1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/fred.h>
42 #include <asm/idtentry.h>
43 #include <asm/io.h>
44 #include <asm/irq_remapping.h>
45 #include <asm/reboot.h>
46 #include <asm/perf_event.h>
47 #include <asm/mmu_context.h>
48 #include <asm/mshyperv.h>
49 #include <asm/msr.h>
50 #include <asm/mwait.h>
51 #include <asm/spec-ctrl.h>
52 #include <asm/vmx.h>
53
54 #include <trace/events/ipi.h>
55
56 #include "capabilities.h"
57 #include "common.h"
58 #include "cpuid.h"
59 #include "hyperv.h"
60 #include "kvm_onhyperv.h"
61 #include "irq.h"
62 #include "kvm_cache_regs.h"
63 #include "lapic.h"
64 #include "mmu.h"
65 #include "nested.h"
66 #include "pmu.h"
67 #include "sgx.h"
68 #include "trace.h"
69 #include "vmcs.h"
70 #include "vmcs12.h"
71 #include "vmx.h"
72 #include "x86.h"
73 #include "x86_ops.h"
74 #include "smm.h"
75 #include "vmx_onhyperv.h"
76 #include "posted_intr.h"
77
78 #include "mmu/spte.h"
79
80 MODULE_AUTHOR("Qumranet");
81 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
82 MODULE_LICENSE("GPL");
83
84 #ifdef MODULE
85 static const struct x86_cpu_id vmx_cpu_id[] = {
86 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
87 {}
88 };
89 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
90 #endif
91
92 bool __read_mostly enable_vpid = 1;
93 module_param_named(vpid, enable_vpid, bool, 0444);
94
95 static bool __read_mostly enable_vnmi = 1;
96 module_param_named(vnmi, enable_vnmi, bool, 0444);
97
98 bool __read_mostly flexpriority_enabled = 1;
99 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
100
101 bool __read_mostly enable_ept = 1;
102 module_param_named(ept, enable_ept, bool, 0444);
103
104 bool __read_mostly enable_unrestricted_guest = 1;
105 module_param_named(unrestricted_guest,
106 enable_unrestricted_guest, bool, 0444);
107
108 bool __read_mostly enable_ept_ad_bits = 1;
109 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
110
111 static bool __read_mostly emulate_invalid_guest_state = true;
112 module_param(emulate_invalid_guest_state, bool, 0444);
113
114 static bool __read_mostly fasteoi = 1;
115 module_param(fasteoi, bool, 0444);
116
117 module_param(enable_apicv, bool, 0444);
118 module_param(enable_ipiv, bool, 0444);
119
120 module_param(enable_device_posted_irqs, bool, 0444);
121
122 /*
123 * If nested=1, nested virtualization is supported, i.e., guests may use
124 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
125 * use VMX instructions.
126 */
127 static bool __read_mostly nested = 1;
128 module_param(nested, bool, 0444);
129
130 bool __read_mostly enable_pml = 1;
131 module_param_named(pml, enable_pml, bool, 0444);
132
133 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
134 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
135
136 static bool __read_mostly dump_invalid_vmcs = 0;
137 module_param(dump_invalid_vmcs, bool, 0644);
138
139 #define MSR_BITMAP_MODE_X2APIC 1
140 #define MSR_BITMAP_MODE_X2APIC_APICV 2
141
142 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
143
144 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
145 static int __read_mostly cpu_preemption_timer_multi;
146 static bool __read_mostly enable_preemption_timer = 1;
147 #ifdef CONFIG_X86_64
148 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
149 #endif
150
151 extern bool __read_mostly allow_smaller_maxphyaddr;
152 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
153
154 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
155 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
156 #define KVM_VM_CR0_ALWAYS_ON \
157 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
158
159 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
160 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
161 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
162
163 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
164
165 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
166 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
167 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
168 RTIT_STATUS_BYTECNT))
169
170 /*
171 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
172 * ple_gap: upper bound on the amount of time between two successive
173 * executions of PAUSE in a loop. Also indicate if ple enabled.
174 * According to test, this time is usually smaller than 128 cycles.
175 * ple_window: upper bound on the amount of time a guest is allowed to execute
176 * in a PAUSE loop. Tests indicate that most spinlocks are held for
177 * less than 2^12 cycles
178 * Time is measured based on a counter that runs at the same rate as the TSC,
179 * refer SDM volume 3b section 21.6.13 & 22.1.3.
180 */
181 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
182 module_param(ple_gap, uint, 0444);
183
184 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
185 module_param(ple_window, uint, 0444);
186
187 /* Default doubles per-vcpu window every exit. */
188 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
189 module_param(ple_window_grow, uint, 0444);
190
191 /* Default resets per-vcpu window every exit to ple_window. */
192 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
193 module_param(ple_window_shrink, uint, 0444);
194
195 /* Default is to compute the maximum so we can never overflow. */
196 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
197 module_param(ple_window_max, uint, 0444);
198
199 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
200 int __read_mostly pt_mode = PT_MODE_SYSTEM;
201 #ifdef CONFIG_BROKEN
202 module_param(pt_mode, int, S_IRUGO);
203 #endif
204
205 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215 const char *option;
216 bool for_parse;
217 } vmentry_l1d_param[] = {
218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
220 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 struct page *page;
232 unsigned int i;
233
234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 return 0;
237 }
238
239 if (!enable_ept) {
240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 return 0;
242 }
243
244 if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246 return 0;
247 }
248
249 /* If set to auto use the default l1tf mitigation method */
250 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
251 switch (l1tf_mitigation) {
252 case L1TF_MITIGATION_OFF:
253 l1tf = VMENTER_L1D_FLUSH_NEVER;
254 break;
255 case L1TF_MITIGATION_AUTO:
256 case L1TF_MITIGATION_FLUSH_NOWARN:
257 case L1TF_MITIGATION_FLUSH:
258 case L1TF_MITIGATION_FLUSH_NOSMT:
259 l1tf = VMENTER_L1D_FLUSH_COND;
260 break;
261 case L1TF_MITIGATION_FULL:
262 case L1TF_MITIGATION_FULL_FORCE:
263 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
264 break;
265 }
266 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
267 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 }
269
270 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
271 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
272 /*
273 * This allocation for vmx_l1d_flush_pages is not tied to a VM
274 * lifetime and so should not be charged to a memcg.
275 */
276 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
277 if (!page)
278 return -ENOMEM;
279 vmx_l1d_flush_pages = page_address(page);
280
281 /*
282 * Initialize each page with a different pattern in
283 * order to protect against KSM in the nested
284 * virtualization case.
285 */
286 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
287 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
288 PAGE_SIZE);
289 }
290 }
291
292 l1tf_vmx_mitigation = l1tf;
293
294 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
295 static_branch_enable(&vmx_l1d_should_flush);
296 else
297 static_branch_disable(&vmx_l1d_should_flush);
298
299 if (l1tf == VMENTER_L1D_FLUSH_COND)
300 static_branch_enable(&vmx_l1d_flush_cond);
301 else
302 static_branch_disable(&vmx_l1d_flush_cond);
303 return 0;
304 }
305
vmentry_l1d_flush_parse(const char * s)306 static int vmentry_l1d_flush_parse(const char *s)
307 {
308 unsigned int i;
309
310 if (s) {
311 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
312 if (vmentry_l1d_param[i].for_parse &&
313 sysfs_streq(s, vmentry_l1d_param[i].option))
314 return i;
315 }
316 }
317 return -EINVAL;
318 }
319
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)320 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
321 {
322 int l1tf, ret;
323
324 l1tf = vmentry_l1d_flush_parse(s);
325 if (l1tf < 0)
326 return l1tf;
327
328 if (!boot_cpu_has(X86_BUG_L1TF))
329 return 0;
330
331 /*
332 * Has vmx_init() run already? If not then this is the pre init
333 * parameter parsing. In that case just store the value and let
334 * vmx_init() do the proper setup after enable_ept has been
335 * established.
336 */
337 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
338 vmentry_l1d_flush_param = l1tf;
339 return 0;
340 }
341
342 mutex_lock(&vmx_l1d_flush_mutex);
343 ret = vmx_setup_l1d_flush(l1tf);
344 mutex_unlock(&vmx_l1d_flush_mutex);
345 return ret;
346 }
347
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)348 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
349 {
350 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
351 return sysfs_emit(s, "???\n");
352
353 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
354 }
355
vmx_disable_fb_clear(struct vcpu_vmx * vmx)356 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
357 {
358 u64 msr;
359
360 if (!vmx->disable_fb_clear)
361 return;
362
363 msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
364 msr |= FB_CLEAR_DIS;
365 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
366 /* Cache the MSR value to avoid reading it later */
367 vmx->msr_ia32_mcu_opt_ctrl = msr;
368 }
369
vmx_enable_fb_clear(struct vcpu_vmx * vmx)370 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
371 {
372 if (!vmx->disable_fb_clear)
373 return;
374
375 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
376 native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
377 }
378
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)379 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
380 {
381 /*
382 * Disable VERW's behavior of clearing CPU buffers for the guest if the
383 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
384 * the mitigation. Disabling the clearing behavior provides a
385 * performance boost for guests that aren't aware that manually clearing
386 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
387 * and VM-Exit.
388 */
389 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
390 (kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
391 !boot_cpu_has_bug(X86_BUG_MDS) &&
392 !boot_cpu_has_bug(X86_BUG_TAA);
393
394 /*
395 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
396 * at VMEntry. Skip the MSR read/write when a guest has no use case to
397 * execute VERW.
398 */
399 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
400 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
401 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
402 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
403 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
404 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
405 vmx->disable_fb_clear = false;
406 }
407
408 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
409 .set = vmentry_l1d_flush_set,
410 .get = vmentry_l1d_flush_get,
411 };
412 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
413
414 static u32 vmx_segment_access_rights(struct kvm_segment *var);
415
416 void vmx_vmexit(void);
417
418 #define vmx_insn_failed(fmt...) \
419 do { \
420 WARN_ONCE(1, fmt); \
421 pr_warn_ratelimited(fmt); \
422 } while (0)
423
vmread_error(unsigned long field)424 noinline void vmread_error(unsigned long field)
425 {
426 vmx_insn_failed("vmread failed: field=%lx\n", field);
427 }
428
429 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)430 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
431 {
432 if (fault) {
433 kvm_spurious_fault();
434 } else {
435 instrumentation_begin();
436 vmread_error(field);
437 instrumentation_end();
438 }
439 }
440 #endif
441
vmwrite_error(unsigned long field,unsigned long value)442 noinline void vmwrite_error(unsigned long field, unsigned long value)
443 {
444 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
445 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
446 }
447
vmclear_error(struct vmcs * vmcs,u64 phys_addr)448 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
449 {
450 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
451 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
452 }
453
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
457 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
458 }
459
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461 {
462 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463 ext, vpid, gva);
464 }
465
invept_error(unsigned long ext,u64 eptp)466 noinline void invept_error(unsigned long ext, u64 eptp)
467 {
468 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
469 }
470
471 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
472 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
473 /*
474 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
475 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
476 */
477 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
478
479 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
480 static DEFINE_SPINLOCK(vmx_vpid_lock);
481
482 struct vmcs_config vmcs_config __ro_after_init;
483 struct vmx_capability vmx_capability __ro_after_init;
484
485 #define VMX_SEGMENT_FIELD(seg) \
486 [VCPU_SREG_##seg] = { \
487 .selector = GUEST_##seg##_SELECTOR, \
488 .base = GUEST_##seg##_BASE, \
489 .limit = GUEST_##seg##_LIMIT, \
490 .ar_bytes = GUEST_##seg##_AR_BYTES, \
491 }
492
493 static const struct kvm_vmx_segment_field {
494 unsigned selector;
495 unsigned base;
496 unsigned limit;
497 unsigned ar_bytes;
498 } kvm_vmx_segment_fields[] = {
499 VMX_SEGMENT_FIELD(CS),
500 VMX_SEGMENT_FIELD(DS),
501 VMX_SEGMENT_FIELD(ES),
502 VMX_SEGMENT_FIELD(FS),
503 VMX_SEGMENT_FIELD(GS),
504 VMX_SEGMENT_FIELD(SS),
505 VMX_SEGMENT_FIELD(TR),
506 VMX_SEGMENT_FIELD(LDTR),
507 };
508
509
510 static unsigned long host_idt_base;
511
512 #if IS_ENABLED(CONFIG_HYPERV)
513 static bool __read_mostly enlightened_vmcs = true;
514 module_param(enlightened_vmcs, bool, 0444);
515
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)516 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
517 {
518 struct hv_enlightened_vmcs *evmcs;
519 hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
520
521 if (partition_assist_page == INVALID_PAGE)
522 return -ENOMEM;
523
524 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
525
526 evmcs->partition_assist_page = partition_assist_page;
527 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
528 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
529
530 return 0;
531 }
532
hv_init_evmcs(void)533 static __init void hv_init_evmcs(void)
534 {
535 int cpu;
536
537 if (!enlightened_vmcs)
538 return;
539
540 /*
541 * Enlightened VMCS usage should be recommended and the host needs
542 * to support eVMCS v1 or above.
543 */
544 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
545 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
546 KVM_EVMCS_VERSION) {
547
548 /* Check that we have assist pages on all online CPUs */
549 for_each_online_cpu(cpu) {
550 if (!hv_get_vp_assist_page(cpu)) {
551 enlightened_vmcs = false;
552 break;
553 }
554 }
555
556 if (enlightened_vmcs) {
557 pr_info("Using Hyper-V Enlightened VMCS\n");
558 static_branch_enable(&__kvm_is_using_evmcs);
559 }
560
561 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
562 vt_x86_ops.enable_l2_tlb_flush
563 = hv_enable_l2_tlb_flush;
564 } else {
565 enlightened_vmcs = false;
566 }
567 }
568
hv_reset_evmcs(void)569 static void hv_reset_evmcs(void)
570 {
571 struct hv_vp_assist_page *vp_ap;
572
573 if (!kvm_is_using_evmcs())
574 return;
575
576 /*
577 * KVM should enable eVMCS if and only if all CPUs have a VP assist
578 * page, and should reject CPU onlining if eVMCS is enabled the CPU
579 * doesn't have a VP assist page allocated.
580 */
581 vp_ap = hv_get_vp_assist_page(smp_processor_id());
582 if (WARN_ON_ONCE(!vp_ap))
583 return;
584
585 /*
586 * Reset everything to support using non-enlightened VMCS access later
587 * (e.g. when we reload the module with enlightened_vmcs=0)
588 */
589 vp_ap->nested_control.features.directhypercall = 0;
590 vp_ap->current_nested_vmcs = 0;
591 vp_ap->enlighten_vmentry = 0;
592 }
593
594 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)595 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)596 static void hv_reset_evmcs(void) {}
597 #endif /* IS_ENABLED(CONFIG_HYPERV) */
598
599 /*
600 * Comment's format: document - errata name - stepping - processor name.
601 * Refer from
602 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
603 */
604 static u32 vmx_preemption_cpu_tfms[] = {
605 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
606 0x000206E6,
607 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
608 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
609 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
610 0x00020652,
611 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
612 0x00020655,
613 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
614 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
615 /*
616 * 320767.pdf - AAP86 - B1 -
617 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
618 */
619 0x000106E5,
620 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
621 0x000106A0,
622 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
623 0x000106A1,
624 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
625 0x000106A4,
626 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
627 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
628 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
629 0x000106A5,
630 /* Xeon E3-1220 V2 */
631 0x000306A8,
632 };
633
cpu_has_broken_vmx_preemption_timer(void)634 static inline bool cpu_has_broken_vmx_preemption_timer(void)
635 {
636 u32 eax = cpuid_eax(0x00000001), i;
637
638 /* Clear the reserved bits */
639 eax &= ~(0x3U << 14 | 0xfU << 28);
640 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
641 if (eax == vmx_preemption_cpu_tfms[i])
642 return true;
643
644 return false;
645 }
646
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)647 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
648 {
649 return flexpriority_enabled && lapic_in_kernel(vcpu);
650 }
651
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 int i;
655
656 i = kvm_find_user_return_msr(msr);
657 if (i >= 0)
658 return &vmx->guest_uret_msrs[i];
659 return NULL;
660 }
661
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 struct vmx_uret_msr *msr, u64 data)
664 {
665 unsigned int slot = msr - vmx->guest_uret_msrs;
666 int ret = 0;
667
668 if (msr->load_into_hardware) {
669 preempt_disable();
670 ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 preempt_enable();
672 }
673 if (!ret)
674 msr->data = data;
675 return ret;
676 }
677
678 /*
679 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
680 *
681 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
682 * atomically track post-VMXON state, e.g. this may be called in NMI context.
683 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
684 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
685 * magically in RM, VM86, compat mode, or at CPL>0.
686 */
kvm_cpu_vmxoff(void)687 static int kvm_cpu_vmxoff(void)
688 {
689 asm goto("1: vmxoff\n\t"
690 _ASM_EXTABLE(1b, %l[fault])
691 ::: "cc", "memory" : fault);
692
693 cr4_clear_bits(X86_CR4_VMXE);
694 return 0;
695
696 fault:
697 cr4_clear_bits(X86_CR4_VMXE);
698 return -EIO;
699 }
700
vmx_emergency_disable_virtualization_cpu(void)701 void vmx_emergency_disable_virtualization_cpu(void)
702 {
703 int cpu = raw_smp_processor_id();
704 struct loaded_vmcs *v;
705
706 kvm_rebooting = true;
707
708 /*
709 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
710 * set in task context. If this races with VMX is disabled by an NMI,
711 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
712 * kvm_rebooting set.
713 */
714 if (!(__read_cr4() & X86_CR4_VMXE))
715 return;
716
717 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
718 loaded_vmcss_on_cpu_link) {
719 vmcs_clear(v->vmcs);
720 if (v->shadow_vmcs)
721 vmcs_clear(v->shadow_vmcs);
722 }
723
724 kvm_cpu_vmxoff();
725 }
726
__loaded_vmcs_clear(void * arg)727 static void __loaded_vmcs_clear(void *arg)
728 {
729 struct loaded_vmcs *loaded_vmcs = arg;
730 int cpu = raw_smp_processor_id();
731
732 if (loaded_vmcs->cpu != cpu)
733 return; /* vcpu migration can race with cpu offline */
734 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
735 per_cpu(current_vmcs, cpu) = NULL;
736
737 vmcs_clear(loaded_vmcs->vmcs);
738 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
739 vmcs_clear(loaded_vmcs->shadow_vmcs);
740
741 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
742
743 /*
744 * Ensure all writes to loaded_vmcs, including deleting it from its
745 * current percpu list, complete before setting loaded_vmcs->cpu to
746 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
747 * and add loaded_vmcs to its percpu list before it's deleted from this
748 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
749 */
750 smp_wmb();
751
752 loaded_vmcs->cpu = -1;
753 loaded_vmcs->launched = 0;
754 }
755
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)756 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
757 {
758 int cpu = loaded_vmcs->cpu;
759
760 if (cpu != -1)
761 smp_call_function_single(cpu,
762 __loaded_vmcs_clear, loaded_vmcs, 1);
763 }
764
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)765 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
766 unsigned field)
767 {
768 bool ret;
769 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
770
771 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
772 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
773 vmx->segment_cache.bitmask = 0;
774 }
775 ret = vmx->segment_cache.bitmask & mask;
776 vmx->segment_cache.bitmask |= mask;
777 return ret;
778 }
779
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)780 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
781 {
782 u16 *p = &vmx->segment_cache.seg[seg].selector;
783
784 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
785 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
786 return *p;
787 }
788
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)789 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
790 {
791 ulong *p = &vmx->segment_cache.seg[seg].base;
792
793 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
794 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
795 return *p;
796 }
797
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)798 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
799 {
800 u32 *p = &vmx->segment_cache.seg[seg].limit;
801
802 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
803 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
804 return *p;
805 }
806
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)807 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
808 {
809 u32 *p = &vmx->segment_cache.seg[seg].ar;
810
811 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
812 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
813 return *p;
814 }
815
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)816 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
817 {
818 u32 eb;
819
820 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
821 (1u << DB_VECTOR) | (1u << AC_VECTOR);
822 /*
823 * #VE isn't used for VMX. To test against unexpected changes
824 * related to #VE for VMX, intercept unexpected #VE and warn on it.
825 */
826 if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
827 eb |= 1u << VE_VECTOR;
828 /*
829 * Guest access to VMware backdoor ports could legitimately
830 * trigger #GP because of TSS I/O permission bitmap.
831 * We intercept those #GP and allow access to them anyway
832 * as VMware does.
833 */
834 if (enable_vmware_backdoor)
835 eb |= (1u << GP_VECTOR);
836 if ((vcpu->guest_debug &
837 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
838 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
839 eb |= 1u << BP_VECTOR;
840 if (to_vmx(vcpu)->rmode.vm86_active)
841 eb = ~0;
842 if (!vmx_need_pf_intercept(vcpu))
843 eb &= ~(1u << PF_VECTOR);
844
845 /* When we are running a nested L2 guest and L1 specified for it a
846 * certain exception bitmap, we must trap the same exceptions and pass
847 * them to L1. When running L2, we will only handle the exceptions
848 * specified above if L1 did not want them.
849 */
850 if (is_guest_mode(vcpu))
851 eb |= get_vmcs12(vcpu)->exception_bitmap;
852 else {
853 int mask = 0, match = 0;
854
855 if (enable_ept && (eb & (1u << PF_VECTOR))) {
856 /*
857 * If EPT is enabled, #PF is currently only intercepted
858 * if MAXPHYADDR is smaller on the guest than on the
859 * host. In that case we only care about present,
860 * non-reserved faults. For vmcs02, however, PFEC_MASK
861 * and PFEC_MATCH are set in prepare_vmcs02_rare.
862 */
863 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
864 match = PFERR_PRESENT_MASK;
865 }
866 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
867 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
868 }
869
870 /*
871 * Disabling xfd interception indicates that dynamic xfeatures
872 * might be used in the guest. Always trap #NM in this case
873 * to save guest xfd_err timely.
874 */
875 if (vcpu->arch.xfd_no_write_intercept)
876 eb |= (1u << NM_VECTOR);
877
878 vmcs_write32(EXCEPTION_BITMAP, eb);
879 }
880
881 /*
882 * Check if MSR is intercepted for currently loaded MSR bitmap.
883 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)884 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
885 {
886 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
887 return true;
888
889 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
890 }
891
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)892 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
893 {
894 unsigned int flags = 0;
895
896 if (vmx->loaded_vmcs->launched)
897 flags |= VMX_RUN_VMRESUME;
898
899 /*
900 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
901 * to change it directly without causing a vmexit. In that case read
902 * it after vmexit and store it in vmx->spec_ctrl.
903 */
904 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
905 flags |= VMX_RUN_SAVE_SPEC_CTRL;
906
907 if (static_branch_unlikely(&cpu_buf_vm_clear) &&
908 kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
909 flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
910
911 return flags;
912 }
913
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)914 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
915 unsigned long entry, unsigned long exit)
916 {
917 vm_entry_controls_clearbit(vmx, entry);
918 vm_exit_controls_clearbit(vmx, exit);
919 }
920
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)921 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
922 {
923 unsigned int i;
924
925 for (i = 0; i < m->nr; ++i) {
926 if (m->val[i].index == msr)
927 return i;
928 }
929 return -ENOENT;
930 }
931
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)932 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
933 {
934 int i;
935 struct msr_autoload *m = &vmx->msr_autoload;
936
937 switch (msr) {
938 case MSR_EFER:
939 if (cpu_has_load_ia32_efer()) {
940 clear_atomic_switch_msr_special(vmx,
941 VM_ENTRY_LOAD_IA32_EFER,
942 VM_EXIT_LOAD_IA32_EFER);
943 return;
944 }
945 break;
946 case MSR_CORE_PERF_GLOBAL_CTRL:
947 if (cpu_has_load_perf_global_ctrl()) {
948 clear_atomic_switch_msr_special(vmx,
949 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
950 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
951 return;
952 }
953 break;
954 }
955 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
956 if (i < 0)
957 goto skip_guest;
958 --m->guest.nr;
959 m->guest.val[i] = m->guest.val[m->guest.nr];
960 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
961
962 skip_guest:
963 i = vmx_find_loadstore_msr_slot(&m->host, msr);
964 if (i < 0)
965 return;
966
967 --m->host.nr;
968 m->host.val[i] = m->host.val[m->host.nr];
969 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
970 }
971
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)972 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
973 unsigned long entry, unsigned long exit,
974 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
975 u64 guest_val, u64 host_val)
976 {
977 vmcs_write64(guest_val_vmcs, guest_val);
978 if (host_val_vmcs != HOST_IA32_EFER)
979 vmcs_write64(host_val_vmcs, host_val);
980 vm_entry_controls_setbit(vmx, entry);
981 vm_exit_controls_setbit(vmx, exit);
982 }
983
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)984 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
985 u64 guest_val, u64 host_val, bool entry_only)
986 {
987 int i, j = 0;
988 struct msr_autoload *m = &vmx->msr_autoload;
989
990 switch (msr) {
991 case MSR_EFER:
992 if (cpu_has_load_ia32_efer()) {
993 add_atomic_switch_msr_special(vmx,
994 VM_ENTRY_LOAD_IA32_EFER,
995 VM_EXIT_LOAD_IA32_EFER,
996 GUEST_IA32_EFER,
997 HOST_IA32_EFER,
998 guest_val, host_val);
999 return;
1000 }
1001 break;
1002 case MSR_CORE_PERF_GLOBAL_CTRL:
1003 if (cpu_has_load_perf_global_ctrl()) {
1004 add_atomic_switch_msr_special(vmx,
1005 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1006 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1007 GUEST_IA32_PERF_GLOBAL_CTRL,
1008 HOST_IA32_PERF_GLOBAL_CTRL,
1009 guest_val, host_val);
1010 return;
1011 }
1012 break;
1013 case MSR_IA32_PEBS_ENABLE:
1014 /* PEBS needs a quiescent period after being disabled (to write
1015 * a record). Disabling PEBS through VMX MSR swapping doesn't
1016 * provide that period, so a CPU could write host's record into
1017 * guest's memory.
1018 */
1019 wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1020 }
1021
1022 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1023 if (!entry_only)
1024 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1025
1026 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1027 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1028 printk_once(KERN_WARNING "Not enough msr switch entries. "
1029 "Can't add msr %x\n", msr);
1030 return;
1031 }
1032 if (i < 0) {
1033 i = m->guest.nr++;
1034 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1035 }
1036 m->guest.val[i].index = msr;
1037 m->guest.val[i].value = guest_val;
1038
1039 if (entry_only)
1040 return;
1041
1042 if (j < 0) {
1043 j = m->host.nr++;
1044 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1045 }
1046 m->host.val[j].index = msr;
1047 m->host.val[j].value = host_val;
1048 }
1049
update_transition_efer(struct vcpu_vmx * vmx)1050 static bool update_transition_efer(struct vcpu_vmx *vmx)
1051 {
1052 u64 guest_efer = vmx->vcpu.arch.efer;
1053 u64 ignore_bits = 0;
1054 int i;
1055
1056 /* Shadow paging assumes NX to be available. */
1057 if (!enable_ept)
1058 guest_efer |= EFER_NX;
1059
1060 /*
1061 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1062 */
1063 ignore_bits |= EFER_SCE;
1064 #ifdef CONFIG_X86_64
1065 ignore_bits |= EFER_LMA | EFER_LME;
1066 /* SCE is meaningful only in long mode on Intel */
1067 if (guest_efer & EFER_LMA)
1068 ignore_bits &= ~(u64)EFER_SCE;
1069 #endif
1070
1071 /*
1072 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1073 * On CPUs that support "load IA32_EFER", always switch EFER
1074 * atomically, since it's faster than switching it manually.
1075 */
1076 if (cpu_has_load_ia32_efer() ||
1077 (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1078 if (!(guest_efer & EFER_LMA))
1079 guest_efer &= ~EFER_LME;
1080 if (guest_efer != kvm_host.efer)
1081 add_atomic_switch_msr(vmx, MSR_EFER,
1082 guest_efer, kvm_host.efer, false);
1083 else
1084 clear_atomic_switch_msr(vmx, MSR_EFER);
1085 return false;
1086 }
1087
1088 i = kvm_find_user_return_msr(MSR_EFER);
1089 if (i < 0)
1090 return false;
1091
1092 clear_atomic_switch_msr(vmx, MSR_EFER);
1093
1094 guest_efer &= ~ignore_bits;
1095 guest_efer |= kvm_host.efer & ignore_bits;
1096
1097 vmx->guest_uret_msrs[i].data = guest_efer;
1098 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1099
1100 return true;
1101 }
1102
1103 #ifdef CONFIG_X86_32
1104 /*
1105 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1106 * VMCS rather than the segment table. KVM uses this helper to figure
1107 * out the current bases to poke them into the VMCS before entry.
1108 */
segment_base(u16 selector)1109 static unsigned long segment_base(u16 selector)
1110 {
1111 struct desc_struct *table;
1112 unsigned long v;
1113
1114 if (!(selector & ~SEGMENT_RPL_MASK))
1115 return 0;
1116
1117 table = get_current_gdt_ro();
1118
1119 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1120 u16 ldt_selector = kvm_read_ldt();
1121
1122 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1123 return 0;
1124
1125 table = (struct desc_struct *)segment_base(ldt_selector);
1126 }
1127 v = get_desc_base(&table[selector >> 3]);
1128 return v;
1129 }
1130 #endif
1131
pt_can_write_msr(struct vcpu_vmx * vmx)1132 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1133 {
1134 return vmx_pt_mode_is_host_guest() &&
1135 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1136 }
1137
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1138 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1139 {
1140 /* The base must be 128-byte aligned and a legal physical address. */
1141 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1142 }
1143
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1144 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1145 {
1146 u32 i;
1147
1148 wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1149 wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1150 wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1151 wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1152 for (i = 0; i < addr_range; i++) {
1153 wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1154 wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1155 }
1156 }
1157
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1158 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1159 {
1160 u32 i;
1161
1162 rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1163 rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1164 rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1165 rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1166 for (i = 0; i < addr_range; i++) {
1167 rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1168 rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1169 }
1170 }
1171
pt_guest_enter(struct vcpu_vmx * vmx)1172 static void pt_guest_enter(struct vcpu_vmx *vmx)
1173 {
1174 if (vmx_pt_mode_is_system())
1175 return;
1176
1177 /*
1178 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1179 * Save host state before VM entry.
1180 */
1181 rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1182 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1183 wrmsrq(MSR_IA32_RTIT_CTL, 0);
1184 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1185 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1186 }
1187 }
1188
pt_guest_exit(struct vcpu_vmx * vmx)1189 static void pt_guest_exit(struct vcpu_vmx *vmx)
1190 {
1191 if (vmx_pt_mode_is_system())
1192 return;
1193
1194 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1195 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1196 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1197 }
1198
1199 /*
1200 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1201 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1202 */
1203 if (vmx->pt_desc.host.ctl)
1204 wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1205 }
1206
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1207 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1208 unsigned long fs_base, unsigned long gs_base)
1209 {
1210 if (unlikely(fs_sel != host->fs_sel)) {
1211 if (!(fs_sel & 7))
1212 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1213 else
1214 vmcs_write16(HOST_FS_SELECTOR, 0);
1215 host->fs_sel = fs_sel;
1216 }
1217 if (unlikely(gs_sel != host->gs_sel)) {
1218 if (!(gs_sel & 7))
1219 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1220 else
1221 vmcs_write16(HOST_GS_SELECTOR, 0);
1222 host->gs_sel = gs_sel;
1223 }
1224 if (unlikely(fs_base != host->fs_base)) {
1225 vmcs_writel(HOST_FS_BASE, fs_base);
1226 host->fs_base = fs_base;
1227 }
1228 if (unlikely(gs_base != host->gs_base)) {
1229 vmcs_writel(HOST_GS_BASE, gs_base);
1230 host->gs_base = gs_base;
1231 }
1232 }
1233
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1234 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1235 {
1236 struct vcpu_vmx *vmx = to_vmx(vcpu);
1237 struct vcpu_vt *vt = to_vt(vcpu);
1238 struct vmcs_host_state *host_state;
1239 #ifdef CONFIG_X86_64
1240 int cpu = raw_smp_processor_id();
1241 #endif
1242 unsigned long fs_base, gs_base;
1243 u16 fs_sel, gs_sel;
1244 int i;
1245
1246 /*
1247 * Note that guest MSRs to be saved/restored can also be changed
1248 * when guest state is loaded. This happens when guest transitions
1249 * to/from long-mode by setting MSR_EFER.LMA.
1250 */
1251 if (!vmx->guest_uret_msrs_loaded) {
1252 vmx->guest_uret_msrs_loaded = true;
1253 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1254 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1255 continue;
1256
1257 kvm_set_user_return_msr(i,
1258 vmx->guest_uret_msrs[i].data,
1259 vmx->guest_uret_msrs[i].mask);
1260 }
1261 }
1262
1263 if (vmx->nested.need_vmcs12_to_shadow_sync)
1264 nested_sync_vmcs12_to_shadow(vcpu);
1265
1266 if (vt->guest_state_loaded)
1267 return;
1268
1269 host_state = &vmx->loaded_vmcs->host_state;
1270
1271 /*
1272 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1273 * allow segment selectors with cpl > 0 or ti == 1.
1274 */
1275 host_state->ldt_sel = kvm_read_ldt();
1276
1277 #ifdef CONFIG_X86_64
1278 savesegment(ds, host_state->ds_sel);
1279 savesegment(es, host_state->es_sel);
1280
1281 gs_base = cpu_kernelmode_gs_base(cpu);
1282 if (likely(is_64bit_mm(current->mm))) {
1283 current_save_fsgs();
1284 fs_sel = current->thread.fsindex;
1285 gs_sel = current->thread.gsindex;
1286 fs_base = current->thread.fsbase;
1287 vt->msr_host_kernel_gs_base = current->thread.gsbase;
1288 } else {
1289 savesegment(fs, fs_sel);
1290 savesegment(gs, gs_sel);
1291 fs_base = read_msr(MSR_FS_BASE);
1292 vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1293 }
1294
1295 wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1296 #else
1297 savesegment(fs, fs_sel);
1298 savesegment(gs, gs_sel);
1299 fs_base = segment_base(fs_sel);
1300 gs_base = segment_base(gs_sel);
1301 #endif
1302
1303 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1304 vt->guest_state_loaded = true;
1305 }
1306
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1307 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1308 {
1309 struct vmcs_host_state *host_state;
1310
1311 if (!vmx->vt.guest_state_loaded)
1312 return;
1313
1314 host_state = &vmx->loaded_vmcs->host_state;
1315
1316 ++vmx->vcpu.stat.host_state_reload;
1317
1318 #ifdef CONFIG_X86_64
1319 rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1320 #endif
1321 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1322 kvm_load_ldt(host_state->ldt_sel);
1323 #ifdef CONFIG_X86_64
1324 load_gs_index(host_state->gs_sel);
1325 #else
1326 loadsegment(gs, host_state->gs_sel);
1327 #endif
1328 }
1329 if (host_state->fs_sel & 7)
1330 loadsegment(fs, host_state->fs_sel);
1331 #ifdef CONFIG_X86_64
1332 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1333 loadsegment(ds, host_state->ds_sel);
1334 loadsegment(es, host_state->es_sel);
1335 }
1336 #endif
1337 invalidate_tss_limit();
1338 #ifdef CONFIG_X86_64
1339 wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1340 #endif
1341 load_fixmap_gdt(raw_smp_processor_id());
1342 vmx->vt.guest_state_loaded = false;
1343 vmx->guest_uret_msrs_loaded = false;
1344 }
1345
1346 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1347 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1348 {
1349 preempt_disable();
1350 if (vmx->vt.guest_state_loaded)
1351 rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1352 preempt_enable();
1353 return vmx->msr_guest_kernel_gs_base;
1354 }
1355
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1356 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1357 {
1358 preempt_disable();
1359 if (vmx->vt.guest_state_loaded)
1360 wrmsrq(MSR_KERNEL_GS_BASE, data);
1361 preempt_enable();
1362 vmx->msr_guest_kernel_gs_base = data;
1363 }
1364 #endif
1365
grow_ple_window(struct kvm_vcpu * vcpu)1366 static void grow_ple_window(struct kvm_vcpu *vcpu)
1367 {
1368 struct vcpu_vmx *vmx = to_vmx(vcpu);
1369 unsigned int old = vmx->ple_window;
1370
1371 vmx->ple_window = __grow_ple_window(old, ple_window,
1372 ple_window_grow,
1373 ple_window_max);
1374
1375 if (vmx->ple_window != old) {
1376 vmx->ple_window_dirty = true;
1377 trace_kvm_ple_window_update(vcpu->vcpu_id,
1378 vmx->ple_window, old);
1379 }
1380 }
1381
shrink_ple_window(struct kvm_vcpu * vcpu)1382 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1383 {
1384 struct vcpu_vmx *vmx = to_vmx(vcpu);
1385 unsigned int old = vmx->ple_window;
1386
1387 vmx->ple_window = __shrink_ple_window(old, ple_window,
1388 ple_window_shrink,
1389 ple_window);
1390
1391 if (vmx->ple_window != old) {
1392 vmx->ple_window_dirty = true;
1393 trace_kvm_ple_window_update(vcpu->vcpu_id,
1394 vmx->ple_window, old);
1395 }
1396 }
1397
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1398 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1399 {
1400 struct vcpu_vmx *vmx = to_vmx(vcpu);
1401 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1402 struct vmcs *prev;
1403
1404 if (!already_loaded) {
1405 loaded_vmcs_clear(vmx->loaded_vmcs);
1406 local_irq_disable();
1407
1408 /*
1409 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1410 * this cpu's percpu list, otherwise it may not yet be deleted
1411 * from its previous cpu's percpu list. Pairs with the
1412 * smb_wmb() in __loaded_vmcs_clear().
1413 */
1414 smp_rmb();
1415
1416 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1417 &per_cpu(loaded_vmcss_on_cpu, cpu));
1418 local_irq_enable();
1419 }
1420
1421 prev = per_cpu(current_vmcs, cpu);
1422 if (prev != vmx->loaded_vmcs->vmcs) {
1423 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1424 vmcs_load(vmx->loaded_vmcs->vmcs);
1425 }
1426
1427 if (!already_loaded) {
1428 void *gdt = get_current_gdt_ro();
1429
1430 /*
1431 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1432 * TLB entries from its previous association with the vCPU.
1433 */
1434 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1435
1436 /*
1437 * Linux uses per-cpu TSS and GDT, so set these when switching
1438 * processors. See 22.2.4.
1439 */
1440 vmcs_writel(HOST_TR_BASE,
1441 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1442 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1443
1444 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1445 /* 22.2.3 */
1446 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1447 (unsigned long)(cpu_entry_stack(cpu) + 1));
1448 }
1449
1450 vmx->loaded_vmcs->cpu = cpu;
1451 }
1452 }
1453
1454 /*
1455 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1456 * vcpu mutex is already taken.
1457 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1458 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1459 {
1460 if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1461 shrink_ple_window(vcpu);
1462
1463 vmx_vcpu_load_vmcs(vcpu, cpu);
1464
1465 vmx_vcpu_pi_load(vcpu, cpu);
1466 }
1467
vmx_vcpu_put(struct kvm_vcpu * vcpu)1468 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1469 {
1470 vmx_vcpu_pi_put(vcpu);
1471
1472 vmx_prepare_switch_to_host(to_vmx(vcpu));
1473 }
1474
vmx_emulation_required(struct kvm_vcpu * vcpu)1475 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1476 {
1477 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1478 }
1479
vmx_get_rflags(struct kvm_vcpu * vcpu)1480 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1481 {
1482 struct vcpu_vmx *vmx = to_vmx(vcpu);
1483 unsigned long rflags, save_rflags;
1484
1485 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1486 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1487 rflags = vmcs_readl(GUEST_RFLAGS);
1488 if (vmx->rmode.vm86_active) {
1489 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1490 save_rflags = vmx->rmode.save_rflags;
1491 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1492 }
1493 vmx->rflags = rflags;
1494 }
1495 return vmx->rflags;
1496 }
1497
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1498 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1499 {
1500 struct vcpu_vmx *vmx = to_vmx(vcpu);
1501 unsigned long old_rflags;
1502
1503 /*
1504 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1505 * is an unrestricted guest in order to mark L2 as needing emulation
1506 * if L1 runs L2 as a restricted guest.
1507 */
1508 if (is_unrestricted_guest(vcpu)) {
1509 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1510 vmx->rflags = rflags;
1511 vmcs_writel(GUEST_RFLAGS, rflags);
1512 return;
1513 }
1514
1515 old_rflags = vmx_get_rflags(vcpu);
1516 vmx->rflags = rflags;
1517 if (vmx->rmode.vm86_active) {
1518 vmx->rmode.save_rflags = rflags;
1519 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1520 }
1521 vmcs_writel(GUEST_RFLAGS, rflags);
1522
1523 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1524 vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1525 }
1526
vmx_get_if_flag(struct kvm_vcpu * vcpu)1527 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1528 {
1529 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1530 }
1531
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1532 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1533 {
1534 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1535 int ret = 0;
1536
1537 if (interruptibility & GUEST_INTR_STATE_STI)
1538 ret |= KVM_X86_SHADOW_INT_STI;
1539 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1540 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1541
1542 return ret;
1543 }
1544
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1545 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1546 {
1547 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1548 u32 interruptibility = interruptibility_old;
1549
1550 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1551
1552 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1553 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1554 else if (mask & KVM_X86_SHADOW_INT_STI)
1555 interruptibility |= GUEST_INTR_STATE_STI;
1556
1557 if ((interruptibility != interruptibility_old))
1558 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1559 }
1560
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1561 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1562 {
1563 struct vcpu_vmx *vmx = to_vmx(vcpu);
1564 unsigned long value;
1565
1566 /*
1567 * Any MSR write that attempts to change bits marked reserved will
1568 * case a #GP fault.
1569 */
1570 if (data & vmx->pt_desc.ctl_bitmask)
1571 return 1;
1572
1573 /*
1574 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1575 * result in a #GP unless the same write also clears TraceEn.
1576 */
1577 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1578 (data & RTIT_CTL_TRACEEN) &&
1579 data != vmx->pt_desc.guest.ctl)
1580 return 1;
1581
1582 /*
1583 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1584 * and FabricEn would cause #GP, if
1585 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1586 */
1587 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1588 !(data & RTIT_CTL_FABRIC_EN) &&
1589 !intel_pt_validate_cap(vmx->pt_desc.caps,
1590 PT_CAP_single_range_output))
1591 return 1;
1592
1593 /*
1594 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1595 * utilize encodings marked reserved will cause a #GP fault.
1596 */
1597 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1598 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1599 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1600 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1601 return 1;
1602 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1603 PT_CAP_cycle_thresholds);
1604 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1605 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1606 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1607 return 1;
1608 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1609 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1610 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1611 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1612 return 1;
1613
1614 /*
1615 * If ADDRx_CFG is reserved or the encodings is >2 will
1616 * cause a #GP fault.
1617 */
1618 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1619 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1620 return 1;
1621 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1622 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1623 return 1;
1624 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1625 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1626 return 1;
1627 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1628 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1629 return 1;
1630
1631 return 0;
1632 }
1633
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1634 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1635 void *insn, int insn_len)
1636 {
1637 /*
1638 * Emulation of instructions in SGX enclaves is impossible as RIP does
1639 * not point at the failing instruction, and even if it did, the code
1640 * stream is inaccessible. Inject #UD instead of exiting to userspace
1641 * so that guest userspace can't DoS the guest simply by triggering
1642 * emulation (enclaves are CPL3 only).
1643 */
1644 if (vmx_get_exit_reason(vcpu).enclave_mode) {
1645 kvm_queue_exception(vcpu, UD_VECTOR);
1646 return X86EMUL_PROPAGATE_FAULT;
1647 }
1648
1649 /* Check that emulation is possible during event vectoring */
1650 if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1651 !kvm_can_emulate_event_vectoring(emul_type))
1652 return X86EMUL_UNHANDLEABLE_VECTORING;
1653
1654 return X86EMUL_CONTINUE;
1655 }
1656
skip_emulated_instruction(struct kvm_vcpu * vcpu)1657 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1658 {
1659 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1660 unsigned long rip, orig_rip;
1661 u32 instr_len;
1662
1663 /*
1664 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1665 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1666 * set when EPT misconfig occurs. In practice, real hardware updates
1667 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1668 * (namely Hyper-V) don't set it due to it being undefined behavior,
1669 * i.e. we end up advancing IP with some random value.
1670 */
1671 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1672 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1673 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1674
1675 /*
1676 * Emulating an enclave's instructions isn't supported as KVM
1677 * cannot access the enclave's memory or its true RIP, e.g. the
1678 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1679 * the RIP that actually triggered the VM-Exit. But, because
1680 * most instructions that cause VM-Exit will #UD in an enclave,
1681 * most instruction-based VM-Exits simply do not occur.
1682 *
1683 * There are a few exceptions, notably the debug instructions
1684 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1685 * and generate #DB/#BP as expected, which KVM might intercept.
1686 * But again, the CPU does the dirty work and saves an instr
1687 * length of zero so VMMs don't shoot themselves in the foot.
1688 * WARN if KVM tries to skip a non-zero length instruction on
1689 * a VM-Exit from an enclave.
1690 */
1691 if (!instr_len)
1692 goto rip_updated;
1693
1694 WARN_ONCE(exit_reason.enclave_mode,
1695 "skipping instruction after SGX enclave VM-Exit");
1696
1697 orig_rip = kvm_rip_read(vcpu);
1698 rip = orig_rip + instr_len;
1699 #ifdef CONFIG_X86_64
1700 /*
1701 * We need to mask out the high 32 bits of RIP if not in 64-bit
1702 * mode, but just finding out that we are in 64-bit mode is
1703 * quite expensive. Only do it if there was a carry.
1704 */
1705 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1706 rip = (u32)rip;
1707 #endif
1708 kvm_rip_write(vcpu, rip);
1709 } else {
1710 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1711 return 0;
1712 }
1713
1714 rip_updated:
1715 /* skipping an emulated instruction also counts */
1716 vmx_set_interrupt_shadow(vcpu, 0);
1717
1718 return 1;
1719 }
1720
1721 /*
1722 * Recognizes a pending MTF VM-exit and records the nested state for later
1723 * delivery.
1724 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1725 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1726 {
1727 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1728 struct vcpu_vmx *vmx = to_vmx(vcpu);
1729
1730 if (!is_guest_mode(vcpu))
1731 return;
1732
1733 /*
1734 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1735 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1736 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1737 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1738 * as ICEBP is higher priority than both. As instruction emulation is
1739 * completed at this point (i.e. KVM is at the instruction boundary),
1740 * any #DB exception pending delivery must be a debug-trap of lower
1741 * priority than MTF. Record the pending MTF state to be delivered in
1742 * vmx_check_nested_events().
1743 */
1744 if (nested_cpu_has_mtf(vmcs12) &&
1745 (!vcpu->arch.exception.pending ||
1746 vcpu->arch.exception.vector == DB_VECTOR) &&
1747 (!vcpu->arch.exception_vmexit.pending ||
1748 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1749 vmx->nested.mtf_pending = true;
1750 kvm_make_request(KVM_REQ_EVENT, vcpu);
1751 } else {
1752 vmx->nested.mtf_pending = false;
1753 }
1754 }
1755
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1756 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1757 {
1758 vmx_update_emulated_instruction(vcpu);
1759 return skip_emulated_instruction(vcpu);
1760 }
1761
vmx_clear_hlt(struct kvm_vcpu * vcpu)1762 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1763 {
1764 /*
1765 * Ensure that we clear the HLT state in the VMCS. We don't need to
1766 * explicitly skip the instruction because if the HLT state is set,
1767 * then the instruction is already executing and RIP has already been
1768 * advanced.
1769 */
1770 if (kvm_hlt_in_guest(vcpu->kvm) &&
1771 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1772 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1773 }
1774
vmx_inject_exception(struct kvm_vcpu * vcpu)1775 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1776 {
1777 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1778 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1779 struct vcpu_vmx *vmx = to_vmx(vcpu);
1780
1781 kvm_deliver_exception_payload(vcpu, ex);
1782
1783 if (ex->has_error_code) {
1784 /*
1785 * Despite the error code being architecturally defined as 32
1786 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1787 * VMX don't actually supporting setting bits 31:16. Hardware
1788 * will (should) never provide a bogus error code, but AMD CPUs
1789 * do generate error codes with bits 31:16 set, and so KVM's
1790 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1791 * the upper bits to avoid VM-Fail, losing information that
1792 * doesn't really exist is preferable to killing the VM.
1793 */
1794 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1795 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1796 }
1797
1798 if (vmx->rmode.vm86_active) {
1799 int inc_eip = 0;
1800 if (kvm_exception_is_soft(ex->vector))
1801 inc_eip = vcpu->arch.event_exit_inst_len;
1802 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1803 return;
1804 }
1805
1806 WARN_ON_ONCE(vmx->vt.emulation_required);
1807
1808 if (kvm_exception_is_soft(ex->vector)) {
1809 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1810 vmx->vcpu.arch.event_exit_inst_len);
1811 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1812 } else
1813 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1814
1815 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1816
1817 vmx_clear_hlt(vcpu);
1818 }
1819
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1820 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1821 bool load_into_hardware)
1822 {
1823 struct vmx_uret_msr *uret_msr;
1824
1825 uret_msr = vmx_find_uret_msr(vmx, msr);
1826 if (!uret_msr)
1827 return;
1828
1829 uret_msr->load_into_hardware = load_into_hardware;
1830 }
1831
1832 /*
1833 * Configuring user return MSRs to automatically save, load, and restore MSRs
1834 * that need to be shoved into hardware when running the guest. Note, omitting
1835 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1836 * loaded into hardware when running the guest.
1837 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1838 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1839 {
1840 #ifdef CONFIG_X86_64
1841 bool load_syscall_msrs;
1842
1843 /*
1844 * The SYSCALL MSRs are only needed on long mode guests, and only
1845 * when EFER.SCE is set.
1846 */
1847 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1848 (vmx->vcpu.arch.efer & EFER_SCE);
1849
1850 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1851 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1852 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1853 #endif
1854 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1855
1856 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1857 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1858 guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1859
1860 /*
1861 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1862 * kernel and old userspace. If those guests run on a tsx=off host, do
1863 * allow guests to use TSX_CTRL, but don't change the value in hardware
1864 * so that TSX remains always disabled.
1865 */
1866 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1867
1868 /*
1869 * The set of MSRs to load may have changed, reload MSRs before the
1870 * next VM-Enter.
1871 */
1872 vmx->guest_uret_msrs_loaded = false;
1873 }
1874
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1875 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1876 {
1877 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1878
1879 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1880 return vmcs12->tsc_offset;
1881
1882 return 0;
1883 }
1884
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1885 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1886 {
1887 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1888
1889 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1890 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1891 return vmcs12->tsc_multiplier;
1892
1893 return kvm_caps.default_tsc_scaling_ratio;
1894 }
1895
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1896 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1897 {
1898 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1899 }
1900
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1901 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1902 {
1903 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1904 }
1905
1906 /*
1907 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1908 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1909 * backwards compatibility even though KVM doesn't support emulating SMX. And
1910 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1911 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1912 */
1913 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1914 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1915 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1916 FEAT_CTL_SGX_LC_ENABLED | \
1917 FEAT_CTL_SGX_ENABLED | \
1918 FEAT_CTL_LMCE_ENABLED)
1919
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1920 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1921 struct msr_data *msr)
1922 {
1923 uint64_t valid_bits;
1924
1925 /*
1926 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1927 * exposed to the guest.
1928 */
1929 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1930 ~KVM_SUPPORTED_FEATURE_CONTROL);
1931
1932 if (!msr->host_initiated &&
1933 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1934 return false;
1935
1936 if (msr->host_initiated)
1937 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1938 else
1939 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1940
1941 return !(msr->data & ~valid_bits);
1942 }
1943
vmx_get_feature_msr(u32 msr,u64 * data)1944 int vmx_get_feature_msr(u32 msr, u64 *data)
1945 {
1946 switch (msr) {
1947 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1948 if (!nested)
1949 return 1;
1950 return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
1951 default:
1952 return KVM_MSR_RET_UNSUPPORTED;
1953 }
1954 }
1955
1956 /*
1957 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1958 * Returns 0 on success, non-0 otherwise.
1959 * Assumes vcpu_load() was already called.
1960 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1961 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1962 {
1963 struct vcpu_vmx *vmx = to_vmx(vcpu);
1964 struct vmx_uret_msr *msr;
1965 u32 index;
1966
1967 switch (msr_info->index) {
1968 #ifdef CONFIG_X86_64
1969 case MSR_FS_BASE:
1970 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1971 break;
1972 case MSR_GS_BASE:
1973 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1974 break;
1975 case MSR_KERNEL_GS_BASE:
1976 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1977 break;
1978 #endif
1979 case MSR_EFER:
1980 return kvm_get_msr_common(vcpu, msr_info);
1981 case MSR_IA32_TSX_CTRL:
1982 if (!msr_info->host_initiated &&
1983 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1984 return 1;
1985 goto find_uret_msr;
1986 case MSR_IA32_UMWAIT_CONTROL:
1987 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1988 return 1;
1989
1990 msr_info->data = vmx->msr_ia32_umwait_control;
1991 break;
1992 case MSR_IA32_SPEC_CTRL:
1993 if (!msr_info->host_initiated &&
1994 !guest_has_spec_ctrl_msr(vcpu))
1995 return 1;
1996
1997 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1998 break;
1999 case MSR_IA32_SYSENTER_CS:
2000 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2001 break;
2002 case MSR_IA32_SYSENTER_EIP:
2003 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2004 break;
2005 case MSR_IA32_SYSENTER_ESP:
2006 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2007 break;
2008 case MSR_IA32_BNDCFGS:
2009 if (!kvm_mpx_supported() ||
2010 (!msr_info->host_initiated &&
2011 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2012 return 1;
2013 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2014 break;
2015 case MSR_IA32_MCG_EXT_CTL:
2016 if (!msr_info->host_initiated &&
2017 !(vmx->msr_ia32_feature_control &
2018 FEAT_CTL_LMCE_ENABLED))
2019 return 1;
2020 msr_info->data = vcpu->arch.mcg_ext_ctl;
2021 break;
2022 case MSR_IA32_FEAT_CTL:
2023 msr_info->data = vmx->msr_ia32_feature_control;
2024 break;
2025 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2026 if (!msr_info->host_initiated &&
2027 !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2028 return 1;
2029 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2030 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2031 break;
2032 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2033 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2034 return 1;
2035 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2036 &msr_info->data))
2037 return 1;
2038 #ifdef CONFIG_KVM_HYPERV
2039 /*
2040 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2041 * instead of just ignoring the features, different Hyper-V
2042 * versions are either trying to use them and fail or do some
2043 * sanity checking and refuse to boot. Filter all unsupported
2044 * features out.
2045 */
2046 if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2047 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2048 &msr_info->data);
2049 #endif
2050 break;
2051 case MSR_IA32_RTIT_CTL:
2052 if (!vmx_pt_mode_is_host_guest())
2053 return 1;
2054 msr_info->data = vmx->pt_desc.guest.ctl;
2055 break;
2056 case MSR_IA32_RTIT_STATUS:
2057 if (!vmx_pt_mode_is_host_guest())
2058 return 1;
2059 msr_info->data = vmx->pt_desc.guest.status;
2060 break;
2061 case MSR_IA32_RTIT_CR3_MATCH:
2062 if (!vmx_pt_mode_is_host_guest() ||
2063 !intel_pt_validate_cap(vmx->pt_desc.caps,
2064 PT_CAP_cr3_filtering))
2065 return 1;
2066 msr_info->data = vmx->pt_desc.guest.cr3_match;
2067 break;
2068 case MSR_IA32_RTIT_OUTPUT_BASE:
2069 if (!vmx_pt_mode_is_host_guest() ||
2070 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2071 PT_CAP_topa_output) &&
2072 !intel_pt_validate_cap(vmx->pt_desc.caps,
2073 PT_CAP_single_range_output)))
2074 return 1;
2075 msr_info->data = vmx->pt_desc.guest.output_base;
2076 break;
2077 case MSR_IA32_RTIT_OUTPUT_MASK:
2078 if (!vmx_pt_mode_is_host_guest() ||
2079 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2080 PT_CAP_topa_output) &&
2081 !intel_pt_validate_cap(vmx->pt_desc.caps,
2082 PT_CAP_single_range_output)))
2083 return 1;
2084 msr_info->data = vmx->pt_desc.guest.output_mask;
2085 break;
2086 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2087 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2088 if (!vmx_pt_mode_is_host_guest() ||
2089 (index >= 2 * vmx->pt_desc.num_address_ranges))
2090 return 1;
2091 if (index % 2)
2092 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2093 else
2094 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2095 break;
2096 case MSR_IA32_DEBUGCTLMSR:
2097 msr_info->data = vmx_guest_debugctl_read();
2098 break;
2099 default:
2100 find_uret_msr:
2101 msr = vmx_find_uret_msr(vmx, msr_info->index);
2102 if (msr) {
2103 msr_info->data = msr->data;
2104 break;
2105 }
2106 return kvm_get_msr_common(vcpu, msr_info);
2107 }
2108
2109 return 0;
2110 }
2111
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2112 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2113 u64 data)
2114 {
2115 #ifdef CONFIG_X86_64
2116 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2117 return (u32)data;
2118 #endif
2119 return (unsigned long)data;
2120 }
2121
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2122 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2123 {
2124 u64 debugctl = 0;
2125
2126 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2127 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2128 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2129
2130 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2131 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2132 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2133
2134 if (boot_cpu_has(X86_FEATURE_RTM) &&
2135 (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2136 debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2137
2138 return debugctl;
2139 }
2140
vmx_is_valid_debugctl(struct kvm_vcpu * vcpu,u64 data,bool host_initiated)2141 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2142 {
2143 u64 invalid;
2144
2145 invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2146 if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2147 kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2148 invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2149 }
2150 return !invalid;
2151 }
2152
2153 /*
2154 * Writes msr value into the appropriate "register".
2155 * Returns 0 on success, non-0 otherwise.
2156 * Assumes vcpu_load() was already called.
2157 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2158 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2159 {
2160 struct vcpu_vmx *vmx = to_vmx(vcpu);
2161 struct vmx_uret_msr *msr;
2162 int ret = 0;
2163 u32 msr_index = msr_info->index;
2164 u64 data = msr_info->data;
2165 u32 index;
2166
2167 switch (msr_index) {
2168 case MSR_EFER:
2169 ret = kvm_set_msr_common(vcpu, msr_info);
2170 break;
2171 #ifdef CONFIG_X86_64
2172 case MSR_FS_BASE:
2173 vmx_segment_cache_clear(vmx);
2174 vmcs_writel(GUEST_FS_BASE, data);
2175 break;
2176 case MSR_GS_BASE:
2177 vmx_segment_cache_clear(vmx);
2178 vmcs_writel(GUEST_GS_BASE, data);
2179 break;
2180 case MSR_KERNEL_GS_BASE:
2181 vmx_write_guest_kernel_gs_base(vmx, data);
2182 break;
2183 case MSR_IA32_XFD:
2184 ret = kvm_set_msr_common(vcpu, msr_info);
2185 /*
2186 * Always intercepting WRMSR could incur non-negligible
2187 * overhead given xfd might be changed frequently in
2188 * guest context switch. Disable write interception
2189 * upon the first write with a non-zero value (indicating
2190 * potential usage on dynamic xfeatures). Also update
2191 * exception bitmap to trap #NM for proper virtualization
2192 * of guest xfd_err.
2193 */
2194 if (!ret && data) {
2195 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2196 MSR_TYPE_RW);
2197 vcpu->arch.xfd_no_write_intercept = true;
2198 vmx_update_exception_bitmap(vcpu);
2199 }
2200 break;
2201 #endif
2202 case MSR_IA32_SYSENTER_CS:
2203 if (is_guest_mode(vcpu))
2204 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2205 vmcs_write32(GUEST_SYSENTER_CS, data);
2206 break;
2207 case MSR_IA32_SYSENTER_EIP:
2208 if (is_guest_mode(vcpu)) {
2209 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2210 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2211 }
2212 vmcs_writel(GUEST_SYSENTER_EIP, data);
2213 break;
2214 case MSR_IA32_SYSENTER_ESP:
2215 if (is_guest_mode(vcpu)) {
2216 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2217 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2218 }
2219 vmcs_writel(GUEST_SYSENTER_ESP, data);
2220 break;
2221 case MSR_IA32_DEBUGCTLMSR:
2222 if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2223 return 1;
2224
2225 data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2226
2227 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2228 VM_EXIT_SAVE_DEBUG_CONTROLS)
2229 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2230
2231 vmx_guest_debugctl_write(vcpu, data);
2232
2233 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2234 (data & DEBUGCTLMSR_LBR))
2235 intel_pmu_create_guest_lbr_event(vcpu);
2236 return 0;
2237 case MSR_IA32_BNDCFGS:
2238 if (!kvm_mpx_supported() ||
2239 (!msr_info->host_initiated &&
2240 !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2241 return 1;
2242 if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2243 (data & MSR_IA32_BNDCFGS_RSVD))
2244 return 1;
2245
2246 if (is_guest_mode(vcpu) &&
2247 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2248 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2249 get_vmcs12(vcpu)->guest_bndcfgs = data;
2250
2251 vmcs_write64(GUEST_BNDCFGS, data);
2252 break;
2253 case MSR_IA32_UMWAIT_CONTROL:
2254 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2255 return 1;
2256
2257 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2258 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2259 return 1;
2260
2261 vmx->msr_ia32_umwait_control = data;
2262 break;
2263 case MSR_IA32_SPEC_CTRL:
2264 if (!msr_info->host_initiated &&
2265 !guest_has_spec_ctrl_msr(vcpu))
2266 return 1;
2267
2268 if (kvm_spec_ctrl_test_value(data))
2269 return 1;
2270
2271 vmx->spec_ctrl = data;
2272 if (!data)
2273 break;
2274
2275 /*
2276 * For non-nested:
2277 * When it's written (to non-zero) for the first time, pass
2278 * it through.
2279 *
2280 * For nested:
2281 * The handling of the MSR bitmap for L2 guests is done in
2282 * nested_vmx_prepare_msr_bitmap. We should not touch the
2283 * vmcs02.msr_bitmap here since it gets completely overwritten
2284 * in the merging. We update the vmcs01 here for L1 as well
2285 * since it will end up touching the MSR anyway now.
2286 */
2287 vmx_disable_intercept_for_msr(vcpu,
2288 MSR_IA32_SPEC_CTRL,
2289 MSR_TYPE_RW);
2290 break;
2291 case MSR_IA32_TSX_CTRL:
2292 if (!msr_info->host_initiated &&
2293 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2294 return 1;
2295 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2296 return 1;
2297 goto find_uret_msr;
2298 case MSR_IA32_CR_PAT:
2299 ret = kvm_set_msr_common(vcpu, msr_info);
2300 if (ret)
2301 break;
2302
2303 if (is_guest_mode(vcpu) &&
2304 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2305 get_vmcs12(vcpu)->guest_ia32_pat = data;
2306
2307 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2308 vmcs_write64(GUEST_IA32_PAT, data);
2309 break;
2310 case MSR_IA32_MCG_EXT_CTL:
2311 if ((!msr_info->host_initiated &&
2312 !(to_vmx(vcpu)->msr_ia32_feature_control &
2313 FEAT_CTL_LMCE_ENABLED)) ||
2314 (data & ~MCG_EXT_CTL_LMCE_EN))
2315 return 1;
2316 vcpu->arch.mcg_ext_ctl = data;
2317 break;
2318 case MSR_IA32_FEAT_CTL:
2319 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2320 return 1;
2321
2322 vmx->msr_ia32_feature_control = data;
2323 if (msr_info->host_initiated && data == 0)
2324 vmx_leave_nested(vcpu);
2325
2326 /* SGX may be enabled/disabled by guest's firmware */
2327 vmx_write_encls_bitmap(vcpu, NULL);
2328 break;
2329 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2330 /*
2331 * On real hardware, the LE hash MSRs are writable before
2332 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2333 * at which point SGX related bits in IA32_FEATURE_CONTROL
2334 * become writable.
2335 *
2336 * KVM does not emulate SGX activation for simplicity, so
2337 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2338 * is unlocked. This is technically not architectural
2339 * behavior, but it's close enough.
2340 */
2341 if (!msr_info->host_initiated &&
2342 (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2343 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2344 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2345 return 1;
2346 vmx->msr_ia32_sgxlepubkeyhash
2347 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2348 break;
2349 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2350 if (!msr_info->host_initiated)
2351 return 1; /* they are read-only */
2352 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2353 return 1;
2354 return vmx_set_vmx_msr(vcpu, msr_index, data);
2355 case MSR_IA32_RTIT_CTL:
2356 if (!vmx_pt_mode_is_host_guest() ||
2357 vmx_rtit_ctl_check(vcpu, data) ||
2358 vmx->nested.vmxon)
2359 return 1;
2360 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2361 vmx->pt_desc.guest.ctl = data;
2362 pt_update_intercept_for_msr(vcpu);
2363 break;
2364 case MSR_IA32_RTIT_STATUS:
2365 if (!pt_can_write_msr(vmx))
2366 return 1;
2367 if (data & MSR_IA32_RTIT_STATUS_MASK)
2368 return 1;
2369 vmx->pt_desc.guest.status = data;
2370 break;
2371 case MSR_IA32_RTIT_CR3_MATCH:
2372 if (!pt_can_write_msr(vmx))
2373 return 1;
2374 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2375 PT_CAP_cr3_filtering))
2376 return 1;
2377 vmx->pt_desc.guest.cr3_match = data;
2378 break;
2379 case MSR_IA32_RTIT_OUTPUT_BASE:
2380 if (!pt_can_write_msr(vmx))
2381 return 1;
2382 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2383 PT_CAP_topa_output) &&
2384 !intel_pt_validate_cap(vmx->pt_desc.caps,
2385 PT_CAP_single_range_output))
2386 return 1;
2387 if (!pt_output_base_valid(vcpu, data))
2388 return 1;
2389 vmx->pt_desc.guest.output_base = data;
2390 break;
2391 case MSR_IA32_RTIT_OUTPUT_MASK:
2392 if (!pt_can_write_msr(vmx))
2393 return 1;
2394 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395 PT_CAP_topa_output) &&
2396 !intel_pt_validate_cap(vmx->pt_desc.caps,
2397 PT_CAP_single_range_output))
2398 return 1;
2399 vmx->pt_desc.guest.output_mask = data;
2400 break;
2401 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2402 if (!pt_can_write_msr(vmx))
2403 return 1;
2404 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2405 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2406 return 1;
2407 if (is_noncanonical_msr_address(data, vcpu))
2408 return 1;
2409 if (index % 2)
2410 vmx->pt_desc.guest.addr_b[index / 2] = data;
2411 else
2412 vmx->pt_desc.guest.addr_a[index / 2] = data;
2413 break;
2414 case MSR_IA32_PERF_CAPABILITIES:
2415 if (data & PMU_CAP_LBR_FMT) {
2416 if ((data & PMU_CAP_LBR_FMT) !=
2417 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2418 return 1;
2419 if (!cpuid_model_is_consistent(vcpu))
2420 return 1;
2421 }
2422 if (data & PERF_CAP_PEBS_FORMAT) {
2423 if ((data & PERF_CAP_PEBS_MASK) !=
2424 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2425 return 1;
2426 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2427 return 1;
2428 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2429 return 1;
2430 if (!cpuid_model_is_consistent(vcpu))
2431 return 1;
2432 }
2433 ret = kvm_set_msr_common(vcpu, msr_info);
2434 break;
2435
2436 default:
2437 find_uret_msr:
2438 msr = vmx_find_uret_msr(vmx, msr_index);
2439 if (msr)
2440 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2441 else
2442 ret = kvm_set_msr_common(vcpu, msr_info);
2443 }
2444
2445 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2446 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2447 vmx_update_fb_clear_dis(vcpu, vmx);
2448
2449 return ret;
2450 }
2451
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2452 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2453 {
2454 unsigned long guest_owned_bits;
2455
2456 kvm_register_mark_available(vcpu, reg);
2457
2458 switch (reg) {
2459 case VCPU_REGS_RSP:
2460 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2461 break;
2462 case VCPU_REGS_RIP:
2463 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2464 break;
2465 case VCPU_EXREG_PDPTR:
2466 if (enable_ept)
2467 ept_save_pdptrs(vcpu);
2468 break;
2469 case VCPU_EXREG_CR0:
2470 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2471
2472 vcpu->arch.cr0 &= ~guest_owned_bits;
2473 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2474 break;
2475 case VCPU_EXREG_CR3:
2476 /*
2477 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2478 * CR3 is loaded into hardware, not the guest's CR3.
2479 */
2480 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2481 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2482 break;
2483 case VCPU_EXREG_CR4:
2484 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2485
2486 vcpu->arch.cr4 &= ~guest_owned_bits;
2487 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2488 break;
2489 default:
2490 KVM_BUG_ON(1, vcpu->kvm);
2491 break;
2492 }
2493 }
2494
2495 /*
2496 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2497 * directly instead of going through cpu_has(), to ensure KVM is trapping
2498 * ENCLS whenever it's supported in hardware. It does not matter whether
2499 * the host OS supports or has enabled SGX.
2500 */
cpu_has_sgx(void)2501 static bool cpu_has_sgx(void)
2502 {
2503 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2504 }
2505
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2506 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2507 {
2508 u32 vmx_msr_low, vmx_msr_high;
2509 u32 ctl = ctl_min | ctl_opt;
2510
2511 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2512
2513 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2514 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2515
2516 /* Ensure minimum (required) set of control bits are supported. */
2517 if (ctl_min & ~ctl)
2518 return -EIO;
2519
2520 *result = ctl;
2521 return 0;
2522 }
2523
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2524 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2525 {
2526 u64 allowed;
2527
2528 rdmsrq(msr, allowed);
2529
2530 return ctl_opt & allowed;
2531 }
2532
2533 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls) \
2534 ({ \
2535 int i, r = 0; \
2536 \
2537 BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls)); \
2538 BUILD_BUG_ON(sizeof(pairs[0].exit_control) != sizeof(exit_controls)); \
2539 \
2540 for (i = 0; i < ARRAY_SIZE(pairs); i++) { \
2541 typeof(entry_controls) n_ctrl = pairs[i].entry_control; \
2542 typeof(exit_controls) x_ctrl = pairs[i].exit_control; \
2543 \
2544 if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl)) \
2545 continue; \
2546 \
2547 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, " \
2548 "entry = %llx (%llx), exit = %llx (%llx)\n", \
2549 (u64)(entry_controls & n_ctrl), (u64)n_ctrl, \
2550 (u64)(exit_controls & x_ctrl), (u64)x_ctrl); \
2551 \
2552 if (error_on_inconsistent_vmcs_config) \
2553 r = -EIO; \
2554 \
2555 entry_controls &= ~n_ctrl; \
2556 exit_controls &= ~x_ctrl; \
2557 } \
2558 r; \
2559 })
2560
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2561 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2562 struct vmx_capability *vmx_cap)
2563 {
2564 u32 _pin_based_exec_control = 0;
2565 u32 _cpu_based_exec_control = 0;
2566 u32 _cpu_based_2nd_exec_control = 0;
2567 u64 _cpu_based_3rd_exec_control = 0;
2568 u32 _vmexit_control = 0;
2569 u32 _vmentry_control = 0;
2570 u64 basic_msr;
2571 u64 misc_msr;
2572
2573 /*
2574 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2575 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2576 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2577 */
2578 struct {
2579 u32 entry_control;
2580 u32 exit_control;
2581 } const vmcs_entry_exit_pairs[] = {
2582 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2583 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2584 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2585 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2586 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2587 };
2588
2589 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2590
2591 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2592 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2593 MSR_IA32_VMX_PROCBASED_CTLS,
2594 &_cpu_based_exec_control))
2595 return -EIO;
2596 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2597 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2598 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2599 MSR_IA32_VMX_PROCBASED_CTLS2,
2600 &_cpu_based_2nd_exec_control))
2601 return -EIO;
2602 }
2603 if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2604 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2605
2606 #ifndef CONFIG_X86_64
2607 if (!(_cpu_based_2nd_exec_control &
2608 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2609 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2610 #endif
2611
2612 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2613 _cpu_based_2nd_exec_control &= ~(
2614 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2615 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2616 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2617
2618 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2619 &vmx_cap->ept, &vmx_cap->vpid);
2620
2621 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2622 vmx_cap->ept) {
2623 pr_warn_once("EPT CAP should not exist if not support "
2624 "1-setting enable EPT VM-execution control\n");
2625
2626 if (error_on_inconsistent_vmcs_config)
2627 return -EIO;
2628
2629 vmx_cap->ept = 0;
2630 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2631 }
2632 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2633 vmx_cap->vpid) {
2634 pr_warn_once("VPID CAP should not exist if not support "
2635 "1-setting enable VPID VM-execution control\n");
2636
2637 if (error_on_inconsistent_vmcs_config)
2638 return -EIO;
2639
2640 vmx_cap->vpid = 0;
2641 }
2642
2643 if (!cpu_has_sgx())
2644 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2645
2646 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2647 _cpu_based_3rd_exec_control =
2648 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2649 MSR_IA32_VMX_PROCBASED_CTLS3);
2650
2651 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2652 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2653 MSR_IA32_VMX_EXIT_CTLS,
2654 &_vmexit_control))
2655 return -EIO;
2656
2657 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2658 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2659 MSR_IA32_VMX_PINBASED_CTLS,
2660 &_pin_based_exec_control))
2661 return -EIO;
2662
2663 if (cpu_has_broken_vmx_preemption_timer())
2664 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2665 if (!(_cpu_based_2nd_exec_control &
2666 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2667 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2668
2669 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2670 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2671 MSR_IA32_VMX_ENTRY_CTLS,
2672 &_vmentry_control))
2673 return -EIO;
2674
2675 if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2676 _vmentry_control, _vmexit_control))
2677 return -EIO;
2678
2679 /*
2680 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2681 * can't be used due to an errata where VM Exit may incorrectly clear
2682 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2683 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2684 */
2685 switch (boot_cpu_data.x86_vfm) {
2686 case INTEL_NEHALEM_EP: /* AAK155 */
2687 case INTEL_NEHALEM: /* AAP115 */
2688 case INTEL_WESTMERE: /* AAT100 */
2689 case INTEL_WESTMERE_EP: /* BC86,AAY89,BD102 */
2690 case INTEL_NEHALEM_EX: /* BA97 */
2691 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2692 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2693 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2694 "does not work properly. Using workaround\n");
2695 break;
2696 default:
2697 break;
2698 }
2699
2700 rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2701
2702 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2703 if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2704 return -EIO;
2705
2706 #ifdef CONFIG_X86_64
2707 /*
2708 * KVM expects to be able to shove all legal physical addresses into
2709 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2710 * 0 for processors that support Intel 64 architecture".
2711 */
2712 if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2713 return -EIO;
2714 #endif
2715
2716 /* Require Write-Back (WB) memory type for VMCS accesses. */
2717 if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2718 return -EIO;
2719
2720 rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2721
2722 vmcs_conf->basic = basic_msr;
2723 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2724 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2725 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2726 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2727 vmcs_conf->vmexit_ctrl = _vmexit_control;
2728 vmcs_conf->vmentry_ctrl = _vmentry_control;
2729 vmcs_conf->misc = misc_msr;
2730
2731 #if IS_ENABLED(CONFIG_HYPERV)
2732 if (enlightened_vmcs)
2733 evmcs_sanitize_exec_ctrls(vmcs_conf);
2734 #endif
2735
2736 return 0;
2737 }
2738
__kvm_is_vmx_supported(void)2739 static bool __kvm_is_vmx_supported(void)
2740 {
2741 int cpu = smp_processor_id();
2742
2743 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2744 pr_err("VMX not supported by CPU %d\n", cpu);
2745 return false;
2746 }
2747
2748 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2749 !this_cpu_has(X86_FEATURE_VMX)) {
2750 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2751 return false;
2752 }
2753
2754 return true;
2755 }
2756
kvm_is_vmx_supported(void)2757 static bool kvm_is_vmx_supported(void)
2758 {
2759 bool supported;
2760
2761 migrate_disable();
2762 supported = __kvm_is_vmx_supported();
2763 migrate_enable();
2764
2765 return supported;
2766 }
2767
vmx_check_processor_compat(void)2768 int vmx_check_processor_compat(void)
2769 {
2770 int cpu = raw_smp_processor_id();
2771 struct vmcs_config vmcs_conf;
2772 struct vmx_capability vmx_cap;
2773
2774 if (!__kvm_is_vmx_supported())
2775 return -EIO;
2776
2777 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2778 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2779 return -EIO;
2780 }
2781 if (nested)
2782 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2783 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2784 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2785 return -EIO;
2786 }
2787 return 0;
2788 }
2789
kvm_cpu_vmxon(u64 vmxon_pointer)2790 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2791 {
2792 u64 msr;
2793
2794 cr4_set_bits(X86_CR4_VMXE);
2795
2796 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2797 _ASM_EXTABLE(1b, %l[fault])
2798 : : [vmxon_pointer] "m"(vmxon_pointer)
2799 : : fault);
2800 return 0;
2801
2802 fault:
2803 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2804 rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2805 cr4_clear_bits(X86_CR4_VMXE);
2806
2807 return -EFAULT;
2808 }
2809
vmx_enable_virtualization_cpu(void)2810 int vmx_enable_virtualization_cpu(void)
2811 {
2812 int cpu = raw_smp_processor_id();
2813 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2814 int r;
2815
2816 if (cr4_read_shadow() & X86_CR4_VMXE)
2817 return -EBUSY;
2818
2819 /*
2820 * This can happen if we hot-added a CPU but failed to allocate
2821 * VP assist page for it.
2822 */
2823 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2824 return -EFAULT;
2825
2826 intel_pt_handle_vmx(1);
2827
2828 r = kvm_cpu_vmxon(phys_addr);
2829 if (r) {
2830 intel_pt_handle_vmx(0);
2831 return r;
2832 }
2833
2834 return 0;
2835 }
2836
vmclear_local_loaded_vmcss(void)2837 static void vmclear_local_loaded_vmcss(void)
2838 {
2839 int cpu = raw_smp_processor_id();
2840 struct loaded_vmcs *v, *n;
2841
2842 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2843 loaded_vmcss_on_cpu_link)
2844 __loaded_vmcs_clear(v);
2845 }
2846
vmx_disable_virtualization_cpu(void)2847 void vmx_disable_virtualization_cpu(void)
2848 {
2849 vmclear_local_loaded_vmcss();
2850
2851 if (kvm_cpu_vmxoff())
2852 kvm_spurious_fault();
2853
2854 hv_reset_evmcs();
2855
2856 intel_pt_handle_vmx(0);
2857 }
2858
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2859 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2860 {
2861 int node = cpu_to_node(cpu);
2862 struct page *pages;
2863 struct vmcs *vmcs;
2864
2865 pages = __alloc_pages_node(node, flags, 0);
2866 if (!pages)
2867 return NULL;
2868 vmcs = page_address(pages);
2869 memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2870
2871 /* KVM supports Enlightened VMCS v1 only */
2872 if (kvm_is_using_evmcs())
2873 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2874 else
2875 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2876
2877 if (shadow)
2878 vmcs->hdr.shadow_vmcs = 1;
2879 return vmcs;
2880 }
2881
free_vmcs(struct vmcs * vmcs)2882 void free_vmcs(struct vmcs *vmcs)
2883 {
2884 free_page((unsigned long)vmcs);
2885 }
2886
2887 /*
2888 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2889 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2890 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2891 {
2892 if (!loaded_vmcs->vmcs)
2893 return;
2894 loaded_vmcs_clear(loaded_vmcs);
2895 free_vmcs(loaded_vmcs->vmcs);
2896 loaded_vmcs->vmcs = NULL;
2897 if (loaded_vmcs->msr_bitmap)
2898 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2899 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2900 }
2901
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2902 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2903 {
2904 loaded_vmcs->vmcs = alloc_vmcs(false);
2905 if (!loaded_vmcs->vmcs)
2906 return -ENOMEM;
2907
2908 vmcs_clear(loaded_vmcs->vmcs);
2909
2910 loaded_vmcs->shadow_vmcs = NULL;
2911 loaded_vmcs->hv_timer_soft_disabled = false;
2912 loaded_vmcs->cpu = -1;
2913 loaded_vmcs->launched = 0;
2914
2915 if (cpu_has_vmx_msr_bitmap()) {
2916 loaded_vmcs->msr_bitmap = (unsigned long *)
2917 __get_free_page(GFP_KERNEL_ACCOUNT);
2918 if (!loaded_vmcs->msr_bitmap)
2919 goto out_vmcs;
2920 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2921 }
2922
2923 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2924 memset(&loaded_vmcs->controls_shadow, 0,
2925 sizeof(struct vmcs_controls_shadow));
2926
2927 return 0;
2928
2929 out_vmcs:
2930 free_loaded_vmcs(loaded_vmcs);
2931 return -ENOMEM;
2932 }
2933
free_kvm_area(void)2934 static void free_kvm_area(void)
2935 {
2936 int cpu;
2937
2938 for_each_possible_cpu(cpu) {
2939 free_vmcs(per_cpu(vmxarea, cpu));
2940 per_cpu(vmxarea, cpu) = NULL;
2941 }
2942 }
2943
alloc_kvm_area(void)2944 static __init int alloc_kvm_area(void)
2945 {
2946 int cpu;
2947
2948 for_each_possible_cpu(cpu) {
2949 struct vmcs *vmcs;
2950
2951 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2952 if (!vmcs) {
2953 free_kvm_area();
2954 return -ENOMEM;
2955 }
2956
2957 /*
2958 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2959 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2960 * revision_id reported by MSR_IA32_VMX_BASIC.
2961 *
2962 * However, even though not explicitly documented by
2963 * TLFS, VMXArea passed as VMXON argument should
2964 * still be marked with revision_id reported by
2965 * physical CPU.
2966 */
2967 if (kvm_is_using_evmcs())
2968 vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2969
2970 per_cpu(vmxarea, cpu) = vmcs;
2971 }
2972 return 0;
2973 }
2974
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2975 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2976 struct kvm_segment *save)
2977 {
2978 if (!emulate_invalid_guest_state) {
2979 /*
2980 * CS and SS RPL should be equal during guest entry according
2981 * to VMX spec, but in reality it is not always so. Since vcpu
2982 * is in the middle of the transition from real mode to
2983 * protected mode it is safe to assume that RPL 0 is a good
2984 * default value.
2985 */
2986 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2987 save->selector &= ~SEGMENT_RPL_MASK;
2988 save->dpl = save->selector & SEGMENT_RPL_MASK;
2989 save->s = 1;
2990 }
2991 __vmx_set_segment(vcpu, save, seg);
2992 }
2993
enter_pmode(struct kvm_vcpu * vcpu)2994 static void enter_pmode(struct kvm_vcpu *vcpu)
2995 {
2996 unsigned long flags;
2997 struct vcpu_vmx *vmx = to_vmx(vcpu);
2998
2999 /*
3000 * Update real mode segment cache. It may be not up-to-date if segment
3001 * register was written while vcpu was in a guest mode.
3002 */
3003 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3004 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3005 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3006 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3008 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3009
3010 vmx->rmode.vm86_active = 0;
3011
3012 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3013
3014 flags = vmcs_readl(GUEST_RFLAGS);
3015 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3016 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3017 vmcs_writel(GUEST_RFLAGS, flags);
3018
3019 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3020 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3021
3022 vmx_update_exception_bitmap(vcpu);
3023
3024 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3025 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3026 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3027 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3028 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3029 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3030 }
3031
fix_rmode_seg(int seg,struct kvm_segment * save)3032 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3033 {
3034 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035 struct kvm_segment var = *save;
3036
3037 var.dpl = 0x3;
3038 if (seg == VCPU_SREG_CS)
3039 var.type = 0x3;
3040
3041 if (!emulate_invalid_guest_state) {
3042 var.selector = var.base >> 4;
3043 var.base = var.base & 0xffff0;
3044 var.limit = 0xffff;
3045 var.g = 0;
3046 var.db = 0;
3047 var.present = 1;
3048 var.s = 1;
3049 var.l = 0;
3050 var.unusable = 0;
3051 var.type = 0x3;
3052 var.avl = 0;
3053 if (save->base & 0xf)
3054 pr_warn_once("segment base is not paragraph aligned "
3055 "when entering protected mode (seg=%d)", seg);
3056 }
3057
3058 vmcs_write16(sf->selector, var.selector);
3059 vmcs_writel(sf->base, var.base);
3060 vmcs_write32(sf->limit, var.limit);
3061 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3062 }
3063
enter_rmode(struct kvm_vcpu * vcpu)3064 static void enter_rmode(struct kvm_vcpu *vcpu)
3065 {
3066 unsigned long flags;
3067 struct vcpu_vmx *vmx = to_vmx(vcpu);
3068 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3069
3070 /*
3071 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3072 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3073 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3074 * should VM-Fail and KVM should reject userspace attempts to stuff
3075 * CR0.PG=0 when L2 is active.
3076 */
3077 WARN_ON_ONCE(is_guest_mode(vcpu));
3078
3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3080 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3081 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3082 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3083 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3084 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3085 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3086
3087 vmx->rmode.vm86_active = 1;
3088
3089 vmx_segment_cache_clear(vmx);
3090
3091 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3092 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3093 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3094
3095 flags = vmcs_readl(GUEST_RFLAGS);
3096 vmx->rmode.save_rflags = flags;
3097
3098 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3099
3100 vmcs_writel(GUEST_RFLAGS, flags);
3101 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3102 vmx_update_exception_bitmap(vcpu);
3103
3104 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3105 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3106 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3107 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3108 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3109 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3110 }
3111
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3112 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3113 {
3114 struct vcpu_vmx *vmx = to_vmx(vcpu);
3115
3116 /* Nothing to do if hardware doesn't support EFER. */
3117 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3118 return 0;
3119
3120 vcpu->arch.efer = efer;
3121 #ifdef CONFIG_X86_64
3122 if (efer & EFER_LMA)
3123 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3124 else
3125 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3126 #else
3127 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3128 return 1;
3129 #endif
3130
3131 vmx_setup_uret_msrs(vmx);
3132 return 0;
3133 }
3134
3135 #ifdef CONFIG_X86_64
3136
enter_lmode(struct kvm_vcpu * vcpu)3137 static void enter_lmode(struct kvm_vcpu *vcpu)
3138 {
3139 u32 guest_tr_ar;
3140
3141 vmx_segment_cache_clear(to_vmx(vcpu));
3142
3143 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3144 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3145 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3146 __func__);
3147 vmcs_write32(GUEST_TR_AR_BYTES,
3148 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3149 | VMX_AR_TYPE_BUSY_64_TSS);
3150 }
3151 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3152 }
3153
exit_lmode(struct kvm_vcpu * vcpu)3154 static void exit_lmode(struct kvm_vcpu *vcpu)
3155 {
3156 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3157 }
3158
3159 #endif
3160
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3161 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3162 {
3163 struct vcpu_vmx *vmx = to_vmx(vcpu);
3164
3165 /*
3166 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3167 * the CPU is not required to invalidate guest-physical mappings on
3168 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3169 * associated with the root EPT structure and not any particular VPID
3170 * (INVVPID also isn't required to invalidate guest-physical mappings).
3171 */
3172 if (enable_ept) {
3173 ept_sync_global();
3174 } else if (enable_vpid) {
3175 if (cpu_has_vmx_invvpid_global()) {
3176 vpid_sync_vcpu_global();
3177 } else {
3178 vpid_sync_vcpu_single(vmx->vpid);
3179 vpid_sync_vcpu_single(vmx->nested.vpid02);
3180 }
3181 }
3182 }
3183
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3184 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3185 {
3186 if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3187 return nested_get_vpid02(vcpu);
3188 return to_vmx(vcpu)->vpid;
3189 }
3190
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3191 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3192 {
3193 struct kvm_mmu *mmu = vcpu->arch.mmu;
3194 u64 root_hpa = mmu->root.hpa;
3195
3196 /* No flush required if the current context is invalid. */
3197 if (!VALID_PAGE(root_hpa))
3198 return;
3199
3200 if (enable_ept)
3201 ept_sync_context(construct_eptp(vcpu, root_hpa,
3202 mmu->root_role.level));
3203 else
3204 vpid_sync_context(vmx_get_current_vpid(vcpu));
3205 }
3206
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3207 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3208 {
3209 /*
3210 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3211 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3212 */
3213 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3214 }
3215
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3216 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3217 {
3218 /*
3219 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3220 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3221 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3222 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3223 * i.e. no explicit INVVPID is necessary.
3224 */
3225 vpid_sync_context(vmx_get_current_vpid(vcpu));
3226 }
3227
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3228 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3229 {
3230 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3231
3232 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3233 return;
3234
3235 if (is_pae_paging(vcpu)) {
3236 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3237 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3238 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3239 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3240 }
3241 }
3242
ept_save_pdptrs(struct kvm_vcpu * vcpu)3243 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3244 {
3245 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3246
3247 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3248 return;
3249
3250 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3251 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3252 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3253 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3254
3255 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3256 }
3257
3258 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3259 CPU_BASED_CR3_STORE_EXITING)
3260
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3261 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3262 {
3263 if (is_guest_mode(vcpu))
3264 return nested_guest_cr0_valid(vcpu, cr0);
3265
3266 if (to_vmx(vcpu)->nested.vmxon)
3267 return nested_host_cr0_valid(vcpu, cr0);
3268
3269 return true;
3270 }
3271
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3272 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3273 {
3274 struct vcpu_vmx *vmx = to_vmx(vcpu);
3275 unsigned long hw_cr0, old_cr0_pg;
3276 u32 tmp;
3277
3278 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3279
3280 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3281 if (enable_unrestricted_guest)
3282 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3283 else {
3284 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3285 if (!enable_ept)
3286 hw_cr0 |= X86_CR0_WP;
3287
3288 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3289 enter_pmode(vcpu);
3290
3291 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3292 enter_rmode(vcpu);
3293 }
3294
3295 vmcs_writel(CR0_READ_SHADOW, cr0);
3296 vmcs_writel(GUEST_CR0, hw_cr0);
3297 vcpu->arch.cr0 = cr0;
3298 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3299
3300 #ifdef CONFIG_X86_64
3301 if (vcpu->arch.efer & EFER_LME) {
3302 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3303 enter_lmode(vcpu);
3304 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3305 exit_lmode(vcpu);
3306 }
3307 #endif
3308
3309 if (enable_ept && !enable_unrestricted_guest) {
3310 /*
3311 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3312 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3313 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3314 * KVM's CR3 is installed.
3315 */
3316 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3317 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3318
3319 /*
3320 * When running with EPT but not unrestricted guest, KVM must
3321 * intercept CR3 accesses when paging is _disabled_. This is
3322 * necessary because restricted guests can't actually run with
3323 * paging disabled, and so KVM stuffs its own CR3 in order to
3324 * run the guest when identity mapped page tables.
3325 *
3326 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3327 * update, it may be stale with respect to CR3 interception,
3328 * e.g. after nested VM-Enter.
3329 *
3330 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3331 * stores to forward them to L1, even if KVM does not need to
3332 * intercept them to preserve its identity mapped page tables.
3333 */
3334 if (!(cr0 & X86_CR0_PG)) {
3335 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3336 } else if (!is_guest_mode(vcpu)) {
3337 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3338 } else {
3339 tmp = exec_controls_get(vmx);
3340 tmp &= ~CR3_EXITING_BITS;
3341 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3342 exec_controls_set(vmx, tmp);
3343 }
3344
3345 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3346 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3347 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3348
3349 /*
3350 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3351 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3352 */
3353 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3354 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3355 }
3356
3357 /* depends on vcpu->arch.cr0 to be set to a new value */
3358 vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3359 }
3360
vmx_get_max_ept_level(void)3361 static int vmx_get_max_ept_level(void)
3362 {
3363 if (cpu_has_vmx_ept_5levels())
3364 return 5;
3365 return 4;
3366 }
3367
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3368 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3369 {
3370 u64 eptp = VMX_EPTP_MT_WB;
3371
3372 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3373
3374 if (enable_ept_ad_bits &&
3375 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3376 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3377 eptp |= root_hpa;
3378
3379 return eptp;
3380 }
3381
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3382 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3383 {
3384 struct kvm *kvm = vcpu->kvm;
3385 bool update_guest_cr3 = true;
3386 unsigned long guest_cr3;
3387 u64 eptp;
3388
3389 if (enable_ept) {
3390 eptp = construct_eptp(vcpu, root_hpa, root_level);
3391 vmcs_write64(EPT_POINTER, eptp);
3392
3393 hv_track_root_tdp(vcpu, root_hpa);
3394
3395 if (!enable_unrestricted_guest && !is_paging(vcpu))
3396 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3397 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3398 guest_cr3 = vcpu->arch.cr3;
3399 else /* vmcs.GUEST_CR3 is already up-to-date. */
3400 update_guest_cr3 = false;
3401 vmx_ept_load_pdptrs(vcpu);
3402 } else {
3403 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3404 kvm_get_active_cr3_lam_bits(vcpu);
3405 }
3406
3407 if (update_guest_cr3)
3408 vmcs_writel(GUEST_CR3, guest_cr3);
3409 }
3410
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3411 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3412 {
3413 /*
3414 * We operate under the default treatment of SMM, so VMX cannot be
3415 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3416 * i.e. is a reserved bit, is handled by common x86 code.
3417 */
3418 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3419 return false;
3420
3421 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3422 return false;
3423
3424 return true;
3425 }
3426
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3427 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3428 {
3429 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3430 struct vcpu_vmx *vmx = to_vmx(vcpu);
3431 unsigned long hw_cr4;
3432
3433 /*
3434 * Pass through host's Machine Check Enable value to hw_cr4, which
3435 * is in force while we are in guest mode. Do not let guests control
3436 * this bit, even if host CR4.MCE == 0.
3437 */
3438 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3439 if (enable_unrestricted_guest)
3440 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3441 else if (vmx->rmode.vm86_active)
3442 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3443 else
3444 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3445
3446 if (vmx_umip_emulated()) {
3447 if (cr4 & X86_CR4_UMIP) {
3448 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3449 hw_cr4 &= ~X86_CR4_UMIP;
3450 } else if (!is_guest_mode(vcpu) ||
3451 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3452 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3453 }
3454 }
3455
3456 vcpu->arch.cr4 = cr4;
3457 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3458
3459 if (!enable_unrestricted_guest) {
3460 if (enable_ept) {
3461 if (!is_paging(vcpu)) {
3462 hw_cr4 &= ~X86_CR4_PAE;
3463 hw_cr4 |= X86_CR4_PSE;
3464 } else if (!(cr4 & X86_CR4_PAE)) {
3465 hw_cr4 &= ~X86_CR4_PAE;
3466 }
3467 }
3468
3469 /*
3470 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3471 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3472 * to be manually disabled when guest switches to non-paging
3473 * mode.
3474 *
3475 * If !enable_unrestricted_guest, the CPU is always running
3476 * with CR0.PG=1 and CR4 needs to be modified.
3477 * If enable_unrestricted_guest, the CPU automatically
3478 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3479 */
3480 if (!is_paging(vcpu))
3481 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3482 }
3483
3484 vmcs_writel(CR4_READ_SHADOW, cr4);
3485 vmcs_writel(GUEST_CR4, hw_cr4);
3486
3487 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3488 vcpu->arch.cpuid_dynamic_bits_dirty = true;
3489 }
3490
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3491 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3492 {
3493 struct vcpu_vmx *vmx = to_vmx(vcpu);
3494 u32 ar;
3495
3496 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3497 *var = vmx->rmode.segs[seg];
3498 if (seg == VCPU_SREG_TR
3499 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3500 return;
3501 var->base = vmx_read_guest_seg_base(vmx, seg);
3502 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3503 return;
3504 }
3505 var->base = vmx_read_guest_seg_base(vmx, seg);
3506 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3507 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3508 ar = vmx_read_guest_seg_ar(vmx, seg);
3509 var->unusable = (ar >> 16) & 1;
3510 var->type = ar & 15;
3511 var->s = (ar >> 4) & 1;
3512 var->dpl = (ar >> 5) & 3;
3513 /*
3514 * Some userspaces do not preserve unusable property. Since usable
3515 * segment has to be present according to VMX spec we can use present
3516 * property to amend userspace bug by making unusable segment always
3517 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3518 * segment as unusable.
3519 */
3520 var->present = !var->unusable;
3521 var->avl = (ar >> 12) & 1;
3522 var->l = (ar >> 13) & 1;
3523 var->db = (ar >> 14) & 1;
3524 var->g = (ar >> 15) & 1;
3525 }
3526
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3527 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3528 {
3529 struct kvm_segment s;
3530
3531 if (to_vmx(vcpu)->rmode.vm86_active) {
3532 vmx_get_segment(vcpu, &s, seg);
3533 return s.base;
3534 }
3535 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3536 }
3537
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3538 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3539 {
3540 struct vcpu_vmx *vmx = to_vmx(vcpu);
3541 int ar;
3542
3543 if (unlikely(vmx->rmode.vm86_active))
3544 return 0;
3545
3546 if (no_cache)
3547 ar = vmcs_read32(GUEST_SS_AR_BYTES);
3548 else
3549 ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3550 return VMX_AR_DPL(ar);
3551 }
3552
vmx_get_cpl(struct kvm_vcpu * vcpu)3553 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3554 {
3555 return __vmx_get_cpl(vcpu, false);
3556 }
3557
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3558 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3559 {
3560 return __vmx_get_cpl(vcpu, true);
3561 }
3562
vmx_segment_access_rights(struct kvm_segment * var)3563 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3564 {
3565 u32 ar;
3566
3567 ar = var->type & 15;
3568 ar |= (var->s & 1) << 4;
3569 ar |= (var->dpl & 3) << 5;
3570 ar |= (var->present & 1) << 7;
3571 ar |= (var->avl & 1) << 12;
3572 ar |= (var->l & 1) << 13;
3573 ar |= (var->db & 1) << 14;
3574 ar |= (var->g & 1) << 15;
3575 ar |= (var->unusable || !var->present) << 16;
3576
3577 return ar;
3578 }
3579
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3580 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3581 {
3582 struct vcpu_vmx *vmx = to_vmx(vcpu);
3583 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3584
3585 vmx_segment_cache_clear(vmx);
3586
3587 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3588 vmx->rmode.segs[seg] = *var;
3589 if (seg == VCPU_SREG_TR)
3590 vmcs_write16(sf->selector, var->selector);
3591 else if (var->s)
3592 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3593 return;
3594 }
3595
3596 vmcs_writel(sf->base, var->base);
3597 vmcs_write32(sf->limit, var->limit);
3598 vmcs_write16(sf->selector, var->selector);
3599
3600 /*
3601 * Fix the "Accessed" bit in AR field of segment registers for older
3602 * qemu binaries.
3603 * IA32 arch specifies that at the time of processor reset the
3604 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3605 * is setting it to 0 in the userland code. This causes invalid guest
3606 * state vmexit when "unrestricted guest" mode is turned on.
3607 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3608 * tree. Newer qemu binaries with that qemu fix would not need this
3609 * kvm hack.
3610 */
3611 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3612 var->type |= 0x1; /* Accessed */
3613
3614 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3615 }
3616
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3617 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3618 {
3619 __vmx_set_segment(vcpu, var, seg);
3620
3621 to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3622 }
3623
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3624 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3625 {
3626 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3627
3628 *db = (ar >> 14) & 1;
3629 *l = (ar >> 13) & 1;
3630 }
3631
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3632 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3633 {
3634 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3635 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3636 }
3637
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3638 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3639 {
3640 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3641 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3642 }
3643
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3644 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3645 {
3646 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3647 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3648 }
3649
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3650 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3651 {
3652 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3653 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3654 }
3655
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3656 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3657 {
3658 struct kvm_segment var;
3659 u32 ar;
3660
3661 vmx_get_segment(vcpu, &var, seg);
3662 var.dpl = 0x3;
3663 if (seg == VCPU_SREG_CS)
3664 var.type = 0x3;
3665 ar = vmx_segment_access_rights(&var);
3666
3667 if (var.base != (var.selector << 4))
3668 return false;
3669 if (var.limit != 0xffff)
3670 return false;
3671 if (ar != 0xf3)
3672 return false;
3673
3674 return true;
3675 }
3676
code_segment_valid(struct kvm_vcpu * vcpu)3677 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3678 {
3679 struct kvm_segment cs;
3680 unsigned int cs_rpl;
3681
3682 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3683 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3684
3685 if (cs.unusable)
3686 return false;
3687 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3688 return false;
3689 if (!cs.s)
3690 return false;
3691 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3692 if (cs.dpl > cs_rpl)
3693 return false;
3694 } else {
3695 if (cs.dpl != cs_rpl)
3696 return false;
3697 }
3698 if (!cs.present)
3699 return false;
3700
3701 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3702 return true;
3703 }
3704
stack_segment_valid(struct kvm_vcpu * vcpu)3705 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3706 {
3707 struct kvm_segment ss;
3708 unsigned int ss_rpl;
3709
3710 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3711 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3712
3713 if (ss.unusable)
3714 return true;
3715 if (ss.type != 3 && ss.type != 7)
3716 return false;
3717 if (!ss.s)
3718 return false;
3719 if (ss.dpl != ss_rpl) /* DPL != RPL */
3720 return false;
3721 if (!ss.present)
3722 return false;
3723
3724 return true;
3725 }
3726
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3727 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3728 {
3729 struct kvm_segment var;
3730 unsigned int rpl;
3731
3732 vmx_get_segment(vcpu, &var, seg);
3733 rpl = var.selector & SEGMENT_RPL_MASK;
3734
3735 if (var.unusable)
3736 return true;
3737 if (!var.s)
3738 return false;
3739 if (!var.present)
3740 return false;
3741 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3742 if (var.dpl < rpl) /* DPL < RPL */
3743 return false;
3744 }
3745
3746 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3747 * rights flags
3748 */
3749 return true;
3750 }
3751
tr_valid(struct kvm_vcpu * vcpu)3752 static bool tr_valid(struct kvm_vcpu *vcpu)
3753 {
3754 struct kvm_segment tr;
3755
3756 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3757
3758 if (tr.unusable)
3759 return false;
3760 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3761 return false;
3762 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3763 return false;
3764 if (!tr.present)
3765 return false;
3766
3767 return true;
3768 }
3769
ldtr_valid(struct kvm_vcpu * vcpu)3770 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3771 {
3772 struct kvm_segment ldtr;
3773
3774 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3775
3776 if (ldtr.unusable)
3777 return true;
3778 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3779 return false;
3780 if (ldtr.type != 2)
3781 return false;
3782 if (!ldtr.present)
3783 return false;
3784
3785 return true;
3786 }
3787
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3788 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3789 {
3790 struct kvm_segment cs, ss;
3791
3792 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3793 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3794
3795 return ((cs.selector & SEGMENT_RPL_MASK) ==
3796 (ss.selector & SEGMENT_RPL_MASK));
3797 }
3798
3799 /*
3800 * Check if guest state is valid. Returns true if valid, false if
3801 * not.
3802 * We assume that registers are always usable
3803 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3804 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3805 {
3806 /* real mode guest state checks */
3807 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3808 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3809 return false;
3810 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3811 return false;
3812 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3813 return false;
3814 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3815 return false;
3816 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3817 return false;
3818 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3819 return false;
3820 } else {
3821 /* protected mode guest state checks */
3822 if (!cs_ss_rpl_check(vcpu))
3823 return false;
3824 if (!code_segment_valid(vcpu))
3825 return false;
3826 if (!stack_segment_valid(vcpu))
3827 return false;
3828 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3829 return false;
3830 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3831 return false;
3832 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3833 return false;
3834 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3835 return false;
3836 if (!tr_valid(vcpu))
3837 return false;
3838 if (!ldtr_valid(vcpu))
3839 return false;
3840 }
3841 /* TODO:
3842 * - Add checks on RIP
3843 * - Add checks on RFLAGS
3844 */
3845
3846 return true;
3847 }
3848
init_rmode_tss(struct kvm * kvm,void __user * ua)3849 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3850 {
3851 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3852 u16 data;
3853 int i;
3854
3855 for (i = 0; i < 3; i++) {
3856 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3857 return -EFAULT;
3858 }
3859
3860 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3861 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3862 return -EFAULT;
3863
3864 data = ~0;
3865 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3866 return -EFAULT;
3867
3868 return 0;
3869 }
3870
init_rmode_identity_map(struct kvm * kvm)3871 static int init_rmode_identity_map(struct kvm *kvm)
3872 {
3873 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3874 int i, r = 0;
3875 void __user *uaddr;
3876 u32 tmp;
3877
3878 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3879 mutex_lock(&kvm->slots_lock);
3880
3881 if (likely(kvm_vmx->ept_identity_pagetable_done))
3882 goto out;
3883
3884 if (!kvm_vmx->ept_identity_map_addr)
3885 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3886
3887 uaddr = __x86_set_memory_region(kvm,
3888 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3889 kvm_vmx->ept_identity_map_addr,
3890 PAGE_SIZE);
3891 if (IS_ERR(uaddr)) {
3892 r = PTR_ERR(uaddr);
3893 goto out;
3894 }
3895
3896 /* Set up identity-mapping pagetable for EPT in real mode */
3897 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3898 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3899 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3900 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3901 r = -EFAULT;
3902 goto out;
3903 }
3904 }
3905 kvm_vmx->ept_identity_pagetable_done = true;
3906
3907 out:
3908 mutex_unlock(&kvm->slots_lock);
3909 return r;
3910 }
3911
seg_setup(int seg)3912 static void seg_setup(int seg)
3913 {
3914 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3915 unsigned int ar;
3916
3917 vmcs_write16(sf->selector, 0);
3918 vmcs_writel(sf->base, 0);
3919 vmcs_write32(sf->limit, 0xffff);
3920 ar = 0x93;
3921 if (seg == VCPU_SREG_CS)
3922 ar |= 0x08; /* code segment */
3923
3924 vmcs_write32(sf->ar_bytes, ar);
3925 }
3926
allocate_vpid(void)3927 int allocate_vpid(void)
3928 {
3929 int vpid;
3930
3931 if (!enable_vpid)
3932 return 0;
3933 spin_lock(&vmx_vpid_lock);
3934 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3935 if (vpid < VMX_NR_VPIDS)
3936 __set_bit(vpid, vmx_vpid_bitmap);
3937 else
3938 vpid = 0;
3939 spin_unlock(&vmx_vpid_lock);
3940 return vpid;
3941 }
3942
free_vpid(int vpid)3943 void free_vpid(int vpid)
3944 {
3945 if (!enable_vpid || vpid == 0)
3946 return;
3947 spin_lock(&vmx_vpid_lock);
3948 __clear_bit(vpid, vmx_vpid_bitmap);
3949 spin_unlock(&vmx_vpid_lock);
3950 }
3951
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3952 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3953 {
3954 /*
3955 * When KVM is a nested hypervisor on top of Hyper-V and uses
3956 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3957 * bitmap has changed.
3958 */
3959 if (kvm_is_using_evmcs()) {
3960 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3961
3962 if (evmcs->hv_enlightenments_control.msr_bitmap)
3963 evmcs->hv_clean_fields &=
3964 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3965 }
3966
3967 vmx->nested.force_msr_bitmap_recalc = true;
3968 }
3969
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)3970 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
3971 {
3972 struct vcpu_vmx *vmx = to_vmx(vcpu);
3973 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3974
3975 if (!cpu_has_vmx_msr_bitmap())
3976 return;
3977
3978 vmx_msr_bitmap_l01_changed(vmx);
3979
3980 if (type & MSR_TYPE_R) {
3981 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
3982 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3983 else
3984 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3985 }
3986
3987 if (type & MSR_TYPE_W) {
3988 if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
3989 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3990 else
3991 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3992 }
3993 }
3994
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)3995 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3996 {
3997 /*
3998 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
3999 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4000 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4001 */
4002 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4003 const int write_idx = read_idx + (0x800 / sizeof(u64));
4004 struct vcpu_vmx *vmx = to_vmx(vcpu);
4005 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4006 u8 mode;
4007
4008 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4009 return;
4010
4011 if (cpu_has_secondary_exec_ctrls() &&
4012 (secondary_exec_controls_get(vmx) &
4013 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4014 mode = MSR_BITMAP_MODE_X2APIC;
4015 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4016 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4017 } else {
4018 mode = 0;
4019 }
4020
4021 if (mode == vmx->x2apic_msr_bitmap_mode)
4022 return;
4023
4024 vmx->x2apic_msr_bitmap_mode = mode;
4025
4026 /*
4027 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4028 * registers (0x840 and above) intercepted, KVM doesn't support them.
4029 * Intercept all writes by default and poke holes as needed. Pass
4030 * through reads for all valid registers by default in x2APIC+APICv
4031 * mode, only the current timer count needs on-demand emulation by KVM.
4032 */
4033 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4034 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4035 else
4036 msr_bitmap[read_idx] = ~0ull;
4037 msr_bitmap[write_idx] = ~0ull;
4038
4039 /*
4040 * TPR reads and writes can be virtualized even if virtual interrupt
4041 * delivery is not in use.
4042 */
4043 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4044 !(mode & MSR_BITMAP_MODE_X2APIC));
4045
4046 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4047 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4048 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4049 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4050 if (enable_ipiv)
4051 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4052 }
4053 }
4054
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4055 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4056 {
4057 struct vcpu_vmx *vmx = to_vmx(vcpu);
4058 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4059 u32 i;
4060
4061 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4062 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4063 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4064 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4065 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4066 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4067 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4068 }
4069 }
4070
vmx_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4071 void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4072 {
4073 if (!cpu_has_vmx_msr_bitmap())
4074 return;
4075
4076 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4077 #ifdef CONFIG_X86_64
4078 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4079 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4080 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4081 #endif
4082 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4083 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4084 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4085 if (kvm_cstate_in_guest(vcpu->kvm)) {
4086 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4087 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4088 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4089 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4090 }
4091 if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4092 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4093 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4094 }
4095
4096 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4097 if (vmx_pt_mode_is_host_guest())
4098 pt_update_intercept_for_msr(vcpu);
4099
4100 if (vcpu->arch.xfd_no_write_intercept)
4101 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4102
4103 vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4104 !to_vmx(vcpu)->spec_ctrl);
4105
4106 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4107 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4108 !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4109
4110 if (cpu_feature_enabled(X86_FEATURE_IBPB))
4111 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4112 !guest_has_pred_cmd_msr(vcpu));
4113
4114 if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4115 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4116 !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4117
4118 /*
4119 * x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4120 * filtered by userspace.
4121 */
4122 }
4123
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4124 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4125 int vector)
4126 {
4127 struct vcpu_vmx *vmx = to_vmx(vcpu);
4128
4129 /*
4130 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4131 * and freed, and must not be accessed outside of vcpu->mutex. The
4132 * vCPU's cached PI NV is valid if and only if posted interrupts
4133 * enabled in its vmcs12, i.e. checking the vector also checks that
4134 * L1 has enabled posted interrupts for L2.
4135 */
4136 if (is_guest_mode(vcpu) &&
4137 vector == vmx->nested.posted_intr_nv) {
4138 /*
4139 * If a posted intr is not recognized by hardware,
4140 * we will accomplish it in the next vmentry.
4141 */
4142 vmx->nested.pi_pending = true;
4143 kvm_make_request(KVM_REQ_EVENT, vcpu);
4144
4145 /*
4146 * This pairs with the smp_mb_*() after setting vcpu->mode in
4147 * vcpu_enter_guest() to guarantee the vCPU sees the event
4148 * request if triggering a posted interrupt "fails" because
4149 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4150 * the smb_wmb() in kvm_make_request() only ensures everything
4151 * done before making the request is visible when the request
4152 * is visible, it doesn't ensure ordering between the store to
4153 * vcpu->requests and the load from vcpu->mode.
4154 */
4155 smp_mb__after_atomic();
4156
4157 /* the PIR and ON have been set by L1. */
4158 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4159 return 0;
4160 }
4161 return -1;
4162 }
4163 /*
4164 * Send interrupt to vcpu via posted interrupt way.
4165 * 1. If target vcpu is running(non-root mode), send posted interrupt
4166 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4167 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4168 * interrupt from PIR in next vmentry.
4169 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4170 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4171 {
4172 struct vcpu_vt *vt = to_vt(vcpu);
4173 int r;
4174
4175 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4176 if (!r)
4177 return 0;
4178
4179 /* Note, this is called iff the local APIC is in-kernel. */
4180 if (!vcpu->arch.apic->apicv_active)
4181 return -1;
4182
4183 __vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4184 return 0;
4185 }
4186
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4187 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4188 int trig_mode, int vector)
4189 {
4190 struct kvm_vcpu *vcpu = apic->vcpu;
4191
4192 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4193 kvm_lapic_set_irr(vector, apic);
4194 kvm_make_request(KVM_REQ_EVENT, vcpu);
4195 kvm_vcpu_kick(vcpu);
4196 } else {
4197 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4198 trig_mode, vector);
4199 }
4200 }
4201
4202 /*
4203 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4204 * will not change in the lifetime of the guest.
4205 * Note that host-state that does change is set elsewhere. E.g., host-state
4206 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4207 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4208 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4209 {
4210 u32 low32, high32;
4211 unsigned long tmpl;
4212 unsigned long cr0, cr3, cr4;
4213
4214 cr0 = read_cr0();
4215 WARN_ON(cr0 & X86_CR0_TS);
4216 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4217
4218 /*
4219 * Save the most likely value for this task's CR3 in the VMCS.
4220 * We can't use __get_current_cr3_fast() because we're not atomic.
4221 */
4222 cr3 = __read_cr3();
4223 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4224 vmx->loaded_vmcs->host_state.cr3 = cr3;
4225
4226 /* Save the most likely value for this task's CR4 in the VMCS. */
4227 cr4 = cr4_read_shadow();
4228 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4229 vmx->loaded_vmcs->host_state.cr4 = cr4;
4230
4231 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4232 #ifdef CONFIG_X86_64
4233 /*
4234 * Load null selectors, so we can avoid reloading them in
4235 * vmx_prepare_switch_to_host(), in case userspace uses
4236 * the null selectors too (the expected case).
4237 */
4238 vmcs_write16(HOST_DS_SELECTOR, 0);
4239 vmcs_write16(HOST_ES_SELECTOR, 0);
4240 #else
4241 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4242 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4243 #endif
4244 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4245 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4246
4247 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4248
4249 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4250
4251 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4252 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4253
4254 /*
4255 * SYSENTER is used for 32-bit system calls on either 32-bit or
4256 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4257 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4258 * have already done so!).
4259 */
4260 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4261 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4262
4263 rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4264 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4265
4266 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4267 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4268 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4269 }
4270
4271 if (cpu_has_load_ia32_efer())
4272 vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4273 }
4274
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4275 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4276 {
4277 struct kvm_vcpu *vcpu = &vmx->vcpu;
4278
4279 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4280 ~vcpu->arch.cr4_guest_rsvd_bits;
4281 if (!enable_ept) {
4282 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4283 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4284 }
4285 if (is_guest_mode(&vmx->vcpu))
4286 vcpu->arch.cr4_guest_owned_bits &=
4287 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4288 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4289 }
4290
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4291 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4292 {
4293 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4294
4295 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4296 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4297
4298 if (!enable_vnmi)
4299 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4300
4301 if (!enable_preemption_timer)
4302 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4303
4304 return pin_based_exec_ctrl;
4305 }
4306
vmx_vmentry_ctrl(void)4307 static u32 vmx_vmentry_ctrl(void)
4308 {
4309 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4310
4311 if (vmx_pt_mode_is_system())
4312 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4313 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4314 /*
4315 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4316 */
4317 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4318 VM_ENTRY_LOAD_IA32_EFER |
4319 VM_ENTRY_IA32E_MODE);
4320
4321 return vmentry_ctrl;
4322 }
4323
vmx_vmexit_ctrl(void)4324 static u32 vmx_vmexit_ctrl(void)
4325 {
4326 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4327
4328 /*
4329 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4330 * nested virtualization and thus allowed to be set in vmcs12.
4331 */
4332 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4333 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4334
4335 if (vmx_pt_mode_is_system())
4336 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4337 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4338 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4339 return vmexit_ctrl &
4340 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4341 }
4342
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4343 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4344 {
4345 struct vcpu_vmx *vmx = to_vmx(vcpu);
4346
4347 if (is_guest_mode(vcpu)) {
4348 vmx->nested.update_vmcs01_apicv_status = true;
4349 return;
4350 }
4351
4352 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4353
4354 if (kvm_vcpu_apicv_active(vcpu)) {
4355 secondary_exec_controls_setbit(vmx,
4356 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4357 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4358 if (enable_ipiv)
4359 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4360 } else {
4361 secondary_exec_controls_clearbit(vmx,
4362 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4363 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4364 if (enable_ipiv)
4365 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4366 }
4367
4368 vmx_update_msr_bitmap_x2apic(vcpu);
4369 }
4370
vmx_exec_control(struct vcpu_vmx * vmx)4371 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4372 {
4373 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4374
4375 /*
4376 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4377 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4378 */
4379 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4380 CPU_BASED_USE_IO_BITMAPS |
4381 CPU_BASED_MONITOR_TRAP_FLAG |
4382 CPU_BASED_PAUSE_EXITING);
4383
4384 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4385 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4386 CPU_BASED_NMI_WINDOW_EXITING);
4387
4388 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4389 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4390
4391 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4392 exec_control &= ~CPU_BASED_TPR_SHADOW;
4393
4394 #ifdef CONFIG_X86_64
4395 if (exec_control & CPU_BASED_TPR_SHADOW)
4396 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4397 CPU_BASED_CR8_STORE_EXITING);
4398 else
4399 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4400 CPU_BASED_CR8_LOAD_EXITING;
4401 #endif
4402 /* No need to intercept CR3 access or INVPLG when using EPT. */
4403 if (enable_ept)
4404 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4405 CPU_BASED_CR3_STORE_EXITING |
4406 CPU_BASED_INVLPG_EXITING);
4407 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4408 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4409 CPU_BASED_MONITOR_EXITING);
4410 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4411 exec_control &= ~CPU_BASED_HLT_EXITING;
4412 return exec_control;
4413 }
4414
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4415 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4416 {
4417 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4418
4419 /*
4420 * IPI virtualization relies on APICv. Disable IPI virtualization if
4421 * APICv is inhibited.
4422 */
4423 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4424 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4425
4426 return exec_control;
4427 }
4428
4429 /*
4430 * Adjust a single secondary execution control bit to intercept/allow an
4431 * instruction in the guest. This is usually done based on whether or not a
4432 * feature has been exposed to the guest in order to correctly emulate faults.
4433 */
4434 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4435 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4436 u32 control, bool enabled, bool exiting)
4437 {
4438 /*
4439 * If the control is for an opt-in feature, clear the control if the
4440 * feature is not exposed to the guest, i.e. not enabled. If the
4441 * control is opt-out, i.e. an exiting control, clear the control if
4442 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4443 * disabled for the associated instruction. Note, the caller is
4444 * responsible presetting exec_control to set all supported bits.
4445 */
4446 if (enabled == exiting)
4447 *exec_control &= ~control;
4448
4449 /*
4450 * Update the nested MSR settings so that a nested VMM can/can't set
4451 * controls for features that are/aren't exposed to the guest.
4452 */
4453 if (nested &&
4454 kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4455 /*
4456 * All features that can be added or removed to VMX MSRs must
4457 * be supported in the first place for nested virtualization.
4458 */
4459 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4460 enabled = false;
4461
4462 if (enabled)
4463 vmx->nested.msrs.secondary_ctls_high |= control;
4464 else
4465 vmx->nested.msrs.secondary_ctls_high &= ~control;
4466 }
4467 }
4468
4469 /*
4470 * Wrapper macro for the common case of adjusting a secondary execution control
4471 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4472 * verifies that the control is actually supported by KVM and hardware.
4473 */
4474 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4475 ({ \
4476 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4477 bool __enabled; \
4478 \
4479 if (cpu_has_vmx_##name()) { \
4480 __enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name); \
4481 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4482 __enabled, exiting); \
4483 } \
4484 })
4485
4486 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4487 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4488 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4489
4490 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4491 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4492
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4493 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4494 {
4495 struct kvm_vcpu *vcpu = &vmx->vcpu;
4496
4497 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4498
4499 if (vmx_pt_mode_is_system())
4500 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4501 if (!cpu_need_virtualize_apic_accesses(vcpu))
4502 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4503 if (vmx->vpid == 0)
4504 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4505 if (!enable_ept) {
4506 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4507 exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4508 enable_unrestricted_guest = 0;
4509 }
4510 if (!enable_unrestricted_guest)
4511 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4512 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4513 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4514 if (!kvm_vcpu_apicv_active(vcpu))
4515 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4516 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4517 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4518
4519 /*
4520 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4521 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4522 */
4523 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4524
4525 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4526 * in vmx_set_cr4. */
4527 exec_control &= ~SECONDARY_EXEC_DESC;
4528
4529 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4530 (handle_vmptrld).
4531 We can NOT enable shadow_vmcs here because we don't have yet
4532 a current VMCS12
4533 */
4534 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4535
4536 /*
4537 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4538 * it needs to be set here when dirty logging is already active, e.g.
4539 * if this vCPU was created after dirty logging was enabled.
4540 */
4541 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4542 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4543
4544 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4545
4546 /*
4547 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4548 * feature is exposed to the guest. This creates a virtualization hole
4549 * if both are supported in hardware but only one is exposed to the
4550 * guest, but letting the guest execute RDTSCP or RDPID when either one
4551 * is advertised is preferable to emulating the advertised instruction
4552 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4553 */
4554 if (cpu_has_vmx_rdtscp()) {
4555 bool rdpid_or_rdtscp_enabled =
4556 guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4557 guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4558
4559 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4560 SECONDARY_EXEC_ENABLE_RDTSCP,
4561 rdpid_or_rdtscp_enabled, false);
4562 }
4563
4564 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4565
4566 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4567 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4568
4569 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4570 ENABLE_USR_WAIT_PAUSE, false);
4571
4572 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4573 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4574
4575 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4576 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4577
4578 return exec_control;
4579 }
4580
vmx_get_pid_table_order(struct kvm * kvm)4581 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4582 {
4583 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4584 }
4585
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4586 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4587 {
4588 struct page *pages;
4589 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4590
4591 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4592 return 0;
4593
4594 if (kvm_vmx->pid_table)
4595 return 0;
4596
4597 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4598 vmx_get_pid_table_order(kvm));
4599 if (!pages)
4600 return -ENOMEM;
4601
4602 kvm_vmx->pid_table = (void *)page_address(pages);
4603 return 0;
4604 }
4605
vmx_vcpu_precreate(struct kvm * kvm)4606 int vmx_vcpu_precreate(struct kvm *kvm)
4607 {
4608 return vmx_alloc_ipiv_pid_table(kvm);
4609 }
4610
4611 #define VMX_XSS_EXIT_BITMAP 0
4612
init_vmcs(struct vcpu_vmx * vmx)4613 static void init_vmcs(struct vcpu_vmx *vmx)
4614 {
4615 struct kvm *kvm = vmx->vcpu.kvm;
4616 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4617
4618 if (nested)
4619 nested_vmx_set_vmcs_shadowing_bitmap();
4620
4621 if (cpu_has_vmx_msr_bitmap())
4622 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4623
4624 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4625
4626 /* Control */
4627 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4628
4629 exec_controls_set(vmx, vmx_exec_control(vmx));
4630
4631 if (cpu_has_secondary_exec_ctrls()) {
4632 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4633 if (vmx->ve_info)
4634 vmcs_write64(VE_INFORMATION_ADDRESS,
4635 __pa(vmx->ve_info));
4636 }
4637
4638 if (cpu_has_tertiary_exec_ctrls())
4639 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4640
4641 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4642 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4643 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4644 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4645 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4646
4647 vmcs_write16(GUEST_INTR_STATUS, 0);
4648
4649 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4650 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4651 }
4652
4653 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4654 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4655 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4656 }
4657
4658 if (!kvm_pause_in_guest(kvm)) {
4659 vmcs_write32(PLE_GAP, ple_gap);
4660 vmx->ple_window = ple_window;
4661 vmx->ple_window_dirty = true;
4662 }
4663
4664 if (kvm_notify_vmexit_enabled(kvm))
4665 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4666
4667 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4668 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4669 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4670
4671 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4672 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4673 vmx_set_constant_host_state(vmx);
4674 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4675 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4676
4677 if (cpu_has_vmx_vmfunc())
4678 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4679
4680 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4681 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4682 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4683 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4684 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4685
4686 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4687 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4688
4689 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4690
4691 /* 22.2.1, 20.8.1 */
4692 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4693
4694 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4695 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4696
4697 set_cr4_guest_host_mask(vmx);
4698
4699 if (vmx->vpid != 0)
4700 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4701
4702 if (cpu_has_vmx_xsaves())
4703 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4704
4705 if (enable_pml) {
4706 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4707 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4708 }
4709
4710 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4711
4712 if (vmx_pt_mode_is_host_guest()) {
4713 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4714 /* Bit[6~0] are forced to 1, writes are ignored. */
4715 vmx->pt_desc.guest.output_mask = 0x7F;
4716 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4717 }
4718
4719 vmcs_write32(GUEST_SYSENTER_CS, 0);
4720 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4721 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4722
4723 vmx_guest_debugctl_write(&vmx->vcpu, 0);
4724
4725 if (cpu_has_vmx_tpr_shadow()) {
4726 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4727 if (cpu_need_tpr_shadow(&vmx->vcpu))
4728 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4729 __pa(vmx->vcpu.arch.apic->regs));
4730 vmcs_write32(TPR_THRESHOLD, 0);
4731 }
4732
4733 vmx_setup_uret_msrs(vmx);
4734 }
4735
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4736 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4737 {
4738 struct vcpu_vmx *vmx = to_vmx(vcpu);
4739
4740 init_vmcs(vmx);
4741
4742 if (nested &&
4743 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4744 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4745
4746 vcpu_setup_sgx_lepubkeyhash(vcpu);
4747
4748 vmx->nested.posted_intr_nv = -1;
4749 vmx->nested.vmxon_ptr = INVALID_GPA;
4750 vmx->nested.current_vmptr = INVALID_GPA;
4751
4752 #ifdef CONFIG_KVM_HYPERV
4753 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4754 #endif
4755
4756 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4757 vcpu->arch.microcode_version = 0x100000000ULL;
4758 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4759
4760 /*
4761 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4762 * or POSTED_INTR_WAKEUP_VECTOR.
4763 */
4764 vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4765 __pi_set_sn(&vmx->vt.pi_desc);
4766 }
4767
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4768 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4769 {
4770 struct vcpu_vmx *vmx = to_vmx(vcpu);
4771
4772 if (!init_event)
4773 __vmx_vcpu_reset(vcpu);
4774
4775 vmx->rmode.vm86_active = 0;
4776 vmx->spec_ctrl = 0;
4777
4778 vmx->msr_ia32_umwait_control = 0;
4779
4780 vmx->hv_deadline_tsc = -1;
4781 kvm_set_cr8(vcpu, 0);
4782
4783 seg_setup(VCPU_SREG_CS);
4784 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4785 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4786
4787 seg_setup(VCPU_SREG_DS);
4788 seg_setup(VCPU_SREG_ES);
4789 seg_setup(VCPU_SREG_FS);
4790 seg_setup(VCPU_SREG_GS);
4791 seg_setup(VCPU_SREG_SS);
4792
4793 vmcs_write16(GUEST_TR_SELECTOR, 0);
4794 vmcs_writel(GUEST_TR_BASE, 0);
4795 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4796 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4797
4798 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4799 vmcs_writel(GUEST_LDTR_BASE, 0);
4800 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4801 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4802
4803 vmcs_writel(GUEST_GDTR_BASE, 0);
4804 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4805
4806 vmcs_writel(GUEST_IDTR_BASE, 0);
4807 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4808
4809 vmx_segment_cache_clear(vmx);
4810 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4811
4812 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4813 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4814 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4815 if (kvm_mpx_supported())
4816 vmcs_write64(GUEST_BNDCFGS, 0);
4817
4818 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4819
4820 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4821
4822 vpid_sync_context(vmx->vpid);
4823
4824 vmx_update_fb_clear_dis(vcpu, vmx);
4825 }
4826
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4827 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4828 {
4829 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4830 }
4831
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4832 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4833 {
4834 if (!enable_vnmi ||
4835 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4836 vmx_enable_irq_window(vcpu);
4837 return;
4838 }
4839
4840 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4841 }
4842
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4843 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4844 {
4845 struct vcpu_vmx *vmx = to_vmx(vcpu);
4846 uint32_t intr;
4847 int irq = vcpu->arch.interrupt.nr;
4848
4849 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4850
4851 ++vcpu->stat.irq_injections;
4852 if (vmx->rmode.vm86_active) {
4853 int inc_eip = 0;
4854 if (vcpu->arch.interrupt.soft)
4855 inc_eip = vcpu->arch.event_exit_inst_len;
4856 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4857 return;
4858 }
4859 intr = irq | INTR_INFO_VALID_MASK;
4860 if (vcpu->arch.interrupt.soft) {
4861 intr |= INTR_TYPE_SOFT_INTR;
4862 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4863 vmx->vcpu.arch.event_exit_inst_len);
4864 } else
4865 intr |= INTR_TYPE_EXT_INTR;
4866 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4867
4868 vmx_clear_hlt(vcpu);
4869 }
4870
vmx_inject_nmi(struct kvm_vcpu * vcpu)4871 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4872 {
4873 struct vcpu_vmx *vmx = to_vmx(vcpu);
4874
4875 if (!enable_vnmi) {
4876 /*
4877 * Tracking the NMI-blocked state in software is built upon
4878 * finding the next open IRQ window. This, in turn, depends on
4879 * well-behaving guests: They have to keep IRQs disabled at
4880 * least as long as the NMI handler runs. Otherwise we may
4881 * cause NMI nesting, maybe breaking the guest. But as this is
4882 * highly unlikely, we can live with the residual risk.
4883 */
4884 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4885 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4886 }
4887
4888 ++vcpu->stat.nmi_injections;
4889 vmx->loaded_vmcs->nmi_known_unmasked = false;
4890
4891 if (vmx->rmode.vm86_active) {
4892 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4893 return;
4894 }
4895
4896 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4897 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4898
4899 vmx_clear_hlt(vcpu);
4900 }
4901
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4902 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4903 {
4904 struct vcpu_vmx *vmx = to_vmx(vcpu);
4905 bool masked;
4906
4907 if (!enable_vnmi)
4908 return vmx->loaded_vmcs->soft_vnmi_blocked;
4909 if (vmx->loaded_vmcs->nmi_known_unmasked)
4910 return false;
4911 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4912 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4913 return masked;
4914 }
4915
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4916 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4917 {
4918 struct vcpu_vmx *vmx = to_vmx(vcpu);
4919
4920 if (!enable_vnmi) {
4921 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4922 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4923 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4924 }
4925 } else {
4926 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4927 if (masked)
4928 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4929 GUEST_INTR_STATE_NMI);
4930 else
4931 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4932 GUEST_INTR_STATE_NMI);
4933 }
4934 }
4935
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4936 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4937 {
4938 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4939 return false;
4940
4941 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4942 return true;
4943
4944 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4945 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4946 GUEST_INTR_STATE_NMI));
4947 }
4948
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4949 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4950 {
4951 if (to_vmx(vcpu)->nested.nested_run_pending)
4952 return -EBUSY;
4953
4954 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4955 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4956 return -EBUSY;
4957
4958 return !vmx_nmi_blocked(vcpu);
4959 }
4960
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4961 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4962 {
4963 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4964 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4965 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4966 }
4967
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4968 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4969 {
4970 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4971 return false;
4972
4973 return __vmx_interrupt_blocked(vcpu);
4974 }
4975
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4976 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4977 {
4978 if (to_vmx(vcpu)->nested.nested_run_pending)
4979 return -EBUSY;
4980
4981 /*
4982 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4983 * e.g. if the IRQ arrived asynchronously after checking nested events.
4984 */
4985 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4986 return -EBUSY;
4987
4988 return !vmx_interrupt_blocked(vcpu);
4989 }
4990
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4991 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4992 {
4993 void __user *ret;
4994
4995 if (enable_unrestricted_guest)
4996 return 0;
4997
4998 mutex_lock(&kvm->slots_lock);
4999 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5000 PAGE_SIZE * 3);
5001 mutex_unlock(&kvm->slots_lock);
5002
5003 if (IS_ERR(ret))
5004 return PTR_ERR(ret);
5005
5006 to_kvm_vmx(kvm)->tss_addr = addr;
5007
5008 return init_rmode_tss(kvm, ret);
5009 }
5010
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5011 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5012 {
5013 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5014 return 0;
5015 }
5016
rmode_exception(struct kvm_vcpu * vcpu,int vec)5017 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5018 {
5019 switch (vec) {
5020 case BP_VECTOR:
5021 /*
5022 * Update instruction length as we may reinject the exception
5023 * from user space while in guest debugging mode.
5024 */
5025 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5026 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5027 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5028 return false;
5029 fallthrough;
5030 case DB_VECTOR:
5031 return !(vcpu->guest_debug &
5032 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5033 case DE_VECTOR:
5034 case OF_VECTOR:
5035 case BR_VECTOR:
5036 case UD_VECTOR:
5037 case DF_VECTOR:
5038 case SS_VECTOR:
5039 case GP_VECTOR:
5040 case MF_VECTOR:
5041 return true;
5042 }
5043 return false;
5044 }
5045
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5046 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5047 int vec, u32 err_code)
5048 {
5049 /*
5050 * Instruction with address size override prefix opcode 0x67
5051 * Cause the #SS fault with 0 error code in VM86 mode.
5052 */
5053 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5054 if (kvm_emulate_instruction(vcpu, 0)) {
5055 if (vcpu->arch.halt_request) {
5056 vcpu->arch.halt_request = 0;
5057 return kvm_emulate_halt_noskip(vcpu);
5058 }
5059 return 1;
5060 }
5061 return 0;
5062 }
5063
5064 /*
5065 * Forward all other exceptions that are valid in real mode.
5066 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5067 * the required debugging infrastructure rework.
5068 */
5069 kvm_queue_exception(vcpu, vec);
5070 return 1;
5071 }
5072
handle_machine_check(struct kvm_vcpu * vcpu)5073 static int handle_machine_check(struct kvm_vcpu *vcpu)
5074 {
5075 /* handled by vmx_vcpu_run() */
5076 return 1;
5077 }
5078
5079 /*
5080 * If the host has split lock detection disabled, then #AC is
5081 * unconditionally injected into the guest, which is the pre split lock
5082 * detection behaviour.
5083 *
5084 * If the host has split lock detection enabled then #AC is
5085 * only injected into the guest when:
5086 * - Guest CPL == 3 (user mode)
5087 * - Guest has #AC detection enabled in CR0
5088 * - Guest EFLAGS has AC bit set
5089 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5090 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5091 {
5092 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5093 return true;
5094
5095 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5096 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5097 }
5098
is_xfd_nm_fault(struct kvm_vcpu * vcpu)5099 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5100 {
5101 return vcpu->arch.guest_fpu.fpstate->xfd &&
5102 !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5103 }
5104
handle_exception_nmi(struct kvm_vcpu * vcpu)5105 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5106 {
5107 struct vcpu_vmx *vmx = to_vmx(vcpu);
5108 struct kvm_run *kvm_run = vcpu->run;
5109 u32 intr_info, ex_no, error_code;
5110 unsigned long cr2, dr6;
5111 u32 vect_info;
5112
5113 vect_info = vmx->idt_vectoring_info;
5114 intr_info = vmx_get_intr_info(vcpu);
5115
5116 /*
5117 * Machine checks are handled by handle_exception_irqoff(), or by
5118 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5119 * vmx_vcpu_enter_exit().
5120 */
5121 if (is_machine_check(intr_info) || is_nmi(intr_info))
5122 return 1;
5123
5124 /*
5125 * Queue the exception here instead of in handle_nm_fault_irqoff().
5126 * This ensures the nested_vmx check is not skipped so vmexit can
5127 * be reflected to L1 (when it intercepts #NM) before reaching this
5128 * point.
5129 */
5130 if (is_nm_fault(intr_info)) {
5131 kvm_queue_exception_p(vcpu, NM_VECTOR,
5132 is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5133 return 1;
5134 }
5135
5136 if (is_invalid_opcode(intr_info))
5137 return handle_ud(vcpu);
5138
5139 if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5140 struct vmx_ve_information *ve_info = vmx->ve_info;
5141
5142 WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5143 "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5144 dump_vmcs(vcpu);
5145 kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5146 return 1;
5147 }
5148
5149 error_code = 0;
5150 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5151 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5152
5153 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5154 WARN_ON_ONCE(!enable_vmware_backdoor);
5155
5156 /*
5157 * VMware backdoor emulation on #GP interception only handles
5158 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5159 * error code on #GP.
5160 */
5161 if (error_code) {
5162 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5163 return 1;
5164 }
5165 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5166 }
5167
5168 /*
5169 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5170 * MMIO, it is better to report an internal error.
5171 * See the comments in vmx_handle_exit.
5172 */
5173 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5174 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5175 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5176 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5177 vcpu->run->internal.ndata = 4;
5178 vcpu->run->internal.data[0] = vect_info;
5179 vcpu->run->internal.data[1] = intr_info;
5180 vcpu->run->internal.data[2] = error_code;
5181 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5182 return 0;
5183 }
5184
5185 if (is_page_fault(intr_info)) {
5186 cr2 = vmx_get_exit_qual(vcpu);
5187 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5188 /*
5189 * EPT will cause page fault only if we need to
5190 * detect illegal GPAs.
5191 */
5192 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5193 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5194 return 1;
5195 } else
5196 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5197 }
5198
5199 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5200
5201 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5202 return handle_rmode_exception(vcpu, ex_no, error_code);
5203
5204 switch (ex_no) {
5205 case DB_VECTOR:
5206 dr6 = vmx_get_exit_qual(vcpu);
5207 if (!(vcpu->guest_debug &
5208 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5209 /*
5210 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5211 * instruction. ICEBP generates a trap-like #DB, but
5212 * despite its interception control being tied to #DB,
5213 * is an instruction intercept, i.e. the VM-Exit occurs
5214 * on the ICEBP itself. Use the inner "skip" helper to
5215 * avoid single-step #DB and MTF updates, as ICEBP is
5216 * higher priority. Note, skipping ICEBP still clears
5217 * STI and MOVSS blocking.
5218 *
5219 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5220 * if single-step is enabled in RFLAGS and STI or MOVSS
5221 * blocking is active, as the CPU doesn't set the bit
5222 * on VM-Exit due to #DB interception. VM-Entry has a
5223 * consistency check that a single-step #DB is pending
5224 * in this scenario as the previous instruction cannot
5225 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5226 * don't modify RFLAGS), therefore the one instruction
5227 * delay when activating single-step breakpoints must
5228 * have already expired. Note, the CPU sets/clears BS
5229 * as appropriate for all other VM-Exits types.
5230 */
5231 if (is_icebp(intr_info))
5232 WARN_ON(!skip_emulated_instruction(vcpu));
5233 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5234 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5235 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5236 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5237 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5238
5239 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5240 return 1;
5241 }
5242 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5243 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5244 fallthrough;
5245 case BP_VECTOR:
5246 /*
5247 * Update instruction length as we may reinject #BP from
5248 * user space while in guest debugging mode. Reading it for
5249 * #DB as well causes no harm, it is not used in that case.
5250 */
5251 vmx->vcpu.arch.event_exit_inst_len =
5252 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5253 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5254 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5255 kvm_run->debug.arch.exception = ex_no;
5256 break;
5257 case AC_VECTOR:
5258 if (vmx_guest_inject_ac(vcpu)) {
5259 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5260 return 1;
5261 }
5262
5263 /*
5264 * Handle split lock. Depending on detection mode this will
5265 * either warn and disable split lock detection for this
5266 * task or force SIGBUS on it.
5267 */
5268 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5269 return 1;
5270 fallthrough;
5271 default:
5272 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5273 kvm_run->ex.exception = ex_no;
5274 kvm_run->ex.error_code = error_code;
5275 break;
5276 }
5277 return 0;
5278 }
5279
handle_external_interrupt(struct kvm_vcpu * vcpu)5280 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5281 {
5282 ++vcpu->stat.irq_exits;
5283 return 1;
5284 }
5285
handle_triple_fault(struct kvm_vcpu * vcpu)5286 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5287 {
5288 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5289 vcpu->mmio_needed = 0;
5290 return 0;
5291 }
5292
handle_io(struct kvm_vcpu * vcpu)5293 static int handle_io(struct kvm_vcpu *vcpu)
5294 {
5295 unsigned long exit_qualification;
5296 int size, in, string;
5297 unsigned port;
5298
5299 exit_qualification = vmx_get_exit_qual(vcpu);
5300 string = (exit_qualification & 16) != 0;
5301
5302 ++vcpu->stat.io_exits;
5303
5304 if (string)
5305 return kvm_emulate_instruction(vcpu, 0);
5306
5307 port = exit_qualification >> 16;
5308 size = (exit_qualification & 7) + 1;
5309 in = (exit_qualification & 8) != 0;
5310
5311 return kvm_fast_pio(vcpu, size, port, in);
5312 }
5313
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5314 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5315 {
5316 /*
5317 * Patch in the VMCALL instruction:
5318 */
5319 hypercall[0] = 0x0f;
5320 hypercall[1] = 0x01;
5321 hypercall[2] = 0xc1;
5322 }
5323
5324 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5325 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5326 {
5327 if (is_guest_mode(vcpu)) {
5328 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5329 unsigned long orig_val = val;
5330
5331 /*
5332 * We get here when L2 changed cr0 in a way that did not change
5333 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5334 * but did change L0 shadowed bits. So we first calculate the
5335 * effective cr0 value that L1 would like to write into the
5336 * hardware. It consists of the L2-owned bits from the new
5337 * value combined with the L1-owned bits from L1's guest_cr0.
5338 */
5339 val = (val & ~vmcs12->cr0_guest_host_mask) |
5340 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5341
5342 if (kvm_set_cr0(vcpu, val))
5343 return 1;
5344 vmcs_writel(CR0_READ_SHADOW, orig_val);
5345 return 0;
5346 } else {
5347 return kvm_set_cr0(vcpu, val);
5348 }
5349 }
5350
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5351 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5352 {
5353 if (is_guest_mode(vcpu)) {
5354 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5355 unsigned long orig_val = val;
5356
5357 /* analogously to handle_set_cr0 */
5358 val = (val & ~vmcs12->cr4_guest_host_mask) |
5359 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5360 if (kvm_set_cr4(vcpu, val))
5361 return 1;
5362 vmcs_writel(CR4_READ_SHADOW, orig_val);
5363 return 0;
5364 } else
5365 return kvm_set_cr4(vcpu, val);
5366 }
5367
handle_desc(struct kvm_vcpu * vcpu)5368 static int handle_desc(struct kvm_vcpu *vcpu)
5369 {
5370 /*
5371 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5372 * and other code needs to be updated if UMIP can be guest owned.
5373 */
5374 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5375
5376 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5377 return kvm_emulate_instruction(vcpu, 0);
5378 }
5379
handle_cr(struct kvm_vcpu * vcpu)5380 static int handle_cr(struct kvm_vcpu *vcpu)
5381 {
5382 unsigned long exit_qualification, val;
5383 int cr;
5384 int reg;
5385 int err;
5386 int ret;
5387
5388 exit_qualification = vmx_get_exit_qual(vcpu);
5389 cr = exit_qualification & 15;
5390 reg = (exit_qualification >> 8) & 15;
5391 switch ((exit_qualification >> 4) & 3) {
5392 case 0: /* mov to cr */
5393 val = kvm_register_read(vcpu, reg);
5394 trace_kvm_cr_write(cr, val);
5395 switch (cr) {
5396 case 0:
5397 err = handle_set_cr0(vcpu, val);
5398 return kvm_complete_insn_gp(vcpu, err);
5399 case 3:
5400 WARN_ON_ONCE(enable_unrestricted_guest);
5401
5402 err = kvm_set_cr3(vcpu, val);
5403 return kvm_complete_insn_gp(vcpu, err);
5404 case 4:
5405 err = handle_set_cr4(vcpu, val);
5406 return kvm_complete_insn_gp(vcpu, err);
5407 case 8: {
5408 u8 cr8_prev = kvm_get_cr8(vcpu);
5409 u8 cr8 = (u8)val;
5410 err = kvm_set_cr8(vcpu, cr8);
5411 ret = kvm_complete_insn_gp(vcpu, err);
5412 if (lapic_in_kernel(vcpu))
5413 return ret;
5414 if (cr8_prev <= cr8)
5415 return ret;
5416 /*
5417 * TODO: we might be squashing a
5418 * KVM_GUESTDBG_SINGLESTEP-triggered
5419 * KVM_EXIT_DEBUG here.
5420 */
5421 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5422 return 0;
5423 }
5424 }
5425 break;
5426 case 2: /* clts */
5427 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5428 return -EIO;
5429 case 1: /*mov from cr*/
5430 switch (cr) {
5431 case 3:
5432 WARN_ON_ONCE(enable_unrestricted_guest);
5433
5434 val = kvm_read_cr3(vcpu);
5435 kvm_register_write(vcpu, reg, val);
5436 trace_kvm_cr_read(cr, val);
5437 return kvm_skip_emulated_instruction(vcpu);
5438 case 8:
5439 val = kvm_get_cr8(vcpu);
5440 kvm_register_write(vcpu, reg, val);
5441 trace_kvm_cr_read(cr, val);
5442 return kvm_skip_emulated_instruction(vcpu);
5443 }
5444 break;
5445 case 3: /* lmsw */
5446 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5447 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5448 kvm_lmsw(vcpu, val);
5449
5450 return kvm_skip_emulated_instruction(vcpu);
5451 default:
5452 break;
5453 }
5454 vcpu->run->exit_reason = 0;
5455 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5456 (int)(exit_qualification >> 4) & 3, cr);
5457 return 0;
5458 }
5459
handle_dr(struct kvm_vcpu * vcpu)5460 static int handle_dr(struct kvm_vcpu *vcpu)
5461 {
5462 unsigned long exit_qualification;
5463 int dr, dr7, reg;
5464 int err = 1;
5465
5466 exit_qualification = vmx_get_exit_qual(vcpu);
5467 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5468
5469 /* First, if DR does not exist, trigger UD */
5470 if (!kvm_require_dr(vcpu, dr))
5471 return 1;
5472
5473 if (vmx_get_cpl(vcpu) > 0)
5474 goto out;
5475
5476 dr7 = vmcs_readl(GUEST_DR7);
5477 if (dr7 & DR7_GD) {
5478 /*
5479 * As the vm-exit takes precedence over the debug trap, we
5480 * need to emulate the latter, either for the host or the
5481 * guest debugging itself.
5482 */
5483 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5484 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5485 vcpu->run->debug.arch.dr7 = dr7;
5486 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5487 vcpu->run->debug.arch.exception = DB_VECTOR;
5488 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5489 return 0;
5490 } else {
5491 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5492 return 1;
5493 }
5494 }
5495
5496 if (vcpu->guest_debug == 0) {
5497 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5498
5499 /*
5500 * No more DR vmexits; force a reload of the debug registers
5501 * and reenter on this instruction. The next vmexit will
5502 * retrieve the full state of the debug registers.
5503 */
5504 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5505 return 1;
5506 }
5507
5508 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5509 if (exit_qualification & TYPE_MOV_FROM_DR) {
5510 kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5511 err = 0;
5512 } else {
5513 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5514 }
5515
5516 out:
5517 return kvm_complete_insn_gp(vcpu, err);
5518 }
5519
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5520 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5521 {
5522 get_debugreg(vcpu->arch.db[0], 0);
5523 get_debugreg(vcpu->arch.db[1], 1);
5524 get_debugreg(vcpu->arch.db[2], 2);
5525 get_debugreg(vcpu->arch.db[3], 3);
5526 get_debugreg(vcpu->arch.dr6, 6);
5527 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5528
5529 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5530 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5531
5532 /*
5533 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5534 * a stale dr6 from the guest.
5535 */
5536 set_debugreg(DR6_RESERVED, 6);
5537 }
5538
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5539 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5540 {
5541 vmcs_writel(GUEST_DR7, val);
5542 }
5543
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5544 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5545 {
5546 kvm_apic_update_ppr(vcpu);
5547 return 1;
5548 }
5549
handle_interrupt_window(struct kvm_vcpu * vcpu)5550 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5551 {
5552 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5553
5554 kvm_make_request(KVM_REQ_EVENT, vcpu);
5555
5556 ++vcpu->stat.irq_window_exits;
5557 return 1;
5558 }
5559
handle_invlpg(struct kvm_vcpu * vcpu)5560 static int handle_invlpg(struct kvm_vcpu *vcpu)
5561 {
5562 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5563
5564 kvm_mmu_invlpg(vcpu, exit_qualification);
5565 return kvm_skip_emulated_instruction(vcpu);
5566 }
5567
handle_apic_access(struct kvm_vcpu * vcpu)5568 static int handle_apic_access(struct kvm_vcpu *vcpu)
5569 {
5570 if (likely(fasteoi)) {
5571 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5572 int access_type, offset;
5573
5574 access_type = exit_qualification & APIC_ACCESS_TYPE;
5575 offset = exit_qualification & APIC_ACCESS_OFFSET;
5576 /*
5577 * Sane guest uses MOV to write EOI, with written value
5578 * not cared. So make a short-circuit here by avoiding
5579 * heavy instruction emulation.
5580 */
5581 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5582 (offset == APIC_EOI)) {
5583 kvm_lapic_set_eoi(vcpu);
5584 return kvm_skip_emulated_instruction(vcpu);
5585 }
5586 }
5587 return kvm_emulate_instruction(vcpu, 0);
5588 }
5589
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5590 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5591 {
5592 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5593 int vector = exit_qualification & 0xff;
5594
5595 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5596 kvm_apic_set_eoi_accelerated(vcpu, vector);
5597 return 1;
5598 }
5599
handle_apic_write(struct kvm_vcpu * vcpu)5600 static int handle_apic_write(struct kvm_vcpu *vcpu)
5601 {
5602 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5603
5604 /*
5605 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5606 * hardware has done any necessary aliasing, offset adjustments, etc...
5607 * for the access. I.e. the correct value has already been written to
5608 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5609 * retrieve the register value and emulate the access.
5610 */
5611 u32 offset = exit_qualification & 0xff0;
5612
5613 kvm_apic_write_nodecode(vcpu, offset);
5614 return 1;
5615 }
5616
handle_task_switch(struct kvm_vcpu * vcpu)5617 static int handle_task_switch(struct kvm_vcpu *vcpu)
5618 {
5619 struct vcpu_vmx *vmx = to_vmx(vcpu);
5620 unsigned long exit_qualification;
5621 bool has_error_code = false;
5622 u32 error_code = 0;
5623 u16 tss_selector;
5624 int reason, type, idt_v, idt_index;
5625
5626 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5627 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5628 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5629
5630 exit_qualification = vmx_get_exit_qual(vcpu);
5631
5632 reason = (u32)exit_qualification >> 30;
5633 if (reason == TASK_SWITCH_GATE && idt_v) {
5634 switch (type) {
5635 case INTR_TYPE_NMI_INTR:
5636 vcpu->arch.nmi_injected = false;
5637 vmx_set_nmi_mask(vcpu, true);
5638 break;
5639 case INTR_TYPE_EXT_INTR:
5640 case INTR_TYPE_SOFT_INTR:
5641 kvm_clear_interrupt_queue(vcpu);
5642 break;
5643 case INTR_TYPE_HARD_EXCEPTION:
5644 if (vmx->idt_vectoring_info &
5645 VECTORING_INFO_DELIVER_CODE_MASK) {
5646 has_error_code = true;
5647 error_code =
5648 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5649 }
5650 fallthrough;
5651 case INTR_TYPE_SOFT_EXCEPTION:
5652 kvm_clear_exception_queue(vcpu);
5653 break;
5654 default:
5655 break;
5656 }
5657 }
5658 tss_selector = exit_qualification;
5659
5660 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5661 type != INTR_TYPE_EXT_INTR &&
5662 type != INTR_TYPE_NMI_INTR))
5663 WARN_ON(!skip_emulated_instruction(vcpu));
5664
5665 /*
5666 * TODO: What about debug traps on tss switch?
5667 * Are we supposed to inject them and update dr6?
5668 */
5669 return kvm_task_switch(vcpu, tss_selector,
5670 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5671 reason, has_error_code, error_code);
5672 }
5673
handle_ept_violation(struct kvm_vcpu * vcpu)5674 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5675 {
5676 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5677 gpa_t gpa;
5678
5679 /*
5680 * EPT violation happened while executing iret from NMI,
5681 * "blocked by NMI" bit has to be set before next VM entry.
5682 * There are errata that may cause this bit to not be set:
5683 * AAK134, BY25.
5684 */
5685 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5686 enable_vnmi &&
5687 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5688 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5689
5690 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5691 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5692
5693 /*
5694 * Check that the GPA doesn't exceed physical memory limits, as that is
5695 * a guest page fault. We have to emulate the instruction here, because
5696 * if the illegal address is that of a paging structure, then
5697 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5698 * would also use advanced VM-exit information for EPT violations to
5699 * reconstruct the page fault error code.
5700 */
5701 if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5702 return kvm_emulate_instruction(vcpu, 0);
5703
5704 return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5705 }
5706
handle_ept_misconfig(struct kvm_vcpu * vcpu)5707 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5708 {
5709 gpa_t gpa;
5710
5711 if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5712 return 1;
5713
5714 /*
5715 * A nested guest cannot optimize MMIO vmexits, because we have an
5716 * nGPA here instead of the required GPA.
5717 */
5718 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5719 if (!is_guest_mode(vcpu) &&
5720 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5721 trace_kvm_fast_mmio(gpa);
5722 return kvm_skip_emulated_instruction(vcpu);
5723 }
5724
5725 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5726 }
5727
handle_nmi_window(struct kvm_vcpu * vcpu)5728 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5729 {
5730 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5731 return -EIO;
5732
5733 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5734 ++vcpu->stat.nmi_window_exits;
5735 kvm_make_request(KVM_REQ_EVENT, vcpu);
5736
5737 return 1;
5738 }
5739
5740 /*
5741 * Returns true if emulation is required (due to the vCPU having invalid state
5742 * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5743 * current vCPU state.
5744 */
vmx_unhandleable_emulation_required(struct kvm_vcpu * vcpu)5745 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5746 {
5747 struct vcpu_vmx *vmx = to_vmx(vcpu);
5748
5749 if (!vmx->vt.emulation_required)
5750 return false;
5751
5752 /*
5753 * It is architecturally impossible for emulation to be required when a
5754 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5755 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5756 * should synthesize VM-Fail instead emulation L2 code. This path is
5757 * only reachable if userspace modifies L2 guest state after KVM has
5758 * performed the nested VM-Enter consistency checks.
5759 */
5760 if (vmx->nested.nested_run_pending)
5761 return true;
5762
5763 /*
5764 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5765 * If emulation is required, KVM can't perform a successful VM-Enter to
5766 * inject the exception.
5767 */
5768 return !vmx->rmode.vm86_active &&
5769 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5770 }
5771
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5772 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5773 {
5774 struct vcpu_vmx *vmx = to_vmx(vcpu);
5775 bool intr_window_requested;
5776 unsigned count = 130;
5777
5778 intr_window_requested = exec_controls_get(vmx) &
5779 CPU_BASED_INTR_WINDOW_EXITING;
5780
5781 while (vmx->vt.emulation_required && count-- != 0) {
5782 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5783 return handle_interrupt_window(&vmx->vcpu);
5784
5785 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5786 return 1;
5787
5788 if (!kvm_emulate_instruction(vcpu, 0))
5789 return 0;
5790
5791 if (vmx_unhandleable_emulation_required(vcpu)) {
5792 kvm_prepare_emulation_failure_exit(vcpu);
5793 return 0;
5794 }
5795
5796 if (vcpu->arch.halt_request) {
5797 vcpu->arch.halt_request = 0;
5798 return kvm_emulate_halt_noskip(vcpu);
5799 }
5800
5801 /*
5802 * Note, return 1 and not 0, vcpu_run() will invoke
5803 * xfer_to_guest_mode() which will create a proper return
5804 * code.
5805 */
5806 if (__xfer_to_guest_mode_work_pending())
5807 return 1;
5808 }
5809
5810 return 1;
5811 }
5812
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5813 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5814 {
5815 if (vmx_unhandleable_emulation_required(vcpu)) {
5816 kvm_prepare_emulation_failure_exit(vcpu);
5817 return 0;
5818 }
5819
5820 return 1;
5821 }
5822
5823 /*
5824 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5825 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5826 */
handle_pause(struct kvm_vcpu * vcpu)5827 static int handle_pause(struct kvm_vcpu *vcpu)
5828 {
5829 if (!kvm_pause_in_guest(vcpu->kvm))
5830 grow_ple_window(vcpu);
5831
5832 /*
5833 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5834 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5835 * never set PAUSE_EXITING and just set PLE if supported,
5836 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5837 */
5838 kvm_vcpu_on_spin(vcpu, true);
5839 return kvm_skip_emulated_instruction(vcpu);
5840 }
5841
handle_monitor_trap(struct kvm_vcpu * vcpu)5842 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5843 {
5844 return 1;
5845 }
5846
handle_invpcid(struct kvm_vcpu * vcpu)5847 static int handle_invpcid(struct kvm_vcpu *vcpu)
5848 {
5849 u32 vmx_instruction_info;
5850 unsigned long type;
5851 gva_t gva;
5852 struct {
5853 u64 pcid;
5854 u64 gla;
5855 } operand;
5856 int gpr_index;
5857
5858 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5859 kvm_queue_exception(vcpu, UD_VECTOR);
5860 return 1;
5861 }
5862
5863 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5864 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5865 type = kvm_register_read(vcpu, gpr_index);
5866
5867 /* According to the Intel instruction reference, the memory operand
5868 * is read even if it isn't needed (e.g., for type==all)
5869 */
5870 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5871 vmx_instruction_info, false,
5872 sizeof(operand), &gva))
5873 return 1;
5874
5875 return kvm_handle_invpcid(vcpu, type, gva);
5876 }
5877
handle_pml_full(struct kvm_vcpu * vcpu)5878 static int handle_pml_full(struct kvm_vcpu *vcpu)
5879 {
5880 unsigned long exit_qualification;
5881
5882 trace_kvm_pml_full(vcpu->vcpu_id);
5883
5884 exit_qualification = vmx_get_exit_qual(vcpu);
5885
5886 /*
5887 * PML buffer FULL happened while executing iret from NMI,
5888 * "blocked by NMI" bit has to be set before next VM entry.
5889 */
5890 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5891 enable_vnmi &&
5892 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5893 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5894 GUEST_INTR_STATE_NMI);
5895
5896 /*
5897 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5898 * here.., and there's no userspace involvement needed for PML.
5899 */
5900 return 1;
5901 }
5902
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)5903 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5904 bool force_immediate_exit)
5905 {
5906 struct vcpu_vmx *vmx = to_vmx(vcpu);
5907
5908 /*
5909 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5910 * due to the timer expiring while it was "soft" disabled, just eat the
5911 * exit and re-enter the guest.
5912 */
5913 if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5914 return EXIT_FASTPATH_REENTER_GUEST;
5915
5916 /*
5917 * If the timer expired because KVM used it to force an immediate exit,
5918 * then mission accomplished.
5919 */
5920 if (force_immediate_exit)
5921 return EXIT_FASTPATH_EXIT_HANDLED;
5922
5923 /*
5924 * If L2 is active, go down the slow path as emulating the guest timer
5925 * expiration likely requires synthesizing a nested VM-Exit.
5926 */
5927 if (is_guest_mode(vcpu))
5928 return EXIT_FASTPATH_NONE;
5929
5930 kvm_lapic_expired_hv_timer(vcpu);
5931 return EXIT_FASTPATH_REENTER_GUEST;
5932 }
5933
handle_preemption_timer(struct kvm_vcpu * vcpu)5934 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5935 {
5936 /*
5937 * This non-fastpath handler is reached if and only if the preemption
5938 * timer was being used to emulate a guest timer while L2 is active.
5939 * All other scenarios are supposed to be handled in the fastpath.
5940 */
5941 WARN_ON_ONCE(!is_guest_mode(vcpu));
5942 kvm_lapic_expired_hv_timer(vcpu);
5943 return 1;
5944 }
5945
5946 /*
5947 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5948 * are overwritten by nested_vmx_hardware_setup() when nested=1.
5949 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5950 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5951 {
5952 kvm_queue_exception(vcpu, UD_VECTOR);
5953 return 1;
5954 }
5955
5956 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)5957 static int handle_encls(struct kvm_vcpu *vcpu)
5958 {
5959 /*
5960 * SGX virtualization is disabled. There is no software enable bit for
5961 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5962 * the guest from executing ENCLS (when SGX is supported by hardware).
5963 */
5964 kvm_queue_exception(vcpu, UD_VECTOR);
5965 return 1;
5966 }
5967 #endif /* CONFIG_X86_SGX_KVM */
5968
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)5969 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5970 {
5971 /*
5972 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5973 * VM-Exits. Unconditionally set the flag here and leave the handling to
5974 * vmx_handle_exit().
5975 */
5976 to_vt(vcpu)->exit_reason.bus_lock_detected = true;
5977 return 1;
5978 }
5979
handle_notify(struct kvm_vcpu * vcpu)5980 static int handle_notify(struct kvm_vcpu *vcpu)
5981 {
5982 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5983 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5984
5985 ++vcpu->stat.notify_window_exits;
5986
5987 /*
5988 * Notify VM exit happened while executing iret from NMI,
5989 * "blocked by NMI" bit has to be set before next VM entry.
5990 */
5991 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5992 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5993 GUEST_INTR_STATE_NMI);
5994
5995 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5996 context_invalid) {
5997 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5998 vcpu->run->notify.flags = context_invalid ?
5999 KVM_NOTIFY_CONTEXT_INVALID : 0;
6000 return 0;
6001 }
6002
6003 return 1;
6004 }
6005
6006 /*
6007 * The exit handlers return 1 if the exit was handled fully and guest execution
6008 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6009 * to be done to userspace and return 0.
6010 */
6011 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6012 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6013 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6014 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6015 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6016 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6017 [EXIT_REASON_CR_ACCESS] = handle_cr,
6018 [EXIT_REASON_DR_ACCESS] = handle_dr,
6019 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6020 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6021 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6022 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6023 [EXIT_REASON_HLT] = kvm_emulate_halt,
6024 [EXIT_REASON_INVD] = kvm_emulate_invd,
6025 [EXIT_REASON_INVLPG] = handle_invlpg,
6026 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6027 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6028 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6029 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6030 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6031 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6032 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6033 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6034 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6035 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6036 [EXIT_REASON_VMON] = handle_vmx_instruction,
6037 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6038 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6039 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6040 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6041 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6042 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6043 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6044 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6045 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6046 [EXIT_REASON_LDTR_TR] = handle_desc,
6047 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6048 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6049 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6050 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6051 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6052 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6053 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6054 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6055 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6056 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6057 [EXIT_REASON_PML_FULL] = handle_pml_full,
6058 [EXIT_REASON_INVPCID] = handle_invpcid,
6059 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6060 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6061 [EXIT_REASON_ENCLS] = handle_encls,
6062 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6063 [EXIT_REASON_NOTIFY] = handle_notify,
6064 };
6065
6066 static const int kvm_vmx_max_exit_handlers =
6067 ARRAY_SIZE(kvm_vmx_exit_handlers);
6068
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6069 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6070 u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6071 {
6072 struct vcpu_vmx *vmx = to_vmx(vcpu);
6073
6074 *reason = vmx->vt.exit_reason.full;
6075 *info1 = vmx_get_exit_qual(vcpu);
6076 if (!(vmx->vt.exit_reason.failed_vmentry)) {
6077 *info2 = vmx->idt_vectoring_info;
6078 *intr_info = vmx_get_intr_info(vcpu);
6079 if (is_exception_with_error_code(*intr_info))
6080 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6081 else
6082 *error_code = 0;
6083 } else {
6084 *info2 = 0;
6085 *intr_info = 0;
6086 *error_code = 0;
6087 }
6088 }
6089
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6090 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6091 {
6092 *intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6093 if (is_exception_with_error_code(*intr_info))
6094 *error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6095 else
6096 *error_code = 0;
6097 }
6098
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6099 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6100 {
6101 if (vmx->pml_pg) {
6102 __free_page(vmx->pml_pg);
6103 vmx->pml_pg = NULL;
6104 }
6105 }
6106
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6107 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6108 {
6109 struct vcpu_vmx *vmx = to_vmx(vcpu);
6110 u16 pml_idx, pml_tail_index;
6111 u64 *pml_buf;
6112 int i;
6113
6114 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6115
6116 /* Do nothing if PML buffer is empty */
6117 if (pml_idx == PML_HEAD_INDEX)
6118 return;
6119 /*
6120 * PML index always points to the next available PML buffer entity
6121 * unless PML log has just overflowed.
6122 */
6123 pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6124
6125 /*
6126 * PML log is written backwards: the CPU first writes the entry 511
6127 * then the entry 510, and so on.
6128 *
6129 * Read the entries in the same order they were written, to ensure that
6130 * the dirty ring is filled in the same order the CPU wrote them.
6131 */
6132 pml_buf = page_address(vmx->pml_pg);
6133
6134 for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6135 u64 gpa;
6136
6137 gpa = pml_buf[i];
6138 WARN_ON(gpa & (PAGE_SIZE - 1));
6139 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6140 }
6141
6142 /* reset PML index */
6143 vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6144 }
6145
vmx_dump_sel(char * name,uint32_t sel)6146 static void vmx_dump_sel(char *name, uint32_t sel)
6147 {
6148 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6149 name, vmcs_read16(sel),
6150 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6151 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6152 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6153 }
6154
vmx_dump_dtsel(char * name,uint32_t limit)6155 static void vmx_dump_dtsel(char *name, uint32_t limit)
6156 {
6157 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6158 name, vmcs_read32(limit),
6159 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6160 }
6161
vmx_dump_msrs(char * name,struct vmx_msrs * m)6162 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6163 {
6164 unsigned int i;
6165 struct vmx_msr_entry *e;
6166
6167 pr_err("MSR %s:\n", name);
6168 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6169 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6170 }
6171
dump_vmcs(struct kvm_vcpu * vcpu)6172 void dump_vmcs(struct kvm_vcpu *vcpu)
6173 {
6174 struct vcpu_vmx *vmx = to_vmx(vcpu);
6175 u32 vmentry_ctl, vmexit_ctl;
6176 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6177 u64 tertiary_exec_control;
6178 unsigned long cr4;
6179 int efer_slot;
6180
6181 if (!dump_invalid_vmcs) {
6182 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6183 return;
6184 }
6185
6186 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6187 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6188 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6189 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6190 cr4 = vmcs_readl(GUEST_CR4);
6191
6192 if (cpu_has_secondary_exec_ctrls())
6193 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6194 else
6195 secondary_exec_control = 0;
6196
6197 if (cpu_has_tertiary_exec_ctrls())
6198 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6199 else
6200 tertiary_exec_control = 0;
6201
6202 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6203 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6204 pr_err("*** Guest State ***\n");
6205 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6206 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6207 vmcs_readl(CR0_GUEST_HOST_MASK));
6208 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6209 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6210 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6211 if (cpu_has_vmx_ept()) {
6212 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6213 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6214 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6215 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6216 }
6217 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6218 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6219 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6220 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6221 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6222 vmcs_readl(GUEST_SYSENTER_ESP),
6223 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6224 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6225 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6226 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6227 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6228 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6229 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6230 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6231 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6232 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6233 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6234 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6235 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6236 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6237 else if (efer_slot >= 0)
6238 pr_err("EFER= 0x%016llx (autoload)\n",
6239 vmx->msr_autoload.guest.val[efer_slot].value);
6240 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6241 pr_err("EFER= 0x%016llx (effective)\n",
6242 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6243 else
6244 pr_err("EFER= 0x%016llx (effective)\n",
6245 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6246 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6247 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6248 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6249 vmcs_read64(GUEST_IA32_DEBUGCTL),
6250 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6251 if (cpu_has_load_perf_global_ctrl() &&
6252 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6253 pr_err("PerfGlobCtl = 0x%016llx\n",
6254 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6255 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6256 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6257 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6258 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6259 vmcs_read32(GUEST_ACTIVITY_STATE));
6260 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6261 pr_err("InterruptStatus = %04x\n",
6262 vmcs_read16(GUEST_INTR_STATUS));
6263 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6264 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6265 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6266 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6267
6268 pr_err("*** Host State ***\n");
6269 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6270 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6271 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6272 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6273 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6274 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6275 vmcs_read16(HOST_TR_SELECTOR));
6276 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6277 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6278 vmcs_readl(HOST_TR_BASE));
6279 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6280 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6281 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6282 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6283 vmcs_readl(HOST_CR4));
6284 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6285 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6286 vmcs_read32(HOST_IA32_SYSENTER_CS),
6287 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6288 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6289 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6290 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6291 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6292 if (cpu_has_load_perf_global_ctrl() &&
6293 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6294 pr_err("PerfGlobCtl = 0x%016llx\n",
6295 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6296 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6297 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6298
6299 pr_err("*** Control State ***\n");
6300 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6301 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6302 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6303 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6304 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6305 vmcs_read32(EXCEPTION_BITMAP),
6306 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6307 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6308 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6309 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6310 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6311 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6312 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6313 vmcs_read32(VM_EXIT_INTR_INFO),
6314 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6315 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6316 pr_err(" reason=%08x qualification=%016lx\n",
6317 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6318 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6319 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6320 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6321 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6322 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6323 pr_err("TSC Multiplier = 0x%016llx\n",
6324 vmcs_read64(TSC_MULTIPLIER));
6325 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6326 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6327 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6328 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6329 }
6330 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6331 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6332 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6333 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6334 }
6335 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6336 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6337 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6338 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6339 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6340 pr_err("PLE Gap=%08x Window=%08x\n",
6341 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6342 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6343 pr_err("Virtual processor ID = 0x%04x\n",
6344 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6345 if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6346 struct vmx_ve_information *ve_info = vmx->ve_info;
6347 u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6348
6349 /*
6350 * If KVM is dumping the VMCS, then something has gone wrong
6351 * already. Derefencing an address from the VMCS, which could
6352 * very well be corrupted, is a terrible idea. The virtual
6353 * address is known so use it.
6354 */
6355 pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6356 ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6357 pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6358 ve_info->exit_reason, ve_info->delivery,
6359 ve_info->exit_qualification,
6360 ve_info->guest_linear_address,
6361 ve_info->guest_physical_address, ve_info->eptp_index);
6362 }
6363 }
6364
6365 /*
6366 * The guest has exited. See if we can fix it or if we need userspace
6367 * assistance.
6368 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6369 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6370 {
6371 struct vcpu_vmx *vmx = to_vmx(vcpu);
6372 union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6373 u32 vectoring_info = vmx->idt_vectoring_info;
6374 u16 exit_handler_index;
6375
6376 /*
6377 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6378 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6379 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6380 * mode as if vcpus is in root mode, the PML buffer must has been
6381 * flushed already. Note, PML is never enabled in hardware while
6382 * running L2.
6383 */
6384 if (enable_pml && !is_guest_mode(vcpu))
6385 vmx_flush_pml_buffer(vcpu);
6386
6387 /*
6388 * KVM should never reach this point with a pending nested VM-Enter.
6389 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6390 * invalid guest state should never happen as that means KVM knowingly
6391 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6392 */
6393 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6394 return -EIO;
6395
6396 if (is_guest_mode(vcpu)) {
6397 /*
6398 * PML is never enabled when running L2, bail immediately if a
6399 * PML full exit occurs as something is horribly wrong.
6400 */
6401 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6402 goto unexpected_vmexit;
6403
6404 /*
6405 * The host physical addresses of some pages of guest memory
6406 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6407 * Page). The CPU may write to these pages via their host
6408 * physical address while L2 is running, bypassing any
6409 * address-translation-based dirty tracking (e.g. EPT write
6410 * protection).
6411 *
6412 * Mark them dirty on every exit from L2 to prevent them from
6413 * getting out of sync with dirty tracking.
6414 */
6415 nested_mark_vmcs12_pages_dirty(vcpu);
6416
6417 /*
6418 * Synthesize a triple fault if L2 state is invalid. In normal
6419 * operation, nested VM-Enter rejects any attempt to enter L2
6420 * with invalid state. However, those checks are skipped if
6421 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6422 * L2 state is invalid, it means either L1 modified SMRAM state
6423 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6424 * doing so is architecturally allowed in the RSM case, and is
6425 * the least awful solution for the userspace case without
6426 * risking false positives.
6427 */
6428 if (vmx->vt.emulation_required) {
6429 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6430 return 1;
6431 }
6432
6433 if (nested_vmx_reflect_vmexit(vcpu))
6434 return 1;
6435 }
6436
6437 /* If guest state is invalid, start emulating. L2 is handled above. */
6438 if (vmx->vt.emulation_required)
6439 return handle_invalid_guest_state(vcpu);
6440
6441 if (exit_reason.failed_vmentry) {
6442 dump_vmcs(vcpu);
6443 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6444 vcpu->run->fail_entry.hardware_entry_failure_reason
6445 = exit_reason.full;
6446 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6447 return 0;
6448 }
6449
6450 if (unlikely(vmx->fail)) {
6451 dump_vmcs(vcpu);
6452 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6453 vcpu->run->fail_entry.hardware_entry_failure_reason
6454 = vmcs_read32(VM_INSTRUCTION_ERROR);
6455 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6456 return 0;
6457 }
6458
6459 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6460 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6461 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6462 exit_reason.basic != EXIT_REASON_PML_FULL &&
6463 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6464 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6465 exit_reason.basic != EXIT_REASON_NOTIFY &&
6466 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6467 kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6468 return 0;
6469 }
6470
6471 if (unlikely(!enable_vnmi &&
6472 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6473 if (!vmx_interrupt_blocked(vcpu)) {
6474 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6475 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6476 vcpu->arch.nmi_pending) {
6477 /*
6478 * This CPU don't support us in finding the end of an
6479 * NMI-blocked window if the guest runs with IRQs
6480 * disabled. So we pull the trigger after 1 s of
6481 * futile waiting, but inform the user about this.
6482 */
6483 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6484 "state on VCPU %d after 1 s timeout\n",
6485 __func__, vcpu->vcpu_id);
6486 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6487 }
6488 }
6489
6490 if (exit_fastpath != EXIT_FASTPATH_NONE)
6491 return 1;
6492
6493 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6494 goto unexpected_vmexit;
6495 #ifdef CONFIG_MITIGATION_RETPOLINE
6496 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6497 return kvm_emulate_wrmsr(vcpu);
6498 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6499 return handle_preemption_timer(vcpu);
6500 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6501 return handle_interrupt_window(vcpu);
6502 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6503 return handle_external_interrupt(vcpu);
6504 else if (exit_reason.basic == EXIT_REASON_HLT)
6505 return kvm_emulate_halt(vcpu);
6506 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6507 return handle_ept_misconfig(vcpu);
6508 #endif
6509
6510 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6511 kvm_vmx_max_exit_handlers);
6512 if (!kvm_vmx_exit_handlers[exit_handler_index])
6513 goto unexpected_vmexit;
6514
6515 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6516
6517 unexpected_vmexit:
6518 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6519 exit_reason.full);
6520 dump_vmcs(vcpu);
6521 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6522 vcpu->run->internal.suberror =
6523 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6524 vcpu->run->internal.ndata = 2;
6525 vcpu->run->internal.data[0] = exit_reason.full;
6526 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6527 return 0;
6528 }
6529
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6530 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6531 {
6532 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6533
6534 /*
6535 * Exit to user space when bus lock detected to inform that there is
6536 * a bus lock in guest.
6537 */
6538 if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6539 if (ret > 0)
6540 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6541
6542 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6543 return 0;
6544 }
6545 return ret;
6546 }
6547
6548 /*
6549 * Software based L1D cache flush which is used when microcode providing
6550 * the cache control MSR is not loaded.
6551 *
6552 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6553 * flush it is required to read in 64 KiB because the replacement algorithm
6554 * is not exactly LRU. This could be sized at runtime via topology
6555 * information but as all relevant affected CPUs have 32KiB L1D cache size
6556 * there is no point in doing so.
6557 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6558 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6559 {
6560 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6561
6562 /*
6563 * This code is only executed when the flush mode is 'cond' or
6564 * 'always'
6565 */
6566 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6567 bool flush_l1d;
6568
6569 /*
6570 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6571 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6572 * exits to userspace, or if KVM reaches one of the unsafe
6573 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6574 */
6575 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6576 vcpu->arch.l1tf_flush_l1d = false;
6577
6578 /*
6579 * Clear the per-cpu flush bit, it gets set again from
6580 * the interrupt handlers.
6581 */
6582 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6583 kvm_clear_cpu_l1tf_flush_l1d();
6584
6585 if (!flush_l1d)
6586 return;
6587 }
6588
6589 vcpu->stat.l1d_flush++;
6590
6591 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6592 native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6593 return;
6594 }
6595
6596 asm volatile(
6597 /* First ensure the pages are in the TLB */
6598 "xorl %%eax, %%eax\n"
6599 ".Lpopulate_tlb:\n\t"
6600 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6601 "addl $4096, %%eax\n\t"
6602 "cmpl %%eax, %[size]\n\t"
6603 "jne .Lpopulate_tlb\n\t"
6604 "xorl %%eax, %%eax\n\t"
6605 "cpuid\n\t"
6606 /* Now fill the cache */
6607 "xorl %%eax, %%eax\n"
6608 ".Lfill_cache:\n"
6609 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6610 "addl $64, %%eax\n\t"
6611 "cmpl %%eax, %[size]\n\t"
6612 "jne .Lfill_cache\n\t"
6613 "lfence\n"
6614 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6615 [size] "r" (size)
6616 : "eax", "ebx", "ecx", "edx");
6617 }
6618
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6619 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6620 {
6621 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6622 int tpr_threshold;
6623
6624 if (is_guest_mode(vcpu) &&
6625 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6626 return;
6627
6628 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6629 if (is_guest_mode(vcpu))
6630 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6631 else
6632 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6633 }
6634
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6635 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6636 {
6637 struct vcpu_vmx *vmx = to_vmx(vcpu);
6638 u32 sec_exec_control;
6639
6640 if (!lapic_in_kernel(vcpu))
6641 return;
6642
6643 if (!flexpriority_enabled &&
6644 !cpu_has_vmx_virtualize_x2apic_mode())
6645 return;
6646
6647 /* Postpone execution until vmcs01 is the current VMCS. */
6648 if (is_guest_mode(vcpu)) {
6649 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6650 return;
6651 }
6652
6653 sec_exec_control = secondary_exec_controls_get(vmx);
6654 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6655 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6656
6657 switch (kvm_get_apic_mode(vcpu)) {
6658 case LAPIC_MODE_INVALID:
6659 WARN_ONCE(true, "Invalid local APIC state");
6660 break;
6661 case LAPIC_MODE_DISABLED:
6662 break;
6663 case LAPIC_MODE_XAPIC:
6664 if (flexpriority_enabled) {
6665 sec_exec_control |=
6666 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6667 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6668
6669 /*
6670 * Flush the TLB, reloading the APIC access page will
6671 * only do so if its physical address has changed, but
6672 * the guest may have inserted a non-APIC mapping into
6673 * the TLB while the APIC access page was disabled.
6674 */
6675 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6676 }
6677 break;
6678 case LAPIC_MODE_X2APIC:
6679 if (cpu_has_vmx_virtualize_x2apic_mode())
6680 sec_exec_control |=
6681 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6682 break;
6683 }
6684 secondary_exec_controls_set(vmx, sec_exec_control);
6685
6686 vmx_update_msr_bitmap_x2apic(vcpu);
6687 }
6688
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6689 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6690 {
6691 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6692 struct kvm *kvm = vcpu->kvm;
6693 struct kvm_memslots *slots = kvm_memslots(kvm);
6694 struct kvm_memory_slot *slot;
6695 struct page *refcounted_page;
6696 unsigned long mmu_seq;
6697 kvm_pfn_t pfn;
6698 bool writable;
6699
6700 /* Defer reload until vmcs01 is the current VMCS. */
6701 if (is_guest_mode(vcpu)) {
6702 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6703 return;
6704 }
6705
6706 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6707 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6708 return;
6709
6710 /*
6711 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6712 * KVM doesn't unintentionally grab a userspace memslot. It _should_
6713 * be impossible for userspace to create a memslot for the APIC when
6714 * APICv is enabled, but paranoia won't hurt in this case.
6715 */
6716 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6717 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6718 return;
6719
6720 /*
6721 * Ensure that the mmu_notifier sequence count is read before KVM
6722 * retrieves the pfn from the primary MMU. Note, the memslot is
6723 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6724 * in kvm_mmu_invalidate_end().
6725 */
6726 mmu_seq = kvm->mmu_invalidate_seq;
6727 smp_rmb();
6728
6729 /*
6730 * No need to retry if the memslot does not exist or is invalid. KVM
6731 * controls the APIC-access page memslot, and only deletes the memslot
6732 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6733 */
6734 pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6735 if (is_error_noslot_pfn(pfn))
6736 return;
6737
6738 read_lock(&vcpu->kvm->mmu_lock);
6739 if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6740 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6741 else
6742 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6743
6744 /*
6745 * Do not pin the APIC access page in memory so that it can be freely
6746 * migrated, the MMU notifier will call us again if it is migrated or
6747 * swapped out. KVM backs the memslot with anonymous memory, the pfn
6748 * should always point at a refcounted page (if the pfn is valid).
6749 */
6750 if (!WARN_ON_ONCE(!refcounted_page))
6751 kvm_release_page_clean(refcounted_page);
6752
6753 /*
6754 * No need for a manual TLB flush at this point, KVM has already done a
6755 * flush if there were SPTEs pointing at the previous page.
6756 */
6757 read_unlock(&vcpu->kvm->mmu_lock);
6758 }
6759
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6760 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6761 {
6762 u16 status;
6763 u8 old;
6764
6765 /*
6766 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6767 * is only relevant for if and only if Virtual Interrupt Delivery is
6768 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6769 * vAPIC, not L1's vAPIC. KVM must update vmcs01 on the next nested
6770 * VM-Exit, otherwise L1 with run with a stale SVI.
6771 */
6772 if (is_guest_mode(vcpu)) {
6773 /*
6774 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6775 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6776 * Note, userspace can stuff state while L2 is active; assert
6777 * that VID is disabled if and only if the vCPU is in KVM_RUN
6778 * to avoid false positives if userspace is setting APIC state.
6779 */
6780 WARN_ON_ONCE(vcpu->wants_to_run &&
6781 nested_cpu_has_vid(get_vmcs12(vcpu)));
6782 to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6783 return;
6784 }
6785
6786 if (max_isr == -1)
6787 max_isr = 0;
6788
6789 status = vmcs_read16(GUEST_INTR_STATUS);
6790 old = status >> 8;
6791 if (max_isr != old) {
6792 status &= 0xff;
6793 status |= max_isr << 8;
6794 vmcs_write16(GUEST_INTR_STATUS, status);
6795 }
6796 }
6797
vmx_set_rvi(int vector)6798 static void vmx_set_rvi(int vector)
6799 {
6800 u16 status;
6801 u8 old;
6802
6803 if (vector == -1)
6804 vector = 0;
6805
6806 status = vmcs_read16(GUEST_INTR_STATUS);
6807 old = (u8)status & 0xff;
6808 if ((u8)vector != old) {
6809 status &= ~0xff;
6810 status |= (u8)vector;
6811 vmcs_write16(GUEST_INTR_STATUS, status);
6812 }
6813 }
6814
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6815 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6816 {
6817 struct vcpu_vt *vt = to_vt(vcpu);
6818 int max_irr;
6819 bool got_posted_interrupt;
6820
6821 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6822 return -EIO;
6823
6824 if (pi_test_on(&vt->pi_desc)) {
6825 pi_clear_on(&vt->pi_desc);
6826 /*
6827 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6828 * But on x86 this is just a compiler barrier anyway.
6829 */
6830 smp_mb__after_atomic();
6831 got_posted_interrupt =
6832 kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6833 } else {
6834 max_irr = kvm_lapic_find_highest_irr(vcpu);
6835 got_posted_interrupt = false;
6836 }
6837
6838 /*
6839 * Newly recognized interrupts are injected via either virtual interrupt
6840 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6841 * disabled in two cases:
6842 *
6843 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6844 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6845 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6846 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6847 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6848 *
6849 * 2) If APICv is disabled for this vCPU, assigned devices may still
6850 * attempt to post interrupts. The posted interrupt vector will cause
6851 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6852 */
6853 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6854 vmx_set_rvi(max_irr);
6855 else if (got_posted_interrupt)
6856 kvm_make_request(KVM_REQ_EVENT, vcpu);
6857
6858 return max_irr;
6859 }
6860
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6861 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6862 {
6863 if (!kvm_vcpu_apicv_active(vcpu))
6864 return;
6865
6866 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6867 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6868 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6869 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6870 }
6871
6872 void vmx_do_interrupt_irqoff(unsigned long entry);
6873 void vmx_do_nmi_irqoff(void);
6874
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6875 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6876 {
6877 /*
6878 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6879 * MSR value is not clobbered by the host activity before the guest
6880 * has chance to consume it.
6881 *
6882 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6883 * interception may have been caused by L1 interception. Per the SDM,
6884 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6885 *
6886 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6887 * unlike CR2 and DR6, the value is not a payload that is attached to
6888 * the #NM exception.
6889 */
6890 if (is_xfd_nm_fault(vcpu))
6891 rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6892 }
6893
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6894 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6895 {
6896 /* if exit due to PF check for async PF */
6897 if (is_page_fault(intr_info))
6898 vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6899 /* if exit due to NM, handle before interrupts are enabled */
6900 else if (is_nm_fault(intr_info))
6901 handle_nm_fault_irqoff(vcpu);
6902 /* Handle machine checks before interrupts are enabled */
6903 else if (is_machine_check(intr_info))
6904 kvm_machine_check();
6905 }
6906
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6907 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
6908 u32 intr_info)
6909 {
6910 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6911
6912 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6913 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6914 return;
6915
6916 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6917 if (cpu_feature_enabled(X86_FEATURE_FRED))
6918 fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
6919 else
6920 vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
6921 kvm_after_interrupt(vcpu);
6922
6923 vcpu->arch.at_instruction_boundary = true;
6924 }
6925
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6926 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6927 {
6928 if (to_vt(vcpu)->emulation_required)
6929 return;
6930
6931 if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6932 handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
6933 else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
6934 handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
6935 }
6936
6937 /*
6938 * The kvm parameter can be NULL (module initialization, or invocation before
6939 * VM creation). Be sure to check the kvm parameter before using it.
6940 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)6941 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6942 {
6943 switch (index) {
6944 case MSR_IA32_SMBASE:
6945 if (!IS_ENABLED(CONFIG_KVM_SMM))
6946 return false;
6947 /*
6948 * We cannot do SMM unless we can run the guest in big
6949 * real mode.
6950 */
6951 return enable_unrestricted_guest || emulate_invalid_guest_state;
6952 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
6953 return nested;
6954 case MSR_AMD64_VIRT_SPEC_CTRL:
6955 case MSR_AMD64_TSC_RATIO:
6956 /* This is AMD only. */
6957 return false;
6958 default:
6959 return true;
6960 }
6961 }
6962
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6963 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6964 {
6965 u32 exit_intr_info;
6966 bool unblock_nmi;
6967 u8 vector;
6968 bool idtv_info_valid;
6969
6970 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6971
6972 if (enable_vnmi) {
6973 if (vmx->loaded_vmcs->nmi_known_unmasked)
6974 return;
6975
6976 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6977 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6978 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6979 /*
6980 * SDM 3: 27.7.1.2 (September 2008)
6981 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6982 * a guest IRET fault.
6983 * SDM 3: 23.2.2 (September 2008)
6984 * Bit 12 is undefined in any of the following cases:
6985 * If the VM exit sets the valid bit in the IDT-vectoring
6986 * information field.
6987 * If the VM exit is due to a double fault.
6988 */
6989 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6990 vector != DF_VECTOR && !idtv_info_valid)
6991 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6992 GUEST_INTR_STATE_NMI);
6993 else
6994 vmx->loaded_vmcs->nmi_known_unmasked =
6995 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6996 & GUEST_INTR_STATE_NMI);
6997 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6998 vmx->loaded_vmcs->vnmi_blocked_time +=
6999 ktime_to_ns(ktime_sub(ktime_get(),
7000 vmx->loaded_vmcs->entry_time));
7001 }
7002
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7003 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7004 u32 idt_vectoring_info,
7005 int instr_len_field,
7006 int error_code_field)
7007 {
7008 u8 vector;
7009 int type;
7010 bool idtv_info_valid;
7011
7012 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7013
7014 vcpu->arch.nmi_injected = false;
7015 kvm_clear_exception_queue(vcpu);
7016 kvm_clear_interrupt_queue(vcpu);
7017
7018 if (!idtv_info_valid)
7019 return;
7020
7021 kvm_make_request(KVM_REQ_EVENT, vcpu);
7022
7023 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7024 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7025
7026 switch (type) {
7027 case INTR_TYPE_NMI_INTR:
7028 vcpu->arch.nmi_injected = true;
7029 /*
7030 * SDM 3: 27.7.1.2 (September 2008)
7031 * Clear bit "block by NMI" before VM entry if a NMI
7032 * delivery faulted.
7033 */
7034 vmx_set_nmi_mask(vcpu, false);
7035 break;
7036 case INTR_TYPE_SOFT_EXCEPTION:
7037 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7038 fallthrough;
7039 case INTR_TYPE_HARD_EXCEPTION: {
7040 u32 error_code = 0;
7041
7042 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7043 error_code = vmcs_read32(error_code_field);
7044
7045 kvm_requeue_exception(vcpu, vector,
7046 idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7047 error_code);
7048 break;
7049 }
7050 case INTR_TYPE_SOFT_INTR:
7051 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7052 fallthrough;
7053 case INTR_TYPE_EXT_INTR:
7054 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7055 break;
7056 default:
7057 break;
7058 }
7059 }
7060
vmx_complete_interrupts(struct vcpu_vmx * vmx)7061 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7062 {
7063 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7064 VM_EXIT_INSTRUCTION_LEN,
7065 IDT_VECTORING_ERROR_CODE);
7066 }
7067
vmx_cancel_injection(struct kvm_vcpu * vcpu)7068 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7069 {
7070 __vmx_complete_interrupts(vcpu,
7071 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7072 VM_ENTRY_INSTRUCTION_LEN,
7073 VM_ENTRY_EXCEPTION_ERROR_CODE);
7074
7075 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7076 }
7077
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7078 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7079 {
7080 int i, nr_msrs;
7081 struct perf_guest_switch_msr *msrs;
7082 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7083
7084 pmu->host_cross_mapped_mask = 0;
7085 if (pmu->pebs_enable & pmu->global_ctrl)
7086 intel_pmu_cross_mapped_check(pmu);
7087
7088 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7089 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7090 if (!msrs)
7091 return;
7092
7093 for (i = 0; i < nr_msrs; i++)
7094 if (msrs[i].host == msrs[i].guest)
7095 clear_atomic_switch_msr(vmx, msrs[i].msr);
7096 else
7097 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7098 msrs[i].host, false);
7099 }
7100
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7101 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7102 {
7103 struct vcpu_vmx *vmx = to_vmx(vcpu);
7104 u64 tscl;
7105 u32 delta_tsc;
7106
7107 if (force_immediate_exit) {
7108 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7109 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7110 } else if (vmx->hv_deadline_tsc != -1) {
7111 tscl = rdtsc();
7112 if (vmx->hv_deadline_tsc > tscl)
7113 /* set_hv_timer ensures the delta fits in 32-bits */
7114 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7115 cpu_preemption_timer_multi);
7116 else
7117 delta_tsc = 0;
7118
7119 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7120 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7121 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7122 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7123 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7124 }
7125 }
7126
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7127 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7128 {
7129 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7130 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7131 vmcs_writel(HOST_RSP, host_rsp);
7132 }
7133 }
7134
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7135 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7136 unsigned int flags)
7137 {
7138 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7139
7140 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7141 return;
7142
7143 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7144 vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7145
7146 /*
7147 * If the guest/host SPEC_CTRL values differ, restore the host value.
7148 *
7149 * For legacy IBRS, the IBRS bit always needs to be written after
7150 * transitioning from a less privileged predictor mode, regardless of
7151 * whether the guest/host values differ.
7152 */
7153 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7154 vmx->spec_ctrl != hostval)
7155 native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7156
7157 barrier_nospec();
7158 }
7159
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7160 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7161 bool force_immediate_exit)
7162 {
7163 /*
7164 * If L2 is active, some VMX preemption timer exits can be handled in
7165 * the fastpath even, all other exits must use the slow path.
7166 */
7167 if (is_guest_mode(vcpu) &&
7168 vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7169 return EXIT_FASTPATH_NONE;
7170
7171 switch (vmx_get_exit_reason(vcpu).basic) {
7172 case EXIT_REASON_MSR_WRITE:
7173 return handle_fastpath_set_msr_irqoff(vcpu);
7174 case EXIT_REASON_PREEMPTION_TIMER:
7175 return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7176 case EXIT_REASON_HLT:
7177 return handle_fastpath_hlt(vcpu);
7178 default:
7179 return EXIT_FASTPATH_NONE;
7180 }
7181 }
7182
vmx_handle_nmi(struct kvm_vcpu * vcpu)7183 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7184 {
7185 if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7186 !is_nmi(vmx_get_intr_info(vcpu)))
7187 return;
7188
7189 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7190 if (cpu_feature_enabled(X86_FEATURE_FRED))
7191 fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7192 else
7193 vmx_do_nmi_irqoff();
7194 kvm_after_interrupt(vcpu);
7195 }
7196
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7197 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7198 unsigned int flags)
7199 {
7200 struct vcpu_vmx *vmx = to_vmx(vcpu);
7201
7202 guest_state_enter_irqoff();
7203
7204 /*
7205 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7206 * mitigation for MDS is done late in VMentry and is still
7207 * executed in spite of L1D Flush. This is because an extra VERW
7208 * should not matter much after the big hammer L1D Flush.
7209 *
7210 * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7211 * and is affected by MMIO Stale Data. In such cases mitigation in only
7212 * needed against an MMIO capable guest.
7213 */
7214 if (static_branch_unlikely(&vmx_l1d_should_flush))
7215 vmx_l1d_flush(vcpu);
7216 else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7217 (flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO))
7218 x86_clear_cpu_buffers();
7219
7220 vmx_disable_fb_clear(vmx);
7221
7222 if (vcpu->arch.cr2 != native_read_cr2())
7223 native_write_cr2(vcpu->arch.cr2);
7224
7225 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7226 flags);
7227
7228 vcpu->arch.cr2 = native_read_cr2();
7229 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7230
7231 vmx->idt_vectoring_info = 0;
7232
7233 vmx_enable_fb_clear(vmx);
7234
7235 if (unlikely(vmx->fail)) {
7236 vmx->vt.exit_reason.full = 0xdead;
7237 goto out;
7238 }
7239
7240 vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7241 if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7242 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7243
7244 vmx_handle_nmi(vcpu);
7245
7246 out:
7247 guest_state_exit_irqoff();
7248 }
7249
vmx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)7250 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7251 {
7252 bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7253 struct vcpu_vmx *vmx = to_vmx(vcpu);
7254 unsigned long cr3, cr4;
7255
7256 /* Record the guest's net vcpu time for enforced NMI injections. */
7257 if (unlikely(!enable_vnmi &&
7258 vmx->loaded_vmcs->soft_vnmi_blocked))
7259 vmx->loaded_vmcs->entry_time = ktime_get();
7260
7261 /*
7262 * Don't enter VMX if guest state is invalid, let the exit handler
7263 * start emulation until we arrive back to a valid state. Synthesize a
7264 * consistency check VM-Exit due to invalid guest state and bail.
7265 */
7266 if (unlikely(vmx->vt.emulation_required)) {
7267 vmx->fail = 0;
7268
7269 vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7270 vmx->vt.exit_reason.failed_vmentry = 1;
7271 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7272 vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7273 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7274 vmx->vt.exit_intr_info = 0;
7275 return EXIT_FASTPATH_NONE;
7276 }
7277
7278 trace_kvm_entry(vcpu, force_immediate_exit);
7279
7280 if (vmx->ple_window_dirty) {
7281 vmx->ple_window_dirty = false;
7282 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7283 }
7284
7285 /*
7286 * We did this in prepare_switch_to_guest, because it needs to
7287 * be within srcu_read_lock.
7288 */
7289 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7290
7291 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7292 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7293 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7294 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7295 vcpu->arch.regs_dirty = 0;
7296
7297 if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7298 set_debugreg(vcpu->arch.dr6, 6);
7299
7300 if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7301 vmx_reload_guest_debugctl(vcpu);
7302
7303 /*
7304 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7305 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7306 * it switches back to the current->mm, which can occur in KVM context
7307 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7308 * toggles a static key while handling a VM-Exit.
7309 */
7310 cr3 = __get_current_cr3_fast();
7311 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7312 vmcs_writel(HOST_CR3, cr3);
7313 vmx->loaded_vmcs->host_state.cr3 = cr3;
7314 }
7315
7316 cr4 = cr4_read_shadow();
7317 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7318 vmcs_writel(HOST_CR4, cr4);
7319 vmx->loaded_vmcs->host_state.cr4 = cr4;
7320 }
7321
7322 /* When single-stepping over STI and MOV SS, we must clear the
7323 * corresponding interruptibility bits in the guest state. Otherwise
7324 * vmentry fails as it then expects bit 14 (BS) in pending debug
7325 * exceptions being set, but that's not correct for the guest debugging
7326 * case. */
7327 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7328 vmx_set_interrupt_shadow(vcpu, 0);
7329
7330 kvm_load_guest_xsave_state(vcpu);
7331
7332 pt_guest_enter(vmx);
7333
7334 atomic_switch_perf_msrs(vmx);
7335 if (intel_pmu_lbr_is_enabled(vcpu))
7336 vmx_passthrough_lbr_msrs(vcpu);
7337
7338 if (enable_preemption_timer)
7339 vmx_update_hv_timer(vcpu, force_immediate_exit);
7340 else if (force_immediate_exit)
7341 smp_send_reschedule(vcpu->cpu);
7342
7343 kvm_wait_lapic_expire(vcpu);
7344
7345 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7346 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7347
7348 /* All fields are clean at this point */
7349 if (kvm_is_using_evmcs()) {
7350 current_evmcs->hv_clean_fields |=
7351 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7352
7353 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7354 }
7355
7356 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7357 if (vcpu->arch.host_debugctl)
7358 update_debugctlmsr(vcpu->arch.host_debugctl);
7359
7360 #ifndef CONFIG_X86_64
7361 /*
7362 * The sysexit path does not restore ds/es, so we must set them to
7363 * a reasonable value ourselves.
7364 *
7365 * We can't defer this to vmx_prepare_switch_to_host() since that
7366 * function may be executed in interrupt context, which saves and
7367 * restore segments around it, nullifying its effect.
7368 */
7369 loadsegment(ds, __USER_DS);
7370 loadsegment(es, __USER_DS);
7371 #endif
7372
7373 pt_guest_exit(vmx);
7374
7375 kvm_load_host_xsave_state(vcpu);
7376
7377 if (is_guest_mode(vcpu)) {
7378 /*
7379 * Track VMLAUNCH/VMRESUME that have made past guest state
7380 * checking.
7381 */
7382 if (vmx->nested.nested_run_pending &&
7383 !vmx_get_exit_reason(vcpu).failed_vmentry)
7384 ++vcpu->stat.nested_run;
7385
7386 vmx->nested.nested_run_pending = 0;
7387 }
7388
7389 if (unlikely(vmx->fail))
7390 return EXIT_FASTPATH_NONE;
7391
7392 if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7393 kvm_machine_check();
7394
7395 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7396
7397 if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7398 return EXIT_FASTPATH_NONE;
7399
7400 vmx->loaded_vmcs->launched = 1;
7401
7402 vmx_recover_nmi_blocking(vmx);
7403 vmx_complete_interrupts(vmx);
7404
7405 return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7406 }
7407
vmx_vcpu_free(struct kvm_vcpu * vcpu)7408 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7409 {
7410 struct vcpu_vmx *vmx = to_vmx(vcpu);
7411
7412 if (enable_pml)
7413 vmx_destroy_pml_buffer(vmx);
7414 free_vpid(vmx->vpid);
7415 nested_vmx_free_vcpu(vcpu);
7416 free_loaded_vmcs(vmx->loaded_vmcs);
7417 free_page((unsigned long)vmx->ve_info);
7418 }
7419
vmx_vcpu_create(struct kvm_vcpu * vcpu)7420 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7421 {
7422 struct vmx_uret_msr *tsx_ctrl;
7423 struct vcpu_vmx *vmx;
7424 int i, err;
7425
7426 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7427 vmx = to_vmx(vcpu);
7428
7429 INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7430
7431 err = -ENOMEM;
7432
7433 vmx->vpid = allocate_vpid();
7434
7435 /*
7436 * If PML is turned on, failure on enabling PML just results in failure
7437 * of creating the vcpu, therefore we can simplify PML logic (by
7438 * avoiding dealing with cases, such as enabling PML partially on vcpus
7439 * for the guest), etc.
7440 */
7441 if (enable_pml) {
7442 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7443 if (!vmx->pml_pg)
7444 goto free_vpid;
7445 }
7446
7447 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7448 vmx->guest_uret_msrs[i].mask = -1ull;
7449 if (boot_cpu_has(X86_FEATURE_RTM)) {
7450 /*
7451 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7452 * Keep the host value unchanged to avoid changing CPUID bits
7453 * under the host kernel's feet.
7454 */
7455 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7456 if (tsx_ctrl)
7457 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7458 }
7459
7460 err = alloc_loaded_vmcs(&vmx->vmcs01);
7461 if (err < 0)
7462 goto free_pml;
7463
7464 /*
7465 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7466 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7467 * feature only for vmcs01, KVM currently isn't equipped to realize any
7468 * performance benefits from enabling it for vmcs02.
7469 */
7470 if (kvm_is_using_evmcs() &&
7471 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7472 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7473
7474 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7475 }
7476
7477 vmx->loaded_vmcs = &vmx->vmcs01;
7478
7479 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7480 err = kvm_alloc_apic_access_page(vcpu->kvm);
7481 if (err)
7482 goto free_vmcs;
7483 }
7484
7485 if (enable_ept && !enable_unrestricted_guest) {
7486 err = init_rmode_identity_map(vcpu->kvm);
7487 if (err)
7488 goto free_vmcs;
7489 }
7490
7491 err = -ENOMEM;
7492 if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7493 struct page *page;
7494
7495 BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7496
7497 /* ve_info must be page aligned. */
7498 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7499 if (!page)
7500 goto free_vmcs;
7501
7502 vmx->ve_info = page_to_virt(page);
7503 }
7504
7505 if (vmx_can_use_ipiv(vcpu))
7506 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7507 __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7508
7509 return 0;
7510
7511 free_vmcs:
7512 free_loaded_vmcs(vmx->loaded_vmcs);
7513 free_pml:
7514 vmx_destroy_pml_buffer(vmx);
7515 free_vpid:
7516 free_vpid(vmx->vpid);
7517 return err;
7518 }
7519
7520 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7521 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7522
vmx_vm_init(struct kvm * kvm)7523 int vmx_vm_init(struct kvm *kvm)
7524 {
7525 if (!ple_gap)
7526 kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7527
7528 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7529 switch (l1tf_mitigation) {
7530 case L1TF_MITIGATION_OFF:
7531 case L1TF_MITIGATION_FLUSH_NOWARN:
7532 /* 'I explicitly don't care' is set */
7533 break;
7534 case L1TF_MITIGATION_AUTO:
7535 case L1TF_MITIGATION_FLUSH:
7536 case L1TF_MITIGATION_FLUSH_NOSMT:
7537 case L1TF_MITIGATION_FULL:
7538 /*
7539 * Warn upon starting the first VM in a potentially
7540 * insecure environment.
7541 */
7542 if (sched_smt_active())
7543 pr_warn_once(L1TF_MSG_SMT);
7544 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7545 pr_warn_once(L1TF_MSG_L1D);
7546 break;
7547 case L1TF_MITIGATION_FULL_FORCE:
7548 /* Flush is enforced */
7549 break;
7550 }
7551 }
7552
7553 if (enable_pml)
7554 kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7555 return 0;
7556 }
7557
vmx_ignore_guest_pat(struct kvm * kvm)7558 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7559 {
7560 /*
7561 * Non-coherent DMA devices need the guest to flush CPU properly.
7562 * In that case it is not possible to map all guest RAM as WB, so
7563 * always trust guest PAT.
7564 */
7565 return !kvm_arch_has_noncoherent_dma(kvm) &&
7566 kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7567 }
7568
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7569 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7570 {
7571 /*
7572 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7573 * with cacheable accesses will result in Machine Checks.
7574 */
7575 if (is_mmio)
7576 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7577
7578 /* Force WB if ignoring guest PAT */
7579 if (vmx_ignore_guest_pat(vcpu->kvm))
7580 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7581
7582 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7583 }
7584
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7585 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7586 {
7587 /*
7588 * These bits in the secondary execution controls field
7589 * are dynamic, the others are mostly based on the hypervisor
7590 * architecture and the guest's CPUID. Do not touch the
7591 * dynamic bits.
7592 */
7593 u32 mask =
7594 SECONDARY_EXEC_SHADOW_VMCS |
7595 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7596 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7597 SECONDARY_EXEC_DESC;
7598
7599 u32 cur_ctl = secondary_exec_controls_get(vmx);
7600
7601 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7602 }
7603
7604 /*
7605 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7606 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7607 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7608 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7609 {
7610 struct vcpu_vmx *vmx = to_vmx(vcpu);
7611 struct kvm_cpuid_entry2 *entry;
7612
7613 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7614 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7615
7616 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7617 if (entry && (entry->_reg & (_cpuid_mask))) \
7618 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7619 } while (0)
7620
7621 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7622 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7623 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7624 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7625 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7626 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7627 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7628 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7629 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7630 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7631 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7632 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7633 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7634 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7635 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7636
7637 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7638 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7639 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7640 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7641 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7642 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7643 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7644
7645 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7646 cr4_fixed1_update(X86_CR4_LAM_SUP, eax, feature_bit(LAM));
7647
7648 #undef cr4_fixed1_update
7649 }
7650
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7651 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7652 {
7653 struct vcpu_vmx *vmx = to_vmx(vcpu);
7654 struct kvm_cpuid_entry2 *best = NULL;
7655 int i;
7656
7657 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7658 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7659 if (!best)
7660 return;
7661 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7662 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7663 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7664 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7665 }
7666
7667 /* Get the number of configurable Address Ranges for filtering */
7668 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7669 PT_CAP_num_address_ranges);
7670
7671 /* Initialize and clear the no dependency bits */
7672 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7673 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7674 RTIT_CTL_BRANCH_EN);
7675
7676 /*
7677 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7678 * will inject an #GP
7679 */
7680 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7681 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7682
7683 /*
7684 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7685 * PSBFreq can be set
7686 */
7687 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7688 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7689 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7690
7691 /*
7692 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7693 */
7694 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7695 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7696 RTIT_CTL_MTC_RANGE);
7697
7698 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7699 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7700 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7701 RTIT_CTL_PTW_EN);
7702
7703 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7704 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7705 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7706
7707 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7708 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7709 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7710
7711 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7712 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7713 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7714
7715 /* unmask address range configure area */
7716 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7717 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7718 }
7719
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7720 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7721 {
7722 struct vcpu_vmx *vmx = to_vmx(vcpu);
7723
7724 /*
7725 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7726 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7727 * set if and only if XSAVE is supported.
7728 */
7729 if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7730 guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7731
7732 vmx_setup_uret_msrs(vmx);
7733
7734 if (cpu_has_secondary_exec_ctrls())
7735 vmcs_set_secondary_exec_control(vmx,
7736 vmx_secondary_exec_control(vmx));
7737
7738 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7739 vmx->msr_ia32_feature_control_valid_bits |=
7740 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7741 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7742 else
7743 vmx->msr_ia32_feature_control_valid_bits &=
7744 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7745 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7746
7747 if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7748 nested_vmx_cr_fixed1_bits_update(vcpu);
7749
7750 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7751 guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7752 update_intel_pt_cfg(vcpu);
7753
7754 if (boot_cpu_has(X86_FEATURE_RTM)) {
7755 struct vmx_uret_msr *msr;
7756 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7757 if (msr) {
7758 bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7759 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7760 }
7761 }
7762
7763 set_cr4_guest_host_mask(vmx);
7764
7765 vmx_write_encls_bitmap(vcpu, NULL);
7766 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7767 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7768 else
7769 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7770
7771 if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7772 vmx->msr_ia32_feature_control_valid_bits |=
7773 FEAT_CTL_SGX_LC_ENABLED;
7774 else
7775 vmx->msr_ia32_feature_control_valid_bits &=
7776 ~FEAT_CTL_SGX_LC_ENABLED;
7777
7778 /* Recalc MSR interception to account for feature changes. */
7779 vmx_recalc_msr_intercepts(vcpu);
7780
7781 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7782 vmx_update_exception_bitmap(vcpu);
7783 }
7784
vmx_get_perf_capabilities(void)7785 static __init u64 vmx_get_perf_capabilities(void)
7786 {
7787 u64 perf_cap = PMU_CAP_FW_WRITES;
7788 u64 host_perf_cap = 0;
7789
7790 if (!enable_pmu)
7791 return 0;
7792
7793 if (boot_cpu_has(X86_FEATURE_PDCM))
7794 rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7795
7796 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7797 x86_perf_get_lbr(&vmx_lbr_caps);
7798
7799 /*
7800 * KVM requires LBR callstack support, as the overhead due to
7801 * context switching LBRs without said support is too high.
7802 * See intel_pmu_create_guest_lbr_event() for more info.
7803 */
7804 if (!vmx_lbr_caps.has_callstack)
7805 memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7806 else if (vmx_lbr_caps.nr)
7807 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7808 }
7809
7810 if (vmx_pebs_supported()) {
7811 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7812
7813 /*
7814 * Disallow adaptive PEBS as it is functionally broken, can be
7815 * used by the guest to read *host* LBRs, and can be used to
7816 * bypass userspace event filters. To correctly and safely
7817 * support adaptive PEBS, KVM needs to:
7818 *
7819 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7820 * counters.
7821 *
7822 * 2. Gain support from perf (or take direct control of counter
7823 * programming) to support events without adaptive PEBS
7824 * enabled for the hardware counter.
7825 *
7826 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7827 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7828 *
7829 * 4. Document which PMU events are effectively exposed to the
7830 * guest via adaptive PEBS, and make adaptive PEBS mutually
7831 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7832 */
7833 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7834 }
7835
7836 return perf_cap;
7837 }
7838
vmx_set_cpu_caps(void)7839 static __init void vmx_set_cpu_caps(void)
7840 {
7841 kvm_set_cpu_caps();
7842
7843 /* CPUID 0x1 */
7844 if (nested)
7845 kvm_cpu_cap_set(X86_FEATURE_VMX);
7846
7847 /* CPUID 0x7 */
7848 if (kvm_mpx_supported())
7849 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7850 if (!cpu_has_vmx_invpcid())
7851 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7852 if (vmx_pt_mode_is_host_guest())
7853 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7854 if (vmx_pebs_supported()) {
7855 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7856 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7857 }
7858
7859 if (!enable_pmu)
7860 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7861 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7862
7863 if (!enable_sgx) {
7864 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7865 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7866 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7867 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7868 kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7869 }
7870
7871 if (vmx_umip_emulated())
7872 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7873
7874 /* CPUID 0xD.1 */
7875 kvm_caps.supported_xss = 0;
7876 if (!cpu_has_vmx_xsaves())
7877 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7878
7879 /* CPUID 0x80000001 and 0x7 (RDPID) */
7880 if (!cpu_has_vmx_rdtscp()) {
7881 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7882 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7883 }
7884
7885 if (cpu_has_vmx_waitpkg())
7886 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7887 }
7888
vmx_is_io_intercepted(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,unsigned long * exit_qualification)7889 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
7890 struct x86_instruction_info *info,
7891 unsigned long *exit_qualification)
7892 {
7893 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7894 unsigned short port;
7895 int size;
7896 bool imm;
7897
7898 /*
7899 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7900 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7901 * control.
7902 *
7903 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7904 */
7905 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7906 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7907
7908 if (info->intercept == x86_intercept_in ||
7909 info->intercept == x86_intercept_ins) {
7910 port = info->src_val;
7911 size = info->dst_bytes;
7912 imm = info->src_type == OP_IMM;
7913 } else {
7914 port = info->dst_val;
7915 size = info->src_bytes;
7916 imm = info->dst_type == OP_IMM;
7917 }
7918
7919
7920 *exit_qualification = ((unsigned long)port << 16) | (size - 1);
7921
7922 if (info->intercept == x86_intercept_ins ||
7923 info->intercept == x86_intercept_outs)
7924 *exit_qualification |= BIT(4);
7925
7926 if (info->rep_prefix)
7927 *exit_qualification |= BIT(5);
7928
7929 if (imm)
7930 *exit_qualification |= BIT(6);
7931
7932 return nested_vmx_check_io_bitmaps(vcpu, port, size);
7933 }
7934
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7935 int vmx_check_intercept(struct kvm_vcpu *vcpu,
7936 struct x86_instruction_info *info,
7937 enum x86_intercept_stage stage,
7938 struct x86_exception *exception)
7939 {
7940 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7941 unsigned long exit_qualification = 0;
7942 u32 vm_exit_reason;
7943 u64 exit_insn_len;
7944
7945 switch (info->intercept) {
7946 case x86_intercept_rdpid:
7947 /*
7948 * RDPID causes #UD if not enabled through secondary execution
7949 * controls (ENABLE_RDTSCP). Note, the implicit MSR access to
7950 * TSC_AUX is NOT subject to interception, i.e. checking only
7951 * the dedicated execution control is architecturally correct.
7952 */
7953 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7954 exception->vector = UD_VECTOR;
7955 exception->error_code_valid = false;
7956 return X86EMUL_PROPAGATE_FAULT;
7957 }
7958 return X86EMUL_CONTINUE;
7959
7960 case x86_intercept_in:
7961 case x86_intercept_ins:
7962 case x86_intercept_out:
7963 case x86_intercept_outs:
7964 if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
7965 return X86EMUL_CONTINUE;
7966
7967 vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
7968 break;
7969
7970 case x86_intercept_lgdt:
7971 case x86_intercept_lidt:
7972 case x86_intercept_lldt:
7973 case x86_intercept_ltr:
7974 case x86_intercept_sgdt:
7975 case x86_intercept_sidt:
7976 case x86_intercept_sldt:
7977 case x86_intercept_str:
7978 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7979 return X86EMUL_CONTINUE;
7980
7981 if (info->intercept == x86_intercept_lldt ||
7982 info->intercept == x86_intercept_ltr ||
7983 info->intercept == x86_intercept_sldt ||
7984 info->intercept == x86_intercept_str)
7985 vm_exit_reason = EXIT_REASON_LDTR_TR;
7986 else
7987 vm_exit_reason = EXIT_REASON_GDTR_IDTR;
7988 /*
7989 * FIXME: Decode the ModR/M to generate the correct exit
7990 * qualification for memory operands.
7991 */
7992 break;
7993
7994 case x86_intercept_hlt:
7995 if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
7996 return X86EMUL_CONTINUE;
7997
7998 vm_exit_reason = EXIT_REASON_HLT;
7999 break;
8000
8001 case x86_intercept_pause:
8002 /*
8003 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8004 * with vanilla NOPs in the emulator. Apply the interception
8005 * check only to actual PAUSE instructions. Don't check
8006 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8007 * exit, i.e. KVM is within its rights to allow L2 to execute
8008 * the PAUSE.
8009 */
8010 if ((info->rep_prefix != REPE_PREFIX) ||
8011 !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8012 return X86EMUL_CONTINUE;
8013
8014 vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8015 break;
8016
8017 /* TODO: check more intercepts... */
8018 default:
8019 return X86EMUL_UNHANDLEABLE;
8020 }
8021
8022 exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8023 if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8024 return X86EMUL_UNHANDLEABLE;
8025
8026 __nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8027 exit_insn_len);
8028 return X86EMUL_INTERCEPTED;
8029 }
8030
8031 #ifdef CONFIG_X86_64
8032 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8033 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8034 u64 divisor, u64 *result)
8035 {
8036 u64 low = a << shift, high = a >> (64 - shift);
8037
8038 /* To avoid the overflow on divq */
8039 if (high >= divisor)
8040 return 1;
8041
8042 /* Low hold the result, high hold rem which is discarded */
8043 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8044 "rm" (divisor), "0" (low), "1" (high));
8045 *result = low;
8046
8047 return 0;
8048 }
8049
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8050 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8051 bool *expired)
8052 {
8053 struct vcpu_vmx *vmx;
8054 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8055 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8056
8057 vmx = to_vmx(vcpu);
8058 tscl = rdtsc();
8059 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8060 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8061 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8062 ktimer->timer_advance_ns);
8063
8064 if (delta_tsc > lapic_timer_advance_cycles)
8065 delta_tsc -= lapic_timer_advance_cycles;
8066 else
8067 delta_tsc = 0;
8068
8069 /* Convert to host delta tsc if tsc scaling is enabled */
8070 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8071 delta_tsc && u64_shl_div_u64(delta_tsc,
8072 kvm_caps.tsc_scaling_ratio_frac_bits,
8073 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8074 return -ERANGE;
8075
8076 /*
8077 * If the delta tsc can't fit in the 32 bit after the multi shift,
8078 * we can't use the preemption timer.
8079 * It's possible that it fits on later vmentries, but checking
8080 * on every vmentry is costly so we just use an hrtimer.
8081 */
8082 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8083 return -ERANGE;
8084
8085 vmx->hv_deadline_tsc = tscl + delta_tsc;
8086 *expired = !delta_tsc;
8087 return 0;
8088 }
8089
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8090 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8091 {
8092 to_vmx(vcpu)->hv_deadline_tsc = -1;
8093 }
8094 #endif
8095
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8096 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8097 {
8098 struct vcpu_vmx *vmx = to_vmx(vcpu);
8099
8100 if (WARN_ON_ONCE(!enable_pml))
8101 return;
8102
8103 if (is_guest_mode(vcpu)) {
8104 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8105 return;
8106 }
8107
8108 /*
8109 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8110 * code, but in that case another update request will be made and so
8111 * the guest will never run with a stale PML value.
8112 */
8113 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8114 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8115 else
8116 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8117 }
8118
vmx_setup_mce(struct kvm_vcpu * vcpu)8119 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8120 {
8121 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8122 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8123 FEAT_CTL_LMCE_ENABLED;
8124 else
8125 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8126 ~FEAT_CTL_LMCE_ENABLED;
8127 }
8128
8129 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8130 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8131 {
8132 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8133 if (to_vmx(vcpu)->nested.nested_run_pending)
8134 return -EBUSY;
8135 return !is_smm(vcpu);
8136 }
8137
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8138 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8139 {
8140 struct vcpu_vmx *vmx = to_vmx(vcpu);
8141
8142 /*
8143 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8144 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8145 * SMI and RSM only modify state that is saved and restored via SMRAM.
8146 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8147 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8148 */
8149 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8150 if (vmx->nested.smm.guest_mode)
8151 nested_vmx_vmexit(vcpu, -1, 0, 0);
8152
8153 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8154 vmx->nested.vmxon = false;
8155 vmx_clear_hlt(vcpu);
8156 return 0;
8157 }
8158
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8159 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8160 {
8161 struct vcpu_vmx *vmx = to_vmx(vcpu);
8162 int ret;
8163
8164 if (vmx->nested.smm.vmxon) {
8165 vmx->nested.vmxon = true;
8166 vmx->nested.smm.vmxon = false;
8167 }
8168
8169 if (vmx->nested.smm.guest_mode) {
8170 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8171 if (ret)
8172 return ret;
8173
8174 vmx->nested.nested_run_pending = 1;
8175 vmx->nested.smm.guest_mode = false;
8176 }
8177 return 0;
8178 }
8179
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8180 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8181 {
8182 /* RSM will cause a vmexit anyway. */
8183 }
8184 #endif
8185
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8186 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8187 {
8188 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8189 }
8190
vmx_migrate_timers(struct kvm_vcpu * vcpu)8191 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8192 {
8193 if (is_guest_mode(vcpu)) {
8194 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8195
8196 if (hrtimer_try_to_cancel(timer) == 1)
8197 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8198 }
8199 }
8200
vmx_hardware_unsetup(void)8201 void vmx_hardware_unsetup(void)
8202 {
8203 kvm_set_posted_intr_wakeup_handler(NULL);
8204
8205 if (nested)
8206 nested_vmx_hardware_unsetup();
8207
8208 free_kvm_area();
8209 }
8210
vmx_vm_destroy(struct kvm * kvm)8211 void vmx_vm_destroy(struct kvm *kvm)
8212 {
8213 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8214
8215 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8216 }
8217
8218 /*
8219 * Note, the SDM states that the linear address is masked *after* the modified
8220 * canonicality check, whereas KVM masks (untags) the address and then performs
8221 * a "normal" canonicality check. Functionally, the two methods are identical,
8222 * and when the masking occurs relative to the canonicality check isn't visible
8223 * to software, i.e. KVM's behavior doesn't violate the SDM.
8224 */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8225 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8226 {
8227 int lam_bit;
8228 unsigned long cr3_bits;
8229
8230 if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8231 return gva;
8232
8233 if (!is_64_bit_mode(vcpu))
8234 return gva;
8235
8236 /*
8237 * Bit 63 determines if the address should be treated as user address
8238 * or a supervisor address.
8239 */
8240 if (!(gva & BIT_ULL(63))) {
8241 cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8242 if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8243 return gva;
8244
8245 /* LAM_U48 is ignored if LAM_U57 is set. */
8246 lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8247 } else {
8248 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8249 return gva;
8250
8251 lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8252 }
8253
8254 /*
8255 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8256 * Bit 63 is retained from the raw virtual address so that untagging
8257 * doesn't change a user access to a supervisor access, and vice versa.
8258 */
8259 return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8260 }
8261
vmx_handle_intel_pt_intr(void)8262 static unsigned int vmx_handle_intel_pt_intr(void)
8263 {
8264 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8265
8266 /* '0' on failure so that the !PT case can use a RET0 static call. */
8267 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8268 return 0;
8269
8270 kvm_make_request(KVM_REQ_PMI, vcpu);
8271 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8272 (unsigned long *)&vcpu->arch.pmu.global_status);
8273 return 1;
8274 }
8275
vmx_setup_user_return_msrs(void)8276 static __init void vmx_setup_user_return_msrs(void)
8277 {
8278
8279 /*
8280 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8281 * will emulate SYSCALL in legacy mode if the vendor string in guest
8282 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8283 * support this emulation, MSR_STAR is included in the list for i386,
8284 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8285 * into hardware and is here purely for emulation purposes.
8286 */
8287 const u32 vmx_uret_msrs_list[] = {
8288 #ifdef CONFIG_X86_64
8289 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8290 #endif
8291 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8292 MSR_IA32_TSX_CTRL,
8293 };
8294 int i;
8295
8296 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8297
8298 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8299 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8300 }
8301
vmx_setup_me_spte_mask(void)8302 static void __init vmx_setup_me_spte_mask(void)
8303 {
8304 u64 me_mask = 0;
8305
8306 /*
8307 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8308 * kvm_host.maxphyaddr. On MKTME and/or TDX capable systems,
8309 * boot_cpu_data.x86_phys_bits holds the actual physical address
8310 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8311 * MAXPHYADDR reported by CPUID. Those bits between are KeyID bits.
8312 */
8313 if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8314 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8315 kvm_host.maxphyaddr - 1);
8316
8317 /*
8318 * Unlike SME, host kernel doesn't support setting up any
8319 * MKTME KeyID on Intel platforms. No memory encryption
8320 * bits should be included into the SPTE.
8321 */
8322 kvm_mmu_set_me_spte_mask(0, me_mask);
8323 }
8324
vmx_hardware_setup(void)8325 __init int vmx_hardware_setup(void)
8326 {
8327 unsigned long host_bndcfgs;
8328 struct desc_ptr dt;
8329 int r;
8330
8331 store_idt(&dt);
8332 host_idt_base = dt.address;
8333
8334 vmx_setup_user_return_msrs();
8335
8336 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8337 return -EIO;
8338
8339 if (boot_cpu_has(X86_FEATURE_NX))
8340 kvm_enable_efer_bits(EFER_NX);
8341
8342 if (boot_cpu_has(X86_FEATURE_MPX)) {
8343 rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8344 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8345 }
8346
8347 if (!cpu_has_vmx_mpx())
8348 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8349 XFEATURE_MASK_BNDCSR);
8350
8351 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8352 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8353 enable_vpid = 0;
8354
8355 if (!cpu_has_vmx_ept() ||
8356 !cpu_has_vmx_ept_4levels() ||
8357 !cpu_has_vmx_ept_mt_wb() ||
8358 !cpu_has_vmx_invept_global())
8359 enable_ept = 0;
8360
8361 /* NX support is required for shadow paging. */
8362 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8363 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8364 return -EOPNOTSUPP;
8365 }
8366
8367 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8368 enable_ept_ad_bits = 0;
8369
8370 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8371 enable_unrestricted_guest = 0;
8372
8373 if (!cpu_has_vmx_flexpriority())
8374 flexpriority_enabled = 0;
8375
8376 if (!cpu_has_virtual_nmis())
8377 enable_vnmi = 0;
8378
8379 #ifdef CONFIG_X86_SGX_KVM
8380 if (!cpu_has_vmx_encls_vmexit())
8381 enable_sgx = false;
8382 #endif
8383
8384 /*
8385 * set_apic_access_page_addr() is used to reload apic access
8386 * page upon invalidation. No need to do anything if not
8387 * using the APIC_ACCESS_ADDR VMCS field.
8388 */
8389 if (!flexpriority_enabled)
8390 vt_x86_ops.set_apic_access_page_addr = NULL;
8391
8392 if (!cpu_has_vmx_tpr_shadow())
8393 vt_x86_ops.update_cr8_intercept = NULL;
8394
8395 #if IS_ENABLED(CONFIG_HYPERV)
8396 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8397 && enable_ept) {
8398 vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8399 vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8400 }
8401 #endif
8402
8403 if (!cpu_has_vmx_ple()) {
8404 ple_gap = 0;
8405 ple_window = 0;
8406 ple_window_grow = 0;
8407 ple_window_max = 0;
8408 ple_window_shrink = 0;
8409 }
8410
8411 if (!cpu_has_vmx_apicv())
8412 enable_apicv = 0;
8413 if (!enable_apicv)
8414 vt_x86_ops.sync_pir_to_irr = NULL;
8415
8416 if (!enable_apicv || !cpu_has_vmx_ipiv())
8417 enable_ipiv = false;
8418
8419 if (cpu_has_vmx_tsc_scaling())
8420 kvm_caps.has_tsc_control = true;
8421
8422 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8423 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8424 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8425 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8426
8427 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8428
8429 if (enable_ept)
8430 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8431 cpu_has_vmx_ept_execute_only());
8432 else
8433 vt_x86_ops.get_mt_mask = NULL;
8434
8435 /*
8436 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8437 * bits to shadow_zero_check.
8438 */
8439 vmx_setup_me_spte_mask();
8440
8441 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8442 ept_caps_to_lpage_level(vmx_capability.ept));
8443
8444 /*
8445 * Only enable PML when hardware supports PML feature, and both EPT
8446 * and EPT A/D bit features are enabled -- PML depends on them to work.
8447 */
8448 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8449 enable_pml = 0;
8450
8451 if (!cpu_has_vmx_preemption_timer())
8452 enable_preemption_timer = false;
8453
8454 if (enable_preemption_timer) {
8455 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8456
8457 cpu_preemption_timer_multi =
8458 vmx_misc_preemption_timer_rate(vmcs_config.misc);
8459
8460 if (tsc_khz)
8461 use_timer_freq = (u64)tsc_khz * 1000;
8462 use_timer_freq >>= cpu_preemption_timer_multi;
8463
8464 /*
8465 * KVM "disables" the preemption timer by setting it to its max
8466 * value. Don't use the timer if it might cause spurious exits
8467 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8468 */
8469 if (use_timer_freq > 0xffffffffu / 10)
8470 enable_preemption_timer = false;
8471 }
8472
8473 if (!enable_preemption_timer) {
8474 vt_x86_ops.set_hv_timer = NULL;
8475 vt_x86_ops.cancel_hv_timer = NULL;
8476 }
8477
8478 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8479 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8480
8481 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8482 return -EINVAL;
8483 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8484 pt_mode = PT_MODE_SYSTEM;
8485 if (pt_mode == PT_MODE_HOST_GUEST)
8486 vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8487 else
8488 vt_init_ops.handle_intel_pt_intr = NULL;
8489
8490 setup_default_sgx_lepubkeyhash();
8491
8492 if (nested) {
8493 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8494
8495 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8496 if (r)
8497 return r;
8498 }
8499
8500 vmx_set_cpu_caps();
8501
8502 r = alloc_kvm_area();
8503 if (r && nested)
8504 nested_vmx_hardware_unsetup();
8505
8506 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8507
8508 /*
8509 * On Intel CPUs that lack self-snoop feature, letting the guest control
8510 * memory types may result in unexpected behavior. So always ignore guest
8511 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8512 * disable the quirk.
8513 *
8514 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8515 * supported, UC is slow enough to cause issues with some older guests (e.g.
8516 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8517 * map the video RAM, causing wayland desktop to fail to get started
8518 * correctly). To avoid breaking those older guests that rely on KVM to force
8519 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8520 * safer (for performance) default behavior.
8521 *
8522 * On top of this, non-coherent DMA devices need the guest to flush CPU
8523 * caches properly. This also requires honoring guest PAT, and is forced
8524 * independent of the quirk in vmx_ignore_guest_pat().
8525 */
8526 if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8527 kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8528 kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8529 return r;
8530 }
8531
vmx_cleanup_l1d_flush(void)8532 static void vmx_cleanup_l1d_flush(void)
8533 {
8534 if (vmx_l1d_flush_pages) {
8535 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8536 vmx_l1d_flush_pages = NULL;
8537 }
8538 /* Restore state so sysfs ignores VMX */
8539 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8540 }
8541
vmx_exit(void)8542 void vmx_exit(void)
8543 {
8544 allow_smaller_maxphyaddr = false;
8545
8546 vmx_cleanup_l1d_flush();
8547
8548 kvm_x86_vendor_exit();
8549 }
8550
vmx_init(void)8551 int __init vmx_init(void)
8552 {
8553 int r, cpu;
8554
8555 KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8556
8557 if (!kvm_is_vmx_supported())
8558 return -EOPNOTSUPP;
8559
8560 /*
8561 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8562 * to unwind if a later step fails.
8563 */
8564 hv_init_evmcs();
8565
8566 r = kvm_x86_vendor_init(&vt_init_ops);
8567 if (r)
8568 return r;
8569
8570 /*
8571 * Must be called after common x86 init so enable_ept is properly set
8572 * up. Hand the parameter mitigation value in which was stored in
8573 * the pre module init parser. If no parameter was given, it will
8574 * contain 'auto' which will be turned into the default 'cond'
8575 * mitigation mode.
8576 */
8577 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8578 if (r)
8579 goto err_l1d_flush;
8580
8581 for_each_possible_cpu(cpu) {
8582 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8583
8584 pi_init_cpu(cpu);
8585 }
8586
8587 vmx_check_vmcs12_offsets();
8588
8589 /*
8590 * Shadow paging doesn't have a (further) performance penalty
8591 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8592 * by default
8593 */
8594 if (!enable_ept)
8595 allow_smaller_maxphyaddr = true;
8596
8597 return 0;
8598
8599 err_l1d_flush:
8600 kvm_x86_vendor_exit();
8601 return r;
8602 }
8603