1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/mm/mmu.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memremap.h>
21 #include <linux/memory.h>
22 #include <linux/fs.h>
23 #include <linux/io.h>
24 #include <linux/mm.h>
25 #include <linux/vmalloc.h>
26 #include <linux/set_memory.h>
27 #include <linux/kfence.h>
28 #include <linux/pkeys.h>
29 #include <linux/mm_inline.h>
30 #include <linux/pagewalk.h>
31 #include <linux/stop_machine.h>
32
33 #include <asm/barrier.h>
34 #include <asm/cputype.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43 #include <asm/ptdump.h>
44 #include <asm/tlbflush.h>
45 #include <asm/pgalloc.h>
46 #include <asm/kfence.h>
47
48 #define NO_BLOCK_MAPPINGS BIT(0)
49 #define NO_CONT_MAPPINGS BIT(1)
50 #define NO_EXEC_MAPPINGS BIT(2) /* assumes FEAT_HPDS is not used */
51
52 DEFINE_STATIC_KEY_FALSE(arm64_ptdump_lock_key);
53
54 u64 kimage_voffset __ro_after_init;
55 EXPORT_SYMBOL(kimage_voffset);
56
57 u32 __boot_cpu_mode[] = { BOOT_CPU_MODE_EL2, BOOT_CPU_MODE_EL1 };
58
59 static bool rodata_is_rw __ro_after_init = true;
60
61 /*
62 * The booting CPU updates the failed status @__early_cpu_boot_status,
63 * with MMU turned off.
64 */
65 long __section(".mmuoff.data.write") __early_cpu_boot_status;
66
67 /*
68 * Empty_zero_page is a special page that is used for zero-initialized data
69 * and COW.
70 */
71 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
72 EXPORT_SYMBOL(empty_zero_page);
73
74 static DEFINE_SPINLOCK(swapper_pgdir_lock);
75 static DEFINE_MUTEX(fixmap_lock);
76
set_swapper_pgd(pgd_t * pgdp,pgd_t pgd)77 void noinstr set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
78 {
79 pgd_t *fixmap_pgdp;
80
81 /*
82 * Don't bother with the fixmap if swapper_pg_dir is still mapped
83 * writable in the kernel mapping.
84 */
85 if (rodata_is_rw) {
86 WRITE_ONCE(*pgdp, pgd);
87 dsb(ishst);
88 isb();
89 return;
90 }
91
92 spin_lock(&swapper_pgdir_lock);
93 fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
94 WRITE_ONCE(*fixmap_pgdp, pgd);
95 /*
96 * We need dsb(ishst) here to ensure the page-table-walker sees
97 * our new entry before set_p?d() returns. The fixmap's
98 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
99 */
100 pgd_clear_fixmap();
101 spin_unlock(&swapper_pgdir_lock);
102 }
103
phys_mem_access_prot(struct file * file,unsigned long pfn,unsigned long size,pgprot_t vma_prot)104 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
105 unsigned long size, pgprot_t vma_prot)
106 {
107 if (!pfn_is_map_memory(pfn))
108 return pgprot_noncached(vma_prot);
109 else if (file->f_flags & O_SYNC)
110 return pgprot_writecombine(vma_prot);
111 return vma_prot;
112 }
113 EXPORT_SYMBOL(phys_mem_access_prot);
114
early_pgtable_alloc(enum pgtable_type pgtable_type)115 static phys_addr_t __init early_pgtable_alloc(enum pgtable_type pgtable_type)
116 {
117 phys_addr_t phys;
118
119 phys = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0,
120 MEMBLOCK_ALLOC_NOLEAKTRACE);
121 if (!phys)
122 panic("Failed to allocate page table page\n");
123
124 return phys;
125 }
126
pgattr_change_is_safe(pteval_t old,pteval_t new)127 bool pgattr_change_is_safe(pteval_t old, pteval_t new)
128 {
129 /*
130 * The following mapping attributes may be updated in live
131 * kernel mappings without the need for break-before-make.
132 */
133 pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG |
134 PTE_SWBITS_MASK;
135
136 /* creating or taking down mappings is always safe */
137 if (!pte_valid(__pte(old)) || !pte_valid(__pte(new)))
138 return true;
139
140 /* A live entry's pfn should not change */
141 if (pte_pfn(__pte(old)) != pte_pfn(__pte(new)))
142 return false;
143
144 /* live contiguous mappings may not be manipulated at all */
145 if ((old | new) & PTE_CONT)
146 return false;
147
148 /* Transitioning from Non-Global to Global is unsafe */
149 if (old & ~new & PTE_NG)
150 return false;
151
152 /*
153 * Changing the memory type between Normal and Normal-Tagged is safe
154 * since Tagged is considered a permission attribute from the
155 * mismatched attribute aliases perspective.
156 */
157 if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
158 (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
159 ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
160 (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
161 mask |= PTE_ATTRINDX_MASK;
162
163 return ((old ^ new) & ~mask) == 0;
164 }
165
init_clear_pgtable(void * table)166 static void init_clear_pgtable(void *table)
167 {
168 clear_page(table);
169
170 /* Ensure the zeroing is observed by page table walks. */
171 dsb(ishst);
172 }
173
init_pte(pte_t * ptep,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot)174 static void init_pte(pte_t *ptep, unsigned long addr, unsigned long end,
175 phys_addr_t phys, pgprot_t prot)
176 {
177 do {
178 pte_t old_pte = __ptep_get(ptep);
179
180 /*
181 * Required barriers to make this visible to the table walker
182 * are deferred to the end of alloc_init_cont_pte().
183 */
184 __set_pte_nosync(ptep, pfn_pte(__phys_to_pfn(phys), prot));
185
186 /*
187 * After the PTE entry has been populated once, we
188 * only allow updates to the permission attributes.
189 */
190 BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
191 pte_val(__ptep_get(ptep))));
192
193 phys += PAGE_SIZE;
194 } while (ptep++, addr += PAGE_SIZE, addr != end);
195 }
196
alloc_init_cont_pte(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)197 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
198 unsigned long end, phys_addr_t phys,
199 pgprot_t prot,
200 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
201 int flags)
202 {
203 unsigned long next;
204 pmd_t pmd = READ_ONCE(*pmdp);
205 pte_t *ptep;
206
207 BUG_ON(pmd_sect(pmd));
208 if (pmd_none(pmd)) {
209 pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
210 phys_addr_t pte_phys;
211
212 if (flags & NO_EXEC_MAPPINGS)
213 pmdval |= PMD_TABLE_PXN;
214 BUG_ON(!pgtable_alloc);
215 pte_phys = pgtable_alloc(TABLE_PTE);
216 ptep = pte_set_fixmap(pte_phys);
217 init_clear_pgtable(ptep);
218 ptep += pte_index(addr);
219 __pmd_populate(pmdp, pte_phys, pmdval);
220 } else {
221 BUG_ON(pmd_bad(pmd));
222 ptep = pte_set_fixmap_offset(pmdp, addr);
223 }
224
225 do {
226 pgprot_t __prot = prot;
227
228 next = pte_cont_addr_end(addr, end);
229
230 /* use a contiguous mapping if the range is suitably aligned */
231 if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
232 (flags & NO_CONT_MAPPINGS) == 0)
233 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
234
235 init_pte(ptep, addr, next, phys, __prot);
236
237 ptep += pte_index(next) - pte_index(addr);
238 phys += next - addr;
239 } while (addr = next, addr != end);
240
241 /*
242 * Note: barriers and maintenance necessary to clear the fixmap slot
243 * ensure that all previous pgtable writes are visible to the table
244 * walker.
245 */
246 pte_clear_fixmap();
247 }
248
init_pmd(pmd_t * pmdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)249 static void init_pmd(pmd_t *pmdp, unsigned long addr, unsigned long end,
250 phys_addr_t phys, pgprot_t prot,
251 phys_addr_t (*pgtable_alloc)(enum pgtable_type), int flags)
252 {
253 unsigned long next;
254
255 do {
256 pmd_t old_pmd = READ_ONCE(*pmdp);
257
258 next = pmd_addr_end(addr, end);
259
260 /* try section mapping first */
261 if (((addr | next | phys) & ~PMD_MASK) == 0 &&
262 (flags & NO_BLOCK_MAPPINGS) == 0) {
263 pmd_set_huge(pmdp, phys, prot);
264
265 /*
266 * After the PMD entry has been populated once, we
267 * only allow updates to the permission attributes.
268 */
269 BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
270 READ_ONCE(pmd_val(*pmdp))));
271 } else {
272 alloc_init_cont_pte(pmdp, addr, next, phys, prot,
273 pgtable_alloc, flags);
274
275 BUG_ON(pmd_val(old_pmd) != 0 &&
276 pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
277 }
278 phys += next - addr;
279 } while (pmdp++, addr = next, addr != end);
280 }
281
alloc_init_cont_pmd(pud_t * pudp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)282 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
283 unsigned long end, phys_addr_t phys,
284 pgprot_t prot,
285 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
286 int flags)
287 {
288 unsigned long next;
289 pud_t pud = READ_ONCE(*pudp);
290 pmd_t *pmdp;
291
292 /*
293 * Check for initial section mappings in the pgd/pud.
294 */
295 BUG_ON(pud_sect(pud));
296 if (pud_none(pud)) {
297 pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
298 phys_addr_t pmd_phys;
299
300 if (flags & NO_EXEC_MAPPINGS)
301 pudval |= PUD_TABLE_PXN;
302 BUG_ON(!pgtable_alloc);
303 pmd_phys = pgtable_alloc(TABLE_PMD);
304 pmdp = pmd_set_fixmap(pmd_phys);
305 init_clear_pgtable(pmdp);
306 pmdp += pmd_index(addr);
307 __pud_populate(pudp, pmd_phys, pudval);
308 } else {
309 BUG_ON(pud_bad(pud));
310 pmdp = pmd_set_fixmap_offset(pudp, addr);
311 }
312
313 do {
314 pgprot_t __prot = prot;
315
316 next = pmd_cont_addr_end(addr, end);
317
318 /* use a contiguous mapping if the range is suitably aligned */
319 if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
320 (flags & NO_CONT_MAPPINGS) == 0)
321 __prot = __pgprot(pgprot_val(prot) | PTE_CONT);
322
323 init_pmd(pmdp, addr, next, phys, __prot, pgtable_alloc, flags);
324
325 pmdp += pmd_index(next) - pmd_index(addr);
326 phys += next - addr;
327 } while (addr = next, addr != end);
328
329 pmd_clear_fixmap();
330 }
331
alloc_init_pud(p4d_t * p4dp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)332 static void alloc_init_pud(p4d_t *p4dp, unsigned long addr, unsigned long end,
333 phys_addr_t phys, pgprot_t prot,
334 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
335 int flags)
336 {
337 unsigned long next;
338 p4d_t p4d = READ_ONCE(*p4dp);
339 pud_t *pudp;
340
341 if (p4d_none(p4d)) {
342 p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN | P4D_TABLE_AF;
343 phys_addr_t pud_phys;
344
345 if (flags & NO_EXEC_MAPPINGS)
346 p4dval |= P4D_TABLE_PXN;
347 BUG_ON(!pgtable_alloc);
348 pud_phys = pgtable_alloc(TABLE_PUD);
349 pudp = pud_set_fixmap(pud_phys);
350 init_clear_pgtable(pudp);
351 pudp += pud_index(addr);
352 __p4d_populate(p4dp, pud_phys, p4dval);
353 } else {
354 BUG_ON(p4d_bad(p4d));
355 pudp = pud_set_fixmap_offset(p4dp, addr);
356 }
357
358 do {
359 pud_t old_pud = READ_ONCE(*pudp);
360
361 next = pud_addr_end(addr, end);
362
363 /*
364 * For 4K granule only, attempt to put down a 1GB block
365 */
366 if (pud_sect_supported() &&
367 ((addr | next | phys) & ~PUD_MASK) == 0 &&
368 (flags & NO_BLOCK_MAPPINGS) == 0) {
369 pud_set_huge(pudp, phys, prot);
370
371 /*
372 * After the PUD entry has been populated once, we
373 * only allow updates to the permission attributes.
374 */
375 BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
376 READ_ONCE(pud_val(*pudp))));
377 } else {
378 alloc_init_cont_pmd(pudp, addr, next, phys, prot,
379 pgtable_alloc, flags);
380
381 BUG_ON(pud_val(old_pud) != 0 &&
382 pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
383 }
384 phys += next - addr;
385 } while (pudp++, addr = next, addr != end);
386
387 pud_clear_fixmap();
388 }
389
alloc_init_p4d(pgd_t * pgdp,unsigned long addr,unsigned long end,phys_addr_t phys,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)390 static void alloc_init_p4d(pgd_t *pgdp, unsigned long addr, unsigned long end,
391 phys_addr_t phys, pgprot_t prot,
392 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
393 int flags)
394 {
395 unsigned long next;
396 pgd_t pgd = READ_ONCE(*pgdp);
397 p4d_t *p4dp;
398
399 if (pgd_none(pgd)) {
400 pgdval_t pgdval = PGD_TYPE_TABLE | PGD_TABLE_UXN | PGD_TABLE_AF;
401 phys_addr_t p4d_phys;
402
403 if (flags & NO_EXEC_MAPPINGS)
404 pgdval |= PGD_TABLE_PXN;
405 BUG_ON(!pgtable_alloc);
406 p4d_phys = pgtable_alloc(TABLE_P4D);
407 p4dp = p4d_set_fixmap(p4d_phys);
408 init_clear_pgtable(p4dp);
409 p4dp += p4d_index(addr);
410 __pgd_populate(pgdp, p4d_phys, pgdval);
411 } else {
412 BUG_ON(pgd_bad(pgd));
413 p4dp = p4d_set_fixmap_offset(pgdp, addr);
414 }
415
416 do {
417 p4d_t old_p4d = READ_ONCE(*p4dp);
418
419 next = p4d_addr_end(addr, end);
420
421 alloc_init_pud(p4dp, addr, next, phys, prot,
422 pgtable_alloc, flags);
423
424 BUG_ON(p4d_val(old_p4d) != 0 &&
425 p4d_val(old_p4d) != READ_ONCE(p4d_val(*p4dp)));
426
427 phys += next - addr;
428 } while (p4dp++, addr = next, addr != end);
429
430 p4d_clear_fixmap();
431 }
432
__create_pgd_mapping_locked(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)433 static void __create_pgd_mapping_locked(pgd_t *pgdir, phys_addr_t phys,
434 unsigned long virt, phys_addr_t size,
435 pgprot_t prot,
436 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
437 int flags)
438 {
439 unsigned long addr, end, next;
440 pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
441
442 /*
443 * If the virtual and physical address don't have the same offset
444 * within a page, we cannot map the region as the caller expects.
445 */
446 if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
447 return;
448
449 phys &= PAGE_MASK;
450 addr = virt & PAGE_MASK;
451 end = PAGE_ALIGN(virt + size);
452
453 do {
454 next = pgd_addr_end(addr, end);
455 alloc_init_p4d(pgdp, addr, next, phys, prot, pgtable_alloc,
456 flags);
457 phys += next - addr;
458 } while (pgdp++, addr = next, addr != end);
459 }
460
__create_pgd_mapping(pgd_t * pgdir,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,phys_addr_t (* pgtable_alloc)(enum pgtable_type),int flags)461 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
462 unsigned long virt, phys_addr_t size,
463 pgprot_t prot,
464 phys_addr_t (*pgtable_alloc)(enum pgtable_type),
465 int flags)
466 {
467 mutex_lock(&fixmap_lock);
468 __create_pgd_mapping_locked(pgdir, phys, virt, size, prot,
469 pgtable_alloc, flags);
470 mutex_unlock(&fixmap_lock);
471 }
472
473 #define INVALID_PHYS_ADDR (-1ULL)
474
__pgd_pgtable_alloc(struct mm_struct * mm,gfp_t gfp,enum pgtable_type pgtable_type)475 static phys_addr_t __pgd_pgtable_alloc(struct mm_struct *mm, gfp_t gfp,
476 enum pgtable_type pgtable_type)
477 {
478 /* Page is zeroed by init_clear_pgtable() so don't duplicate effort. */
479 struct ptdesc *ptdesc = pagetable_alloc(gfp & ~__GFP_ZERO, 0);
480 phys_addr_t pa;
481
482 if (!ptdesc)
483 return INVALID_PHYS_ADDR;
484
485 pa = page_to_phys(ptdesc_page(ptdesc));
486
487 switch (pgtable_type) {
488 case TABLE_PTE:
489 BUG_ON(!pagetable_pte_ctor(mm, ptdesc));
490 break;
491 case TABLE_PMD:
492 BUG_ON(!pagetable_pmd_ctor(mm, ptdesc));
493 break;
494 case TABLE_PUD:
495 pagetable_pud_ctor(ptdesc);
496 break;
497 case TABLE_P4D:
498 pagetable_p4d_ctor(ptdesc);
499 break;
500 }
501
502 return pa;
503 }
504
505 static phys_addr_t
try_pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type,gfp_t gfp)506 try_pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type, gfp_t gfp)
507 {
508 return __pgd_pgtable_alloc(&init_mm, gfp, pgtable_type);
509 }
510
511 static phys_addr_t __maybe_unused
pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)512 pgd_pgtable_alloc_init_mm(enum pgtable_type pgtable_type)
513 {
514 phys_addr_t pa;
515
516 pa = __pgd_pgtable_alloc(&init_mm, GFP_PGTABLE_KERNEL, pgtable_type);
517 BUG_ON(pa == INVALID_PHYS_ADDR);
518 return pa;
519 }
520
521 static phys_addr_t
pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)522 pgd_pgtable_alloc_special_mm(enum pgtable_type pgtable_type)
523 {
524 phys_addr_t pa;
525
526 pa = __pgd_pgtable_alloc(NULL, GFP_PGTABLE_KERNEL, pgtable_type);
527 BUG_ON(pa == INVALID_PHYS_ADDR);
528 return pa;
529 }
530
split_contpte(pte_t * ptep)531 static void split_contpte(pte_t *ptep)
532 {
533 int i;
534
535 ptep = PTR_ALIGN_DOWN(ptep, sizeof(*ptep) * CONT_PTES);
536 for (i = 0; i < CONT_PTES; i++, ptep++)
537 __set_pte(ptep, pte_mknoncont(__ptep_get(ptep)));
538 }
539
split_pmd(pmd_t * pmdp,pmd_t pmd,gfp_t gfp,bool to_cont)540 static int split_pmd(pmd_t *pmdp, pmd_t pmd, gfp_t gfp, bool to_cont)
541 {
542 pmdval_t tableprot = PMD_TYPE_TABLE | PMD_TABLE_UXN | PMD_TABLE_AF;
543 unsigned long pfn = pmd_pfn(pmd);
544 pgprot_t prot = pmd_pgprot(pmd);
545 phys_addr_t pte_phys;
546 pte_t *ptep;
547 int i;
548
549 pte_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PTE, gfp);
550 if (pte_phys == INVALID_PHYS_ADDR)
551 return -ENOMEM;
552 ptep = (pte_t *)phys_to_virt(pte_phys);
553
554 if (pgprot_val(prot) & PMD_SECT_PXN)
555 tableprot |= PMD_TABLE_PXN;
556
557 prot = __pgprot((pgprot_val(prot) & ~PTE_TYPE_MASK) | PTE_TYPE_PAGE);
558 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
559 if (to_cont)
560 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
561
562 for (i = 0; i < PTRS_PER_PTE; i++, ptep++, pfn++)
563 __set_pte(ptep, pfn_pte(pfn, prot));
564
565 /*
566 * Ensure the pte entries are visible to the table walker by the time
567 * the pmd entry that points to the ptes is visible.
568 */
569 dsb(ishst);
570 __pmd_populate(pmdp, pte_phys, tableprot);
571
572 return 0;
573 }
574
split_contpmd(pmd_t * pmdp)575 static void split_contpmd(pmd_t *pmdp)
576 {
577 int i;
578
579 pmdp = PTR_ALIGN_DOWN(pmdp, sizeof(*pmdp) * CONT_PMDS);
580 for (i = 0; i < CONT_PMDS; i++, pmdp++)
581 set_pmd(pmdp, pmd_mknoncont(pmdp_get(pmdp)));
582 }
583
split_pud(pud_t * pudp,pud_t pud,gfp_t gfp,bool to_cont)584 static int split_pud(pud_t *pudp, pud_t pud, gfp_t gfp, bool to_cont)
585 {
586 pudval_t tableprot = PUD_TYPE_TABLE | PUD_TABLE_UXN | PUD_TABLE_AF;
587 unsigned int step = PMD_SIZE >> PAGE_SHIFT;
588 unsigned long pfn = pud_pfn(pud);
589 pgprot_t prot = pud_pgprot(pud);
590 phys_addr_t pmd_phys;
591 pmd_t *pmdp;
592 int i;
593
594 pmd_phys = try_pgd_pgtable_alloc_init_mm(TABLE_PMD, gfp);
595 if (pmd_phys == INVALID_PHYS_ADDR)
596 return -ENOMEM;
597 pmdp = (pmd_t *)phys_to_virt(pmd_phys);
598
599 if (pgprot_val(prot) & PMD_SECT_PXN)
600 tableprot |= PUD_TABLE_PXN;
601
602 prot = __pgprot((pgprot_val(prot) & ~PMD_TYPE_MASK) | PMD_TYPE_SECT);
603 prot = __pgprot(pgprot_val(prot) & ~PTE_CONT);
604 if (to_cont)
605 prot = __pgprot(pgprot_val(prot) | PTE_CONT);
606
607 for (i = 0; i < PTRS_PER_PMD; i++, pmdp++, pfn += step)
608 set_pmd(pmdp, pfn_pmd(pfn, prot));
609
610 /*
611 * Ensure the pmd entries are visible to the table walker by the time
612 * the pud entry that points to the pmds is visible.
613 */
614 dsb(ishst);
615 __pud_populate(pudp, pmd_phys, tableprot);
616
617 return 0;
618 }
619
split_kernel_leaf_mapping_locked(unsigned long addr)620 static int split_kernel_leaf_mapping_locked(unsigned long addr)
621 {
622 pgd_t *pgdp, pgd;
623 p4d_t *p4dp, p4d;
624 pud_t *pudp, pud;
625 pmd_t *pmdp, pmd;
626 pte_t *ptep, pte;
627 int ret = 0;
628
629 /*
630 * PGD: If addr is PGD aligned then addr already describes a leaf
631 * boundary. If not present then there is nothing to split.
632 */
633 if (ALIGN_DOWN(addr, PGDIR_SIZE) == addr)
634 goto out;
635 pgdp = pgd_offset_k(addr);
636 pgd = pgdp_get(pgdp);
637 if (!pgd_present(pgd))
638 goto out;
639
640 /*
641 * P4D: If addr is P4D aligned then addr already describes a leaf
642 * boundary. If not present then there is nothing to split.
643 */
644 if (ALIGN_DOWN(addr, P4D_SIZE) == addr)
645 goto out;
646 p4dp = p4d_offset(pgdp, addr);
647 p4d = p4dp_get(p4dp);
648 if (!p4d_present(p4d))
649 goto out;
650
651 /*
652 * PUD: If addr is PUD aligned then addr already describes a leaf
653 * boundary. If not present then there is nothing to split. Otherwise,
654 * if we have a pud leaf, split to contpmd.
655 */
656 if (ALIGN_DOWN(addr, PUD_SIZE) == addr)
657 goto out;
658 pudp = pud_offset(p4dp, addr);
659 pud = pudp_get(pudp);
660 if (!pud_present(pud))
661 goto out;
662 if (pud_leaf(pud)) {
663 ret = split_pud(pudp, pud, GFP_PGTABLE_KERNEL, true);
664 if (ret)
665 goto out;
666 }
667
668 /*
669 * CONTPMD: If addr is CONTPMD aligned then addr already describes a
670 * leaf boundary. If not present then there is nothing to split.
671 * Otherwise, if we have a contpmd leaf, split to pmd.
672 */
673 if (ALIGN_DOWN(addr, CONT_PMD_SIZE) == addr)
674 goto out;
675 pmdp = pmd_offset(pudp, addr);
676 pmd = pmdp_get(pmdp);
677 if (!pmd_present(pmd))
678 goto out;
679 if (pmd_leaf(pmd)) {
680 if (pmd_cont(pmd))
681 split_contpmd(pmdp);
682 /*
683 * PMD: If addr is PMD aligned then addr already describes a
684 * leaf boundary. Otherwise, split to contpte.
685 */
686 if (ALIGN_DOWN(addr, PMD_SIZE) == addr)
687 goto out;
688 ret = split_pmd(pmdp, pmd, GFP_PGTABLE_KERNEL, true);
689 if (ret)
690 goto out;
691 }
692
693 /*
694 * CONTPTE: If addr is CONTPTE aligned then addr already describes a
695 * leaf boundary. If not present then there is nothing to split.
696 * Otherwise, if we have a contpte leaf, split to pte.
697 */
698 if (ALIGN_DOWN(addr, CONT_PTE_SIZE) == addr)
699 goto out;
700 ptep = pte_offset_kernel(pmdp, addr);
701 pte = __ptep_get(ptep);
702 if (!pte_present(pte))
703 goto out;
704 if (pte_cont(pte))
705 split_contpte(ptep);
706
707 out:
708 return ret;
709 }
710
711 static DEFINE_MUTEX(pgtable_split_lock);
712
split_kernel_leaf_mapping(unsigned long start,unsigned long end)713 int split_kernel_leaf_mapping(unsigned long start, unsigned long end)
714 {
715 int ret;
716
717 /*
718 * !BBML2_NOABORT systems should not be trying to change permissions on
719 * anything that is not pte-mapped in the first place. Just return early
720 * and let the permission change code raise a warning if not already
721 * pte-mapped.
722 */
723 if (!system_supports_bbml2_noabort())
724 return 0;
725
726 /*
727 * Ensure start and end are at least page-aligned since this is the
728 * finest granularity we can split to.
729 */
730 if (start != PAGE_ALIGN(start) || end != PAGE_ALIGN(end))
731 return -EINVAL;
732
733 mutex_lock(&pgtable_split_lock);
734 arch_enter_lazy_mmu_mode();
735
736 /*
737 * The split_kernel_leaf_mapping_locked() may sleep, it is not a
738 * problem for ARM64 since ARM64's lazy MMU implementation allows
739 * sleeping.
740 *
741 * Optimize for the common case of splitting out a single page from a
742 * larger mapping. Here we can just split on the "least aligned" of
743 * start and end and this will guarantee that there must also be a split
744 * on the more aligned address since the both addresses must be in the
745 * same contpte block and it must have been split to ptes.
746 */
747 if (end - start == PAGE_SIZE) {
748 start = __ffs(start) < __ffs(end) ? start : end;
749 ret = split_kernel_leaf_mapping_locked(start);
750 } else {
751 ret = split_kernel_leaf_mapping_locked(start);
752 if (!ret)
753 ret = split_kernel_leaf_mapping_locked(end);
754 }
755
756 arch_leave_lazy_mmu_mode();
757 mutex_unlock(&pgtable_split_lock);
758 return ret;
759 }
760
split_to_ptes_pud_entry(pud_t * pudp,unsigned long addr,unsigned long next,struct mm_walk * walk)761 static int __init split_to_ptes_pud_entry(pud_t *pudp, unsigned long addr,
762 unsigned long next,
763 struct mm_walk *walk)
764 {
765 pud_t pud = pudp_get(pudp);
766 int ret = 0;
767
768 if (pud_leaf(pud))
769 ret = split_pud(pudp, pud, GFP_ATOMIC, false);
770
771 return ret;
772 }
773
split_to_ptes_pmd_entry(pmd_t * pmdp,unsigned long addr,unsigned long next,struct mm_walk * walk)774 static int __init split_to_ptes_pmd_entry(pmd_t *pmdp, unsigned long addr,
775 unsigned long next,
776 struct mm_walk *walk)
777 {
778 pmd_t pmd = pmdp_get(pmdp);
779 int ret = 0;
780
781 if (pmd_leaf(pmd)) {
782 if (pmd_cont(pmd))
783 split_contpmd(pmdp);
784 ret = split_pmd(pmdp, pmd, GFP_ATOMIC, false);
785
786 /*
787 * We have split the pmd directly to ptes so there is no need to
788 * visit each pte to check if they are contpte.
789 */
790 walk->action = ACTION_CONTINUE;
791 }
792
793 return ret;
794 }
795
split_to_ptes_pte_entry(pte_t * ptep,unsigned long addr,unsigned long next,struct mm_walk * walk)796 static int __init split_to_ptes_pte_entry(pte_t *ptep, unsigned long addr,
797 unsigned long next,
798 struct mm_walk *walk)
799 {
800 pte_t pte = __ptep_get(ptep);
801
802 if (pte_cont(pte))
803 split_contpte(ptep);
804
805 return 0;
806 }
807
808 static const struct mm_walk_ops split_to_ptes_ops __initconst = {
809 .pud_entry = split_to_ptes_pud_entry,
810 .pmd_entry = split_to_ptes_pmd_entry,
811 .pte_entry = split_to_ptes_pte_entry,
812 };
813
814 static bool linear_map_requires_bbml2 __initdata;
815
816 u32 idmap_kpti_bbml2_flag;
817
init_idmap_kpti_bbml2_flag(void)818 static void __init init_idmap_kpti_bbml2_flag(void)
819 {
820 WRITE_ONCE(idmap_kpti_bbml2_flag, 1);
821 /* Must be visible to other CPUs before stop_machine() is called. */
822 smp_mb();
823 }
824
linear_map_split_to_ptes(void * __unused)825 static int __init linear_map_split_to_ptes(void *__unused)
826 {
827 /*
828 * Repainting the linear map must be done by CPU0 (the boot CPU) because
829 * that's the only CPU that we know supports BBML2. The other CPUs will
830 * be held in a waiting area with the idmap active.
831 */
832 if (!smp_processor_id()) {
833 unsigned long lstart = _PAGE_OFFSET(vabits_actual);
834 unsigned long lend = PAGE_END;
835 unsigned long kstart = (unsigned long)lm_alias(_stext);
836 unsigned long kend = (unsigned long)lm_alias(__init_begin);
837 int ret;
838
839 /*
840 * Wait for all secondary CPUs to be put into the waiting area.
841 */
842 smp_cond_load_acquire(&idmap_kpti_bbml2_flag, VAL == num_online_cpus());
843
844 /*
845 * Walk all of the linear map [lstart, lend), except the kernel
846 * linear map alias [kstart, kend), and split all mappings to
847 * PTE. The kernel alias remains static throughout runtime so
848 * can continue to be safely mapped with large mappings.
849 */
850 ret = walk_kernel_page_table_range_lockless(lstart, kstart,
851 &split_to_ptes_ops, NULL, NULL);
852 if (!ret)
853 ret = walk_kernel_page_table_range_lockless(kend, lend,
854 &split_to_ptes_ops, NULL, NULL);
855 if (ret)
856 panic("Failed to split linear map\n");
857 flush_tlb_kernel_range(lstart, lend);
858
859 /*
860 * Relies on dsb in flush_tlb_kernel_range() to avoid reordering
861 * before any page table split operations.
862 */
863 WRITE_ONCE(idmap_kpti_bbml2_flag, 0);
864 } else {
865 typedef void (wait_split_fn)(void);
866 extern wait_split_fn wait_linear_map_split_to_ptes;
867 wait_split_fn *wait_fn;
868
869 wait_fn = (void *)__pa_symbol(wait_linear_map_split_to_ptes);
870
871 /*
872 * At least one secondary CPU doesn't support BBML2 so cannot
873 * tolerate the size of the live mappings changing. So have the
874 * secondary CPUs wait for the boot CPU to make the changes
875 * with the idmap active and init_mm inactive.
876 */
877 cpu_install_idmap();
878 wait_fn();
879 cpu_uninstall_idmap();
880 }
881
882 return 0;
883 }
884
linear_map_maybe_split_to_ptes(void)885 void __init linear_map_maybe_split_to_ptes(void)
886 {
887 if (linear_map_requires_bbml2 && !system_supports_bbml2_noabort()) {
888 init_idmap_kpti_bbml2_flag();
889 stop_machine(linear_map_split_to_ptes, NULL, cpu_online_mask);
890 }
891 }
892
893 /*
894 * This function can only be used to modify existing table entries,
895 * without allocating new levels of table. Note that this permits the
896 * creation of new section or page entries.
897 */
create_mapping_noalloc(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)898 void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
899 phys_addr_t size, pgprot_t prot)
900 {
901 if (virt < PAGE_OFFSET) {
902 pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
903 &phys, virt);
904 return;
905 }
906 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
907 NO_CONT_MAPPINGS);
908 }
909
create_pgd_mapping(struct mm_struct * mm,phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot,bool page_mappings_only)910 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
911 unsigned long virt, phys_addr_t size,
912 pgprot_t prot, bool page_mappings_only)
913 {
914 int flags = 0;
915
916 BUG_ON(mm == &init_mm);
917
918 if (page_mappings_only)
919 flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
920
921 __create_pgd_mapping(mm->pgd, phys, virt, size, prot,
922 pgd_pgtable_alloc_special_mm, flags);
923 }
924
update_mapping_prot(phys_addr_t phys,unsigned long virt,phys_addr_t size,pgprot_t prot)925 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
926 phys_addr_t size, pgprot_t prot)
927 {
928 if (virt < PAGE_OFFSET) {
929 pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
930 &phys, virt);
931 return;
932 }
933
934 __create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
935 NO_CONT_MAPPINGS);
936
937 /* flush the TLBs after updating live kernel mappings */
938 flush_tlb_kernel_range(virt, virt + size);
939 }
940
__map_memblock(pgd_t * pgdp,phys_addr_t start,phys_addr_t end,pgprot_t prot,int flags)941 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
942 phys_addr_t end, pgprot_t prot, int flags)
943 {
944 __create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
945 prot, early_pgtable_alloc, flags);
946 }
947
mark_linear_text_alias_ro(void)948 void __init mark_linear_text_alias_ro(void)
949 {
950 /*
951 * Remove the write permissions from the linear alias of .text/.rodata
952 */
953 update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
954 (unsigned long)__init_begin - (unsigned long)_text,
955 PAGE_KERNEL_RO);
956 }
957
958 #ifdef CONFIG_KFENCE
959
960 bool __ro_after_init kfence_early_init = !!CONFIG_KFENCE_SAMPLE_INTERVAL;
961
962 /* early_param() will be parsed before map_mem() below. */
parse_kfence_early_init(char * arg)963 static int __init parse_kfence_early_init(char *arg)
964 {
965 int val;
966
967 if (get_option(&arg, &val))
968 kfence_early_init = !!val;
969 return 0;
970 }
971 early_param("kfence.sample_interval", parse_kfence_early_init);
972
arm64_kfence_alloc_pool(void)973 static phys_addr_t __init arm64_kfence_alloc_pool(void)
974 {
975 phys_addr_t kfence_pool;
976
977 if (!kfence_early_init)
978 return 0;
979
980 kfence_pool = memblock_phys_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
981 if (!kfence_pool) {
982 pr_err("failed to allocate kfence pool\n");
983 kfence_early_init = false;
984 return 0;
985 }
986
987 /* Temporarily mark as NOMAP. */
988 memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
989
990 return kfence_pool;
991 }
992
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)993 static void __init arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp)
994 {
995 if (!kfence_pool)
996 return;
997
998 /* KFENCE pool needs page-level mapping. */
999 __map_memblock(pgdp, kfence_pool, kfence_pool + KFENCE_POOL_SIZE,
1000 pgprot_tagged(PAGE_KERNEL),
1001 NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
1002 memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
1003 __kfence_pool = phys_to_virt(kfence_pool);
1004 }
1005 #else /* CONFIG_KFENCE */
1006
arm64_kfence_alloc_pool(void)1007 static inline phys_addr_t arm64_kfence_alloc_pool(void) { return 0; }
arm64_kfence_map_pool(phys_addr_t kfence_pool,pgd_t * pgdp)1008 static inline void arm64_kfence_map_pool(phys_addr_t kfence_pool, pgd_t *pgdp) { }
1009
1010 #endif /* CONFIG_KFENCE */
1011
force_pte_mapping(void)1012 static inline bool force_pte_mapping(void)
1013 {
1014 bool bbml2 = system_capabilities_finalized() ?
1015 system_supports_bbml2_noabort() : cpu_supports_bbml2_noabort();
1016
1017 return (!bbml2 && (rodata_full || arm64_kfence_can_set_direct_map() ||
1018 is_realm_world())) ||
1019 debug_pagealloc_enabled();
1020 }
1021
map_mem(pgd_t * pgdp)1022 static void __init map_mem(pgd_t *pgdp)
1023 {
1024 static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
1025 phys_addr_t kernel_start = __pa_symbol(_text);
1026 phys_addr_t kernel_end = __pa_symbol(__init_begin);
1027 phys_addr_t start, end;
1028 phys_addr_t early_kfence_pool;
1029 int flags = NO_EXEC_MAPPINGS;
1030 u64 i;
1031
1032 /*
1033 * Setting hierarchical PXNTable attributes on table entries covering
1034 * the linear region is only possible if it is guaranteed that no table
1035 * entries at any level are being shared between the linear region and
1036 * the vmalloc region. Check whether this is true for the PGD level, in
1037 * which case it is guaranteed to be true for all other levels as well.
1038 * (Unless we are running with support for LPA2, in which case the
1039 * entire reduced VA space is covered by a single pgd_t which will have
1040 * been populated without the PXNTable attribute by the time we get here.)
1041 */
1042 BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end) &&
1043 pgd_index(_PAGE_OFFSET(VA_BITS_MIN)) != PTRS_PER_PGD - 1);
1044
1045 early_kfence_pool = arm64_kfence_alloc_pool();
1046
1047 linear_map_requires_bbml2 = !force_pte_mapping() && can_set_direct_map();
1048
1049 if (force_pte_mapping())
1050 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1051
1052 /*
1053 * Take care not to create a writable alias for the
1054 * read-only text and rodata sections of the kernel image.
1055 * So temporarily mark them as NOMAP to skip mappings in
1056 * the following for-loop
1057 */
1058 memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
1059
1060 /* map all the memory banks */
1061 for_each_mem_range(i, &start, &end) {
1062 if (start >= end)
1063 break;
1064 /*
1065 * The linear map must allow allocation tags reading/writing
1066 * if MTE is present. Otherwise, it has the same attributes as
1067 * PAGE_KERNEL.
1068 */
1069 __map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
1070 flags);
1071 }
1072
1073 /*
1074 * Map the linear alias of the [_text, __init_begin) interval
1075 * as non-executable now, and remove the write permission in
1076 * mark_linear_text_alias_ro() below (which will be called after
1077 * alternative patching has completed). This makes the contents
1078 * of the region accessible to subsystems such as hibernate,
1079 * but protects it from inadvertent modification or execution.
1080 * Note that contiguous mappings cannot be remapped in this way,
1081 * so we should avoid them here.
1082 */
1083 __map_memblock(pgdp, kernel_start, kernel_end,
1084 PAGE_KERNEL, NO_CONT_MAPPINGS);
1085 memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
1086 arm64_kfence_map_pool(early_kfence_pool, pgdp);
1087 }
1088
mark_rodata_ro(void)1089 void mark_rodata_ro(void)
1090 {
1091 unsigned long section_size;
1092
1093 /*
1094 * mark .rodata as read only. Use __init_begin rather than __end_rodata
1095 * to cover NOTES and EXCEPTION_TABLE.
1096 */
1097 section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
1098 WRITE_ONCE(rodata_is_rw, false);
1099 update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
1100 section_size, PAGE_KERNEL_RO);
1101 /* mark the range between _text and _stext as read only. */
1102 update_mapping_prot(__pa_symbol(_text), (unsigned long)_text,
1103 (unsigned long)_stext - (unsigned long)_text,
1104 PAGE_KERNEL_RO);
1105 }
1106
declare_vma(struct vm_struct * vma,void * va_start,void * va_end,unsigned long vm_flags)1107 static void __init declare_vma(struct vm_struct *vma,
1108 void *va_start, void *va_end,
1109 unsigned long vm_flags)
1110 {
1111 phys_addr_t pa_start = __pa_symbol(va_start);
1112 unsigned long size = va_end - va_start;
1113
1114 BUG_ON(!PAGE_ALIGNED(pa_start));
1115 BUG_ON(!PAGE_ALIGNED(size));
1116
1117 if (!(vm_flags & VM_NO_GUARD))
1118 size += PAGE_SIZE;
1119
1120 vma->addr = va_start;
1121 vma->phys_addr = pa_start;
1122 vma->size = size;
1123 vma->flags = VM_MAP | vm_flags;
1124 vma->caller = __builtin_return_address(0);
1125
1126 vm_area_add_early(vma);
1127 }
1128
1129 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1130 #define KPTI_NG_TEMP_VA (-(1UL << PMD_SHIFT))
1131
1132 static phys_addr_t kpti_ng_temp_alloc __initdata;
1133
kpti_ng_pgd_alloc(enum pgtable_type type)1134 static phys_addr_t __init kpti_ng_pgd_alloc(enum pgtable_type type)
1135 {
1136 kpti_ng_temp_alloc -= PAGE_SIZE;
1137 return kpti_ng_temp_alloc;
1138 }
1139
__kpti_install_ng_mappings(void * __unused)1140 static int __init __kpti_install_ng_mappings(void *__unused)
1141 {
1142 typedef void (kpti_remap_fn)(int, int, phys_addr_t, unsigned long);
1143 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1144 kpti_remap_fn *remap_fn;
1145
1146 int cpu = smp_processor_id();
1147 int levels = CONFIG_PGTABLE_LEVELS;
1148 int order = order_base_2(levels);
1149 u64 kpti_ng_temp_pgd_pa = 0;
1150 pgd_t *kpti_ng_temp_pgd;
1151 u64 alloc = 0;
1152
1153 if (levels == 5 && !pgtable_l5_enabled())
1154 levels = 4;
1155 else if (levels == 4 && !pgtable_l4_enabled())
1156 levels = 3;
1157
1158 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1159
1160 if (!cpu) {
1161 alloc = __get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
1162 kpti_ng_temp_pgd = (pgd_t *)(alloc + (levels - 1) * PAGE_SIZE);
1163 kpti_ng_temp_alloc = kpti_ng_temp_pgd_pa = __pa(kpti_ng_temp_pgd);
1164
1165 //
1166 // Create a minimal page table hierarchy that permits us to map
1167 // the swapper page tables temporarily as we traverse them.
1168 //
1169 // The physical pages are laid out as follows:
1170 //
1171 // +--------+-/-------+-/------ +-/------ +-\\\--------+
1172 // : PTE[] : | PMD[] : | PUD[] : | P4D[] : ||| PGD[] :
1173 // +--------+-\-------+-\------ +-\------ +-///--------+
1174 // ^
1175 // The first page is mapped into this hierarchy at a PMD_SHIFT
1176 // aligned virtual address, so that we can manipulate the PTE
1177 // level entries while the mapping is active. The first entry
1178 // covers the PTE[] page itself, the remaining entries are free
1179 // to be used as a ad-hoc fixmap.
1180 //
1181 __create_pgd_mapping_locked(kpti_ng_temp_pgd, __pa(alloc),
1182 KPTI_NG_TEMP_VA, PAGE_SIZE, PAGE_KERNEL,
1183 kpti_ng_pgd_alloc, 0);
1184 }
1185
1186 cpu_install_idmap();
1187 remap_fn(cpu, num_online_cpus(), kpti_ng_temp_pgd_pa, KPTI_NG_TEMP_VA);
1188 cpu_uninstall_idmap();
1189
1190 if (!cpu) {
1191 free_pages(alloc, order);
1192 arm64_use_ng_mappings = true;
1193 }
1194
1195 return 0;
1196 }
1197
kpti_install_ng_mappings(void)1198 void __init kpti_install_ng_mappings(void)
1199 {
1200 /* Check whether KPTI is going to be used */
1201 if (!arm64_kernel_unmapped_at_el0())
1202 return;
1203
1204 /*
1205 * We don't need to rewrite the page-tables if either we've done
1206 * it already or we have KASLR enabled and therefore have not
1207 * created any global mappings at all.
1208 */
1209 if (arm64_use_ng_mappings)
1210 return;
1211
1212 init_idmap_kpti_bbml2_flag();
1213 stop_machine(__kpti_install_ng_mappings, NULL, cpu_online_mask);
1214 }
1215
kernel_exec_prot(void)1216 static pgprot_t __init kernel_exec_prot(void)
1217 {
1218 return rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
1219 }
1220
map_entry_trampoline(void)1221 static int __init map_entry_trampoline(void)
1222 {
1223 int i;
1224
1225 if (!arm64_kernel_unmapped_at_el0())
1226 return 0;
1227
1228 pgprot_t prot = kernel_exec_prot();
1229 phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
1230
1231 /* The trampoline is always mapped and can therefore be global */
1232 pgprot_val(prot) &= ~PTE_NG;
1233
1234 /* Map only the text into the trampoline page table */
1235 memset(tramp_pg_dir, 0, PGD_SIZE);
1236 __create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS,
1237 entry_tramp_text_size(), prot,
1238 pgd_pgtable_alloc_init_mm, NO_BLOCK_MAPPINGS);
1239
1240 /* Map both the text and data into the kernel page table */
1241 for (i = 0; i < DIV_ROUND_UP(entry_tramp_text_size(), PAGE_SIZE); i++)
1242 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1243 pa_start + i * PAGE_SIZE, prot);
1244
1245 if (IS_ENABLED(CONFIG_RELOCATABLE))
1246 __set_fixmap(FIX_ENTRY_TRAMP_TEXT1 - i,
1247 pa_start + i * PAGE_SIZE, PAGE_KERNEL_RO);
1248
1249 return 0;
1250 }
1251 core_initcall(map_entry_trampoline);
1252 #endif
1253
1254 /*
1255 * Declare the VMA areas for the kernel
1256 */
declare_kernel_vmas(void)1257 static void __init declare_kernel_vmas(void)
1258 {
1259 static struct vm_struct vmlinux_seg[KERNEL_SEGMENT_COUNT];
1260
1261 declare_vma(&vmlinux_seg[0], _text, _etext, VM_NO_GUARD);
1262 declare_vma(&vmlinux_seg[1], __start_rodata, __inittext_begin, VM_NO_GUARD);
1263 declare_vma(&vmlinux_seg[2], __inittext_begin, __inittext_end, VM_NO_GUARD);
1264 declare_vma(&vmlinux_seg[3], __initdata_begin, __initdata_end, VM_NO_GUARD);
1265 declare_vma(&vmlinux_seg[4], _data, _end, 0);
1266 }
1267
1268 void __pi_map_range(phys_addr_t *pte, u64 start, u64 end, phys_addr_t pa,
1269 pgprot_t prot, int level, pte_t *tbl, bool may_use_cont,
1270 u64 va_offset);
1271
1272 static u8 idmap_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init,
1273 kpti_bbml2_ptes[IDMAP_LEVELS - 1][PAGE_SIZE] __aligned(PAGE_SIZE) __ro_after_init;
1274
create_idmap(void)1275 static void __init create_idmap(void)
1276 {
1277 phys_addr_t start = __pa_symbol(__idmap_text_start);
1278 phys_addr_t end = __pa_symbol(__idmap_text_end);
1279 phys_addr_t ptep = __pa_symbol(idmap_ptes);
1280
1281 __pi_map_range(&ptep, start, end, start, PAGE_KERNEL_ROX,
1282 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1283 __phys_to_virt(ptep) - ptep);
1284
1285 if (linear_map_requires_bbml2 ||
1286 (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0) && !arm64_use_ng_mappings)) {
1287 phys_addr_t pa = __pa_symbol(&idmap_kpti_bbml2_flag);
1288
1289 /*
1290 * The KPTI G-to-nG conversion code needs a read-write mapping
1291 * of its synchronization flag in the ID map. This is also used
1292 * when splitting the linear map to ptes if a secondary CPU
1293 * doesn't support bbml2.
1294 */
1295 ptep = __pa_symbol(kpti_bbml2_ptes);
1296 __pi_map_range(&ptep, pa, pa + sizeof(u32), pa, PAGE_KERNEL,
1297 IDMAP_ROOT_LEVEL, (pte_t *)idmap_pg_dir, false,
1298 __phys_to_virt(ptep) - ptep);
1299 }
1300 }
1301
paging_init(void)1302 void __init paging_init(void)
1303 {
1304 map_mem(swapper_pg_dir);
1305
1306 memblock_allow_resize();
1307
1308 create_idmap();
1309 declare_kernel_vmas();
1310 }
1311
1312 #ifdef CONFIG_MEMORY_HOTPLUG
free_hotplug_page_range(struct page * page,size_t size,struct vmem_altmap * altmap)1313 static void free_hotplug_page_range(struct page *page, size_t size,
1314 struct vmem_altmap *altmap)
1315 {
1316 if (altmap) {
1317 vmem_altmap_free(altmap, size >> PAGE_SHIFT);
1318 } else {
1319 WARN_ON(PageReserved(page));
1320 __free_pages(page, get_order(size));
1321 }
1322 }
1323
free_hotplug_pgtable_page(struct page * page)1324 static void free_hotplug_pgtable_page(struct page *page)
1325 {
1326 free_hotplug_page_range(page, PAGE_SIZE, NULL);
1327 }
1328
pgtable_range_aligned(unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling,unsigned long mask)1329 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
1330 unsigned long floor, unsigned long ceiling,
1331 unsigned long mask)
1332 {
1333 start &= mask;
1334 if (start < floor)
1335 return false;
1336
1337 if (ceiling) {
1338 ceiling &= mask;
1339 if (!ceiling)
1340 return false;
1341 }
1342
1343 if (end - 1 > ceiling - 1)
1344 return false;
1345 return true;
1346 }
1347
unmap_hotplug_pte_range(pmd_t * pmdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1348 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
1349 unsigned long end, bool free_mapped,
1350 struct vmem_altmap *altmap)
1351 {
1352 pte_t *ptep, pte;
1353
1354 do {
1355 ptep = pte_offset_kernel(pmdp, addr);
1356 pte = __ptep_get(ptep);
1357 if (pte_none(pte))
1358 continue;
1359
1360 WARN_ON(!pte_present(pte));
1361 __pte_clear(&init_mm, addr, ptep);
1362 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1363 if (free_mapped)
1364 free_hotplug_page_range(pte_page(pte),
1365 PAGE_SIZE, altmap);
1366 } while (addr += PAGE_SIZE, addr < end);
1367 }
1368
unmap_hotplug_pmd_range(pud_t * pudp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1369 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
1370 unsigned long end, bool free_mapped,
1371 struct vmem_altmap *altmap)
1372 {
1373 unsigned long next;
1374 pmd_t *pmdp, pmd;
1375
1376 do {
1377 next = pmd_addr_end(addr, end);
1378 pmdp = pmd_offset(pudp, addr);
1379 pmd = READ_ONCE(*pmdp);
1380 if (pmd_none(pmd))
1381 continue;
1382
1383 WARN_ON(!pmd_present(pmd));
1384 if (pmd_sect(pmd)) {
1385 pmd_clear(pmdp);
1386
1387 /*
1388 * One TLBI should be sufficient here as the PMD_SIZE
1389 * range is mapped with a single block entry.
1390 */
1391 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1392 if (free_mapped)
1393 free_hotplug_page_range(pmd_page(pmd),
1394 PMD_SIZE, altmap);
1395 continue;
1396 }
1397 WARN_ON(!pmd_table(pmd));
1398 unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
1399 } while (addr = next, addr < end);
1400 }
1401
unmap_hotplug_pud_range(p4d_t * p4dp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1402 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
1403 unsigned long end, bool free_mapped,
1404 struct vmem_altmap *altmap)
1405 {
1406 unsigned long next;
1407 pud_t *pudp, pud;
1408
1409 do {
1410 next = pud_addr_end(addr, end);
1411 pudp = pud_offset(p4dp, addr);
1412 pud = READ_ONCE(*pudp);
1413 if (pud_none(pud))
1414 continue;
1415
1416 WARN_ON(!pud_present(pud));
1417 if (pud_sect(pud)) {
1418 pud_clear(pudp);
1419
1420 /*
1421 * One TLBI should be sufficient here as the PUD_SIZE
1422 * range is mapped with a single block entry.
1423 */
1424 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
1425 if (free_mapped)
1426 free_hotplug_page_range(pud_page(pud),
1427 PUD_SIZE, altmap);
1428 continue;
1429 }
1430 WARN_ON(!pud_table(pud));
1431 unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
1432 } while (addr = next, addr < end);
1433 }
1434
unmap_hotplug_p4d_range(pgd_t * pgdp,unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1435 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
1436 unsigned long end, bool free_mapped,
1437 struct vmem_altmap *altmap)
1438 {
1439 unsigned long next;
1440 p4d_t *p4dp, p4d;
1441
1442 do {
1443 next = p4d_addr_end(addr, end);
1444 p4dp = p4d_offset(pgdp, addr);
1445 p4d = READ_ONCE(*p4dp);
1446 if (p4d_none(p4d))
1447 continue;
1448
1449 WARN_ON(!p4d_present(p4d));
1450 unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
1451 } while (addr = next, addr < end);
1452 }
1453
unmap_hotplug_range(unsigned long addr,unsigned long end,bool free_mapped,struct vmem_altmap * altmap)1454 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
1455 bool free_mapped, struct vmem_altmap *altmap)
1456 {
1457 unsigned long next;
1458 pgd_t *pgdp, pgd;
1459
1460 /*
1461 * altmap can only be used as vmemmap mapping backing memory.
1462 * In case the backing memory itself is not being freed, then
1463 * altmap is irrelevant. Warn about this inconsistency when
1464 * encountered.
1465 */
1466 WARN_ON(!free_mapped && altmap);
1467
1468 do {
1469 next = pgd_addr_end(addr, end);
1470 pgdp = pgd_offset_k(addr);
1471 pgd = READ_ONCE(*pgdp);
1472 if (pgd_none(pgd))
1473 continue;
1474
1475 WARN_ON(!pgd_present(pgd));
1476 unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
1477 } while (addr = next, addr < end);
1478 }
1479
free_empty_pte_table(pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1480 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
1481 unsigned long end, unsigned long floor,
1482 unsigned long ceiling)
1483 {
1484 pte_t *ptep, pte;
1485 unsigned long i, start = addr;
1486
1487 do {
1488 ptep = pte_offset_kernel(pmdp, addr);
1489 pte = __ptep_get(ptep);
1490
1491 /*
1492 * This is just a sanity check here which verifies that
1493 * pte clearing has been done by earlier unmap loops.
1494 */
1495 WARN_ON(!pte_none(pte));
1496 } while (addr += PAGE_SIZE, addr < end);
1497
1498 if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
1499 return;
1500
1501 /*
1502 * Check whether we can free the pte page if the rest of the
1503 * entries are empty. Overlap with other regions have been
1504 * handled by the floor/ceiling check.
1505 */
1506 ptep = pte_offset_kernel(pmdp, 0UL);
1507 for (i = 0; i < PTRS_PER_PTE; i++) {
1508 if (!pte_none(__ptep_get(&ptep[i])))
1509 return;
1510 }
1511
1512 pmd_clear(pmdp);
1513 __flush_tlb_kernel_pgtable(start);
1514 free_hotplug_pgtable_page(virt_to_page(ptep));
1515 }
1516
free_empty_pmd_table(pud_t * pudp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1517 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1518 unsigned long end, unsigned long floor,
1519 unsigned long ceiling)
1520 {
1521 pmd_t *pmdp, pmd;
1522 unsigned long i, next, start = addr;
1523
1524 do {
1525 next = pmd_addr_end(addr, end);
1526 pmdp = pmd_offset(pudp, addr);
1527 pmd = READ_ONCE(*pmdp);
1528 if (pmd_none(pmd))
1529 continue;
1530
1531 WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1532 free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1533 } while (addr = next, addr < end);
1534
1535 if (CONFIG_PGTABLE_LEVELS <= 2)
1536 return;
1537
1538 if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1539 return;
1540
1541 /*
1542 * Check whether we can free the pmd page if the rest of the
1543 * entries are empty. Overlap with other regions have been
1544 * handled by the floor/ceiling check.
1545 */
1546 pmdp = pmd_offset(pudp, 0UL);
1547 for (i = 0; i < PTRS_PER_PMD; i++) {
1548 if (!pmd_none(READ_ONCE(pmdp[i])))
1549 return;
1550 }
1551
1552 pud_clear(pudp);
1553 __flush_tlb_kernel_pgtable(start);
1554 free_hotplug_pgtable_page(virt_to_page(pmdp));
1555 }
1556
free_empty_pud_table(p4d_t * p4dp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1557 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1558 unsigned long end, unsigned long floor,
1559 unsigned long ceiling)
1560 {
1561 pud_t *pudp, pud;
1562 unsigned long i, next, start = addr;
1563
1564 do {
1565 next = pud_addr_end(addr, end);
1566 pudp = pud_offset(p4dp, addr);
1567 pud = READ_ONCE(*pudp);
1568 if (pud_none(pud))
1569 continue;
1570
1571 WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1572 free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1573 } while (addr = next, addr < end);
1574
1575 if (!pgtable_l4_enabled())
1576 return;
1577
1578 if (!pgtable_range_aligned(start, end, floor, ceiling, P4D_MASK))
1579 return;
1580
1581 /*
1582 * Check whether we can free the pud page if the rest of the
1583 * entries are empty. Overlap with other regions have been
1584 * handled by the floor/ceiling check.
1585 */
1586 pudp = pud_offset(p4dp, 0UL);
1587 for (i = 0; i < PTRS_PER_PUD; i++) {
1588 if (!pud_none(READ_ONCE(pudp[i])))
1589 return;
1590 }
1591
1592 p4d_clear(p4dp);
1593 __flush_tlb_kernel_pgtable(start);
1594 free_hotplug_pgtable_page(virt_to_page(pudp));
1595 }
1596
free_empty_p4d_table(pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1597 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1598 unsigned long end, unsigned long floor,
1599 unsigned long ceiling)
1600 {
1601 p4d_t *p4dp, p4d;
1602 unsigned long i, next, start = addr;
1603
1604 do {
1605 next = p4d_addr_end(addr, end);
1606 p4dp = p4d_offset(pgdp, addr);
1607 p4d = READ_ONCE(*p4dp);
1608 if (p4d_none(p4d))
1609 continue;
1610
1611 WARN_ON(!p4d_present(p4d));
1612 free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1613 } while (addr = next, addr < end);
1614
1615 if (!pgtable_l5_enabled())
1616 return;
1617
1618 if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1619 return;
1620
1621 /*
1622 * Check whether we can free the p4d page if the rest of the
1623 * entries are empty. Overlap with other regions have been
1624 * handled by the floor/ceiling check.
1625 */
1626 p4dp = p4d_offset(pgdp, 0UL);
1627 for (i = 0; i < PTRS_PER_P4D; i++) {
1628 if (!p4d_none(READ_ONCE(p4dp[i])))
1629 return;
1630 }
1631
1632 pgd_clear(pgdp);
1633 __flush_tlb_kernel_pgtable(start);
1634 free_hotplug_pgtable_page(virt_to_page(p4dp));
1635 }
1636
free_empty_tables(unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)1637 static void free_empty_tables(unsigned long addr, unsigned long end,
1638 unsigned long floor, unsigned long ceiling)
1639 {
1640 unsigned long next;
1641 pgd_t *pgdp, pgd;
1642
1643 do {
1644 next = pgd_addr_end(addr, end);
1645 pgdp = pgd_offset_k(addr);
1646 pgd = READ_ONCE(*pgdp);
1647 if (pgd_none(pgd))
1648 continue;
1649
1650 WARN_ON(!pgd_present(pgd));
1651 free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1652 } while (addr = next, addr < end);
1653 }
1654 #endif
1655
vmemmap_set_pmd(pmd_t * pmdp,void * p,int node,unsigned long addr,unsigned long next)1656 void __meminit vmemmap_set_pmd(pmd_t *pmdp, void *p, int node,
1657 unsigned long addr, unsigned long next)
1658 {
1659 pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1660 }
1661
vmemmap_check_pmd(pmd_t * pmdp,int node,unsigned long addr,unsigned long next)1662 int __meminit vmemmap_check_pmd(pmd_t *pmdp, int node,
1663 unsigned long addr, unsigned long next)
1664 {
1665 vmemmap_verify((pte_t *)pmdp, node, addr, next);
1666
1667 return pmd_sect(READ_ONCE(*pmdp));
1668 }
1669
vmemmap_populate(unsigned long start,unsigned long end,int node,struct vmem_altmap * altmap)1670 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1671 struct vmem_altmap *altmap)
1672 {
1673 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1674 /* [start, end] should be within one section */
1675 WARN_ON_ONCE(end - start > PAGES_PER_SECTION * sizeof(struct page));
1676
1677 if (!IS_ENABLED(CONFIG_ARM64_4K_PAGES) ||
1678 (end - start < PAGES_PER_SECTION * sizeof(struct page)))
1679 return vmemmap_populate_basepages(start, end, node, altmap);
1680 else
1681 return vmemmap_populate_hugepages(start, end, node, altmap);
1682 }
1683
1684 #ifdef CONFIG_MEMORY_HOTPLUG
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)1685 void vmemmap_free(unsigned long start, unsigned long end,
1686 struct vmem_altmap *altmap)
1687 {
1688 WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1689
1690 unmap_hotplug_range(start, end, true, altmap);
1691 free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1692 }
1693 #endif /* CONFIG_MEMORY_HOTPLUG */
1694
pud_set_huge(pud_t * pudp,phys_addr_t phys,pgprot_t prot)1695 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1696 {
1697 pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1698
1699 /* Only allow permission changes for now */
1700 if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1701 pud_val(new_pud)))
1702 return 0;
1703
1704 VM_BUG_ON(phys & ~PUD_MASK);
1705 set_pud(pudp, new_pud);
1706 return 1;
1707 }
1708
pmd_set_huge(pmd_t * pmdp,phys_addr_t phys,pgprot_t prot)1709 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1710 {
1711 pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1712
1713 /* Only allow permission changes for now */
1714 if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1715 pmd_val(new_pmd)))
1716 return 0;
1717
1718 VM_BUG_ON(phys & ~PMD_MASK);
1719 set_pmd(pmdp, new_pmd);
1720 return 1;
1721 }
1722
1723 #ifndef __PAGETABLE_P4D_FOLDED
p4d_clear_huge(p4d_t * p4dp)1724 void p4d_clear_huge(p4d_t *p4dp)
1725 {
1726 }
1727 #endif
1728
pud_clear_huge(pud_t * pudp)1729 int pud_clear_huge(pud_t *pudp)
1730 {
1731 if (!pud_sect(READ_ONCE(*pudp)))
1732 return 0;
1733 pud_clear(pudp);
1734 return 1;
1735 }
1736
pmd_clear_huge(pmd_t * pmdp)1737 int pmd_clear_huge(pmd_t *pmdp)
1738 {
1739 if (!pmd_sect(READ_ONCE(*pmdp)))
1740 return 0;
1741 pmd_clear(pmdp);
1742 return 1;
1743 }
1744
__pmd_free_pte_page(pmd_t * pmdp,unsigned long addr,bool acquire_mmap_lock)1745 static int __pmd_free_pte_page(pmd_t *pmdp, unsigned long addr,
1746 bool acquire_mmap_lock)
1747 {
1748 pte_t *table;
1749 pmd_t pmd;
1750
1751 pmd = READ_ONCE(*pmdp);
1752
1753 if (!pmd_table(pmd)) {
1754 VM_WARN_ON(1);
1755 return 1;
1756 }
1757
1758 /* See comment in pud_free_pmd_page for static key logic */
1759 table = pte_offset_kernel(pmdp, addr);
1760 pmd_clear(pmdp);
1761 __flush_tlb_kernel_pgtable(addr);
1762 if (static_branch_unlikely(&arm64_ptdump_lock_key) && acquire_mmap_lock) {
1763 mmap_read_lock(&init_mm);
1764 mmap_read_unlock(&init_mm);
1765 }
1766
1767 pte_free_kernel(NULL, table);
1768 return 1;
1769 }
1770
pmd_free_pte_page(pmd_t * pmdp,unsigned long addr)1771 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1772 {
1773 /* If ptdump is walking the pagetables, acquire init_mm.mmap_lock */
1774 return __pmd_free_pte_page(pmdp, addr, /* acquire_mmap_lock = */ true);
1775 }
1776
pud_free_pmd_page(pud_t * pudp,unsigned long addr)1777 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1778 {
1779 pmd_t *table;
1780 pmd_t *pmdp;
1781 pud_t pud;
1782 unsigned long next, end;
1783
1784 pud = READ_ONCE(*pudp);
1785
1786 if (!pud_table(pud)) {
1787 VM_WARN_ON(1);
1788 return 1;
1789 }
1790
1791 table = pmd_offset(pudp, addr);
1792
1793 /*
1794 * Our objective is to prevent ptdump from reading a PMD table which has
1795 * been freed. In this race, if pud_free_pmd_page observes the key on
1796 * (which got flipped by ptdump) then the mmap lock sequence here will,
1797 * as a result of the mmap write lock/unlock sequence in ptdump, give
1798 * us the correct synchronization. If not, this means that ptdump has
1799 * yet not started walking the pagetables - the sequence of barriers
1800 * issued by __flush_tlb_kernel_pgtable() guarantees that ptdump will
1801 * observe an empty PUD.
1802 */
1803 pud_clear(pudp);
1804 __flush_tlb_kernel_pgtable(addr);
1805 if (static_branch_unlikely(&arm64_ptdump_lock_key)) {
1806 mmap_read_lock(&init_mm);
1807 mmap_read_unlock(&init_mm);
1808 }
1809
1810 pmdp = table;
1811 next = addr;
1812 end = addr + PUD_SIZE;
1813 do {
1814 if (pmd_present(pmdp_get(pmdp)))
1815 /*
1816 * PMD has been isolated, so ptdump won't see it. No
1817 * need to acquire init_mm.mmap_lock.
1818 */
1819 __pmd_free_pte_page(pmdp, next, /* acquire_mmap_lock = */ false);
1820 } while (pmdp++, next += PMD_SIZE, next != end);
1821
1822 pmd_free(NULL, table);
1823 return 1;
1824 }
1825
1826 #ifdef CONFIG_MEMORY_HOTPLUG
__remove_pgd_mapping(pgd_t * pgdir,unsigned long start,u64 size)1827 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1828 {
1829 unsigned long end = start + size;
1830
1831 WARN_ON(pgdir != init_mm.pgd);
1832 WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1833
1834 unmap_hotplug_range(start, end, false, NULL);
1835 free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1836 }
1837
arch_get_mappable_range(void)1838 struct range arch_get_mappable_range(void)
1839 {
1840 struct range mhp_range;
1841 phys_addr_t start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1842 phys_addr_t end_linear_pa = __pa(PAGE_END - 1);
1843
1844 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1845 /*
1846 * Check for a wrap, it is possible because of randomized linear
1847 * mapping the start physical address is actually bigger than
1848 * the end physical address. In this case set start to zero
1849 * because [0, end_linear_pa] range must still be able to cover
1850 * all addressable physical addresses.
1851 */
1852 if (start_linear_pa > end_linear_pa)
1853 start_linear_pa = 0;
1854 }
1855
1856 WARN_ON(start_linear_pa > end_linear_pa);
1857
1858 /*
1859 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1860 * accommodating both its ends but excluding PAGE_END. Max physical
1861 * range which can be mapped inside this linear mapping range, must
1862 * also be derived from its end points.
1863 */
1864 mhp_range.start = start_linear_pa;
1865 mhp_range.end = end_linear_pa;
1866
1867 return mhp_range;
1868 }
1869
arch_add_memory(int nid,u64 start,u64 size,struct mhp_params * params)1870 int arch_add_memory(int nid, u64 start, u64 size,
1871 struct mhp_params *params)
1872 {
1873 int ret, flags = NO_EXEC_MAPPINGS;
1874
1875 VM_BUG_ON(!mhp_range_allowed(start, size, true));
1876
1877 if (force_pte_mapping())
1878 flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1879
1880 __create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1881 size, params->pgprot, pgd_pgtable_alloc_init_mm,
1882 flags);
1883
1884 memblock_clear_nomap(start, size);
1885
1886 ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1887 params);
1888 if (ret)
1889 __remove_pgd_mapping(swapper_pg_dir,
1890 __phys_to_virt(start), size);
1891 else {
1892 /* Address of hotplugged memory can be smaller */
1893 max_pfn = max(max_pfn, PFN_UP(start + size));
1894 max_low_pfn = max_pfn;
1895 }
1896
1897 return ret;
1898 }
1899
arch_remove_memory(u64 start,u64 size,struct vmem_altmap * altmap)1900 void arch_remove_memory(u64 start, u64 size, struct vmem_altmap *altmap)
1901 {
1902 unsigned long start_pfn = start >> PAGE_SHIFT;
1903 unsigned long nr_pages = size >> PAGE_SHIFT;
1904
1905 __remove_pages(start_pfn, nr_pages, altmap);
1906 __remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1907 }
1908
1909 /*
1910 * This memory hotplug notifier helps prevent boot memory from being
1911 * inadvertently removed as it blocks pfn range offlining process in
1912 * __offline_pages(). Hence this prevents both offlining as well as
1913 * removal process for boot memory which is initially always online.
1914 * In future if and when boot memory could be removed, this notifier
1915 * should be dropped and free_hotplug_page_range() should handle any
1916 * reserved pages allocated during boot.
1917 */
prevent_bootmem_remove_notifier(struct notifier_block * nb,unsigned long action,void * data)1918 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1919 unsigned long action, void *data)
1920 {
1921 struct mem_section *ms;
1922 struct memory_notify *arg = data;
1923 unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1924 unsigned long pfn = arg->start_pfn;
1925
1926 if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1927 return NOTIFY_OK;
1928
1929 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1930 unsigned long start = PFN_PHYS(pfn);
1931 unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1932
1933 ms = __pfn_to_section(pfn);
1934 if (!early_section(ms))
1935 continue;
1936
1937 if (action == MEM_GOING_OFFLINE) {
1938 /*
1939 * Boot memory removal is not supported. Prevent
1940 * it via blocking any attempted offline request
1941 * for the boot memory and just report it.
1942 */
1943 pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1944 return NOTIFY_BAD;
1945 } else if (action == MEM_OFFLINE) {
1946 /*
1947 * This should have never happened. Boot memory
1948 * offlining should have been prevented by this
1949 * very notifier. Probably some memory removal
1950 * procedure might have changed which would then
1951 * require further debug.
1952 */
1953 pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1954
1955 /*
1956 * Core memory hotplug does not process a return
1957 * code from the notifier for MEM_OFFLINE events.
1958 * The error condition has been reported. Return
1959 * from here as if ignored.
1960 */
1961 return NOTIFY_DONE;
1962 }
1963 }
1964 return NOTIFY_OK;
1965 }
1966
1967 static struct notifier_block prevent_bootmem_remove_nb = {
1968 .notifier_call = prevent_bootmem_remove_notifier,
1969 };
1970
1971 /*
1972 * This ensures that boot memory sections on the platform are online
1973 * from early boot. Memory sections could not be prevented from being
1974 * offlined, unless for some reason they are not online to begin with.
1975 * This helps validate the basic assumption on which the above memory
1976 * event notifier works to prevent boot memory section offlining and
1977 * its possible removal.
1978 */
validate_bootmem_online(void)1979 static void validate_bootmem_online(void)
1980 {
1981 phys_addr_t start, end, addr;
1982 struct mem_section *ms;
1983 u64 i;
1984
1985 /*
1986 * Scanning across all memblock might be expensive
1987 * on some big memory systems. Hence enable this
1988 * validation only with DEBUG_VM.
1989 */
1990 if (!IS_ENABLED(CONFIG_DEBUG_VM))
1991 return;
1992
1993 for_each_mem_range(i, &start, &end) {
1994 for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1995 ms = __pfn_to_section(PHYS_PFN(addr));
1996
1997 /*
1998 * All memory ranges in the system at this point
1999 * should have been marked as early sections.
2000 */
2001 WARN_ON(!early_section(ms));
2002
2003 /*
2004 * Memory notifier mechanism here to prevent boot
2005 * memory offlining depends on the fact that each
2006 * early section memory on the system is initially
2007 * online. Otherwise a given memory section which
2008 * is already offline will be overlooked and can
2009 * be removed completely. Call out such sections.
2010 */
2011 if (!online_section(ms))
2012 pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
2013 addr, addr + (1UL << PA_SECTION_SHIFT));
2014 }
2015 }
2016 }
2017
prevent_bootmem_remove_init(void)2018 static int __init prevent_bootmem_remove_init(void)
2019 {
2020 int ret = 0;
2021
2022 if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
2023 return ret;
2024
2025 validate_bootmem_online();
2026 ret = register_memory_notifier(&prevent_bootmem_remove_nb);
2027 if (ret)
2028 pr_err("%s: Notifier registration failed %d\n", __func__, ret);
2029
2030 return ret;
2031 }
2032 early_initcall(prevent_bootmem_remove_init);
2033 #endif
2034
modify_prot_start_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr)2035 pte_t modify_prot_start_ptes(struct vm_area_struct *vma, unsigned long addr,
2036 pte_t *ptep, unsigned int nr)
2037 {
2038 pte_t pte = get_and_clear_ptes(vma->vm_mm, addr, ptep, nr);
2039
2040 if (alternative_has_cap_unlikely(ARM64_WORKAROUND_2645198)) {
2041 /*
2042 * Break-before-make (BBM) is required for all user space mappings
2043 * when the permission changes from executable to non-executable
2044 * in cases where cpu is affected with errata #2645198.
2045 */
2046 if (pte_accessible(vma->vm_mm, pte) && pte_user_exec(pte))
2047 __flush_tlb_range(vma, addr, nr * PAGE_SIZE,
2048 PAGE_SIZE, true, 3);
2049 }
2050
2051 return pte;
2052 }
2053
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)2054 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
2055 {
2056 return modify_prot_start_ptes(vma, addr, ptep, 1);
2057 }
2058
modify_prot_commit_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte,unsigned int nr)2059 void modify_prot_commit_ptes(struct vm_area_struct *vma, unsigned long addr,
2060 pte_t *ptep, pte_t old_pte, pte_t pte,
2061 unsigned int nr)
2062 {
2063 set_ptes(vma->vm_mm, addr, ptep, pte, nr);
2064 }
2065
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)2066 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep,
2067 pte_t old_pte, pte_t pte)
2068 {
2069 modify_prot_commit_ptes(vma, addr, ptep, old_pte, pte, 1);
2070 }
2071
2072 /*
2073 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD,
2074 * avoiding the possibility of conflicting TLB entries being allocated.
2075 */
__cpu_replace_ttbr1(pgd_t * pgdp,bool cnp)2076 void __cpu_replace_ttbr1(pgd_t *pgdp, bool cnp)
2077 {
2078 typedef void (ttbr_replace_func)(phys_addr_t);
2079 extern ttbr_replace_func idmap_cpu_replace_ttbr1;
2080 ttbr_replace_func *replace_phys;
2081 unsigned long daif;
2082
2083 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */
2084 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp));
2085
2086 if (cnp)
2087 ttbr1 |= TTBR_CNP_BIT;
2088
2089 replace_phys = (void *)__pa_symbol(idmap_cpu_replace_ttbr1);
2090
2091 cpu_install_idmap();
2092
2093 /*
2094 * We really don't want to take *any* exceptions while TTBR1 is
2095 * in the process of being replaced so mask everything.
2096 */
2097 daif = local_daif_save();
2098 replace_phys(ttbr1);
2099 local_daif_restore(daif);
2100
2101 cpu_uninstall_idmap();
2102 }
2103
2104 #ifdef CONFIG_ARCH_HAS_PKEYS
arch_set_user_pkey_access(struct task_struct * tsk,int pkey,unsigned long init_val)2105 int arch_set_user_pkey_access(struct task_struct *tsk, int pkey, unsigned long init_val)
2106 {
2107 u64 new_por;
2108 u64 old_por;
2109
2110 if (!system_supports_poe())
2111 return -ENOSPC;
2112
2113 /*
2114 * This code should only be called with valid 'pkey'
2115 * values originating from in-kernel users. Complain
2116 * if a bad value is observed.
2117 */
2118 if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
2119 return -EINVAL;
2120
2121 /* Set the bits we need in POR: */
2122 new_por = POE_RWX;
2123 if (init_val & PKEY_DISABLE_WRITE)
2124 new_por &= ~POE_W;
2125 if (init_val & PKEY_DISABLE_ACCESS)
2126 new_por &= ~POE_RW;
2127 if (init_val & PKEY_DISABLE_READ)
2128 new_por &= ~POE_R;
2129 if (init_val & PKEY_DISABLE_EXECUTE)
2130 new_por &= ~POE_X;
2131
2132 /* Shift the bits in to the correct place in POR for pkey: */
2133 new_por = POR_ELx_PERM_PREP(pkey, new_por);
2134
2135 /* Get old POR and mask off any old bits in place: */
2136 old_por = read_sysreg_s(SYS_POR_EL0);
2137 old_por &= ~(POE_MASK << POR_ELx_PERM_SHIFT(pkey));
2138
2139 /* Write old part along with new part: */
2140 write_sysreg_s(old_por | new_por, SYS_POR_EL0);
2141
2142 return 0;
2143 }
2144 #endif
2145