_USE_64BIT_TIME)
1946 err = copy_to_user(uru, &ru, sizeof(ru));
1947 else
1948 err = put_compat_rusage(&ru, uru);
1949 if (err)
1950 return -EFAULT;
1951 }
1952 }
1953
1954 if (!infop)
1955 return err;
1956
1957 if (!user_write_access_begin(infop, sizeof(*infop)))
1958 return -EFAULT;
1959
1960 unsafe_put_user(signo, &infop->si_signo, Efault);
1961 unsafe_put_user(0, &infop->si_errno, Efault);
1962 unsafe_put_user(info.cause, &infop->si_code, Efault);
1963 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1964 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1965 unsafe_put_user(info.status, &infop->si_status, Efault);
1966 user_write_access_end();
1967 return err;
1968 Efault:
1969 user_write_access_end();
1970 return -EFAULT;
1971 }
1972 #endif
1973
1974 /*
1975 * This needs to be __function_aligned as GCC implicitly makes any
1976 * implementation of abort() cold and drops alignment specified by
1977 * -falign-functions=N.
1978 *
1979 * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1980 */
abort(void)1981 __weak __function_aligned void abort(void)
1982 {
1983 BUG();
1984
1985 /* if that doesn't kill us, halt */
1986 panic("Oops failed to kill thread");
1987 }
1988 EXPORT_SYMBOL(abort);
1989