xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/msr.h>
50 #include <asm/mwait.h>
51 #include <asm/spec-ctrl.h>
52 #include <asm/vmx.h>
53 
54 #include <trace/events/ipi.h>
55 
56 #include "capabilities.h"
57 #include "common.h"
58 #include "cpuid.h"
59 #include "hyperv.h"
60 #include "kvm_onhyperv.h"
61 #include "irq.h"
62 #include "kvm_cache_regs.h"
63 #include "lapic.h"
64 #include "mmu.h"
65 #include "nested.h"
66 #include "pmu.h"
67 #include "sgx.h"
68 #include "trace.h"
69 #include "vmcs.h"
70 #include "vmcs12.h"
71 #include "vmx.h"
72 #include "x86.h"
73 #include "x86_ops.h"
74 #include "smm.h"
75 #include "vmx_onhyperv.h"
76 #include "posted_intr.h"
77 
78 #include "mmu/spte.h"
79 
80 MODULE_AUTHOR("Qumranet");
81 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
82 MODULE_LICENSE("GPL");
83 
84 #ifdef MODULE
85 static const struct x86_cpu_id vmx_cpu_id[] = {
86 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
87 	{}
88 };
89 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
90 #endif
91 
92 bool __read_mostly enable_vpid = 1;
93 module_param_named(vpid, enable_vpid, bool, 0444);
94 
95 static bool __read_mostly enable_vnmi = 1;
96 module_param_named(vnmi, enable_vnmi, bool, 0444);
97 
98 bool __read_mostly flexpriority_enabled = 1;
99 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
100 
101 bool __read_mostly enable_ept = 1;
102 module_param_named(ept, enable_ept, bool, 0444);
103 
104 bool __read_mostly enable_unrestricted_guest = 1;
105 module_param_named(unrestricted_guest,
106 			enable_unrestricted_guest, bool, 0444);
107 
108 bool __read_mostly enable_ept_ad_bits = 1;
109 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
110 
111 static bool __read_mostly emulate_invalid_guest_state = true;
112 module_param(emulate_invalid_guest_state, bool, 0444);
113 
114 static bool __read_mostly fasteoi = 1;
115 module_param(fasteoi, bool, 0444);
116 
117 module_param(enable_apicv, bool, 0444);
118 module_param(enable_ipiv, bool, 0444);
119 
120 module_param(enable_device_posted_irqs, bool, 0444);
121 
122 /*
123  * If nested=1, nested virtualization is supported, i.e., guests may use
124  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
125  * use VMX instructions.
126  */
127 static bool __read_mostly nested = 1;
128 module_param(nested, bool, 0444);
129 
130 bool __read_mostly enable_pml = 1;
131 module_param_named(pml, enable_pml, bool, 0444);
132 
133 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
134 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
135 
136 static bool __read_mostly dump_invalid_vmcs = 0;
137 module_param(dump_invalid_vmcs, bool, 0644);
138 
139 #define MSR_BITMAP_MODE_X2APIC		1
140 #define MSR_BITMAP_MODE_X2APIC_APICV	2
141 
142 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
143 
144 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
145 static int __read_mostly cpu_preemption_timer_multi;
146 static bool __read_mostly enable_preemption_timer = 1;
147 #ifdef CONFIG_X86_64
148 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
149 #endif
150 
151 extern bool __read_mostly allow_smaller_maxphyaddr;
152 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
153 
154 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
155 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
156 #define KVM_VM_CR0_ALWAYS_ON				\
157 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
158 
159 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
160 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
161 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
162 
163 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
164 
165 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
166 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
167 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
168 	RTIT_STATUS_BYTECNT))
169 
170 /*
171  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
172  * ple_gap:    upper bound on the amount of time between two successive
173  *             executions of PAUSE in a loop. Also indicate if ple enabled.
174  *             According to test, this time is usually smaller than 128 cycles.
175  * ple_window: upper bound on the amount of time a guest is allowed to execute
176  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
177  *             less than 2^12 cycles
178  * Time is measured based on a counter that runs at the same rate as the TSC,
179  * refer SDM volume 3b section 21.6.13 & 22.1.3.
180  */
181 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
182 module_param(ple_gap, uint, 0444);
183 
184 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
185 module_param(ple_window, uint, 0444);
186 
187 /* Default doubles per-vcpu window every exit. */
188 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
189 module_param(ple_window_grow, uint, 0444);
190 
191 /* Default resets per-vcpu window every exit to ple_window. */
192 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
193 module_param(ple_window_shrink, uint, 0444);
194 
195 /* Default is to compute the maximum so we can never overflow. */
196 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
197 module_param(ple_window_max, uint, 0444);
198 
199 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
200 int __read_mostly pt_mode = PT_MODE_SYSTEM;
201 #ifdef CONFIG_BROKEN
202 module_param(pt_mode, int, S_IRUGO);
203 #endif
204 
205 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 	struct page *page;
232 	unsigned int i;
233 
234 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 		return 0;
237 	}
238 
239 	if (!enable_ept) {
240 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 		return 0;
242 	}
243 
244 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
245 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246 		return 0;
247 	}
248 
249 	/* If set to auto use the default l1tf mitigation method */
250 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
251 		switch (l1tf_mitigation) {
252 		case L1TF_MITIGATION_OFF:
253 			l1tf = VMENTER_L1D_FLUSH_NEVER;
254 			break;
255 		case L1TF_MITIGATION_AUTO:
256 		case L1TF_MITIGATION_FLUSH_NOWARN:
257 		case L1TF_MITIGATION_FLUSH:
258 		case L1TF_MITIGATION_FLUSH_NOSMT:
259 			l1tf = VMENTER_L1D_FLUSH_COND;
260 			break;
261 		case L1TF_MITIGATION_FULL:
262 		case L1TF_MITIGATION_FULL_FORCE:
263 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
264 			break;
265 		}
266 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
267 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 	}
269 
270 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
271 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
272 		/*
273 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
274 		 * lifetime and so should not be charged to a memcg.
275 		 */
276 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
277 		if (!page)
278 			return -ENOMEM;
279 		vmx_l1d_flush_pages = page_address(page);
280 
281 		/*
282 		 * Initialize each page with a different pattern in
283 		 * order to protect against KSM in the nested
284 		 * virtualization case.
285 		 */
286 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
287 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
288 			       PAGE_SIZE);
289 		}
290 	}
291 
292 	l1tf_vmx_mitigation = l1tf;
293 
294 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
295 		static_branch_enable(&vmx_l1d_should_flush);
296 	else
297 		static_branch_disable(&vmx_l1d_should_flush);
298 
299 	if (l1tf == VMENTER_L1D_FLUSH_COND)
300 		static_branch_enable(&vmx_l1d_flush_cond);
301 	else
302 		static_branch_disable(&vmx_l1d_flush_cond);
303 	return 0;
304 }
305 
vmentry_l1d_flush_parse(const char * s)306 static int vmentry_l1d_flush_parse(const char *s)
307 {
308 	unsigned int i;
309 
310 	if (s) {
311 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
312 			if (vmentry_l1d_param[i].for_parse &&
313 			    sysfs_streq(s, vmentry_l1d_param[i].option))
314 				return i;
315 		}
316 	}
317 	return -EINVAL;
318 }
319 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)320 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
321 {
322 	int l1tf, ret;
323 
324 	l1tf = vmentry_l1d_flush_parse(s);
325 	if (l1tf < 0)
326 		return l1tf;
327 
328 	if (!boot_cpu_has(X86_BUG_L1TF))
329 		return 0;
330 
331 	/*
332 	 * Has vmx_init() run already? If not then this is the pre init
333 	 * parameter parsing. In that case just store the value and let
334 	 * vmx_init() do the proper setup after enable_ept has been
335 	 * established.
336 	 */
337 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
338 		vmentry_l1d_flush_param = l1tf;
339 		return 0;
340 	}
341 
342 	mutex_lock(&vmx_l1d_flush_mutex);
343 	ret = vmx_setup_l1d_flush(l1tf);
344 	mutex_unlock(&vmx_l1d_flush_mutex);
345 	return ret;
346 }
347 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)348 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
349 {
350 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
351 		return sysfs_emit(s, "???\n");
352 
353 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
354 }
355 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)356 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
357 {
358 	u64 msr;
359 
360 	if (!vmx->disable_fb_clear)
361 		return;
362 
363 	msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
364 	msr |= FB_CLEAR_DIS;
365 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
366 	/* Cache the MSR value to avoid reading it later */
367 	vmx->msr_ia32_mcu_opt_ctrl = msr;
368 }
369 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)370 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
371 {
372 	if (!vmx->disable_fb_clear)
373 		return;
374 
375 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
376 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
377 }
378 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)379 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
380 {
381 	/*
382 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
383 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
384 	 * the mitigation. Disabling the clearing behavior provides a
385 	 * performance boost for guests that aren't aware that manually clearing
386 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
387 	 * and VM-Exit.
388 	 */
389 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
390 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
391 				!boot_cpu_has_bug(X86_BUG_MDS) &&
392 				!boot_cpu_has_bug(X86_BUG_TAA);
393 
394 	/*
395 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
396 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
397 	 * execute VERW.
398 	 */
399 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
400 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
401 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
402 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
403 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
404 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
405 		vmx->disable_fb_clear = false;
406 }
407 
408 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
409 	.set = vmentry_l1d_flush_set,
410 	.get = vmentry_l1d_flush_get,
411 };
412 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
413 
414 static u32 vmx_segment_access_rights(struct kvm_segment *var);
415 
416 void vmx_vmexit(void);
417 
418 #define vmx_insn_failed(fmt...)		\
419 do {					\
420 	WARN_ONCE(1, fmt);		\
421 	pr_warn_ratelimited(fmt);	\
422 } while (0)
423 
vmread_error(unsigned long field)424 noinline void vmread_error(unsigned long field)
425 {
426 	vmx_insn_failed("vmread failed: field=%lx\n", field);
427 }
428 
429 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)430 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
431 {
432 	if (fault) {
433 		kvm_spurious_fault();
434 	} else {
435 		instrumentation_begin();
436 		vmread_error(field);
437 		instrumentation_end();
438 	}
439 }
440 #endif
441 
vmwrite_error(unsigned long field,unsigned long value)442 noinline void vmwrite_error(unsigned long field, unsigned long value)
443 {
444 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
445 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
446 }
447 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)448 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
449 {
450 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
451 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
452 }
453 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
457 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
458 }
459 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461 {
462 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463 			ext, vpid, gva);
464 }
465 
invept_error(unsigned long ext,u64 eptp)466 noinline void invept_error(unsigned long ext, u64 eptp)
467 {
468 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
469 }
470 
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476  */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478 
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481 
482 struct vmcs_config vmcs_config __ro_after_init;
483 struct vmx_capability vmx_capability __ro_after_init;
484 
485 #define VMX_SEGMENT_FIELD(seg)					\
486 	[VCPU_SREG_##seg] = {                                   \
487 		.selector = GUEST_##seg##_SELECTOR,		\
488 		.base = GUEST_##seg##_BASE,		   	\
489 		.limit = GUEST_##seg##_LIMIT,		   	\
490 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
491 	}
492 
493 static const struct kvm_vmx_segment_field {
494 	unsigned selector;
495 	unsigned base;
496 	unsigned limit;
497 	unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 	VMX_SEGMENT_FIELD(CS),
500 	VMX_SEGMENT_FIELD(DS),
501 	VMX_SEGMENT_FIELD(ES),
502 	VMX_SEGMENT_FIELD(FS),
503 	VMX_SEGMENT_FIELD(GS),
504 	VMX_SEGMENT_FIELD(SS),
505 	VMX_SEGMENT_FIELD(TR),
506 	VMX_SEGMENT_FIELD(LDTR),
507 };
508 
509 
510 static unsigned long host_idt_base;
511 
512 #if IS_ENABLED(CONFIG_HYPERV)
513 static bool __read_mostly enlightened_vmcs = true;
514 module_param(enlightened_vmcs, bool, 0444);
515 
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)516 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
517 {
518 	struct hv_enlightened_vmcs *evmcs;
519 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
520 
521 	if (partition_assist_page == INVALID_PAGE)
522 		return -ENOMEM;
523 
524 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
525 
526 	evmcs->partition_assist_page = partition_assist_page;
527 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
528 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
529 
530 	return 0;
531 }
532 
hv_init_evmcs(void)533 static __init void hv_init_evmcs(void)
534 {
535 	int cpu;
536 
537 	if (!enlightened_vmcs)
538 		return;
539 
540 	/*
541 	 * Enlightened VMCS usage should be recommended and the host needs
542 	 * to support eVMCS v1 or above.
543 	 */
544 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
545 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
546 	     KVM_EVMCS_VERSION) {
547 
548 		/* Check that we have assist pages on all online CPUs */
549 		for_each_online_cpu(cpu) {
550 			if (!hv_get_vp_assist_page(cpu)) {
551 				enlightened_vmcs = false;
552 				break;
553 			}
554 		}
555 
556 		if (enlightened_vmcs) {
557 			pr_info("Using Hyper-V Enlightened VMCS\n");
558 			static_branch_enable(&__kvm_is_using_evmcs);
559 		}
560 
561 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
562 			vt_x86_ops.enable_l2_tlb_flush
563 				= hv_enable_l2_tlb_flush;
564 	} else {
565 		enlightened_vmcs = false;
566 	}
567 }
568 
hv_reset_evmcs(void)569 static void hv_reset_evmcs(void)
570 {
571 	struct hv_vp_assist_page *vp_ap;
572 
573 	if (!kvm_is_using_evmcs())
574 		return;
575 
576 	/*
577 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
578 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
579 	 * doesn't have a VP assist page allocated.
580 	 */
581 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
582 	if (WARN_ON_ONCE(!vp_ap))
583 		return;
584 
585 	/*
586 	 * Reset everything to support using non-enlightened VMCS access later
587 	 * (e.g. when we reload the module with enlightened_vmcs=0)
588 	 */
589 	vp_ap->nested_control.features.directhypercall = 0;
590 	vp_ap->current_nested_vmcs = 0;
591 	vp_ap->enlighten_vmentry = 0;
592 }
593 
594 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)595 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)596 static void hv_reset_evmcs(void) {}
597 #endif /* IS_ENABLED(CONFIG_HYPERV) */
598 
599 /*
600  * Comment's format: document - errata name - stepping - processor name.
601  * Refer from
602  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
603  */
604 static u32 vmx_preemption_cpu_tfms[] = {
605 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
606 0x000206E6,
607 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
608 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
609 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
610 0x00020652,
611 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
612 0x00020655,
613 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
614 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
615 /*
616  * 320767.pdf - AAP86  - B1 -
617  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
618  */
619 0x000106E5,
620 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
621 0x000106A0,
622 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
623 0x000106A1,
624 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
625 0x000106A4,
626  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
627  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
628  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
629 0x000106A5,
630  /* Xeon E3-1220 V2 */
631 0x000306A8,
632 };
633 
cpu_has_broken_vmx_preemption_timer(void)634 static inline bool cpu_has_broken_vmx_preemption_timer(void)
635 {
636 	u32 eax = cpuid_eax(0x00000001), i;
637 
638 	/* Clear the reserved bits */
639 	eax &= ~(0x3U << 14 | 0xfU << 28);
640 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
641 		if (eax == vmx_preemption_cpu_tfms[i])
642 			return true;
643 
644 	return false;
645 }
646 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)647 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
648 {
649 	return flexpriority_enabled && lapic_in_kernel(vcpu);
650 }
651 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 	int i;
655 
656 	i = kvm_find_user_return_msr(msr);
657 	if (i >= 0)
658 		return &vmx->guest_uret_msrs[i];
659 	return NULL;
660 }
661 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 				  struct vmx_uret_msr *msr, u64 data)
664 {
665 	unsigned int slot = msr - vmx->guest_uret_msrs;
666 	int ret = 0;
667 
668 	if (msr->load_into_hardware) {
669 		preempt_disable();
670 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 		preempt_enable();
672 	}
673 	if (!ret)
674 		msr->data = data;
675 	return ret;
676 }
677 
678 /*
679  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
680  *
681  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
682  * atomically track post-VMXON state, e.g. this may be called in NMI context.
683  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
684  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
685  * magically in RM, VM86, compat mode, or at CPL>0.
686  */
kvm_cpu_vmxoff(void)687 static int kvm_cpu_vmxoff(void)
688 {
689 	asm goto("1: vmxoff\n\t"
690 			  _ASM_EXTABLE(1b, %l[fault])
691 			  ::: "cc", "memory" : fault);
692 
693 	cr4_clear_bits(X86_CR4_VMXE);
694 	return 0;
695 
696 fault:
697 	cr4_clear_bits(X86_CR4_VMXE);
698 	return -EIO;
699 }
700 
vmx_emergency_disable_virtualization_cpu(void)701 void vmx_emergency_disable_virtualization_cpu(void)
702 {
703 	int cpu = raw_smp_processor_id();
704 	struct loaded_vmcs *v;
705 
706 	kvm_rebooting = true;
707 
708 	/*
709 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
710 	 * set in task context.  If this races with VMX is disabled by an NMI,
711 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
712 	 * kvm_rebooting set.
713 	 */
714 	if (!(__read_cr4() & X86_CR4_VMXE))
715 		return;
716 
717 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
718 			    loaded_vmcss_on_cpu_link) {
719 		vmcs_clear(v->vmcs);
720 		if (v->shadow_vmcs)
721 			vmcs_clear(v->shadow_vmcs);
722 	}
723 
724 	kvm_cpu_vmxoff();
725 }
726 
__loaded_vmcs_clear(void * arg)727 static void __loaded_vmcs_clear(void *arg)
728 {
729 	struct loaded_vmcs *loaded_vmcs = arg;
730 	int cpu = raw_smp_processor_id();
731 
732 	if (loaded_vmcs->cpu != cpu)
733 		return; /* vcpu migration can race with cpu offline */
734 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
735 		per_cpu(current_vmcs, cpu) = NULL;
736 
737 	vmcs_clear(loaded_vmcs->vmcs);
738 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
739 		vmcs_clear(loaded_vmcs->shadow_vmcs);
740 
741 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
742 
743 	/*
744 	 * Ensure all writes to loaded_vmcs, including deleting it from its
745 	 * current percpu list, complete before setting loaded_vmcs->cpu to
746 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
747 	 * and add loaded_vmcs to its percpu list before it's deleted from this
748 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
749 	 */
750 	smp_wmb();
751 
752 	loaded_vmcs->cpu = -1;
753 	loaded_vmcs->launched = 0;
754 }
755 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)756 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
757 {
758 	int cpu = loaded_vmcs->cpu;
759 
760 	if (cpu != -1)
761 		smp_call_function_single(cpu,
762 			 __loaded_vmcs_clear, loaded_vmcs, 1);
763 }
764 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)765 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
766 				       unsigned field)
767 {
768 	bool ret;
769 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
770 
771 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
772 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
773 		vmx->segment_cache.bitmask = 0;
774 	}
775 	ret = vmx->segment_cache.bitmask & mask;
776 	vmx->segment_cache.bitmask |= mask;
777 	return ret;
778 }
779 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)780 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
781 {
782 	u16 *p = &vmx->segment_cache.seg[seg].selector;
783 
784 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
785 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
786 	return *p;
787 }
788 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)789 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
790 {
791 	ulong *p = &vmx->segment_cache.seg[seg].base;
792 
793 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
794 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
795 	return *p;
796 }
797 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)798 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
799 {
800 	u32 *p = &vmx->segment_cache.seg[seg].limit;
801 
802 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
803 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
804 	return *p;
805 }
806 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)807 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
808 {
809 	u32 *p = &vmx->segment_cache.seg[seg].ar;
810 
811 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
812 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
813 	return *p;
814 }
815 
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)816 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
817 {
818 	u32 eb;
819 
820 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
821 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
822 	/*
823 	 * #VE isn't used for VMX.  To test against unexpected changes
824 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
825 	 */
826 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
827 		eb |= 1u << VE_VECTOR;
828 	/*
829 	 * Guest access to VMware backdoor ports could legitimately
830 	 * trigger #GP because of TSS I/O permission bitmap.
831 	 * We intercept those #GP and allow access to them anyway
832 	 * as VMware does.
833 	 */
834 	if (enable_vmware_backdoor)
835 		eb |= (1u << GP_VECTOR);
836 	if ((vcpu->guest_debug &
837 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
838 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
839 		eb |= 1u << BP_VECTOR;
840 	if (to_vmx(vcpu)->rmode.vm86_active)
841 		eb = ~0;
842 	if (!vmx_need_pf_intercept(vcpu))
843 		eb &= ~(1u << PF_VECTOR);
844 
845 	/* When we are running a nested L2 guest and L1 specified for it a
846 	 * certain exception bitmap, we must trap the same exceptions and pass
847 	 * them to L1. When running L2, we will only handle the exceptions
848 	 * specified above if L1 did not want them.
849 	 */
850 	if (is_guest_mode(vcpu))
851 		eb |= get_vmcs12(vcpu)->exception_bitmap;
852 	else {
853 		int mask = 0, match = 0;
854 
855 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
856 			/*
857 			 * If EPT is enabled, #PF is currently only intercepted
858 			 * if MAXPHYADDR is smaller on the guest than on the
859 			 * host.  In that case we only care about present,
860 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
861 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
862 			 */
863 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
864 			match = PFERR_PRESENT_MASK;
865 		}
866 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
867 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
868 	}
869 
870 	/*
871 	 * Disabling xfd interception indicates that dynamic xfeatures
872 	 * might be used in the guest. Always trap #NM in this case
873 	 * to save guest xfd_err timely.
874 	 */
875 	if (vcpu->arch.xfd_no_write_intercept)
876 		eb |= (1u << NM_VECTOR);
877 
878 	vmcs_write32(EXCEPTION_BITMAP, eb);
879 }
880 
881 /*
882  * Check if MSR is intercepted for currently loaded MSR bitmap.
883  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)884 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
885 {
886 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
887 		return true;
888 
889 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
890 }
891 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)892 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
893 {
894 	unsigned int flags = 0;
895 
896 	if (vmx->loaded_vmcs->launched)
897 		flags |= VMX_RUN_VMRESUME;
898 
899 	/*
900 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
901 	 * to change it directly without causing a vmexit.  In that case read
902 	 * it after vmexit and store it in vmx->spec_ctrl.
903 	 */
904 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
905 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
906 
907 	if (static_branch_unlikely(&cpu_buf_vm_clear) &&
908 	    kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
909 		flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
910 
911 	return flags;
912 }
913 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)914 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
915 		unsigned long entry, unsigned long exit)
916 {
917 	vm_entry_controls_clearbit(vmx, entry);
918 	vm_exit_controls_clearbit(vmx, exit);
919 }
920 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)921 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
922 {
923 	unsigned int i;
924 
925 	for (i = 0; i < m->nr; ++i) {
926 		if (m->val[i].index == msr)
927 			return i;
928 	}
929 	return -ENOENT;
930 }
931 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)932 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
933 {
934 	int i;
935 	struct msr_autoload *m = &vmx->msr_autoload;
936 
937 	switch (msr) {
938 	case MSR_EFER:
939 		if (cpu_has_load_ia32_efer()) {
940 			clear_atomic_switch_msr_special(vmx,
941 					VM_ENTRY_LOAD_IA32_EFER,
942 					VM_EXIT_LOAD_IA32_EFER);
943 			return;
944 		}
945 		break;
946 	case MSR_CORE_PERF_GLOBAL_CTRL:
947 		if (cpu_has_load_perf_global_ctrl()) {
948 			clear_atomic_switch_msr_special(vmx,
949 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
950 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
951 			return;
952 		}
953 		break;
954 	}
955 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
956 	if (i < 0)
957 		goto skip_guest;
958 	--m->guest.nr;
959 	m->guest.val[i] = m->guest.val[m->guest.nr];
960 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
961 
962 skip_guest:
963 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
964 	if (i < 0)
965 		return;
966 
967 	--m->host.nr;
968 	m->host.val[i] = m->host.val[m->host.nr];
969 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
970 }
971 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)972 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
973 		unsigned long entry, unsigned long exit,
974 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
975 		u64 guest_val, u64 host_val)
976 {
977 	vmcs_write64(guest_val_vmcs, guest_val);
978 	if (host_val_vmcs != HOST_IA32_EFER)
979 		vmcs_write64(host_val_vmcs, host_val);
980 	vm_entry_controls_setbit(vmx, entry);
981 	vm_exit_controls_setbit(vmx, exit);
982 }
983 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)984 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
985 				  u64 guest_val, u64 host_val, bool entry_only)
986 {
987 	int i, j = 0;
988 	struct msr_autoload *m = &vmx->msr_autoload;
989 
990 	switch (msr) {
991 	case MSR_EFER:
992 		if (cpu_has_load_ia32_efer()) {
993 			add_atomic_switch_msr_special(vmx,
994 					VM_ENTRY_LOAD_IA32_EFER,
995 					VM_EXIT_LOAD_IA32_EFER,
996 					GUEST_IA32_EFER,
997 					HOST_IA32_EFER,
998 					guest_val, host_val);
999 			return;
1000 		}
1001 		break;
1002 	case MSR_CORE_PERF_GLOBAL_CTRL:
1003 		if (cpu_has_load_perf_global_ctrl()) {
1004 			add_atomic_switch_msr_special(vmx,
1005 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1006 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1007 					GUEST_IA32_PERF_GLOBAL_CTRL,
1008 					HOST_IA32_PERF_GLOBAL_CTRL,
1009 					guest_val, host_val);
1010 			return;
1011 		}
1012 		break;
1013 	case MSR_IA32_PEBS_ENABLE:
1014 		/* PEBS needs a quiescent period after being disabled (to write
1015 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1016 		 * provide that period, so a CPU could write host's record into
1017 		 * guest's memory.
1018 		 */
1019 		wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1020 	}
1021 
1022 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1023 	if (!entry_only)
1024 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1025 
1026 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1027 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1028 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1029 				"Can't add msr %x\n", msr);
1030 		return;
1031 	}
1032 	if (i < 0) {
1033 		i = m->guest.nr++;
1034 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1035 	}
1036 	m->guest.val[i].index = msr;
1037 	m->guest.val[i].value = guest_val;
1038 
1039 	if (entry_only)
1040 		return;
1041 
1042 	if (j < 0) {
1043 		j = m->host.nr++;
1044 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1045 	}
1046 	m->host.val[j].index = msr;
1047 	m->host.val[j].value = host_val;
1048 }
1049 
update_transition_efer(struct vcpu_vmx * vmx)1050 static bool update_transition_efer(struct vcpu_vmx *vmx)
1051 {
1052 	u64 guest_efer = vmx->vcpu.arch.efer;
1053 	u64 ignore_bits = 0;
1054 	int i;
1055 
1056 	/* Shadow paging assumes NX to be available.  */
1057 	if (!enable_ept)
1058 		guest_efer |= EFER_NX;
1059 
1060 	/*
1061 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1062 	 */
1063 	ignore_bits |= EFER_SCE;
1064 #ifdef CONFIG_X86_64
1065 	ignore_bits |= EFER_LMA | EFER_LME;
1066 	/* SCE is meaningful only in long mode on Intel */
1067 	if (guest_efer & EFER_LMA)
1068 		ignore_bits &= ~(u64)EFER_SCE;
1069 #endif
1070 
1071 	/*
1072 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1073 	 * On CPUs that support "load IA32_EFER", always switch EFER
1074 	 * atomically, since it's faster than switching it manually.
1075 	 */
1076 	if (cpu_has_load_ia32_efer() ||
1077 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1078 		if (!(guest_efer & EFER_LMA))
1079 			guest_efer &= ~EFER_LME;
1080 		if (guest_efer != kvm_host.efer)
1081 			add_atomic_switch_msr(vmx, MSR_EFER,
1082 					      guest_efer, kvm_host.efer, false);
1083 		else
1084 			clear_atomic_switch_msr(vmx, MSR_EFER);
1085 		return false;
1086 	}
1087 
1088 	i = kvm_find_user_return_msr(MSR_EFER);
1089 	if (i < 0)
1090 		return false;
1091 
1092 	clear_atomic_switch_msr(vmx, MSR_EFER);
1093 
1094 	guest_efer &= ~ignore_bits;
1095 	guest_efer |= kvm_host.efer & ignore_bits;
1096 
1097 	vmx->guest_uret_msrs[i].data = guest_efer;
1098 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1099 
1100 	return true;
1101 }
1102 
1103 #ifdef CONFIG_X86_32
1104 /*
1105  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1106  * VMCS rather than the segment table.  KVM uses this helper to figure
1107  * out the current bases to poke them into the VMCS before entry.
1108  */
segment_base(u16 selector)1109 static unsigned long segment_base(u16 selector)
1110 {
1111 	struct desc_struct *table;
1112 	unsigned long v;
1113 
1114 	if (!(selector & ~SEGMENT_RPL_MASK))
1115 		return 0;
1116 
1117 	table = get_current_gdt_ro();
1118 
1119 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1120 		u16 ldt_selector = kvm_read_ldt();
1121 
1122 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1123 			return 0;
1124 
1125 		table = (struct desc_struct *)segment_base(ldt_selector);
1126 	}
1127 	v = get_desc_base(&table[selector >> 3]);
1128 	return v;
1129 }
1130 #endif
1131 
pt_can_write_msr(struct vcpu_vmx * vmx)1132 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1133 {
1134 	return vmx_pt_mode_is_host_guest() &&
1135 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1136 }
1137 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1138 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1139 {
1140 	/* The base must be 128-byte aligned and a legal physical address. */
1141 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1142 }
1143 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1144 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1145 {
1146 	u32 i;
1147 
1148 	wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1149 	wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1150 	wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1151 	wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1152 	for (i = 0; i < addr_range; i++) {
1153 		wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1154 		wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1155 	}
1156 }
1157 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1158 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1159 {
1160 	u32 i;
1161 
1162 	rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1163 	rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1164 	rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1165 	rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1166 	for (i = 0; i < addr_range; i++) {
1167 		rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1168 		rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1169 	}
1170 }
1171 
pt_guest_enter(struct vcpu_vmx * vmx)1172 static void pt_guest_enter(struct vcpu_vmx *vmx)
1173 {
1174 	if (vmx_pt_mode_is_system())
1175 		return;
1176 
1177 	/*
1178 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1179 	 * Save host state before VM entry.
1180 	 */
1181 	rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1182 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1183 		wrmsrq(MSR_IA32_RTIT_CTL, 0);
1184 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1185 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1186 	}
1187 }
1188 
pt_guest_exit(struct vcpu_vmx * vmx)1189 static void pt_guest_exit(struct vcpu_vmx *vmx)
1190 {
1191 	if (vmx_pt_mode_is_system())
1192 		return;
1193 
1194 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1195 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1196 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1197 	}
1198 
1199 	/*
1200 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1201 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1202 	 */
1203 	if (vmx->pt_desc.host.ctl)
1204 		wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1205 }
1206 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1207 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1208 			unsigned long fs_base, unsigned long gs_base)
1209 {
1210 	if (unlikely(fs_sel != host->fs_sel)) {
1211 		if (!(fs_sel & 7))
1212 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1213 		else
1214 			vmcs_write16(HOST_FS_SELECTOR, 0);
1215 		host->fs_sel = fs_sel;
1216 	}
1217 	if (unlikely(gs_sel != host->gs_sel)) {
1218 		if (!(gs_sel & 7))
1219 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1220 		else
1221 			vmcs_write16(HOST_GS_SELECTOR, 0);
1222 		host->gs_sel = gs_sel;
1223 	}
1224 	if (unlikely(fs_base != host->fs_base)) {
1225 		vmcs_writel(HOST_FS_BASE, fs_base);
1226 		host->fs_base = fs_base;
1227 	}
1228 	if (unlikely(gs_base != host->gs_base)) {
1229 		vmcs_writel(HOST_GS_BASE, gs_base);
1230 		host->gs_base = gs_base;
1231 	}
1232 }
1233 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1234 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1235 {
1236 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1237 	struct vcpu_vt *vt = to_vt(vcpu);
1238 	struct vmcs_host_state *host_state;
1239 #ifdef CONFIG_X86_64
1240 	int cpu = raw_smp_processor_id();
1241 #endif
1242 	unsigned long fs_base, gs_base;
1243 	u16 fs_sel, gs_sel;
1244 	int i;
1245 
1246 	/*
1247 	 * Note that guest MSRs to be saved/restored can also be changed
1248 	 * when guest state is loaded. This happens when guest transitions
1249 	 * to/from long-mode by setting MSR_EFER.LMA.
1250 	 */
1251 	if (!vmx->guest_uret_msrs_loaded) {
1252 		vmx->guest_uret_msrs_loaded = true;
1253 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1254 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1255 				continue;
1256 
1257 			kvm_set_user_return_msr(i,
1258 						vmx->guest_uret_msrs[i].data,
1259 						vmx->guest_uret_msrs[i].mask);
1260 		}
1261 	}
1262 
1263 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1264 		nested_sync_vmcs12_to_shadow(vcpu);
1265 
1266 	if (vt->guest_state_loaded)
1267 		return;
1268 
1269 	host_state = &vmx->loaded_vmcs->host_state;
1270 
1271 	/*
1272 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1273 	 * allow segment selectors with cpl > 0 or ti == 1.
1274 	 */
1275 	host_state->ldt_sel = kvm_read_ldt();
1276 
1277 #ifdef CONFIG_X86_64
1278 	savesegment(ds, host_state->ds_sel);
1279 	savesegment(es, host_state->es_sel);
1280 
1281 	gs_base = cpu_kernelmode_gs_base(cpu);
1282 	if (likely(is_64bit_mm(current->mm))) {
1283 		current_save_fsgs();
1284 		fs_sel = current->thread.fsindex;
1285 		gs_sel = current->thread.gsindex;
1286 		fs_base = current->thread.fsbase;
1287 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
1288 	} else {
1289 		savesegment(fs, fs_sel);
1290 		savesegment(gs, gs_sel);
1291 		fs_base = read_msr(MSR_FS_BASE);
1292 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1293 	}
1294 
1295 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1296 #else
1297 	savesegment(fs, fs_sel);
1298 	savesegment(gs, gs_sel);
1299 	fs_base = segment_base(fs_sel);
1300 	gs_base = segment_base(gs_sel);
1301 #endif
1302 
1303 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1304 	vt->guest_state_loaded = true;
1305 }
1306 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1307 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1308 {
1309 	struct vmcs_host_state *host_state;
1310 
1311 	if (!vmx->vt.guest_state_loaded)
1312 		return;
1313 
1314 	host_state = &vmx->loaded_vmcs->host_state;
1315 
1316 	++vmx->vcpu.stat.host_state_reload;
1317 
1318 #ifdef CONFIG_X86_64
1319 	rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1320 #endif
1321 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1322 		kvm_load_ldt(host_state->ldt_sel);
1323 #ifdef CONFIG_X86_64
1324 		load_gs_index(host_state->gs_sel);
1325 #else
1326 		loadsegment(gs, host_state->gs_sel);
1327 #endif
1328 	}
1329 	if (host_state->fs_sel & 7)
1330 		loadsegment(fs, host_state->fs_sel);
1331 #ifdef CONFIG_X86_64
1332 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1333 		loadsegment(ds, host_state->ds_sel);
1334 		loadsegment(es, host_state->es_sel);
1335 	}
1336 #endif
1337 	invalidate_tss_limit();
1338 #ifdef CONFIG_X86_64
1339 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1340 #endif
1341 	load_fixmap_gdt(raw_smp_processor_id());
1342 	vmx->vt.guest_state_loaded = false;
1343 	vmx->guest_uret_msrs_loaded = false;
1344 }
1345 
1346 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1347 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1348 {
1349 	preempt_disable();
1350 	if (vmx->vt.guest_state_loaded)
1351 		rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1352 	preempt_enable();
1353 	return vmx->msr_guest_kernel_gs_base;
1354 }
1355 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1356 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1357 {
1358 	preempt_disable();
1359 	if (vmx->vt.guest_state_loaded)
1360 		wrmsrq(MSR_KERNEL_GS_BASE, data);
1361 	preempt_enable();
1362 	vmx->msr_guest_kernel_gs_base = data;
1363 }
1364 #endif
1365 
grow_ple_window(struct kvm_vcpu * vcpu)1366 static void grow_ple_window(struct kvm_vcpu *vcpu)
1367 {
1368 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1369 	unsigned int old = vmx->ple_window;
1370 
1371 	vmx->ple_window = __grow_ple_window(old, ple_window,
1372 					    ple_window_grow,
1373 					    ple_window_max);
1374 
1375 	if (vmx->ple_window != old) {
1376 		vmx->ple_window_dirty = true;
1377 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1378 					    vmx->ple_window, old);
1379 	}
1380 }
1381 
shrink_ple_window(struct kvm_vcpu * vcpu)1382 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1383 {
1384 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1385 	unsigned int old = vmx->ple_window;
1386 
1387 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1388 					      ple_window_shrink,
1389 					      ple_window);
1390 
1391 	if (vmx->ple_window != old) {
1392 		vmx->ple_window_dirty = true;
1393 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1394 					    vmx->ple_window, old);
1395 	}
1396 }
1397 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1398 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1399 {
1400 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1401 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1402 	struct vmcs *prev;
1403 
1404 	if (!already_loaded) {
1405 		loaded_vmcs_clear(vmx->loaded_vmcs);
1406 		local_irq_disable();
1407 
1408 		/*
1409 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1410 		 * this cpu's percpu list, otherwise it may not yet be deleted
1411 		 * from its previous cpu's percpu list.  Pairs with the
1412 		 * smb_wmb() in __loaded_vmcs_clear().
1413 		 */
1414 		smp_rmb();
1415 
1416 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1417 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1418 		local_irq_enable();
1419 	}
1420 
1421 	prev = per_cpu(current_vmcs, cpu);
1422 	if (prev != vmx->loaded_vmcs->vmcs) {
1423 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1424 		vmcs_load(vmx->loaded_vmcs->vmcs);
1425 	}
1426 
1427 	if (!already_loaded) {
1428 		void *gdt = get_current_gdt_ro();
1429 
1430 		/*
1431 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1432 		 * TLB entries from its previous association with the vCPU.
1433 		 */
1434 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1435 
1436 		/*
1437 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1438 		 * processors.  See 22.2.4.
1439 		 */
1440 		vmcs_writel(HOST_TR_BASE,
1441 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1442 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1443 
1444 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1445 			/* 22.2.3 */
1446 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1447 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1448 		}
1449 
1450 		vmx->loaded_vmcs->cpu = cpu;
1451 	}
1452 }
1453 
1454 /*
1455  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1456  * vcpu mutex is already taken.
1457  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1458 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1459 {
1460 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1461 		shrink_ple_window(vcpu);
1462 
1463 	vmx_vcpu_load_vmcs(vcpu, cpu);
1464 
1465 	vmx_vcpu_pi_load(vcpu, cpu);
1466 }
1467 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1468 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1469 {
1470 	vmx_vcpu_pi_put(vcpu);
1471 
1472 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1473 }
1474 
vmx_emulation_required(struct kvm_vcpu * vcpu)1475 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1476 {
1477 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1478 }
1479 
vmx_get_rflags(struct kvm_vcpu * vcpu)1480 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1481 {
1482 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1483 	unsigned long rflags, save_rflags;
1484 
1485 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1486 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1487 		rflags = vmcs_readl(GUEST_RFLAGS);
1488 		if (vmx->rmode.vm86_active) {
1489 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1490 			save_rflags = vmx->rmode.save_rflags;
1491 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1492 		}
1493 		vmx->rflags = rflags;
1494 	}
1495 	return vmx->rflags;
1496 }
1497 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1498 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1499 {
1500 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1501 	unsigned long old_rflags;
1502 
1503 	/*
1504 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1505 	 * is an unrestricted guest in order to mark L2 as needing emulation
1506 	 * if L1 runs L2 as a restricted guest.
1507 	 */
1508 	if (is_unrestricted_guest(vcpu)) {
1509 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1510 		vmx->rflags = rflags;
1511 		vmcs_writel(GUEST_RFLAGS, rflags);
1512 		return;
1513 	}
1514 
1515 	old_rflags = vmx_get_rflags(vcpu);
1516 	vmx->rflags = rflags;
1517 	if (vmx->rmode.vm86_active) {
1518 		vmx->rmode.save_rflags = rflags;
1519 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1520 	}
1521 	vmcs_writel(GUEST_RFLAGS, rflags);
1522 
1523 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1524 		vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1525 }
1526 
vmx_get_if_flag(struct kvm_vcpu * vcpu)1527 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1528 {
1529 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1530 }
1531 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1532 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1533 {
1534 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1535 	int ret = 0;
1536 
1537 	if (interruptibility & GUEST_INTR_STATE_STI)
1538 		ret |= KVM_X86_SHADOW_INT_STI;
1539 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1540 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1541 
1542 	return ret;
1543 }
1544 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1545 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1546 {
1547 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1548 	u32 interruptibility = interruptibility_old;
1549 
1550 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1551 
1552 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1553 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1554 	else if (mask & KVM_X86_SHADOW_INT_STI)
1555 		interruptibility |= GUEST_INTR_STATE_STI;
1556 
1557 	if ((interruptibility != interruptibility_old))
1558 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1559 }
1560 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1561 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1562 {
1563 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1564 	unsigned long value;
1565 
1566 	/*
1567 	 * Any MSR write that attempts to change bits marked reserved will
1568 	 * case a #GP fault.
1569 	 */
1570 	if (data & vmx->pt_desc.ctl_bitmask)
1571 		return 1;
1572 
1573 	/*
1574 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1575 	 * result in a #GP unless the same write also clears TraceEn.
1576 	 */
1577 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1578 	    (data & RTIT_CTL_TRACEEN) &&
1579 	    data != vmx->pt_desc.guest.ctl)
1580 		return 1;
1581 
1582 	/*
1583 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1584 	 * and FabricEn would cause #GP, if
1585 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1586 	 */
1587 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1588 		!(data & RTIT_CTL_FABRIC_EN) &&
1589 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1590 					PT_CAP_single_range_output))
1591 		return 1;
1592 
1593 	/*
1594 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1595 	 * utilize encodings marked reserved will cause a #GP fault.
1596 	 */
1597 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1598 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1599 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1600 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1601 		return 1;
1602 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1603 						PT_CAP_cycle_thresholds);
1604 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1605 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1606 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1607 		return 1;
1608 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1609 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1610 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1611 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1612 		return 1;
1613 
1614 	/*
1615 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1616 	 * cause a #GP fault.
1617 	 */
1618 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1619 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1620 		return 1;
1621 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1622 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1623 		return 1;
1624 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1625 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1626 		return 1;
1627 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1628 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1629 		return 1;
1630 
1631 	return 0;
1632 }
1633 
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1634 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1635 				  void *insn, int insn_len)
1636 {
1637 	/*
1638 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1639 	 * not point at the failing instruction, and even if it did, the code
1640 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1641 	 * so that guest userspace can't DoS the guest simply by triggering
1642 	 * emulation (enclaves are CPL3 only).
1643 	 */
1644 	if (vmx_get_exit_reason(vcpu).enclave_mode) {
1645 		kvm_queue_exception(vcpu, UD_VECTOR);
1646 		return X86EMUL_PROPAGATE_FAULT;
1647 	}
1648 
1649 	/* Check that emulation is possible during event vectoring */
1650 	if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1651 	    !kvm_can_emulate_event_vectoring(emul_type))
1652 		return X86EMUL_UNHANDLEABLE_VECTORING;
1653 
1654 	return X86EMUL_CONTINUE;
1655 }
1656 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1657 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1658 {
1659 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1660 	unsigned long rip, orig_rip;
1661 	u32 instr_len;
1662 
1663 	/*
1664 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1665 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1666 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1667 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1668 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1669 	 * i.e. we end up advancing IP with some random value.
1670 	 */
1671 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1672 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1673 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1674 
1675 		/*
1676 		 * Emulating an enclave's instructions isn't supported as KVM
1677 		 * cannot access the enclave's memory or its true RIP, e.g. the
1678 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1679 		 * the RIP that actually triggered the VM-Exit.  But, because
1680 		 * most instructions that cause VM-Exit will #UD in an enclave,
1681 		 * most instruction-based VM-Exits simply do not occur.
1682 		 *
1683 		 * There are a few exceptions, notably the debug instructions
1684 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1685 		 * and generate #DB/#BP as expected, which KVM might intercept.
1686 		 * But again, the CPU does the dirty work and saves an instr
1687 		 * length of zero so VMMs don't shoot themselves in the foot.
1688 		 * WARN if KVM tries to skip a non-zero length instruction on
1689 		 * a VM-Exit from an enclave.
1690 		 */
1691 		if (!instr_len)
1692 			goto rip_updated;
1693 
1694 		WARN_ONCE(exit_reason.enclave_mode,
1695 			  "skipping instruction after SGX enclave VM-Exit");
1696 
1697 		orig_rip = kvm_rip_read(vcpu);
1698 		rip = orig_rip + instr_len;
1699 #ifdef CONFIG_X86_64
1700 		/*
1701 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1702 		 * mode, but just finding out that we are in 64-bit mode is
1703 		 * quite expensive.  Only do it if there was a carry.
1704 		 */
1705 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1706 			rip = (u32)rip;
1707 #endif
1708 		kvm_rip_write(vcpu, rip);
1709 	} else {
1710 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1711 			return 0;
1712 	}
1713 
1714 rip_updated:
1715 	/* skipping an emulated instruction also counts */
1716 	vmx_set_interrupt_shadow(vcpu, 0);
1717 
1718 	return 1;
1719 }
1720 
1721 /*
1722  * Recognizes a pending MTF VM-exit and records the nested state for later
1723  * delivery.
1724  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1725 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1726 {
1727 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1728 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1729 
1730 	if (!is_guest_mode(vcpu))
1731 		return;
1732 
1733 	/*
1734 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1735 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1736 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1737 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1738 	 * as ICEBP is higher priority than both.  As instruction emulation is
1739 	 * completed at this point (i.e. KVM is at the instruction boundary),
1740 	 * any #DB exception pending delivery must be a debug-trap of lower
1741 	 * priority than MTF.  Record the pending MTF state to be delivered in
1742 	 * vmx_check_nested_events().
1743 	 */
1744 	if (nested_cpu_has_mtf(vmcs12) &&
1745 	    (!vcpu->arch.exception.pending ||
1746 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1747 	    (!vcpu->arch.exception_vmexit.pending ||
1748 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1749 		vmx->nested.mtf_pending = true;
1750 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1751 	} else {
1752 		vmx->nested.mtf_pending = false;
1753 	}
1754 }
1755 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1756 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1757 {
1758 	vmx_update_emulated_instruction(vcpu);
1759 	return skip_emulated_instruction(vcpu);
1760 }
1761 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1762 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1763 {
1764 	/*
1765 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1766 	 * explicitly skip the instruction because if the HLT state is set,
1767 	 * then the instruction is already executing and RIP has already been
1768 	 * advanced.
1769 	 */
1770 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1771 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1772 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1773 }
1774 
vmx_inject_exception(struct kvm_vcpu * vcpu)1775 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1776 {
1777 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1778 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1779 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1780 
1781 	kvm_deliver_exception_payload(vcpu, ex);
1782 
1783 	if (ex->has_error_code) {
1784 		/*
1785 		 * Despite the error code being architecturally defined as 32
1786 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1787 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1788 		 * will (should) never provide a bogus error code, but AMD CPUs
1789 		 * do generate error codes with bits 31:16 set, and so KVM's
1790 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1791 		 * the upper bits to avoid VM-Fail, losing information that
1792 		 * doesn't really exist is preferable to killing the VM.
1793 		 */
1794 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1795 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1796 	}
1797 
1798 	if (vmx->rmode.vm86_active) {
1799 		int inc_eip = 0;
1800 		if (kvm_exception_is_soft(ex->vector))
1801 			inc_eip = vcpu->arch.event_exit_inst_len;
1802 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1803 		return;
1804 	}
1805 
1806 	WARN_ON_ONCE(vmx->vt.emulation_required);
1807 
1808 	if (kvm_exception_is_soft(ex->vector)) {
1809 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1810 			     vmx->vcpu.arch.event_exit_inst_len);
1811 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1812 	} else
1813 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1814 
1815 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1816 
1817 	vmx_clear_hlt(vcpu);
1818 }
1819 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1820 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1821 			       bool load_into_hardware)
1822 {
1823 	struct vmx_uret_msr *uret_msr;
1824 
1825 	uret_msr = vmx_find_uret_msr(vmx, msr);
1826 	if (!uret_msr)
1827 		return;
1828 
1829 	uret_msr->load_into_hardware = load_into_hardware;
1830 }
1831 
1832 /*
1833  * Configuring user return MSRs to automatically save, load, and restore MSRs
1834  * that need to be shoved into hardware when running the guest.  Note, omitting
1835  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1836  * loaded into hardware when running the guest.
1837  */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1838 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1839 {
1840 #ifdef CONFIG_X86_64
1841 	bool load_syscall_msrs;
1842 
1843 	/*
1844 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1845 	 * when EFER.SCE is set.
1846 	 */
1847 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1848 			    (vmx->vcpu.arch.efer & EFER_SCE);
1849 
1850 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1851 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1852 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1853 #endif
1854 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1855 
1856 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1857 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1858 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1859 
1860 	/*
1861 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1862 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1863 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1864 	 * so that TSX remains always disabled.
1865 	 */
1866 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1867 
1868 	/*
1869 	 * The set of MSRs to load may have changed, reload MSRs before the
1870 	 * next VM-Enter.
1871 	 */
1872 	vmx->guest_uret_msrs_loaded = false;
1873 }
1874 
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1875 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1876 {
1877 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1878 
1879 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1880 		return vmcs12->tsc_offset;
1881 
1882 	return 0;
1883 }
1884 
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1885 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1886 {
1887 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1888 
1889 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1890 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1891 		return vmcs12->tsc_multiplier;
1892 
1893 	return kvm_caps.default_tsc_scaling_ratio;
1894 }
1895 
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1896 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1897 {
1898 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1899 }
1900 
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1901 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1902 {
1903 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1904 }
1905 
1906 /*
1907  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1908  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1909  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1910  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1911  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1912  */
1913 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1914 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1915 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1916 					FEAT_CTL_SGX_LC_ENABLED		 | \
1917 					FEAT_CTL_SGX_ENABLED		 | \
1918 					FEAT_CTL_LMCE_ENABLED)
1919 
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1920 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1921 						    struct msr_data *msr)
1922 {
1923 	uint64_t valid_bits;
1924 
1925 	/*
1926 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1927 	 * exposed to the guest.
1928 	 */
1929 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1930 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1931 
1932 	if (!msr->host_initiated &&
1933 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1934 		return false;
1935 
1936 	if (msr->host_initiated)
1937 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1938 	else
1939 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1940 
1941 	return !(msr->data & ~valid_bits);
1942 }
1943 
vmx_get_feature_msr(u32 msr,u64 * data)1944 int vmx_get_feature_msr(u32 msr, u64 *data)
1945 {
1946 	switch (msr) {
1947 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1948 		if (!nested)
1949 			return 1;
1950 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
1951 	default:
1952 		return KVM_MSR_RET_UNSUPPORTED;
1953 	}
1954 }
1955 
1956 /*
1957  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1958  * Returns 0 on success, non-0 otherwise.
1959  * Assumes vcpu_load() was already called.
1960  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1961 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1962 {
1963 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1964 	struct vmx_uret_msr *msr;
1965 	u32 index;
1966 
1967 	switch (msr_info->index) {
1968 #ifdef CONFIG_X86_64
1969 	case MSR_FS_BASE:
1970 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1971 		break;
1972 	case MSR_GS_BASE:
1973 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1974 		break;
1975 	case MSR_KERNEL_GS_BASE:
1976 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1977 		break;
1978 #endif
1979 	case MSR_EFER:
1980 		return kvm_get_msr_common(vcpu, msr_info);
1981 	case MSR_IA32_TSX_CTRL:
1982 		if (!msr_info->host_initiated &&
1983 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1984 			return 1;
1985 		goto find_uret_msr;
1986 	case MSR_IA32_UMWAIT_CONTROL:
1987 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1988 			return 1;
1989 
1990 		msr_info->data = vmx->msr_ia32_umwait_control;
1991 		break;
1992 	case MSR_IA32_SPEC_CTRL:
1993 		if (!msr_info->host_initiated &&
1994 		    !guest_has_spec_ctrl_msr(vcpu))
1995 			return 1;
1996 
1997 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1998 		break;
1999 	case MSR_IA32_SYSENTER_CS:
2000 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2001 		break;
2002 	case MSR_IA32_SYSENTER_EIP:
2003 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2004 		break;
2005 	case MSR_IA32_SYSENTER_ESP:
2006 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2007 		break;
2008 	case MSR_IA32_BNDCFGS:
2009 		if (!kvm_mpx_supported() ||
2010 		    (!msr_info->host_initiated &&
2011 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2012 			return 1;
2013 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2014 		break;
2015 	case MSR_IA32_MCG_EXT_CTL:
2016 		if (!msr_info->host_initiated &&
2017 		    !(vmx->msr_ia32_feature_control &
2018 		      FEAT_CTL_LMCE_ENABLED))
2019 			return 1;
2020 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2021 		break;
2022 	case MSR_IA32_FEAT_CTL:
2023 		msr_info->data = vmx->msr_ia32_feature_control;
2024 		break;
2025 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2026 		if (!msr_info->host_initiated &&
2027 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2028 			return 1;
2029 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2030 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2031 		break;
2032 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2033 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2034 			return 1;
2035 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2036 				    &msr_info->data))
2037 			return 1;
2038 #ifdef CONFIG_KVM_HYPERV
2039 		/*
2040 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2041 		 * instead of just ignoring the features, different Hyper-V
2042 		 * versions are either trying to use them and fail or do some
2043 		 * sanity checking and refuse to boot. Filter all unsupported
2044 		 * features out.
2045 		 */
2046 		if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2047 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2048 							&msr_info->data);
2049 #endif
2050 		break;
2051 	case MSR_IA32_RTIT_CTL:
2052 		if (!vmx_pt_mode_is_host_guest())
2053 			return 1;
2054 		msr_info->data = vmx->pt_desc.guest.ctl;
2055 		break;
2056 	case MSR_IA32_RTIT_STATUS:
2057 		if (!vmx_pt_mode_is_host_guest())
2058 			return 1;
2059 		msr_info->data = vmx->pt_desc.guest.status;
2060 		break;
2061 	case MSR_IA32_RTIT_CR3_MATCH:
2062 		if (!vmx_pt_mode_is_host_guest() ||
2063 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2064 						PT_CAP_cr3_filtering))
2065 			return 1;
2066 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2067 		break;
2068 	case MSR_IA32_RTIT_OUTPUT_BASE:
2069 		if (!vmx_pt_mode_is_host_guest() ||
2070 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2071 					PT_CAP_topa_output) &&
2072 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2073 					PT_CAP_single_range_output)))
2074 			return 1;
2075 		msr_info->data = vmx->pt_desc.guest.output_base;
2076 		break;
2077 	case MSR_IA32_RTIT_OUTPUT_MASK:
2078 		if (!vmx_pt_mode_is_host_guest() ||
2079 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2080 					PT_CAP_topa_output) &&
2081 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2082 					PT_CAP_single_range_output)))
2083 			return 1;
2084 		msr_info->data = vmx->pt_desc.guest.output_mask;
2085 		break;
2086 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088 		if (!vmx_pt_mode_is_host_guest() ||
2089 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2090 			return 1;
2091 		if (index % 2)
2092 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2093 		else
2094 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2095 		break;
2096 	case MSR_IA32_DEBUGCTLMSR:
2097 		msr_info->data = vmx_guest_debugctl_read();
2098 		break;
2099 	default:
2100 	find_uret_msr:
2101 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2102 		if (msr) {
2103 			msr_info->data = msr->data;
2104 			break;
2105 		}
2106 		return kvm_get_msr_common(vcpu, msr_info);
2107 	}
2108 
2109 	return 0;
2110 }
2111 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2113 						    u64 data)
2114 {
2115 #ifdef CONFIG_X86_64
2116 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2117 		return (u32)data;
2118 #endif
2119 	return (unsigned long)data;
2120 }
2121 
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2122 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2123 {
2124 	u64 debugctl = 0;
2125 
2126 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2129 
2130 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2133 
2134 	if (boot_cpu_has(X86_FEATURE_RTM) &&
2135 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2136 		debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2137 
2138 	return debugctl;
2139 }
2140 
vmx_is_valid_debugctl(struct kvm_vcpu * vcpu,u64 data,bool host_initiated)2141 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2142 {
2143 	u64 invalid;
2144 
2145 	invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2146 	if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2147 		kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2148 		invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2149 	}
2150 	return !invalid;
2151 }
2152 
2153 /*
2154  * Writes msr value into the appropriate "register".
2155  * Returns 0 on success, non-0 otherwise.
2156  * Assumes vcpu_load() was already called.
2157  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2158 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2159 {
2160 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2161 	struct vmx_uret_msr *msr;
2162 	int ret = 0;
2163 	u32 msr_index = msr_info->index;
2164 	u64 data = msr_info->data;
2165 	u32 index;
2166 
2167 	switch (msr_index) {
2168 	case MSR_EFER:
2169 		ret = kvm_set_msr_common(vcpu, msr_info);
2170 		break;
2171 #ifdef CONFIG_X86_64
2172 	case MSR_FS_BASE:
2173 		vmx_segment_cache_clear(vmx);
2174 		vmcs_writel(GUEST_FS_BASE, data);
2175 		break;
2176 	case MSR_GS_BASE:
2177 		vmx_segment_cache_clear(vmx);
2178 		vmcs_writel(GUEST_GS_BASE, data);
2179 		break;
2180 	case MSR_KERNEL_GS_BASE:
2181 		vmx_write_guest_kernel_gs_base(vmx, data);
2182 		break;
2183 	case MSR_IA32_XFD:
2184 		ret = kvm_set_msr_common(vcpu, msr_info);
2185 		/*
2186 		 * Always intercepting WRMSR could incur non-negligible
2187 		 * overhead given xfd might be changed frequently in
2188 		 * guest context switch. Disable write interception
2189 		 * upon the first write with a non-zero value (indicating
2190 		 * potential usage on dynamic xfeatures). Also update
2191 		 * exception bitmap to trap #NM for proper virtualization
2192 		 * of guest xfd_err.
2193 		 */
2194 		if (!ret && data) {
2195 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2196 						      MSR_TYPE_RW);
2197 			vcpu->arch.xfd_no_write_intercept = true;
2198 			vmx_update_exception_bitmap(vcpu);
2199 		}
2200 		break;
2201 #endif
2202 	case MSR_IA32_SYSENTER_CS:
2203 		if (is_guest_mode(vcpu))
2204 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2205 		vmcs_write32(GUEST_SYSENTER_CS, data);
2206 		break;
2207 	case MSR_IA32_SYSENTER_EIP:
2208 		if (is_guest_mode(vcpu)) {
2209 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2210 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2211 		}
2212 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2213 		break;
2214 	case MSR_IA32_SYSENTER_ESP:
2215 		if (is_guest_mode(vcpu)) {
2216 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2217 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2218 		}
2219 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2220 		break;
2221 	case MSR_IA32_DEBUGCTLMSR:
2222 		if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2223 			return 1;
2224 
2225 		data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2226 
2227 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2228 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2229 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2230 
2231 		vmx_guest_debugctl_write(vcpu, data);
2232 
2233 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2234 		    (data & DEBUGCTLMSR_LBR))
2235 			intel_pmu_create_guest_lbr_event(vcpu);
2236 		return 0;
2237 	case MSR_IA32_BNDCFGS:
2238 		if (!kvm_mpx_supported() ||
2239 		    (!msr_info->host_initiated &&
2240 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2241 			return 1;
2242 		if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2243 		    (data & MSR_IA32_BNDCFGS_RSVD))
2244 			return 1;
2245 
2246 		if (is_guest_mode(vcpu) &&
2247 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2248 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2249 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2250 
2251 		vmcs_write64(GUEST_BNDCFGS, data);
2252 		break;
2253 	case MSR_IA32_UMWAIT_CONTROL:
2254 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2255 			return 1;
2256 
2257 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2258 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2259 			return 1;
2260 
2261 		vmx->msr_ia32_umwait_control = data;
2262 		break;
2263 	case MSR_IA32_SPEC_CTRL:
2264 		if (!msr_info->host_initiated &&
2265 		    !guest_has_spec_ctrl_msr(vcpu))
2266 			return 1;
2267 
2268 		if (kvm_spec_ctrl_test_value(data))
2269 			return 1;
2270 
2271 		vmx->spec_ctrl = data;
2272 		if (!data)
2273 			break;
2274 
2275 		/*
2276 		 * For non-nested:
2277 		 * When it's written (to non-zero) for the first time, pass
2278 		 * it through.
2279 		 *
2280 		 * For nested:
2281 		 * The handling of the MSR bitmap for L2 guests is done in
2282 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2283 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2284 		 * in the merging. We update the vmcs01 here for L1 as well
2285 		 * since it will end up touching the MSR anyway now.
2286 		 */
2287 		vmx_disable_intercept_for_msr(vcpu,
2288 					      MSR_IA32_SPEC_CTRL,
2289 					      MSR_TYPE_RW);
2290 		break;
2291 	case MSR_IA32_TSX_CTRL:
2292 		if (!msr_info->host_initiated &&
2293 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2294 			return 1;
2295 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2296 			return 1;
2297 		goto find_uret_msr;
2298 	case MSR_IA32_CR_PAT:
2299 		ret = kvm_set_msr_common(vcpu, msr_info);
2300 		if (ret)
2301 			break;
2302 
2303 		if (is_guest_mode(vcpu) &&
2304 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2305 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2306 
2307 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2308 			vmcs_write64(GUEST_IA32_PAT, data);
2309 		break;
2310 	case MSR_IA32_MCG_EXT_CTL:
2311 		if ((!msr_info->host_initiated &&
2312 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2313 		       FEAT_CTL_LMCE_ENABLED)) ||
2314 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2315 			return 1;
2316 		vcpu->arch.mcg_ext_ctl = data;
2317 		break;
2318 	case MSR_IA32_FEAT_CTL:
2319 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2320 			return 1;
2321 
2322 		vmx->msr_ia32_feature_control = data;
2323 		if (msr_info->host_initiated && data == 0)
2324 			vmx_leave_nested(vcpu);
2325 
2326 		/* SGX may be enabled/disabled by guest's firmware */
2327 		vmx_write_encls_bitmap(vcpu, NULL);
2328 		break;
2329 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2330 		/*
2331 		 * On real hardware, the LE hash MSRs are writable before
2332 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2333 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2334 		 * become writable.
2335 		 *
2336 		 * KVM does not emulate SGX activation for simplicity, so
2337 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2338 		 * is unlocked.  This is technically not architectural
2339 		 * behavior, but it's close enough.
2340 		 */
2341 		if (!msr_info->host_initiated &&
2342 		    (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2343 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2344 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2345 			return 1;
2346 		vmx->msr_ia32_sgxlepubkeyhash
2347 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2348 		break;
2349 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2350 		if (!msr_info->host_initiated)
2351 			return 1; /* they are read-only */
2352 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2353 			return 1;
2354 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2355 	case MSR_IA32_RTIT_CTL:
2356 		if (!vmx_pt_mode_is_host_guest() ||
2357 			vmx_rtit_ctl_check(vcpu, data) ||
2358 			vmx->nested.vmxon)
2359 			return 1;
2360 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2361 		vmx->pt_desc.guest.ctl = data;
2362 		pt_update_intercept_for_msr(vcpu);
2363 		break;
2364 	case MSR_IA32_RTIT_STATUS:
2365 		if (!pt_can_write_msr(vmx))
2366 			return 1;
2367 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2368 			return 1;
2369 		vmx->pt_desc.guest.status = data;
2370 		break;
2371 	case MSR_IA32_RTIT_CR3_MATCH:
2372 		if (!pt_can_write_msr(vmx))
2373 			return 1;
2374 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2375 					   PT_CAP_cr3_filtering))
2376 			return 1;
2377 		vmx->pt_desc.guest.cr3_match = data;
2378 		break;
2379 	case MSR_IA32_RTIT_OUTPUT_BASE:
2380 		if (!pt_can_write_msr(vmx))
2381 			return 1;
2382 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2383 					   PT_CAP_topa_output) &&
2384 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2385 					   PT_CAP_single_range_output))
2386 			return 1;
2387 		if (!pt_output_base_valid(vcpu, data))
2388 			return 1;
2389 		vmx->pt_desc.guest.output_base = data;
2390 		break;
2391 	case MSR_IA32_RTIT_OUTPUT_MASK:
2392 		if (!pt_can_write_msr(vmx))
2393 			return 1;
2394 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395 					   PT_CAP_topa_output) &&
2396 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2397 					   PT_CAP_single_range_output))
2398 			return 1;
2399 		vmx->pt_desc.guest.output_mask = data;
2400 		break;
2401 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2402 		if (!pt_can_write_msr(vmx))
2403 			return 1;
2404 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2405 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2406 			return 1;
2407 		if (is_noncanonical_msr_address(data, vcpu))
2408 			return 1;
2409 		if (index % 2)
2410 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2411 		else
2412 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2413 		break;
2414 	case MSR_IA32_PERF_CAPABILITIES:
2415 		if (data & PMU_CAP_LBR_FMT) {
2416 			if ((data & PMU_CAP_LBR_FMT) !=
2417 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2418 				return 1;
2419 			if (!cpuid_model_is_consistent(vcpu))
2420 				return 1;
2421 		}
2422 		if (data & PERF_CAP_PEBS_FORMAT) {
2423 			if ((data & PERF_CAP_PEBS_MASK) !=
2424 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2425 				return 1;
2426 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2427 				return 1;
2428 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2429 				return 1;
2430 			if (!cpuid_model_is_consistent(vcpu))
2431 				return 1;
2432 		}
2433 		ret = kvm_set_msr_common(vcpu, msr_info);
2434 		break;
2435 
2436 	default:
2437 	find_uret_msr:
2438 		msr = vmx_find_uret_msr(vmx, msr_index);
2439 		if (msr)
2440 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2441 		else
2442 			ret = kvm_set_msr_common(vcpu, msr_info);
2443 	}
2444 
2445 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2446 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2447 		vmx_update_fb_clear_dis(vcpu, vmx);
2448 
2449 	return ret;
2450 }
2451 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2452 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2453 {
2454 	unsigned long guest_owned_bits;
2455 
2456 	kvm_register_mark_available(vcpu, reg);
2457 
2458 	switch (reg) {
2459 	case VCPU_REGS_RSP:
2460 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2461 		break;
2462 	case VCPU_REGS_RIP:
2463 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2464 		break;
2465 	case VCPU_EXREG_PDPTR:
2466 		if (enable_ept)
2467 			ept_save_pdptrs(vcpu);
2468 		break;
2469 	case VCPU_EXREG_CR0:
2470 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2471 
2472 		vcpu->arch.cr0 &= ~guest_owned_bits;
2473 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2474 		break;
2475 	case VCPU_EXREG_CR3:
2476 		/*
2477 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2478 		 * CR3 is loaded into hardware, not the guest's CR3.
2479 		 */
2480 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2481 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2482 		break;
2483 	case VCPU_EXREG_CR4:
2484 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2485 
2486 		vcpu->arch.cr4 &= ~guest_owned_bits;
2487 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2488 		break;
2489 	default:
2490 		KVM_BUG_ON(1, vcpu->kvm);
2491 		break;
2492 	}
2493 }
2494 
2495 /*
2496  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2497  * directly instead of going through cpu_has(), to ensure KVM is trapping
2498  * ENCLS whenever it's supported in hardware.  It does not matter whether
2499  * the host OS supports or has enabled SGX.
2500  */
cpu_has_sgx(void)2501 static bool cpu_has_sgx(void)
2502 {
2503 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2504 }
2505 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2506 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2507 {
2508 	u32 vmx_msr_low, vmx_msr_high;
2509 	u32 ctl = ctl_min | ctl_opt;
2510 
2511 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2512 
2513 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2514 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2515 
2516 	/* Ensure minimum (required) set of control bits are supported. */
2517 	if (ctl_min & ~ctl)
2518 		return -EIO;
2519 
2520 	*result = ctl;
2521 	return 0;
2522 }
2523 
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2524 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2525 {
2526 	u64 allowed;
2527 
2528 	rdmsrq(msr, allowed);
2529 
2530 	return  ctl_opt & allowed;
2531 }
2532 
2533 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls)	\
2534 ({										\
2535 	int i, r = 0;								\
2536 										\
2537 	BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls));	\
2538 	BUILD_BUG_ON(sizeof(pairs[0].exit_control)  != sizeof(exit_controls));	\
2539 										\
2540 	for (i = 0; i < ARRAY_SIZE(pairs); i++) {				\
2541 		typeof(entry_controls) n_ctrl = pairs[i].entry_control;		\
2542 		typeof(exit_controls) x_ctrl = pairs[i].exit_control;		\
2543 										\
2544 		if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl))	\
2545 			continue;						\
2546 										\
2547 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, "		\
2548 			     "entry = %llx (%llx), exit = %llx (%llx)\n",	\
2549 			     (u64)(entry_controls & n_ctrl), (u64)n_ctrl,	\
2550 			     (u64)(exit_controls & x_ctrl), (u64)x_ctrl);	\
2551 										\
2552 		if (error_on_inconsistent_vmcs_config)				\
2553 			r = -EIO;						\
2554 										\
2555 		entry_controls &= ~n_ctrl;					\
2556 		exit_controls &= ~x_ctrl;					\
2557 	}									\
2558 	r;									\
2559 })
2560 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2561 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2562 			     struct vmx_capability *vmx_cap)
2563 {
2564 	u32 _pin_based_exec_control = 0;
2565 	u32 _cpu_based_exec_control = 0;
2566 	u32 _cpu_based_2nd_exec_control = 0;
2567 	u64 _cpu_based_3rd_exec_control = 0;
2568 	u32 _vmexit_control = 0;
2569 	u32 _vmentry_control = 0;
2570 	u64 basic_msr;
2571 	u64 misc_msr;
2572 
2573 	/*
2574 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2575 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2576 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2577 	 */
2578 	struct {
2579 		u32 entry_control;
2580 		u32 exit_control;
2581 	} const vmcs_entry_exit_pairs[] = {
2582 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2583 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2584 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2585 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2586 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2587 	};
2588 
2589 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2590 
2591 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2592 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2593 				MSR_IA32_VMX_PROCBASED_CTLS,
2594 				&_cpu_based_exec_control))
2595 		return -EIO;
2596 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2597 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2598 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2599 					MSR_IA32_VMX_PROCBASED_CTLS2,
2600 					&_cpu_based_2nd_exec_control))
2601 			return -EIO;
2602 	}
2603 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2604 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2605 
2606 #ifndef CONFIG_X86_64
2607 	if (!(_cpu_based_2nd_exec_control &
2608 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2609 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2610 #endif
2611 
2612 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2613 		_cpu_based_2nd_exec_control &= ~(
2614 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2615 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2616 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2617 
2618 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2619 		&vmx_cap->ept, &vmx_cap->vpid);
2620 
2621 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2622 	    vmx_cap->ept) {
2623 		pr_warn_once("EPT CAP should not exist if not support "
2624 				"1-setting enable EPT VM-execution control\n");
2625 
2626 		if (error_on_inconsistent_vmcs_config)
2627 			return -EIO;
2628 
2629 		vmx_cap->ept = 0;
2630 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2631 	}
2632 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2633 	    vmx_cap->vpid) {
2634 		pr_warn_once("VPID CAP should not exist if not support "
2635 				"1-setting enable VPID VM-execution control\n");
2636 
2637 		if (error_on_inconsistent_vmcs_config)
2638 			return -EIO;
2639 
2640 		vmx_cap->vpid = 0;
2641 	}
2642 
2643 	if (!cpu_has_sgx())
2644 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2645 
2646 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2647 		_cpu_based_3rd_exec_control =
2648 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2649 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2650 
2651 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2652 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2653 				MSR_IA32_VMX_EXIT_CTLS,
2654 				&_vmexit_control))
2655 		return -EIO;
2656 
2657 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2658 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2659 				MSR_IA32_VMX_PINBASED_CTLS,
2660 				&_pin_based_exec_control))
2661 		return -EIO;
2662 
2663 	if (cpu_has_broken_vmx_preemption_timer())
2664 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2665 	if (!(_cpu_based_2nd_exec_control &
2666 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2667 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2668 
2669 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2670 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2671 				MSR_IA32_VMX_ENTRY_CTLS,
2672 				&_vmentry_control))
2673 		return -EIO;
2674 
2675 	if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2676 				       _vmentry_control, _vmexit_control))
2677 		return -EIO;
2678 
2679 	/*
2680 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2681 	 * can't be used due to an errata where VM Exit may incorrectly clear
2682 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2683 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2684 	 */
2685 	switch (boot_cpu_data.x86_vfm) {
2686 	case INTEL_NEHALEM_EP:	/* AAK155 */
2687 	case INTEL_NEHALEM:	/* AAP115 */
2688 	case INTEL_WESTMERE:	/* AAT100 */
2689 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2690 	case INTEL_NEHALEM_EX:	/* BA97 */
2691 		_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2692 		_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2693 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2694 			     "does not work properly. Using workaround\n");
2695 		break;
2696 	default:
2697 		break;
2698 	}
2699 
2700 	rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2701 
2702 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2703 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2704 		return -EIO;
2705 
2706 #ifdef CONFIG_X86_64
2707 	/*
2708 	 * KVM expects to be able to shove all legal physical addresses into
2709 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2710 	 * 0 for processors that support Intel 64 architecture".
2711 	 */
2712 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2713 		return -EIO;
2714 #endif
2715 
2716 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2717 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2718 		return -EIO;
2719 
2720 	rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2721 
2722 	vmcs_conf->basic = basic_msr;
2723 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2724 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2725 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2726 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2727 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2728 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2729 	vmcs_conf->misc	= misc_msr;
2730 
2731 #if IS_ENABLED(CONFIG_HYPERV)
2732 	if (enlightened_vmcs)
2733 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2734 #endif
2735 
2736 	return 0;
2737 }
2738 
__kvm_is_vmx_supported(void)2739 static bool __kvm_is_vmx_supported(void)
2740 {
2741 	int cpu = smp_processor_id();
2742 
2743 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2744 		pr_err("VMX not supported by CPU %d\n", cpu);
2745 		return false;
2746 	}
2747 
2748 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2749 	    !this_cpu_has(X86_FEATURE_VMX)) {
2750 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2751 		return false;
2752 	}
2753 
2754 	return true;
2755 }
2756 
kvm_is_vmx_supported(void)2757 static bool kvm_is_vmx_supported(void)
2758 {
2759 	bool supported;
2760 
2761 	migrate_disable();
2762 	supported = __kvm_is_vmx_supported();
2763 	migrate_enable();
2764 
2765 	return supported;
2766 }
2767 
vmx_check_processor_compat(void)2768 int vmx_check_processor_compat(void)
2769 {
2770 	int cpu = raw_smp_processor_id();
2771 	struct vmcs_config vmcs_conf;
2772 	struct vmx_capability vmx_cap;
2773 
2774 	if (!__kvm_is_vmx_supported())
2775 		return -EIO;
2776 
2777 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2778 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2779 		return -EIO;
2780 	}
2781 	if (nested)
2782 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2783 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2784 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2785 		return -EIO;
2786 	}
2787 	return 0;
2788 }
2789 
kvm_cpu_vmxon(u64 vmxon_pointer)2790 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2791 {
2792 	u64 msr;
2793 
2794 	cr4_set_bits(X86_CR4_VMXE);
2795 
2796 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2797 			  _ASM_EXTABLE(1b, %l[fault])
2798 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2799 			  : : fault);
2800 	return 0;
2801 
2802 fault:
2803 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2804 		  rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2805 	cr4_clear_bits(X86_CR4_VMXE);
2806 
2807 	return -EFAULT;
2808 }
2809 
vmx_enable_virtualization_cpu(void)2810 int vmx_enable_virtualization_cpu(void)
2811 {
2812 	int cpu = raw_smp_processor_id();
2813 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2814 	int r;
2815 
2816 	if (cr4_read_shadow() & X86_CR4_VMXE)
2817 		return -EBUSY;
2818 
2819 	/*
2820 	 * This can happen if we hot-added a CPU but failed to allocate
2821 	 * VP assist page for it.
2822 	 */
2823 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2824 		return -EFAULT;
2825 
2826 	intel_pt_handle_vmx(1);
2827 
2828 	r = kvm_cpu_vmxon(phys_addr);
2829 	if (r) {
2830 		intel_pt_handle_vmx(0);
2831 		return r;
2832 	}
2833 
2834 	return 0;
2835 }
2836 
vmclear_local_loaded_vmcss(void)2837 static void vmclear_local_loaded_vmcss(void)
2838 {
2839 	int cpu = raw_smp_processor_id();
2840 	struct loaded_vmcs *v, *n;
2841 
2842 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2843 				 loaded_vmcss_on_cpu_link)
2844 		__loaded_vmcs_clear(v);
2845 }
2846 
vmx_disable_virtualization_cpu(void)2847 void vmx_disable_virtualization_cpu(void)
2848 {
2849 	vmclear_local_loaded_vmcss();
2850 
2851 	if (kvm_cpu_vmxoff())
2852 		kvm_spurious_fault();
2853 
2854 	hv_reset_evmcs();
2855 
2856 	intel_pt_handle_vmx(0);
2857 }
2858 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2859 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2860 {
2861 	int node = cpu_to_node(cpu);
2862 	struct page *pages;
2863 	struct vmcs *vmcs;
2864 
2865 	pages = __alloc_pages_node(node, flags, 0);
2866 	if (!pages)
2867 		return NULL;
2868 	vmcs = page_address(pages);
2869 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2870 
2871 	/* KVM supports Enlightened VMCS v1 only */
2872 	if (kvm_is_using_evmcs())
2873 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2874 	else
2875 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2876 
2877 	if (shadow)
2878 		vmcs->hdr.shadow_vmcs = 1;
2879 	return vmcs;
2880 }
2881 
free_vmcs(struct vmcs * vmcs)2882 void free_vmcs(struct vmcs *vmcs)
2883 {
2884 	free_page((unsigned long)vmcs);
2885 }
2886 
2887 /*
2888  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2889  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2890 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2891 {
2892 	if (!loaded_vmcs->vmcs)
2893 		return;
2894 	loaded_vmcs_clear(loaded_vmcs);
2895 	free_vmcs(loaded_vmcs->vmcs);
2896 	loaded_vmcs->vmcs = NULL;
2897 	if (loaded_vmcs->msr_bitmap)
2898 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2899 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2900 }
2901 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2902 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2903 {
2904 	loaded_vmcs->vmcs = alloc_vmcs(false);
2905 	if (!loaded_vmcs->vmcs)
2906 		return -ENOMEM;
2907 
2908 	vmcs_clear(loaded_vmcs->vmcs);
2909 
2910 	loaded_vmcs->shadow_vmcs = NULL;
2911 	loaded_vmcs->hv_timer_soft_disabled = false;
2912 	loaded_vmcs->cpu = -1;
2913 	loaded_vmcs->launched = 0;
2914 
2915 	if (cpu_has_vmx_msr_bitmap()) {
2916 		loaded_vmcs->msr_bitmap = (unsigned long *)
2917 				__get_free_page(GFP_KERNEL_ACCOUNT);
2918 		if (!loaded_vmcs->msr_bitmap)
2919 			goto out_vmcs;
2920 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2921 	}
2922 
2923 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2924 	memset(&loaded_vmcs->controls_shadow, 0,
2925 		sizeof(struct vmcs_controls_shadow));
2926 
2927 	return 0;
2928 
2929 out_vmcs:
2930 	free_loaded_vmcs(loaded_vmcs);
2931 	return -ENOMEM;
2932 }
2933 
free_kvm_area(void)2934 static void free_kvm_area(void)
2935 {
2936 	int cpu;
2937 
2938 	for_each_possible_cpu(cpu) {
2939 		free_vmcs(per_cpu(vmxarea, cpu));
2940 		per_cpu(vmxarea, cpu) = NULL;
2941 	}
2942 }
2943 
alloc_kvm_area(void)2944 static __init int alloc_kvm_area(void)
2945 {
2946 	int cpu;
2947 
2948 	for_each_possible_cpu(cpu) {
2949 		struct vmcs *vmcs;
2950 
2951 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2952 		if (!vmcs) {
2953 			free_kvm_area();
2954 			return -ENOMEM;
2955 		}
2956 
2957 		/*
2958 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2959 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2960 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2961 		 *
2962 		 * However, even though not explicitly documented by
2963 		 * TLFS, VMXArea passed as VMXON argument should
2964 		 * still be marked with revision_id reported by
2965 		 * physical CPU.
2966 		 */
2967 		if (kvm_is_using_evmcs())
2968 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2969 
2970 		per_cpu(vmxarea, cpu) = vmcs;
2971 	}
2972 	return 0;
2973 }
2974 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2975 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2976 		struct kvm_segment *save)
2977 {
2978 	if (!emulate_invalid_guest_state) {
2979 		/*
2980 		 * CS and SS RPL should be equal during guest entry according
2981 		 * to VMX spec, but in reality it is not always so. Since vcpu
2982 		 * is in the middle of the transition from real mode to
2983 		 * protected mode it is safe to assume that RPL 0 is a good
2984 		 * default value.
2985 		 */
2986 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2987 			save->selector &= ~SEGMENT_RPL_MASK;
2988 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2989 		save->s = 1;
2990 	}
2991 	__vmx_set_segment(vcpu, save, seg);
2992 }
2993 
enter_pmode(struct kvm_vcpu * vcpu)2994 static void enter_pmode(struct kvm_vcpu *vcpu)
2995 {
2996 	unsigned long flags;
2997 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2998 
2999 	/*
3000 	 * Update real mode segment cache. It may be not up-to-date if segment
3001 	 * register was written while vcpu was in a guest mode.
3002 	 */
3003 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3004 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3005 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3006 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3007 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3008 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3009 
3010 	vmx->rmode.vm86_active = 0;
3011 
3012 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3013 
3014 	flags = vmcs_readl(GUEST_RFLAGS);
3015 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3016 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3017 	vmcs_writel(GUEST_RFLAGS, flags);
3018 
3019 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3020 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3021 
3022 	vmx_update_exception_bitmap(vcpu);
3023 
3024 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3025 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3026 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3027 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3028 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3029 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3030 }
3031 
fix_rmode_seg(int seg,struct kvm_segment * save)3032 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3033 {
3034 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035 	struct kvm_segment var = *save;
3036 
3037 	var.dpl = 0x3;
3038 	if (seg == VCPU_SREG_CS)
3039 		var.type = 0x3;
3040 
3041 	if (!emulate_invalid_guest_state) {
3042 		var.selector = var.base >> 4;
3043 		var.base = var.base & 0xffff0;
3044 		var.limit = 0xffff;
3045 		var.g = 0;
3046 		var.db = 0;
3047 		var.present = 1;
3048 		var.s = 1;
3049 		var.l = 0;
3050 		var.unusable = 0;
3051 		var.type = 0x3;
3052 		var.avl = 0;
3053 		if (save->base & 0xf)
3054 			pr_warn_once("segment base is not paragraph aligned "
3055 				     "when entering protected mode (seg=%d)", seg);
3056 	}
3057 
3058 	vmcs_write16(sf->selector, var.selector);
3059 	vmcs_writel(sf->base, var.base);
3060 	vmcs_write32(sf->limit, var.limit);
3061 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3062 }
3063 
enter_rmode(struct kvm_vcpu * vcpu)3064 static void enter_rmode(struct kvm_vcpu *vcpu)
3065 {
3066 	unsigned long flags;
3067 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3068 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3069 
3070 	/*
3071 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3072 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3073 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3074 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3075 	 * CR0.PG=0 when L2 is active.
3076 	 */
3077 	WARN_ON_ONCE(is_guest_mode(vcpu));
3078 
3079 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3080 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3081 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3082 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3083 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3084 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3085 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3086 
3087 	vmx->rmode.vm86_active = 1;
3088 
3089 	vmx_segment_cache_clear(vmx);
3090 
3091 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3092 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3093 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3094 
3095 	flags = vmcs_readl(GUEST_RFLAGS);
3096 	vmx->rmode.save_rflags = flags;
3097 
3098 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3099 
3100 	vmcs_writel(GUEST_RFLAGS, flags);
3101 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3102 	vmx_update_exception_bitmap(vcpu);
3103 
3104 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3105 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3106 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3107 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3108 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3109 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3110 }
3111 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3112 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3113 {
3114 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3115 
3116 	/* Nothing to do if hardware doesn't support EFER. */
3117 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3118 		return 0;
3119 
3120 	vcpu->arch.efer = efer;
3121 #ifdef CONFIG_X86_64
3122 	if (efer & EFER_LMA)
3123 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3124 	else
3125 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3126 #else
3127 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3128 		return 1;
3129 #endif
3130 
3131 	vmx_setup_uret_msrs(vmx);
3132 	return 0;
3133 }
3134 
3135 #ifdef CONFIG_X86_64
3136 
enter_lmode(struct kvm_vcpu * vcpu)3137 static void enter_lmode(struct kvm_vcpu *vcpu)
3138 {
3139 	u32 guest_tr_ar;
3140 
3141 	vmx_segment_cache_clear(to_vmx(vcpu));
3142 
3143 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3144 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3145 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3146 				     __func__);
3147 		vmcs_write32(GUEST_TR_AR_BYTES,
3148 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3149 			     | VMX_AR_TYPE_BUSY_64_TSS);
3150 	}
3151 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3152 }
3153 
exit_lmode(struct kvm_vcpu * vcpu)3154 static void exit_lmode(struct kvm_vcpu *vcpu)
3155 {
3156 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3157 }
3158 
3159 #endif
3160 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3161 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3162 {
3163 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3164 
3165 	/*
3166 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3167 	 * the CPU is not required to invalidate guest-physical mappings on
3168 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3169 	 * associated with the root EPT structure and not any particular VPID
3170 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3171 	 */
3172 	if (enable_ept) {
3173 		ept_sync_global();
3174 	} else if (enable_vpid) {
3175 		if (cpu_has_vmx_invvpid_global()) {
3176 			vpid_sync_vcpu_global();
3177 		} else {
3178 			vpid_sync_vcpu_single(vmx->vpid);
3179 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3180 		}
3181 	}
3182 }
3183 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3184 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3185 {
3186 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3187 		return nested_get_vpid02(vcpu);
3188 	return to_vmx(vcpu)->vpid;
3189 }
3190 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3191 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3192 {
3193 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3194 	u64 root_hpa = mmu->root.hpa;
3195 
3196 	/* No flush required if the current context is invalid. */
3197 	if (!VALID_PAGE(root_hpa))
3198 		return;
3199 
3200 	if (enable_ept)
3201 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3202 						mmu->root_role.level));
3203 	else
3204 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3205 }
3206 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3207 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3208 {
3209 	/*
3210 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3211 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3212 	 */
3213 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3214 }
3215 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3216 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3217 {
3218 	/*
3219 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3220 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3221 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3222 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3223 	 * i.e. no explicit INVVPID is necessary.
3224 	 */
3225 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3226 }
3227 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3228 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3229 {
3230 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3231 
3232 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3233 		return;
3234 
3235 	if (is_pae_paging(vcpu)) {
3236 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3237 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3238 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3239 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3240 	}
3241 }
3242 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3243 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3244 {
3245 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3246 
3247 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3248 		return;
3249 
3250 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3251 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3252 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3253 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3254 
3255 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3256 }
3257 
3258 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3259 			  CPU_BASED_CR3_STORE_EXITING)
3260 
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3261 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3262 {
3263 	if (is_guest_mode(vcpu))
3264 		return nested_guest_cr0_valid(vcpu, cr0);
3265 
3266 	if (to_vmx(vcpu)->nested.vmxon)
3267 		return nested_host_cr0_valid(vcpu, cr0);
3268 
3269 	return true;
3270 }
3271 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3272 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3273 {
3274 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3275 	unsigned long hw_cr0, old_cr0_pg;
3276 	u32 tmp;
3277 
3278 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3279 
3280 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3281 	if (enable_unrestricted_guest)
3282 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3283 	else {
3284 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3285 		if (!enable_ept)
3286 			hw_cr0 |= X86_CR0_WP;
3287 
3288 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3289 			enter_pmode(vcpu);
3290 
3291 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3292 			enter_rmode(vcpu);
3293 	}
3294 
3295 	vmcs_writel(CR0_READ_SHADOW, cr0);
3296 	vmcs_writel(GUEST_CR0, hw_cr0);
3297 	vcpu->arch.cr0 = cr0;
3298 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3299 
3300 #ifdef CONFIG_X86_64
3301 	if (vcpu->arch.efer & EFER_LME) {
3302 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3303 			enter_lmode(vcpu);
3304 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3305 			exit_lmode(vcpu);
3306 	}
3307 #endif
3308 
3309 	if (enable_ept && !enable_unrestricted_guest) {
3310 		/*
3311 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3312 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3313 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3314 		 * KVM's CR3 is installed.
3315 		 */
3316 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3317 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3318 
3319 		/*
3320 		 * When running with EPT but not unrestricted guest, KVM must
3321 		 * intercept CR3 accesses when paging is _disabled_.  This is
3322 		 * necessary because restricted guests can't actually run with
3323 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3324 		 * run the guest when identity mapped page tables.
3325 		 *
3326 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3327 		 * update, it may be stale with respect to CR3 interception,
3328 		 * e.g. after nested VM-Enter.
3329 		 *
3330 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3331 		 * stores to forward them to L1, even if KVM does not need to
3332 		 * intercept them to preserve its identity mapped page tables.
3333 		 */
3334 		if (!(cr0 & X86_CR0_PG)) {
3335 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3336 		} else if (!is_guest_mode(vcpu)) {
3337 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3338 		} else {
3339 			tmp = exec_controls_get(vmx);
3340 			tmp &= ~CR3_EXITING_BITS;
3341 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3342 			exec_controls_set(vmx, tmp);
3343 		}
3344 
3345 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3346 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3347 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3348 
3349 		/*
3350 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3351 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3352 		 */
3353 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3354 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3355 	}
3356 
3357 	/* depends on vcpu->arch.cr0 to be set to a new value */
3358 	vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3359 }
3360 
vmx_get_max_ept_level(void)3361 static int vmx_get_max_ept_level(void)
3362 {
3363 	if (cpu_has_vmx_ept_5levels())
3364 		return 5;
3365 	return 4;
3366 }
3367 
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3368 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3369 {
3370 	u64 eptp = VMX_EPTP_MT_WB;
3371 
3372 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3373 
3374 	if (enable_ept_ad_bits &&
3375 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3376 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3377 	eptp |= root_hpa;
3378 
3379 	return eptp;
3380 }
3381 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3382 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3383 {
3384 	struct kvm *kvm = vcpu->kvm;
3385 	bool update_guest_cr3 = true;
3386 	unsigned long guest_cr3;
3387 	u64 eptp;
3388 
3389 	if (enable_ept) {
3390 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3391 		vmcs_write64(EPT_POINTER, eptp);
3392 
3393 		hv_track_root_tdp(vcpu, root_hpa);
3394 
3395 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3396 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3397 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3398 			guest_cr3 = vcpu->arch.cr3;
3399 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3400 			update_guest_cr3 = false;
3401 		vmx_ept_load_pdptrs(vcpu);
3402 	} else {
3403 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3404 			    kvm_get_active_cr3_lam_bits(vcpu);
3405 	}
3406 
3407 	if (update_guest_cr3)
3408 		vmcs_writel(GUEST_CR3, guest_cr3);
3409 }
3410 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3411 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3412 {
3413 	/*
3414 	 * We operate under the default treatment of SMM, so VMX cannot be
3415 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3416 	 * i.e. is a reserved bit, is handled by common x86 code.
3417 	 */
3418 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3419 		return false;
3420 
3421 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3422 		return false;
3423 
3424 	return true;
3425 }
3426 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3427 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3428 {
3429 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3430 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3431 	unsigned long hw_cr4;
3432 
3433 	/*
3434 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3435 	 * is in force while we are in guest mode.  Do not let guests control
3436 	 * this bit, even if host CR4.MCE == 0.
3437 	 */
3438 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3439 	if (enable_unrestricted_guest)
3440 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3441 	else if (vmx->rmode.vm86_active)
3442 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3443 	else
3444 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3445 
3446 	if (vmx_umip_emulated()) {
3447 		if (cr4 & X86_CR4_UMIP) {
3448 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3449 			hw_cr4 &= ~X86_CR4_UMIP;
3450 		} else if (!is_guest_mode(vcpu) ||
3451 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3452 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3453 		}
3454 	}
3455 
3456 	vcpu->arch.cr4 = cr4;
3457 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3458 
3459 	if (!enable_unrestricted_guest) {
3460 		if (enable_ept) {
3461 			if (!is_paging(vcpu)) {
3462 				hw_cr4 &= ~X86_CR4_PAE;
3463 				hw_cr4 |= X86_CR4_PSE;
3464 			} else if (!(cr4 & X86_CR4_PAE)) {
3465 				hw_cr4 &= ~X86_CR4_PAE;
3466 			}
3467 		}
3468 
3469 		/*
3470 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3471 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3472 		 * to be manually disabled when guest switches to non-paging
3473 		 * mode.
3474 		 *
3475 		 * If !enable_unrestricted_guest, the CPU is always running
3476 		 * with CR0.PG=1 and CR4 needs to be modified.
3477 		 * If enable_unrestricted_guest, the CPU automatically
3478 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3479 		 */
3480 		if (!is_paging(vcpu))
3481 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3482 	}
3483 
3484 	vmcs_writel(CR4_READ_SHADOW, cr4);
3485 	vmcs_writel(GUEST_CR4, hw_cr4);
3486 
3487 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3488 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3489 }
3490 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3491 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3492 {
3493 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3494 	u32 ar;
3495 
3496 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3497 		*var = vmx->rmode.segs[seg];
3498 		if (seg == VCPU_SREG_TR
3499 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3500 			return;
3501 		var->base = vmx_read_guest_seg_base(vmx, seg);
3502 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3503 		return;
3504 	}
3505 	var->base = vmx_read_guest_seg_base(vmx, seg);
3506 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3507 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3508 	ar = vmx_read_guest_seg_ar(vmx, seg);
3509 	var->unusable = (ar >> 16) & 1;
3510 	var->type = ar & 15;
3511 	var->s = (ar >> 4) & 1;
3512 	var->dpl = (ar >> 5) & 3;
3513 	/*
3514 	 * Some userspaces do not preserve unusable property. Since usable
3515 	 * segment has to be present according to VMX spec we can use present
3516 	 * property to amend userspace bug by making unusable segment always
3517 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3518 	 * segment as unusable.
3519 	 */
3520 	var->present = !var->unusable;
3521 	var->avl = (ar >> 12) & 1;
3522 	var->l = (ar >> 13) & 1;
3523 	var->db = (ar >> 14) & 1;
3524 	var->g = (ar >> 15) & 1;
3525 }
3526 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3527 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3528 {
3529 	struct kvm_segment s;
3530 
3531 	if (to_vmx(vcpu)->rmode.vm86_active) {
3532 		vmx_get_segment(vcpu, &s, seg);
3533 		return s.base;
3534 	}
3535 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3536 }
3537 
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3538 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3539 {
3540 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3541 	int ar;
3542 
3543 	if (unlikely(vmx->rmode.vm86_active))
3544 		return 0;
3545 
3546 	if (no_cache)
3547 		ar = vmcs_read32(GUEST_SS_AR_BYTES);
3548 	else
3549 		ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3550 	return VMX_AR_DPL(ar);
3551 }
3552 
vmx_get_cpl(struct kvm_vcpu * vcpu)3553 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3554 {
3555 	return __vmx_get_cpl(vcpu, false);
3556 }
3557 
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3558 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3559 {
3560 	return __vmx_get_cpl(vcpu, true);
3561 }
3562 
vmx_segment_access_rights(struct kvm_segment * var)3563 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3564 {
3565 	u32 ar;
3566 
3567 	ar = var->type & 15;
3568 	ar |= (var->s & 1) << 4;
3569 	ar |= (var->dpl & 3) << 5;
3570 	ar |= (var->present & 1) << 7;
3571 	ar |= (var->avl & 1) << 12;
3572 	ar |= (var->l & 1) << 13;
3573 	ar |= (var->db & 1) << 14;
3574 	ar |= (var->g & 1) << 15;
3575 	ar |= (var->unusable || !var->present) << 16;
3576 
3577 	return ar;
3578 }
3579 
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3580 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3581 {
3582 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3583 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3584 
3585 	vmx_segment_cache_clear(vmx);
3586 
3587 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3588 		vmx->rmode.segs[seg] = *var;
3589 		if (seg == VCPU_SREG_TR)
3590 			vmcs_write16(sf->selector, var->selector);
3591 		else if (var->s)
3592 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3593 		return;
3594 	}
3595 
3596 	vmcs_writel(sf->base, var->base);
3597 	vmcs_write32(sf->limit, var->limit);
3598 	vmcs_write16(sf->selector, var->selector);
3599 
3600 	/*
3601 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3602 	 * qemu binaries.
3603 	 *   IA32 arch specifies that at the time of processor reset the
3604 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3605 	 * is setting it to 0 in the userland code. This causes invalid guest
3606 	 * state vmexit when "unrestricted guest" mode is turned on.
3607 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3608 	 * tree. Newer qemu binaries with that qemu fix would not need this
3609 	 * kvm hack.
3610 	 */
3611 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3612 		var->type |= 0x1; /* Accessed */
3613 
3614 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3615 }
3616 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3617 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3618 {
3619 	__vmx_set_segment(vcpu, var, seg);
3620 
3621 	to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3622 }
3623 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3624 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3625 {
3626 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3627 
3628 	*db = (ar >> 14) & 1;
3629 	*l = (ar >> 13) & 1;
3630 }
3631 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3632 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3633 {
3634 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3635 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3636 }
3637 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3638 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3639 {
3640 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3641 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3642 }
3643 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3644 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3645 {
3646 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3647 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3648 }
3649 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3650 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3651 {
3652 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3653 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3654 }
3655 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3656 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3657 {
3658 	struct kvm_segment var;
3659 	u32 ar;
3660 
3661 	vmx_get_segment(vcpu, &var, seg);
3662 	var.dpl = 0x3;
3663 	if (seg == VCPU_SREG_CS)
3664 		var.type = 0x3;
3665 	ar = vmx_segment_access_rights(&var);
3666 
3667 	if (var.base != (var.selector << 4))
3668 		return false;
3669 	if (var.limit != 0xffff)
3670 		return false;
3671 	if (ar != 0xf3)
3672 		return false;
3673 
3674 	return true;
3675 }
3676 
code_segment_valid(struct kvm_vcpu * vcpu)3677 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3678 {
3679 	struct kvm_segment cs;
3680 	unsigned int cs_rpl;
3681 
3682 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3683 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3684 
3685 	if (cs.unusable)
3686 		return false;
3687 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3688 		return false;
3689 	if (!cs.s)
3690 		return false;
3691 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3692 		if (cs.dpl > cs_rpl)
3693 			return false;
3694 	} else {
3695 		if (cs.dpl != cs_rpl)
3696 			return false;
3697 	}
3698 	if (!cs.present)
3699 		return false;
3700 
3701 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3702 	return true;
3703 }
3704 
stack_segment_valid(struct kvm_vcpu * vcpu)3705 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3706 {
3707 	struct kvm_segment ss;
3708 	unsigned int ss_rpl;
3709 
3710 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3711 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3712 
3713 	if (ss.unusable)
3714 		return true;
3715 	if (ss.type != 3 && ss.type != 7)
3716 		return false;
3717 	if (!ss.s)
3718 		return false;
3719 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3720 		return false;
3721 	if (!ss.present)
3722 		return false;
3723 
3724 	return true;
3725 }
3726 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3727 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3728 {
3729 	struct kvm_segment var;
3730 	unsigned int rpl;
3731 
3732 	vmx_get_segment(vcpu, &var, seg);
3733 	rpl = var.selector & SEGMENT_RPL_MASK;
3734 
3735 	if (var.unusable)
3736 		return true;
3737 	if (!var.s)
3738 		return false;
3739 	if (!var.present)
3740 		return false;
3741 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3742 		if (var.dpl < rpl) /* DPL < RPL */
3743 			return false;
3744 	}
3745 
3746 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3747 	 * rights flags
3748 	 */
3749 	return true;
3750 }
3751 
tr_valid(struct kvm_vcpu * vcpu)3752 static bool tr_valid(struct kvm_vcpu *vcpu)
3753 {
3754 	struct kvm_segment tr;
3755 
3756 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3757 
3758 	if (tr.unusable)
3759 		return false;
3760 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3761 		return false;
3762 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3763 		return false;
3764 	if (!tr.present)
3765 		return false;
3766 
3767 	return true;
3768 }
3769 
ldtr_valid(struct kvm_vcpu * vcpu)3770 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3771 {
3772 	struct kvm_segment ldtr;
3773 
3774 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3775 
3776 	if (ldtr.unusable)
3777 		return true;
3778 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3779 		return false;
3780 	if (ldtr.type != 2)
3781 		return false;
3782 	if (!ldtr.present)
3783 		return false;
3784 
3785 	return true;
3786 }
3787 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3788 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3789 {
3790 	struct kvm_segment cs, ss;
3791 
3792 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3793 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3794 
3795 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3796 		 (ss.selector & SEGMENT_RPL_MASK));
3797 }
3798 
3799 /*
3800  * Check if guest state is valid. Returns true if valid, false if
3801  * not.
3802  * We assume that registers are always usable
3803  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3804 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3805 {
3806 	/* real mode guest state checks */
3807 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3808 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3809 			return false;
3810 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3811 			return false;
3812 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3813 			return false;
3814 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3815 			return false;
3816 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3817 			return false;
3818 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3819 			return false;
3820 	} else {
3821 	/* protected mode guest state checks */
3822 		if (!cs_ss_rpl_check(vcpu))
3823 			return false;
3824 		if (!code_segment_valid(vcpu))
3825 			return false;
3826 		if (!stack_segment_valid(vcpu))
3827 			return false;
3828 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3829 			return false;
3830 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3831 			return false;
3832 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3833 			return false;
3834 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3835 			return false;
3836 		if (!tr_valid(vcpu))
3837 			return false;
3838 		if (!ldtr_valid(vcpu))
3839 			return false;
3840 	}
3841 	/* TODO:
3842 	 * - Add checks on RIP
3843 	 * - Add checks on RFLAGS
3844 	 */
3845 
3846 	return true;
3847 }
3848 
init_rmode_tss(struct kvm * kvm,void __user * ua)3849 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3850 {
3851 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3852 	u16 data;
3853 	int i;
3854 
3855 	for (i = 0; i < 3; i++) {
3856 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3857 			return -EFAULT;
3858 	}
3859 
3860 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3861 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3862 		return -EFAULT;
3863 
3864 	data = ~0;
3865 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3866 		return -EFAULT;
3867 
3868 	return 0;
3869 }
3870 
init_rmode_identity_map(struct kvm * kvm)3871 static int init_rmode_identity_map(struct kvm *kvm)
3872 {
3873 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3874 	int i, r = 0;
3875 	void __user *uaddr;
3876 	u32 tmp;
3877 
3878 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3879 	mutex_lock(&kvm->slots_lock);
3880 
3881 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3882 		goto out;
3883 
3884 	if (!kvm_vmx->ept_identity_map_addr)
3885 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3886 
3887 	uaddr = __x86_set_memory_region(kvm,
3888 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3889 					kvm_vmx->ept_identity_map_addr,
3890 					PAGE_SIZE);
3891 	if (IS_ERR(uaddr)) {
3892 		r = PTR_ERR(uaddr);
3893 		goto out;
3894 	}
3895 
3896 	/* Set up identity-mapping pagetable for EPT in real mode */
3897 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3898 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3899 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3900 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3901 			r = -EFAULT;
3902 			goto out;
3903 		}
3904 	}
3905 	kvm_vmx->ept_identity_pagetable_done = true;
3906 
3907 out:
3908 	mutex_unlock(&kvm->slots_lock);
3909 	return r;
3910 }
3911 
seg_setup(int seg)3912 static void seg_setup(int seg)
3913 {
3914 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3915 	unsigned int ar;
3916 
3917 	vmcs_write16(sf->selector, 0);
3918 	vmcs_writel(sf->base, 0);
3919 	vmcs_write32(sf->limit, 0xffff);
3920 	ar = 0x93;
3921 	if (seg == VCPU_SREG_CS)
3922 		ar |= 0x08; /* code segment */
3923 
3924 	vmcs_write32(sf->ar_bytes, ar);
3925 }
3926 
allocate_vpid(void)3927 int allocate_vpid(void)
3928 {
3929 	int vpid;
3930 
3931 	if (!enable_vpid)
3932 		return 0;
3933 	spin_lock(&vmx_vpid_lock);
3934 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3935 	if (vpid < VMX_NR_VPIDS)
3936 		__set_bit(vpid, vmx_vpid_bitmap);
3937 	else
3938 		vpid = 0;
3939 	spin_unlock(&vmx_vpid_lock);
3940 	return vpid;
3941 }
3942 
free_vpid(int vpid)3943 void free_vpid(int vpid)
3944 {
3945 	if (!enable_vpid || vpid == 0)
3946 		return;
3947 	spin_lock(&vmx_vpid_lock);
3948 	__clear_bit(vpid, vmx_vpid_bitmap);
3949 	spin_unlock(&vmx_vpid_lock);
3950 }
3951 
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3952 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3953 {
3954 	/*
3955 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3956 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3957 	 * bitmap has changed.
3958 	 */
3959 	if (kvm_is_using_evmcs()) {
3960 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3961 
3962 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3963 			evmcs->hv_clean_fields &=
3964 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3965 	}
3966 
3967 	vmx->nested.force_msr_bitmap_recalc = true;
3968 }
3969 
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)3970 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
3971 {
3972 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3973 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3974 
3975 	if (!cpu_has_vmx_msr_bitmap())
3976 		return;
3977 
3978 	vmx_msr_bitmap_l01_changed(vmx);
3979 
3980 	if (type & MSR_TYPE_R) {
3981 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
3982 			vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3983 		else
3984 			vmx_set_msr_bitmap_read(msr_bitmap, msr);
3985 	}
3986 
3987 	if (type & MSR_TYPE_W) {
3988 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
3989 			vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3990 		else
3991 			vmx_set_msr_bitmap_write(msr_bitmap, msr);
3992 	}
3993 }
3994 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)3995 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3996 {
3997 	/*
3998 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3999 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4000 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4001 	 */
4002 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4003 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4004 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4005 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4006 	u8 mode;
4007 
4008 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4009 		return;
4010 
4011 	if (cpu_has_secondary_exec_ctrls() &&
4012 	    (secondary_exec_controls_get(vmx) &
4013 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4014 		mode = MSR_BITMAP_MODE_X2APIC;
4015 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4016 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4017 	} else {
4018 		mode = 0;
4019 	}
4020 
4021 	if (mode == vmx->x2apic_msr_bitmap_mode)
4022 		return;
4023 
4024 	vmx->x2apic_msr_bitmap_mode = mode;
4025 
4026 	/*
4027 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4028 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4029 	 * Intercept all writes by default and poke holes as needed.  Pass
4030 	 * through reads for all valid registers by default in x2APIC+APICv
4031 	 * mode, only the current timer count needs on-demand emulation by KVM.
4032 	 */
4033 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4034 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4035 	else
4036 		msr_bitmap[read_idx] = ~0ull;
4037 	msr_bitmap[write_idx] = ~0ull;
4038 
4039 	/*
4040 	 * TPR reads and writes can be virtualized even if virtual interrupt
4041 	 * delivery is not in use.
4042 	 */
4043 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4044 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4045 
4046 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4047 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4048 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4049 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4050 		if (enable_ipiv)
4051 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4052 	}
4053 }
4054 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4055 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4056 {
4057 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4058 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4059 	u32 i;
4060 
4061 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4062 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4063 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4064 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4065 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4066 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4067 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4068 	}
4069 }
4070 
vmx_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4071 void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4072 {
4073 	if (!cpu_has_vmx_msr_bitmap())
4074 		return;
4075 
4076 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4077 #ifdef CONFIG_X86_64
4078 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4079 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4080 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4081 #endif
4082 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4083 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4084 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4085 	if (kvm_cstate_in_guest(vcpu->kvm)) {
4086 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4087 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4088 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4089 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4090 	}
4091 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4092 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4093 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4094 	}
4095 
4096 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4097 	if (vmx_pt_mode_is_host_guest())
4098 		pt_update_intercept_for_msr(vcpu);
4099 
4100 	if (vcpu->arch.xfd_no_write_intercept)
4101 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4102 
4103 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4104 				  !to_vmx(vcpu)->spec_ctrl);
4105 
4106 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4107 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4108 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4109 
4110 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
4111 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4112 					  !guest_has_pred_cmd_msr(vcpu));
4113 
4114 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4115 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4116 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4117 
4118 	/*
4119 	 * x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4120 	 * filtered by userspace.
4121 	 */
4122 }
4123 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4124 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4125 						int vector)
4126 {
4127 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4128 
4129 	/*
4130 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4131 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4132 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4133 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4134 	 * L1 has enabled posted interrupts for L2.
4135 	 */
4136 	if (is_guest_mode(vcpu) &&
4137 	    vector == vmx->nested.posted_intr_nv) {
4138 		/*
4139 		 * If a posted intr is not recognized by hardware,
4140 		 * we will accomplish it in the next vmentry.
4141 		 */
4142 		vmx->nested.pi_pending = true;
4143 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4144 
4145 		/*
4146 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4147 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4148 		 * request if triggering a posted interrupt "fails" because
4149 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4150 		 * the smb_wmb() in kvm_make_request() only ensures everything
4151 		 * done before making the request is visible when the request
4152 		 * is visible, it doesn't ensure ordering between the store to
4153 		 * vcpu->requests and the load from vcpu->mode.
4154 		 */
4155 		smp_mb__after_atomic();
4156 
4157 		/* the PIR and ON have been set by L1. */
4158 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4159 		return 0;
4160 	}
4161 	return -1;
4162 }
4163 /*
4164  * Send interrupt to vcpu via posted interrupt way.
4165  * 1. If target vcpu is running(non-root mode), send posted interrupt
4166  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4167  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4168  * interrupt from PIR in next vmentry.
4169  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4170 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4171 {
4172 	struct vcpu_vt *vt = to_vt(vcpu);
4173 	int r;
4174 
4175 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4176 	if (!r)
4177 		return 0;
4178 
4179 	/* Note, this is called iff the local APIC is in-kernel. */
4180 	if (!vcpu->arch.apic->apicv_active)
4181 		return -1;
4182 
4183 	__vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4184 	return 0;
4185 }
4186 
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4187 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4188 			   int trig_mode, int vector)
4189 {
4190 	struct kvm_vcpu *vcpu = apic->vcpu;
4191 
4192 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4193 		kvm_lapic_set_irr(vector, apic);
4194 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4195 		kvm_vcpu_kick(vcpu);
4196 	} else {
4197 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4198 					   trig_mode, vector);
4199 	}
4200 }
4201 
4202 /*
4203  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4204  * will not change in the lifetime of the guest.
4205  * Note that host-state that does change is set elsewhere. E.g., host-state
4206  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4207  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4208 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4209 {
4210 	u32 low32, high32;
4211 	unsigned long tmpl;
4212 	unsigned long cr0, cr3, cr4;
4213 
4214 	cr0 = read_cr0();
4215 	WARN_ON(cr0 & X86_CR0_TS);
4216 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4217 
4218 	/*
4219 	 * Save the most likely value for this task's CR3 in the VMCS.
4220 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4221 	 */
4222 	cr3 = __read_cr3();
4223 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4224 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4225 
4226 	/* Save the most likely value for this task's CR4 in the VMCS. */
4227 	cr4 = cr4_read_shadow();
4228 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4229 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4230 
4231 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4232 #ifdef CONFIG_X86_64
4233 	/*
4234 	 * Load null selectors, so we can avoid reloading them in
4235 	 * vmx_prepare_switch_to_host(), in case userspace uses
4236 	 * the null selectors too (the expected case).
4237 	 */
4238 	vmcs_write16(HOST_DS_SELECTOR, 0);
4239 	vmcs_write16(HOST_ES_SELECTOR, 0);
4240 #else
4241 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4242 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4243 #endif
4244 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4245 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4246 
4247 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4248 
4249 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4250 
4251 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4252 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4253 
4254 	/*
4255 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4256 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4257 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4258 	 * have already done so!).
4259 	 */
4260 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4261 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4262 
4263 	rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4264 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4265 
4266 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4267 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4268 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4269 	}
4270 
4271 	if (cpu_has_load_ia32_efer())
4272 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4273 }
4274 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4275 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4276 {
4277 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4278 
4279 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4280 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4281 	if (!enable_ept) {
4282 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4283 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4284 	}
4285 	if (is_guest_mode(&vmx->vcpu))
4286 		vcpu->arch.cr4_guest_owned_bits &=
4287 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4288 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4289 }
4290 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4291 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4292 {
4293 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4294 
4295 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4296 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4297 
4298 	if (!enable_vnmi)
4299 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4300 
4301 	if (!enable_preemption_timer)
4302 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4303 
4304 	return pin_based_exec_ctrl;
4305 }
4306 
vmx_vmentry_ctrl(void)4307 static u32 vmx_vmentry_ctrl(void)
4308 {
4309 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4310 
4311 	if (vmx_pt_mode_is_system())
4312 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4313 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4314 	/*
4315 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4316 	 */
4317 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4318 			  VM_ENTRY_LOAD_IA32_EFER |
4319 			  VM_ENTRY_IA32E_MODE);
4320 
4321 	return vmentry_ctrl;
4322 }
4323 
vmx_vmexit_ctrl(void)4324 static u32 vmx_vmexit_ctrl(void)
4325 {
4326 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4327 
4328 	/*
4329 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4330 	 * nested virtualization and thus allowed to be set in vmcs12.
4331 	 */
4332 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4333 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4334 
4335 	if (vmx_pt_mode_is_system())
4336 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4337 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4338 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4339 	return vmexit_ctrl &
4340 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4341 }
4342 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4343 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4344 {
4345 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4346 
4347 	if (is_guest_mode(vcpu)) {
4348 		vmx->nested.update_vmcs01_apicv_status = true;
4349 		return;
4350 	}
4351 
4352 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4353 
4354 	if (kvm_vcpu_apicv_active(vcpu)) {
4355 		secondary_exec_controls_setbit(vmx,
4356 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4357 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4358 		if (enable_ipiv)
4359 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4360 	} else {
4361 		secondary_exec_controls_clearbit(vmx,
4362 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4363 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4364 		if (enable_ipiv)
4365 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4366 	}
4367 
4368 	vmx_update_msr_bitmap_x2apic(vcpu);
4369 }
4370 
vmx_exec_control(struct vcpu_vmx * vmx)4371 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4372 {
4373 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4374 
4375 	/*
4376 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4377 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4378 	 */
4379 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4380 			  CPU_BASED_USE_IO_BITMAPS |
4381 			  CPU_BASED_MONITOR_TRAP_FLAG |
4382 			  CPU_BASED_PAUSE_EXITING);
4383 
4384 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4385 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4386 			  CPU_BASED_NMI_WINDOW_EXITING);
4387 
4388 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4389 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4390 
4391 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4392 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4393 
4394 #ifdef CONFIG_X86_64
4395 	if (exec_control & CPU_BASED_TPR_SHADOW)
4396 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4397 				  CPU_BASED_CR8_STORE_EXITING);
4398 	else
4399 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4400 				CPU_BASED_CR8_LOAD_EXITING;
4401 #endif
4402 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4403 	if (enable_ept)
4404 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4405 				  CPU_BASED_CR3_STORE_EXITING |
4406 				  CPU_BASED_INVLPG_EXITING);
4407 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4408 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4409 				CPU_BASED_MONITOR_EXITING);
4410 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4411 		exec_control &= ~CPU_BASED_HLT_EXITING;
4412 	return exec_control;
4413 }
4414 
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4415 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4416 {
4417 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4418 
4419 	/*
4420 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4421 	 * APICv is inhibited.
4422 	 */
4423 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4424 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4425 
4426 	return exec_control;
4427 }
4428 
4429 /*
4430  * Adjust a single secondary execution control bit to intercept/allow an
4431  * instruction in the guest.  This is usually done based on whether or not a
4432  * feature has been exposed to the guest in order to correctly emulate faults.
4433  */
4434 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4435 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4436 				  u32 control, bool enabled, bool exiting)
4437 {
4438 	/*
4439 	 * If the control is for an opt-in feature, clear the control if the
4440 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4441 	 * control is opt-out, i.e. an exiting control, clear the control if
4442 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4443 	 * disabled for the associated instruction.  Note, the caller is
4444 	 * responsible presetting exec_control to set all supported bits.
4445 	 */
4446 	if (enabled == exiting)
4447 		*exec_control &= ~control;
4448 
4449 	/*
4450 	 * Update the nested MSR settings so that a nested VMM can/can't set
4451 	 * controls for features that are/aren't exposed to the guest.
4452 	 */
4453 	if (nested &&
4454 	    kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4455 		/*
4456 		 * All features that can be added or removed to VMX MSRs must
4457 		 * be supported in the first place for nested virtualization.
4458 		 */
4459 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4460 			enabled = false;
4461 
4462 		if (enabled)
4463 			vmx->nested.msrs.secondary_ctls_high |= control;
4464 		else
4465 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4466 	}
4467 }
4468 
4469 /*
4470  * Wrapper macro for the common case of adjusting a secondary execution control
4471  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4472  * verifies that the control is actually supported by KVM and hardware.
4473  */
4474 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4475 ({												\
4476 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4477 	bool __enabled;										\
4478 												\
4479 	if (cpu_has_vmx_##name()) {								\
4480 		__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name);			\
4481 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4482 						  __enabled, exiting);				\
4483 	}											\
4484 })
4485 
4486 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4487 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4488 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4489 
4490 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4491 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4492 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4493 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4494 {
4495 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4496 
4497 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4498 
4499 	if (vmx_pt_mode_is_system())
4500 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4501 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4502 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4503 	if (vmx->vpid == 0)
4504 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4505 	if (!enable_ept) {
4506 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4507 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4508 		enable_unrestricted_guest = 0;
4509 	}
4510 	if (!enable_unrestricted_guest)
4511 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4512 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4513 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4514 	if (!kvm_vcpu_apicv_active(vcpu))
4515 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4516 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4517 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4518 
4519 	/*
4520 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4521 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4522 	 */
4523 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4524 
4525 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4526 	 * in vmx_set_cr4.  */
4527 	exec_control &= ~SECONDARY_EXEC_DESC;
4528 
4529 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4530 	   (handle_vmptrld).
4531 	   We can NOT enable shadow_vmcs here because we don't have yet
4532 	   a current VMCS12
4533 	*/
4534 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4535 
4536 	/*
4537 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4538 	 * it needs to be set here when dirty logging is already active, e.g.
4539 	 * if this vCPU was created after dirty logging was enabled.
4540 	 */
4541 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4542 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4543 
4544 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4545 
4546 	/*
4547 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4548 	 * feature is exposed to the guest.  This creates a virtualization hole
4549 	 * if both are supported in hardware but only one is exposed to the
4550 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4551 	 * is advertised is preferable to emulating the advertised instruction
4552 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4553 	 */
4554 	if (cpu_has_vmx_rdtscp()) {
4555 		bool rdpid_or_rdtscp_enabled =
4556 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4557 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4558 
4559 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4560 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4561 						  rdpid_or_rdtscp_enabled, false);
4562 	}
4563 
4564 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4565 
4566 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4567 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4568 
4569 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4570 				    ENABLE_USR_WAIT_PAUSE, false);
4571 
4572 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4573 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4574 
4575 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4576 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4577 
4578 	return exec_control;
4579 }
4580 
vmx_get_pid_table_order(struct kvm * kvm)4581 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4582 {
4583 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4584 }
4585 
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4586 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4587 {
4588 	struct page *pages;
4589 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4590 
4591 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4592 		return 0;
4593 
4594 	if (kvm_vmx->pid_table)
4595 		return 0;
4596 
4597 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4598 			    vmx_get_pid_table_order(kvm));
4599 	if (!pages)
4600 		return -ENOMEM;
4601 
4602 	kvm_vmx->pid_table = (void *)page_address(pages);
4603 	return 0;
4604 }
4605 
vmx_vcpu_precreate(struct kvm * kvm)4606 int vmx_vcpu_precreate(struct kvm *kvm)
4607 {
4608 	return vmx_alloc_ipiv_pid_table(kvm);
4609 }
4610 
4611 #define VMX_XSS_EXIT_BITMAP 0
4612 
init_vmcs(struct vcpu_vmx * vmx)4613 static void init_vmcs(struct vcpu_vmx *vmx)
4614 {
4615 	struct kvm *kvm = vmx->vcpu.kvm;
4616 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4617 
4618 	if (nested)
4619 		nested_vmx_set_vmcs_shadowing_bitmap();
4620 
4621 	if (cpu_has_vmx_msr_bitmap())
4622 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4623 
4624 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4625 
4626 	/* Control */
4627 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4628 
4629 	exec_controls_set(vmx, vmx_exec_control(vmx));
4630 
4631 	if (cpu_has_secondary_exec_ctrls()) {
4632 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4633 		if (vmx->ve_info)
4634 			vmcs_write64(VE_INFORMATION_ADDRESS,
4635 				     __pa(vmx->ve_info));
4636 	}
4637 
4638 	if (cpu_has_tertiary_exec_ctrls())
4639 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4640 
4641 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4642 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4643 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4644 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4645 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4646 
4647 		vmcs_write16(GUEST_INTR_STATUS, 0);
4648 
4649 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4650 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4651 	}
4652 
4653 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4654 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4655 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4656 	}
4657 
4658 	if (!kvm_pause_in_guest(kvm)) {
4659 		vmcs_write32(PLE_GAP, ple_gap);
4660 		vmx->ple_window = ple_window;
4661 		vmx->ple_window_dirty = true;
4662 	}
4663 
4664 	if (kvm_notify_vmexit_enabled(kvm))
4665 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4666 
4667 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4668 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4669 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4670 
4671 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4672 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4673 	vmx_set_constant_host_state(vmx);
4674 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4675 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4676 
4677 	if (cpu_has_vmx_vmfunc())
4678 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4679 
4680 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4681 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4682 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4683 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4684 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4685 
4686 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4687 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4688 
4689 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4690 
4691 	/* 22.2.1, 20.8.1 */
4692 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4693 
4694 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4695 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4696 
4697 	set_cr4_guest_host_mask(vmx);
4698 
4699 	if (vmx->vpid != 0)
4700 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4701 
4702 	if (cpu_has_vmx_xsaves())
4703 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4704 
4705 	if (enable_pml) {
4706 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4707 		vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4708 	}
4709 
4710 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4711 
4712 	if (vmx_pt_mode_is_host_guest()) {
4713 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4714 		/* Bit[6~0] are forced to 1, writes are ignored. */
4715 		vmx->pt_desc.guest.output_mask = 0x7F;
4716 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4717 	}
4718 
4719 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4720 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4721 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4722 
4723 	vmx_guest_debugctl_write(&vmx->vcpu, 0);
4724 
4725 	if (cpu_has_vmx_tpr_shadow()) {
4726 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4727 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4728 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4729 				     __pa(vmx->vcpu.arch.apic->regs));
4730 		vmcs_write32(TPR_THRESHOLD, 0);
4731 	}
4732 
4733 	vmx_setup_uret_msrs(vmx);
4734 }
4735 
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4736 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4737 {
4738 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4739 
4740 	init_vmcs(vmx);
4741 
4742 	if (nested &&
4743 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4744 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4745 
4746 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4747 
4748 	vmx->nested.posted_intr_nv = -1;
4749 	vmx->nested.vmxon_ptr = INVALID_GPA;
4750 	vmx->nested.current_vmptr = INVALID_GPA;
4751 
4752 #ifdef CONFIG_KVM_HYPERV
4753 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4754 #endif
4755 
4756 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4757 		vcpu->arch.microcode_version = 0x100000000ULL;
4758 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4759 
4760 	/*
4761 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4762 	 * or POSTED_INTR_WAKEUP_VECTOR.
4763 	 */
4764 	vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4765 	__pi_set_sn(&vmx->vt.pi_desc);
4766 }
4767 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4768 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4769 {
4770 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4771 
4772 	if (!init_event)
4773 		__vmx_vcpu_reset(vcpu);
4774 
4775 	vmx->rmode.vm86_active = 0;
4776 	vmx->spec_ctrl = 0;
4777 
4778 	vmx->msr_ia32_umwait_control = 0;
4779 
4780 	vmx->hv_deadline_tsc = -1;
4781 	kvm_set_cr8(vcpu, 0);
4782 
4783 	seg_setup(VCPU_SREG_CS);
4784 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4785 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4786 
4787 	seg_setup(VCPU_SREG_DS);
4788 	seg_setup(VCPU_SREG_ES);
4789 	seg_setup(VCPU_SREG_FS);
4790 	seg_setup(VCPU_SREG_GS);
4791 	seg_setup(VCPU_SREG_SS);
4792 
4793 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4794 	vmcs_writel(GUEST_TR_BASE, 0);
4795 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4796 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4797 
4798 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4799 	vmcs_writel(GUEST_LDTR_BASE, 0);
4800 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4801 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4802 
4803 	vmcs_writel(GUEST_GDTR_BASE, 0);
4804 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4805 
4806 	vmcs_writel(GUEST_IDTR_BASE, 0);
4807 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4808 
4809 	vmx_segment_cache_clear(vmx);
4810 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4811 
4812 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4813 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4814 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4815 	if (kvm_mpx_supported())
4816 		vmcs_write64(GUEST_BNDCFGS, 0);
4817 
4818 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4819 
4820 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4821 
4822 	vpid_sync_context(vmx->vpid);
4823 
4824 	vmx_update_fb_clear_dis(vcpu, vmx);
4825 }
4826 
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4827 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4828 {
4829 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4830 }
4831 
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4832 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4833 {
4834 	if (!enable_vnmi ||
4835 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4836 		vmx_enable_irq_window(vcpu);
4837 		return;
4838 	}
4839 
4840 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4841 }
4842 
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4843 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4844 {
4845 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4846 	uint32_t intr;
4847 	int irq = vcpu->arch.interrupt.nr;
4848 
4849 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4850 
4851 	++vcpu->stat.irq_injections;
4852 	if (vmx->rmode.vm86_active) {
4853 		int inc_eip = 0;
4854 		if (vcpu->arch.interrupt.soft)
4855 			inc_eip = vcpu->arch.event_exit_inst_len;
4856 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4857 		return;
4858 	}
4859 	intr = irq | INTR_INFO_VALID_MASK;
4860 	if (vcpu->arch.interrupt.soft) {
4861 		intr |= INTR_TYPE_SOFT_INTR;
4862 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4863 			     vmx->vcpu.arch.event_exit_inst_len);
4864 	} else
4865 		intr |= INTR_TYPE_EXT_INTR;
4866 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4867 
4868 	vmx_clear_hlt(vcpu);
4869 }
4870 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4871 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4872 {
4873 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4874 
4875 	if (!enable_vnmi) {
4876 		/*
4877 		 * Tracking the NMI-blocked state in software is built upon
4878 		 * finding the next open IRQ window. This, in turn, depends on
4879 		 * well-behaving guests: They have to keep IRQs disabled at
4880 		 * least as long as the NMI handler runs. Otherwise we may
4881 		 * cause NMI nesting, maybe breaking the guest. But as this is
4882 		 * highly unlikely, we can live with the residual risk.
4883 		 */
4884 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4885 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4886 	}
4887 
4888 	++vcpu->stat.nmi_injections;
4889 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4890 
4891 	if (vmx->rmode.vm86_active) {
4892 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4893 		return;
4894 	}
4895 
4896 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4897 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4898 
4899 	vmx_clear_hlt(vcpu);
4900 }
4901 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4902 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4903 {
4904 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4905 	bool masked;
4906 
4907 	if (!enable_vnmi)
4908 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4909 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4910 		return false;
4911 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4912 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4913 	return masked;
4914 }
4915 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4916 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4917 {
4918 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4919 
4920 	if (!enable_vnmi) {
4921 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4922 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4923 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4924 		}
4925 	} else {
4926 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4927 		if (masked)
4928 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4929 				      GUEST_INTR_STATE_NMI);
4930 		else
4931 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4932 					GUEST_INTR_STATE_NMI);
4933 	}
4934 }
4935 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4936 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4937 {
4938 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4939 		return false;
4940 
4941 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4942 		return true;
4943 
4944 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4945 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4946 		 GUEST_INTR_STATE_NMI));
4947 }
4948 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4949 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4950 {
4951 	if (to_vmx(vcpu)->nested.nested_run_pending)
4952 		return -EBUSY;
4953 
4954 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4955 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4956 		return -EBUSY;
4957 
4958 	return !vmx_nmi_blocked(vcpu);
4959 }
4960 
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4961 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4962 {
4963 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4964 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4965 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4966 }
4967 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4968 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4969 {
4970 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4971 		return false;
4972 
4973 	return __vmx_interrupt_blocked(vcpu);
4974 }
4975 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4976 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4977 {
4978 	if (to_vmx(vcpu)->nested.nested_run_pending)
4979 		return -EBUSY;
4980 
4981 	/*
4982 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4983 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
4984 	 */
4985 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4986 		return -EBUSY;
4987 
4988 	return !vmx_interrupt_blocked(vcpu);
4989 }
4990 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4991 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4992 {
4993 	void __user *ret;
4994 
4995 	if (enable_unrestricted_guest)
4996 		return 0;
4997 
4998 	mutex_lock(&kvm->slots_lock);
4999 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5000 				      PAGE_SIZE * 3);
5001 	mutex_unlock(&kvm->slots_lock);
5002 
5003 	if (IS_ERR(ret))
5004 		return PTR_ERR(ret);
5005 
5006 	to_kvm_vmx(kvm)->tss_addr = addr;
5007 
5008 	return init_rmode_tss(kvm, ret);
5009 }
5010 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5011 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5012 {
5013 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5014 	return 0;
5015 }
5016 
rmode_exception(struct kvm_vcpu * vcpu,int vec)5017 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5018 {
5019 	switch (vec) {
5020 	case BP_VECTOR:
5021 		/*
5022 		 * Update instruction length as we may reinject the exception
5023 		 * from user space while in guest debugging mode.
5024 		 */
5025 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5026 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5027 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5028 			return false;
5029 		fallthrough;
5030 	case DB_VECTOR:
5031 		return !(vcpu->guest_debug &
5032 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5033 	case DE_VECTOR:
5034 	case OF_VECTOR:
5035 	case BR_VECTOR:
5036 	case UD_VECTOR:
5037 	case DF_VECTOR:
5038 	case SS_VECTOR:
5039 	case GP_VECTOR:
5040 	case MF_VECTOR:
5041 		return true;
5042 	}
5043 	return false;
5044 }
5045 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5046 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5047 				  int vec, u32 err_code)
5048 {
5049 	/*
5050 	 * Instruction with address size override prefix opcode 0x67
5051 	 * Cause the #SS fault with 0 error code in VM86 mode.
5052 	 */
5053 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5054 		if (kvm_emulate_instruction(vcpu, 0)) {
5055 			if (vcpu->arch.halt_request) {
5056 				vcpu->arch.halt_request = 0;
5057 				return kvm_emulate_halt_noskip(vcpu);
5058 			}
5059 			return 1;
5060 		}
5061 		return 0;
5062 	}
5063 
5064 	/*
5065 	 * Forward all other exceptions that are valid in real mode.
5066 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5067 	 *        the required debugging infrastructure rework.
5068 	 */
5069 	kvm_queue_exception(vcpu, vec);
5070 	return 1;
5071 }
5072 
handle_machine_check(struct kvm_vcpu * vcpu)5073 static int handle_machine_check(struct kvm_vcpu *vcpu)
5074 {
5075 	/* handled by vmx_vcpu_run() */
5076 	return 1;
5077 }
5078 
5079 /*
5080  * If the host has split lock detection disabled, then #AC is
5081  * unconditionally injected into the guest, which is the pre split lock
5082  * detection behaviour.
5083  *
5084  * If the host has split lock detection enabled then #AC is
5085  * only injected into the guest when:
5086  *  - Guest CPL == 3 (user mode)
5087  *  - Guest has #AC detection enabled in CR0
5088  *  - Guest EFLAGS has AC bit set
5089  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5090 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5091 {
5092 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5093 		return true;
5094 
5095 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5096 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5097 }
5098 
is_xfd_nm_fault(struct kvm_vcpu * vcpu)5099 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5100 {
5101 	return vcpu->arch.guest_fpu.fpstate->xfd &&
5102 	       !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5103 }
5104 
handle_exception_nmi(struct kvm_vcpu * vcpu)5105 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5106 {
5107 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5108 	struct kvm_run *kvm_run = vcpu->run;
5109 	u32 intr_info, ex_no, error_code;
5110 	unsigned long cr2, dr6;
5111 	u32 vect_info;
5112 
5113 	vect_info = vmx->idt_vectoring_info;
5114 	intr_info = vmx_get_intr_info(vcpu);
5115 
5116 	/*
5117 	 * Machine checks are handled by handle_exception_irqoff(), or by
5118 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5119 	 * vmx_vcpu_enter_exit().
5120 	 */
5121 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5122 		return 1;
5123 
5124 	/*
5125 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5126 	 * This ensures the nested_vmx check is not skipped so vmexit can
5127 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5128 	 * point.
5129 	 */
5130 	if (is_nm_fault(intr_info)) {
5131 		kvm_queue_exception_p(vcpu, NM_VECTOR,
5132 				      is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5133 		return 1;
5134 	}
5135 
5136 	if (is_invalid_opcode(intr_info))
5137 		return handle_ud(vcpu);
5138 
5139 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5140 		struct vmx_ve_information *ve_info = vmx->ve_info;
5141 
5142 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5143 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5144 		dump_vmcs(vcpu);
5145 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5146 		return 1;
5147 	}
5148 
5149 	error_code = 0;
5150 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5151 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5152 
5153 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5154 		WARN_ON_ONCE(!enable_vmware_backdoor);
5155 
5156 		/*
5157 		 * VMware backdoor emulation on #GP interception only handles
5158 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5159 		 * error code on #GP.
5160 		 */
5161 		if (error_code) {
5162 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5163 			return 1;
5164 		}
5165 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5166 	}
5167 
5168 	/*
5169 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5170 	 * MMIO, it is better to report an internal error.
5171 	 * See the comments in vmx_handle_exit.
5172 	 */
5173 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5174 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5175 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5176 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5177 		vcpu->run->internal.ndata = 4;
5178 		vcpu->run->internal.data[0] = vect_info;
5179 		vcpu->run->internal.data[1] = intr_info;
5180 		vcpu->run->internal.data[2] = error_code;
5181 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5182 		return 0;
5183 	}
5184 
5185 	if (is_page_fault(intr_info)) {
5186 		cr2 = vmx_get_exit_qual(vcpu);
5187 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5188 			/*
5189 			 * EPT will cause page fault only if we need to
5190 			 * detect illegal GPAs.
5191 			 */
5192 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5193 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5194 			return 1;
5195 		} else
5196 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5197 	}
5198 
5199 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5200 
5201 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5202 		return handle_rmode_exception(vcpu, ex_no, error_code);
5203 
5204 	switch (ex_no) {
5205 	case DB_VECTOR:
5206 		dr6 = vmx_get_exit_qual(vcpu);
5207 		if (!(vcpu->guest_debug &
5208 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5209 			/*
5210 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5211 			 * instruction.  ICEBP generates a trap-like #DB, but
5212 			 * despite its interception control being tied to #DB,
5213 			 * is an instruction intercept, i.e. the VM-Exit occurs
5214 			 * on the ICEBP itself.  Use the inner "skip" helper to
5215 			 * avoid single-step #DB and MTF updates, as ICEBP is
5216 			 * higher priority.  Note, skipping ICEBP still clears
5217 			 * STI and MOVSS blocking.
5218 			 *
5219 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5220 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5221 			 * blocking is active, as the CPU doesn't set the bit
5222 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5223 			 * consistency check that a single-step #DB is pending
5224 			 * in this scenario as the previous instruction cannot
5225 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5226 			 * don't modify RFLAGS), therefore the one instruction
5227 			 * delay when activating single-step breakpoints must
5228 			 * have already expired.  Note, the CPU sets/clears BS
5229 			 * as appropriate for all other VM-Exits types.
5230 			 */
5231 			if (is_icebp(intr_info))
5232 				WARN_ON(!skip_emulated_instruction(vcpu));
5233 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5234 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5235 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5236 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5237 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5238 
5239 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5240 			return 1;
5241 		}
5242 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5243 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5244 		fallthrough;
5245 	case BP_VECTOR:
5246 		/*
5247 		 * Update instruction length as we may reinject #BP from
5248 		 * user space while in guest debugging mode. Reading it for
5249 		 * #DB as well causes no harm, it is not used in that case.
5250 		 */
5251 		vmx->vcpu.arch.event_exit_inst_len =
5252 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5253 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5254 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5255 		kvm_run->debug.arch.exception = ex_no;
5256 		break;
5257 	case AC_VECTOR:
5258 		if (vmx_guest_inject_ac(vcpu)) {
5259 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5260 			return 1;
5261 		}
5262 
5263 		/*
5264 		 * Handle split lock. Depending on detection mode this will
5265 		 * either warn and disable split lock detection for this
5266 		 * task or force SIGBUS on it.
5267 		 */
5268 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5269 			return 1;
5270 		fallthrough;
5271 	default:
5272 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5273 		kvm_run->ex.exception = ex_no;
5274 		kvm_run->ex.error_code = error_code;
5275 		break;
5276 	}
5277 	return 0;
5278 }
5279 
handle_external_interrupt(struct kvm_vcpu * vcpu)5280 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5281 {
5282 	++vcpu->stat.irq_exits;
5283 	return 1;
5284 }
5285 
handle_triple_fault(struct kvm_vcpu * vcpu)5286 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5287 {
5288 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5289 	vcpu->mmio_needed = 0;
5290 	return 0;
5291 }
5292 
handle_io(struct kvm_vcpu * vcpu)5293 static int handle_io(struct kvm_vcpu *vcpu)
5294 {
5295 	unsigned long exit_qualification;
5296 	int size, in, string;
5297 	unsigned port;
5298 
5299 	exit_qualification = vmx_get_exit_qual(vcpu);
5300 	string = (exit_qualification & 16) != 0;
5301 
5302 	++vcpu->stat.io_exits;
5303 
5304 	if (string)
5305 		return kvm_emulate_instruction(vcpu, 0);
5306 
5307 	port = exit_qualification >> 16;
5308 	size = (exit_qualification & 7) + 1;
5309 	in = (exit_qualification & 8) != 0;
5310 
5311 	return kvm_fast_pio(vcpu, size, port, in);
5312 }
5313 
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5314 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5315 {
5316 	/*
5317 	 * Patch in the VMCALL instruction:
5318 	 */
5319 	hypercall[0] = 0x0f;
5320 	hypercall[1] = 0x01;
5321 	hypercall[2] = 0xc1;
5322 }
5323 
5324 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5325 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5326 {
5327 	if (is_guest_mode(vcpu)) {
5328 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5329 		unsigned long orig_val = val;
5330 
5331 		/*
5332 		 * We get here when L2 changed cr0 in a way that did not change
5333 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5334 		 * but did change L0 shadowed bits. So we first calculate the
5335 		 * effective cr0 value that L1 would like to write into the
5336 		 * hardware. It consists of the L2-owned bits from the new
5337 		 * value combined with the L1-owned bits from L1's guest_cr0.
5338 		 */
5339 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5340 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5341 
5342 		if (kvm_set_cr0(vcpu, val))
5343 			return 1;
5344 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5345 		return 0;
5346 	} else {
5347 		return kvm_set_cr0(vcpu, val);
5348 	}
5349 }
5350 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5351 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5352 {
5353 	if (is_guest_mode(vcpu)) {
5354 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5355 		unsigned long orig_val = val;
5356 
5357 		/* analogously to handle_set_cr0 */
5358 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5359 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5360 		if (kvm_set_cr4(vcpu, val))
5361 			return 1;
5362 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5363 		return 0;
5364 	} else
5365 		return kvm_set_cr4(vcpu, val);
5366 }
5367 
handle_desc(struct kvm_vcpu * vcpu)5368 static int handle_desc(struct kvm_vcpu *vcpu)
5369 {
5370 	/*
5371 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5372 	 * and other code needs to be updated if UMIP can be guest owned.
5373 	 */
5374 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5375 
5376 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5377 	return kvm_emulate_instruction(vcpu, 0);
5378 }
5379 
handle_cr(struct kvm_vcpu * vcpu)5380 static int handle_cr(struct kvm_vcpu *vcpu)
5381 {
5382 	unsigned long exit_qualification, val;
5383 	int cr;
5384 	int reg;
5385 	int err;
5386 	int ret;
5387 
5388 	exit_qualification = vmx_get_exit_qual(vcpu);
5389 	cr = exit_qualification & 15;
5390 	reg = (exit_qualification >> 8) & 15;
5391 	switch ((exit_qualification >> 4) & 3) {
5392 	case 0: /* mov to cr */
5393 		val = kvm_register_read(vcpu, reg);
5394 		trace_kvm_cr_write(cr, val);
5395 		switch (cr) {
5396 		case 0:
5397 			err = handle_set_cr0(vcpu, val);
5398 			return kvm_complete_insn_gp(vcpu, err);
5399 		case 3:
5400 			WARN_ON_ONCE(enable_unrestricted_guest);
5401 
5402 			err = kvm_set_cr3(vcpu, val);
5403 			return kvm_complete_insn_gp(vcpu, err);
5404 		case 4:
5405 			err = handle_set_cr4(vcpu, val);
5406 			return kvm_complete_insn_gp(vcpu, err);
5407 		case 8: {
5408 				u8 cr8_prev = kvm_get_cr8(vcpu);
5409 				u8 cr8 = (u8)val;
5410 				err = kvm_set_cr8(vcpu, cr8);
5411 				ret = kvm_complete_insn_gp(vcpu, err);
5412 				if (lapic_in_kernel(vcpu))
5413 					return ret;
5414 				if (cr8_prev <= cr8)
5415 					return ret;
5416 				/*
5417 				 * TODO: we might be squashing a
5418 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5419 				 * KVM_EXIT_DEBUG here.
5420 				 */
5421 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5422 				return 0;
5423 			}
5424 		}
5425 		break;
5426 	case 2: /* clts */
5427 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5428 		return -EIO;
5429 	case 1: /*mov from cr*/
5430 		switch (cr) {
5431 		case 3:
5432 			WARN_ON_ONCE(enable_unrestricted_guest);
5433 
5434 			val = kvm_read_cr3(vcpu);
5435 			kvm_register_write(vcpu, reg, val);
5436 			trace_kvm_cr_read(cr, val);
5437 			return kvm_skip_emulated_instruction(vcpu);
5438 		case 8:
5439 			val = kvm_get_cr8(vcpu);
5440 			kvm_register_write(vcpu, reg, val);
5441 			trace_kvm_cr_read(cr, val);
5442 			return kvm_skip_emulated_instruction(vcpu);
5443 		}
5444 		break;
5445 	case 3: /* lmsw */
5446 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5447 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5448 		kvm_lmsw(vcpu, val);
5449 
5450 		return kvm_skip_emulated_instruction(vcpu);
5451 	default:
5452 		break;
5453 	}
5454 	vcpu->run->exit_reason = 0;
5455 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5456 	       (int)(exit_qualification >> 4) & 3, cr);
5457 	return 0;
5458 }
5459 
handle_dr(struct kvm_vcpu * vcpu)5460 static int handle_dr(struct kvm_vcpu *vcpu)
5461 {
5462 	unsigned long exit_qualification;
5463 	int dr, dr7, reg;
5464 	int err = 1;
5465 
5466 	exit_qualification = vmx_get_exit_qual(vcpu);
5467 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5468 
5469 	/* First, if DR does not exist, trigger UD */
5470 	if (!kvm_require_dr(vcpu, dr))
5471 		return 1;
5472 
5473 	if (vmx_get_cpl(vcpu) > 0)
5474 		goto out;
5475 
5476 	dr7 = vmcs_readl(GUEST_DR7);
5477 	if (dr7 & DR7_GD) {
5478 		/*
5479 		 * As the vm-exit takes precedence over the debug trap, we
5480 		 * need to emulate the latter, either for the host or the
5481 		 * guest debugging itself.
5482 		 */
5483 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5484 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5485 			vcpu->run->debug.arch.dr7 = dr7;
5486 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5487 			vcpu->run->debug.arch.exception = DB_VECTOR;
5488 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5489 			return 0;
5490 		} else {
5491 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5492 			return 1;
5493 		}
5494 	}
5495 
5496 	if (vcpu->guest_debug == 0) {
5497 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5498 
5499 		/*
5500 		 * No more DR vmexits; force a reload of the debug registers
5501 		 * and reenter on this instruction.  The next vmexit will
5502 		 * retrieve the full state of the debug registers.
5503 		 */
5504 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5505 		return 1;
5506 	}
5507 
5508 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5509 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5510 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5511 		err = 0;
5512 	} else {
5513 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5514 	}
5515 
5516 out:
5517 	return kvm_complete_insn_gp(vcpu, err);
5518 }
5519 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5520 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5521 {
5522 	get_debugreg(vcpu->arch.db[0], 0);
5523 	get_debugreg(vcpu->arch.db[1], 1);
5524 	get_debugreg(vcpu->arch.db[2], 2);
5525 	get_debugreg(vcpu->arch.db[3], 3);
5526 	get_debugreg(vcpu->arch.dr6, 6);
5527 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5528 
5529 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5530 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5531 
5532 	/*
5533 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5534 	 * a stale dr6 from the guest.
5535 	 */
5536 	set_debugreg(DR6_RESERVED, 6);
5537 }
5538 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5539 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5540 {
5541 	vmcs_writel(GUEST_DR7, val);
5542 }
5543 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5544 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5545 {
5546 	kvm_apic_update_ppr(vcpu);
5547 	return 1;
5548 }
5549 
handle_interrupt_window(struct kvm_vcpu * vcpu)5550 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5551 {
5552 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5553 
5554 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5555 
5556 	++vcpu->stat.irq_window_exits;
5557 	return 1;
5558 }
5559 
handle_invlpg(struct kvm_vcpu * vcpu)5560 static int handle_invlpg(struct kvm_vcpu *vcpu)
5561 {
5562 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5563 
5564 	kvm_mmu_invlpg(vcpu, exit_qualification);
5565 	return kvm_skip_emulated_instruction(vcpu);
5566 }
5567 
handle_apic_access(struct kvm_vcpu * vcpu)5568 static int handle_apic_access(struct kvm_vcpu *vcpu)
5569 {
5570 	if (likely(fasteoi)) {
5571 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5572 		int access_type, offset;
5573 
5574 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5575 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5576 		/*
5577 		 * Sane guest uses MOV to write EOI, with written value
5578 		 * not cared. So make a short-circuit here by avoiding
5579 		 * heavy instruction emulation.
5580 		 */
5581 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5582 		    (offset == APIC_EOI)) {
5583 			kvm_lapic_set_eoi(vcpu);
5584 			return kvm_skip_emulated_instruction(vcpu);
5585 		}
5586 	}
5587 	return kvm_emulate_instruction(vcpu, 0);
5588 }
5589 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5590 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5591 {
5592 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5593 	int vector = exit_qualification & 0xff;
5594 
5595 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5596 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5597 	return 1;
5598 }
5599 
handle_apic_write(struct kvm_vcpu * vcpu)5600 static int handle_apic_write(struct kvm_vcpu *vcpu)
5601 {
5602 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5603 
5604 	/*
5605 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5606 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5607 	 * for the access.  I.e. the correct value has already been  written to
5608 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5609 	 * retrieve the register value and emulate the access.
5610 	 */
5611 	u32 offset = exit_qualification & 0xff0;
5612 
5613 	kvm_apic_write_nodecode(vcpu, offset);
5614 	return 1;
5615 }
5616 
handle_task_switch(struct kvm_vcpu * vcpu)5617 static int handle_task_switch(struct kvm_vcpu *vcpu)
5618 {
5619 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5620 	unsigned long exit_qualification;
5621 	bool has_error_code = false;
5622 	u32 error_code = 0;
5623 	u16 tss_selector;
5624 	int reason, type, idt_v, idt_index;
5625 
5626 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5627 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5628 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5629 
5630 	exit_qualification = vmx_get_exit_qual(vcpu);
5631 
5632 	reason = (u32)exit_qualification >> 30;
5633 	if (reason == TASK_SWITCH_GATE && idt_v) {
5634 		switch (type) {
5635 		case INTR_TYPE_NMI_INTR:
5636 			vcpu->arch.nmi_injected = false;
5637 			vmx_set_nmi_mask(vcpu, true);
5638 			break;
5639 		case INTR_TYPE_EXT_INTR:
5640 		case INTR_TYPE_SOFT_INTR:
5641 			kvm_clear_interrupt_queue(vcpu);
5642 			break;
5643 		case INTR_TYPE_HARD_EXCEPTION:
5644 			if (vmx->idt_vectoring_info &
5645 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5646 				has_error_code = true;
5647 				error_code =
5648 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5649 			}
5650 			fallthrough;
5651 		case INTR_TYPE_SOFT_EXCEPTION:
5652 			kvm_clear_exception_queue(vcpu);
5653 			break;
5654 		default:
5655 			break;
5656 		}
5657 	}
5658 	tss_selector = exit_qualification;
5659 
5660 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5661 		       type != INTR_TYPE_EXT_INTR &&
5662 		       type != INTR_TYPE_NMI_INTR))
5663 		WARN_ON(!skip_emulated_instruction(vcpu));
5664 
5665 	/*
5666 	 * TODO: What about debug traps on tss switch?
5667 	 *       Are we supposed to inject them and update dr6?
5668 	 */
5669 	return kvm_task_switch(vcpu, tss_selector,
5670 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5671 			       reason, has_error_code, error_code);
5672 }
5673 
handle_ept_violation(struct kvm_vcpu * vcpu)5674 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5675 {
5676 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5677 	gpa_t gpa;
5678 
5679 	/*
5680 	 * EPT violation happened while executing iret from NMI,
5681 	 * "blocked by NMI" bit has to be set before next VM entry.
5682 	 * There are errata that may cause this bit to not be set:
5683 	 * AAK134, BY25.
5684 	 */
5685 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5686 			enable_vnmi &&
5687 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5688 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5689 
5690 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5691 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5692 
5693 	/*
5694 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5695 	 * a guest page fault.  We have to emulate the instruction here, because
5696 	 * if the illegal address is that of a paging structure, then
5697 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5698 	 * would also use advanced VM-exit information for EPT violations to
5699 	 * reconstruct the page fault error code.
5700 	 */
5701 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5702 		return kvm_emulate_instruction(vcpu, 0);
5703 
5704 	return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5705 }
5706 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5707 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5708 {
5709 	gpa_t gpa;
5710 
5711 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5712 		return 1;
5713 
5714 	/*
5715 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5716 	 * nGPA here instead of the required GPA.
5717 	 */
5718 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5719 	if (!is_guest_mode(vcpu) &&
5720 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5721 		trace_kvm_fast_mmio(gpa);
5722 		return kvm_skip_emulated_instruction(vcpu);
5723 	}
5724 
5725 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5726 }
5727 
handle_nmi_window(struct kvm_vcpu * vcpu)5728 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5729 {
5730 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5731 		return -EIO;
5732 
5733 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5734 	++vcpu->stat.nmi_window_exits;
5735 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5736 
5737 	return 1;
5738 }
5739 
5740 /*
5741  * Returns true if emulation is required (due to the vCPU having invalid state
5742  * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5743  * current vCPU state.
5744  */
vmx_unhandleable_emulation_required(struct kvm_vcpu * vcpu)5745 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5746 {
5747 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5748 
5749 	if (!vmx->vt.emulation_required)
5750 		return false;
5751 
5752 	/*
5753 	 * It is architecturally impossible for emulation to be required when a
5754 	 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5755 	 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5756 	 * should synthesize VM-Fail instead emulation L2 code.  This path is
5757 	 * only reachable if userspace modifies L2 guest state after KVM has
5758 	 * performed the nested VM-Enter consistency checks.
5759 	 */
5760 	if (vmx->nested.nested_run_pending)
5761 		return true;
5762 
5763 	/*
5764 	 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5765 	 * If emulation is required, KVM can't perform a successful VM-Enter to
5766 	 * inject the exception.
5767 	 */
5768 	return !vmx->rmode.vm86_active &&
5769 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5770 }
5771 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5772 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5773 {
5774 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5775 	bool intr_window_requested;
5776 	unsigned count = 130;
5777 
5778 	intr_window_requested = exec_controls_get(vmx) &
5779 				CPU_BASED_INTR_WINDOW_EXITING;
5780 
5781 	while (vmx->vt.emulation_required && count-- != 0) {
5782 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5783 			return handle_interrupt_window(&vmx->vcpu);
5784 
5785 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5786 			return 1;
5787 
5788 		if (!kvm_emulate_instruction(vcpu, 0))
5789 			return 0;
5790 
5791 		if (vmx_unhandleable_emulation_required(vcpu)) {
5792 			kvm_prepare_emulation_failure_exit(vcpu);
5793 			return 0;
5794 		}
5795 
5796 		if (vcpu->arch.halt_request) {
5797 			vcpu->arch.halt_request = 0;
5798 			return kvm_emulate_halt_noskip(vcpu);
5799 		}
5800 
5801 		/*
5802 		 * Note, return 1 and not 0, vcpu_run() will invoke
5803 		 * xfer_to_guest_mode() which will create a proper return
5804 		 * code.
5805 		 */
5806 		if (__xfer_to_guest_mode_work_pending())
5807 			return 1;
5808 	}
5809 
5810 	return 1;
5811 }
5812 
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5813 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5814 {
5815 	if (vmx_unhandleable_emulation_required(vcpu)) {
5816 		kvm_prepare_emulation_failure_exit(vcpu);
5817 		return 0;
5818 	}
5819 
5820 	return 1;
5821 }
5822 
5823 /*
5824  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5825  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5826  */
handle_pause(struct kvm_vcpu * vcpu)5827 static int handle_pause(struct kvm_vcpu *vcpu)
5828 {
5829 	if (!kvm_pause_in_guest(vcpu->kvm))
5830 		grow_ple_window(vcpu);
5831 
5832 	/*
5833 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5834 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5835 	 * never set PAUSE_EXITING and just set PLE if supported,
5836 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5837 	 */
5838 	kvm_vcpu_on_spin(vcpu, true);
5839 	return kvm_skip_emulated_instruction(vcpu);
5840 }
5841 
handle_monitor_trap(struct kvm_vcpu * vcpu)5842 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5843 {
5844 	return 1;
5845 }
5846 
handle_invpcid(struct kvm_vcpu * vcpu)5847 static int handle_invpcid(struct kvm_vcpu *vcpu)
5848 {
5849 	u32 vmx_instruction_info;
5850 	unsigned long type;
5851 	gva_t gva;
5852 	struct {
5853 		u64 pcid;
5854 		u64 gla;
5855 	} operand;
5856 	int gpr_index;
5857 
5858 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5859 		kvm_queue_exception(vcpu, UD_VECTOR);
5860 		return 1;
5861 	}
5862 
5863 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5864 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5865 	type = kvm_register_read(vcpu, gpr_index);
5866 
5867 	/* According to the Intel instruction reference, the memory operand
5868 	 * is read even if it isn't needed (e.g., for type==all)
5869 	 */
5870 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5871 				vmx_instruction_info, false,
5872 				sizeof(operand), &gva))
5873 		return 1;
5874 
5875 	return kvm_handle_invpcid(vcpu, type, gva);
5876 }
5877 
handle_pml_full(struct kvm_vcpu * vcpu)5878 static int handle_pml_full(struct kvm_vcpu *vcpu)
5879 {
5880 	unsigned long exit_qualification;
5881 
5882 	trace_kvm_pml_full(vcpu->vcpu_id);
5883 
5884 	exit_qualification = vmx_get_exit_qual(vcpu);
5885 
5886 	/*
5887 	 * PML buffer FULL happened while executing iret from NMI,
5888 	 * "blocked by NMI" bit has to be set before next VM entry.
5889 	 */
5890 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5891 			enable_vnmi &&
5892 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5893 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5894 				GUEST_INTR_STATE_NMI);
5895 
5896 	/*
5897 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5898 	 * here.., and there's no userspace involvement needed for PML.
5899 	 */
5900 	return 1;
5901 }
5902 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)5903 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5904 						   bool force_immediate_exit)
5905 {
5906 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5907 
5908 	/*
5909 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5910 	 * due to the timer expiring while it was "soft" disabled, just eat the
5911 	 * exit and re-enter the guest.
5912 	 */
5913 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5914 		return EXIT_FASTPATH_REENTER_GUEST;
5915 
5916 	/*
5917 	 * If the timer expired because KVM used it to force an immediate exit,
5918 	 * then mission accomplished.
5919 	 */
5920 	if (force_immediate_exit)
5921 		return EXIT_FASTPATH_EXIT_HANDLED;
5922 
5923 	/*
5924 	 * If L2 is active, go down the slow path as emulating the guest timer
5925 	 * expiration likely requires synthesizing a nested VM-Exit.
5926 	 */
5927 	if (is_guest_mode(vcpu))
5928 		return EXIT_FASTPATH_NONE;
5929 
5930 	kvm_lapic_expired_hv_timer(vcpu);
5931 	return EXIT_FASTPATH_REENTER_GUEST;
5932 }
5933 
handle_preemption_timer(struct kvm_vcpu * vcpu)5934 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5935 {
5936 	/*
5937 	 * This non-fastpath handler is reached if and only if the preemption
5938 	 * timer was being used to emulate a guest timer while L2 is active.
5939 	 * All other scenarios are supposed to be handled in the fastpath.
5940 	 */
5941 	WARN_ON_ONCE(!is_guest_mode(vcpu));
5942 	kvm_lapic_expired_hv_timer(vcpu);
5943 	return 1;
5944 }
5945 
5946 /*
5947  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5948  * are overwritten by nested_vmx_hardware_setup() when nested=1.
5949  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5950 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5951 {
5952 	kvm_queue_exception(vcpu, UD_VECTOR);
5953 	return 1;
5954 }
5955 
5956 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)5957 static int handle_encls(struct kvm_vcpu *vcpu)
5958 {
5959 	/*
5960 	 * SGX virtualization is disabled.  There is no software enable bit for
5961 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5962 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5963 	 */
5964 	kvm_queue_exception(vcpu, UD_VECTOR);
5965 	return 1;
5966 }
5967 #endif /* CONFIG_X86_SGX_KVM */
5968 
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)5969 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5970 {
5971 	/*
5972 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5973 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5974 	 * vmx_handle_exit().
5975 	 */
5976 	to_vt(vcpu)->exit_reason.bus_lock_detected = true;
5977 	return 1;
5978 }
5979 
handle_notify(struct kvm_vcpu * vcpu)5980 static int handle_notify(struct kvm_vcpu *vcpu)
5981 {
5982 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5983 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5984 
5985 	++vcpu->stat.notify_window_exits;
5986 
5987 	/*
5988 	 * Notify VM exit happened while executing iret from NMI,
5989 	 * "blocked by NMI" bit has to be set before next VM entry.
5990 	 */
5991 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5992 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5993 			      GUEST_INTR_STATE_NMI);
5994 
5995 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5996 	    context_invalid) {
5997 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5998 		vcpu->run->notify.flags = context_invalid ?
5999 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6000 		return 0;
6001 	}
6002 
6003 	return 1;
6004 }
6005 
6006 /*
6007  * The exit handlers return 1 if the exit was handled fully and guest execution
6008  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6009  * to be done to userspace and return 0.
6010  */
6011 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6012 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6013 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6014 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6015 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6016 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6017 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6018 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6019 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6020 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6021 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6022 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6023 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6024 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6025 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6026 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6027 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6028 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6029 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6030 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6031 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6032 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6033 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6034 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6035 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6036 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6037 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6038 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6039 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6040 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6041 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6042 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6043 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6044 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6045 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6046 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6047 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6048 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6049 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6050 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6051 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6052 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6053 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6054 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6055 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6056 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6057 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6058 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6059 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6060 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6061 	[EXIT_REASON_ENCLS]		      = handle_encls,
6062 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6063 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6064 };
6065 
6066 static const int kvm_vmx_max_exit_handlers =
6067 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6068 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6069 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6070 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6071 {
6072 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6073 
6074 	*reason = vmx->vt.exit_reason.full;
6075 	*info1 = vmx_get_exit_qual(vcpu);
6076 	if (!(vmx->vt.exit_reason.failed_vmentry)) {
6077 		*info2 = vmx->idt_vectoring_info;
6078 		*intr_info = vmx_get_intr_info(vcpu);
6079 		if (is_exception_with_error_code(*intr_info))
6080 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6081 		else
6082 			*error_code = 0;
6083 	} else {
6084 		*info2 = 0;
6085 		*intr_info = 0;
6086 		*error_code = 0;
6087 	}
6088 }
6089 
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6090 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6091 {
6092 	*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6093 	if (is_exception_with_error_code(*intr_info))
6094 		*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6095 	else
6096 		*error_code = 0;
6097 }
6098 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6099 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6100 {
6101 	if (vmx->pml_pg) {
6102 		__free_page(vmx->pml_pg);
6103 		vmx->pml_pg = NULL;
6104 	}
6105 }
6106 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6107 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6108 {
6109 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6110 	u16 pml_idx, pml_tail_index;
6111 	u64 *pml_buf;
6112 	int i;
6113 
6114 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6115 
6116 	/* Do nothing if PML buffer is empty */
6117 	if (pml_idx == PML_HEAD_INDEX)
6118 		return;
6119 	/*
6120 	 * PML index always points to the next available PML buffer entity
6121 	 * unless PML log has just overflowed.
6122 	 */
6123 	pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6124 
6125 	/*
6126 	 * PML log is written backwards: the CPU first writes the entry 511
6127 	 * then the entry 510, and so on.
6128 	 *
6129 	 * Read the entries in the same order they were written, to ensure that
6130 	 * the dirty ring is filled in the same order the CPU wrote them.
6131 	 */
6132 	pml_buf = page_address(vmx->pml_pg);
6133 
6134 	for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6135 		u64 gpa;
6136 
6137 		gpa = pml_buf[i];
6138 		WARN_ON(gpa & (PAGE_SIZE - 1));
6139 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6140 	}
6141 
6142 	/* reset PML index */
6143 	vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6144 }
6145 
vmx_dump_sel(char * name,uint32_t sel)6146 static void vmx_dump_sel(char *name, uint32_t sel)
6147 {
6148 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6149 	       name, vmcs_read16(sel),
6150 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6151 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6152 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6153 }
6154 
vmx_dump_dtsel(char * name,uint32_t limit)6155 static void vmx_dump_dtsel(char *name, uint32_t limit)
6156 {
6157 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6158 	       name, vmcs_read32(limit),
6159 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6160 }
6161 
vmx_dump_msrs(char * name,struct vmx_msrs * m)6162 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6163 {
6164 	unsigned int i;
6165 	struct vmx_msr_entry *e;
6166 
6167 	pr_err("MSR %s:\n", name);
6168 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6169 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6170 }
6171 
dump_vmcs(struct kvm_vcpu * vcpu)6172 void dump_vmcs(struct kvm_vcpu *vcpu)
6173 {
6174 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6175 	u32 vmentry_ctl, vmexit_ctl;
6176 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6177 	u64 tertiary_exec_control;
6178 	unsigned long cr4;
6179 	int efer_slot;
6180 
6181 	if (!dump_invalid_vmcs) {
6182 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6183 		return;
6184 	}
6185 
6186 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6187 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6188 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6189 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6190 	cr4 = vmcs_readl(GUEST_CR4);
6191 
6192 	if (cpu_has_secondary_exec_ctrls())
6193 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6194 	else
6195 		secondary_exec_control = 0;
6196 
6197 	if (cpu_has_tertiary_exec_ctrls())
6198 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6199 	else
6200 		tertiary_exec_control = 0;
6201 
6202 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6203 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6204 	pr_err("*** Guest State ***\n");
6205 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6206 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6207 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6208 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6209 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6210 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6211 	if (cpu_has_vmx_ept()) {
6212 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6213 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6214 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6215 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6216 	}
6217 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6218 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6219 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6220 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6221 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6222 	       vmcs_readl(GUEST_SYSENTER_ESP),
6223 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6224 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6225 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6226 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6227 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6228 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6229 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6230 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6231 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6232 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6233 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6234 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6235 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6236 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6237 	else if (efer_slot >= 0)
6238 		pr_err("EFER= 0x%016llx (autoload)\n",
6239 		       vmx->msr_autoload.guest.val[efer_slot].value);
6240 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6241 		pr_err("EFER= 0x%016llx (effective)\n",
6242 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6243 	else
6244 		pr_err("EFER= 0x%016llx (effective)\n",
6245 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6246 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6247 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6248 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6249 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6250 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6251 	if (cpu_has_load_perf_global_ctrl() &&
6252 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6253 		pr_err("PerfGlobCtl = 0x%016llx\n",
6254 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6255 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6256 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6257 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6258 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6259 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6260 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6261 		pr_err("InterruptStatus = %04x\n",
6262 		       vmcs_read16(GUEST_INTR_STATUS));
6263 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6264 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6265 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6266 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6267 
6268 	pr_err("*** Host State ***\n");
6269 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6270 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6271 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6272 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6273 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6274 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6275 	       vmcs_read16(HOST_TR_SELECTOR));
6276 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6277 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6278 	       vmcs_readl(HOST_TR_BASE));
6279 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6280 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6281 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6282 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6283 	       vmcs_readl(HOST_CR4));
6284 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6285 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6286 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6287 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6288 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6289 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6290 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6291 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6292 	if (cpu_has_load_perf_global_ctrl() &&
6293 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6294 		pr_err("PerfGlobCtl = 0x%016llx\n",
6295 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6296 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6297 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6298 
6299 	pr_err("*** Control State ***\n");
6300 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6301 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6302 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6303 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6304 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6305 	       vmcs_read32(EXCEPTION_BITMAP),
6306 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6307 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6308 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6309 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6310 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6311 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6312 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6313 	       vmcs_read32(VM_EXIT_INTR_INFO),
6314 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6315 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6316 	pr_err("        reason=%08x qualification=%016lx\n",
6317 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6318 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6319 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6320 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6321 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6322 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6323 		pr_err("TSC Multiplier = 0x%016llx\n",
6324 		       vmcs_read64(TSC_MULTIPLIER));
6325 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6326 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6327 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6328 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6329 		}
6330 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6331 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6332 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6333 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6334 	}
6335 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6336 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6337 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6338 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6339 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6340 		pr_err("PLE Gap=%08x Window=%08x\n",
6341 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6342 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6343 		pr_err("Virtual processor ID = 0x%04x\n",
6344 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6345 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6346 		struct vmx_ve_information *ve_info = vmx->ve_info;
6347 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6348 
6349 		/*
6350 		 * If KVM is dumping the VMCS, then something has gone wrong
6351 		 * already.  Derefencing an address from the VMCS, which could
6352 		 * very well be corrupted, is a terrible idea.  The virtual
6353 		 * address is known so use it.
6354 		 */
6355 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6356 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6357 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6358 		       ve_info->exit_reason, ve_info->delivery,
6359 		       ve_info->exit_qualification,
6360 		       ve_info->guest_linear_address,
6361 		       ve_info->guest_physical_address, ve_info->eptp_index);
6362 	}
6363 }
6364 
6365 /*
6366  * The guest has exited.  See if we can fix it or if we need userspace
6367  * assistance.
6368  */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6369 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6370 {
6371 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6372 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6373 	u32 vectoring_info = vmx->idt_vectoring_info;
6374 	u16 exit_handler_index;
6375 
6376 	/*
6377 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6378 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6379 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6380 	 * mode as if vcpus is in root mode, the PML buffer must has been
6381 	 * flushed already.  Note, PML is never enabled in hardware while
6382 	 * running L2.
6383 	 */
6384 	if (enable_pml && !is_guest_mode(vcpu))
6385 		vmx_flush_pml_buffer(vcpu);
6386 
6387 	/*
6388 	 * KVM should never reach this point with a pending nested VM-Enter.
6389 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6390 	 * invalid guest state should never happen as that means KVM knowingly
6391 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6392 	 */
6393 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6394 		return -EIO;
6395 
6396 	if (is_guest_mode(vcpu)) {
6397 		/*
6398 		 * PML is never enabled when running L2, bail immediately if a
6399 		 * PML full exit occurs as something is horribly wrong.
6400 		 */
6401 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6402 			goto unexpected_vmexit;
6403 
6404 		/*
6405 		 * The host physical addresses of some pages of guest memory
6406 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6407 		 * Page). The CPU may write to these pages via their host
6408 		 * physical address while L2 is running, bypassing any
6409 		 * address-translation-based dirty tracking (e.g. EPT write
6410 		 * protection).
6411 		 *
6412 		 * Mark them dirty on every exit from L2 to prevent them from
6413 		 * getting out of sync with dirty tracking.
6414 		 */
6415 		nested_mark_vmcs12_pages_dirty(vcpu);
6416 
6417 		/*
6418 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6419 		 * operation, nested VM-Enter rejects any attempt to enter L2
6420 		 * with invalid state.  However, those checks are skipped if
6421 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6422 		 * L2 state is invalid, it means either L1 modified SMRAM state
6423 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6424 		 * doing so is architecturally allowed in the RSM case, and is
6425 		 * the least awful solution for the userspace case without
6426 		 * risking false positives.
6427 		 */
6428 		if (vmx->vt.emulation_required) {
6429 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6430 			return 1;
6431 		}
6432 
6433 		if (nested_vmx_reflect_vmexit(vcpu))
6434 			return 1;
6435 	}
6436 
6437 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6438 	if (vmx->vt.emulation_required)
6439 		return handle_invalid_guest_state(vcpu);
6440 
6441 	if (exit_reason.failed_vmentry) {
6442 		dump_vmcs(vcpu);
6443 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6444 		vcpu->run->fail_entry.hardware_entry_failure_reason
6445 			= exit_reason.full;
6446 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6447 		return 0;
6448 	}
6449 
6450 	if (unlikely(vmx->fail)) {
6451 		dump_vmcs(vcpu);
6452 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6453 		vcpu->run->fail_entry.hardware_entry_failure_reason
6454 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6455 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6456 		return 0;
6457 	}
6458 
6459 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6460 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6461 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6462 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6463 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6464 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6465 	     exit_reason.basic != EXIT_REASON_NOTIFY &&
6466 	     exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6467 		kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6468 		return 0;
6469 	}
6470 
6471 	if (unlikely(!enable_vnmi &&
6472 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6473 		if (!vmx_interrupt_blocked(vcpu)) {
6474 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6475 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6476 			   vcpu->arch.nmi_pending) {
6477 			/*
6478 			 * This CPU don't support us in finding the end of an
6479 			 * NMI-blocked window if the guest runs with IRQs
6480 			 * disabled. So we pull the trigger after 1 s of
6481 			 * futile waiting, but inform the user about this.
6482 			 */
6483 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6484 			       "state on VCPU %d after 1 s timeout\n",
6485 			       __func__, vcpu->vcpu_id);
6486 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6487 		}
6488 	}
6489 
6490 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6491 		return 1;
6492 
6493 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6494 		goto unexpected_vmexit;
6495 #ifdef CONFIG_MITIGATION_RETPOLINE
6496 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6497 		return kvm_emulate_wrmsr(vcpu);
6498 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6499 		return handle_preemption_timer(vcpu);
6500 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6501 		return handle_interrupt_window(vcpu);
6502 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6503 		return handle_external_interrupt(vcpu);
6504 	else if (exit_reason.basic == EXIT_REASON_HLT)
6505 		return kvm_emulate_halt(vcpu);
6506 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6507 		return handle_ept_misconfig(vcpu);
6508 #endif
6509 
6510 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6511 						kvm_vmx_max_exit_handlers);
6512 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6513 		goto unexpected_vmexit;
6514 
6515 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6516 
6517 unexpected_vmexit:
6518 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6519 		    exit_reason.full);
6520 	dump_vmcs(vcpu);
6521 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6522 	vcpu->run->internal.suberror =
6523 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6524 	vcpu->run->internal.ndata = 2;
6525 	vcpu->run->internal.data[0] = exit_reason.full;
6526 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6527 	return 0;
6528 }
6529 
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6530 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6531 {
6532 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6533 
6534 	/*
6535 	 * Exit to user space when bus lock detected to inform that there is
6536 	 * a bus lock in guest.
6537 	 */
6538 	if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6539 		if (ret > 0)
6540 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6541 
6542 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6543 		return 0;
6544 	}
6545 	return ret;
6546 }
6547 
6548 /*
6549  * Software based L1D cache flush which is used when microcode providing
6550  * the cache control MSR is not loaded.
6551  *
6552  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6553  * flush it is required to read in 64 KiB because the replacement algorithm
6554  * is not exactly LRU. This could be sized at runtime via topology
6555  * information but as all relevant affected CPUs have 32KiB L1D cache size
6556  * there is no point in doing so.
6557  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6558 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6559 {
6560 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6561 
6562 	/*
6563 	 * This code is only executed when the flush mode is 'cond' or
6564 	 * 'always'
6565 	 */
6566 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6567 		bool flush_l1d;
6568 
6569 		/*
6570 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6571 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6572 		 * exits to userspace, or if KVM reaches one of the unsafe
6573 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6574 		 */
6575 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6576 		vcpu->arch.l1tf_flush_l1d = false;
6577 
6578 		/*
6579 		 * Clear the per-cpu flush bit, it gets set again from
6580 		 * the interrupt handlers.
6581 		 */
6582 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6583 		kvm_clear_cpu_l1tf_flush_l1d();
6584 
6585 		if (!flush_l1d)
6586 			return;
6587 	}
6588 
6589 	vcpu->stat.l1d_flush++;
6590 
6591 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6592 		native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6593 		return;
6594 	}
6595 
6596 	asm volatile(
6597 		/* First ensure the pages are in the TLB */
6598 		"xorl	%%eax, %%eax\n"
6599 		".Lpopulate_tlb:\n\t"
6600 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6601 		"addl	$4096, %%eax\n\t"
6602 		"cmpl	%%eax, %[size]\n\t"
6603 		"jne	.Lpopulate_tlb\n\t"
6604 		"xorl	%%eax, %%eax\n\t"
6605 		"cpuid\n\t"
6606 		/* Now fill the cache */
6607 		"xorl	%%eax, %%eax\n"
6608 		".Lfill_cache:\n"
6609 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6610 		"addl	$64, %%eax\n\t"
6611 		"cmpl	%%eax, %[size]\n\t"
6612 		"jne	.Lfill_cache\n\t"
6613 		"lfence\n"
6614 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6615 		    [size] "r" (size)
6616 		: "eax", "ebx", "ecx", "edx");
6617 }
6618 
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6619 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6620 {
6621 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6622 	int tpr_threshold;
6623 
6624 	if (is_guest_mode(vcpu) &&
6625 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6626 		return;
6627 
6628 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6629 	if (is_guest_mode(vcpu))
6630 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6631 	else
6632 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6633 }
6634 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6635 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6636 {
6637 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6638 	u32 sec_exec_control;
6639 
6640 	if (!lapic_in_kernel(vcpu))
6641 		return;
6642 
6643 	if (!flexpriority_enabled &&
6644 	    !cpu_has_vmx_virtualize_x2apic_mode())
6645 		return;
6646 
6647 	/* Postpone execution until vmcs01 is the current VMCS. */
6648 	if (is_guest_mode(vcpu)) {
6649 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6650 		return;
6651 	}
6652 
6653 	sec_exec_control = secondary_exec_controls_get(vmx);
6654 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6655 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6656 
6657 	switch (kvm_get_apic_mode(vcpu)) {
6658 	case LAPIC_MODE_INVALID:
6659 		WARN_ONCE(true, "Invalid local APIC state");
6660 		break;
6661 	case LAPIC_MODE_DISABLED:
6662 		break;
6663 	case LAPIC_MODE_XAPIC:
6664 		if (flexpriority_enabled) {
6665 			sec_exec_control |=
6666 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6667 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6668 
6669 			/*
6670 			 * Flush the TLB, reloading the APIC access page will
6671 			 * only do so if its physical address has changed, but
6672 			 * the guest may have inserted a non-APIC mapping into
6673 			 * the TLB while the APIC access page was disabled.
6674 			 */
6675 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6676 		}
6677 		break;
6678 	case LAPIC_MODE_X2APIC:
6679 		if (cpu_has_vmx_virtualize_x2apic_mode())
6680 			sec_exec_control |=
6681 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6682 		break;
6683 	}
6684 	secondary_exec_controls_set(vmx, sec_exec_control);
6685 
6686 	vmx_update_msr_bitmap_x2apic(vcpu);
6687 }
6688 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6689 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6690 {
6691 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6692 	struct kvm *kvm = vcpu->kvm;
6693 	struct kvm_memslots *slots = kvm_memslots(kvm);
6694 	struct kvm_memory_slot *slot;
6695 	struct page *refcounted_page;
6696 	unsigned long mmu_seq;
6697 	kvm_pfn_t pfn;
6698 	bool writable;
6699 
6700 	/* Defer reload until vmcs01 is the current VMCS. */
6701 	if (is_guest_mode(vcpu)) {
6702 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6703 		return;
6704 	}
6705 
6706 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6707 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6708 		return;
6709 
6710 	/*
6711 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6712 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6713 	 * be impossible for userspace to create a memslot for the APIC when
6714 	 * APICv is enabled, but paranoia won't hurt in this case.
6715 	 */
6716 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6717 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6718 		return;
6719 
6720 	/*
6721 	 * Ensure that the mmu_notifier sequence count is read before KVM
6722 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6723 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6724 	 * in kvm_mmu_invalidate_end().
6725 	 */
6726 	mmu_seq = kvm->mmu_invalidate_seq;
6727 	smp_rmb();
6728 
6729 	/*
6730 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6731 	 * controls the APIC-access page memslot, and only deletes the memslot
6732 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6733 	 */
6734 	pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6735 	if (is_error_noslot_pfn(pfn))
6736 		return;
6737 
6738 	read_lock(&vcpu->kvm->mmu_lock);
6739 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6740 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6741 	else
6742 		vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6743 
6744 	/*
6745 	 * Do not pin the APIC access page in memory so that it can be freely
6746 	 * migrated, the MMU notifier will call us again if it is migrated or
6747 	 * swapped out.  KVM backs the memslot with anonymous memory, the pfn
6748 	 * should always point at a refcounted page (if the pfn is valid).
6749 	 */
6750 	if (!WARN_ON_ONCE(!refcounted_page))
6751 		kvm_release_page_clean(refcounted_page);
6752 
6753 	/*
6754 	 * No need for a manual TLB flush at this point, KVM has already done a
6755 	 * flush if there were SPTEs pointing at the previous page.
6756 	 */
6757 	read_unlock(&vcpu->kvm->mmu_lock);
6758 }
6759 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6760 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6761 {
6762 	u16 status;
6763 	u8 old;
6764 
6765 	/*
6766 	 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6767 	 * is only relevant for if and only if Virtual Interrupt Delivery is
6768 	 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6769 	 * vAPIC, not L1's vAPIC.  KVM must update vmcs01 on the next nested
6770 	 * VM-Exit, otherwise L1 with run with a stale SVI.
6771 	 */
6772 	if (is_guest_mode(vcpu)) {
6773 		/*
6774 		 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6775 		 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6776 		 * Note, userspace can stuff state while L2 is active; assert
6777 		 * that VID is disabled if and only if the vCPU is in KVM_RUN
6778 		 * to avoid false positives if userspace is setting APIC state.
6779 		 */
6780 		WARN_ON_ONCE(vcpu->wants_to_run &&
6781 			     nested_cpu_has_vid(get_vmcs12(vcpu)));
6782 		to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6783 		return;
6784 	}
6785 
6786 	if (max_isr == -1)
6787 		max_isr = 0;
6788 
6789 	status = vmcs_read16(GUEST_INTR_STATUS);
6790 	old = status >> 8;
6791 	if (max_isr != old) {
6792 		status &= 0xff;
6793 		status |= max_isr << 8;
6794 		vmcs_write16(GUEST_INTR_STATUS, status);
6795 	}
6796 }
6797 
vmx_set_rvi(int vector)6798 static void vmx_set_rvi(int vector)
6799 {
6800 	u16 status;
6801 	u8 old;
6802 
6803 	if (vector == -1)
6804 		vector = 0;
6805 
6806 	status = vmcs_read16(GUEST_INTR_STATUS);
6807 	old = (u8)status & 0xff;
6808 	if ((u8)vector != old) {
6809 		status &= ~0xff;
6810 		status |= (u8)vector;
6811 		vmcs_write16(GUEST_INTR_STATUS, status);
6812 	}
6813 }
6814 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6815 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6816 {
6817 	struct vcpu_vt *vt = to_vt(vcpu);
6818 	int max_irr;
6819 	bool got_posted_interrupt;
6820 
6821 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6822 		return -EIO;
6823 
6824 	if (pi_test_on(&vt->pi_desc)) {
6825 		pi_clear_on(&vt->pi_desc);
6826 		/*
6827 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6828 		 * But on x86 this is just a compiler barrier anyway.
6829 		 */
6830 		smp_mb__after_atomic();
6831 		got_posted_interrupt =
6832 			kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6833 	} else {
6834 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6835 		got_posted_interrupt = false;
6836 	}
6837 
6838 	/*
6839 	 * Newly recognized interrupts are injected via either virtual interrupt
6840 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6841 	 * disabled in two cases:
6842 	 *
6843 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6844 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6845 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6846 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6847 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6848 	 *
6849 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6850 	 * attempt to post interrupts.  The posted interrupt vector will cause
6851 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6852 	 */
6853 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6854 		vmx_set_rvi(max_irr);
6855 	else if (got_posted_interrupt)
6856 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6857 
6858 	return max_irr;
6859 }
6860 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6861 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6862 {
6863 	if (!kvm_vcpu_apicv_active(vcpu))
6864 		return;
6865 
6866 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6867 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6868 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6869 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6870 }
6871 
6872 void vmx_do_interrupt_irqoff(unsigned long entry);
6873 void vmx_do_nmi_irqoff(void);
6874 
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6875 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6876 {
6877 	/*
6878 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6879 	 * MSR value is not clobbered by the host activity before the guest
6880 	 * has chance to consume it.
6881 	 *
6882 	 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6883 	 * interception may have been caused by L1 interception.  Per the SDM,
6884 	 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6885 	 *
6886 	 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6887 	 * unlike CR2 and DR6, the value is not a payload that is attached to
6888 	 * the #NM exception.
6889 	 */
6890 	if (is_xfd_nm_fault(vcpu))
6891 		rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6892 }
6893 
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6894 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6895 {
6896 	/* if exit due to PF check for async PF */
6897 	if (is_page_fault(intr_info))
6898 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6899 	/* if exit due to NM, handle before interrupts are enabled */
6900 	else if (is_nm_fault(intr_info))
6901 		handle_nm_fault_irqoff(vcpu);
6902 	/* Handle machine checks before interrupts are enabled */
6903 	else if (is_machine_check(intr_info))
6904 		kvm_machine_check();
6905 }
6906 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6907 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
6908 					     u32 intr_info)
6909 {
6910 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6911 
6912 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6913 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6914 		return;
6915 
6916 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6917 	if (cpu_feature_enabled(X86_FEATURE_FRED))
6918 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
6919 	else
6920 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
6921 	kvm_after_interrupt(vcpu);
6922 
6923 	vcpu->arch.at_instruction_boundary = true;
6924 }
6925 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6926 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6927 {
6928 	if (to_vt(vcpu)->emulation_required)
6929 		return;
6930 
6931 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6932 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
6933 	else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
6934 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
6935 }
6936 
6937 /*
6938  * The kvm parameter can be NULL (module initialization, or invocation before
6939  * VM creation). Be sure to check the kvm parameter before using it.
6940  */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)6941 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6942 {
6943 	switch (index) {
6944 	case MSR_IA32_SMBASE:
6945 		if (!IS_ENABLED(CONFIG_KVM_SMM))
6946 			return false;
6947 		/*
6948 		 * We cannot do SMM unless we can run the guest in big
6949 		 * real mode.
6950 		 */
6951 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6952 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
6953 		return nested;
6954 	case MSR_AMD64_VIRT_SPEC_CTRL:
6955 	case MSR_AMD64_TSC_RATIO:
6956 		/* This is AMD only.  */
6957 		return false;
6958 	default:
6959 		return true;
6960 	}
6961 }
6962 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6963 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6964 {
6965 	u32 exit_intr_info;
6966 	bool unblock_nmi;
6967 	u8 vector;
6968 	bool idtv_info_valid;
6969 
6970 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6971 
6972 	if (enable_vnmi) {
6973 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6974 			return;
6975 
6976 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6977 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6978 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6979 		/*
6980 		 * SDM 3: 27.7.1.2 (September 2008)
6981 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6982 		 * a guest IRET fault.
6983 		 * SDM 3: 23.2.2 (September 2008)
6984 		 * Bit 12 is undefined in any of the following cases:
6985 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6986 		 *   information field.
6987 		 *  If the VM exit is due to a double fault.
6988 		 */
6989 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6990 		    vector != DF_VECTOR && !idtv_info_valid)
6991 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6992 				      GUEST_INTR_STATE_NMI);
6993 		else
6994 			vmx->loaded_vmcs->nmi_known_unmasked =
6995 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6996 				  & GUEST_INTR_STATE_NMI);
6997 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6998 		vmx->loaded_vmcs->vnmi_blocked_time +=
6999 			ktime_to_ns(ktime_sub(ktime_get(),
7000 					      vmx->loaded_vmcs->entry_time));
7001 }
7002 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7003 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7004 				      u32 idt_vectoring_info,
7005 				      int instr_len_field,
7006 				      int error_code_field)
7007 {
7008 	u8 vector;
7009 	int type;
7010 	bool idtv_info_valid;
7011 
7012 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7013 
7014 	vcpu->arch.nmi_injected = false;
7015 	kvm_clear_exception_queue(vcpu);
7016 	kvm_clear_interrupt_queue(vcpu);
7017 
7018 	if (!idtv_info_valid)
7019 		return;
7020 
7021 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7022 
7023 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7024 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7025 
7026 	switch (type) {
7027 	case INTR_TYPE_NMI_INTR:
7028 		vcpu->arch.nmi_injected = true;
7029 		/*
7030 		 * SDM 3: 27.7.1.2 (September 2008)
7031 		 * Clear bit "block by NMI" before VM entry if a NMI
7032 		 * delivery faulted.
7033 		 */
7034 		vmx_set_nmi_mask(vcpu, false);
7035 		break;
7036 	case INTR_TYPE_SOFT_EXCEPTION:
7037 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7038 		fallthrough;
7039 	case INTR_TYPE_HARD_EXCEPTION: {
7040 		u32 error_code = 0;
7041 
7042 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7043 			error_code = vmcs_read32(error_code_field);
7044 
7045 		kvm_requeue_exception(vcpu, vector,
7046 				      idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7047 				      error_code);
7048 		break;
7049 	}
7050 	case INTR_TYPE_SOFT_INTR:
7051 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7052 		fallthrough;
7053 	case INTR_TYPE_EXT_INTR:
7054 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7055 		break;
7056 	default:
7057 		break;
7058 	}
7059 }
7060 
vmx_complete_interrupts(struct vcpu_vmx * vmx)7061 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7062 {
7063 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7064 				  VM_EXIT_INSTRUCTION_LEN,
7065 				  IDT_VECTORING_ERROR_CODE);
7066 }
7067 
vmx_cancel_injection(struct kvm_vcpu * vcpu)7068 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7069 {
7070 	__vmx_complete_interrupts(vcpu,
7071 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7072 				  VM_ENTRY_INSTRUCTION_LEN,
7073 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7074 
7075 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7076 }
7077 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7078 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7079 {
7080 	int i, nr_msrs;
7081 	struct perf_guest_switch_msr *msrs;
7082 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7083 
7084 	pmu->host_cross_mapped_mask = 0;
7085 	if (pmu->pebs_enable & pmu->global_ctrl)
7086 		intel_pmu_cross_mapped_check(pmu);
7087 
7088 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7089 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7090 	if (!msrs)
7091 		return;
7092 
7093 	for (i = 0; i < nr_msrs; i++)
7094 		if (msrs[i].host == msrs[i].guest)
7095 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7096 		else
7097 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7098 					msrs[i].host, false);
7099 }
7100 
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7101 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7102 {
7103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7104 	u64 tscl;
7105 	u32 delta_tsc;
7106 
7107 	if (force_immediate_exit) {
7108 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7109 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7110 	} else if (vmx->hv_deadline_tsc != -1) {
7111 		tscl = rdtsc();
7112 		if (vmx->hv_deadline_tsc > tscl)
7113 			/* set_hv_timer ensures the delta fits in 32-bits */
7114 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7115 				cpu_preemption_timer_multi);
7116 		else
7117 			delta_tsc = 0;
7118 
7119 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7120 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7121 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7122 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7123 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7124 	}
7125 }
7126 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7127 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7128 {
7129 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7130 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7131 		vmcs_writel(HOST_RSP, host_rsp);
7132 	}
7133 }
7134 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7135 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7136 					unsigned int flags)
7137 {
7138 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7139 
7140 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7141 		return;
7142 
7143 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7144 		vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7145 
7146 	/*
7147 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7148 	 *
7149 	 * For legacy IBRS, the IBRS bit always needs to be written after
7150 	 * transitioning from a less privileged predictor mode, regardless of
7151 	 * whether the guest/host values differ.
7152 	 */
7153 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7154 	    vmx->spec_ctrl != hostval)
7155 		native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7156 
7157 	barrier_nospec();
7158 }
7159 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7160 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7161 					     bool force_immediate_exit)
7162 {
7163 	/*
7164 	 * If L2 is active, some VMX preemption timer exits can be handled in
7165 	 * the fastpath even, all other exits must use the slow path.
7166 	 */
7167 	if (is_guest_mode(vcpu) &&
7168 	    vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7169 		return EXIT_FASTPATH_NONE;
7170 
7171 	switch (vmx_get_exit_reason(vcpu).basic) {
7172 	case EXIT_REASON_MSR_WRITE:
7173 		return handle_fastpath_set_msr_irqoff(vcpu);
7174 	case EXIT_REASON_PREEMPTION_TIMER:
7175 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7176 	case EXIT_REASON_HLT:
7177 		return handle_fastpath_hlt(vcpu);
7178 	default:
7179 		return EXIT_FASTPATH_NONE;
7180 	}
7181 }
7182 
vmx_handle_nmi(struct kvm_vcpu * vcpu)7183 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7184 {
7185 	if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7186 	    !is_nmi(vmx_get_intr_info(vcpu)))
7187 		return;
7188 
7189 	kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7190 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7191 		fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7192 	else
7193 		vmx_do_nmi_irqoff();
7194 	kvm_after_interrupt(vcpu);
7195 }
7196 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7197 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7198 					unsigned int flags)
7199 {
7200 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7201 
7202 	guest_state_enter_irqoff();
7203 
7204 	/*
7205 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7206 	 * mitigation for MDS is done late in VMentry and is still
7207 	 * executed in spite of L1D Flush. This is because an extra VERW
7208 	 * should not matter much after the big hammer L1D Flush.
7209 	 *
7210 	 * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7211 	 * and is affected by MMIO Stale Data. In such cases mitigation in only
7212 	 * needed against an MMIO capable guest.
7213 	 */
7214 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7215 		vmx_l1d_flush(vcpu);
7216 	else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7217 		 (flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO))
7218 		x86_clear_cpu_buffers();
7219 
7220 	vmx_disable_fb_clear(vmx);
7221 
7222 	if (vcpu->arch.cr2 != native_read_cr2())
7223 		native_write_cr2(vcpu->arch.cr2);
7224 
7225 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7226 				   flags);
7227 
7228 	vcpu->arch.cr2 = native_read_cr2();
7229 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7230 
7231 	vmx->idt_vectoring_info = 0;
7232 
7233 	vmx_enable_fb_clear(vmx);
7234 
7235 	if (unlikely(vmx->fail)) {
7236 		vmx->vt.exit_reason.full = 0xdead;
7237 		goto out;
7238 	}
7239 
7240 	vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7241 	if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7242 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7243 
7244 	vmx_handle_nmi(vcpu);
7245 
7246 out:
7247 	guest_state_exit_irqoff();
7248 }
7249 
vmx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)7250 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7251 {
7252 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7254 	unsigned long cr3, cr4;
7255 
7256 	/* Record the guest's net vcpu time for enforced NMI injections. */
7257 	if (unlikely(!enable_vnmi &&
7258 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7259 		vmx->loaded_vmcs->entry_time = ktime_get();
7260 
7261 	/*
7262 	 * Don't enter VMX if guest state is invalid, let the exit handler
7263 	 * start emulation until we arrive back to a valid state.  Synthesize a
7264 	 * consistency check VM-Exit due to invalid guest state and bail.
7265 	 */
7266 	if (unlikely(vmx->vt.emulation_required)) {
7267 		vmx->fail = 0;
7268 
7269 		vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7270 		vmx->vt.exit_reason.failed_vmentry = 1;
7271 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7272 		vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7273 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7274 		vmx->vt.exit_intr_info = 0;
7275 		return EXIT_FASTPATH_NONE;
7276 	}
7277 
7278 	trace_kvm_entry(vcpu, force_immediate_exit);
7279 
7280 	if (vmx->ple_window_dirty) {
7281 		vmx->ple_window_dirty = false;
7282 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7283 	}
7284 
7285 	/*
7286 	 * We did this in prepare_switch_to_guest, because it needs to
7287 	 * be within srcu_read_lock.
7288 	 */
7289 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7290 
7291 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7292 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7293 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7294 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7295 	vcpu->arch.regs_dirty = 0;
7296 
7297 	if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7298 		set_debugreg(vcpu->arch.dr6, 6);
7299 
7300 	if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7301 		vmx_reload_guest_debugctl(vcpu);
7302 
7303 	/*
7304 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7305 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7306 	 * it switches back to the current->mm, which can occur in KVM context
7307 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7308 	 * toggles a static key while handling a VM-Exit.
7309 	 */
7310 	cr3 = __get_current_cr3_fast();
7311 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7312 		vmcs_writel(HOST_CR3, cr3);
7313 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7314 	}
7315 
7316 	cr4 = cr4_read_shadow();
7317 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7318 		vmcs_writel(HOST_CR4, cr4);
7319 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7320 	}
7321 
7322 	/* When single-stepping over STI and MOV SS, we must clear the
7323 	 * corresponding interruptibility bits in the guest state. Otherwise
7324 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7325 	 * exceptions being set, but that's not correct for the guest debugging
7326 	 * case. */
7327 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7328 		vmx_set_interrupt_shadow(vcpu, 0);
7329 
7330 	kvm_load_guest_xsave_state(vcpu);
7331 
7332 	pt_guest_enter(vmx);
7333 
7334 	atomic_switch_perf_msrs(vmx);
7335 	if (intel_pmu_lbr_is_enabled(vcpu))
7336 		vmx_passthrough_lbr_msrs(vcpu);
7337 
7338 	if (enable_preemption_timer)
7339 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7340 	else if (force_immediate_exit)
7341 		smp_send_reschedule(vcpu->cpu);
7342 
7343 	kvm_wait_lapic_expire(vcpu);
7344 
7345 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7346 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7347 
7348 	/* All fields are clean at this point */
7349 	if (kvm_is_using_evmcs()) {
7350 		current_evmcs->hv_clean_fields |=
7351 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7352 
7353 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7354 	}
7355 
7356 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7357 	if (vcpu->arch.host_debugctl)
7358 		update_debugctlmsr(vcpu->arch.host_debugctl);
7359 
7360 #ifndef CONFIG_X86_64
7361 	/*
7362 	 * The sysexit path does not restore ds/es, so we must set them to
7363 	 * a reasonable value ourselves.
7364 	 *
7365 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7366 	 * function may be executed in interrupt context, which saves and
7367 	 * restore segments around it, nullifying its effect.
7368 	 */
7369 	loadsegment(ds, __USER_DS);
7370 	loadsegment(es, __USER_DS);
7371 #endif
7372 
7373 	pt_guest_exit(vmx);
7374 
7375 	kvm_load_host_xsave_state(vcpu);
7376 
7377 	if (is_guest_mode(vcpu)) {
7378 		/*
7379 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7380 		 * checking.
7381 		 */
7382 		if (vmx->nested.nested_run_pending &&
7383 		    !vmx_get_exit_reason(vcpu).failed_vmentry)
7384 			++vcpu->stat.nested_run;
7385 
7386 		vmx->nested.nested_run_pending = 0;
7387 	}
7388 
7389 	if (unlikely(vmx->fail))
7390 		return EXIT_FASTPATH_NONE;
7391 
7392 	if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7393 		kvm_machine_check();
7394 
7395 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7396 
7397 	if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7398 		return EXIT_FASTPATH_NONE;
7399 
7400 	vmx->loaded_vmcs->launched = 1;
7401 
7402 	vmx_recover_nmi_blocking(vmx);
7403 	vmx_complete_interrupts(vmx);
7404 
7405 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7406 }
7407 
vmx_vcpu_free(struct kvm_vcpu * vcpu)7408 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7409 {
7410 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7411 
7412 	if (enable_pml)
7413 		vmx_destroy_pml_buffer(vmx);
7414 	free_vpid(vmx->vpid);
7415 	nested_vmx_free_vcpu(vcpu);
7416 	free_loaded_vmcs(vmx->loaded_vmcs);
7417 	free_page((unsigned long)vmx->ve_info);
7418 }
7419 
vmx_vcpu_create(struct kvm_vcpu * vcpu)7420 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7421 {
7422 	struct vmx_uret_msr *tsx_ctrl;
7423 	struct vcpu_vmx *vmx;
7424 	int i, err;
7425 
7426 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7427 	vmx = to_vmx(vcpu);
7428 
7429 	INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7430 
7431 	err = -ENOMEM;
7432 
7433 	vmx->vpid = allocate_vpid();
7434 
7435 	/*
7436 	 * If PML is turned on, failure on enabling PML just results in failure
7437 	 * of creating the vcpu, therefore we can simplify PML logic (by
7438 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7439 	 * for the guest), etc.
7440 	 */
7441 	if (enable_pml) {
7442 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7443 		if (!vmx->pml_pg)
7444 			goto free_vpid;
7445 	}
7446 
7447 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7448 		vmx->guest_uret_msrs[i].mask = -1ull;
7449 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7450 		/*
7451 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7452 		 * Keep the host value unchanged to avoid changing CPUID bits
7453 		 * under the host kernel's feet.
7454 		 */
7455 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7456 		if (tsx_ctrl)
7457 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7458 	}
7459 
7460 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7461 	if (err < 0)
7462 		goto free_pml;
7463 
7464 	/*
7465 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7466 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7467 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7468 	 * performance benefits from enabling it for vmcs02.
7469 	 */
7470 	if (kvm_is_using_evmcs() &&
7471 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7472 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7473 
7474 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7475 	}
7476 
7477 	vmx->loaded_vmcs = &vmx->vmcs01;
7478 
7479 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7480 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7481 		if (err)
7482 			goto free_vmcs;
7483 	}
7484 
7485 	if (enable_ept && !enable_unrestricted_guest) {
7486 		err = init_rmode_identity_map(vcpu->kvm);
7487 		if (err)
7488 			goto free_vmcs;
7489 	}
7490 
7491 	err = -ENOMEM;
7492 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7493 		struct page *page;
7494 
7495 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7496 
7497 		/* ve_info must be page aligned. */
7498 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7499 		if (!page)
7500 			goto free_vmcs;
7501 
7502 		vmx->ve_info = page_to_virt(page);
7503 	}
7504 
7505 	if (vmx_can_use_ipiv(vcpu))
7506 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7507 			   __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7508 
7509 	return 0;
7510 
7511 free_vmcs:
7512 	free_loaded_vmcs(vmx->loaded_vmcs);
7513 free_pml:
7514 	vmx_destroy_pml_buffer(vmx);
7515 free_vpid:
7516 	free_vpid(vmx->vpid);
7517 	return err;
7518 }
7519 
7520 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7521 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7522 
vmx_vm_init(struct kvm * kvm)7523 int vmx_vm_init(struct kvm *kvm)
7524 {
7525 	if (!ple_gap)
7526 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7527 
7528 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7529 		switch (l1tf_mitigation) {
7530 		case L1TF_MITIGATION_OFF:
7531 		case L1TF_MITIGATION_FLUSH_NOWARN:
7532 			/* 'I explicitly don't care' is set */
7533 			break;
7534 		case L1TF_MITIGATION_AUTO:
7535 		case L1TF_MITIGATION_FLUSH:
7536 		case L1TF_MITIGATION_FLUSH_NOSMT:
7537 		case L1TF_MITIGATION_FULL:
7538 			/*
7539 			 * Warn upon starting the first VM in a potentially
7540 			 * insecure environment.
7541 			 */
7542 			if (sched_smt_active())
7543 				pr_warn_once(L1TF_MSG_SMT);
7544 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7545 				pr_warn_once(L1TF_MSG_L1D);
7546 			break;
7547 		case L1TF_MITIGATION_FULL_FORCE:
7548 			/* Flush is enforced */
7549 			break;
7550 		}
7551 	}
7552 
7553 	if (enable_pml)
7554 		kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7555 	return 0;
7556 }
7557 
vmx_ignore_guest_pat(struct kvm * kvm)7558 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7559 {
7560 	/*
7561 	 * Non-coherent DMA devices need the guest to flush CPU properly.
7562 	 * In that case it is not possible to map all guest RAM as WB, so
7563 	 * always trust guest PAT.
7564 	 */
7565 	return !kvm_arch_has_noncoherent_dma(kvm) &&
7566 	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7567 }
7568 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7569 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7570 {
7571 	/*
7572 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7573 	 * with cacheable accesses will result in Machine Checks.
7574 	 */
7575 	if (is_mmio)
7576 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7577 
7578 	/* Force WB if ignoring guest PAT */
7579 	if (vmx_ignore_guest_pat(vcpu->kvm))
7580 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7581 
7582 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7583 }
7584 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7585 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7586 {
7587 	/*
7588 	 * These bits in the secondary execution controls field
7589 	 * are dynamic, the others are mostly based on the hypervisor
7590 	 * architecture and the guest's CPUID.  Do not touch the
7591 	 * dynamic bits.
7592 	 */
7593 	u32 mask =
7594 		SECONDARY_EXEC_SHADOW_VMCS |
7595 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7596 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7597 		SECONDARY_EXEC_DESC;
7598 
7599 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7600 
7601 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7602 }
7603 
7604 /*
7605  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7606  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7607  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7608 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7609 {
7610 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7611 	struct kvm_cpuid_entry2 *entry;
7612 
7613 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7614 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7615 
7616 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7617 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7618 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7619 } while (0)
7620 
7621 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7622 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7623 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7624 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7625 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7626 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7627 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7628 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7629 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7630 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7631 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7632 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7633 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7634 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7635 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7636 
7637 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7638 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7639 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7640 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7641 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7642 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7643 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7644 
7645 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7646 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7647 
7648 #undef cr4_fixed1_update
7649 }
7650 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7651 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7652 {
7653 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7654 	struct kvm_cpuid_entry2 *best = NULL;
7655 	int i;
7656 
7657 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7658 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7659 		if (!best)
7660 			return;
7661 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7662 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7663 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7664 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7665 	}
7666 
7667 	/* Get the number of configurable Address Ranges for filtering */
7668 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7669 						PT_CAP_num_address_ranges);
7670 
7671 	/* Initialize and clear the no dependency bits */
7672 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7673 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7674 			RTIT_CTL_BRANCH_EN);
7675 
7676 	/*
7677 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7678 	 * will inject an #GP
7679 	 */
7680 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7681 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7682 
7683 	/*
7684 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7685 	 * PSBFreq can be set
7686 	 */
7687 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7688 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7689 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7690 
7691 	/*
7692 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7693 	 */
7694 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7695 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7696 					      RTIT_CTL_MTC_RANGE);
7697 
7698 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7699 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7700 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7701 							RTIT_CTL_PTW_EN);
7702 
7703 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7704 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7705 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7706 
7707 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7708 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7709 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7710 
7711 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7712 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7713 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7714 
7715 	/* unmask address range configure area */
7716 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7717 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7718 }
7719 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7720 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7721 {
7722 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7723 
7724 	/*
7725 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7726 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7727 	 * set if and only if XSAVE is supported.
7728 	 */
7729 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7730 		guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7731 
7732 	vmx_setup_uret_msrs(vmx);
7733 
7734 	if (cpu_has_secondary_exec_ctrls())
7735 		vmcs_set_secondary_exec_control(vmx,
7736 						vmx_secondary_exec_control(vmx));
7737 
7738 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7739 		vmx->msr_ia32_feature_control_valid_bits |=
7740 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7741 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7742 	else
7743 		vmx->msr_ia32_feature_control_valid_bits &=
7744 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7745 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7746 
7747 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7748 		nested_vmx_cr_fixed1_bits_update(vcpu);
7749 
7750 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7751 			guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7752 		update_intel_pt_cfg(vcpu);
7753 
7754 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7755 		struct vmx_uret_msr *msr;
7756 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7757 		if (msr) {
7758 			bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7759 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7760 		}
7761 	}
7762 
7763 	set_cr4_guest_host_mask(vmx);
7764 
7765 	vmx_write_encls_bitmap(vcpu, NULL);
7766 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7767 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7768 	else
7769 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7770 
7771 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7772 		vmx->msr_ia32_feature_control_valid_bits |=
7773 			FEAT_CTL_SGX_LC_ENABLED;
7774 	else
7775 		vmx->msr_ia32_feature_control_valid_bits &=
7776 			~FEAT_CTL_SGX_LC_ENABLED;
7777 
7778 	/* Recalc MSR interception to account for feature changes. */
7779 	vmx_recalc_msr_intercepts(vcpu);
7780 
7781 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7782 	vmx_update_exception_bitmap(vcpu);
7783 }
7784 
vmx_get_perf_capabilities(void)7785 static __init u64 vmx_get_perf_capabilities(void)
7786 {
7787 	u64 perf_cap = PMU_CAP_FW_WRITES;
7788 	u64 host_perf_cap = 0;
7789 
7790 	if (!enable_pmu)
7791 		return 0;
7792 
7793 	if (boot_cpu_has(X86_FEATURE_PDCM))
7794 		rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7795 
7796 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7797 		x86_perf_get_lbr(&vmx_lbr_caps);
7798 
7799 		/*
7800 		 * KVM requires LBR callstack support, as the overhead due to
7801 		 * context switching LBRs without said support is too high.
7802 		 * See intel_pmu_create_guest_lbr_event() for more info.
7803 		 */
7804 		if (!vmx_lbr_caps.has_callstack)
7805 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7806 		else if (vmx_lbr_caps.nr)
7807 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7808 	}
7809 
7810 	if (vmx_pebs_supported()) {
7811 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7812 
7813 		/*
7814 		 * Disallow adaptive PEBS as it is functionally broken, can be
7815 		 * used by the guest to read *host* LBRs, and can be used to
7816 		 * bypass userspace event filters.  To correctly and safely
7817 		 * support adaptive PEBS, KVM needs to:
7818 		 *
7819 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7820 		 *    counters.
7821 		 *
7822 		 * 2. Gain support from perf (or take direct control of counter
7823 		 *    programming) to support events without adaptive PEBS
7824 		 *    enabled for the hardware counter.
7825 		 *
7826 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7827 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7828 		 *
7829 		 * 4. Document which PMU events are effectively exposed to the
7830 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7831 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7832 		 */
7833 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7834 	}
7835 
7836 	return perf_cap;
7837 }
7838 
vmx_set_cpu_caps(void)7839 static __init void vmx_set_cpu_caps(void)
7840 {
7841 	kvm_set_cpu_caps();
7842 
7843 	/* CPUID 0x1 */
7844 	if (nested)
7845 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7846 
7847 	/* CPUID 0x7 */
7848 	if (kvm_mpx_supported())
7849 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7850 	if (!cpu_has_vmx_invpcid())
7851 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7852 	if (vmx_pt_mode_is_host_guest())
7853 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7854 	if (vmx_pebs_supported()) {
7855 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7856 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7857 	}
7858 
7859 	if (!enable_pmu)
7860 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7861 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7862 
7863 	if (!enable_sgx) {
7864 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7865 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7866 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7867 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7868 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7869 	}
7870 
7871 	if (vmx_umip_emulated())
7872 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7873 
7874 	/* CPUID 0xD.1 */
7875 	kvm_caps.supported_xss = 0;
7876 	if (!cpu_has_vmx_xsaves())
7877 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7878 
7879 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7880 	if (!cpu_has_vmx_rdtscp()) {
7881 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7882 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7883 	}
7884 
7885 	if (cpu_has_vmx_waitpkg())
7886 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7887 }
7888 
vmx_is_io_intercepted(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,unsigned long * exit_qualification)7889 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
7890 				  struct x86_instruction_info *info,
7891 				  unsigned long *exit_qualification)
7892 {
7893 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7894 	unsigned short port;
7895 	int size;
7896 	bool imm;
7897 
7898 	/*
7899 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7900 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7901 	 * control.
7902 	 *
7903 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7904 	 */
7905 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7906 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7907 
7908 	if (info->intercept == x86_intercept_in ||
7909 	    info->intercept == x86_intercept_ins) {
7910 		port = info->src_val;
7911 		size = info->dst_bytes;
7912 		imm  = info->src_type == OP_IMM;
7913 	} else {
7914 		port = info->dst_val;
7915 		size = info->src_bytes;
7916 		imm  = info->dst_type == OP_IMM;
7917 	}
7918 
7919 
7920 	*exit_qualification = ((unsigned long)port << 16) | (size - 1);
7921 
7922 	if (info->intercept == x86_intercept_ins ||
7923 	    info->intercept == x86_intercept_outs)
7924 		*exit_qualification |= BIT(4);
7925 
7926 	if (info->rep_prefix)
7927 		*exit_qualification |= BIT(5);
7928 
7929 	if (imm)
7930 		*exit_qualification |= BIT(6);
7931 
7932 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
7933 }
7934 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7935 int vmx_check_intercept(struct kvm_vcpu *vcpu,
7936 			struct x86_instruction_info *info,
7937 			enum x86_intercept_stage stage,
7938 			struct x86_exception *exception)
7939 {
7940 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7941 	unsigned long exit_qualification = 0;
7942 	u32 vm_exit_reason;
7943 	u64 exit_insn_len;
7944 
7945 	switch (info->intercept) {
7946 	case x86_intercept_rdpid:
7947 		/*
7948 		 * RDPID causes #UD if not enabled through secondary execution
7949 		 * controls (ENABLE_RDTSCP).  Note, the implicit MSR access to
7950 		 * TSC_AUX is NOT subject to interception, i.e. checking only
7951 		 * the dedicated execution control is architecturally correct.
7952 		 */
7953 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7954 			exception->vector = UD_VECTOR;
7955 			exception->error_code_valid = false;
7956 			return X86EMUL_PROPAGATE_FAULT;
7957 		}
7958 		return X86EMUL_CONTINUE;
7959 
7960 	case x86_intercept_in:
7961 	case x86_intercept_ins:
7962 	case x86_intercept_out:
7963 	case x86_intercept_outs:
7964 		if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
7965 			return X86EMUL_CONTINUE;
7966 
7967 		vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
7968 		break;
7969 
7970 	case x86_intercept_lgdt:
7971 	case x86_intercept_lidt:
7972 	case x86_intercept_lldt:
7973 	case x86_intercept_ltr:
7974 	case x86_intercept_sgdt:
7975 	case x86_intercept_sidt:
7976 	case x86_intercept_sldt:
7977 	case x86_intercept_str:
7978 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7979 			return X86EMUL_CONTINUE;
7980 
7981 		if (info->intercept == x86_intercept_lldt ||
7982 		    info->intercept == x86_intercept_ltr ||
7983 		    info->intercept == x86_intercept_sldt ||
7984 		    info->intercept == x86_intercept_str)
7985 			vm_exit_reason = EXIT_REASON_LDTR_TR;
7986 		else
7987 			vm_exit_reason = EXIT_REASON_GDTR_IDTR;
7988 		/*
7989 		 * FIXME: Decode the ModR/M to generate the correct exit
7990 		 *        qualification for memory operands.
7991 		 */
7992 		break;
7993 
7994 	case x86_intercept_hlt:
7995 		if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
7996 			return X86EMUL_CONTINUE;
7997 
7998 		vm_exit_reason = EXIT_REASON_HLT;
7999 		break;
8000 
8001 	case x86_intercept_pause:
8002 		/*
8003 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8004 		 * with vanilla NOPs in the emulator.  Apply the interception
8005 		 * check only to actual PAUSE instructions.  Don't check
8006 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8007 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8008 		 * the PAUSE.
8009 		 */
8010 		if ((info->rep_prefix != REPE_PREFIX) ||
8011 		    !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8012 			return X86EMUL_CONTINUE;
8013 
8014 		vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8015 		break;
8016 
8017 	/* TODO: check more intercepts... */
8018 	default:
8019 		return X86EMUL_UNHANDLEABLE;
8020 	}
8021 
8022 	exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8023 	if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8024 		return X86EMUL_UNHANDLEABLE;
8025 
8026 	__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8027 			    exit_insn_len);
8028 	return X86EMUL_INTERCEPTED;
8029 }
8030 
8031 #ifdef CONFIG_X86_64
8032 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8033 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8034 				  u64 divisor, u64 *result)
8035 {
8036 	u64 low = a << shift, high = a >> (64 - shift);
8037 
8038 	/* To avoid the overflow on divq */
8039 	if (high >= divisor)
8040 		return 1;
8041 
8042 	/* Low hold the result, high hold rem which is discarded */
8043 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8044 	    "rm" (divisor), "0" (low), "1" (high));
8045 	*result = low;
8046 
8047 	return 0;
8048 }
8049 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8050 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8051 		     bool *expired)
8052 {
8053 	struct vcpu_vmx *vmx;
8054 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8055 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8056 
8057 	vmx = to_vmx(vcpu);
8058 	tscl = rdtsc();
8059 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8060 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8061 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8062 						    ktimer->timer_advance_ns);
8063 
8064 	if (delta_tsc > lapic_timer_advance_cycles)
8065 		delta_tsc -= lapic_timer_advance_cycles;
8066 	else
8067 		delta_tsc = 0;
8068 
8069 	/* Convert to host delta tsc if tsc scaling is enabled */
8070 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8071 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8072 				kvm_caps.tsc_scaling_ratio_frac_bits,
8073 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8074 		return -ERANGE;
8075 
8076 	/*
8077 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8078 	 * we can't use the preemption timer.
8079 	 * It's possible that it fits on later vmentries, but checking
8080 	 * on every vmentry is costly so we just use an hrtimer.
8081 	 */
8082 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8083 		return -ERANGE;
8084 
8085 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8086 	*expired = !delta_tsc;
8087 	return 0;
8088 }
8089 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8090 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8091 {
8092 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8093 }
8094 #endif
8095 
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8096 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8097 {
8098 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8099 
8100 	if (WARN_ON_ONCE(!enable_pml))
8101 		return;
8102 
8103 	if (is_guest_mode(vcpu)) {
8104 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8105 		return;
8106 	}
8107 
8108 	/*
8109 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8110 	 * code, but in that case another update request will be made and so
8111 	 * the guest will never run with a stale PML value.
8112 	 */
8113 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8114 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8115 	else
8116 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8117 }
8118 
vmx_setup_mce(struct kvm_vcpu * vcpu)8119 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8120 {
8121 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8122 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8123 			FEAT_CTL_LMCE_ENABLED;
8124 	else
8125 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8126 			~FEAT_CTL_LMCE_ENABLED;
8127 }
8128 
8129 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8130 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8131 {
8132 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8133 	if (to_vmx(vcpu)->nested.nested_run_pending)
8134 		return -EBUSY;
8135 	return !is_smm(vcpu);
8136 }
8137 
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8138 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8139 {
8140 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8141 
8142 	/*
8143 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8144 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8145 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8146 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8147 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8148 	 */
8149 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8150 	if (vmx->nested.smm.guest_mode)
8151 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8152 
8153 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8154 	vmx->nested.vmxon = false;
8155 	vmx_clear_hlt(vcpu);
8156 	return 0;
8157 }
8158 
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8159 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8160 {
8161 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8162 	int ret;
8163 
8164 	if (vmx->nested.smm.vmxon) {
8165 		vmx->nested.vmxon = true;
8166 		vmx->nested.smm.vmxon = false;
8167 	}
8168 
8169 	if (vmx->nested.smm.guest_mode) {
8170 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8171 		if (ret)
8172 			return ret;
8173 
8174 		vmx->nested.nested_run_pending = 1;
8175 		vmx->nested.smm.guest_mode = false;
8176 	}
8177 	return 0;
8178 }
8179 
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8180 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8181 {
8182 	/* RSM will cause a vmexit anyway.  */
8183 }
8184 #endif
8185 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8186 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8187 {
8188 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8189 }
8190 
vmx_migrate_timers(struct kvm_vcpu * vcpu)8191 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8192 {
8193 	if (is_guest_mode(vcpu)) {
8194 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8195 
8196 		if (hrtimer_try_to_cancel(timer) == 1)
8197 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8198 	}
8199 }
8200 
vmx_hardware_unsetup(void)8201 void vmx_hardware_unsetup(void)
8202 {
8203 	kvm_set_posted_intr_wakeup_handler(NULL);
8204 
8205 	if (nested)
8206 		nested_vmx_hardware_unsetup();
8207 
8208 	free_kvm_area();
8209 }
8210 
vmx_vm_destroy(struct kvm * kvm)8211 void vmx_vm_destroy(struct kvm *kvm)
8212 {
8213 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8214 
8215 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8216 }
8217 
8218 /*
8219  * Note, the SDM states that the linear address is masked *after* the modified
8220  * canonicality check, whereas KVM masks (untags) the address and then performs
8221  * a "normal" canonicality check.  Functionally, the two methods are identical,
8222  * and when the masking occurs relative to the canonicality check isn't visible
8223  * to software, i.e. KVM's behavior doesn't violate the SDM.
8224  */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8225 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8226 {
8227 	int lam_bit;
8228 	unsigned long cr3_bits;
8229 
8230 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8231 		return gva;
8232 
8233 	if (!is_64_bit_mode(vcpu))
8234 		return gva;
8235 
8236 	/*
8237 	 * Bit 63 determines if the address should be treated as user address
8238 	 * or a supervisor address.
8239 	 */
8240 	if (!(gva & BIT_ULL(63))) {
8241 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8242 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8243 			return gva;
8244 
8245 		/* LAM_U48 is ignored if LAM_U57 is set. */
8246 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8247 	} else {
8248 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8249 			return gva;
8250 
8251 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8252 	}
8253 
8254 	/*
8255 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8256 	 * Bit 63 is retained from the raw virtual address so that untagging
8257 	 * doesn't change a user access to a supervisor access, and vice versa.
8258 	 */
8259 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8260 }
8261 
vmx_handle_intel_pt_intr(void)8262 static unsigned int vmx_handle_intel_pt_intr(void)
8263 {
8264 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8265 
8266 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8267 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8268 		return 0;
8269 
8270 	kvm_make_request(KVM_REQ_PMI, vcpu);
8271 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8272 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8273 	return 1;
8274 }
8275 
vmx_setup_user_return_msrs(void)8276 static __init void vmx_setup_user_return_msrs(void)
8277 {
8278 
8279 	/*
8280 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8281 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8282 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8283 	 * support this emulation, MSR_STAR is included in the list for i386,
8284 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8285 	 * into hardware and is here purely for emulation purposes.
8286 	 */
8287 	const u32 vmx_uret_msrs_list[] = {
8288 	#ifdef CONFIG_X86_64
8289 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8290 	#endif
8291 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8292 		MSR_IA32_TSX_CTRL,
8293 	};
8294 	int i;
8295 
8296 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8297 
8298 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8299 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8300 }
8301 
vmx_setup_me_spte_mask(void)8302 static void __init vmx_setup_me_spte_mask(void)
8303 {
8304 	u64 me_mask = 0;
8305 
8306 	/*
8307 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8308 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8309 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8310 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8311 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8312 	 */
8313 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8314 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8315 				    kvm_host.maxphyaddr - 1);
8316 
8317 	/*
8318 	 * Unlike SME, host kernel doesn't support setting up any
8319 	 * MKTME KeyID on Intel platforms.  No memory encryption
8320 	 * bits should be included into the SPTE.
8321 	 */
8322 	kvm_mmu_set_me_spte_mask(0, me_mask);
8323 }
8324 
vmx_hardware_setup(void)8325 __init int vmx_hardware_setup(void)
8326 {
8327 	unsigned long host_bndcfgs;
8328 	struct desc_ptr dt;
8329 	int r;
8330 
8331 	store_idt(&dt);
8332 	host_idt_base = dt.address;
8333 
8334 	vmx_setup_user_return_msrs();
8335 
8336 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8337 		return -EIO;
8338 
8339 	if (boot_cpu_has(X86_FEATURE_NX))
8340 		kvm_enable_efer_bits(EFER_NX);
8341 
8342 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8343 		rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8344 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8345 	}
8346 
8347 	if (!cpu_has_vmx_mpx())
8348 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8349 					     XFEATURE_MASK_BNDCSR);
8350 
8351 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8352 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8353 		enable_vpid = 0;
8354 
8355 	if (!cpu_has_vmx_ept() ||
8356 	    !cpu_has_vmx_ept_4levels() ||
8357 	    !cpu_has_vmx_ept_mt_wb() ||
8358 	    !cpu_has_vmx_invept_global())
8359 		enable_ept = 0;
8360 
8361 	/* NX support is required for shadow paging. */
8362 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8363 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8364 		return -EOPNOTSUPP;
8365 	}
8366 
8367 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8368 		enable_ept_ad_bits = 0;
8369 
8370 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8371 		enable_unrestricted_guest = 0;
8372 
8373 	if (!cpu_has_vmx_flexpriority())
8374 		flexpriority_enabled = 0;
8375 
8376 	if (!cpu_has_virtual_nmis())
8377 		enable_vnmi = 0;
8378 
8379 #ifdef CONFIG_X86_SGX_KVM
8380 	if (!cpu_has_vmx_encls_vmexit())
8381 		enable_sgx = false;
8382 #endif
8383 
8384 	/*
8385 	 * set_apic_access_page_addr() is used to reload apic access
8386 	 * page upon invalidation.  No need to do anything if not
8387 	 * using the APIC_ACCESS_ADDR VMCS field.
8388 	 */
8389 	if (!flexpriority_enabled)
8390 		vt_x86_ops.set_apic_access_page_addr = NULL;
8391 
8392 	if (!cpu_has_vmx_tpr_shadow())
8393 		vt_x86_ops.update_cr8_intercept = NULL;
8394 
8395 #if IS_ENABLED(CONFIG_HYPERV)
8396 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8397 	    && enable_ept) {
8398 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8399 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8400 	}
8401 #endif
8402 
8403 	if (!cpu_has_vmx_ple()) {
8404 		ple_gap = 0;
8405 		ple_window = 0;
8406 		ple_window_grow = 0;
8407 		ple_window_max = 0;
8408 		ple_window_shrink = 0;
8409 	}
8410 
8411 	if (!cpu_has_vmx_apicv())
8412 		enable_apicv = 0;
8413 	if (!enable_apicv)
8414 		vt_x86_ops.sync_pir_to_irr = NULL;
8415 
8416 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8417 		enable_ipiv = false;
8418 
8419 	if (cpu_has_vmx_tsc_scaling())
8420 		kvm_caps.has_tsc_control = true;
8421 
8422 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8423 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8424 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8425 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8426 
8427 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8428 
8429 	if (enable_ept)
8430 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8431 				      cpu_has_vmx_ept_execute_only());
8432 	else
8433 		vt_x86_ops.get_mt_mask = NULL;
8434 
8435 	/*
8436 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8437 	 * bits to shadow_zero_check.
8438 	 */
8439 	vmx_setup_me_spte_mask();
8440 
8441 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8442 			  ept_caps_to_lpage_level(vmx_capability.ept));
8443 
8444 	/*
8445 	 * Only enable PML when hardware supports PML feature, and both EPT
8446 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8447 	 */
8448 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8449 		enable_pml = 0;
8450 
8451 	if (!cpu_has_vmx_preemption_timer())
8452 		enable_preemption_timer = false;
8453 
8454 	if (enable_preemption_timer) {
8455 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8456 
8457 		cpu_preemption_timer_multi =
8458 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8459 
8460 		if (tsc_khz)
8461 			use_timer_freq = (u64)tsc_khz * 1000;
8462 		use_timer_freq >>= cpu_preemption_timer_multi;
8463 
8464 		/*
8465 		 * KVM "disables" the preemption timer by setting it to its max
8466 		 * value.  Don't use the timer if it might cause spurious exits
8467 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8468 		 */
8469 		if (use_timer_freq > 0xffffffffu / 10)
8470 			enable_preemption_timer = false;
8471 	}
8472 
8473 	if (!enable_preemption_timer) {
8474 		vt_x86_ops.set_hv_timer = NULL;
8475 		vt_x86_ops.cancel_hv_timer = NULL;
8476 	}
8477 
8478 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8479 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8480 
8481 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8482 		return -EINVAL;
8483 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8484 		pt_mode = PT_MODE_SYSTEM;
8485 	if (pt_mode == PT_MODE_HOST_GUEST)
8486 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8487 	else
8488 		vt_init_ops.handle_intel_pt_intr = NULL;
8489 
8490 	setup_default_sgx_lepubkeyhash();
8491 
8492 	if (nested) {
8493 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8494 
8495 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8496 		if (r)
8497 			return r;
8498 	}
8499 
8500 	vmx_set_cpu_caps();
8501 
8502 	r = alloc_kvm_area();
8503 	if (r && nested)
8504 		nested_vmx_hardware_unsetup();
8505 
8506 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8507 
8508 	/*
8509 	 * On Intel CPUs that lack self-snoop feature, letting the guest control
8510 	 * memory types may result in unexpected behavior. So always ignore guest
8511 	 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8512 	 * disable the quirk.
8513 	 *
8514 	 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8515 	 * supported, UC is slow enough to cause issues with some older guests (e.g.
8516 	 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8517 	 * map the video RAM, causing wayland desktop to fail to get started
8518 	 * correctly). To avoid breaking those older guests that rely on KVM to force
8519 	 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8520 	 * safer (for performance) default behavior.
8521 	 *
8522 	 * On top of this, non-coherent DMA devices need the guest to flush CPU
8523 	 * caches properly.  This also requires honoring guest PAT, and is forced
8524 	 * independent of the quirk in vmx_ignore_guest_pat().
8525 	 */
8526 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8527 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8528        kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8529 	return r;
8530 }
8531 
vmx_cleanup_l1d_flush(void)8532 static void vmx_cleanup_l1d_flush(void)
8533 {
8534 	if (vmx_l1d_flush_pages) {
8535 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8536 		vmx_l1d_flush_pages = NULL;
8537 	}
8538 	/* Restore state so sysfs ignores VMX */
8539 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8540 }
8541 
vmx_exit(void)8542 void vmx_exit(void)
8543 {
8544 	allow_smaller_maxphyaddr = false;
8545 
8546 	vmx_cleanup_l1d_flush();
8547 
8548 	kvm_x86_vendor_exit();
8549 }
8550 
vmx_init(void)8551 int __init vmx_init(void)
8552 {
8553 	int r, cpu;
8554 
8555 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8556 
8557 	if (!kvm_is_vmx_supported())
8558 		return -EOPNOTSUPP;
8559 
8560 	/*
8561 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8562 	 * to unwind if a later step fails.
8563 	 */
8564 	hv_init_evmcs();
8565 
8566 	r = kvm_x86_vendor_init(&vt_init_ops);
8567 	if (r)
8568 		return r;
8569 
8570 	/*
8571 	 * Must be called after common x86 init so enable_ept is properly set
8572 	 * up. Hand the parameter mitigation value in which was stored in
8573 	 * the pre module init parser. If no parameter was given, it will
8574 	 * contain 'auto' which will be turned into the default 'cond'
8575 	 * mitigation mode.
8576 	 */
8577 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8578 	if (r)
8579 		goto err_l1d_flush;
8580 
8581 	for_each_possible_cpu(cpu) {
8582 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8583 
8584 		pi_init_cpu(cpu);
8585 	}
8586 
8587 	vmx_check_vmcs12_offsets();
8588 
8589 	/*
8590 	 * Shadow paging doesn't have a (further) performance penalty
8591 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8592 	 * by default
8593 	 */
8594 	if (!enable_ept)
8595 		allow_smaller_maxphyaddr = true;
8596 
8597 	return 0;
8598 
8599 err_l1d_flush:
8600 	kvm_x86_vendor_exit();
8601 	return r;
8602 }
8603