1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 11 #include <linux/swap.h> 12 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 18 #include <cluster/masklog.h> 19 20 #include "ocfs2.h" 21 22 #include "alloc.h" 23 #include "aops.h" 24 #include "dlmglue.h" 25 #include "extent_map.h" 26 #include "file.h" 27 #include "inode.h" 28 #include "journal.h" 29 #include "suballoc.h" 30 #include "super.h" 31 #include "symlink.h" 32 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 34 35 #include "buffer_head_io.h" 36 #include "dir.h" 37 #include "namei.h" 38 #include "sysfile.h" 39 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buffer_head *bh_result, int create) 42 { 43 int err = -EIO; 44 int status; 45 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 void *kaddr; 50 51 trace_ocfs2_symlink_get_block( 52 (unsigned long long)OCFS2_I(inode)->ip_blkno, 53 (unsigned long long)iblock, bh_result, create); 54 55 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 56 57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 59 (unsigned long long)iblock); 60 goto bail; 61 } 62 63 status = ocfs2_read_inode_block(inode, &bh); 64 if (status < 0) { 65 mlog_errno(status); 66 goto bail; 67 } 68 fe = (struct ocfs2_dinode *) bh->b_data; 69 70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 71 le32_to_cpu(fe->i_clusters))) { 72 err = -ENOMEM; 73 mlog(ML_ERROR, "block offset is outside the allocated size: " 74 "%llu\n", (unsigned long long)iblock); 75 goto bail; 76 } 77 78 /* We don't use the page cache to create symlink data, so if 79 * need be, copy it over from the buffer cache. */ 80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 82 iblock; 83 buffer_cache_bh = sb_getblk(osb->sb, blkno); 84 if (!buffer_cache_bh) { 85 err = -ENOMEM; 86 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 87 goto bail; 88 } 89 90 /* we haven't locked out transactions, so a commit 91 * could've happened. Since we've got a reference on 92 * the bh, even if it commits while we're doing the 93 * copy, the data is still good. */ 94 if (buffer_jbd(buffer_cache_bh) 95 && ocfs2_inode_is_new(inode)) { 96 kaddr = kmap_atomic(bh_result->b_page); 97 if (!kaddr) { 98 mlog(ML_ERROR, "couldn't kmap!\n"); 99 goto bail; 100 } 101 memcpy(kaddr + (bh_result->b_size * iblock), 102 buffer_cache_bh->b_data, 103 bh_result->b_size); 104 kunmap_atomic(kaddr); 105 set_buffer_uptodate(bh_result); 106 } 107 brelse(buffer_cache_bh); 108 } 109 110 map_bh(bh_result, inode->i_sb, 111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 112 113 err = 0; 114 115 bail: 116 brelse(bh); 117 118 return err; 119 } 120 121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 122 struct buffer_head *bh_result, int create) 123 { 124 int ret = 0; 125 struct ocfs2_inode_info *oi = OCFS2_I(inode); 126 127 down_read(&oi->ip_alloc_sem); 128 ret = ocfs2_get_block(inode, iblock, bh_result, create); 129 up_read(&oi->ip_alloc_sem); 130 131 return ret; 132 } 133 134 int ocfs2_get_block(struct inode *inode, sector_t iblock, 135 struct buffer_head *bh_result, int create) 136 { 137 int err = 0; 138 unsigned int ext_flags; 139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 140 u64 p_blkno, count, past_eof; 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 142 143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 144 (unsigned long long)iblock, bh_result, create); 145 146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 148 inode, inode->i_ino); 149 150 if (S_ISLNK(inode->i_mode)) { 151 /* this always does I/O for some reason. */ 152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 153 goto bail; 154 } 155 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 157 &ext_flags); 158 if (err) { 159 mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, " 160 "block: %llu\n", inode, (unsigned long long)iblock); 161 goto bail; 162 } 163 164 if (max_blocks < count) 165 count = max_blocks; 166 167 /* 168 * ocfs2 never allocates in this function - the only time we 169 * need to use BH_New is when we're extending i_size on a file 170 * system which doesn't support holes, in which case BH_New 171 * allows __block_write_begin() to zero. 172 * 173 * If we see this on a sparse file system, then a truncate has 174 * raced us and removed the cluster. In this case, we clear 175 * the buffers dirty and uptodate bits and let the buffer code 176 * ignore it as a hole. 177 */ 178 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 179 clear_buffer_dirty(bh_result); 180 clear_buffer_uptodate(bh_result); 181 goto bail; 182 } 183 184 /* Treat the unwritten extent as a hole for zeroing purposes. */ 185 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 186 map_bh(bh_result, inode->i_sb, p_blkno); 187 188 bh_result->b_size = count << inode->i_blkbits; 189 190 if (!ocfs2_sparse_alloc(osb)) { 191 if (p_blkno == 0) { 192 err = -EIO; 193 mlog(ML_ERROR, 194 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 195 (unsigned long long)iblock, 196 (unsigned long long)p_blkno, 197 (unsigned long long)OCFS2_I(inode)->ip_blkno); 198 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 199 dump_stack(); 200 goto bail; 201 } 202 } 203 204 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 205 206 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 207 (unsigned long long)past_eof); 208 if (create && (iblock >= past_eof)) 209 set_buffer_new(bh_result); 210 211 bail: 212 if (err < 0) 213 err = -EIO; 214 215 return err; 216 } 217 218 int ocfs2_read_inline_data(struct inode *inode, struct folio *folio, 219 struct buffer_head *di_bh) 220 { 221 loff_t size; 222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 223 224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 226 (unsigned long long)OCFS2_I(inode)->ip_blkno); 227 return -EROFS; 228 } 229 230 size = i_size_read(inode); 231 232 if (size > folio_size(folio) || 233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 234 ocfs2_error(inode->i_sb, 235 "Inode %llu has with inline data has bad size: %Lu\n", 236 (unsigned long long)OCFS2_I(inode)->ip_blkno, 237 (unsigned long long)size); 238 return -EROFS; 239 } 240 241 folio_fill_tail(folio, 0, di->id2.i_data.id_data, size); 242 folio_mark_uptodate(folio); 243 244 return 0; 245 } 246 247 static int ocfs2_readpage_inline(struct inode *inode, struct folio *folio) 248 { 249 int ret; 250 struct buffer_head *di_bh = NULL; 251 252 BUG_ON(!folio_test_locked(folio)); 253 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 254 255 ret = ocfs2_read_inode_block(inode, &di_bh); 256 if (ret) { 257 mlog_errno(ret); 258 goto out; 259 } 260 261 ret = ocfs2_read_inline_data(inode, folio, di_bh); 262 out: 263 folio_unlock(folio); 264 265 brelse(di_bh); 266 return ret; 267 } 268 269 static int ocfs2_read_folio(struct file *file, struct folio *folio) 270 { 271 struct inode *inode = folio->mapping->host; 272 struct ocfs2_inode_info *oi = OCFS2_I(inode); 273 loff_t start = folio_pos(folio); 274 int ret, unlock = 1; 275 276 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index); 277 278 ret = ocfs2_inode_lock_with_folio(inode, NULL, 0, folio); 279 if (ret != 0) { 280 if (ret == AOP_TRUNCATED_PAGE) 281 unlock = 0; 282 mlog_errno(ret); 283 goto out; 284 } 285 286 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 287 /* 288 * Unlock the folio and cycle ip_alloc_sem so that we don't 289 * busyloop waiting for ip_alloc_sem to unlock 290 */ 291 ret = AOP_TRUNCATED_PAGE; 292 folio_unlock(folio); 293 unlock = 0; 294 down_read(&oi->ip_alloc_sem); 295 up_read(&oi->ip_alloc_sem); 296 goto out_inode_unlock; 297 } 298 299 /* 300 * i_size might have just been updated as we grabbed the meta lock. We 301 * might now be discovering a truncate that hit on another node. 302 * block_read_full_folio->get_block freaks out if it is asked to read 303 * beyond the end of a file, so we check here. Callers 304 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 305 * and notice that the folio they just read isn't needed. 306 * 307 * XXX sys_readahead() seems to get that wrong? 308 */ 309 if (start >= i_size_read(inode)) { 310 folio_zero_segment(folio, 0, folio_size(folio)); 311 folio_mark_uptodate(folio); 312 ret = 0; 313 goto out_alloc; 314 } 315 316 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 317 ret = ocfs2_readpage_inline(inode, folio); 318 else 319 ret = block_read_full_folio(folio, ocfs2_get_block); 320 unlock = 0; 321 322 out_alloc: 323 up_read(&oi->ip_alloc_sem); 324 out_inode_unlock: 325 ocfs2_inode_unlock(inode, 0); 326 out: 327 if (unlock) 328 folio_unlock(folio); 329 return ret; 330 } 331 332 /* 333 * This is used only for read-ahead. Failures or difficult to handle 334 * situations are safe to ignore. 335 * 336 * Right now, we don't bother with BH_Boundary - in-inode extent lists 337 * are quite large (243 extents on 4k blocks), so most inodes don't 338 * grow out to a tree. If need be, detecting boundary extents could 339 * trivially be added in a future version of ocfs2_get_block(). 340 */ 341 static void ocfs2_readahead(struct readahead_control *rac) 342 { 343 int ret; 344 struct inode *inode = rac->mapping->host; 345 struct ocfs2_inode_info *oi = OCFS2_I(inode); 346 347 /* 348 * Use the nonblocking flag for the dlm code to avoid page 349 * lock inversion, but don't bother with retrying. 350 */ 351 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 352 if (ret) 353 return; 354 355 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 356 goto out_unlock; 357 358 /* 359 * Don't bother with inline-data. There isn't anything 360 * to read-ahead in that case anyway... 361 */ 362 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 363 goto out_up; 364 365 /* 366 * Check whether a remote node truncated this file - we just 367 * drop out in that case as it's not worth handling here. 368 */ 369 if (readahead_pos(rac) >= i_size_read(inode)) 370 goto out_up; 371 372 mpage_readahead(rac, ocfs2_get_block); 373 374 out_up: 375 up_read(&oi->ip_alloc_sem); 376 out_unlock: 377 ocfs2_inode_unlock(inode, 0); 378 } 379 380 /* Note: Because we don't support holes, our allocation has 381 * already happened (allocation writes zeros to the file data) 382 * so we don't have to worry about ordered writes in 383 * ocfs2_writepages. 384 * 385 * ->writepages is called during the process of invalidating the page cache 386 * during blocked lock processing. It can't block on any cluster locks 387 * to during block mapping. It's relying on the fact that the block 388 * mapping can't have disappeared under the dirty pages that it is 389 * being asked to write back. 390 */ 391 static int ocfs2_writepages(struct address_space *mapping, 392 struct writeback_control *wbc) 393 { 394 return mpage_writepages(mapping, wbc, ocfs2_get_block); 395 } 396 397 /* Taken from ext3. We don't necessarily need the full blown 398 * functionality yet, but IMHO it's better to cut and paste the whole 399 * thing so we can avoid introducing our own bugs (and easily pick up 400 * their fixes when they happen) --Mark */ 401 int walk_page_buffers( handle_t *handle, 402 struct buffer_head *head, 403 unsigned from, 404 unsigned to, 405 int *partial, 406 int (*fn)( handle_t *handle, 407 struct buffer_head *bh)) 408 { 409 struct buffer_head *bh; 410 unsigned block_start, block_end; 411 unsigned blocksize = head->b_size; 412 int err, ret = 0; 413 struct buffer_head *next; 414 415 for ( bh = head, block_start = 0; 416 ret == 0 && (bh != head || !block_start); 417 block_start = block_end, bh = next) 418 { 419 next = bh->b_this_page; 420 block_end = block_start + blocksize; 421 if (block_end <= from || block_start >= to) { 422 if (partial && !buffer_uptodate(bh)) 423 *partial = 1; 424 continue; 425 } 426 err = (*fn)(handle, bh); 427 if (!ret) 428 ret = err; 429 } 430 return ret; 431 } 432 433 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 434 { 435 sector_t status; 436 u64 p_blkno = 0; 437 int err = 0; 438 struct inode *inode = mapping->host; 439 440 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 441 (unsigned long long)block); 442 443 /* 444 * The swap code (ab-)uses ->bmap to get a block mapping and then 445 * bypasseѕ the file system for actual I/O. We really can't allow 446 * that on refcounted inodes, so we have to skip out here. And yes, 447 * 0 is the magic code for a bmap error.. 448 */ 449 if (ocfs2_is_refcount_inode(inode)) 450 return 0; 451 452 /* We don't need to lock journal system files, since they aren't 453 * accessed concurrently from multiple nodes. 454 */ 455 if (!INODE_JOURNAL(inode)) { 456 err = ocfs2_inode_lock(inode, NULL, 0); 457 if (err) { 458 if (err != -ENOENT) 459 mlog_errno(err); 460 goto bail; 461 } 462 down_read(&OCFS2_I(inode)->ip_alloc_sem); 463 } 464 465 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 466 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 467 NULL); 468 469 if (!INODE_JOURNAL(inode)) { 470 up_read(&OCFS2_I(inode)->ip_alloc_sem); 471 ocfs2_inode_unlock(inode, 0); 472 } 473 474 if (err) { 475 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 476 (unsigned long long)block); 477 mlog_errno(err); 478 goto bail; 479 } 480 481 bail: 482 status = err ? 0 : p_blkno; 483 484 return status; 485 } 486 487 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait) 488 { 489 if (!folio_buffers(folio)) 490 return false; 491 return try_to_free_buffers(folio); 492 } 493 494 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 495 u32 cpos, 496 unsigned int *start, 497 unsigned int *end) 498 { 499 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 500 501 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 502 unsigned int cpp; 503 504 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 505 506 cluster_start = cpos % cpp; 507 cluster_start = cluster_start << osb->s_clustersize_bits; 508 509 cluster_end = cluster_start + osb->s_clustersize; 510 } 511 512 BUG_ON(cluster_start > PAGE_SIZE); 513 BUG_ON(cluster_end > PAGE_SIZE); 514 515 if (start) 516 *start = cluster_start; 517 if (end) 518 *end = cluster_end; 519 } 520 521 /* 522 * 'from' and 'to' are the region in the page to avoid zeroing. 523 * 524 * If pagesize > clustersize, this function will avoid zeroing outside 525 * of the cluster boundary. 526 * 527 * from == to == 0 is code for "zero the entire cluster region" 528 */ 529 static void ocfs2_clear_folio_regions(struct folio *folio, 530 struct ocfs2_super *osb, u32 cpos, 531 unsigned from, unsigned to) 532 { 533 void *kaddr; 534 unsigned int cluster_start, cluster_end; 535 536 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 537 538 kaddr = kmap_local_folio(folio, 0); 539 540 if (from || to) { 541 if (from > cluster_start) 542 memset(kaddr + cluster_start, 0, from - cluster_start); 543 if (to < cluster_end) 544 memset(kaddr + to, 0, cluster_end - to); 545 } else { 546 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 547 } 548 549 kunmap_local(kaddr); 550 } 551 552 /* 553 * Nonsparse file systems fully allocate before we get to the write 554 * code. This prevents ocfs2_write() from tagging the write as an 555 * allocating one, which means ocfs2_map_folio_blocks() might try to 556 * read-in the blocks at the tail of our file. Avoid reading them by 557 * testing i_size against each block offset. 558 */ 559 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio, 560 unsigned int block_start) 561 { 562 u64 offset = folio_pos(folio) + block_start; 563 564 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 565 return 1; 566 567 if (i_size_read(inode) > offset) 568 return 1; 569 570 return 0; 571 } 572 573 /* 574 * Some of this taken from __block_write_begin(). We already have our 575 * mapping by now though, and the entire write will be allocating or 576 * it won't, so not much need to use BH_New. 577 * 578 * This will also skip zeroing, which is handled externally. 579 */ 580 int ocfs2_map_folio_blocks(struct folio *folio, u64 *p_blkno, 581 struct inode *inode, unsigned int from, 582 unsigned int to, int new) 583 { 584 int ret = 0; 585 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 586 unsigned int block_end, block_start; 587 unsigned int bsize = i_blocksize(inode); 588 589 head = folio_buffers(folio); 590 if (!head) 591 head = create_empty_buffers(folio, bsize, 0); 592 593 for (bh = head, block_start = 0; bh != head || !block_start; 594 bh = bh->b_this_page, block_start += bsize) { 595 block_end = block_start + bsize; 596 597 clear_buffer_new(bh); 598 599 /* 600 * Ignore blocks outside of our i/o range - 601 * they may belong to unallocated clusters. 602 */ 603 if (block_start >= to || block_end <= from) { 604 if (folio_test_uptodate(folio)) 605 set_buffer_uptodate(bh); 606 continue; 607 } 608 609 /* 610 * For an allocating write with cluster size >= page 611 * size, we always write the entire page. 612 */ 613 if (new) 614 set_buffer_new(bh); 615 616 if (!buffer_mapped(bh)) { 617 map_bh(bh, inode->i_sb, *p_blkno); 618 clean_bdev_bh_alias(bh); 619 } 620 621 if (folio_test_uptodate(folio)) { 622 set_buffer_uptodate(bh); 623 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 624 !buffer_new(bh) && 625 ocfs2_should_read_blk(inode, folio, block_start) && 626 (block_start < from || block_end > to)) { 627 bh_read_nowait(bh, 0); 628 *wait_bh++=bh; 629 } 630 631 *p_blkno = *p_blkno + 1; 632 } 633 634 /* 635 * If we issued read requests - let them complete. 636 */ 637 while(wait_bh > wait) { 638 wait_on_buffer(*--wait_bh); 639 if (!buffer_uptodate(*wait_bh)) 640 ret = -EIO; 641 } 642 643 if (ret == 0 || !new) 644 return ret; 645 646 /* 647 * If we get -EIO above, zero out any newly allocated blocks 648 * to avoid exposing stale data. 649 */ 650 bh = head; 651 block_start = 0; 652 do { 653 block_end = block_start + bsize; 654 if (block_end <= from) 655 goto next_bh; 656 if (block_start >= to) 657 break; 658 659 folio_zero_range(folio, block_start, bh->b_size); 660 set_buffer_uptodate(bh); 661 mark_buffer_dirty(bh); 662 663 next_bh: 664 block_start = block_end; 665 bh = bh->b_this_page; 666 } while (bh != head); 667 668 return ret; 669 } 670 671 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 672 #define OCFS2_MAX_CTXT_PAGES 1 673 #else 674 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 675 #endif 676 677 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 678 679 struct ocfs2_unwritten_extent { 680 struct list_head ue_node; 681 struct list_head ue_ip_node; 682 u32 ue_cpos; 683 u32 ue_phys; 684 }; 685 686 /* 687 * Describe the state of a single cluster to be written to. 688 */ 689 struct ocfs2_write_cluster_desc { 690 u32 c_cpos; 691 u32 c_phys; 692 /* 693 * Give this a unique field because c_phys eventually gets 694 * filled. 695 */ 696 unsigned c_new; 697 unsigned c_clear_unwritten; 698 unsigned c_needs_zero; 699 }; 700 701 struct ocfs2_write_ctxt { 702 /* Logical cluster position / len of write */ 703 u32 w_cpos; 704 u32 w_clen; 705 706 /* First cluster allocated in a nonsparse extend */ 707 u32 w_first_new_cpos; 708 709 /* Type of caller. Must be one of buffer, mmap, direct. */ 710 ocfs2_write_type_t w_type; 711 712 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 713 714 /* 715 * This is true if page_size > cluster_size. 716 * 717 * It triggers a set of special cases during write which might 718 * have to deal with allocating writes to partial pages. 719 */ 720 unsigned int w_large_pages; 721 722 /* 723 * Folios involved in this write. 724 * 725 * w_target_folio is the folio being written to by the user. 726 * 727 * w_folios is an array of folios which always contains 728 * w_target_folio, and in the case of an allocating write with 729 * page_size < cluster size, it will contain zero'd and mapped 730 * pages adjacent to w_target_folio which need to be written 731 * out in so that future reads from that region will get 732 * zero's. 733 */ 734 unsigned int w_num_folios; 735 struct folio *w_folios[OCFS2_MAX_CTXT_PAGES]; 736 struct folio *w_target_folio; 737 738 /* 739 * w_target_locked is used for page_mkwrite path indicating no unlocking 740 * against w_target_folio in ocfs2_write_end_nolock. 741 */ 742 unsigned int w_target_locked:1; 743 744 /* 745 * ocfs2_write_end() uses this to know what the real range to 746 * write in the target should be. 747 */ 748 unsigned int w_target_from; 749 unsigned int w_target_to; 750 751 /* 752 * We could use journal_current_handle() but this is cleaner, 753 * IMHO -Mark 754 */ 755 handle_t *w_handle; 756 757 struct buffer_head *w_di_bh; 758 759 struct ocfs2_cached_dealloc_ctxt w_dealloc; 760 761 struct list_head w_unwritten_list; 762 unsigned int w_unwritten_count; 763 }; 764 765 void ocfs2_unlock_and_free_folios(struct folio **folios, int num_folios) 766 { 767 int i; 768 769 for(i = 0; i < num_folios; i++) { 770 if (!folios[i]) 771 continue; 772 folio_unlock(folios[i]); 773 folio_mark_accessed(folios[i]); 774 folio_put(folios[i]); 775 } 776 } 777 778 static void ocfs2_unlock_folios(struct ocfs2_write_ctxt *wc) 779 { 780 int i; 781 782 /* 783 * w_target_locked is only set to true in the page_mkwrite() case. 784 * The intent is to allow us to lock the target page from write_begin() 785 * to write_end(). The caller must hold a ref on w_target_folio. 786 */ 787 if (wc->w_target_locked) { 788 BUG_ON(!wc->w_target_folio); 789 for (i = 0; i < wc->w_num_folios; i++) { 790 if (wc->w_target_folio == wc->w_folios[i]) { 791 wc->w_folios[i] = NULL; 792 break; 793 } 794 } 795 folio_mark_accessed(wc->w_target_folio); 796 folio_put(wc->w_target_folio); 797 } 798 ocfs2_unlock_and_free_folios(wc->w_folios, wc->w_num_folios); 799 } 800 801 static void ocfs2_free_unwritten_list(struct inode *inode, 802 struct list_head *head) 803 { 804 struct ocfs2_inode_info *oi = OCFS2_I(inode); 805 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 806 807 list_for_each_entry_safe(ue, tmp, head, ue_node) { 808 list_del(&ue->ue_node); 809 spin_lock(&oi->ip_lock); 810 list_del(&ue->ue_ip_node); 811 spin_unlock(&oi->ip_lock); 812 kfree(ue); 813 } 814 } 815 816 static void ocfs2_free_write_ctxt(struct inode *inode, 817 struct ocfs2_write_ctxt *wc) 818 { 819 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 820 ocfs2_unlock_folios(wc); 821 brelse(wc->w_di_bh); 822 kfree(wc); 823 } 824 825 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 826 struct ocfs2_super *osb, loff_t pos, 827 unsigned len, ocfs2_write_type_t type, 828 struct buffer_head *di_bh) 829 { 830 u32 cend; 831 struct ocfs2_write_ctxt *wc; 832 833 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 834 if (!wc) 835 return -ENOMEM; 836 837 wc->w_cpos = pos >> osb->s_clustersize_bits; 838 wc->w_first_new_cpos = UINT_MAX; 839 cend = (pos + len - 1) >> osb->s_clustersize_bits; 840 wc->w_clen = cend - wc->w_cpos + 1; 841 get_bh(di_bh); 842 wc->w_di_bh = di_bh; 843 wc->w_type = type; 844 845 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 846 wc->w_large_pages = 1; 847 else 848 wc->w_large_pages = 0; 849 850 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 851 INIT_LIST_HEAD(&wc->w_unwritten_list); 852 853 *wcp = wc; 854 855 return 0; 856 } 857 858 /* 859 * If a page has any new buffers, zero them out here, and mark them uptodate 860 * and dirty so they'll be written out (in order to prevent uninitialised 861 * block data from leaking). And clear the new bit. 862 */ 863 static void ocfs2_zero_new_buffers(struct folio *folio, size_t from, size_t to) 864 { 865 unsigned int block_start, block_end; 866 struct buffer_head *head, *bh; 867 868 BUG_ON(!folio_test_locked(folio)); 869 head = folio_buffers(folio); 870 if (!head) 871 return; 872 873 bh = head; 874 block_start = 0; 875 do { 876 block_end = block_start + bh->b_size; 877 878 if (buffer_new(bh)) { 879 if (block_end > from && block_start < to) { 880 if (!folio_test_uptodate(folio)) { 881 unsigned start, end; 882 883 start = max(from, block_start); 884 end = min(to, block_end); 885 886 folio_zero_segment(folio, start, end); 887 set_buffer_uptodate(bh); 888 } 889 890 clear_buffer_new(bh); 891 mark_buffer_dirty(bh); 892 } 893 } 894 895 block_start = block_end; 896 bh = bh->b_this_page; 897 } while (bh != head); 898 } 899 900 /* 901 * Only called when we have a failure during allocating write to write 902 * zero's to the newly allocated region. 903 */ 904 static void ocfs2_write_failure(struct inode *inode, 905 struct ocfs2_write_ctxt *wc, 906 loff_t user_pos, unsigned user_len) 907 { 908 int i; 909 unsigned from = user_pos & (PAGE_SIZE - 1), 910 to = user_pos + user_len; 911 912 if (wc->w_target_folio) 913 ocfs2_zero_new_buffers(wc->w_target_folio, from, to); 914 915 for (i = 0; i < wc->w_num_folios; i++) { 916 struct folio *folio = wc->w_folios[i]; 917 918 if (folio && folio_buffers(folio)) { 919 if (ocfs2_should_order_data(inode)) 920 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 921 user_pos, user_len); 922 923 block_commit_write(&folio->page, from, to); 924 } 925 } 926 } 927 928 static int ocfs2_prepare_folio_for_write(struct inode *inode, u64 *p_blkno, 929 struct ocfs2_write_ctxt *wc, struct folio *folio, u32 cpos, 930 loff_t user_pos, unsigned user_len, int new) 931 { 932 int ret; 933 unsigned int map_from = 0, map_to = 0; 934 unsigned int cluster_start, cluster_end; 935 unsigned int user_data_from = 0, user_data_to = 0; 936 937 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 938 &cluster_start, &cluster_end); 939 940 /* treat the write as new if the a hole/lseek spanned across 941 * the page boundary. 942 */ 943 new = new | ((i_size_read(inode) <= folio_pos(folio)) && 944 (folio_pos(folio) <= user_pos)); 945 946 if (folio == wc->w_target_folio) { 947 map_from = user_pos & (PAGE_SIZE - 1); 948 map_to = map_from + user_len; 949 950 if (new) 951 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode, 952 cluster_start, cluster_end, new); 953 else 954 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode, 955 map_from, map_to, new); 956 if (ret) { 957 mlog_errno(ret); 958 goto out; 959 } 960 961 user_data_from = map_from; 962 user_data_to = map_to; 963 if (new) { 964 map_from = cluster_start; 965 map_to = cluster_end; 966 } 967 } else { 968 /* 969 * If we haven't allocated the new folio yet, we 970 * shouldn't be writing it out without copying user 971 * data. This is likely a math error from the caller. 972 */ 973 BUG_ON(!new); 974 975 map_from = cluster_start; 976 map_to = cluster_end; 977 978 ret = ocfs2_map_folio_blocks(folio, p_blkno, inode, 979 cluster_start, cluster_end, new); 980 if (ret) { 981 mlog_errno(ret); 982 goto out; 983 } 984 } 985 986 /* 987 * Parts of newly allocated folios need to be zero'd. 988 * 989 * Above, we have also rewritten 'to' and 'from' - as far as 990 * the rest of the function is concerned, the entire cluster 991 * range inside of a folio needs to be written. 992 * 993 * We can skip this if the folio is uptodate - it's already 994 * been zero'd from being read in as a hole. 995 */ 996 if (new && !folio_test_uptodate(folio)) 997 ocfs2_clear_folio_regions(folio, OCFS2_SB(inode->i_sb), 998 cpos, user_data_from, user_data_to); 999 1000 flush_dcache_folio(folio); 1001 1002 out: 1003 return ret; 1004 } 1005 1006 /* 1007 * This function will only grab one clusters worth of pages. 1008 */ 1009 static int ocfs2_grab_folios_for_write(struct address_space *mapping, 1010 struct ocfs2_write_ctxt *wc, u32 cpos, loff_t user_pos, 1011 unsigned user_len, int new, struct folio *mmap_folio) 1012 { 1013 int ret = 0, i; 1014 unsigned long start, target_index, end_index, index; 1015 struct inode *inode = mapping->host; 1016 loff_t last_byte; 1017 1018 target_index = user_pos >> PAGE_SHIFT; 1019 1020 /* 1021 * Figure out how many pages we'll be manipulating here. For 1022 * non allocating write, we just change the one 1023 * page. Otherwise, we'll need a whole clusters worth. If we're 1024 * writing past i_size, we only need enough pages to cover the 1025 * last page of the write. 1026 */ 1027 if (new) { 1028 wc->w_num_folios = ocfs2_pages_per_cluster(inode->i_sb); 1029 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1030 /* 1031 * We need the index *past* the last page we could possibly 1032 * touch. This is the page past the end of the write or 1033 * i_size, whichever is greater. 1034 */ 1035 last_byte = max(user_pos + user_len, i_size_read(inode)); 1036 BUG_ON(last_byte < 1); 1037 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1038 if ((start + wc->w_num_folios) > end_index) 1039 wc->w_num_folios = end_index - start; 1040 } else { 1041 wc->w_num_folios = 1; 1042 start = target_index; 1043 } 1044 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1045 1046 for(i = 0; i < wc->w_num_folios; i++) { 1047 index = start + i; 1048 1049 if (index >= target_index && index <= end_index && 1050 wc->w_type == OCFS2_WRITE_MMAP) { 1051 /* 1052 * ocfs2_pagemkwrite() is a little different 1053 * and wants us to directly use the page 1054 * passed in. 1055 */ 1056 folio_lock(mmap_folio); 1057 1058 /* Exit and let the caller retry */ 1059 if (mmap_folio->mapping != mapping) { 1060 WARN_ON(mmap_folio->mapping); 1061 folio_unlock(mmap_folio); 1062 ret = -EAGAIN; 1063 goto out; 1064 } 1065 1066 folio_get(mmap_folio); 1067 wc->w_folios[i] = mmap_folio; 1068 wc->w_target_locked = true; 1069 } else if (index >= target_index && index <= end_index && 1070 wc->w_type == OCFS2_WRITE_DIRECT) { 1071 /* Direct write has no mapping page. */ 1072 wc->w_folios[i] = NULL; 1073 continue; 1074 } else { 1075 wc->w_folios[i] = __filemap_get_folio(mapping, index, 1076 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 1077 GFP_NOFS); 1078 if (IS_ERR(wc->w_folios[i])) { 1079 ret = PTR_ERR(wc->w_folios[i]); 1080 mlog_errno(ret); 1081 goto out; 1082 } 1083 } 1084 folio_wait_stable(wc->w_folios[i]); 1085 1086 if (index == target_index) 1087 wc->w_target_folio = wc->w_folios[i]; 1088 } 1089 out: 1090 if (ret) 1091 wc->w_target_locked = false; 1092 return ret; 1093 } 1094 1095 /* 1096 * Prepare a single cluster for write one cluster into the file. 1097 */ 1098 static int ocfs2_write_cluster(struct address_space *mapping, 1099 u32 *phys, unsigned int new, 1100 unsigned int clear_unwritten, 1101 unsigned int should_zero, 1102 struct ocfs2_alloc_context *data_ac, 1103 struct ocfs2_alloc_context *meta_ac, 1104 struct ocfs2_write_ctxt *wc, u32 cpos, 1105 loff_t user_pos, unsigned user_len) 1106 { 1107 int ret, i; 1108 u64 p_blkno; 1109 struct inode *inode = mapping->host; 1110 struct ocfs2_extent_tree et; 1111 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1112 1113 if (new) { 1114 u32 tmp_pos; 1115 1116 /* 1117 * This is safe to call with the page locks - it won't take 1118 * any additional semaphores or cluster locks. 1119 */ 1120 tmp_pos = cpos; 1121 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1122 &tmp_pos, 1, !clear_unwritten, 1123 wc->w_di_bh, wc->w_handle, 1124 data_ac, meta_ac, NULL); 1125 /* 1126 * This shouldn't happen because we must have already 1127 * calculated the correct meta data allocation required. The 1128 * internal tree allocation code should know how to increase 1129 * transaction credits itself. 1130 * 1131 * If need be, we could handle -EAGAIN for a 1132 * RESTART_TRANS here. 1133 */ 1134 mlog_bug_on_msg(ret == -EAGAIN, 1135 "Inode %llu: EAGAIN return during allocation.\n", 1136 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1137 if (ret < 0) { 1138 mlog_errno(ret); 1139 goto out; 1140 } 1141 } else if (clear_unwritten) { 1142 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1143 wc->w_di_bh); 1144 ret = ocfs2_mark_extent_written(inode, &et, 1145 wc->w_handle, cpos, 1, *phys, 1146 meta_ac, &wc->w_dealloc); 1147 if (ret < 0) { 1148 mlog_errno(ret); 1149 goto out; 1150 } 1151 } 1152 1153 /* 1154 * The only reason this should fail is due to an inability to 1155 * find the extent added. 1156 */ 1157 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1158 if (ret < 0) { 1159 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1160 "at logical cluster %u", 1161 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1162 goto out; 1163 } 1164 1165 BUG_ON(*phys == 0); 1166 1167 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1168 if (!should_zero) 1169 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1170 1171 for (i = 0; i < wc->w_num_folios; i++) { 1172 int tmpret; 1173 1174 /* This is the direct io target page. */ 1175 if (wc->w_folios[i] == NULL) { 1176 p_blkno += (1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits)); 1177 continue; 1178 } 1179 1180 tmpret = ocfs2_prepare_folio_for_write(inode, &p_blkno, wc, 1181 wc->w_folios[i], cpos, user_pos, user_len, 1182 should_zero); 1183 if (tmpret) { 1184 mlog_errno(tmpret); 1185 if (ret == 0) 1186 ret = tmpret; 1187 } 1188 } 1189 1190 /* 1191 * We only have cleanup to do in case of allocating write. 1192 */ 1193 if (ret && new) 1194 ocfs2_write_failure(inode, wc, user_pos, user_len); 1195 1196 out: 1197 1198 return ret; 1199 } 1200 1201 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1202 struct ocfs2_alloc_context *data_ac, 1203 struct ocfs2_alloc_context *meta_ac, 1204 struct ocfs2_write_ctxt *wc, 1205 loff_t pos, unsigned len) 1206 { 1207 int ret, i; 1208 loff_t cluster_off; 1209 unsigned int local_len = len; 1210 struct ocfs2_write_cluster_desc *desc; 1211 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1212 1213 for (i = 0; i < wc->w_clen; i++) { 1214 desc = &wc->w_desc[i]; 1215 1216 /* 1217 * We have to make sure that the total write passed in 1218 * doesn't extend past a single cluster. 1219 */ 1220 local_len = len; 1221 cluster_off = pos & (osb->s_clustersize - 1); 1222 if ((cluster_off + local_len) > osb->s_clustersize) 1223 local_len = osb->s_clustersize - cluster_off; 1224 1225 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1226 desc->c_new, 1227 desc->c_clear_unwritten, 1228 desc->c_needs_zero, 1229 data_ac, meta_ac, 1230 wc, desc->c_cpos, pos, local_len); 1231 if (ret) { 1232 mlog_errno(ret); 1233 goto out; 1234 } 1235 1236 len -= local_len; 1237 pos += local_len; 1238 } 1239 1240 ret = 0; 1241 out: 1242 return ret; 1243 } 1244 1245 /* 1246 * ocfs2_write_end() wants to know which parts of the target page it 1247 * should complete the write on. It's easiest to compute them ahead of 1248 * time when a more complete view of the write is available. 1249 */ 1250 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1251 struct ocfs2_write_ctxt *wc, 1252 loff_t pos, unsigned len, int alloc) 1253 { 1254 struct ocfs2_write_cluster_desc *desc; 1255 1256 wc->w_target_from = pos & (PAGE_SIZE - 1); 1257 wc->w_target_to = wc->w_target_from + len; 1258 1259 if (alloc == 0) 1260 return; 1261 1262 /* 1263 * Allocating write - we may have different boundaries based 1264 * on page size and cluster size. 1265 * 1266 * NOTE: We can no longer compute one value from the other as 1267 * the actual write length and user provided length may be 1268 * different. 1269 */ 1270 1271 if (wc->w_large_pages) { 1272 /* 1273 * We only care about the 1st and last cluster within 1274 * our range and whether they should be zero'd or not. Either 1275 * value may be extended out to the start/end of a 1276 * newly allocated cluster. 1277 */ 1278 desc = &wc->w_desc[0]; 1279 if (desc->c_needs_zero) 1280 ocfs2_figure_cluster_boundaries(osb, 1281 desc->c_cpos, 1282 &wc->w_target_from, 1283 NULL); 1284 1285 desc = &wc->w_desc[wc->w_clen - 1]; 1286 if (desc->c_needs_zero) 1287 ocfs2_figure_cluster_boundaries(osb, 1288 desc->c_cpos, 1289 NULL, 1290 &wc->w_target_to); 1291 } else { 1292 wc->w_target_from = 0; 1293 wc->w_target_to = PAGE_SIZE; 1294 } 1295 } 1296 1297 /* 1298 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1299 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1300 * by the direct io procedure. 1301 * If this is a new extent that allocated by direct io, we should mark it in 1302 * the ip_unwritten_list. 1303 */ 1304 static int ocfs2_unwritten_check(struct inode *inode, 1305 struct ocfs2_write_ctxt *wc, 1306 struct ocfs2_write_cluster_desc *desc) 1307 { 1308 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1309 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1310 int ret = 0; 1311 1312 if (!desc->c_needs_zero) 1313 return 0; 1314 1315 retry: 1316 spin_lock(&oi->ip_lock); 1317 /* Needs not to zero no metter buffer or direct. The one who is zero 1318 * the cluster is doing zero. And he will clear unwritten after all 1319 * cluster io finished. */ 1320 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1321 if (desc->c_cpos == ue->ue_cpos) { 1322 BUG_ON(desc->c_new); 1323 desc->c_needs_zero = 0; 1324 desc->c_clear_unwritten = 0; 1325 goto unlock; 1326 } 1327 } 1328 1329 if (wc->w_type != OCFS2_WRITE_DIRECT) 1330 goto unlock; 1331 1332 if (new == NULL) { 1333 spin_unlock(&oi->ip_lock); 1334 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1335 GFP_NOFS); 1336 if (new == NULL) { 1337 ret = -ENOMEM; 1338 goto out; 1339 } 1340 goto retry; 1341 } 1342 /* This direct write will doing zero. */ 1343 new->ue_cpos = desc->c_cpos; 1344 new->ue_phys = desc->c_phys; 1345 desc->c_clear_unwritten = 0; 1346 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1347 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1348 wc->w_unwritten_count++; 1349 new = NULL; 1350 unlock: 1351 spin_unlock(&oi->ip_lock); 1352 out: 1353 kfree(new); 1354 return ret; 1355 } 1356 1357 /* 1358 * Populate each single-cluster write descriptor in the write context 1359 * with information about the i/o to be done. 1360 * 1361 * Returns the number of clusters that will have to be allocated, as 1362 * well as a worst case estimate of the number of extent records that 1363 * would have to be created during a write to an unwritten region. 1364 */ 1365 static int ocfs2_populate_write_desc(struct inode *inode, 1366 struct ocfs2_write_ctxt *wc, 1367 unsigned int *clusters_to_alloc, 1368 unsigned int *extents_to_split) 1369 { 1370 int ret; 1371 struct ocfs2_write_cluster_desc *desc; 1372 unsigned int num_clusters = 0; 1373 unsigned int ext_flags = 0; 1374 u32 phys = 0; 1375 int i; 1376 1377 *clusters_to_alloc = 0; 1378 *extents_to_split = 0; 1379 1380 for (i = 0; i < wc->w_clen; i++) { 1381 desc = &wc->w_desc[i]; 1382 desc->c_cpos = wc->w_cpos + i; 1383 1384 if (num_clusters == 0) { 1385 /* 1386 * Need to look up the next extent record. 1387 */ 1388 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1389 &num_clusters, &ext_flags); 1390 if (ret) { 1391 mlog_errno(ret); 1392 goto out; 1393 } 1394 1395 /* We should already CoW the refcountd extent. */ 1396 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1397 1398 /* 1399 * Assume worst case - that we're writing in 1400 * the middle of the extent. 1401 * 1402 * We can assume that the write proceeds from 1403 * left to right, in which case the extent 1404 * insert code is smart enough to coalesce the 1405 * next splits into the previous records created. 1406 */ 1407 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1408 *extents_to_split = *extents_to_split + 2; 1409 } else if (phys) { 1410 /* 1411 * Only increment phys if it doesn't describe 1412 * a hole. 1413 */ 1414 phys++; 1415 } 1416 1417 /* 1418 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1419 * file that got extended. w_first_new_cpos tells us 1420 * where the newly allocated clusters are so we can 1421 * zero them. 1422 */ 1423 if (desc->c_cpos >= wc->w_first_new_cpos) { 1424 BUG_ON(phys == 0); 1425 desc->c_needs_zero = 1; 1426 } 1427 1428 desc->c_phys = phys; 1429 if (phys == 0) { 1430 desc->c_new = 1; 1431 desc->c_needs_zero = 1; 1432 desc->c_clear_unwritten = 1; 1433 *clusters_to_alloc = *clusters_to_alloc + 1; 1434 } 1435 1436 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1437 desc->c_clear_unwritten = 1; 1438 desc->c_needs_zero = 1; 1439 } 1440 1441 ret = ocfs2_unwritten_check(inode, wc, desc); 1442 if (ret) { 1443 mlog_errno(ret); 1444 goto out; 1445 } 1446 1447 num_clusters--; 1448 } 1449 1450 ret = 0; 1451 out: 1452 return ret; 1453 } 1454 1455 static int ocfs2_write_begin_inline(struct address_space *mapping, 1456 struct inode *inode, 1457 struct ocfs2_write_ctxt *wc) 1458 { 1459 int ret; 1460 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1461 struct folio *folio; 1462 handle_t *handle; 1463 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1464 1465 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1466 if (IS_ERR(handle)) { 1467 ret = PTR_ERR(handle); 1468 mlog_errno(ret); 1469 goto out; 1470 } 1471 1472 folio = __filemap_get_folio(mapping, 0, 1473 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_NOFS); 1474 if (IS_ERR(folio)) { 1475 ocfs2_commit_trans(osb, handle); 1476 ret = PTR_ERR(folio); 1477 mlog_errno(ret); 1478 goto out; 1479 } 1480 /* 1481 * If we don't set w_num_folios then this folio won't get unlocked 1482 * and freed on cleanup of the write context. 1483 */ 1484 wc->w_target_folio = folio; 1485 wc->w_folios[0] = folio; 1486 wc->w_num_folios = 1; 1487 1488 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1489 OCFS2_JOURNAL_ACCESS_WRITE); 1490 if (ret) { 1491 ocfs2_commit_trans(osb, handle); 1492 1493 mlog_errno(ret); 1494 goto out; 1495 } 1496 1497 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1498 ocfs2_set_inode_data_inline(inode, di); 1499 1500 if (!folio_test_uptodate(folio)) { 1501 ret = ocfs2_read_inline_data(inode, folio, wc->w_di_bh); 1502 if (ret) { 1503 ocfs2_commit_trans(osb, handle); 1504 1505 goto out; 1506 } 1507 } 1508 1509 wc->w_handle = handle; 1510 out: 1511 return ret; 1512 } 1513 1514 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1515 { 1516 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1517 1518 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1519 return 1; 1520 return 0; 1521 } 1522 1523 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1524 struct inode *inode, loff_t pos, size_t len, 1525 struct folio *mmap_folio, struct ocfs2_write_ctxt *wc) 1526 { 1527 int ret, written = 0; 1528 loff_t end = pos + len; 1529 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1530 struct ocfs2_dinode *di = NULL; 1531 1532 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1533 len, (unsigned long long)pos, 1534 oi->ip_dyn_features); 1535 1536 /* 1537 * Handle inodes which already have inline data 1st. 1538 */ 1539 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1540 if (mmap_folio == NULL && 1541 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1542 goto do_inline_write; 1543 1544 /* 1545 * The write won't fit - we have to give this inode an 1546 * inline extent list now. 1547 */ 1548 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1549 if (ret) 1550 mlog_errno(ret); 1551 goto out; 1552 } 1553 1554 /* 1555 * Check whether the inode can accept inline data. 1556 */ 1557 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1558 return 0; 1559 1560 /* 1561 * Check whether the write can fit. 1562 */ 1563 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1564 if (mmap_folio || 1565 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1566 return 0; 1567 1568 do_inline_write: 1569 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1570 if (ret) { 1571 mlog_errno(ret); 1572 goto out; 1573 } 1574 1575 /* 1576 * This signals to the caller that the data can be written 1577 * inline. 1578 */ 1579 written = 1; 1580 out: 1581 return written ? written : ret; 1582 } 1583 1584 /* 1585 * This function only does anything for file systems which can't 1586 * handle sparse files. 1587 * 1588 * What we want to do here is fill in any hole between the current end 1589 * of allocation and the end of our write. That way the rest of the 1590 * write path can treat it as an non-allocating write, which has no 1591 * special case code for sparse/nonsparse files. 1592 */ 1593 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1594 struct buffer_head *di_bh, 1595 loff_t pos, unsigned len, 1596 struct ocfs2_write_ctxt *wc) 1597 { 1598 int ret; 1599 loff_t newsize = pos + len; 1600 1601 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1602 1603 if (newsize <= i_size_read(inode)) 1604 return 0; 1605 1606 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1607 if (ret) 1608 mlog_errno(ret); 1609 1610 /* There is no wc if this is call from direct. */ 1611 if (wc) 1612 wc->w_first_new_cpos = 1613 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1614 1615 return ret; 1616 } 1617 1618 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1619 loff_t pos) 1620 { 1621 int ret = 0; 1622 1623 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1624 if (pos > i_size_read(inode)) 1625 ret = ocfs2_zero_extend(inode, di_bh, pos); 1626 1627 return ret; 1628 } 1629 1630 int ocfs2_write_begin_nolock(struct address_space *mapping, 1631 loff_t pos, unsigned len, ocfs2_write_type_t type, 1632 struct folio **foliop, void **fsdata, 1633 struct buffer_head *di_bh, struct folio *mmap_folio) 1634 { 1635 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1636 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1637 struct ocfs2_write_ctxt *wc; 1638 struct inode *inode = mapping->host; 1639 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1640 struct ocfs2_dinode *di; 1641 struct ocfs2_alloc_context *data_ac = NULL; 1642 struct ocfs2_alloc_context *meta_ac = NULL; 1643 handle_t *handle; 1644 struct ocfs2_extent_tree et; 1645 int try_free = 1, ret1; 1646 1647 try_again: 1648 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1649 if (ret) { 1650 mlog_errno(ret); 1651 return ret; 1652 } 1653 1654 if (ocfs2_supports_inline_data(osb)) { 1655 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1656 mmap_folio, wc); 1657 if (ret == 1) { 1658 ret = 0; 1659 goto success; 1660 } 1661 if (ret < 0) { 1662 mlog_errno(ret); 1663 goto out; 1664 } 1665 } 1666 1667 /* Direct io change i_size late, should not zero tail here. */ 1668 if (type != OCFS2_WRITE_DIRECT) { 1669 if (ocfs2_sparse_alloc(osb)) 1670 ret = ocfs2_zero_tail(inode, di_bh, pos); 1671 else 1672 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1673 len, wc); 1674 if (ret) { 1675 mlog_errno(ret); 1676 goto out; 1677 } 1678 } 1679 1680 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1681 if (ret < 0) { 1682 mlog_errno(ret); 1683 goto out; 1684 } else if (ret == 1) { 1685 clusters_need = wc->w_clen; 1686 ret = ocfs2_refcount_cow(inode, di_bh, 1687 wc->w_cpos, wc->w_clen, UINT_MAX); 1688 if (ret) { 1689 mlog_errno(ret); 1690 goto out; 1691 } 1692 } 1693 1694 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1695 &extents_to_split); 1696 if (ret) { 1697 mlog_errno(ret); 1698 goto out; 1699 } 1700 clusters_need += clusters_to_alloc; 1701 1702 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1703 1704 trace_ocfs2_write_begin_nolock( 1705 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1706 (long long)i_size_read(inode), 1707 le32_to_cpu(di->i_clusters), 1708 pos, len, type, mmap_folio, 1709 clusters_to_alloc, extents_to_split); 1710 1711 /* 1712 * We set w_target_from, w_target_to here so that 1713 * ocfs2_write_end() knows which range in the target page to 1714 * write out. An allocation requires that we write the entire 1715 * cluster range. 1716 */ 1717 if (clusters_to_alloc || extents_to_split) { 1718 /* 1719 * XXX: We are stretching the limits of 1720 * ocfs2_lock_allocators(). It greatly over-estimates 1721 * the work to be done. 1722 */ 1723 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1724 wc->w_di_bh); 1725 ret = ocfs2_lock_allocators(inode, &et, 1726 clusters_to_alloc, extents_to_split, 1727 &data_ac, &meta_ac); 1728 if (ret) { 1729 mlog_errno(ret); 1730 goto out; 1731 } 1732 1733 if (data_ac) 1734 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1735 1736 credits = ocfs2_calc_extend_credits(inode->i_sb, 1737 &di->id2.i_list); 1738 } else if (type == OCFS2_WRITE_DIRECT) 1739 /* direct write needs not to start trans if no extents alloc. */ 1740 goto success; 1741 1742 /* 1743 * We have to zero sparse allocated clusters, unwritten extent clusters, 1744 * and non-sparse clusters we just extended. For non-sparse writes, 1745 * we know zeros will only be needed in the first and/or last cluster. 1746 */ 1747 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1748 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1749 cluster_of_pages = 1; 1750 else 1751 cluster_of_pages = 0; 1752 1753 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1754 1755 handle = ocfs2_start_trans(osb, credits); 1756 if (IS_ERR(handle)) { 1757 ret = PTR_ERR(handle); 1758 mlog_errno(ret); 1759 goto out; 1760 } 1761 1762 wc->w_handle = handle; 1763 1764 if (clusters_to_alloc) { 1765 ret = dquot_alloc_space_nodirty(inode, 1766 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1767 if (ret) 1768 goto out_commit; 1769 } 1770 1771 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1772 OCFS2_JOURNAL_ACCESS_WRITE); 1773 if (ret) { 1774 mlog_errno(ret); 1775 goto out_quota; 1776 } 1777 1778 /* 1779 * Fill our folio array first. That way we've grabbed enough so 1780 * that we can zero and flush if we error after adding the 1781 * extent. 1782 */ 1783 ret = ocfs2_grab_folios_for_write(mapping, wc, wc->w_cpos, pos, len, 1784 cluster_of_pages, mmap_folio); 1785 if (ret) { 1786 /* 1787 * ocfs2_grab_folios_for_write() returns -EAGAIN if it 1788 * could not lock the target folio. In this case, we exit 1789 * with no error and no target folio. This will trigger 1790 * the caller, page_mkwrite(), to re-try the operation. 1791 */ 1792 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) { 1793 BUG_ON(wc->w_target_folio); 1794 ret = 0; 1795 goto out_quota; 1796 } 1797 1798 mlog_errno(ret); 1799 goto out_quota; 1800 } 1801 1802 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1803 len); 1804 if (ret) { 1805 mlog_errno(ret); 1806 goto out_quota; 1807 } 1808 1809 if (data_ac) 1810 ocfs2_free_alloc_context(data_ac); 1811 if (meta_ac) 1812 ocfs2_free_alloc_context(meta_ac); 1813 1814 success: 1815 if (foliop) 1816 *foliop = wc->w_target_folio; 1817 *fsdata = wc; 1818 return 0; 1819 out_quota: 1820 if (clusters_to_alloc) 1821 dquot_free_space(inode, 1822 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1823 out_commit: 1824 ocfs2_commit_trans(osb, handle); 1825 1826 out: 1827 /* 1828 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1829 * even in case of error here like ENOSPC and ENOMEM. So, we need 1830 * to unlock the target page manually to prevent deadlocks when 1831 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1832 * to VM code. 1833 */ 1834 if (wc->w_target_locked) 1835 folio_unlock(mmap_folio); 1836 1837 ocfs2_free_write_ctxt(inode, wc); 1838 1839 if (data_ac) { 1840 ocfs2_free_alloc_context(data_ac); 1841 data_ac = NULL; 1842 } 1843 if (meta_ac) { 1844 ocfs2_free_alloc_context(meta_ac); 1845 meta_ac = NULL; 1846 } 1847 1848 if (ret == -ENOSPC && try_free) { 1849 /* 1850 * Try to free some truncate log so that we can have enough 1851 * clusters to allocate. 1852 */ 1853 try_free = 0; 1854 1855 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1856 if (ret1 == 1) 1857 goto try_again; 1858 1859 if (ret1 < 0) 1860 mlog_errno(ret1); 1861 } 1862 1863 return ret; 1864 } 1865 1866 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1867 loff_t pos, unsigned len, 1868 struct folio **foliop, void **fsdata) 1869 { 1870 int ret; 1871 struct buffer_head *di_bh = NULL; 1872 struct inode *inode = mapping->host; 1873 1874 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1875 if (ret) { 1876 mlog_errno(ret); 1877 return ret; 1878 } 1879 1880 /* 1881 * Take alloc sem here to prevent concurrent lookups. That way 1882 * the mapping, zeroing and tree manipulation within 1883 * ocfs2_write() will be safe against ->read_folio(). This 1884 * should also serve to lock out allocation from a shared 1885 * writeable region. 1886 */ 1887 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1888 1889 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1890 foliop, fsdata, di_bh, NULL); 1891 if (ret) { 1892 mlog_errno(ret); 1893 goto out_fail; 1894 } 1895 1896 brelse(di_bh); 1897 1898 return 0; 1899 1900 out_fail: 1901 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1902 1903 brelse(di_bh); 1904 ocfs2_inode_unlock(inode, 1); 1905 1906 return ret; 1907 } 1908 1909 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1910 unsigned len, unsigned *copied, 1911 struct ocfs2_dinode *di, 1912 struct ocfs2_write_ctxt *wc) 1913 { 1914 if (unlikely(*copied < len)) { 1915 if (!folio_test_uptodate(wc->w_target_folio)) { 1916 *copied = 0; 1917 return; 1918 } 1919 } 1920 1921 memcpy_from_folio(di->id2.i_data.id_data + pos, wc->w_target_folio, 1922 pos, *copied); 1923 1924 trace_ocfs2_write_end_inline( 1925 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1926 (unsigned long long)pos, *copied, 1927 le16_to_cpu(di->id2.i_data.id_count), 1928 le16_to_cpu(di->i_dyn_features)); 1929 } 1930 1931 int ocfs2_write_end_nolock(struct address_space *mapping, loff_t pos, 1932 unsigned len, unsigned copied, void *fsdata) 1933 { 1934 int i, ret; 1935 size_t from, to, start = pos & (PAGE_SIZE - 1); 1936 struct inode *inode = mapping->host; 1937 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1938 struct ocfs2_write_ctxt *wc = fsdata; 1939 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1940 handle_t *handle = wc->w_handle; 1941 1942 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1943 1944 if (handle) { 1945 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1946 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1947 if (ret) { 1948 copied = ret; 1949 mlog_errno(ret); 1950 goto out; 1951 } 1952 } 1953 1954 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1955 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1956 goto out_write_size; 1957 } 1958 1959 if (unlikely(copied < len) && wc->w_target_folio) { 1960 loff_t new_isize; 1961 1962 if (!folio_test_uptodate(wc->w_target_folio)) 1963 copied = 0; 1964 1965 new_isize = max_t(loff_t, i_size_read(inode), pos + copied); 1966 if (new_isize > folio_pos(wc->w_target_folio)) 1967 ocfs2_zero_new_buffers(wc->w_target_folio, start+copied, 1968 start+len); 1969 else { 1970 /* 1971 * When folio is fully beyond new isize (data copy 1972 * failed), do not bother zeroing the folio. Invalidate 1973 * it instead so that writeback does not get confused 1974 * put page & buffer dirty bits into inconsistent 1975 * state. 1976 */ 1977 block_invalidate_folio(wc->w_target_folio, 0, 1978 folio_size(wc->w_target_folio)); 1979 } 1980 } 1981 if (wc->w_target_folio) 1982 flush_dcache_folio(wc->w_target_folio); 1983 1984 for (i = 0; i < wc->w_num_folios; i++) { 1985 struct folio *folio = wc->w_folios[i]; 1986 1987 /* This is the direct io target folio */ 1988 if (folio == NULL) 1989 continue; 1990 1991 if (folio == wc->w_target_folio) { 1992 from = wc->w_target_from; 1993 to = wc->w_target_to; 1994 1995 BUG_ON(from > folio_size(folio) || 1996 to > folio_size(folio) || 1997 to < from); 1998 } else { 1999 /* 2000 * Pages adjacent to the target (if any) imply 2001 * a hole-filling write in which case we want 2002 * to flush their entire range. 2003 */ 2004 from = 0; 2005 to = folio_size(folio); 2006 } 2007 2008 if (folio_buffers(folio)) { 2009 if (handle && ocfs2_should_order_data(inode)) { 2010 loff_t start_byte = folio_pos(folio) + from; 2011 loff_t length = to - from; 2012 ocfs2_jbd2_inode_add_write(handle, inode, 2013 start_byte, length); 2014 } 2015 block_commit_write(&folio->page, from, to); 2016 } 2017 } 2018 2019 out_write_size: 2020 /* Direct io do not update i_size here. */ 2021 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2022 pos += copied; 2023 if (pos > i_size_read(inode)) { 2024 i_size_write(inode, pos); 2025 mark_inode_dirty(inode); 2026 } 2027 inode->i_blocks = ocfs2_inode_sector_count(inode); 2028 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2029 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2030 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode)); 2031 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); 2032 if (handle) 2033 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2034 } 2035 if (handle) 2036 ocfs2_journal_dirty(handle, wc->w_di_bh); 2037 2038 out: 2039 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2040 * lock, or it will cause a deadlock since journal commit threads holds 2041 * this lock and will ask for the page lock when flushing the data. 2042 * put it here to preserve the unlock order. 2043 */ 2044 ocfs2_unlock_folios(wc); 2045 2046 if (handle) 2047 ocfs2_commit_trans(osb, handle); 2048 2049 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2050 2051 brelse(wc->w_di_bh); 2052 kfree(wc); 2053 2054 return copied; 2055 } 2056 2057 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2058 loff_t pos, unsigned len, unsigned copied, 2059 struct folio *folio, void *fsdata) 2060 { 2061 int ret; 2062 struct inode *inode = mapping->host; 2063 2064 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2065 2066 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2067 ocfs2_inode_unlock(inode, 1); 2068 2069 return ret; 2070 } 2071 2072 struct ocfs2_dio_write_ctxt { 2073 struct list_head dw_zero_list; 2074 unsigned dw_zero_count; 2075 int dw_orphaned; 2076 pid_t dw_writer_pid; 2077 }; 2078 2079 static struct ocfs2_dio_write_ctxt * 2080 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2081 { 2082 struct ocfs2_dio_write_ctxt *dwc = NULL; 2083 2084 if (bh->b_private) 2085 return bh->b_private; 2086 2087 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2088 if (dwc == NULL) 2089 return NULL; 2090 INIT_LIST_HEAD(&dwc->dw_zero_list); 2091 dwc->dw_zero_count = 0; 2092 dwc->dw_orphaned = 0; 2093 dwc->dw_writer_pid = task_pid_nr(current); 2094 bh->b_private = dwc; 2095 *alloc = 1; 2096 2097 return dwc; 2098 } 2099 2100 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2101 struct ocfs2_dio_write_ctxt *dwc) 2102 { 2103 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2104 kfree(dwc); 2105 } 2106 2107 /* 2108 * TODO: Make this into a generic get_blocks function. 2109 * 2110 * From do_direct_io in direct-io.c: 2111 * "So what we do is to permit the ->get_blocks function to populate 2112 * bh.b_size with the size of IO which is permitted at this offset and 2113 * this i_blkbits." 2114 * 2115 * This function is called directly from get_more_blocks in direct-io.c. 2116 * 2117 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2118 * fs_count, map_bh, dio->rw == WRITE); 2119 */ 2120 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2121 struct buffer_head *bh_result, int create) 2122 { 2123 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2124 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2125 struct ocfs2_write_ctxt *wc; 2126 struct ocfs2_write_cluster_desc *desc = NULL; 2127 struct ocfs2_dio_write_ctxt *dwc = NULL; 2128 struct buffer_head *di_bh = NULL; 2129 u64 p_blkno; 2130 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2131 loff_t pos = iblock << i_blkbits; 2132 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2133 unsigned len, total_len = bh_result->b_size; 2134 int ret = 0, first_get_block = 0; 2135 2136 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2137 len = min(total_len, len); 2138 2139 /* 2140 * bh_result->b_size is count in get_more_blocks according to write 2141 * "pos" and "end", we need map twice to return different buffer state: 2142 * 1. area in file size, not set NEW; 2143 * 2. area out file size, set NEW. 2144 * 2145 * iblock endblk 2146 * |--------|---------|---------|--------- 2147 * |<-------area in file------->| 2148 */ 2149 2150 if ((iblock <= endblk) && 2151 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2152 len = (endblk - iblock + 1) << i_blkbits; 2153 2154 mlog(0, "get block of %lu at %llu:%u req %u\n", 2155 inode->i_ino, pos, len, total_len); 2156 2157 /* 2158 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2159 * we may need to add it to orphan dir. So can not fall to fast path 2160 * while file size will be changed. 2161 */ 2162 if (pos + total_len <= i_size_read(inode)) { 2163 2164 /* This is the fast path for re-write. */ 2165 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2166 if (buffer_mapped(bh_result) && 2167 !buffer_new(bh_result) && 2168 ret == 0) 2169 goto out; 2170 2171 /* Clear state set by ocfs2_get_block. */ 2172 bh_result->b_state = 0; 2173 } 2174 2175 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2176 if (unlikely(dwc == NULL)) { 2177 ret = -ENOMEM; 2178 mlog_errno(ret); 2179 goto out; 2180 } 2181 2182 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2183 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2184 !dwc->dw_orphaned) { 2185 /* 2186 * when we are going to alloc extents beyond file size, add the 2187 * inode to orphan dir, so we can recall those spaces when 2188 * system crashed during write. 2189 */ 2190 ret = ocfs2_add_inode_to_orphan(osb, inode); 2191 if (ret < 0) { 2192 mlog_errno(ret); 2193 goto out; 2194 } 2195 dwc->dw_orphaned = 1; 2196 } 2197 2198 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2199 if (ret) { 2200 mlog_errno(ret); 2201 goto out; 2202 } 2203 2204 down_write(&oi->ip_alloc_sem); 2205 2206 if (first_get_block) { 2207 if (ocfs2_sparse_alloc(osb)) 2208 ret = ocfs2_zero_tail(inode, di_bh, pos); 2209 else 2210 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2211 total_len, NULL); 2212 if (ret < 0) { 2213 mlog_errno(ret); 2214 goto unlock; 2215 } 2216 } 2217 2218 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2219 OCFS2_WRITE_DIRECT, NULL, 2220 (void **)&wc, di_bh, NULL); 2221 if (ret) { 2222 mlog_errno(ret); 2223 goto unlock; 2224 } 2225 2226 desc = &wc->w_desc[0]; 2227 2228 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2229 BUG_ON(p_blkno == 0); 2230 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2231 2232 map_bh(bh_result, inode->i_sb, p_blkno); 2233 bh_result->b_size = len; 2234 if (desc->c_needs_zero) 2235 set_buffer_new(bh_result); 2236 2237 if (iblock > endblk) 2238 set_buffer_new(bh_result); 2239 2240 /* May sleep in end_io. It should not happen in a irq context. So defer 2241 * it to dio work queue. */ 2242 set_buffer_defer_completion(bh_result); 2243 2244 if (!list_empty(&wc->w_unwritten_list)) { 2245 struct ocfs2_unwritten_extent *ue = NULL; 2246 2247 ue = list_first_entry(&wc->w_unwritten_list, 2248 struct ocfs2_unwritten_extent, 2249 ue_node); 2250 BUG_ON(ue->ue_cpos != desc->c_cpos); 2251 /* The physical address may be 0, fill it. */ 2252 ue->ue_phys = desc->c_phys; 2253 2254 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2255 dwc->dw_zero_count += wc->w_unwritten_count; 2256 } 2257 2258 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2259 BUG_ON(ret != len); 2260 ret = 0; 2261 unlock: 2262 up_write(&oi->ip_alloc_sem); 2263 ocfs2_inode_unlock(inode, 1); 2264 brelse(di_bh); 2265 out: 2266 return ret; 2267 } 2268 2269 static int ocfs2_dio_end_io_write(struct inode *inode, 2270 struct ocfs2_dio_write_ctxt *dwc, 2271 loff_t offset, 2272 ssize_t bytes) 2273 { 2274 struct ocfs2_cached_dealloc_ctxt dealloc; 2275 struct ocfs2_extent_tree et; 2276 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2277 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2278 struct ocfs2_unwritten_extent *ue = NULL; 2279 struct buffer_head *di_bh = NULL; 2280 struct ocfs2_dinode *di; 2281 struct ocfs2_alloc_context *data_ac = NULL; 2282 struct ocfs2_alloc_context *meta_ac = NULL; 2283 handle_t *handle = NULL; 2284 loff_t end = offset + bytes; 2285 int ret = 0, credits = 0; 2286 2287 ocfs2_init_dealloc_ctxt(&dealloc); 2288 2289 /* We do clear unwritten, delete orphan, change i_size here. If neither 2290 * of these happen, we can skip all this. */ 2291 if (list_empty(&dwc->dw_zero_list) && 2292 end <= i_size_read(inode) && 2293 !dwc->dw_orphaned) 2294 goto out; 2295 2296 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2297 if (ret < 0) { 2298 mlog_errno(ret); 2299 goto out; 2300 } 2301 2302 down_write(&oi->ip_alloc_sem); 2303 2304 /* Delete orphan before acquire i_rwsem. */ 2305 if (dwc->dw_orphaned) { 2306 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2307 2308 end = end > i_size_read(inode) ? end : 0; 2309 2310 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2311 !!end, end); 2312 if (ret < 0) 2313 mlog_errno(ret); 2314 } 2315 2316 di = (struct ocfs2_dinode *)di_bh->b_data; 2317 2318 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2319 2320 /* Attach dealloc with extent tree in case that we may reuse extents 2321 * which are already unlinked from current extent tree due to extent 2322 * rotation and merging. 2323 */ 2324 et.et_dealloc = &dealloc; 2325 2326 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2327 &data_ac, &meta_ac); 2328 if (ret) { 2329 mlog_errno(ret); 2330 goto unlock; 2331 } 2332 2333 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2334 2335 handle = ocfs2_start_trans(osb, credits); 2336 if (IS_ERR(handle)) { 2337 ret = PTR_ERR(handle); 2338 mlog_errno(ret); 2339 goto unlock; 2340 } 2341 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2342 OCFS2_JOURNAL_ACCESS_WRITE); 2343 if (ret) { 2344 mlog_errno(ret); 2345 goto commit; 2346 } 2347 2348 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2349 ret = ocfs2_assure_trans_credits(handle, credits); 2350 if (ret < 0) { 2351 mlog_errno(ret); 2352 break; 2353 } 2354 ret = ocfs2_mark_extent_written(inode, &et, handle, 2355 ue->ue_cpos, 1, 2356 ue->ue_phys, 2357 meta_ac, &dealloc); 2358 if (ret < 0) { 2359 mlog_errno(ret); 2360 break; 2361 } 2362 } 2363 2364 if (end > i_size_read(inode)) { 2365 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2366 if (ret < 0) 2367 mlog_errno(ret); 2368 } 2369 commit: 2370 ocfs2_commit_trans(osb, handle); 2371 unlock: 2372 up_write(&oi->ip_alloc_sem); 2373 ocfs2_inode_unlock(inode, 1); 2374 brelse(di_bh); 2375 out: 2376 if (data_ac) 2377 ocfs2_free_alloc_context(data_ac); 2378 if (meta_ac) 2379 ocfs2_free_alloc_context(meta_ac); 2380 ocfs2_run_deallocs(osb, &dealloc); 2381 ocfs2_dio_free_write_ctx(inode, dwc); 2382 2383 return ret; 2384 } 2385 2386 /* 2387 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2388 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2389 * to protect io on one node from truncation on another. 2390 */ 2391 static int ocfs2_dio_end_io(struct kiocb *iocb, 2392 loff_t offset, 2393 ssize_t bytes, 2394 void *private) 2395 { 2396 struct inode *inode = file_inode(iocb->ki_filp); 2397 int level; 2398 int ret = 0; 2399 2400 /* this io's submitter should not have unlocked this before we could */ 2401 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2402 2403 if (bytes <= 0) 2404 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2405 (long long)bytes); 2406 if (private) { 2407 if (bytes > 0) 2408 ret = ocfs2_dio_end_io_write(inode, private, offset, 2409 bytes); 2410 else 2411 ocfs2_dio_free_write_ctx(inode, private); 2412 } 2413 2414 ocfs2_iocb_clear_rw_locked(iocb); 2415 2416 level = ocfs2_iocb_rw_locked_level(iocb); 2417 ocfs2_rw_unlock(inode, level); 2418 return ret; 2419 } 2420 2421 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2422 { 2423 struct file *file = iocb->ki_filp; 2424 struct inode *inode = file->f_mapping->host; 2425 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2426 get_block_t *get_block; 2427 2428 /* 2429 * Fallback to buffered I/O if we see an inode without 2430 * extents. 2431 */ 2432 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2433 return 0; 2434 2435 /* Fallback to buffered I/O if we do not support append dio. */ 2436 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2437 !ocfs2_supports_append_dio(osb)) 2438 return 0; 2439 2440 if (iov_iter_rw(iter) == READ) 2441 get_block = ocfs2_lock_get_block; 2442 else 2443 get_block = ocfs2_dio_wr_get_block; 2444 2445 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2446 iter, get_block, 2447 ocfs2_dio_end_io, 0); 2448 } 2449 2450 const struct address_space_operations ocfs2_aops = { 2451 .dirty_folio = block_dirty_folio, 2452 .read_folio = ocfs2_read_folio, 2453 .readahead = ocfs2_readahead, 2454 .writepages = ocfs2_writepages, 2455 .write_begin = ocfs2_write_begin, 2456 .write_end = ocfs2_write_end, 2457 .bmap = ocfs2_bmap, 2458 .direct_IO = ocfs2_direct_IO, 2459 .invalidate_folio = block_invalidate_folio, 2460 .release_folio = ocfs2_release_folio, 2461 .migrate_folio = buffer_migrate_folio, 2462 .is_partially_uptodate = block_is_partially_uptodate, 2463 .error_remove_folio = generic_error_remove_folio, 2464 }; 2465