xref: /linux/arch/x86/kvm/vmx/vmx.c (revision 221533629550e920580ab428f13ffebf54063b95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/fred.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/msr.h>
49 #include <asm/mwait.h>
50 #include <asm/spec-ctrl.h>
51 #include <asm/vmx.h>
52 
53 #include <trace/events/ipi.h>
54 
55 #include "capabilities.h"
56 #include "common.h"
57 #include "cpuid.h"
58 #include "hyperv.h"
59 #include "kvm_onhyperv.h"
60 #include "irq.h"
61 #include "kvm_cache_regs.h"
62 #include "lapic.h"
63 #include "mmu.h"
64 #include "nested.h"
65 #include "pmu.h"
66 #include "sgx.h"
67 #include "trace.h"
68 #include "vmcs.h"
69 #include "vmcs12.h"
70 #include "vmx.h"
71 #include "x86.h"
72 #include "x86_ops.h"
73 #include "smm.h"
74 #include "vmx_onhyperv.h"
75 #include "posted_intr.h"
76 
77 #include "mmu/spte.h"
78 
79 MODULE_AUTHOR("Qumranet");
80 MODULE_DESCRIPTION("KVM support for VMX (Intel VT-x) extensions");
81 MODULE_LICENSE("GPL");
82 
83 #ifdef MODULE
84 static const struct x86_cpu_id vmx_cpu_id[] = {
85 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
86 	{}
87 };
88 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
89 #endif
90 
91 bool __read_mostly enable_vpid = 1;
92 module_param_named(vpid, enable_vpid, bool, 0444);
93 
94 static bool __read_mostly enable_vnmi = 1;
95 module_param_named(vnmi, enable_vnmi, bool, 0444);
96 
97 bool __read_mostly flexpriority_enabled = 1;
98 module_param_named(flexpriority, flexpriority_enabled, bool, 0444);
99 
100 bool __read_mostly enable_ept = 1;
101 module_param_named(ept, enable_ept, bool, 0444);
102 
103 bool __read_mostly enable_unrestricted_guest = 1;
104 module_param_named(unrestricted_guest,
105 			enable_unrestricted_guest, bool, 0444);
106 
107 bool __read_mostly enable_ept_ad_bits = 1;
108 module_param_named(eptad, enable_ept_ad_bits, bool, 0444);
109 
110 static bool __read_mostly emulate_invalid_guest_state = true;
111 module_param(emulate_invalid_guest_state, bool, 0444);
112 
113 static bool __read_mostly fasteoi = 1;
114 module_param(fasteoi, bool, 0444);
115 
116 module_param(enable_apicv, bool, 0444);
117 module_param(enable_ipiv, bool, 0444);
118 
119 module_param(enable_device_posted_irqs, bool, 0444);
120 
121 /*
122  * If nested=1, nested virtualization is supported, i.e., guests may use
123  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
124  * use VMX instructions.
125  */
126 static bool __read_mostly nested = 1;
127 module_param(nested, bool, 0444);
128 
129 bool __read_mostly enable_pml = 1;
130 module_param_named(pml, enable_pml, bool, 0444);
131 
132 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
133 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
134 
135 static bool __read_mostly dump_invalid_vmcs = 0;
136 module_param(dump_invalid_vmcs, bool, 0644);
137 
138 #define MSR_BITMAP_MODE_X2APIC		1
139 #define MSR_BITMAP_MODE_X2APIC_APICV	2
140 
141 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
142 
143 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
144 static int __read_mostly cpu_preemption_timer_multi;
145 static bool __read_mostly enable_preemption_timer = 1;
146 #ifdef CONFIG_X86_64
147 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
148 #endif
149 
150 extern bool __read_mostly allow_smaller_maxphyaddr;
151 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
152 
153 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
154 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
155 #define KVM_VM_CR0_ALWAYS_ON				\
156 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
157 
158 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
159 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
160 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
161 
162 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
163 
164 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
165 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
166 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
167 	RTIT_STATUS_BYTECNT))
168 
169 /*
170  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
171  * ple_gap:    upper bound on the amount of time between two successive
172  *             executions of PAUSE in a loop. Also indicate if ple enabled.
173  *             According to test, this time is usually smaller than 128 cycles.
174  * ple_window: upper bound on the amount of time a guest is allowed to execute
175  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
176  *             less than 2^12 cycles
177  * Time is measured based on a counter that runs at the same rate as the TSC,
178  * refer SDM volume 3b section 21.6.13 & 22.1.3.
179  */
180 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
181 module_param(ple_gap, uint, 0444);
182 
183 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
184 module_param(ple_window, uint, 0444);
185 
186 /* Default doubles per-vcpu window every exit. */
187 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
188 module_param(ple_window_grow, uint, 0444);
189 
190 /* Default resets per-vcpu window every exit to ple_window. */
191 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
192 module_param(ple_window_shrink, uint, 0444);
193 
194 /* Default is to compute the maximum so we can never overflow. */
195 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
196 module_param(ple_window_max, uint, 0444);
197 
198 /* Default is SYSTEM mode, 1 for host-guest mode (which is BROKEN) */
199 int __read_mostly pt_mode = PT_MODE_SYSTEM;
200 #ifdef CONFIG_BROKEN
201 module_param(pt_mode, int, S_IRUGO);
202 #endif
203 
204 struct x86_pmu_lbr __ro_after_init vmx_lbr_caps;
205 
206 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
208 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
209 
210 /* Storage for pre module init parameter parsing */
211 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
212 
213 static const struct {
214 	const char *option;
215 	bool for_parse;
216 } vmentry_l1d_param[] = {
217 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
218 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
219 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
220 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
221 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
222 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
223 };
224 
225 #define L1D_CACHE_ORDER 4
226 static void *vmx_l1d_flush_pages;
227 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)228 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
229 {
230 	struct page *page;
231 	unsigned int i;
232 
233 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
234 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
235 		return 0;
236 	}
237 
238 	if (!enable_ept) {
239 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
240 		return 0;
241 	}
242 
243 	if (kvm_host.arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
244 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
245 		return 0;
246 	}
247 
248 	/* If set to auto use the default l1tf mitigation method */
249 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
250 		switch (l1tf_mitigation) {
251 		case L1TF_MITIGATION_OFF:
252 			l1tf = VMENTER_L1D_FLUSH_NEVER;
253 			break;
254 		case L1TF_MITIGATION_AUTO:
255 		case L1TF_MITIGATION_FLUSH_NOWARN:
256 		case L1TF_MITIGATION_FLUSH:
257 		case L1TF_MITIGATION_FLUSH_NOSMT:
258 			l1tf = VMENTER_L1D_FLUSH_COND;
259 			break;
260 		case L1TF_MITIGATION_FULL:
261 		case L1TF_MITIGATION_FULL_FORCE:
262 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
263 			break;
264 		}
265 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
266 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
267 	}
268 
269 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
270 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
271 		/*
272 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
273 		 * lifetime and so should not be charged to a memcg.
274 		 */
275 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
276 		if (!page)
277 			return -ENOMEM;
278 		vmx_l1d_flush_pages = page_address(page);
279 
280 		/*
281 		 * Initialize each page with a different pattern in
282 		 * order to protect against KSM in the nested
283 		 * virtualization case.
284 		 */
285 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
286 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
287 			       PAGE_SIZE);
288 		}
289 	}
290 
291 	l1tf_vmx_mitigation = l1tf;
292 
293 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
294 		static_branch_enable(&vmx_l1d_should_flush);
295 	else
296 		static_branch_disable(&vmx_l1d_should_flush);
297 
298 	if (l1tf == VMENTER_L1D_FLUSH_COND)
299 		static_branch_enable(&vmx_l1d_flush_cond);
300 	else
301 		static_branch_disable(&vmx_l1d_flush_cond);
302 	return 0;
303 }
304 
vmentry_l1d_flush_parse(const char * s)305 static int vmentry_l1d_flush_parse(const char *s)
306 {
307 	unsigned int i;
308 
309 	if (s) {
310 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
311 			if (vmentry_l1d_param[i].for_parse &&
312 			    sysfs_streq(s, vmentry_l1d_param[i].option))
313 				return i;
314 		}
315 	}
316 	return -EINVAL;
317 }
318 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)319 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
320 {
321 	int l1tf, ret;
322 
323 	l1tf = vmentry_l1d_flush_parse(s);
324 	if (l1tf < 0)
325 		return l1tf;
326 
327 	if (!boot_cpu_has(X86_BUG_L1TF))
328 		return 0;
329 
330 	/*
331 	 * Has vmx_init() run already? If not then this is the pre init
332 	 * parameter parsing. In that case just store the value and let
333 	 * vmx_init() do the proper setup after enable_ept has been
334 	 * established.
335 	 */
336 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
337 		vmentry_l1d_flush_param = l1tf;
338 		return 0;
339 	}
340 
341 	mutex_lock(&vmx_l1d_flush_mutex);
342 	ret = vmx_setup_l1d_flush(l1tf);
343 	mutex_unlock(&vmx_l1d_flush_mutex);
344 	return ret;
345 }
346 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)347 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
348 {
349 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
350 		return sysfs_emit(s, "???\n");
351 
352 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
353 }
354 
vmx_disable_fb_clear(struct vcpu_vmx * vmx)355 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
356 {
357 	u64 msr;
358 
359 	if (!vmx->disable_fb_clear)
360 		return;
361 
362 	msr = native_rdmsrq(MSR_IA32_MCU_OPT_CTRL);
363 	msr |= FB_CLEAR_DIS;
364 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, msr);
365 	/* Cache the MSR value to avoid reading it later */
366 	vmx->msr_ia32_mcu_opt_ctrl = msr;
367 }
368 
vmx_enable_fb_clear(struct vcpu_vmx * vmx)369 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
370 {
371 	if (!vmx->disable_fb_clear)
372 		return;
373 
374 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
375 	native_wrmsrq(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
376 }
377 
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)378 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
379 {
380 	/*
381 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
382 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
383 	 * the mitigation. Disabling the clearing behavior provides a
384 	 * performance boost for guests that aren't aware that manually clearing
385 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
386 	 * and VM-Exit.
387 	 */
388 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
389 				(kvm_host.arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
390 				!boot_cpu_has_bug(X86_BUG_MDS) &&
391 				!boot_cpu_has_bug(X86_BUG_TAA);
392 
393 	/*
394 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
395 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
396 	 * execute VERW.
397 	 */
398 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
399 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
400 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
401 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
402 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
403 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
404 		vmx->disable_fb_clear = false;
405 }
406 
407 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
408 	.set = vmentry_l1d_flush_set,
409 	.get = vmentry_l1d_flush_get,
410 };
411 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
412 
413 static u32 vmx_segment_access_rights(struct kvm_segment *var);
414 
415 void vmx_vmexit(void);
416 
417 #define vmx_insn_failed(fmt...)		\
418 do {					\
419 	WARN_ONCE(1, fmt);		\
420 	pr_warn_ratelimited(fmt);	\
421 } while (0)
422 
vmread_error(unsigned long field)423 noinline void vmread_error(unsigned long field)
424 {
425 	vmx_insn_failed("vmread failed: field=%lx\n", field);
426 }
427 
428 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)429 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
430 {
431 	if (fault) {
432 		kvm_spurious_fault();
433 	} else {
434 		instrumentation_begin();
435 		vmread_error(field);
436 		instrumentation_end();
437 	}
438 }
439 #endif
440 
vmwrite_error(unsigned long field,unsigned long value)441 noinline void vmwrite_error(unsigned long field, unsigned long value)
442 {
443 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
444 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
445 }
446 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)447 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
448 {
449 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
450 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
451 }
452 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)453 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
454 {
455 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
456 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
457 }
458 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)459 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
460 {
461 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
462 			ext, vpid, gva);
463 }
464 
invept_error(unsigned long ext,u64 eptp)465 noinline void invept_error(unsigned long ext, u64 eptp)
466 {
467 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx\n", ext, eptp);
468 }
469 
470 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
471 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
472 /*
473  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
474  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
475  */
476 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
477 
478 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
479 static DEFINE_SPINLOCK(vmx_vpid_lock);
480 
481 struct vmcs_config vmcs_config __ro_after_init;
482 struct vmx_capability vmx_capability __ro_after_init;
483 
484 #define VMX_SEGMENT_FIELD(seg)					\
485 	[VCPU_SREG_##seg] = {                                   \
486 		.selector = GUEST_##seg##_SELECTOR,		\
487 		.base = GUEST_##seg##_BASE,		   	\
488 		.limit = GUEST_##seg##_LIMIT,		   	\
489 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
490 	}
491 
492 static const struct kvm_vmx_segment_field {
493 	unsigned selector;
494 	unsigned base;
495 	unsigned limit;
496 	unsigned ar_bytes;
497 } kvm_vmx_segment_fields[] = {
498 	VMX_SEGMENT_FIELD(CS),
499 	VMX_SEGMENT_FIELD(DS),
500 	VMX_SEGMENT_FIELD(ES),
501 	VMX_SEGMENT_FIELD(FS),
502 	VMX_SEGMENT_FIELD(GS),
503 	VMX_SEGMENT_FIELD(SS),
504 	VMX_SEGMENT_FIELD(TR),
505 	VMX_SEGMENT_FIELD(LDTR),
506 };
507 
508 
509 static unsigned long host_idt_base;
510 
511 #if IS_ENABLED(CONFIG_HYPERV)
512 static bool __read_mostly enlightened_vmcs = true;
513 module_param(enlightened_vmcs, bool, 0444);
514 
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)515 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
516 {
517 	struct hv_enlightened_vmcs *evmcs;
518 	hpa_t partition_assist_page = hv_get_partition_assist_page(vcpu);
519 
520 	if (partition_assist_page == INVALID_PAGE)
521 		return -ENOMEM;
522 
523 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
524 
525 	evmcs->partition_assist_page = partition_assist_page;
526 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
527 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
528 
529 	return 0;
530 }
531 
hv_init_evmcs(void)532 static __init void hv_init_evmcs(void)
533 {
534 	int cpu;
535 
536 	if (!enlightened_vmcs)
537 		return;
538 
539 	/*
540 	 * Enlightened VMCS usage should be recommended and the host needs
541 	 * to support eVMCS v1 or above.
542 	 */
543 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
544 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
545 	     KVM_EVMCS_VERSION) {
546 
547 		/* Check that we have assist pages on all online CPUs */
548 		for_each_online_cpu(cpu) {
549 			if (!hv_get_vp_assist_page(cpu)) {
550 				enlightened_vmcs = false;
551 				break;
552 			}
553 		}
554 
555 		if (enlightened_vmcs) {
556 			pr_info("Using Hyper-V Enlightened VMCS\n");
557 			static_branch_enable(&__kvm_is_using_evmcs);
558 		}
559 
560 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
561 			vt_x86_ops.enable_l2_tlb_flush
562 				= hv_enable_l2_tlb_flush;
563 	} else {
564 		enlightened_vmcs = false;
565 	}
566 }
567 
hv_reset_evmcs(void)568 static void hv_reset_evmcs(void)
569 {
570 	struct hv_vp_assist_page *vp_ap;
571 
572 	if (!kvm_is_using_evmcs())
573 		return;
574 
575 	/*
576 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
577 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
578 	 * doesn't have a VP assist page allocated.
579 	 */
580 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
581 	if (WARN_ON_ONCE(!vp_ap))
582 		return;
583 
584 	/*
585 	 * Reset everything to support using non-enlightened VMCS access later
586 	 * (e.g. when we reload the module with enlightened_vmcs=0)
587 	 */
588 	vp_ap->nested_control.features.directhypercall = 0;
589 	vp_ap->current_nested_vmcs = 0;
590 	vp_ap->enlighten_vmentry = 0;
591 }
592 
593 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)594 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)595 static void hv_reset_evmcs(void) {}
596 #endif /* IS_ENABLED(CONFIG_HYPERV) */
597 
598 /*
599  * Comment's format: document - errata name - stepping - processor name.
600  * Refer from
601  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
602  */
603 static u32 vmx_preemption_cpu_tfms[] = {
604 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
605 0x000206E6,
606 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
607 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
608 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
609 0x00020652,
610 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
611 0x00020655,
612 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
613 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
614 /*
615  * 320767.pdf - AAP86  - B1 -
616  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
617  */
618 0x000106E5,
619 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
620 0x000106A0,
621 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
622 0x000106A1,
623 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
624 0x000106A4,
625  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
626  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
627  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
628 0x000106A5,
629  /* Xeon E3-1220 V2 */
630 0x000306A8,
631 };
632 
cpu_has_broken_vmx_preemption_timer(void)633 static inline bool cpu_has_broken_vmx_preemption_timer(void)
634 {
635 	u32 eax = cpuid_eax(0x00000001), i;
636 
637 	/* Clear the reserved bits */
638 	eax &= ~(0x3U << 14 | 0xfU << 28);
639 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
640 		if (eax == vmx_preemption_cpu_tfms[i])
641 			return true;
642 
643 	return false;
644 }
645 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)646 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
647 {
648 	return flexpriority_enabled && lapic_in_kernel(vcpu);
649 }
650 
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)651 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
652 {
653 	int i;
654 
655 	i = kvm_find_user_return_msr(msr);
656 	if (i >= 0)
657 		return &vmx->guest_uret_msrs[i];
658 	return NULL;
659 }
660 
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)661 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
662 				  struct vmx_uret_msr *msr, u64 data)
663 {
664 	unsigned int slot = msr - vmx->guest_uret_msrs;
665 	int ret = 0;
666 
667 	if (msr->load_into_hardware) {
668 		preempt_disable();
669 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
670 		preempt_enable();
671 	}
672 	if (!ret)
673 		msr->data = data;
674 	return ret;
675 }
676 
677 /*
678  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
679  *
680  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
681  * atomically track post-VMXON state, e.g. this may be called in NMI context.
682  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
683  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
684  * magically in RM, VM86, compat mode, or at CPL>0.
685  */
kvm_cpu_vmxoff(void)686 static int kvm_cpu_vmxoff(void)
687 {
688 	asm goto("1: vmxoff\n\t"
689 			  _ASM_EXTABLE(1b, %l[fault])
690 			  ::: "cc", "memory" : fault);
691 
692 	cr4_clear_bits(X86_CR4_VMXE);
693 	return 0;
694 
695 fault:
696 	cr4_clear_bits(X86_CR4_VMXE);
697 	return -EIO;
698 }
699 
vmx_emergency_disable_virtualization_cpu(void)700 void vmx_emergency_disable_virtualization_cpu(void)
701 {
702 	int cpu = raw_smp_processor_id();
703 	struct loaded_vmcs *v;
704 
705 	kvm_rebooting = true;
706 
707 	/*
708 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
709 	 * set in task context.  If this races with VMX is disabled by an NMI,
710 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
711 	 * kvm_rebooting set.
712 	 */
713 	if (!(__read_cr4() & X86_CR4_VMXE))
714 		return;
715 
716 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
717 			    loaded_vmcss_on_cpu_link) {
718 		vmcs_clear(v->vmcs);
719 		if (v->shadow_vmcs)
720 			vmcs_clear(v->shadow_vmcs);
721 	}
722 
723 	kvm_cpu_vmxoff();
724 }
725 
__loaded_vmcs_clear(void * arg)726 static void __loaded_vmcs_clear(void *arg)
727 {
728 	struct loaded_vmcs *loaded_vmcs = arg;
729 	int cpu = raw_smp_processor_id();
730 
731 	if (loaded_vmcs->cpu != cpu)
732 		return; /* vcpu migration can race with cpu offline */
733 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
734 		per_cpu(current_vmcs, cpu) = NULL;
735 
736 	vmcs_clear(loaded_vmcs->vmcs);
737 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
738 		vmcs_clear(loaded_vmcs->shadow_vmcs);
739 
740 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
741 
742 	/*
743 	 * Ensure all writes to loaded_vmcs, including deleting it from its
744 	 * current percpu list, complete before setting loaded_vmcs->cpu to
745 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
746 	 * and add loaded_vmcs to its percpu list before it's deleted from this
747 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
748 	 */
749 	smp_wmb();
750 
751 	loaded_vmcs->cpu = -1;
752 	loaded_vmcs->launched = 0;
753 }
754 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)755 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
756 {
757 	int cpu = loaded_vmcs->cpu;
758 
759 	if (cpu != -1)
760 		smp_call_function_single(cpu,
761 			 __loaded_vmcs_clear, loaded_vmcs, 1);
762 }
763 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)764 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
765 				       unsigned field)
766 {
767 	bool ret;
768 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
769 
770 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
771 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
772 		vmx->segment_cache.bitmask = 0;
773 	}
774 	ret = vmx->segment_cache.bitmask & mask;
775 	vmx->segment_cache.bitmask |= mask;
776 	return ret;
777 }
778 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)779 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
780 {
781 	u16 *p = &vmx->segment_cache.seg[seg].selector;
782 
783 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
784 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
785 	return *p;
786 }
787 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)788 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
789 {
790 	ulong *p = &vmx->segment_cache.seg[seg].base;
791 
792 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
793 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
794 	return *p;
795 }
796 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)797 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
798 {
799 	u32 *p = &vmx->segment_cache.seg[seg].limit;
800 
801 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
802 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
803 	return *p;
804 }
805 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)806 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
807 {
808 	u32 *p = &vmx->segment_cache.seg[seg].ar;
809 
810 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
811 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
812 	return *p;
813 }
814 
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)815 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
816 {
817 	u32 eb;
818 
819 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
820 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
821 	/*
822 	 * #VE isn't used for VMX.  To test against unexpected changes
823 	 * related to #VE for VMX, intercept unexpected #VE and warn on it.
824 	 */
825 	if (IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
826 		eb |= 1u << VE_VECTOR;
827 	/*
828 	 * Guest access to VMware backdoor ports could legitimately
829 	 * trigger #GP because of TSS I/O permission bitmap.
830 	 * We intercept those #GP and allow access to them anyway
831 	 * as VMware does.
832 	 */
833 	if (enable_vmware_backdoor)
834 		eb |= (1u << GP_VECTOR);
835 	if ((vcpu->guest_debug &
836 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
837 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
838 		eb |= 1u << BP_VECTOR;
839 	if (to_vmx(vcpu)->rmode.vm86_active)
840 		eb = ~0;
841 	if (!vmx_need_pf_intercept(vcpu))
842 		eb &= ~(1u << PF_VECTOR);
843 
844 	/* When we are running a nested L2 guest and L1 specified for it a
845 	 * certain exception bitmap, we must trap the same exceptions and pass
846 	 * them to L1. When running L2, we will only handle the exceptions
847 	 * specified above if L1 did not want them.
848 	 */
849 	if (is_guest_mode(vcpu))
850 		eb |= get_vmcs12(vcpu)->exception_bitmap;
851 	else {
852 		int mask = 0, match = 0;
853 
854 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
855 			/*
856 			 * If EPT is enabled, #PF is currently only intercepted
857 			 * if MAXPHYADDR is smaller on the guest than on the
858 			 * host.  In that case we only care about present,
859 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
860 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
861 			 */
862 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
863 			match = PFERR_PRESENT_MASK;
864 		}
865 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
866 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
867 	}
868 
869 	/*
870 	 * Disabling xfd interception indicates that dynamic xfeatures
871 	 * might be used in the guest. Always trap #NM in this case
872 	 * to save guest xfd_err timely.
873 	 */
874 	if (vcpu->arch.xfd_no_write_intercept)
875 		eb |= (1u << NM_VECTOR);
876 
877 	vmcs_write32(EXCEPTION_BITMAP, eb);
878 }
879 
880 /*
881  * Check if MSR is intercepted for currently loaded MSR bitmap.
882  */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)883 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
884 {
885 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
886 		return true;
887 
888 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
889 }
890 
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)891 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
892 {
893 	unsigned int flags = 0;
894 
895 	if (vmx->loaded_vmcs->launched)
896 		flags |= VMX_RUN_VMRESUME;
897 
898 	/*
899 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
900 	 * to change it directly without causing a vmexit.  In that case read
901 	 * it after vmexit and store it in vmx->spec_ctrl.
902 	 */
903 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
904 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
905 
906 	if (static_branch_unlikely(&cpu_buf_vm_clear) &&
907 	    kvm_vcpu_can_access_host_mmio(&vmx->vcpu))
908 		flags |= VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO;
909 
910 	return flags;
911 }
912 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)913 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
914 		unsigned long entry, unsigned long exit)
915 {
916 	vm_entry_controls_clearbit(vmx, entry);
917 	vm_exit_controls_clearbit(vmx, exit);
918 }
919 
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)920 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
921 {
922 	unsigned int i;
923 
924 	for (i = 0; i < m->nr; ++i) {
925 		if (m->val[i].index == msr)
926 			return i;
927 	}
928 	return -ENOENT;
929 }
930 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)931 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
932 {
933 	int i;
934 	struct msr_autoload *m = &vmx->msr_autoload;
935 
936 	switch (msr) {
937 	case MSR_EFER:
938 		if (cpu_has_load_ia32_efer()) {
939 			clear_atomic_switch_msr_special(vmx,
940 					VM_ENTRY_LOAD_IA32_EFER,
941 					VM_EXIT_LOAD_IA32_EFER);
942 			return;
943 		}
944 		break;
945 	case MSR_CORE_PERF_GLOBAL_CTRL:
946 		if (cpu_has_load_perf_global_ctrl()) {
947 			clear_atomic_switch_msr_special(vmx,
948 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
949 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
950 			return;
951 		}
952 		break;
953 	}
954 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
955 	if (i < 0)
956 		goto skip_guest;
957 	--m->guest.nr;
958 	m->guest.val[i] = m->guest.val[m->guest.nr];
959 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
960 
961 skip_guest:
962 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
963 	if (i < 0)
964 		return;
965 
966 	--m->host.nr;
967 	m->host.val[i] = m->host.val[m->host.nr];
968 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
969 }
970 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)971 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
972 		unsigned long entry, unsigned long exit,
973 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
974 		u64 guest_val, u64 host_val)
975 {
976 	vmcs_write64(guest_val_vmcs, guest_val);
977 	if (host_val_vmcs != HOST_IA32_EFER)
978 		vmcs_write64(host_val_vmcs, host_val);
979 	vm_entry_controls_setbit(vmx, entry);
980 	vm_exit_controls_setbit(vmx, exit);
981 }
982 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)983 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
984 				  u64 guest_val, u64 host_val, bool entry_only)
985 {
986 	int i, j = 0;
987 	struct msr_autoload *m = &vmx->msr_autoload;
988 
989 	switch (msr) {
990 	case MSR_EFER:
991 		if (cpu_has_load_ia32_efer()) {
992 			add_atomic_switch_msr_special(vmx,
993 					VM_ENTRY_LOAD_IA32_EFER,
994 					VM_EXIT_LOAD_IA32_EFER,
995 					GUEST_IA32_EFER,
996 					HOST_IA32_EFER,
997 					guest_val, host_val);
998 			return;
999 		}
1000 		break;
1001 	case MSR_CORE_PERF_GLOBAL_CTRL:
1002 		if (cpu_has_load_perf_global_ctrl()) {
1003 			add_atomic_switch_msr_special(vmx,
1004 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1005 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1006 					GUEST_IA32_PERF_GLOBAL_CTRL,
1007 					HOST_IA32_PERF_GLOBAL_CTRL,
1008 					guest_val, host_val);
1009 			return;
1010 		}
1011 		break;
1012 	case MSR_IA32_PEBS_ENABLE:
1013 		/* PEBS needs a quiescent period after being disabled (to write
1014 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1015 		 * provide that period, so a CPU could write host's record into
1016 		 * guest's memory.
1017 		 */
1018 		wrmsrq(MSR_IA32_PEBS_ENABLE, 0);
1019 	}
1020 
1021 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1022 	if (!entry_only)
1023 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1024 
1025 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1026 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1027 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1028 				"Can't add msr %x\n", msr);
1029 		return;
1030 	}
1031 	if (i < 0) {
1032 		i = m->guest.nr++;
1033 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1034 	}
1035 	m->guest.val[i].index = msr;
1036 	m->guest.val[i].value = guest_val;
1037 
1038 	if (entry_only)
1039 		return;
1040 
1041 	if (j < 0) {
1042 		j = m->host.nr++;
1043 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1044 	}
1045 	m->host.val[j].index = msr;
1046 	m->host.val[j].value = host_val;
1047 }
1048 
update_transition_efer(struct vcpu_vmx * vmx)1049 static bool update_transition_efer(struct vcpu_vmx *vmx)
1050 {
1051 	u64 guest_efer = vmx->vcpu.arch.efer;
1052 	u64 ignore_bits = 0;
1053 	int i;
1054 
1055 	/* Shadow paging assumes NX to be available.  */
1056 	if (!enable_ept)
1057 		guest_efer |= EFER_NX;
1058 
1059 	/*
1060 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1061 	 */
1062 	ignore_bits |= EFER_SCE;
1063 #ifdef CONFIG_X86_64
1064 	ignore_bits |= EFER_LMA | EFER_LME;
1065 	/* SCE is meaningful only in long mode on Intel */
1066 	if (guest_efer & EFER_LMA)
1067 		ignore_bits &= ~(u64)EFER_SCE;
1068 #endif
1069 
1070 	/*
1071 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1072 	 * On CPUs that support "load IA32_EFER", always switch EFER
1073 	 * atomically, since it's faster than switching it manually.
1074 	 */
1075 	if (cpu_has_load_ia32_efer() ||
1076 	    (enable_ept && ((vmx->vcpu.arch.efer ^ kvm_host.efer) & EFER_NX))) {
1077 		if (!(guest_efer & EFER_LMA))
1078 			guest_efer &= ~EFER_LME;
1079 		if (guest_efer != kvm_host.efer)
1080 			add_atomic_switch_msr(vmx, MSR_EFER,
1081 					      guest_efer, kvm_host.efer, false);
1082 		else
1083 			clear_atomic_switch_msr(vmx, MSR_EFER);
1084 		return false;
1085 	}
1086 
1087 	i = kvm_find_user_return_msr(MSR_EFER);
1088 	if (i < 0)
1089 		return false;
1090 
1091 	clear_atomic_switch_msr(vmx, MSR_EFER);
1092 
1093 	guest_efer &= ~ignore_bits;
1094 	guest_efer |= kvm_host.efer & ignore_bits;
1095 
1096 	vmx->guest_uret_msrs[i].data = guest_efer;
1097 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1098 
1099 	return true;
1100 }
1101 
1102 #ifdef CONFIG_X86_32
1103 /*
1104  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1105  * VMCS rather than the segment table.  KVM uses this helper to figure
1106  * out the current bases to poke them into the VMCS before entry.
1107  */
segment_base(u16 selector)1108 static unsigned long segment_base(u16 selector)
1109 {
1110 	struct desc_struct *table;
1111 	unsigned long v;
1112 
1113 	if (!(selector & ~SEGMENT_RPL_MASK))
1114 		return 0;
1115 
1116 	table = get_current_gdt_ro();
1117 
1118 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1119 		u16 ldt_selector = kvm_read_ldt();
1120 
1121 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1122 			return 0;
1123 
1124 		table = (struct desc_struct *)segment_base(ldt_selector);
1125 	}
1126 	v = get_desc_base(&table[selector >> 3]);
1127 	return v;
1128 }
1129 #endif
1130 
pt_can_write_msr(struct vcpu_vmx * vmx)1131 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1132 {
1133 	return vmx_pt_mode_is_host_guest() &&
1134 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1135 }
1136 
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1137 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1138 {
1139 	/* The base must be 128-byte aligned and a legal physical address. */
1140 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1141 }
1142 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1143 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1144 {
1145 	u32 i;
1146 
1147 	wrmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1148 	wrmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1149 	wrmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1150 	wrmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1151 	for (i = 0; i < addr_range; i++) {
1152 		wrmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1153 		wrmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1154 	}
1155 }
1156 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1157 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1158 {
1159 	u32 i;
1160 
1161 	rdmsrq(MSR_IA32_RTIT_STATUS, ctx->status);
1162 	rdmsrq(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1163 	rdmsrq(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1164 	rdmsrq(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1165 	for (i = 0; i < addr_range; i++) {
1166 		rdmsrq(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1167 		rdmsrq(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1168 	}
1169 }
1170 
pt_guest_enter(struct vcpu_vmx * vmx)1171 static void pt_guest_enter(struct vcpu_vmx *vmx)
1172 {
1173 	if (vmx_pt_mode_is_system())
1174 		return;
1175 
1176 	/*
1177 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1178 	 * Save host state before VM entry.
1179 	 */
1180 	rdmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1181 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1182 		wrmsrq(MSR_IA32_RTIT_CTL, 0);
1183 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1184 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1185 	}
1186 }
1187 
pt_guest_exit(struct vcpu_vmx * vmx)1188 static void pt_guest_exit(struct vcpu_vmx *vmx)
1189 {
1190 	if (vmx_pt_mode_is_system())
1191 		return;
1192 
1193 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1194 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1195 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1196 	}
1197 
1198 	/*
1199 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1200 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1201 	 */
1202 	if (vmx->pt_desc.host.ctl)
1203 		wrmsrq(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1204 }
1205 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1206 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1207 			unsigned long fs_base, unsigned long gs_base)
1208 {
1209 	if (unlikely(fs_sel != host->fs_sel)) {
1210 		if (!(fs_sel & 7))
1211 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1212 		else
1213 			vmcs_write16(HOST_FS_SELECTOR, 0);
1214 		host->fs_sel = fs_sel;
1215 	}
1216 	if (unlikely(gs_sel != host->gs_sel)) {
1217 		if (!(gs_sel & 7))
1218 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1219 		else
1220 			vmcs_write16(HOST_GS_SELECTOR, 0);
1221 		host->gs_sel = gs_sel;
1222 	}
1223 	if (unlikely(fs_base != host->fs_base)) {
1224 		vmcs_writel(HOST_FS_BASE, fs_base);
1225 		host->fs_base = fs_base;
1226 	}
1227 	if (unlikely(gs_base != host->gs_base)) {
1228 		vmcs_writel(HOST_GS_BASE, gs_base);
1229 		host->gs_base = gs_base;
1230 	}
1231 }
1232 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1233 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1234 {
1235 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1236 	struct vcpu_vt *vt = to_vt(vcpu);
1237 	struct vmcs_host_state *host_state;
1238 #ifdef CONFIG_X86_64
1239 	int cpu = raw_smp_processor_id();
1240 #endif
1241 	unsigned long fs_base, gs_base;
1242 	u16 fs_sel, gs_sel;
1243 	int i;
1244 
1245 	/*
1246 	 * Note that guest MSRs to be saved/restored can also be changed
1247 	 * when guest state is loaded. This happens when guest transitions
1248 	 * to/from long-mode by setting MSR_EFER.LMA.
1249 	 */
1250 	if (!vmx->guest_uret_msrs_loaded) {
1251 		vmx->guest_uret_msrs_loaded = true;
1252 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1253 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1254 				continue;
1255 
1256 			kvm_set_user_return_msr(i,
1257 						vmx->guest_uret_msrs[i].data,
1258 						vmx->guest_uret_msrs[i].mask);
1259 		}
1260 	}
1261 
1262 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1263 		nested_sync_vmcs12_to_shadow(vcpu);
1264 
1265 	if (vt->guest_state_loaded)
1266 		return;
1267 
1268 	host_state = &vmx->loaded_vmcs->host_state;
1269 
1270 	/*
1271 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1272 	 * allow segment selectors with cpl > 0 or ti == 1.
1273 	 */
1274 	host_state->ldt_sel = kvm_read_ldt();
1275 
1276 #ifdef CONFIG_X86_64
1277 	savesegment(ds, host_state->ds_sel);
1278 	savesegment(es, host_state->es_sel);
1279 
1280 	gs_base = cpu_kernelmode_gs_base(cpu);
1281 	if (likely(is_64bit_mm(current->mm))) {
1282 		current_save_fsgs();
1283 		fs_sel = current->thread.fsindex;
1284 		gs_sel = current->thread.gsindex;
1285 		fs_base = current->thread.fsbase;
1286 		vt->msr_host_kernel_gs_base = current->thread.gsbase;
1287 	} else {
1288 		savesegment(fs, fs_sel);
1289 		savesegment(gs, gs_sel);
1290 		fs_base = read_msr(MSR_FS_BASE);
1291 		vt->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1292 	}
1293 
1294 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1295 #else
1296 	savesegment(fs, fs_sel);
1297 	savesegment(gs, gs_sel);
1298 	fs_base = segment_base(fs_sel);
1299 	gs_base = segment_base(gs_sel);
1300 #endif
1301 
1302 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1303 	vt->guest_state_loaded = true;
1304 }
1305 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1306 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1307 {
1308 	struct vmcs_host_state *host_state;
1309 
1310 	if (!vmx->vt.guest_state_loaded)
1311 		return;
1312 
1313 	host_state = &vmx->loaded_vmcs->host_state;
1314 
1315 	++vmx->vcpu.stat.host_state_reload;
1316 
1317 #ifdef CONFIG_X86_64
1318 	rdmsrq(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319 #endif
1320 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1321 		kvm_load_ldt(host_state->ldt_sel);
1322 #ifdef CONFIG_X86_64
1323 		load_gs_index(host_state->gs_sel);
1324 #else
1325 		loadsegment(gs, host_state->gs_sel);
1326 #endif
1327 	}
1328 	if (host_state->fs_sel & 7)
1329 		loadsegment(fs, host_state->fs_sel);
1330 #ifdef CONFIG_X86_64
1331 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1332 		loadsegment(ds, host_state->ds_sel);
1333 		loadsegment(es, host_state->es_sel);
1334 	}
1335 #endif
1336 	invalidate_tss_limit();
1337 #ifdef CONFIG_X86_64
1338 	wrmsrq(MSR_KERNEL_GS_BASE, vmx->vt.msr_host_kernel_gs_base);
1339 #endif
1340 	load_fixmap_gdt(raw_smp_processor_id());
1341 	vmx->vt.guest_state_loaded = false;
1342 	vmx->guest_uret_msrs_loaded = false;
1343 }
1344 
1345 #ifdef CONFIG_X86_64
vmx_read_guest_host_msr(struct vcpu_vmx * vmx,u32 msr,u64 * cache)1346 static u64 vmx_read_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 *cache)
1347 {
1348 	preempt_disable();
1349 	if (vmx->vt.guest_state_loaded)
1350 		*cache = read_msr(msr);
1351 	preempt_enable();
1352 	return *cache;
1353 }
1354 
vmx_write_guest_host_msr(struct vcpu_vmx * vmx,u32 msr,u64 data,u64 * cache)1355 static void vmx_write_guest_host_msr(struct vcpu_vmx *vmx, u32 msr, u64 data,
1356 				     u64 *cache)
1357 {
1358 	preempt_disable();
1359 	if (vmx->vt.guest_state_loaded)
1360 		wrmsrns(msr, data);
1361 	preempt_enable();
1362 	*cache = data;
1363 }
1364 
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1365 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1366 {
1367 	return vmx_read_guest_host_msr(vmx, MSR_KERNEL_GS_BASE,
1368 				       &vmx->msr_guest_kernel_gs_base);
1369 }
1370 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1371 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1372 {
1373 	vmx_write_guest_host_msr(vmx, MSR_KERNEL_GS_BASE, data,
1374 				 &vmx->msr_guest_kernel_gs_base);
1375 }
1376 #endif
1377 
grow_ple_window(struct kvm_vcpu * vcpu)1378 static void grow_ple_window(struct kvm_vcpu *vcpu)
1379 {
1380 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1381 	unsigned int old = vmx->ple_window;
1382 
1383 	vmx->ple_window = __grow_ple_window(old, ple_window,
1384 					    ple_window_grow,
1385 					    ple_window_max);
1386 
1387 	if (vmx->ple_window != old) {
1388 		vmx->ple_window_dirty = true;
1389 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1390 					    vmx->ple_window, old);
1391 	}
1392 }
1393 
shrink_ple_window(struct kvm_vcpu * vcpu)1394 static void shrink_ple_window(struct kvm_vcpu *vcpu)
1395 {
1396 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1397 	unsigned int old = vmx->ple_window;
1398 
1399 	vmx->ple_window = __shrink_ple_window(old, ple_window,
1400 					      ple_window_shrink,
1401 					      ple_window);
1402 
1403 	if (vmx->ple_window != old) {
1404 		vmx->ple_window_dirty = true;
1405 		trace_kvm_ple_window_update(vcpu->vcpu_id,
1406 					    vmx->ple_window, old);
1407 	}
1408 }
1409 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1410 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1411 {
1412 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1413 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1414 	struct vmcs *prev;
1415 
1416 	if (!already_loaded) {
1417 		loaded_vmcs_clear(vmx->loaded_vmcs);
1418 		local_irq_disable();
1419 
1420 		/*
1421 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1422 		 * this cpu's percpu list, otherwise it may not yet be deleted
1423 		 * from its previous cpu's percpu list.  Pairs with the
1424 		 * smb_wmb() in __loaded_vmcs_clear().
1425 		 */
1426 		smp_rmb();
1427 
1428 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1429 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1430 		local_irq_enable();
1431 	}
1432 
1433 	prev = per_cpu(current_vmcs, cpu);
1434 	if (prev != vmx->loaded_vmcs->vmcs) {
1435 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1436 		vmcs_load(vmx->loaded_vmcs->vmcs);
1437 	}
1438 
1439 	if (!already_loaded) {
1440 		void *gdt = get_current_gdt_ro();
1441 
1442 		/*
1443 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1444 		 * TLB entries from its previous association with the vCPU.
1445 		 */
1446 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1447 
1448 		/*
1449 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1450 		 * processors.  See 22.2.4.
1451 		 */
1452 		vmcs_writel(HOST_TR_BASE,
1453 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1454 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1455 
1456 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1457 			/* 22.2.3 */
1458 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1459 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1460 		}
1461 
1462 		vmx->loaded_vmcs->cpu = cpu;
1463 	}
1464 }
1465 
1466 /*
1467  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1468  * vcpu mutex is already taken.
1469  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1470 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1471 {
1472 	if (vcpu->scheduled_out && !kvm_pause_in_guest(vcpu->kvm))
1473 		shrink_ple_window(vcpu);
1474 
1475 	vmx_vcpu_load_vmcs(vcpu, cpu);
1476 
1477 	vmx_vcpu_pi_load(vcpu, cpu);
1478 }
1479 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1480 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1481 {
1482 	vmx_vcpu_pi_put(vcpu);
1483 
1484 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1485 }
1486 
vmx_emulation_required(struct kvm_vcpu * vcpu)1487 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1488 {
1489 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1490 }
1491 
vmx_get_rflags(struct kvm_vcpu * vcpu)1492 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1493 {
1494 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1495 	unsigned long rflags, save_rflags;
1496 
1497 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1498 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1499 		rflags = vmcs_readl(GUEST_RFLAGS);
1500 		if (vmx->rmode.vm86_active) {
1501 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1502 			save_rflags = vmx->rmode.save_rflags;
1503 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1504 		}
1505 		vmx->rflags = rflags;
1506 	}
1507 	return vmx->rflags;
1508 }
1509 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1510 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1511 {
1512 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1513 	unsigned long old_rflags;
1514 
1515 	/*
1516 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1517 	 * is an unrestricted guest in order to mark L2 as needing emulation
1518 	 * if L1 runs L2 as a restricted guest.
1519 	 */
1520 	if (is_unrestricted_guest(vcpu)) {
1521 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1522 		vmx->rflags = rflags;
1523 		vmcs_writel(GUEST_RFLAGS, rflags);
1524 		return;
1525 	}
1526 
1527 	old_rflags = vmx_get_rflags(vcpu);
1528 	vmx->rflags = rflags;
1529 	if (vmx->rmode.vm86_active) {
1530 		vmx->rmode.save_rflags = rflags;
1531 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1532 	}
1533 	vmcs_writel(GUEST_RFLAGS, rflags);
1534 
1535 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1536 		vmx->vt.emulation_required = vmx_emulation_required(vcpu);
1537 }
1538 
vmx_get_if_flag(struct kvm_vcpu * vcpu)1539 bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1540 {
1541 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1542 }
1543 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1544 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1545 {
1546 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1547 	int ret = 0;
1548 
1549 	if (interruptibility & GUEST_INTR_STATE_STI)
1550 		ret |= KVM_X86_SHADOW_INT_STI;
1551 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1552 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1553 
1554 	return ret;
1555 }
1556 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1557 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1558 {
1559 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1560 	u32 interruptibility = interruptibility_old;
1561 
1562 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1563 
1564 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1565 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1566 	else if (mask & KVM_X86_SHADOW_INT_STI)
1567 		interruptibility |= GUEST_INTR_STATE_STI;
1568 
1569 	if ((interruptibility != interruptibility_old))
1570 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1571 }
1572 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1573 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1574 {
1575 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1576 	unsigned long value;
1577 
1578 	/*
1579 	 * Any MSR write that attempts to change bits marked reserved will
1580 	 * case a #GP fault.
1581 	 */
1582 	if (data & vmx->pt_desc.ctl_bitmask)
1583 		return 1;
1584 
1585 	/*
1586 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1587 	 * result in a #GP unless the same write also clears TraceEn.
1588 	 */
1589 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1590 	    (data & RTIT_CTL_TRACEEN) &&
1591 	    data != vmx->pt_desc.guest.ctl)
1592 		return 1;
1593 
1594 	/*
1595 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1596 	 * and FabricEn would cause #GP, if
1597 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1598 	 */
1599 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1600 		!(data & RTIT_CTL_FABRIC_EN) &&
1601 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1602 					PT_CAP_single_range_output))
1603 		return 1;
1604 
1605 	/*
1606 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1607 	 * utilize encodings marked reserved will cause a #GP fault.
1608 	 */
1609 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1610 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1611 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1612 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1613 		return 1;
1614 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1615 						PT_CAP_cycle_thresholds);
1616 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1617 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1618 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1619 		return 1;
1620 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1621 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1622 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1623 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1624 		return 1;
1625 
1626 	/*
1627 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1628 	 * cause a #GP fault.
1629 	 */
1630 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1631 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1632 		return 1;
1633 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1634 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1635 		return 1;
1636 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1637 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1638 		return 1;
1639 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1640 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1641 		return 1;
1642 
1643 	return 0;
1644 }
1645 
vmx_check_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1646 int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1647 				  void *insn, int insn_len)
1648 {
1649 	/*
1650 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1651 	 * not point at the failing instruction, and even if it did, the code
1652 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1653 	 * so that guest userspace can't DoS the guest simply by triggering
1654 	 * emulation (enclaves are CPL3 only).
1655 	 */
1656 	if (vmx_get_exit_reason(vcpu).enclave_mode) {
1657 		kvm_queue_exception(vcpu, UD_VECTOR);
1658 		return X86EMUL_PROPAGATE_FAULT;
1659 	}
1660 
1661 	/* Check that emulation is possible during event vectoring */
1662 	if ((to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
1663 	    !kvm_can_emulate_event_vectoring(emul_type))
1664 		return X86EMUL_UNHANDLEABLE_VECTORING;
1665 
1666 	return X86EMUL_CONTINUE;
1667 }
1668 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1669 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1670 {
1671 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
1672 	unsigned long rip, orig_rip;
1673 	u32 instr_len;
1674 
1675 	/*
1676 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1677 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1678 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1679 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1680 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1681 	 * i.e. we end up advancing IP with some random value.
1682 	 */
1683 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1684 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1685 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1686 
1687 		/*
1688 		 * Emulating an enclave's instructions isn't supported as KVM
1689 		 * cannot access the enclave's memory or its true RIP, e.g. the
1690 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1691 		 * the RIP that actually triggered the VM-Exit.  But, because
1692 		 * most instructions that cause VM-Exit will #UD in an enclave,
1693 		 * most instruction-based VM-Exits simply do not occur.
1694 		 *
1695 		 * There are a few exceptions, notably the debug instructions
1696 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1697 		 * and generate #DB/#BP as expected, which KVM might intercept.
1698 		 * But again, the CPU does the dirty work and saves an instr
1699 		 * length of zero so VMMs don't shoot themselves in the foot.
1700 		 * WARN if KVM tries to skip a non-zero length instruction on
1701 		 * a VM-Exit from an enclave.
1702 		 */
1703 		if (!instr_len)
1704 			goto rip_updated;
1705 
1706 		WARN_ONCE(exit_reason.enclave_mode,
1707 			  "skipping instruction after SGX enclave VM-Exit");
1708 
1709 		orig_rip = kvm_rip_read(vcpu);
1710 		rip = orig_rip + instr_len;
1711 #ifdef CONFIG_X86_64
1712 		/*
1713 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1714 		 * mode, but just finding out that we are in 64-bit mode is
1715 		 * quite expensive.  Only do it if there was a carry.
1716 		 */
1717 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1718 			rip = (u32)rip;
1719 #endif
1720 		kvm_rip_write(vcpu, rip);
1721 	} else {
1722 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1723 			return 0;
1724 	}
1725 
1726 rip_updated:
1727 	/* skipping an emulated instruction also counts */
1728 	vmx_set_interrupt_shadow(vcpu, 0);
1729 
1730 	return 1;
1731 }
1732 
1733 /*
1734  * Recognizes a pending MTF VM-exit and records the nested state for later
1735  * delivery.
1736  */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1737 void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1738 {
1739 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1740 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1741 
1742 	if (!is_guest_mode(vcpu))
1743 		return;
1744 
1745 	/*
1746 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1747 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1748 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1749 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1750 	 * as ICEBP is higher priority than both.  As instruction emulation is
1751 	 * completed at this point (i.e. KVM is at the instruction boundary),
1752 	 * any #DB exception pending delivery must be a debug-trap of lower
1753 	 * priority than MTF.  Record the pending MTF state to be delivered in
1754 	 * vmx_check_nested_events().
1755 	 */
1756 	if (nested_cpu_has_mtf(vmcs12) &&
1757 	    (!vcpu->arch.exception.pending ||
1758 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1759 	    (!vcpu->arch.exception_vmexit.pending ||
1760 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1761 		vmx->nested.mtf_pending = true;
1762 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1763 	} else {
1764 		vmx->nested.mtf_pending = false;
1765 	}
1766 }
1767 
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1768 int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1769 {
1770 	vmx_update_emulated_instruction(vcpu);
1771 	return skip_emulated_instruction(vcpu);
1772 }
1773 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1774 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1775 {
1776 	/*
1777 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1778 	 * explicitly skip the instruction because if the HLT state is set,
1779 	 * then the instruction is already executing and RIP has already been
1780 	 * advanced.
1781 	 */
1782 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1783 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1784 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1785 }
1786 
vmx_inject_exception(struct kvm_vcpu * vcpu)1787 void vmx_inject_exception(struct kvm_vcpu *vcpu)
1788 {
1789 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1790 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1791 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1792 
1793 	kvm_deliver_exception_payload(vcpu, ex);
1794 
1795 	if (ex->has_error_code) {
1796 		/*
1797 		 * Despite the error code being architecturally defined as 32
1798 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1799 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1800 		 * will (should) never provide a bogus error code, but AMD CPUs
1801 		 * do generate error codes with bits 31:16 set, and so KVM's
1802 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1803 		 * the upper bits to avoid VM-Fail, losing information that
1804 		 * doesn't really exist is preferable to killing the VM.
1805 		 */
1806 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1807 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1808 	}
1809 
1810 	if (vmx->rmode.vm86_active) {
1811 		int inc_eip = 0;
1812 		if (kvm_exception_is_soft(ex->vector))
1813 			inc_eip = vcpu->arch.event_exit_inst_len;
1814 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1815 		return;
1816 	}
1817 
1818 	WARN_ON_ONCE(vmx->vt.emulation_required);
1819 
1820 	if (kvm_exception_is_soft(ex->vector)) {
1821 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1822 			     vmx->vcpu.arch.event_exit_inst_len);
1823 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1824 	} else
1825 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1826 
1827 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1828 
1829 	vmx_clear_hlt(vcpu);
1830 }
1831 
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1832 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1833 			       bool load_into_hardware)
1834 {
1835 	struct vmx_uret_msr *uret_msr;
1836 
1837 	uret_msr = vmx_find_uret_msr(vmx, msr);
1838 	if (!uret_msr)
1839 		return;
1840 
1841 	uret_msr->load_into_hardware = load_into_hardware;
1842 }
1843 
1844 /*
1845  * Configuring user return MSRs to automatically save, load, and restore MSRs
1846  * that need to be shoved into hardware when running the guest.  Note, omitting
1847  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1848  * loaded into hardware when running the guest.
1849  */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1850 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1851 {
1852 #ifdef CONFIG_X86_64
1853 	bool load_syscall_msrs;
1854 
1855 	/*
1856 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1857 	 * when EFER.SCE is set.
1858 	 */
1859 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1860 			    (vmx->vcpu.arch.efer & EFER_SCE);
1861 
1862 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1863 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1864 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1865 #endif
1866 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1867 
1868 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1869 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1870 			   guest_cpu_cap_has(&vmx->vcpu, X86_FEATURE_RDPID));
1871 
1872 	/*
1873 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1874 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1875 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1876 	 * so that TSX remains always disabled.
1877 	 */
1878 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1879 
1880 	/*
1881 	 * The set of MSRs to load may have changed, reload MSRs before the
1882 	 * next VM-Enter.
1883 	 */
1884 	vmx->guest_uret_msrs_loaded = false;
1885 }
1886 
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1887 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1888 {
1889 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1890 
1891 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1892 		return vmcs12->tsc_offset;
1893 
1894 	return 0;
1895 }
1896 
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1897 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1898 {
1899 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1900 
1901 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1902 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1903 		return vmcs12->tsc_multiplier;
1904 
1905 	return kvm_caps.default_tsc_scaling_ratio;
1906 }
1907 
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1908 void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1909 {
1910 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1911 }
1912 
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1913 void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1914 {
1915 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1916 }
1917 
1918 /*
1919  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1920  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1921  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1922  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1923  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1924  */
1925 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1926 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1927 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1928 					FEAT_CTL_SGX_LC_ENABLED		 | \
1929 					FEAT_CTL_SGX_ENABLED		 | \
1930 					FEAT_CTL_LMCE_ENABLED)
1931 
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1932 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1933 						    struct msr_data *msr)
1934 {
1935 	uint64_t valid_bits;
1936 
1937 	/*
1938 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1939 	 * exposed to the guest.
1940 	 */
1941 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1942 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1943 
1944 	if (!msr->host_initiated &&
1945 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1946 		return false;
1947 
1948 	if (msr->host_initiated)
1949 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1950 	else
1951 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1952 
1953 	return !(msr->data & ~valid_bits);
1954 }
1955 
vmx_get_feature_msr(u32 msr,u64 * data)1956 int vmx_get_feature_msr(u32 msr, u64 *data)
1957 {
1958 	switch (msr) {
1959 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1960 		if (!nested)
1961 			return 1;
1962 		return vmx_get_vmx_msr(&vmcs_config.nested, msr, data);
1963 	default:
1964 		return KVM_MSR_RET_UNSUPPORTED;
1965 	}
1966 }
1967 
1968 /*
1969  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1970  * Returns 0 on success, non-0 otherwise.
1971  * Assumes vcpu_load() was already called.
1972  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1973 int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1974 {
1975 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1976 	struct vmx_uret_msr *msr;
1977 	u32 index;
1978 
1979 	switch (msr_info->index) {
1980 #ifdef CONFIG_X86_64
1981 	case MSR_FS_BASE:
1982 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1983 		break;
1984 	case MSR_GS_BASE:
1985 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1986 		break;
1987 	case MSR_KERNEL_GS_BASE:
1988 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1989 		break;
1990 #endif
1991 	case MSR_EFER:
1992 		return kvm_get_msr_common(vcpu, msr_info);
1993 	case MSR_IA32_TSX_CTRL:
1994 		if (!msr_info->host_initiated &&
1995 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1996 			return 1;
1997 		goto find_uret_msr;
1998 	case MSR_IA32_UMWAIT_CONTROL:
1999 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2000 			return 1;
2001 
2002 		msr_info->data = vmx->msr_ia32_umwait_control;
2003 		break;
2004 	case MSR_IA32_SPEC_CTRL:
2005 		if (!msr_info->host_initiated &&
2006 		    !guest_has_spec_ctrl_msr(vcpu))
2007 			return 1;
2008 
2009 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2010 		break;
2011 	case MSR_IA32_SYSENTER_CS:
2012 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2013 		break;
2014 	case MSR_IA32_SYSENTER_EIP:
2015 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2016 		break;
2017 	case MSR_IA32_SYSENTER_ESP:
2018 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2019 		break;
2020 	case MSR_IA32_BNDCFGS:
2021 		if (!kvm_mpx_supported() ||
2022 		    (!msr_info->host_initiated &&
2023 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2024 			return 1;
2025 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2026 		break;
2027 	case MSR_IA32_MCG_EXT_CTL:
2028 		if (!msr_info->host_initiated &&
2029 		    !(vmx->msr_ia32_feature_control &
2030 		      FEAT_CTL_LMCE_ENABLED))
2031 			return 1;
2032 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2033 		break;
2034 	case MSR_IA32_FEAT_CTL:
2035 		msr_info->data = vmx->msr_ia32_feature_control;
2036 		break;
2037 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2038 		if (!msr_info->host_initiated &&
2039 		    !guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
2040 			return 1;
2041 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2042 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2043 		break;
2044 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2045 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2046 			return 1;
2047 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2048 				    &msr_info->data))
2049 			return 1;
2050 #ifdef CONFIG_KVM_HYPERV
2051 		/*
2052 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2053 		 * instead of just ignoring the features, different Hyper-V
2054 		 * versions are either trying to use them and fail or do some
2055 		 * sanity checking and refuse to boot. Filter all unsupported
2056 		 * features out.
2057 		 */
2058 		if (!msr_info->host_initiated && guest_cpu_cap_has_evmcs(vcpu))
2059 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2060 							&msr_info->data);
2061 #endif
2062 		break;
2063 	case MSR_IA32_RTIT_CTL:
2064 		if (!vmx_pt_mode_is_host_guest())
2065 			return 1;
2066 		msr_info->data = vmx->pt_desc.guest.ctl;
2067 		break;
2068 	case MSR_IA32_RTIT_STATUS:
2069 		if (!vmx_pt_mode_is_host_guest())
2070 			return 1;
2071 		msr_info->data = vmx->pt_desc.guest.status;
2072 		break;
2073 	case MSR_IA32_RTIT_CR3_MATCH:
2074 		if (!vmx_pt_mode_is_host_guest() ||
2075 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2076 						PT_CAP_cr3_filtering))
2077 			return 1;
2078 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2079 		break;
2080 	case MSR_IA32_RTIT_OUTPUT_BASE:
2081 		if (!vmx_pt_mode_is_host_guest() ||
2082 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2083 					PT_CAP_topa_output) &&
2084 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2085 					PT_CAP_single_range_output)))
2086 			return 1;
2087 		msr_info->data = vmx->pt_desc.guest.output_base;
2088 		break;
2089 	case MSR_IA32_RTIT_OUTPUT_MASK:
2090 		if (!vmx_pt_mode_is_host_guest() ||
2091 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2092 					PT_CAP_topa_output) &&
2093 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2094 					PT_CAP_single_range_output)))
2095 			return 1;
2096 		msr_info->data = vmx->pt_desc.guest.output_mask;
2097 		break;
2098 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2099 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2100 		if (!vmx_pt_mode_is_host_guest() ||
2101 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2102 			return 1;
2103 		if (index % 2)
2104 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2105 		else
2106 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2107 		break;
2108 	case MSR_IA32_S_CET:
2109 		msr_info->data = vmcs_readl(GUEST_S_CET);
2110 		break;
2111 	case MSR_KVM_INTERNAL_GUEST_SSP:
2112 		msr_info->data = vmcs_readl(GUEST_SSP);
2113 		break;
2114 	case MSR_IA32_INT_SSP_TAB:
2115 		msr_info->data = vmcs_readl(GUEST_INTR_SSP_TABLE);
2116 		break;
2117 	case MSR_IA32_DEBUGCTLMSR:
2118 		msr_info->data = vmx_guest_debugctl_read();
2119 		break;
2120 	default:
2121 	find_uret_msr:
2122 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2123 		if (msr) {
2124 			msr_info->data = msr->data;
2125 			break;
2126 		}
2127 		return kvm_get_msr_common(vcpu, msr_info);
2128 	}
2129 
2130 	return 0;
2131 }
2132 
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2133 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2134 						    u64 data)
2135 {
2136 #ifdef CONFIG_X86_64
2137 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_LM))
2138 		return (u32)data;
2139 #endif
2140 	return (unsigned long)data;
2141 }
2142 
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2143 u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2144 {
2145 	u64 debugctl = 0;
2146 
2147 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2148 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2149 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2150 
2151 	if ((kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT) &&
2152 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2153 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2154 
2155 	if (boot_cpu_has(X86_FEATURE_RTM) &&
2156 	    (host_initiated || guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)))
2157 		debugctl |= DEBUGCTLMSR_RTM_DEBUG;
2158 
2159 	return debugctl;
2160 }
2161 
vmx_is_valid_debugctl(struct kvm_vcpu * vcpu,u64 data,bool host_initiated)2162 bool vmx_is_valid_debugctl(struct kvm_vcpu *vcpu, u64 data, bool host_initiated)
2163 {
2164 	u64 invalid;
2165 
2166 	invalid = data & ~vmx_get_supported_debugctl(vcpu, host_initiated);
2167 	if (invalid & (DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR)) {
2168 		kvm_pr_unimpl_wrmsr(vcpu, MSR_IA32_DEBUGCTLMSR, data);
2169 		invalid &= ~(DEBUGCTLMSR_BTF | DEBUGCTLMSR_LBR);
2170 	}
2171 	return !invalid;
2172 }
2173 
2174 /*
2175  * Writes msr value into the appropriate "register".
2176  * Returns 0 on success, non-0 otherwise.
2177  * Assumes vcpu_load() was already called.
2178  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2179 int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2180 {
2181 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2182 	struct vmx_uret_msr *msr;
2183 	int ret = 0;
2184 	u32 msr_index = msr_info->index;
2185 	u64 data = msr_info->data;
2186 	u32 index;
2187 
2188 	switch (msr_index) {
2189 	case MSR_EFER:
2190 		ret = kvm_set_msr_common(vcpu, msr_info);
2191 		break;
2192 #ifdef CONFIG_X86_64
2193 	case MSR_FS_BASE:
2194 		vmx_segment_cache_clear(vmx);
2195 		vmcs_writel(GUEST_FS_BASE, data);
2196 		break;
2197 	case MSR_GS_BASE:
2198 		vmx_segment_cache_clear(vmx);
2199 		vmcs_writel(GUEST_GS_BASE, data);
2200 		break;
2201 	case MSR_KERNEL_GS_BASE:
2202 		vmx_write_guest_kernel_gs_base(vmx, data);
2203 		break;
2204 	case MSR_IA32_XFD:
2205 		ret = kvm_set_msr_common(vcpu, msr_info);
2206 		/*
2207 		 * Always intercepting WRMSR could incur non-negligible
2208 		 * overhead given xfd might be changed frequently in
2209 		 * guest context switch. Disable write interception
2210 		 * upon the first write with a non-zero value (indicating
2211 		 * potential usage on dynamic xfeatures). Also update
2212 		 * exception bitmap to trap #NM for proper virtualization
2213 		 * of guest xfd_err.
2214 		 */
2215 		if (!ret && data) {
2216 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2217 						      MSR_TYPE_RW);
2218 			vcpu->arch.xfd_no_write_intercept = true;
2219 			vmx_update_exception_bitmap(vcpu);
2220 		}
2221 		break;
2222 #endif
2223 	case MSR_IA32_SYSENTER_CS:
2224 		if (is_guest_mode(vcpu))
2225 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2226 		vmcs_write32(GUEST_SYSENTER_CS, data);
2227 		break;
2228 	case MSR_IA32_SYSENTER_EIP:
2229 		if (is_guest_mode(vcpu)) {
2230 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2231 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2232 		}
2233 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2234 		break;
2235 	case MSR_IA32_SYSENTER_ESP:
2236 		if (is_guest_mode(vcpu)) {
2237 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2238 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2239 		}
2240 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2241 		break;
2242 	case MSR_IA32_DEBUGCTLMSR:
2243 		if (!vmx_is_valid_debugctl(vcpu, data, msr_info->host_initiated))
2244 			return 1;
2245 
2246 		data &= vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2247 
2248 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2249 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2250 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2251 
2252 		vmx_guest_debugctl_write(vcpu, data);
2253 
2254 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2255 		    (data & DEBUGCTLMSR_LBR))
2256 			intel_pmu_create_guest_lbr_event(vcpu);
2257 		return 0;
2258 	case MSR_IA32_BNDCFGS:
2259 		if (!kvm_mpx_supported() ||
2260 		    (!msr_info->host_initiated &&
2261 		     !guest_cpu_cap_has(vcpu, X86_FEATURE_MPX)))
2262 			return 1;
2263 		if (is_noncanonical_msr_address(data & PAGE_MASK, vcpu) ||
2264 		    (data & MSR_IA32_BNDCFGS_RSVD))
2265 			return 1;
2266 
2267 		if (is_guest_mode(vcpu) &&
2268 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2269 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2270 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2271 
2272 		vmcs_write64(GUEST_BNDCFGS, data);
2273 		break;
2274 	case MSR_IA32_UMWAIT_CONTROL:
2275 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2276 			return 1;
2277 
2278 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2279 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2280 			return 1;
2281 
2282 		vmx->msr_ia32_umwait_control = data;
2283 		break;
2284 	case MSR_IA32_SPEC_CTRL:
2285 		if (!msr_info->host_initiated &&
2286 		    !guest_has_spec_ctrl_msr(vcpu))
2287 			return 1;
2288 
2289 		if (kvm_spec_ctrl_test_value(data))
2290 			return 1;
2291 
2292 		vmx->spec_ctrl = data;
2293 		if (!data)
2294 			break;
2295 
2296 		/*
2297 		 * For non-nested:
2298 		 * When it's written (to non-zero) for the first time, pass
2299 		 * it through.
2300 		 *
2301 		 * For nested:
2302 		 * The handling of the MSR bitmap for L2 guests is done in
2303 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2304 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2305 		 * in the merging. We update the vmcs01 here for L1 as well
2306 		 * since it will end up touching the MSR anyway now.
2307 		 */
2308 		vmx_disable_intercept_for_msr(vcpu,
2309 					      MSR_IA32_SPEC_CTRL,
2310 					      MSR_TYPE_RW);
2311 		break;
2312 	case MSR_IA32_TSX_CTRL:
2313 		if (!msr_info->host_initiated &&
2314 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2315 			return 1;
2316 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2317 			return 1;
2318 		goto find_uret_msr;
2319 	case MSR_IA32_CR_PAT:
2320 		ret = kvm_set_msr_common(vcpu, msr_info);
2321 		if (ret)
2322 			break;
2323 
2324 		if (is_guest_mode(vcpu) &&
2325 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2326 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2327 
2328 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2329 			vmcs_write64(GUEST_IA32_PAT, data);
2330 		break;
2331 	case MSR_IA32_MCG_EXT_CTL:
2332 		if ((!msr_info->host_initiated &&
2333 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2334 		       FEAT_CTL_LMCE_ENABLED)) ||
2335 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2336 			return 1;
2337 		vcpu->arch.mcg_ext_ctl = data;
2338 		break;
2339 	case MSR_IA32_FEAT_CTL:
2340 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2341 			return 1;
2342 
2343 		vmx->msr_ia32_feature_control = data;
2344 		if (msr_info->host_initiated && data == 0)
2345 			vmx_leave_nested(vcpu);
2346 
2347 		/* SGX may be enabled/disabled by guest's firmware */
2348 		vmx_write_encls_bitmap(vcpu, NULL);
2349 		break;
2350 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2351 		/*
2352 		 * On real hardware, the LE hash MSRs are writable before
2353 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2354 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2355 		 * become writable.
2356 		 *
2357 		 * KVM does not emulate SGX activation for simplicity, so
2358 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2359 		 * is unlocked.  This is technically not architectural
2360 		 * behavior, but it's close enough.
2361 		 */
2362 		if (!msr_info->host_initiated &&
2363 		    (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC) ||
2364 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2365 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2366 			return 1;
2367 		vmx->msr_ia32_sgxlepubkeyhash
2368 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2369 		break;
2370 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2371 		if (!msr_info->host_initiated)
2372 			return 1; /* they are read-only */
2373 		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
2374 			return 1;
2375 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2376 	case MSR_IA32_RTIT_CTL:
2377 		if (!vmx_pt_mode_is_host_guest() ||
2378 			vmx_rtit_ctl_check(vcpu, data) ||
2379 			vmx->nested.vmxon)
2380 			return 1;
2381 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2382 		vmx->pt_desc.guest.ctl = data;
2383 		pt_update_intercept_for_msr(vcpu);
2384 		break;
2385 	case MSR_IA32_RTIT_STATUS:
2386 		if (!pt_can_write_msr(vmx))
2387 			return 1;
2388 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2389 			return 1;
2390 		vmx->pt_desc.guest.status = data;
2391 		break;
2392 	case MSR_IA32_RTIT_CR3_MATCH:
2393 		if (!pt_can_write_msr(vmx))
2394 			return 1;
2395 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2396 					   PT_CAP_cr3_filtering))
2397 			return 1;
2398 		vmx->pt_desc.guest.cr3_match = data;
2399 		break;
2400 	case MSR_IA32_RTIT_OUTPUT_BASE:
2401 		if (!pt_can_write_msr(vmx))
2402 			return 1;
2403 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2404 					   PT_CAP_topa_output) &&
2405 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2406 					   PT_CAP_single_range_output))
2407 			return 1;
2408 		if (!pt_output_base_valid(vcpu, data))
2409 			return 1;
2410 		vmx->pt_desc.guest.output_base = data;
2411 		break;
2412 	case MSR_IA32_RTIT_OUTPUT_MASK:
2413 		if (!pt_can_write_msr(vmx))
2414 			return 1;
2415 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2416 					   PT_CAP_topa_output) &&
2417 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2418 					   PT_CAP_single_range_output))
2419 			return 1;
2420 		vmx->pt_desc.guest.output_mask = data;
2421 		break;
2422 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2423 		if (!pt_can_write_msr(vmx))
2424 			return 1;
2425 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2426 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2427 			return 1;
2428 		if (is_noncanonical_msr_address(data, vcpu))
2429 			return 1;
2430 		if (index % 2)
2431 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2432 		else
2433 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2434 		break;
2435 	case MSR_IA32_S_CET:
2436 		vmcs_writel(GUEST_S_CET, data);
2437 		break;
2438 	case MSR_KVM_INTERNAL_GUEST_SSP:
2439 		vmcs_writel(GUEST_SSP, data);
2440 		break;
2441 	case MSR_IA32_INT_SSP_TAB:
2442 		vmcs_writel(GUEST_INTR_SSP_TABLE, data);
2443 		break;
2444 	case MSR_IA32_PERF_CAPABILITIES:
2445 		if (data & PERF_CAP_LBR_FMT) {
2446 			if ((data & PERF_CAP_LBR_FMT) !=
2447 			    (kvm_caps.supported_perf_cap & PERF_CAP_LBR_FMT))
2448 				return 1;
2449 			if (!cpuid_model_is_consistent(vcpu))
2450 				return 1;
2451 		}
2452 		if (data & PERF_CAP_PEBS_FORMAT) {
2453 			if ((data & PERF_CAP_PEBS_MASK) !=
2454 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2455 				return 1;
2456 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DS))
2457 				return 1;
2458 			if (!guest_cpu_cap_has(vcpu, X86_FEATURE_DTES64))
2459 				return 1;
2460 			if (!cpuid_model_is_consistent(vcpu))
2461 				return 1;
2462 		}
2463 		ret = kvm_set_msr_common(vcpu, msr_info);
2464 		break;
2465 
2466 	default:
2467 	find_uret_msr:
2468 		msr = vmx_find_uret_msr(vmx, msr_index);
2469 		if (msr)
2470 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2471 		else
2472 			ret = kvm_set_msr_common(vcpu, msr_info);
2473 	}
2474 
2475 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2476 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2477 		vmx_update_fb_clear_dis(vcpu, vmx);
2478 
2479 	return ret;
2480 }
2481 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2482 void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2483 {
2484 	unsigned long guest_owned_bits;
2485 
2486 	kvm_register_mark_available(vcpu, reg);
2487 
2488 	switch (reg) {
2489 	case VCPU_REGS_RSP:
2490 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2491 		break;
2492 	case VCPU_REGS_RIP:
2493 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2494 		break;
2495 	case VCPU_EXREG_PDPTR:
2496 		if (enable_ept)
2497 			ept_save_pdptrs(vcpu);
2498 		break;
2499 	case VCPU_EXREG_CR0:
2500 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2501 
2502 		vcpu->arch.cr0 &= ~guest_owned_bits;
2503 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2504 		break;
2505 	case VCPU_EXREG_CR3:
2506 		/*
2507 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2508 		 * CR3 is loaded into hardware, not the guest's CR3.
2509 		 */
2510 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2511 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2512 		break;
2513 	case VCPU_EXREG_CR4:
2514 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2515 
2516 		vcpu->arch.cr4 &= ~guest_owned_bits;
2517 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2518 		break;
2519 	default:
2520 		KVM_BUG_ON(1, vcpu->kvm);
2521 		break;
2522 	}
2523 }
2524 
2525 /*
2526  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2527  * directly instead of going through cpu_has(), to ensure KVM is trapping
2528  * ENCLS whenever it's supported in hardware.  It does not matter whether
2529  * the host OS supports or has enabled SGX.
2530  */
cpu_has_sgx(void)2531 static bool cpu_has_sgx(void)
2532 {
2533 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2534 }
2535 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2536 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2537 {
2538 	u32 vmx_msr_low, vmx_msr_high;
2539 	u32 ctl = ctl_min | ctl_opt;
2540 
2541 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2542 
2543 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2544 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2545 
2546 	/* Ensure minimum (required) set of control bits are supported. */
2547 	if (ctl_min & ~ctl)
2548 		return -EIO;
2549 
2550 	*result = ctl;
2551 	return 0;
2552 }
2553 
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2554 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2555 {
2556 	u64 allowed;
2557 
2558 	rdmsrq(msr, allowed);
2559 
2560 	return  ctl_opt & allowed;
2561 }
2562 
2563 #define vmx_check_entry_exit_pairs(pairs, entry_controls, exit_controls)	\
2564 ({										\
2565 	int i, r = 0;								\
2566 										\
2567 	BUILD_BUG_ON(sizeof(pairs[0].entry_control) != sizeof(entry_controls));	\
2568 	BUILD_BUG_ON(sizeof(pairs[0].exit_control)  != sizeof(exit_controls));	\
2569 										\
2570 	for (i = 0; i < ARRAY_SIZE(pairs); i++) {				\
2571 		typeof(entry_controls) n_ctrl = pairs[i].entry_control;		\
2572 		typeof(exit_controls) x_ctrl = pairs[i].exit_control;		\
2573 										\
2574 		if (!(entry_controls & n_ctrl) == !(exit_controls & x_ctrl))	\
2575 			continue;						\
2576 										\
2577 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, "		\
2578 			     "entry = %llx (%llx), exit = %llx (%llx)\n",	\
2579 			     (u64)(entry_controls & n_ctrl), (u64)n_ctrl,	\
2580 			     (u64)(exit_controls & x_ctrl), (u64)x_ctrl);	\
2581 										\
2582 		if (error_on_inconsistent_vmcs_config)				\
2583 			r = -EIO;						\
2584 										\
2585 		entry_controls &= ~n_ctrl;					\
2586 		exit_controls &= ~x_ctrl;					\
2587 	}									\
2588 	r;									\
2589 })
2590 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2591 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2592 			     struct vmx_capability *vmx_cap)
2593 {
2594 	u32 _pin_based_exec_control = 0;
2595 	u32 _cpu_based_exec_control = 0;
2596 	u32 _cpu_based_2nd_exec_control = 0;
2597 	u64 _cpu_based_3rd_exec_control = 0;
2598 	u32 _vmexit_control = 0;
2599 	u32 _vmentry_control = 0;
2600 	u64 basic_msr;
2601 	u64 misc_msr;
2602 
2603 	/*
2604 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2605 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2606 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2607 	 */
2608 	struct {
2609 		u32 entry_control;
2610 		u32 exit_control;
2611 	} const vmcs_entry_exit_pairs[] = {
2612 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2613 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2614 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2615 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2616 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2617 		{ VM_ENTRY_LOAD_CET_STATE,		VM_EXIT_LOAD_CET_STATE },
2618 	};
2619 
2620 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2621 
2622 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2623 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2624 				MSR_IA32_VMX_PROCBASED_CTLS,
2625 				&_cpu_based_exec_control))
2626 		return -EIO;
2627 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2628 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2629 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2630 					MSR_IA32_VMX_PROCBASED_CTLS2,
2631 					&_cpu_based_2nd_exec_control))
2632 			return -EIO;
2633 	}
2634 	if (!IS_ENABLED(CONFIG_KVM_INTEL_PROVE_VE))
2635 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2636 
2637 #ifndef CONFIG_X86_64
2638 	if (!(_cpu_based_2nd_exec_control &
2639 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2640 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2641 #endif
2642 
2643 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2644 		_cpu_based_2nd_exec_control &= ~(
2645 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2646 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2647 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2648 
2649 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2650 		&vmx_cap->ept, &vmx_cap->vpid);
2651 
2652 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2653 	    vmx_cap->ept) {
2654 		pr_warn_once("EPT CAP should not exist if not support "
2655 				"1-setting enable EPT VM-execution control\n");
2656 
2657 		if (error_on_inconsistent_vmcs_config)
2658 			return -EIO;
2659 
2660 		vmx_cap->ept = 0;
2661 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
2662 	}
2663 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2664 	    vmx_cap->vpid) {
2665 		pr_warn_once("VPID CAP should not exist if not support "
2666 				"1-setting enable VPID VM-execution control\n");
2667 
2668 		if (error_on_inconsistent_vmcs_config)
2669 			return -EIO;
2670 
2671 		vmx_cap->vpid = 0;
2672 	}
2673 
2674 	if (!cpu_has_sgx())
2675 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2676 
2677 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2678 		_cpu_based_3rd_exec_control =
2679 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2680 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2681 
2682 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2683 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2684 				MSR_IA32_VMX_EXIT_CTLS,
2685 				&_vmexit_control))
2686 		return -EIO;
2687 
2688 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2689 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2690 				MSR_IA32_VMX_PINBASED_CTLS,
2691 				&_pin_based_exec_control))
2692 		return -EIO;
2693 
2694 	if (cpu_has_broken_vmx_preemption_timer())
2695 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2696 	if (!(_cpu_based_2nd_exec_control &
2697 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2698 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2699 
2700 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2701 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2702 				MSR_IA32_VMX_ENTRY_CTLS,
2703 				&_vmentry_control))
2704 		return -EIO;
2705 
2706 	if (vmx_check_entry_exit_pairs(vmcs_entry_exit_pairs,
2707 				       _vmentry_control, _vmexit_control))
2708 		return -EIO;
2709 
2710 	/*
2711 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2712 	 * can't be used due to an errata where VM Exit may incorrectly clear
2713 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2714 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2715 	 */
2716 	switch (boot_cpu_data.x86_vfm) {
2717 	case INTEL_NEHALEM_EP:	/* AAK155 */
2718 	case INTEL_NEHALEM:	/* AAP115 */
2719 	case INTEL_WESTMERE:	/* AAT100 */
2720 	case INTEL_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2721 	case INTEL_NEHALEM_EX:	/* BA97 */
2722 		_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2723 		_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2724 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2725 			     "does not work properly. Using workaround\n");
2726 		break;
2727 	default:
2728 		break;
2729 	}
2730 
2731 	rdmsrq(MSR_IA32_VMX_BASIC, basic_msr);
2732 
2733 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2734 	if (vmx_basic_vmcs_size(basic_msr) > PAGE_SIZE)
2735 		return -EIO;
2736 
2737 #ifdef CONFIG_X86_64
2738 	/*
2739 	 * KVM expects to be able to shove all legal physical addresses into
2740 	 * VMCS fields for 64-bit kernels, and per the SDM, "This bit is always
2741 	 * 0 for processors that support Intel 64 architecture".
2742 	 */
2743 	if (basic_msr & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
2744 		return -EIO;
2745 #endif
2746 
2747 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2748 	if (vmx_basic_vmcs_mem_type(basic_msr) != X86_MEMTYPE_WB)
2749 		return -EIO;
2750 
2751 	rdmsrq(MSR_IA32_VMX_MISC, misc_msr);
2752 
2753 	vmcs_conf->basic = basic_msr;
2754 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2755 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2756 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2757 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2758 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2759 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2760 	vmcs_conf->misc	= misc_msr;
2761 
2762 #if IS_ENABLED(CONFIG_HYPERV)
2763 	if (enlightened_vmcs)
2764 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2765 #endif
2766 
2767 	return 0;
2768 }
2769 
__kvm_is_vmx_supported(void)2770 static bool __kvm_is_vmx_supported(void)
2771 {
2772 	int cpu = smp_processor_id();
2773 
2774 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2775 		pr_err("VMX not supported by CPU %d\n", cpu);
2776 		return false;
2777 	}
2778 
2779 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2780 	    !this_cpu_has(X86_FEATURE_VMX)) {
2781 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2782 		return false;
2783 	}
2784 
2785 	return true;
2786 }
2787 
kvm_is_vmx_supported(void)2788 static bool kvm_is_vmx_supported(void)
2789 {
2790 	bool supported;
2791 
2792 	migrate_disable();
2793 	supported = __kvm_is_vmx_supported();
2794 	migrate_enable();
2795 
2796 	return supported;
2797 }
2798 
vmx_check_processor_compat(void)2799 int vmx_check_processor_compat(void)
2800 {
2801 	int cpu = raw_smp_processor_id();
2802 	struct vmcs_config vmcs_conf;
2803 	struct vmx_capability vmx_cap;
2804 
2805 	if (!__kvm_is_vmx_supported())
2806 		return -EIO;
2807 
2808 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2809 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2810 		return -EIO;
2811 	}
2812 	if (nested)
2813 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2814 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2815 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2816 		return -EIO;
2817 	}
2818 	return 0;
2819 }
2820 
kvm_cpu_vmxon(u64 vmxon_pointer)2821 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2822 {
2823 	u64 msr;
2824 
2825 	cr4_set_bits(X86_CR4_VMXE);
2826 
2827 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2828 			  _ASM_EXTABLE(1b, %l[fault])
2829 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2830 			  : : fault);
2831 	return 0;
2832 
2833 fault:
2834 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2835 		  rdmsrq_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2836 	cr4_clear_bits(X86_CR4_VMXE);
2837 
2838 	return -EFAULT;
2839 }
2840 
vmx_enable_virtualization_cpu(void)2841 int vmx_enable_virtualization_cpu(void)
2842 {
2843 	int cpu = raw_smp_processor_id();
2844 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2845 	int r;
2846 
2847 	if (cr4_read_shadow() & X86_CR4_VMXE)
2848 		return -EBUSY;
2849 
2850 	/*
2851 	 * This can happen if we hot-added a CPU but failed to allocate
2852 	 * VP assist page for it.
2853 	 */
2854 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2855 		return -EFAULT;
2856 
2857 	intel_pt_handle_vmx(1);
2858 
2859 	r = kvm_cpu_vmxon(phys_addr);
2860 	if (r) {
2861 		intel_pt_handle_vmx(0);
2862 		return r;
2863 	}
2864 
2865 	return 0;
2866 }
2867 
vmclear_local_loaded_vmcss(void)2868 static void vmclear_local_loaded_vmcss(void)
2869 {
2870 	int cpu = raw_smp_processor_id();
2871 	struct loaded_vmcs *v, *n;
2872 
2873 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2874 				 loaded_vmcss_on_cpu_link)
2875 		__loaded_vmcs_clear(v);
2876 }
2877 
vmx_disable_virtualization_cpu(void)2878 void vmx_disable_virtualization_cpu(void)
2879 {
2880 	vmclear_local_loaded_vmcss();
2881 
2882 	if (kvm_cpu_vmxoff())
2883 		kvm_spurious_fault();
2884 
2885 	hv_reset_evmcs();
2886 
2887 	intel_pt_handle_vmx(0);
2888 }
2889 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2890 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2891 {
2892 	int node = cpu_to_node(cpu);
2893 	struct page *pages;
2894 	struct vmcs *vmcs;
2895 
2896 	pages = __alloc_pages_node(node, flags, 0);
2897 	if (!pages)
2898 		return NULL;
2899 	vmcs = page_address(pages);
2900 	memset(vmcs, 0, vmx_basic_vmcs_size(vmcs_config.basic));
2901 
2902 	/* KVM supports Enlightened VMCS v1 only */
2903 	if (kvm_is_using_evmcs())
2904 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2905 	else
2906 		vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
2907 
2908 	if (shadow)
2909 		vmcs->hdr.shadow_vmcs = 1;
2910 	return vmcs;
2911 }
2912 
free_vmcs(struct vmcs * vmcs)2913 void free_vmcs(struct vmcs *vmcs)
2914 {
2915 	free_page((unsigned long)vmcs);
2916 }
2917 
2918 /*
2919  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2920  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2921 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2922 {
2923 	if (!loaded_vmcs->vmcs)
2924 		return;
2925 	loaded_vmcs_clear(loaded_vmcs);
2926 	free_vmcs(loaded_vmcs->vmcs);
2927 	loaded_vmcs->vmcs = NULL;
2928 	if (loaded_vmcs->msr_bitmap)
2929 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2930 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2931 }
2932 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2933 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2934 {
2935 	loaded_vmcs->vmcs = alloc_vmcs(false);
2936 	if (!loaded_vmcs->vmcs)
2937 		return -ENOMEM;
2938 
2939 	vmcs_clear(loaded_vmcs->vmcs);
2940 
2941 	loaded_vmcs->shadow_vmcs = NULL;
2942 	loaded_vmcs->hv_timer_soft_disabled = false;
2943 	loaded_vmcs->cpu = -1;
2944 	loaded_vmcs->launched = 0;
2945 
2946 	if (cpu_has_vmx_msr_bitmap()) {
2947 		loaded_vmcs->msr_bitmap = (unsigned long *)
2948 				__get_free_page(GFP_KERNEL_ACCOUNT);
2949 		if (!loaded_vmcs->msr_bitmap)
2950 			goto out_vmcs;
2951 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2952 	}
2953 
2954 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2955 	memset(&loaded_vmcs->controls_shadow, 0,
2956 		sizeof(struct vmcs_controls_shadow));
2957 
2958 	return 0;
2959 
2960 out_vmcs:
2961 	free_loaded_vmcs(loaded_vmcs);
2962 	return -ENOMEM;
2963 }
2964 
free_kvm_area(void)2965 static void free_kvm_area(void)
2966 {
2967 	int cpu;
2968 
2969 	for_each_possible_cpu(cpu) {
2970 		free_vmcs(per_cpu(vmxarea, cpu));
2971 		per_cpu(vmxarea, cpu) = NULL;
2972 	}
2973 }
2974 
alloc_kvm_area(void)2975 static __init int alloc_kvm_area(void)
2976 {
2977 	int cpu;
2978 
2979 	for_each_possible_cpu(cpu) {
2980 		struct vmcs *vmcs;
2981 
2982 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2983 		if (!vmcs) {
2984 			free_kvm_area();
2985 			return -ENOMEM;
2986 		}
2987 
2988 		/*
2989 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2990 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2991 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2992 		 *
2993 		 * However, even though not explicitly documented by
2994 		 * TLFS, VMXArea passed as VMXON argument should
2995 		 * still be marked with revision_id reported by
2996 		 * physical CPU.
2997 		 */
2998 		if (kvm_is_using_evmcs())
2999 			vmcs->hdr.revision_id = vmx_basic_vmcs_revision_id(vmcs_config.basic);
3000 
3001 		per_cpu(vmxarea, cpu) = vmcs;
3002 	}
3003 	return 0;
3004 }
3005 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)3006 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3007 		struct kvm_segment *save)
3008 {
3009 	if (!emulate_invalid_guest_state) {
3010 		/*
3011 		 * CS and SS RPL should be equal during guest entry according
3012 		 * to VMX spec, but in reality it is not always so. Since vcpu
3013 		 * is in the middle of the transition from real mode to
3014 		 * protected mode it is safe to assume that RPL 0 is a good
3015 		 * default value.
3016 		 */
3017 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3018 			save->selector &= ~SEGMENT_RPL_MASK;
3019 		save->dpl = save->selector & SEGMENT_RPL_MASK;
3020 		save->s = 1;
3021 	}
3022 	__vmx_set_segment(vcpu, save, seg);
3023 }
3024 
enter_pmode(struct kvm_vcpu * vcpu)3025 static void enter_pmode(struct kvm_vcpu *vcpu)
3026 {
3027 	unsigned long flags;
3028 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3029 
3030 	/*
3031 	 * Update real mode segment cache. It may be not up-to-date if segment
3032 	 * register was written while vcpu was in a guest mode.
3033 	 */
3034 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3035 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3036 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3037 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3038 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3039 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3040 
3041 	vmx->rmode.vm86_active = 0;
3042 
3043 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3044 
3045 	flags = vmcs_readl(GUEST_RFLAGS);
3046 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3047 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3048 	vmcs_writel(GUEST_RFLAGS, flags);
3049 
3050 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3051 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3052 
3053 	vmx_update_exception_bitmap(vcpu);
3054 
3055 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3056 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3057 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3058 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3059 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3060 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3061 }
3062 
fix_rmode_seg(int seg,struct kvm_segment * save)3063 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3064 {
3065 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3066 	struct kvm_segment var = *save;
3067 
3068 	var.dpl = 0x3;
3069 	if (seg == VCPU_SREG_CS)
3070 		var.type = 0x3;
3071 
3072 	if (!emulate_invalid_guest_state) {
3073 		var.selector = var.base >> 4;
3074 		var.base = var.base & 0xffff0;
3075 		var.limit = 0xffff;
3076 		var.g = 0;
3077 		var.db = 0;
3078 		var.present = 1;
3079 		var.s = 1;
3080 		var.l = 0;
3081 		var.unusable = 0;
3082 		var.type = 0x3;
3083 		var.avl = 0;
3084 		if (save->base & 0xf)
3085 			pr_warn_once("segment base is not paragraph aligned "
3086 				     "when entering protected mode (seg=%d)", seg);
3087 	}
3088 
3089 	vmcs_write16(sf->selector, var.selector);
3090 	vmcs_writel(sf->base, var.base);
3091 	vmcs_write32(sf->limit, var.limit);
3092 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3093 }
3094 
enter_rmode(struct kvm_vcpu * vcpu)3095 static void enter_rmode(struct kvm_vcpu *vcpu)
3096 {
3097 	unsigned long flags;
3098 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3099 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3100 
3101 	/*
3102 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3103 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3104 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3105 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3106 	 * CR0.PG=0 when L2 is active.
3107 	 */
3108 	WARN_ON_ONCE(is_guest_mode(vcpu));
3109 
3110 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3111 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3112 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3113 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3114 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3115 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3116 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3117 
3118 	vmx->rmode.vm86_active = 1;
3119 
3120 	vmx_segment_cache_clear(vmx);
3121 
3122 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3123 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3124 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3125 
3126 	flags = vmcs_readl(GUEST_RFLAGS);
3127 	vmx->rmode.save_rflags = flags;
3128 
3129 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3130 
3131 	vmcs_writel(GUEST_RFLAGS, flags);
3132 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3133 	vmx_update_exception_bitmap(vcpu);
3134 
3135 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3136 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3137 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3138 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3139 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3140 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3141 }
3142 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3143 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3144 {
3145 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3146 
3147 	/* Nothing to do if hardware doesn't support EFER. */
3148 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3149 		return 0;
3150 
3151 	vcpu->arch.efer = efer;
3152 #ifdef CONFIG_X86_64
3153 	if (efer & EFER_LMA)
3154 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3155 	else
3156 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3157 #else
3158 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3159 		return 1;
3160 #endif
3161 
3162 	vmx_setup_uret_msrs(vmx);
3163 	return 0;
3164 }
3165 
3166 #ifdef CONFIG_X86_64
3167 
enter_lmode(struct kvm_vcpu * vcpu)3168 static void enter_lmode(struct kvm_vcpu *vcpu)
3169 {
3170 	u32 guest_tr_ar;
3171 
3172 	vmx_segment_cache_clear(to_vmx(vcpu));
3173 
3174 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3175 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3176 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3177 				     __func__);
3178 		vmcs_write32(GUEST_TR_AR_BYTES,
3179 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3180 			     | VMX_AR_TYPE_BUSY_64_TSS);
3181 	}
3182 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3183 }
3184 
exit_lmode(struct kvm_vcpu * vcpu)3185 static void exit_lmode(struct kvm_vcpu *vcpu)
3186 {
3187 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3188 }
3189 
3190 #endif
3191 
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3192 void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3193 {
3194 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3195 
3196 	/*
3197 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3198 	 * the CPU is not required to invalidate guest-physical mappings on
3199 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3200 	 * associated with the root EPT structure and not any particular VPID
3201 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3202 	 */
3203 	if (enable_ept) {
3204 		ept_sync_global();
3205 	} else if (enable_vpid) {
3206 		if (cpu_has_vmx_invvpid_global()) {
3207 			vpid_sync_vcpu_global();
3208 		} else {
3209 			vpid_sync_vcpu_single(vmx->vpid);
3210 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3211 		}
3212 	}
3213 }
3214 
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3215 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3216 {
3217 	if (is_guest_mode(vcpu) && nested_cpu_has_vpid(get_vmcs12(vcpu)))
3218 		return nested_get_vpid02(vcpu);
3219 	return to_vmx(vcpu)->vpid;
3220 }
3221 
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3222 void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3223 {
3224 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3225 	u64 root_hpa = mmu->root.hpa;
3226 
3227 	/* No flush required if the current context is invalid. */
3228 	if (!VALID_PAGE(root_hpa))
3229 		return;
3230 
3231 	if (enable_ept)
3232 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3233 						mmu->root_role.level));
3234 	else
3235 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3236 }
3237 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3238 void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3239 {
3240 	/*
3241 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3242 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3243 	 */
3244 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3245 }
3246 
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3247 void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3248 {
3249 	/*
3250 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3251 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3252 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3253 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3254 	 * i.e. no explicit INVVPID is necessary.
3255 	 */
3256 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3257 }
3258 
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3259 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3260 {
3261 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3262 
3263 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3264 		return;
3265 
3266 	if (is_pae_paging(vcpu)) {
3267 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3268 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3269 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3270 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3271 	}
3272 }
3273 
ept_save_pdptrs(struct kvm_vcpu * vcpu)3274 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3275 {
3276 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3277 
3278 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3279 		return;
3280 
3281 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3282 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3283 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3284 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3285 
3286 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3287 }
3288 
3289 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3290 			  CPU_BASED_CR3_STORE_EXITING)
3291 
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3292 bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3293 {
3294 	if (is_guest_mode(vcpu))
3295 		return nested_guest_cr0_valid(vcpu, cr0);
3296 
3297 	if (to_vmx(vcpu)->nested.vmxon)
3298 		return nested_host_cr0_valid(vcpu, cr0);
3299 
3300 	return true;
3301 }
3302 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3303 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3304 {
3305 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3306 	unsigned long hw_cr0, old_cr0_pg;
3307 	u32 tmp;
3308 
3309 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3310 
3311 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3312 	if (enable_unrestricted_guest)
3313 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3314 	else {
3315 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3316 		if (!enable_ept)
3317 			hw_cr0 |= X86_CR0_WP;
3318 
3319 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3320 			enter_pmode(vcpu);
3321 
3322 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3323 			enter_rmode(vcpu);
3324 	}
3325 
3326 	vmcs_writel(CR0_READ_SHADOW, cr0);
3327 	vmcs_writel(GUEST_CR0, hw_cr0);
3328 	vcpu->arch.cr0 = cr0;
3329 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3330 
3331 #ifdef CONFIG_X86_64
3332 	if (vcpu->arch.efer & EFER_LME) {
3333 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3334 			enter_lmode(vcpu);
3335 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3336 			exit_lmode(vcpu);
3337 	}
3338 #endif
3339 
3340 	if (enable_ept && !enable_unrestricted_guest) {
3341 		/*
3342 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3343 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3344 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3345 		 * KVM's CR3 is installed.
3346 		 */
3347 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3348 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3349 
3350 		/*
3351 		 * When running with EPT but not unrestricted guest, KVM must
3352 		 * intercept CR3 accesses when paging is _disabled_.  This is
3353 		 * necessary because restricted guests can't actually run with
3354 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3355 		 * run the guest when identity mapped page tables.
3356 		 *
3357 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3358 		 * update, it may be stale with respect to CR3 interception,
3359 		 * e.g. after nested VM-Enter.
3360 		 *
3361 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3362 		 * stores to forward them to L1, even if KVM does not need to
3363 		 * intercept them to preserve its identity mapped page tables.
3364 		 */
3365 		if (!(cr0 & X86_CR0_PG)) {
3366 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3367 		} else if (!is_guest_mode(vcpu)) {
3368 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3369 		} else {
3370 			tmp = exec_controls_get(vmx);
3371 			tmp &= ~CR3_EXITING_BITS;
3372 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3373 			exec_controls_set(vmx, tmp);
3374 		}
3375 
3376 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3377 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3378 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3379 
3380 		/*
3381 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3382 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3383 		 */
3384 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3385 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3386 	}
3387 
3388 	/* depends on vcpu->arch.cr0 to be set to a new value */
3389 	vmx->vt.emulation_required = vmx_emulation_required(vcpu);
3390 }
3391 
vmx_get_max_ept_level(void)3392 static int vmx_get_max_ept_level(void)
3393 {
3394 	if (cpu_has_vmx_ept_5levels())
3395 		return 5;
3396 	return 4;
3397 }
3398 
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3399 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3400 {
3401 	u64 eptp = VMX_EPTP_MT_WB;
3402 
3403 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3404 
3405 	if (enable_ept_ad_bits &&
3406 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3407 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3408 	eptp |= root_hpa;
3409 
3410 	return eptp;
3411 }
3412 
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3413 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3414 {
3415 	struct kvm *kvm = vcpu->kvm;
3416 	bool update_guest_cr3 = true;
3417 	unsigned long guest_cr3;
3418 	u64 eptp;
3419 
3420 	if (enable_ept) {
3421 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3422 		vmcs_write64(EPT_POINTER, eptp);
3423 
3424 		hv_track_root_tdp(vcpu, root_hpa);
3425 
3426 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3427 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3428 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3429 			guest_cr3 = vcpu->arch.cr3;
3430 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3431 			update_guest_cr3 = false;
3432 		vmx_ept_load_pdptrs(vcpu);
3433 	} else {
3434 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu) |
3435 			    kvm_get_active_cr3_lam_bits(vcpu);
3436 	}
3437 
3438 	if (update_guest_cr3)
3439 		vmcs_writel(GUEST_CR3, guest_cr3);
3440 }
3441 
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3442 bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3443 {
3444 	/*
3445 	 * We operate under the default treatment of SMM, so VMX cannot be
3446 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3447 	 * i.e. is a reserved bit, is handled by common x86 code.
3448 	 */
3449 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3450 		return false;
3451 
3452 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3453 		return false;
3454 
3455 	return true;
3456 }
3457 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3458 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3459 {
3460 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3461 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3462 	unsigned long hw_cr4;
3463 
3464 	/*
3465 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3466 	 * is in force while we are in guest mode.  Do not let guests control
3467 	 * this bit, even if host CR4.MCE == 0.
3468 	 */
3469 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3470 	if (enable_unrestricted_guest)
3471 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3472 	else if (vmx->rmode.vm86_active)
3473 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3474 	else
3475 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3476 
3477 	if (vmx_umip_emulated()) {
3478 		if (cr4 & X86_CR4_UMIP) {
3479 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3480 			hw_cr4 &= ~X86_CR4_UMIP;
3481 		} else if (!is_guest_mode(vcpu) ||
3482 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3483 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3484 		}
3485 	}
3486 
3487 	vcpu->arch.cr4 = cr4;
3488 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3489 
3490 	if (!enable_unrestricted_guest) {
3491 		if (enable_ept) {
3492 			if (!is_paging(vcpu)) {
3493 				hw_cr4 &= ~X86_CR4_PAE;
3494 				hw_cr4 |= X86_CR4_PSE;
3495 			} else if (!(cr4 & X86_CR4_PAE)) {
3496 				hw_cr4 &= ~X86_CR4_PAE;
3497 			}
3498 		}
3499 
3500 		/*
3501 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3502 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3503 		 * to be manually disabled when guest switches to non-paging
3504 		 * mode.
3505 		 *
3506 		 * If !enable_unrestricted_guest, the CPU is always running
3507 		 * with CR0.PG=1 and CR4 needs to be modified.
3508 		 * If enable_unrestricted_guest, the CPU automatically
3509 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3510 		 */
3511 		if (!is_paging(vcpu))
3512 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3513 	}
3514 
3515 	vmcs_writel(CR4_READ_SHADOW, cr4);
3516 	vmcs_writel(GUEST_CR4, hw_cr4);
3517 
3518 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3519 		vcpu->arch.cpuid_dynamic_bits_dirty = true;
3520 }
3521 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3522 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3523 {
3524 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3525 	u32 ar;
3526 
3527 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3528 		*var = vmx->rmode.segs[seg];
3529 		if (seg == VCPU_SREG_TR
3530 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3531 			return;
3532 		var->base = vmx_read_guest_seg_base(vmx, seg);
3533 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3534 		return;
3535 	}
3536 	var->base = vmx_read_guest_seg_base(vmx, seg);
3537 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3538 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3539 	ar = vmx_read_guest_seg_ar(vmx, seg);
3540 	var->unusable = (ar >> 16) & 1;
3541 	var->type = ar & 15;
3542 	var->s = (ar >> 4) & 1;
3543 	var->dpl = (ar >> 5) & 3;
3544 	/*
3545 	 * Some userspaces do not preserve unusable property. Since usable
3546 	 * segment has to be present according to VMX spec we can use present
3547 	 * property to amend userspace bug by making unusable segment always
3548 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3549 	 * segment as unusable.
3550 	 */
3551 	var->present = !var->unusable;
3552 	var->avl = (ar >> 12) & 1;
3553 	var->l = (ar >> 13) & 1;
3554 	var->db = (ar >> 14) & 1;
3555 	var->g = (ar >> 15) & 1;
3556 }
3557 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3558 u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3559 {
3560 	struct kvm_segment s;
3561 
3562 	if (to_vmx(vcpu)->rmode.vm86_active) {
3563 		vmx_get_segment(vcpu, &s, seg);
3564 		return s.base;
3565 	}
3566 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3567 }
3568 
__vmx_get_cpl(struct kvm_vcpu * vcpu,bool no_cache)3569 static int __vmx_get_cpl(struct kvm_vcpu *vcpu, bool no_cache)
3570 {
3571 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3572 	int ar;
3573 
3574 	if (unlikely(vmx->rmode.vm86_active))
3575 		return 0;
3576 
3577 	if (no_cache)
3578 		ar = vmcs_read32(GUEST_SS_AR_BYTES);
3579 	else
3580 		ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3581 	return VMX_AR_DPL(ar);
3582 }
3583 
vmx_get_cpl(struct kvm_vcpu * vcpu)3584 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3585 {
3586 	return __vmx_get_cpl(vcpu, false);
3587 }
3588 
vmx_get_cpl_no_cache(struct kvm_vcpu * vcpu)3589 int vmx_get_cpl_no_cache(struct kvm_vcpu *vcpu)
3590 {
3591 	return __vmx_get_cpl(vcpu, true);
3592 }
3593 
vmx_segment_access_rights(struct kvm_segment * var)3594 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3595 {
3596 	u32 ar;
3597 
3598 	ar = var->type & 15;
3599 	ar |= (var->s & 1) << 4;
3600 	ar |= (var->dpl & 3) << 5;
3601 	ar |= (var->present & 1) << 7;
3602 	ar |= (var->avl & 1) << 12;
3603 	ar |= (var->l & 1) << 13;
3604 	ar |= (var->db & 1) << 14;
3605 	ar |= (var->g & 1) << 15;
3606 	ar |= (var->unusable || !var->present) << 16;
3607 
3608 	return ar;
3609 }
3610 
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3611 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3612 {
3613 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3614 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3615 
3616 	vmx_segment_cache_clear(vmx);
3617 
3618 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3619 		vmx->rmode.segs[seg] = *var;
3620 		if (seg == VCPU_SREG_TR)
3621 			vmcs_write16(sf->selector, var->selector);
3622 		else if (var->s)
3623 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3624 		return;
3625 	}
3626 
3627 	vmcs_writel(sf->base, var->base);
3628 	vmcs_write32(sf->limit, var->limit);
3629 	vmcs_write16(sf->selector, var->selector);
3630 
3631 	/*
3632 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3633 	 * qemu binaries.
3634 	 *   IA32 arch specifies that at the time of processor reset the
3635 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3636 	 * is setting it to 0 in the userland code. This causes invalid guest
3637 	 * state vmexit when "unrestricted guest" mode is turned on.
3638 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3639 	 * tree. Newer qemu binaries with that qemu fix would not need this
3640 	 * kvm hack.
3641 	 */
3642 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3643 		var->type |= 0x1; /* Accessed */
3644 
3645 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3646 }
3647 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3648 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3649 {
3650 	__vmx_set_segment(vcpu, var, seg);
3651 
3652 	to_vmx(vcpu)->vt.emulation_required = vmx_emulation_required(vcpu);
3653 }
3654 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3655 void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3656 {
3657 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3658 
3659 	*db = (ar >> 14) & 1;
3660 	*l = (ar >> 13) & 1;
3661 }
3662 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3663 void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3664 {
3665 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3666 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3667 }
3668 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3669 void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3670 {
3671 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3672 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3673 }
3674 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3675 void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3676 {
3677 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3678 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3679 }
3680 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3681 void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3682 {
3683 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3684 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3685 }
3686 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3687 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3688 {
3689 	struct kvm_segment var;
3690 	u32 ar;
3691 
3692 	vmx_get_segment(vcpu, &var, seg);
3693 	var.dpl = 0x3;
3694 	if (seg == VCPU_SREG_CS)
3695 		var.type = 0x3;
3696 	ar = vmx_segment_access_rights(&var);
3697 
3698 	if (var.base != (var.selector << 4))
3699 		return false;
3700 	if (var.limit != 0xffff)
3701 		return false;
3702 	if (ar != 0xf3)
3703 		return false;
3704 
3705 	return true;
3706 }
3707 
code_segment_valid(struct kvm_vcpu * vcpu)3708 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3709 {
3710 	struct kvm_segment cs;
3711 	unsigned int cs_rpl;
3712 
3713 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3714 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3715 
3716 	if (cs.unusable)
3717 		return false;
3718 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3719 		return false;
3720 	if (!cs.s)
3721 		return false;
3722 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3723 		if (cs.dpl > cs_rpl)
3724 			return false;
3725 	} else {
3726 		if (cs.dpl != cs_rpl)
3727 			return false;
3728 	}
3729 	if (!cs.present)
3730 		return false;
3731 
3732 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3733 	return true;
3734 }
3735 
stack_segment_valid(struct kvm_vcpu * vcpu)3736 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3737 {
3738 	struct kvm_segment ss;
3739 	unsigned int ss_rpl;
3740 
3741 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3742 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3743 
3744 	if (ss.unusable)
3745 		return true;
3746 	if (ss.type != 3 && ss.type != 7)
3747 		return false;
3748 	if (!ss.s)
3749 		return false;
3750 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3751 		return false;
3752 	if (!ss.present)
3753 		return false;
3754 
3755 	return true;
3756 }
3757 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3758 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3759 {
3760 	struct kvm_segment var;
3761 	unsigned int rpl;
3762 
3763 	vmx_get_segment(vcpu, &var, seg);
3764 	rpl = var.selector & SEGMENT_RPL_MASK;
3765 
3766 	if (var.unusable)
3767 		return true;
3768 	if (!var.s)
3769 		return false;
3770 	if (!var.present)
3771 		return false;
3772 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3773 		if (var.dpl < rpl) /* DPL < RPL */
3774 			return false;
3775 	}
3776 
3777 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3778 	 * rights flags
3779 	 */
3780 	return true;
3781 }
3782 
tr_valid(struct kvm_vcpu * vcpu)3783 static bool tr_valid(struct kvm_vcpu *vcpu)
3784 {
3785 	struct kvm_segment tr;
3786 
3787 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3788 
3789 	if (tr.unusable)
3790 		return false;
3791 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3792 		return false;
3793 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3794 		return false;
3795 	if (!tr.present)
3796 		return false;
3797 
3798 	return true;
3799 }
3800 
ldtr_valid(struct kvm_vcpu * vcpu)3801 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3802 {
3803 	struct kvm_segment ldtr;
3804 
3805 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3806 
3807 	if (ldtr.unusable)
3808 		return true;
3809 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3810 		return false;
3811 	if (ldtr.type != 2)
3812 		return false;
3813 	if (!ldtr.present)
3814 		return false;
3815 
3816 	return true;
3817 }
3818 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3819 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3820 {
3821 	struct kvm_segment cs, ss;
3822 
3823 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3824 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3825 
3826 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3827 		 (ss.selector & SEGMENT_RPL_MASK));
3828 }
3829 
3830 /*
3831  * Check if guest state is valid. Returns true if valid, false if
3832  * not.
3833  * We assume that registers are always usable
3834  */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3835 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3836 {
3837 	/* real mode guest state checks */
3838 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3839 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3840 			return false;
3841 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3842 			return false;
3843 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3844 			return false;
3845 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3846 			return false;
3847 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3848 			return false;
3849 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3850 			return false;
3851 	} else {
3852 	/* protected mode guest state checks */
3853 		if (!cs_ss_rpl_check(vcpu))
3854 			return false;
3855 		if (!code_segment_valid(vcpu))
3856 			return false;
3857 		if (!stack_segment_valid(vcpu))
3858 			return false;
3859 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3860 			return false;
3861 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3862 			return false;
3863 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3864 			return false;
3865 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3866 			return false;
3867 		if (!tr_valid(vcpu))
3868 			return false;
3869 		if (!ldtr_valid(vcpu))
3870 			return false;
3871 	}
3872 	/* TODO:
3873 	 * - Add checks on RIP
3874 	 * - Add checks on RFLAGS
3875 	 */
3876 
3877 	return true;
3878 }
3879 
init_rmode_tss(struct kvm * kvm,void __user * ua)3880 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3881 {
3882 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3883 	u16 data;
3884 	int i;
3885 
3886 	for (i = 0; i < 3; i++) {
3887 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3888 			return -EFAULT;
3889 	}
3890 
3891 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3892 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3893 		return -EFAULT;
3894 
3895 	data = ~0;
3896 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3897 		return -EFAULT;
3898 
3899 	return 0;
3900 }
3901 
init_rmode_identity_map(struct kvm * kvm)3902 static int init_rmode_identity_map(struct kvm *kvm)
3903 {
3904 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3905 	int i, r = 0;
3906 	void __user *uaddr;
3907 	u32 tmp;
3908 
3909 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3910 	mutex_lock(&kvm->slots_lock);
3911 
3912 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3913 		goto out;
3914 
3915 	if (!kvm_vmx->ept_identity_map_addr)
3916 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3917 
3918 	uaddr = __x86_set_memory_region(kvm,
3919 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3920 					kvm_vmx->ept_identity_map_addr,
3921 					PAGE_SIZE);
3922 	if (IS_ERR(uaddr)) {
3923 		r = PTR_ERR(uaddr);
3924 		goto out;
3925 	}
3926 
3927 	/* Set up identity-mapping pagetable for EPT in real mode */
3928 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3929 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3930 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3931 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3932 			r = -EFAULT;
3933 			goto out;
3934 		}
3935 	}
3936 	kvm_vmx->ept_identity_pagetable_done = true;
3937 
3938 out:
3939 	mutex_unlock(&kvm->slots_lock);
3940 	return r;
3941 }
3942 
seg_setup(int seg)3943 static void seg_setup(int seg)
3944 {
3945 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3946 	unsigned int ar;
3947 
3948 	vmcs_write16(sf->selector, 0);
3949 	vmcs_writel(sf->base, 0);
3950 	vmcs_write32(sf->limit, 0xffff);
3951 	ar = 0x93;
3952 	if (seg == VCPU_SREG_CS)
3953 		ar |= 0x08; /* code segment */
3954 
3955 	vmcs_write32(sf->ar_bytes, ar);
3956 }
3957 
allocate_vpid(void)3958 int allocate_vpid(void)
3959 {
3960 	int vpid;
3961 
3962 	if (!enable_vpid)
3963 		return 0;
3964 	spin_lock(&vmx_vpid_lock);
3965 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3966 	if (vpid < VMX_NR_VPIDS)
3967 		__set_bit(vpid, vmx_vpid_bitmap);
3968 	else
3969 		vpid = 0;
3970 	spin_unlock(&vmx_vpid_lock);
3971 	return vpid;
3972 }
3973 
free_vpid(int vpid)3974 void free_vpid(int vpid)
3975 {
3976 	if (!enable_vpid || vpid == 0)
3977 		return;
3978 	spin_lock(&vmx_vpid_lock);
3979 	__clear_bit(vpid, vmx_vpid_bitmap);
3980 	spin_unlock(&vmx_vpid_lock);
3981 }
3982 
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3983 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3984 {
3985 	/*
3986 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3987 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3988 	 * bitmap has changed.
3989 	 */
3990 	if (kvm_is_using_evmcs()) {
3991 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3992 
3993 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3994 			evmcs->hv_clean_fields &=
3995 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3996 	}
3997 
3998 	vmx->nested.force_msr_bitmap_recalc = true;
3999 }
4000 
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool set)4001 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type, bool set)
4002 {
4003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4004 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4005 
4006 	if (!cpu_has_vmx_msr_bitmap())
4007 		return;
4008 
4009 	vmx_msr_bitmap_l01_changed(vmx);
4010 
4011 	if (type & MSR_TYPE_R) {
4012 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
4013 			vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4014 		else
4015 			vmx_set_msr_bitmap_read(msr_bitmap, msr);
4016 	}
4017 
4018 	if (type & MSR_TYPE_W) {
4019 		if (!set && kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
4020 			vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4021 		else
4022 			vmx_set_msr_bitmap_write(msr_bitmap, msr);
4023 	}
4024 }
4025 
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4026 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4027 {
4028 	/*
4029 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4030 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4031 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4032 	 */
4033 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4034 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4035 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4036 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4037 	u8 mode;
4038 
4039 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4040 		return;
4041 
4042 	if (cpu_has_secondary_exec_ctrls() &&
4043 	    (secondary_exec_controls_get(vmx) &
4044 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4045 		mode = MSR_BITMAP_MODE_X2APIC;
4046 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4047 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4048 	} else {
4049 		mode = 0;
4050 	}
4051 
4052 	if (mode == vmx->x2apic_msr_bitmap_mode)
4053 		return;
4054 
4055 	vmx->x2apic_msr_bitmap_mode = mode;
4056 
4057 	/*
4058 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4059 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4060 	 * Intercept all writes by default and poke holes as needed.  Pass
4061 	 * through reads for all valid registers by default in x2APIC+APICv
4062 	 * mode, only the current timer count needs on-demand emulation by KVM.
4063 	 */
4064 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4065 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4066 	else
4067 		msr_bitmap[read_idx] = ~0ull;
4068 	msr_bitmap[write_idx] = ~0ull;
4069 
4070 	/*
4071 	 * TPR reads and writes can be virtualized even if virtual interrupt
4072 	 * delivery is not in use.
4073 	 */
4074 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4075 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4076 
4077 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4078 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4079 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4080 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4081 		if (enable_ipiv)
4082 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4083 	}
4084 }
4085 
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4086 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4087 {
4088 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4089 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4090 	u32 i;
4091 
4092 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4093 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4094 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4095 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4096 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4097 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4098 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4099 	}
4100 }
4101 
vmx_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4102 static void vmx_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4103 {
4104 	bool intercept;
4105 
4106 	if (!cpu_has_vmx_msr_bitmap())
4107 		return;
4108 
4109 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
4110 #ifdef CONFIG_X86_64
4111 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
4112 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
4113 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
4114 #endif
4115 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
4116 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
4117 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
4118 	if (kvm_cstate_in_guest(vcpu->kvm)) {
4119 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
4120 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
4121 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
4122 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
4123 	}
4124 	if (kvm_aperfmperf_in_guest(vcpu->kvm)) {
4125 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_APERF, MSR_TYPE_R);
4126 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_MPERF, MSR_TYPE_R);
4127 	}
4128 
4129 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4130 	if (vmx_pt_mode_is_host_guest())
4131 		pt_update_intercept_for_msr(vcpu);
4132 
4133 	if (vcpu->arch.xfd_no_write_intercept)
4134 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, MSR_TYPE_RW);
4135 
4136 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_SPEC_CTRL, MSR_TYPE_RW,
4137 				  !to_vmx(vcpu)->spec_ctrl);
4138 
4139 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
4140 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
4141 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD));
4142 
4143 	if (cpu_feature_enabled(X86_FEATURE_IBPB))
4144 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
4145 					  !guest_has_pred_cmd_msr(vcpu));
4146 
4147 	if (cpu_feature_enabled(X86_FEATURE_FLUSH_L1D))
4148 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
4149 					  !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D));
4150 
4151 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4152 		intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4153 
4154 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL0_SSP, MSR_TYPE_RW, intercept);
4155 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL1_SSP, MSR_TYPE_RW, intercept);
4156 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL2_SSP, MSR_TYPE_RW, intercept);
4157 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PL3_SSP, MSR_TYPE_RW, intercept);
4158 	}
4159 
4160 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK) || kvm_cpu_cap_has(X86_FEATURE_IBT)) {
4161 		intercept = !guest_cpu_cap_has(vcpu, X86_FEATURE_IBT) &&
4162 			    !guest_cpu_cap_has(vcpu, X86_FEATURE_SHSTK);
4163 
4164 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_U_CET, MSR_TYPE_RW, intercept);
4165 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_S_CET, MSR_TYPE_RW, intercept);
4166 	}
4167 
4168 	/*
4169 	 * x2APIC and LBR MSR intercepts are modified on-demand and cannot be
4170 	 * filtered by userspace.
4171 	 */
4172 }
4173 
vmx_recalc_intercepts(struct kvm_vcpu * vcpu)4174 void vmx_recalc_intercepts(struct kvm_vcpu *vcpu)
4175 {
4176 	vmx_recalc_msr_intercepts(vcpu);
4177 }
4178 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4179 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4180 						int vector)
4181 {
4182 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4183 
4184 	/*
4185 	 * DO NOT query the vCPU's vmcs12, as vmcs12 is dynamically allocated
4186 	 * and freed, and must not be accessed outside of vcpu->mutex.  The
4187 	 * vCPU's cached PI NV is valid if and only if posted interrupts
4188 	 * enabled in its vmcs12, i.e. checking the vector also checks that
4189 	 * L1 has enabled posted interrupts for L2.
4190 	 */
4191 	if (is_guest_mode(vcpu) &&
4192 	    vector == vmx->nested.posted_intr_nv) {
4193 		/*
4194 		 * If a posted intr is not recognized by hardware,
4195 		 * we will accomplish it in the next vmentry.
4196 		 */
4197 		vmx->nested.pi_pending = true;
4198 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4199 
4200 		/*
4201 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4202 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4203 		 * request if triggering a posted interrupt "fails" because
4204 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4205 		 * the smb_wmb() in kvm_make_request() only ensures everything
4206 		 * done before making the request is visible when the request
4207 		 * is visible, it doesn't ensure ordering between the store to
4208 		 * vcpu->requests and the load from vcpu->mode.
4209 		 */
4210 		smp_mb__after_atomic();
4211 
4212 		/* the PIR and ON have been set by L1. */
4213 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4214 		return 0;
4215 	}
4216 	return -1;
4217 }
4218 /*
4219  * Send interrupt to vcpu via posted interrupt way.
4220  * 1. If target vcpu is running(non-root mode), send posted interrupt
4221  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4222  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4223  * interrupt from PIR in next vmentry.
4224  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4225 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4226 {
4227 	struct vcpu_vt *vt = to_vt(vcpu);
4228 	int r;
4229 
4230 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4231 	if (!r)
4232 		return 0;
4233 
4234 	/* Note, this is called iff the local APIC is in-kernel. */
4235 	if (!vcpu->arch.apic->apicv_active)
4236 		return -1;
4237 
4238 	__vmx_deliver_posted_interrupt(vcpu, &vt->pi_desc, vector);
4239 	return 0;
4240 }
4241 
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4242 void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4243 			   int trig_mode, int vector)
4244 {
4245 	struct kvm_vcpu *vcpu = apic->vcpu;
4246 
4247 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4248 		kvm_lapic_set_irr(vector, apic);
4249 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4250 		kvm_vcpu_kick(vcpu);
4251 	} else {
4252 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4253 					   trig_mode, vector);
4254 	}
4255 }
4256 
4257 /*
4258  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4259  * will not change in the lifetime of the guest.
4260  * Note that host-state that does change is set elsewhere. E.g., host-state
4261  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4262  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4263 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4264 {
4265 	u32 low32, high32;
4266 	unsigned long tmpl;
4267 	unsigned long cr0, cr3, cr4;
4268 
4269 	cr0 = read_cr0();
4270 	WARN_ON(cr0 & X86_CR0_TS);
4271 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4272 
4273 	/*
4274 	 * Save the most likely value for this task's CR3 in the VMCS.
4275 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4276 	 */
4277 	cr3 = __read_cr3();
4278 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4279 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4280 
4281 	/* Save the most likely value for this task's CR4 in the VMCS. */
4282 	cr4 = cr4_read_shadow();
4283 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4284 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4285 
4286 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4287 #ifdef CONFIG_X86_64
4288 	/*
4289 	 * Load null selectors, so we can avoid reloading them in
4290 	 * vmx_prepare_switch_to_host(), in case userspace uses
4291 	 * the null selectors too (the expected case).
4292 	 */
4293 	vmcs_write16(HOST_DS_SELECTOR, 0);
4294 	vmcs_write16(HOST_ES_SELECTOR, 0);
4295 #else
4296 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4297 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4298 #endif
4299 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4300 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4301 
4302 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4303 
4304 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4305 
4306 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4307 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4308 
4309 	/*
4310 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4311 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4312 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4313 	 * have already done so!).
4314 	 */
4315 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4316 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4317 
4318 	rdmsrq(MSR_IA32_SYSENTER_EIP, tmpl);
4319 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4320 
4321 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4322 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4323 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4324 	}
4325 
4326 	if (cpu_has_load_ia32_efer())
4327 		vmcs_write64(HOST_IA32_EFER, kvm_host.efer);
4328 
4329 	/*
4330 	 * Supervisor shadow stack is not enabled on host side, i.e.,
4331 	 * host IA32_S_CET.SHSTK_EN bit is guaranteed to 0 now, per SDM
4332 	 * description(RDSSP instruction), SSP is not readable in CPL0,
4333 	 * so resetting the two registers to 0s at VM-Exit does no harm
4334 	 * to kernel execution. When execution flow exits to userspace,
4335 	 * SSP is reloaded from IA32_PL3_SSP. Check SDM Vol.2A/B Chapter
4336 	 * 3 and 4 for details.
4337 	 */
4338 	if (cpu_has_load_cet_ctrl()) {
4339 		vmcs_writel(HOST_S_CET, kvm_host.s_cet);
4340 		vmcs_writel(HOST_SSP, 0);
4341 		vmcs_writel(HOST_INTR_SSP_TABLE, 0);
4342 	}
4343 }
4344 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4345 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4346 {
4347 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4348 
4349 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4350 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4351 	if (!enable_ept) {
4352 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4353 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4354 	}
4355 	if (is_guest_mode(&vmx->vcpu))
4356 		vcpu->arch.cr4_guest_owned_bits &=
4357 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4358 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4359 }
4360 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4361 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4362 {
4363 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4364 
4365 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4366 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4367 
4368 	if (!enable_vnmi)
4369 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4370 
4371 	if (!enable_preemption_timer)
4372 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4373 
4374 	return pin_based_exec_ctrl;
4375 }
4376 
vmx_get_initial_vmentry_ctrl(void)4377 static u32 vmx_get_initial_vmentry_ctrl(void)
4378 {
4379 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4380 
4381 	if (vmx_pt_mode_is_system())
4382 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4383 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4384 	/*
4385 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4386 	 */
4387 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4388 			  VM_ENTRY_LOAD_IA32_EFER |
4389 			  VM_ENTRY_IA32E_MODE);
4390 
4391 	return vmentry_ctrl;
4392 }
4393 
vmx_get_initial_vmexit_ctrl(void)4394 static u32 vmx_get_initial_vmexit_ctrl(void)
4395 {
4396 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4397 
4398 	/*
4399 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4400 	 * nested virtualization and thus allowed to be set in vmcs12.
4401 	 */
4402 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4403 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4404 
4405 	if (vmx_pt_mode_is_system())
4406 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4407 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4408 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4409 	return vmexit_ctrl &
4410 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4411 }
4412 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4413 void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4414 {
4415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4416 
4417 	if (is_guest_mode(vcpu)) {
4418 		vmx->nested.update_vmcs01_apicv_status = true;
4419 		return;
4420 	}
4421 
4422 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4423 
4424 	secondary_exec_controls_changebit(vmx,
4425 					  SECONDARY_EXEC_APIC_REGISTER_VIRT |
4426 					  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY,
4427 					  kvm_vcpu_apicv_active(vcpu));
4428 	if (enable_ipiv)
4429 		tertiary_exec_controls_changebit(vmx, TERTIARY_EXEC_IPI_VIRT,
4430 						 kvm_vcpu_apicv_active(vcpu));
4431 
4432 	vmx_update_msr_bitmap_x2apic(vcpu);
4433 }
4434 
vmx_exec_control(struct vcpu_vmx * vmx)4435 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4436 {
4437 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4438 
4439 	/*
4440 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4441 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4442 	 */
4443 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4444 			  CPU_BASED_USE_IO_BITMAPS |
4445 			  CPU_BASED_MONITOR_TRAP_FLAG |
4446 			  CPU_BASED_PAUSE_EXITING);
4447 
4448 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4449 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4450 			  CPU_BASED_NMI_WINDOW_EXITING);
4451 
4452 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4453 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4454 
4455 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4456 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4457 
4458 #ifdef CONFIG_X86_64
4459 	if (exec_control & CPU_BASED_TPR_SHADOW)
4460 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4461 				  CPU_BASED_CR8_STORE_EXITING);
4462 	else
4463 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4464 				CPU_BASED_CR8_LOAD_EXITING;
4465 #endif
4466 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4467 	if (enable_ept)
4468 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4469 				  CPU_BASED_CR3_STORE_EXITING |
4470 				  CPU_BASED_INVLPG_EXITING);
4471 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4472 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4473 				CPU_BASED_MONITOR_EXITING);
4474 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4475 		exec_control &= ~CPU_BASED_HLT_EXITING;
4476 	return exec_control;
4477 }
4478 
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4479 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4480 {
4481 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4482 
4483 	/*
4484 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4485 	 * APICv is inhibited.
4486 	 */
4487 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4488 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4489 
4490 	return exec_control;
4491 }
4492 
4493 /*
4494  * Adjust a single secondary execution control bit to intercept/allow an
4495  * instruction in the guest.  This is usually done based on whether or not a
4496  * feature has been exposed to the guest in order to correctly emulate faults.
4497  */
4498 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4499 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4500 				  u32 control, bool enabled, bool exiting)
4501 {
4502 	/*
4503 	 * If the control is for an opt-in feature, clear the control if the
4504 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4505 	 * control is opt-out, i.e. an exiting control, clear the control if
4506 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4507 	 * disabled for the associated instruction.  Note, the caller is
4508 	 * responsible presetting exec_control to set all supported bits.
4509 	 */
4510 	if (enabled == exiting)
4511 		*exec_control &= ~control;
4512 
4513 	/*
4514 	 * Update the nested MSR settings so that a nested VMM can/can't set
4515 	 * controls for features that are/aren't exposed to the guest.
4516 	 */
4517 	if (nested &&
4518 	    kvm_check_has_quirk(vmx->vcpu.kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) {
4519 		/*
4520 		 * All features that can be added or removed to VMX MSRs must
4521 		 * be supported in the first place for nested virtualization.
4522 		 */
4523 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4524 			enabled = false;
4525 
4526 		if (enabled)
4527 			vmx->nested.msrs.secondary_ctls_high |= control;
4528 		else
4529 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4530 	}
4531 }
4532 
4533 /*
4534  * Wrapper macro for the common case of adjusting a secondary execution control
4535  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4536  * verifies that the control is actually supported by KVM and hardware.
4537  */
4538 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4539 ({												\
4540 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4541 	bool __enabled;										\
4542 												\
4543 	if (cpu_has_vmx_##name()) {								\
4544 		__enabled = guest_cpu_cap_has(__vcpu, X86_FEATURE_##feat_name);			\
4545 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4546 						  __enabled, exiting);				\
4547 	}											\
4548 })
4549 
4550 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4551 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4552 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4553 
4554 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4555 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4556 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4557 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4558 {
4559 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4560 
4561 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4562 
4563 	if (vmx_pt_mode_is_system())
4564 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4565 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4566 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4567 	if (vmx->vpid == 0)
4568 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4569 	if (!enable_ept) {
4570 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4571 		exec_control &= ~SECONDARY_EXEC_EPT_VIOLATION_VE;
4572 		enable_unrestricted_guest = 0;
4573 	}
4574 	if (!enable_unrestricted_guest)
4575 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4576 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4577 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4578 	if (!kvm_vcpu_apicv_active(vcpu))
4579 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4580 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4581 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4582 
4583 	/*
4584 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4585 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4586 	 */
4587 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4588 
4589 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4590 	 * in vmx_set_cr4.  */
4591 	exec_control &= ~SECONDARY_EXEC_DESC;
4592 
4593 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4594 	   (handle_vmptrld).
4595 	   We can NOT enable shadow_vmcs here because we don't have yet
4596 	   a current VMCS12
4597 	*/
4598 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4599 
4600 	/*
4601 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4602 	 * it needs to be set here when dirty logging is already active, e.g.
4603 	 * if this vCPU was created after dirty logging was enabled.
4604 	 */
4605 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4606 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4607 
4608 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4609 
4610 	/*
4611 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4612 	 * feature is exposed to the guest.  This creates a virtualization hole
4613 	 * if both are supported in hardware but only one is exposed to the
4614 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4615 	 * is advertised is preferable to emulating the advertised instruction
4616 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4617 	 */
4618 	if (cpu_has_vmx_rdtscp()) {
4619 		bool rdpid_or_rdtscp_enabled =
4620 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) ||
4621 			guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID);
4622 
4623 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4624 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4625 						  rdpid_or_rdtscp_enabled, false);
4626 	}
4627 
4628 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4629 
4630 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4631 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4632 
4633 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4634 				    ENABLE_USR_WAIT_PAUSE, false);
4635 
4636 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4637 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4638 
4639 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4640 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4641 
4642 	return exec_control;
4643 }
4644 
vmx_get_pid_table_order(struct kvm * kvm)4645 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4646 {
4647 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4648 }
4649 
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4650 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4651 {
4652 	struct page *pages;
4653 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4654 
4655 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4656 		return 0;
4657 
4658 	if (kvm_vmx->pid_table)
4659 		return 0;
4660 
4661 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4662 			    vmx_get_pid_table_order(kvm));
4663 	if (!pages)
4664 		return -ENOMEM;
4665 
4666 	kvm_vmx->pid_table = (void *)page_address(pages);
4667 	return 0;
4668 }
4669 
vmx_vcpu_precreate(struct kvm * kvm)4670 int vmx_vcpu_precreate(struct kvm *kvm)
4671 {
4672 	return vmx_alloc_ipiv_pid_table(kvm);
4673 }
4674 
4675 #define VMX_XSS_EXIT_BITMAP 0
4676 
init_vmcs(struct vcpu_vmx * vmx)4677 static void init_vmcs(struct vcpu_vmx *vmx)
4678 {
4679 	struct kvm *kvm = vmx->vcpu.kvm;
4680 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4681 
4682 	if (nested)
4683 		nested_vmx_set_vmcs_shadowing_bitmap();
4684 
4685 	if (cpu_has_vmx_msr_bitmap())
4686 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4687 
4688 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4689 
4690 	/* Control */
4691 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4692 
4693 	exec_controls_set(vmx, vmx_exec_control(vmx));
4694 
4695 	if (cpu_has_secondary_exec_ctrls()) {
4696 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4697 		if (vmx->ve_info)
4698 			vmcs_write64(VE_INFORMATION_ADDRESS,
4699 				     __pa(vmx->ve_info));
4700 	}
4701 
4702 	if (cpu_has_tertiary_exec_ctrls())
4703 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4704 
4705 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4706 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4707 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4708 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4709 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4710 
4711 		vmcs_write16(GUEST_INTR_STATUS, 0);
4712 
4713 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4714 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->vt.pi_desc)));
4715 	}
4716 
4717 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4718 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4719 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4720 	}
4721 
4722 	if (!kvm_pause_in_guest(kvm)) {
4723 		vmcs_write32(PLE_GAP, ple_gap);
4724 		vmx->ple_window = ple_window;
4725 		vmx->ple_window_dirty = true;
4726 	}
4727 
4728 	if (kvm_notify_vmexit_enabled(kvm))
4729 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4730 
4731 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4732 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4733 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4734 
4735 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4736 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4737 	vmx_set_constant_host_state(vmx);
4738 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4739 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4740 
4741 	if (cpu_has_vmx_vmfunc())
4742 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4743 
4744 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4745 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4746 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4747 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4748 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4749 
4750 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4751 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4752 
4753 	vm_exit_controls_set(vmx, vmx_get_initial_vmexit_ctrl());
4754 
4755 	/* 22.2.1, 20.8.1 */
4756 	vm_entry_controls_set(vmx, vmx_get_initial_vmentry_ctrl());
4757 
4758 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4759 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4760 
4761 	set_cr4_guest_host_mask(vmx);
4762 
4763 	if (vmx->vpid != 0)
4764 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4765 
4766 	if (cpu_has_vmx_xsaves())
4767 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4768 
4769 	if (enable_pml) {
4770 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4771 		vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
4772 	}
4773 
4774 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4775 
4776 	if (vmx_pt_mode_is_host_guest()) {
4777 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4778 		/* Bit[6~0] are forced to 1, writes are ignored. */
4779 		vmx->pt_desc.guest.output_mask = 0x7F;
4780 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4781 	}
4782 
4783 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4784 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4785 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4786 
4787 	vmx_guest_debugctl_write(&vmx->vcpu, 0);
4788 
4789 	if (cpu_has_vmx_tpr_shadow()) {
4790 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4791 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4792 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4793 				     __pa(vmx->vcpu.arch.apic->regs));
4794 		vmcs_write32(TPR_THRESHOLD, 0);
4795 	}
4796 
4797 	vmx_setup_uret_msrs(vmx);
4798 }
4799 
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4800 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4801 {
4802 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4803 
4804 	init_vmcs(vmx);
4805 
4806 	if (nested &&
4807 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4808 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4809 
4810 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4811 
4812 	vmx->nested.posted_intr_nv = -1;
4813 	vmx->nested.vmxon_ptr = INVALID_GPA;
4814 	vmx->nested.current_vmptr = INVALID_GPA;
4815 
4816 #ifdef CONFIG_KVM_HYPERV
4817 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4818 #endif
4819 
4820 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS))
4821 		vcpu->arch.microcode_version = 0x100000000ULL;
4822 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4823 
4824 	/*
4825 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4826 	 * or POSTED_INTR_WAKEUP_VECTOR.
4827 	 */
4828 	vmx->vt.pi_desc.nv = POSTED_INTR_VECTOR;
4829 	__pi_set_sn(&vmx->vt.pi_desc);
4830 }
4831 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4832 void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4833 {
4834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4835 
4836 	if (!init_event)
4837 		__vmx_vcpu_reset(vcpu);
4838 
4839 	vmx->rmode.vm86_active = 0;
4840 	vmx->spec_ctrl = 0;
4841 
4842 	vmx->msr_ia32_umwait_control = 0;
4843 
4844 	vmx->hv_deadline_tsc = -1;
4845 	kvm_set_cr8(vcpu, 0);
4846 
4847 	seg_setup(VCPU_SREG_CS);
4848 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4849 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4850 
4851 	seg_setup(VCPU_SREG_DS);
4852 	seg_setup(VCPU_SREG_ES);
4853 	seg_setup(VCPU_SREG_FS);
4854 	seg_setup(VCPU_SREG_GS);
4855 	seg_setup(VCPU_SREG_SS);
4856 
4857 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4858 	vmcs_writel(GUEST_TR_BASE, 0);
4859 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4860 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4861 
4862 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4863 	vmcs_writel(GUEST_LDTR_BASE, 0);
4864 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4865 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4866 
4867 	vmcs_writel(GUEST_GDTR_BASE, 0);
4868 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4869 
4870 	vmcs_writel(GUEST_IDTR_BASE, 0);
4871 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4872 
4873 	vmx_segment_cache_clear(vmx);
4874 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4875 
4876 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4877 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4878 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4879 	if (kvm_mpx_supported())
4880 		vmcs_write64(GUEST_BNDCFGS, 0);
4881 
4882 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4883 
4884 	if (kvm_cpu_cap_has(X86_FEATURE_SHSTK)) {
4885 		vmcs_writel(GUEST_SSP, 0);
4886 		vmcs_writel(GUEST_INTR_SSP_TABLE, 0);
4887 	}
4888 	if (kvm_cpu_cap_has(X86_FEATURE_IBT) ||
4889 	    kvm_cpu_cap_has(X86_FEATURE_SHSTK))
4890 		vmcs_writel(GUEST_S_CET, 0);
4891 
4892 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4893 
4894 	vpid_sync_context(vmx->vpid);
4895 
4896 	vmx_update_fb_clear_dis(vcpu, vmx);
4897 }
4898 
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4899 void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4900 {
4901 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4902 }
4903 
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4904 void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4905 {
4906 	if (!enable_vnmi ||
4907 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4908 		vmx_enable_irq_window(vcpu);
4909 		return;
4910 	}
4911 
4912 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4913 }
4914 
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4915 void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4916 {
4917 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4918 	uint32_t intr;
4919 	int irq = vcpu->arch.interrupt.nr;
4920 
4921 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4922 
4923 	++vcpu->stat.irq_injections;
4924 	if (vmx->rmode.vm86_active) {
4925 		int inc_eip = 0;
4926 		if (vcpu->arch.interrupt.soft)
4927 			inc_eip = vcpu->arch.event_exit_inst_len;
4928 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4929 		return;
4930 	}
4931 	intr = irq | INTR_INFO_VALID_MASK;
4932 	if (vcpu->arch.interrupt.soft) {
4933 		intr |= INTR_TYPE_SOFT_INTR;
4934 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4935 			     vmx->vcpu.arch.event_exit_inst_len);
4936 	} else
4937 		intr |= INTR_TYPE_EXT_INTR;
4938 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4939 
4940 	vmx_clear_hlt(vcpu);
4941 }
4942 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4943 void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4944 {
4945 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4946 
4947 	if (!enable_vnmi) {
4948 		/*
4949 		 * Tracking the NMI-blocked state in software is built upon
4950 		 * finding the next open IRQ window. This, in turn, depends on
4951 		 * well-behaving guests: They have to keep IRQs disabled at
4952 		 * least as long as the NMI handler runs. Otherwise we may
4953 		 * cause NMI nesting, maybe breaking the guest. But as this is
4954 		 * highly unlikely, we can live with the residual risk.
4955 		 */
4956 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4957 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4958 	}
4959 
4960 	++vcpu->stat.nmi_injections;
4961 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4962 
4963 	if (vmx->rmode.vm86_active) {
4964 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4965 		return;
4966 	}
4967 
4968 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4969 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4970 
4971 	vmx_clear_hlt(vcpu);
4972 }
4973 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4974 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4975 {
4976 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4977 	bool masked;
4978 
4979 	if (!enable_vnmi)
4980 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4981 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4982 		return false;
4983 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4984 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4985 	return masked;
4986 }
4987 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4988 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4989 {
4990 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4991 
4992 	if (!enable_vnmi) {
4993 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4994 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4995 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4996 		}
4997 	} else {
4998 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4999 		if (masked)
5000 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5001 				      GUEST_INTR_STATE_NMI);
5002 		else
5003 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5004 					GUEST_INTR_STATE_NMI);
5005 	}
5006 }
5007 
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5008 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5009 {
5010 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5011 		return false;
5012 
5013 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5014 		return true;
5015 
5016 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5017 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5018 		 GUEST_INTR_STATE_NMI));
5019 }
5020 
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5021 int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5022 {
5023 	if (to_vmx(vcpu)->nested.nested_run_pending)
5024 		return -EBUSY;
5025 
5026 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5027 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5028 		return -EBUSY;
5029 
5030 	return !vmx_nmi_blocked(vcpu);
5031 }
5032 
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5033 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5034 {
5035 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5036 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5037 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5038 }
5039 
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5040 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5041 {
5042 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5043 		return false;
5044 
5045 	return __vmx_interrupt_blocked(vcpu);
5046 }
5047 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5048 int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5049 {
5050 	if (to_vmx(vcpu)->nested.nested_run_pending)
5051 		return -EBUSY;
5052 
5053 	/*
5054 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5055 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5056 	 */
5057 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5058 		return -EBUSY;
5059 
5060 	return !vmx_interrupt_blocked(vcpu);
5061 }
5062 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5063 int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5064 {
5065 	void __user *ret;
5066 
5067 	if (enable_unrestricted_guest)
5068 		return 0;
5069 
5070 	mutex_lock(&kvm->slots_lock);
5071 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5072 				      PAGE_SIZE * 3);
5073 	mutex_unlock(&kvm->slots_lock);
5074 
5075 	if (IS_ERR(ret))
5076 		return PTR_ERR(ret);
5077 
5078 	to_kvm_vmx(kvm)->tss_addr = addr;
5079 
5080 	return init_rmode_tss(kvm, ret);
5081 }
5082 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5083 int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5084 {
5085 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5086 	return 0;
5087 }
5088 
rmode_exception(struct kvm_vcpu * vcpu,int vec)5089 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5090 {
5091 	switch (vec) {
5092 	case BP_VECTOR:
5093 		/*
5094 		 * Update instruction length as we may reinject the exception
5095 		 * from user space while in guest debugging mode.
5096 		 */
5097 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5098 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5099 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5100 			return false;
5101 		fallthrough;
5102 	case DB_VECTOR:
5103 		return !(vcpu->guest_debug &
5104 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5105 	case DE_VECTOR:
5106 	case OF_VECTOR:
5107 	case BR_VECTOR:
5108 	case UD_VECTOR:
5109 	case DF_VECTOR:
5110 	case SS_VECTOR:
5111 	case GP_VECTOR:
5112 	case MF_VECTOR:
5113 		return true;
5114 	}
5115 	return false;
5116 }
5117 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5118 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5119 				  int vec, u32 err_code)
5120 {
5121 	/*
5122 	 * Instruction with address size override prefix opcode 0x67
5123 	 * Cause the #SS fault with 0 error code in VM86 mode.
5124 	 */
5125 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5126 		if (kvm_emulate_instruction(vcpu, 0)) {
5127 			if (vcpu->arch.halt_request) {
5128 				vcpu->arch.halt_request = 0;
5129 				return kvm_emulate_halt_noskip(vcpu);
5130 			}
5131 			return 1;
5132 		}
5133 		return 0;
5134 	}
5135 
5136 	/*
5137 	 * Forward all other exceptions that are valid in real mode.
5138 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5139 	 *        the required debugging infrastructure rework.
5140 	 */
5141 	kvm_queue_exception(vcpu, vec);
5142 	return 1;
5143 }
5144 
handle_machine_check(struct kvm_vcpu * vcpu)5145 static int handle_machine_check(struct kvm_vcpu *vcpu)
5146 {
5147 	/* handled by vmx_vcpu_run() */
5148 	return 1;
5149 }
5150 
5151 /*
5152  * If the host has split lock detection disabled, then #AC is
5153  * unconditionally injected into the guest, which is the pre split lock
5154  * detection behaviour.
5155  *
5156  * If the host has split lock detection enabled then #AC is
5157  * only injected into the guest when:
5158  *  - Guest CPL == 3 (user mode)
5159  *  - Guest has #AC detection enabled in CR0
5160  *  - Guest EFLAGS has AC bit set
5161  */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5162 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5163 {
5164 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5165 		return true;
5166 
5167 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5168 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5169 }
5170 
is_xfd_nm_fault(struct kvm_vcpu * vcpu)5171 static bool is_xfd_nm_fault(struct kvm_vcpu *vcpu)
5172 {
5173 	return vcpu->arch.guest_fpu.fpstate->xfd &&
5174 	       !kvm_is_cr0_bit_set(vcpu, X86_CR0_TS);
5175 }
5176 
handle_exception_nmi(struct kvm_vcpu * vcpu)5177 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5178 {
5179 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5180 	struct kvm_run *kvm_run = vcpu->run;
5181 	u32 intr_info, ex_no, error_code;
5182 	unsigned long cr2, dr6;
5183 	u32 vect_info;
5184 
5185 	vect_info = vmx->idt_vectoring_info;
5186 	intr_info = vmx_get_intr_info(vcpu);
5187 
5188 	/*
5189 	 * Machine checks are handled by handle_exception_irqoff(), or by
5190 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5191 	 * vmx_vcpu_enter_exit().
5192 	 */
5193 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5194 		return 1;
5195 
5196 	/*
5197 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5198 	 * This ensures the nested_vmx check is not skipped so vmexit can
5199 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5200 	 * point.
5201 	 */
5202 	if (is_nm_fault(intr_info)) {
5203 		kvm_queue_exception_p(vcpu, NM_VECTOR,
5204 				      is_xfd_nm_fault(vcpu) ? vcpu->arch.guest_fpu.xfd_err : 0);
5205 		return 1;
5206 	}
5207 
5208 	if (is_invalid_opcode(intr_info))
5209 		return handle_ud(vcpu);
5210 
5211 	if (WARN_ON_ONCE(is_ve_fault(intr_info))) {
5212 		struct vmx_ve_information *ve_info = vmx->ve_info;
5213 
5214 		WARN_ONCE(ve_info->exit_reason != EXIT_REASON_EPT_VIOLATION,
5215 			  "Unexpected #VE on VM-Exit reason 0x%x", ve_info->exit_reason);
5216 		dump_vmcs(vcpu);
5217 		kvm_mmu_print_sptes(vcpu, ve_info->guest_physical_address, "#VE");
5218 		return 1;
5219 	}
5220 
5221 	error_code = 0;
5222 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5223 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5224 
5225 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5226 		WARN_ON_ONCE(!enable_vmware_backdoor);
5227 
5228 		/*
5229 		 * VMware backdoor emulation on #GP interception only handles
5230 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5231 		 * error code on #GP.
5232 		 */
5233 		if (error_code) {
5234 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5235 			return 1;
5236 		}
5237 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5238 	}
5239 
5240 	/*
5241 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5242 	 * MMIO, it is better to report an internal error.
5243 	 * See the comments in vmx_handle_exit.
5244 	 */
5245 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5246 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5247 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5248 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5249 		vcpu->run->internal.ndata = 4;
5250 		vcpu->run->internal.data[0] = vect_info;
5251 		vcpu->run->internal.data[1] = intr_info;
5252 		vcpu->run->internal.data[2] = error_code;
5253 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5254 		return 0;
5255 	}
5256 
5257 	if (is_page_fault(intr_info)) {
5258 		cr2 = vmx_get_exit_qual(vcpu);
5259 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5260 			/*
5261 			 * EPT will cause page fault only if we need to
5262 			 * detect illegal GPAs.
5263 			 */
5264 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5265 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5266 			return 1;
5267 		} else
5268 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5269 	}
5270 
5271 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5272 
5273 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5274 		return handle_rmode_exception(vcpu, ex_no, error_code);
5275 
5276 	switch (ex_no) {
5277 	case DB_VECTOR:
5278 		dr6 = vmx_get_exit_qual(vcpu);
5279 		if (!(vcpu->guest_debug &
5280 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5281 			/*
5282 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5283 			 * instruction.  ICEBP generates a trap-like #DB, but
5284 			 * despite its interception control being tied to #DB,
5285 			 * is an instruction intercept, i.e. the VM-Exit occurs
5286 			 * on the ICEBP itself.  Use the inner "skip" helper to
5287 			 * avoid single-step #DB and MTF updates, as ICEBP is
5288 			 * higher priority.  Note, skipping ICEBP still clears
5289 			 * STI and MOVSS blocking.
5290 			 *
5291 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5292 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5293 			 * blocking is active, as the CPU doesn't set the bit
5294 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5295 			 * consistency check that a single-step #DB is pending
5296 			 * in this scenario as the previous instruction cannot
5297 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5298 			 * don't modify RFLAGS), therefore the one instruction
5299 			 * delay when activating single-step breakpoints must
5300 			 * have already expired.  Note, the CPU sets/clears BS
5301 			 * as appropriate for all other VM-Exits types.
5302 			 */
5303 			if (is_icebp(intr_info))
5304 				WARN_ON(!skip_emulated_instruction(vcpu));
5305 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5306 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5307 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5308 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5309 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5310 
5311 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5312 			return 1;
5313 		}
5314 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5315 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5316 		fallthrough;
5317 	case BP_VECTOR:
5318 		/*
5319 		 * Update instruction length as we may reinject #BP from
5320 		 * user space while in guest debugging mode. Reading it for
5321 		 * #DB as well causes no harm, it is not used in that case.
5322 		 */
5323 		vmx->vcpu.arch.event_exit_inst_len =
5324 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5325 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5326 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5327 		kvm_run->debug.arch.exception = ex_no;
5328 		break;
5329 	case AC_VECTOR:
5330 		if (vmx_guest_inject_ac(vcpu)) {
5331 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5332 			return 1;
5333 		}
5334 
5335 		/*
5336 		 * Handle split lock. Depending on detection mode this will
5337 		 * either warn and disable split lock detection for this
5338 		 * task or force SIGBUS on it.
5339 		 */
5340 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5341 			return 1;
5342 		fallthrough;
5343 	default:
5344 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5345 		kvm_run->ex.exception = ex_no;
5346 		kvm_run->ex.error_code = error_code;
5347 		break;
5348 	}
5349 	return 0;
5350 }
5351 
handle_external_interrupt(struct kvm_vcpu * vcpu)5352 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5353 {
5354 	++vcpu->stat.irq_exits;
5355 	return 1;
5356 }
5357 
handle_triple_fault(struct kvm_vcpu * vcpu)5358 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5359 {
5360 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5361 	vcpu->mmio_needed = 0;
5362 	return 0;
5363 }
5364 
handle_io(struct kvm_vcpu * vcpu)5365 static int handle_io(struct kvm_vcpu *vcpu)
5366 {
5367 	unsigned long exit_qualification;
5368 	int size, in, string;
5369 	unsigned port;
5370 
5371 	exit_qualification = vmx_get_exit_qual(vcpu);
5372 	string = (exit_qualification & 16) != 0;
5373 
5374 	++vcpu->stat.io_exits;
5375 
5376 	if (string)
5377 		return kvm_emulate_instruction(vcpu, 0);
5378 
5379 	port = exit_qualification >> 16;
5380 	size = (exit_qualification & 7) + 1;
5381 	in = (exit_qualification & 8) != 0;
5382 
5383 	return kvm_fast_pio(vcpu, size, port, in);
5384 }
5385 
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5386 void vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5387 {
5388 	/*
5389 	 * Patch in the VMCALL instruction:
5390 	 */
5391 	hypercall[0] = 0x0f;
5392 	hypercall[1] = 0x01;
5393 	hypercall[2] = 0xc1;
5394 }
5395 
5396 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5397 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5398 {
5399 	if (is_guest_mode(vcpu)) {
5400 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5401 		unsigned long orig_val = val;
5402 
5403 		/*
5404 		 * We get here when L2 changed cr0 in a way that did not change
5405 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5406 		 * but did change L0 shadowed bits. So we first calculate the
5407 		 * effective cr0 value that L1 would like to write into the
5408 		 * hardware. It consists of the L2-owned bits from the new
5409 		 * value combined with the L1-owned bits from L1's guest_cr0.
5410 		 */
5411 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5412 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5413 
5414 		if (kvm_set_cr0(vcpu, val))
5415 			return 1;
5416 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5417 		return 0;
5418 	} else {
5419 		return kvm_set_cr0(vcpu, val);
5420 	}
5421 }
5422 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5423 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5424 {
5425 	if (is_guest_mode(vcpu)) {
5426 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5427 		unsigned long orig_val = val;
5428 
5429 		/* analogously to handle_set_cr0 */
5430 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5431 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5432 		if (kvm_set_cr4(vcpu, val))
5433 			return 1;
5434 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5435 		return 0;
5436 	} else
5437 		return kvm_set_cr4(vcpu, val);
5438 }
5439 
handle_desc(struct kvm_vcpu * vcpu)5440 static int handle_desc(struct kvm_vcpu *vcpu)
5441 {
5442 	/*
5443 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5444 	 * and other code needs to be updated if UMIP can be guest owned.
5445 	 */
5446 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5447 
5448 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5449 	return kvm_emulate_instruction(vcpu, 0);
5450 }
5451 
handle_cr(struct kvm_vcpu * vcpu)5452 static int handle_cr(struct kvm_vcpu *vcpu)
5453 {
5454 	unsigned long exit_qualification, val;
5455 	int cr;
5456 	int reg;
5457 	int err;
5458 	int ret;
5459 
5460 	exit_qualification = vmx_get_exit_qual(vcpu);
5461 	cr = exit_qualification & 15;
5462 	reg = (exit_qualification >> 8) & 15;
5463 	switch ((exit_qualification >> 4) & 3) {
5464 	case 0: /* mov to cr */
5465 		val = kvm_register_read(vcpu, reg);
5466 		trace_kvm_cr_write(cr, val);
5467 		switch (cr) {
5468 		case 0:
5469 			err = handle_set_cr0(vcpu, val);
5470 			return kvm_complete_insn_gp(vcpu, err);
5471 		case 3:
5472 			WARN_ON_ONCE(enable_unrestricted_guest);
5473 
5474 			err = kvm_set_cr3(vcpu, val);
5475 			return kvm_complete_insn_gp(vcpu, err);
5476 		case 4:
5477 			err = handle_set_cr4(vcpu, val);
5478 			return kvm_complete_insn_gp(vcpu, err);
5479 		case 8: {
5480 				u8 cr8_prev = kvm_get_cr8(vcpu);
5481 				u8 cr8 = (u8)val;
5482 				err = kvm_set_cr8(vcpu, cr8);
5483 				ret = kvm_complete_insn_gp(vcpu, err);
5484 				if (lapic_in_kernel(vcpu))
5485 					return ret;
5486 				if (cr8_prev <= cr8)
5487 					return ret;
5488 				/*
5489 				 * TODO: we might be squashing a
5490 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5491 				 * KVM_EXIT_DEBUG here.
5492 				 */
5493 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5494 				return 0;
5495 			}
5496 		}
5497 		break;
5498 	case 2: /* clts */
5499 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5500 		return -EIO;
5501 	case 1: /*mov from cr*/
5502 		switch (cr) {
5503 		case 3:
5504 			WARN_ON_ONCE(enable_unrestricted_guest);
5505 
5506 			val = kvm_read_cr3(vcpu);
5507 			kvm_register_write(vcpu, reg, val);
5508 			trace_kvm_cr_read(cr, val);
5509 			return kvm_skip_emulated_instruction(vcpu);
5510 		case 8:
5511 			val = kvm_get_cr8(vcpu);
5512 			kvm_register_write(vcpu, reg, val);
5513 			trace_kvm_cr_read(cr, val);
5514 			return kvm_skip_emulated_instruction(vcpu);
5515 		}
5516 		break;
5517 	case 3: /* lmsw */
5518 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5519 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5520 		kvm_lmsw(vcpu, val);
5521 
5522 		return kvm_skip_emulated_instruction(vcpu);
5523 	default:
5524 		break;
5525 	}
5526 	vcpu->run->exit_reason = 0;
5527 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5528 	       (int)(exit_qualification >> 4) & 3, cr);
5529 	return 0;
5530 }
5531 
handle_dr(struct kvm_vcpu * vcpu)5532 static int handle_dr(struct kvm_vcpu *vcpu)
5533 {
5534 	unsigned long exit_qualification;
5535 	int dr, dr7, reg;
5536 	int err = 1;
5537 
5538 	exit_qualification = vmx_get_exit_qual(vcpu);
5539 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5540 
5541 	/* First, if DR does not exist, trigger UD */
5542 	if (!kvm_require_dr(vcpu, dr))
5543 		return 1;
5544 
5545 	if (vmx_get_cpl(vcpu) > 0)
5546 		goto out;
5547 
5548 	dr7 = vmcs_readl(GUEST_DR7);
5549 	if (dr7 & DR7_GD) {
5550 		/*
5551 		 * As the vm-exit takes precedence over the debug trap, we
5552 		 * need to emulate the latter, either for the host or the
5553 		 * guest debugging itself.
5554 		 */
5555 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5556 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5557 			vcpu->run->debug.arch.dr7 = dr7;
5558 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5559 			vcpu->run->debug.arch.exception = DB_VECTOR;
5560 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5561 			return 0;
5562 		} else {
5563 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5564 			return 1;
5565 		}
5566 	}
5567 
5568 	if (vcpu->guest_debug == 0) {
5569 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5570 
5571 		/*
5572 		 * No more DR vmexits; force a reload of the debug registers
5573 		 * and reenter on this instruction.  The next vmexit will
5574 		 * retrieve the full state of the debug registers.
5575 		 */
5576 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5577 		return 1;
5578 	}
5579 
5580 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5581 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5582 		kvm_register_write(vcpu, reg, kvm_get_dr(vcpu, dr));
5583 		err = 0;
5584 	} else {
5585 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5586 	}
5587 
5588 out:
5589 	return kvm_complete_insn_gp(vcpu, err);
5590 }
5591 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5592 void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5593 {
5594 	get_debugreg(vcpu->arch.db[0], 0);
5595 	get_debugreg(vcpu->arch.db[1], 1);
5596 	get_debugreg(vcpu->arch.db[2], 2);
5597 	get_debugreg(vcpu->arch.db[3], 3);
5598 	get_debugreg(vcpu->arch.dr6, 6);
5599 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5600 
5601 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5602 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5603 
5604 	/*
5605 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5606 	 * a stale dr6 from the guest.
5607 	 */
5608 	set_debugreg(DR6_RESERVED, 6);
5609 }
5610 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5611 void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5612 {
5613 	vmcs_writel(GUEST_DR7, val);
5614 }
5615 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5616 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5617 {
5618 	kvm_apic_update_ppr(vcpu);
5619 	return 1;
5620 }
5621 
handle_interrupt_window(struct kvm_vcpu * vcpu)5622 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5623 {
5624 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5625 
5626 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5627 
5628 	++vcpu->stat.irq_window_exits;
5629 	return 1;
5630 }
5631 
handle_invlpg(struct kvm_vcpu * vcpu)5632 static int handle_invlpg(struct kvm_vcpu *vcpu)
5633 {
5634 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5635 
5636 	kvm_mmu_invlpg(vcpu, exit_qualification);
5637 	return kvm_skip_emulated_instruction(vcpu);
5638 }
5639 
handle_apic_access(struct kvm_vcpu * vcpu)5640 static int handle_apic_access(struct kvm_vcpu *vcpu)
5641 {
5642 	if (likely(fasteoi)) {
5643 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5644 		int access_type, offset;
5645 
5646 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5647 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5648 		/*
5649 		 * Sane guest uses MOV to write EOI, with written value
5650 		 * not cared. So make a short-circuit here by avoiding
5651 		 * heavy instruction emulation.
5652 		 */
5653 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5654 		    (offset == APIC_EOI)) {
5655 			kvm_lapic_set_eoi(vcpu);
5656 			return kvm_skip_emulated_instruction(vcpu);
5657 		}
5658 	}
5659 	return kvm_emulate_instruction(vcpu, 0);
5660 }
5661 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5662 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5663 {
5664 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5665 	int vector = exit_qualification & 0xff;
5666 
5667 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5668 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5669 	return 1;
5670 }
5671 
handle_apic_write(struct kvm_vcpu * vcpu)5672 static int handle_apic_write(struct kvm_vcpu *vcpu)
5673 {
5674 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5675 
5676 	/*
5677 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5678 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5679 	 * for the access.  I.e. the correct value has already been  written to
5680 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5681 	 * retrieve the register value and emulate the access.
5682 	 */
5683 	u32 offset = exit_qualification & 0xff0;
5684 
5685 	kvm_apic_write_nodecode(vcpu, offset);
5686 	return 1;
5687 }
5688 
handle_task_switch(struct kvm_vcpu * vcpu)5689 static int handle_task_switch(struct kvm_vcpu *vcpu)
5690 {
5691 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5692 	unsigned long exit_qualification;
5693 	bool has_error_code = false;
5694 	u32 error_code = 0;
5695 	u16 tss_selector;
5696 	int reason, type, idt_v, idt_index;
5697 
5698 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5699 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5700 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5701 
5702 	exit_qualification = vmx_get_exit_qual(vcpu);
5703 
5704 	reason = (u32)exit_qualification >> 30;
5705 	if (reason == TASK_SWITCH_GATE && idt_v) {
5706 		switch (type) {
5707 		case INTR_TYPE_NMI_INTR:
5708 			vcpu->arch.nmi_injected = false;
5709 			vmx_set_nmi_mask(vcpu, true);
5710 			break;
5711 		case INTR_TYPE_EXT_INTR:
5712 		case INTR_TYPE_SOFT_INTR:
5713 			kvm_clear_interrupt_queue(vcpu);
5714 			break;
5715 		case INTR_TYPE_HARD_EXCEPTION:
5716 			if (vmx->idt_vectoring_info &
5717 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5718 				has_error_code = true;
5719 				error_code =
5720 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5721 			}
5722 			fallthrough;
5723 		case INTR_TYPE_SOFT_EXCEPTION:
5724 			kvm_clear_exception_queue(vcpu);
5725 			break;
5726 		default:
5727 			break;
5728 		}
5729 	}
5730 	tss_selector = exit_qualification;
5731 
5732 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5733 		       type != INTR_TYPE_EXT_INTR &&
5734 		       type != INTR_TYPE_NMI_INTR))
5735 		WARN_ON(!skip_emulated_instruction(vcpu));
5736 
5737 	/*
5738 	 * TODO: What about debug traps on tss switch?
5739 	 *       Are we supposed to inject them and update dr6?
5740 	 */
5741 	return kvm_task_switch(vcpu, tss_selector,
5742 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5743 			       reason, has_error_code, error_code);
5744 }
5745 
handle_ept_violation(struct kvm_vcpu * vcpu)5746 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5747 {
5748 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5749 	gpa_t gpa;
5750 
5751 	/*
5752 	 * EPT violation happened while executing iret from NMI,
5753 	 * "blocked by NMI" bit has to be set before next VM entry.
5754 	 * There are errata that may cause this bit to not be set:
5755 	 * AAK134, BY25.
5756 	 */
5757 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5758 			enable_vnmi &&
5759 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5760 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5761 
5762 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5763 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5764 
5765 	/*
5766 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5767 	 * a guest page fault.  We have to emulate the instruction here, because
5768 	 * if the illegal address is that of a paging structure, then
5769 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5770 	 * would also use advanced VM-exit information for EPT violations to
5771 	 * reconstruct the page fault error code.
5772 	 */
5773 	if (unlikely(allow_smaller_maxphyaddr && !kvm_vcpu_is_legal_gpa(vcpu, gpa)))
5774 		return kvm_emulate_instruction(vcpu, 0);
5775 
5776 	return __vmx_handle_ept_violation(vcpu, gpa, exit_qualification);
5777 }
5778 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5779 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5780 {
5781 	gpa_t gpa;
5782 
5783 	if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5784 		return 1;
5785 
5786 	/*
5787 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5788 	 * nGPA here instead of the required GPA.
5789 	 */
5790 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5791 	if (!is_guest_mode(vcpu) &&
5792 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5793 		trace_kvm_fast_mmio(gpa);
5794 		return kvm_skip_emulated_instruction(vcpu);
5795 	}
5796 
5797 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5798 }
5799 
handle_nmi_window(struct kvm_vcpu * vcpu)5800 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5801 {
5802 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5803 		return -EIO;
5804 
5805 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5806 	++vcpu->stat.nmi_window_exits;
5807 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5808 
5809 	return 1;
5810 }
5811 
5812 /*
5813  * Returns true if emulation is required (due to the vCPU having invalid state
5814  * with unsrestricted guest mode disabled) and KVM can't faithfully emulate the
5815  * current vCPU state.
5816  */
vmx_unhandleable_emulation_required(struct kvm_vcpu * vcpu)5817 static bool vmx_unhandleable_emulation_required(struct kvm_vcpu *vcpu)
5818 {
5819 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5820 
5821 	if (!vmx->vt.emulation_required)
5822 		return false;
5823 
5824 	/*
5825 	 * It is architecturally impossible for emulation to be required when a
5826 	 * nested VM-Enter is pending completion, as VM-Enter will VM-Fail if
5827 	 * guest state is invalid and unrestricted guest is disabled, i.e. KVM
5828 	 * should synthesize VM-Fail instead emulation L2 code.  This path is
5829 	 * only reachable if userspace modifies L2 guest state after KVM has
5830 	 * performed the nested VM-Enter consistency checks.
5831 	 */
5832 	if (vmx->nested.nested_run_pending)
5833 		return true;
5834 
5835 	/*
5836 	 * KVM only supports emulating exceptions if the vCPU is in Real Mode.
5837 	 * If emulation is required, KVM can't perform a successful VM-Enter to
5838 	 * inject the exception.
5839 	 */
5840 	return !vmx->rmode.vm86_active &&
5841 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5842 }
5843 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5844 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5845 {
5846 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5847 	bool intr_window_requested;
5848 	unsigned count = 130;
5849 
5850 	intr_window_requested = exec_controls_get(vmx) &
5851 				CPU_BASED_INTR_WINDOW_EXITING;
5852 
5853 	while (vmx->vt.emulation_required && count-- != 0) {
5854 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5855 			return handle_interrupt_window(&vmx->vcpu);
5856 
5857 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5858 			return 1;
5859 
5860 		/*
5861 		 * Ensure that any updates to kvm->buses[] observed by the
5862 		 * previous instruction (emulated or otherwise) are also
5863 		 * visible to the instruction KVM is about to emulate.
5864 		 */
5865 		smp_rmb();
5866 
5867 		if (!kvm_emulate_instruction(vcpu, 0))
5868 			return 0;
5869 
5870 		if (vmx_unhandleable_emulation_required(vcpu)) {
5871 			kvm_prepare_emulation_failure_exit(vcpu);
5872 			return 0;
5873 		}
5874 
5875 		if (vcpu->arch.halt_request) {
5876 			vcpu->arch.halt_request = 0;
5877 			return kvm_emulate_halt_noskip(vcpu);
5878 		}
5879 
5880 		/*
5881 		 * Note, return 1 and not 0, vcpu_run() will invoke
5882 		 * xfer_to_guest_mode() which will create a proper return
5883 		 * code.
5884 		 */
5885 		if (__xfer_to_guest_mode_work_pending())
5886 			return 1;
5887 	}
5888 
5889 	return 1;
5890 }
5891 
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5892 int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5893 {
5894 	if (vmx_unhandleable_emulation_required(vcpu)) {
5895 		kvm_prepare_emulation_failure_exit(vcpu);
5896 		return 0;
5897 	}
5898 
5899 	return 1;
5900 }
5901 
5902 /*
5903  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5904  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5905  */
handle_pause(struct kvm_vcpu * vcpu)5906 static int handle_pause(struct kvm_vcpu *vcpu)
5907 {
5908 	if (!kvm_pause_in_guest(vcpu->kvm))
5909 		grow_ple_window(vcpu);
5910 
5911 	/*
5912 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5913 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5914 	 * never set PAUSE_EXITING and just set PLE if supported,
5915 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5916 	 */
5917 	kvm_vcpu_on_spin(vcpu, true);
5918 	return kvm_skip_emulated_instruction(vcpu);
5919 }
5920 
handle_monitor_trap(struct kvm_vcpu * vcpu)5921 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5922 {
5923 	return 1;
5924 }
5925 
handle_invpcid(struct kvm_vcpu * vcpu)5926 static int handle_invpcid(struct kvm_vcpu *vcpu)
5927 {
5928 	u32 vmx_instruction_info;
5929 	unsigned long type;
5930 	gva_t gva;
5931 	struct {
5932 		u64 pcid;
5933 		u64 gla;
5934 	} operand;
5935 	int gpr_index;
5936 
5937 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_INVPCID)) {
5938 		kvm_queue_exception(vcpu, UD_VECTOR);
5939 		return 1;
5940 	}
5941 
5942 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5943 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5944 	type = kvm_register_read(vcpu, gpr_index);
5945 
5946 	/* According to the Intel instruction reference, the memory operand
5947 	 * is read even if it isn't needed (e.g., for type==all)
5948 	 */
5949 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5950 				vmx_instruction_info, false,
5951 				sizeof(operand), &gva))
5952 		return 1;
5953 
5954 	return kvm_handle_invpcid(vcpu, type, gva);
5955 }
5956 
handle_pml_full(struct kvm_vcpu * vcpu)5957 static int handle_pml_full(struct kvm_vcpu *vcpu)
5958 {
5959 	unsigned long exit_qualification;
5960 
5961 	trace_kvm_pml_full(vcpu->vcpu_id);
5962 
5963 	exit_qualification = vmx_get_exit_qual(vcpu);
5964 
5965 	/*
5966 	 * PML buffer FULL happened while executing iret from NMI,
5967 	 * "blocked by NMI" bit has to be set before next VM entry.
5968 	 */
5969 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5970 			enable_vnmi &&
5971 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5972 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5973 				GUEST_INTR_STATE_NMI);
5974 
5975 	/*
5976 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5977 	 * here.., and there's no userspace involvement needed for PML.
5978 	 */
5979 	return 1;
5980 }
5981 
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)5982 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu,
5983 						   bool force_immediate_exit)
5984 {
5985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5986 
5987 	/*
5988 	 * In the *extremely* unlikely scenario that this is a spurious VM-Exit
5989 	 * due to the timer expiring while it was "soft" disabled, just eat the
5990 	 * exit and re-enter the guest.
5991 	 */
5992 	if (unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5993 		return EXIT_FASTPATH_REENTER_GUEST;
5994 
5995 	/*
5996 	 * If the timer expired because KVM used it to force an immediate exit,
5997 	 * then mission accomplished.
5998 	 */
5999 	if (force_immediate_exit)
6000 		return EXIT_FASTPATH_EXIT_HANDLED;
6001 
6002 	/*
6003 	 * If L2 is active, go down the slow path as emulating the guest timer
6004 	 * expiration likely requires synthesizing a nested VM-Exit.
6005 	 */
6006 	if (is_guest_mode(vcpu))
6007 		return EXIT_FASTPATH_NONE;
6008 
6009 	kvm_lapic_expired_hv_timer(vcpu);
6010 	return EXIT_FASTPATH_REENTER_GUEST;
6011 }
6012 
handle_preemption_timer(struct kvm_vcpu * vcpu)6013 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6014 {
6015 	/*
6016 	 * This non-fastpath handler is reached if and only if the preemption
6017 	 * timer was being used to emulate a guest timer while L2 is active.
6018 	 * All other scenarios are supposed to be handled in the fastpath.
6019 	 */
6020 	WARN_ON_ONCE(!is_guest_mode(vcpu));
6021 	kvm_lapic_expired_hv_timer(vcpu);
6022 	return 1;
6023 }
6024 
6025 /*
6026  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6027  * are overwritten by nested_vmx_hardware_setup() when nested=1.
6028  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6029 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6030 {
6031 	kvm_queue_exception(vcpu, UD_VECTOR);
6032 	return 1;
6033 }
6034 
6035 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6036 static int handle_encls(struct kvm_vcpu *vcpu)
6037 {
6038 	/*
6039 	 * SGX virtualization is disabled.  There is no software enable bit for
6040 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6041 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6042 	 */
6043 	kvm_queue_exception(vcpu, UD_VECTOR);
6044 	return 1;
6045 }
6046 #endif /* CONFIG_X86_SGX_KVM */
6047 
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6048 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6049 {
6050 	/*
6051 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6052 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6053 	 * vmx_handle_exit().
6054 	 */
6055 	to_vt(vcpu)->exit_reason.bus_lock_detected = true;
6056 	return 1;
6057 }
6058 
handle_notify(struct kvm_vcpu * vcpu)6059 static int handle_notify(struct kvm_vcpu *vcpu)
6060 {
6061 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6062 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6063 
6064 	++vcpu->stat.notify_window_exits;
6065 
6066 	/*
6067 	 * Notify VM exit happened while executing iret from NMI,
6068 	 * "blocked by NMI" bit has to be set before next VM entry.
6069 	 */
6070 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6071 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6072 			      GUEST_INTR_STATE_NMI);
6073 
6074 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6075 	    context_invalid) {
6076 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6077 		vcpu->run->notify.flags = context_invalid ?
6078 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6079 		return 0;
6080 	}
6081 
6082 	return 1;
6083 }
6084 
vmx_get_msr_imm_reg(struct kvm_vcpu * vcpu)6085 static int vmx_get_msr_imm_reg(struct kvm_vcpu *vcpu)
6086 {
6087 	return vmx_get_instr_info_reg(vmcs_read32(VMX_INSTRUCTION_INFO));
6088 }
6089 
handle_rdmsr_imm(struct kvm_vcpu * vcpu)6090 static int handle_rdmsr_imm(struct kvm_vcpu *vcpu)
6091 {
6092 	return kvm_emulate_rdmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6093 				     vmx_get_msr_imm_reg(vcpu));
6094 }
6095 
handle_wrmsr_imm(struct kvm_vcpu * vcpu)6096 static int handle_wrmsr_imm(struct kvm_vcpu *vcpu)
6097 {
6098 	return kvm_emulate_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
6099 				     vmx_get_msr_imm_reg(vcpu));
6100 }
6101 
6102 /*
6103  * The exit handlers return 1 if the exit was handled fully and guest execution
6104  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6105  * to be done to userspace and return 0.
6106  */
6107 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6108 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6109 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6110 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6111 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6112 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6113 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6114 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6115 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6116 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6117 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6118 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6119 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6120 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6121 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6122 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6123 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6124 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6125 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6126 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6127 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6128 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6129 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6130 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6131 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6132 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6133 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6134 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6135 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6136 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6137 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6138 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6139 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6140 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6141 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6142 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6143 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6144 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6145 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6146 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6147 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6148 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6149 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6150 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6151 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6152 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6153 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6154 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6155 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6156 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6157 	[EXIT_REASON_ENCLS]		      = handle_encls,
6158 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6159 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6160 	[EXIT_REASON_MSR_READ_IMM]            = handle_rdmsr_imm,
6161 	[EXIT_REASON_MSR_WRITE_IMM]           = handle_wrmsr_imm,
6162 };
6163 
6164 static const int kvm_vmx_max_exit_handlers =
6165 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6166 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6167 void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6168 		       u64 *info1, u64 *info2, u32 *intr_info, u32 *error_code)
6169 {
6170 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6171 
6172 	*reason = vmx->vt.exit_reason.full;
6173 	*info1 = vmx_get_exit_qual(vcpu);
6174 	if (!(vmx->vt.exit_reason.failed_vmentry)) {
6175 		*info2 = vmx->idt_vectoring_info;
6176 		*intr_info = vmx_get_intr_info(vcpu);
6177 		if (is_exception_with_error_code(*intr_info))
6178 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6179 		else
6180 			*error_code = 0;
6181 	} else {
6182 		*info2 = 0;
6183 		*intr_info = 0;
6184 		*error_code = 0;
6185 	}
6186 }
6187 
vmx_get_entry_info(struct kvm_vcpu * vcpu,u32 * intr_info,u32 * error_code)6188 void vmx_get_entry_info(struct kvm_vcpu *vcpu, u32 *intr_info, u32 *error_code)
6189 {
6190 	*intr_info = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
6191 	if (is_exception_with_error_code(*intr_info))
6192 		*error_code = vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE);
6193 	else
6194 		*error_code = 0;
6195 }
6196 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6197 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6198 {
6199 	if (vmx->pml_pg) {
6200 		__free_page(vmx->pml_pg);
6201 		vmx->pml_pg = NULL;
6202 	}
6203 }
6204 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6205 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6206 {
6207 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6208 	u16 pml_idx, pml_tail_index;
6209 	u64 *pml_buf;
6210 	int i;
6211 
6212 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6213 
6214 	/* Do nothing if PML buffer is empty */
6215 	if (pml_idx == PML_HEAD_INDEX)
6216 		return;
6217 	/*
6218 	 * PML index always points to the next available PML buffer entity
6219 	 * unless PML log has just overflowed.
6220 	 */
6221 	pml_tail_index = (pml_idx >= PML_LOG_NR_ENTRIES) ? 0 : pml_idx + 1;
6222 
6223 	/*
6224 	 * PML log is written backwards: the CPU first writes the entry 511
6225 	 * then the entry 510, and so on.
6226 	 *
6227 	 * Read the entries in the same order they were written, to ensure that
6228 	 * the dirty ring is filled in the same order the CPU wrote them.
6229 	 */
6230 	pml_buf = page_address(vmx->pml_pg);
6231 
6232 	for (i = PML_HEAD_INDEX; i >= pml_tail_index; i--) {
6233 		u64 gpa;
6234 
6235 		gpa = pml_buf[i];
6236 		WARN_ON(gpa & (PAGE_SIZE - 1));
6237 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6238 	}
6239 
6240 	/* reset PML index */
6241 	vmcs_write16(GUEST_PML_INDEX, PML_HEAD_INDEX);
6242 }
6243 
vmx_dump_sel(char * name,uint32_t sel)6244 static void vmx_dump_sel(char *name, uint32_t sel)
6245 {
6246 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6247 	       name, vmcs_read16(sel),
6248 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6249 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6250 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6251 }
6252 
vmx_dump_dtsel(char * name,uint32_t limit)6253 static void vmx_dump_dtsel(char *name, uint32_t limit)
6254 {
6255 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6256 	       name, vmcs_read32(limit),
6257 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6258 }
6259 
vmx_dump_msrs(char * name,struct vmx_msrs * m)6260 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6261 {
6262 	unsigned int i;
6263 	struct vmx_msr_entry *e;
6264 
6265 	pr_err("MSR %s:\n", name);
6266 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6267 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6268 }
6269 
dump_vmcs(struct kvm_vcpu * vcpu)6270 void dump_vmcs(struct kvm_vcpu *vcpu)
6271 {
6272 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6273 	u32 vmentry_ctl, vmexit_ctl;
6274 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6275 	u64 tertiary_exec_control;
6276 	unsigned long cr4;
6277 	int efer_slot;
6278 
6279 	if (!dump_invalid_vmcs) {
6280 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6281 		return;
6282 	}
6283 
6284 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6285 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6286 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6287 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6288 	cr4 = vmcs_readl(GUEST_CR4);
6289 
6290 	if (cpu_has_secondary_exec_ctrls())
6291 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6292 	else
6293 		secondary_exec_control = 0;
6294 
6295 	if (cpu_has_tertiary_exec_ctrls())
6296 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6297 	else
6298 		tertiary_exec_control = 0;
6299 
6300 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6301 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6302 	pr_err("*** Guest State ***\n");
6303 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6304 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6305 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6306 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6307 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6308 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6309 	if (cpu_has_vmx_ept()) {
6310 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6311 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6312 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6313 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6314 	}
6315 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6316 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6317 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6318 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6319 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6320 	       vmcs_readl(GUEST_SYSENTER_ESP),
6321 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6322 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6323 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6324 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6325 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6326 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6327 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6328 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6329 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6330 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6331 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6332 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6333 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6334 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6335 	else if (efer_slot >= 0)
6336 		pr_err("EFER= 0x%016llx (autoload)\n",
6337 		       vmx->msr_autoload.guest.val[efer_slot].value);
6338 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6339 		pr_err("EFER= 0x%016llx (effective)\n",
6340 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6341 	else
6342 		pr_err("EFER= 0x%016llx (effective)\n",
6343 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6344 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6345 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6346 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6347 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6348 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6349 	if (cpu_has_load_perf_global_ctrl() &&
6350 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6351 		pr_err("PerfGlobCtl = 0x%016llx\n",
6352 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6353 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6354 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6355 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6356 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6357 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6358 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6359 		pr_err("InterruptStatus = %04x\n",
6360 		       vmcs_read16(GUEST_INTR_STATUS));
6361 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6362 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6363 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6364 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6365 
6366 	if (vmentry_ctl & VM_ENTRY_LOAD_CET_STATE)
6367 		pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6368 		       vmcs_readl(GUEST_S_CET), vmcs_readl(GUEST_SSP),
6369 		       vmcs_readl(GUEST_INTR_SSP_TABLE));
6370 	pr_err("*** Host State ***\n");
6371 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6372 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6373 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6374 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6375 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6376 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6377 	       vmcs_read16(HOST_TR_SELECTOR));
6378 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6379 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6380 	       vmcs_readl(HOST_TR_BASE));
6381 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6382 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6383 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6384 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6385 	       vmcs_readl(HOST_CR4));
6386 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6387 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6388 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6389 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6390 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6391 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6392 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6393 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6394 	if (cpu_has_load_perf_global_ctrl() &&
6395 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6396 		pr_err("PerfGlobCtl = 0x%016llx\n",
6397 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6398 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6399 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6400 	if (vmexit_ctl & VM_EXIT_LOAD_CET_STATE)
6401 		pr_err("S_CET = 0x%016lx, SSP = 0x%016lx, SSP TABLE = 0x%016lx\n",
6402 		       vmcs_readl(HOST_S_CET), vmcs_readl(HOST_SSP),
6403 		       vmcs_readl(HOST_INTR_SSP_TABLE));
6404 
6405 	pr_err("*** Control State ***\n");
6406 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6407 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6408 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6409 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6410 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6411 	       vmcs_read32(EXCEPTION_BITMAP),
6412 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6413 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6414 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6415 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6416 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6417 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6418 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6419 	       vmcs_read32(VM_EXIT_INTR_INFO),
6420 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6421 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6422 	pr_err("        reason=%08x qualification=%016lx\n",
6423 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6424 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6425 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6426 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6427 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6428 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6429 		pr_err("TSC Multiplier = 0x%016llx\n",
6430 		       vmcs_read64(TSC_MULTIPLIER));
6431 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6432 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6433 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6434 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6435 		}
6436 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6437 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6438 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6439 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6440 	}
6441 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6442 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6443 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6444 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6445 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6446 		pr_err("PLE Gap=%08x Window=%08x\n",
6447 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6448 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6449 		pr_err("Virtual processor ID = 0x%04x\n",
6450 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6451 	if (secondary_exec_control & SECONDARY_EXEC_EPT_VIOLATION_VE) {
6452 		struct vmx_ve_information *ve_info = vmx->ve_info;
6453 		u64 ve_info_pa = vmcs_read64(VE_INFORMATION_ADDRESS);
6454 
6455 		/*
6456 		 * If KVM is dumping the VMCS, then something has gone wrong
6457 		 * already.  Derefencing an address from the VMCS, which could
6458 		 * very well be corrupted, is a terrible idea.  The virtual
6459 		 * address is known so use it.
6460 		 */
6461 		pr_err("VE info address = 0x%016llx%s\n", ve_info_pa,
6462 		       ve_info_pa == __pa(ve_info) ? "" : "(corrupted!)");
6463 		pr_err("ve_info: 0x%08x 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%04x\n",
6464 		       ve_info->exit_reason, ve_info->delivery,
6465 		       ve_info->exit_qualification,
6466 		       ve_info->guest_linear_address,
6467 		       ve_info->guest_physical_address, ve_info->eptp_index);
6468 	}
6469 }
6470 
6471 /*
6472  * The guest has exited.  See if we can fix it or if we need userspace
6473  * assistance.
6474  */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6475 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6476 {
6477 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6478 	union vmx_exit_reason exit_reason = vmx_get_exit_reason(vcpu);
6479 	u32 vectoring_info = vmx->idt_vectoring_info;
6480 	u16 exit_handler_index;
6481 
6482 	/*
6483 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6484 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6485 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6486 	 * mode as if vcpus is in root mode, the PML buffer must has been
6487 	 * flushed already.  Note, PML is never enabled in hardware while
6488 	 * running L2.
6489 	 */
6490 	if (enable_pml && !is_guest_mode(vcpu))
6491 		vmx_flush_pml_buffer(vcpu);
6492 
6493 	/*
6494 	 * KVM should never reach this point with a pending nested VM-Enter.
6495 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6496 	 * invalid guest state should never happen as that means KVM knowingly
6497 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6498 	 */
6499 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6500 		return -EIO;
6501 
6502 	if (is_guest_mode(vcpu)) {
6503 		/*
6504 		 * PML is never enabled when running L2, bail immediately if a
6505 		 * PML full exit occurs as something is horribly wrong.
6506 		 */
6507 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6508 			goto unexpected_vmexit;
6509 
6510 		/*
6511 		 * The host physical addresses of some pages of guest memory
6512 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6513 		 * Page). The CPU may write to these pages via their host
6514 		 * physical address while L2 is running, bypassing any
6515 		 * address-translation-based dirty tracking (e.g. EPT write
6516 		 * protection).
6517 		 *
6518 		 * Mark them dirty on every exit from L2 to prevent them from
6519 		 * getting out of sync with dirty tracking.
6520 		 */
6521 		nested_mark_vmcs12_pages_dirty(vcpu);
6522 
6523 		/*
6524 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6525 		 * operation, nested VM-Enter rejects any attempt to enter L2
6526 		 * with invalid state.  However, those checks are skipped if
6527 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6528 		 * L2 state is invalid, it means either L1 modified SMRAM state
6529 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6530 		 * doing so is architecturally allowed in the RSM case, and is
6531 		 * the least awful solution for the userspace case without
6532 		 * risking false positives.
6533 		 */
6534 		if (vmx->vt.emulation_required) {
6535 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6536 			return 1;
6537 		}
6538 
6539 		if (nested_vmx_reflect_vmexit(vcpu))
6540 			return 1;
6541 	}
6542 
6543 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6544 	if (vmx->vt.emulation_required)
6545 		return handle_invalid_guest_state(vcpu);
6546 
6547 	if (exit_reason.failed_vmentry) {
6548 		dump_vmcs(vcpu);
6549 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6550 		vcpu->run->fail_entry.hardware_entry_failure_reason
6551 			= exit_reason.full;
6552 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6553 		return 0;
6554 	}
6555 
6556 	if (unlikely(vmx->fail)) {
6557 		dump_vmcs(vcpu);
6558 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6559 		vcpu->run->fail_entry.hardware_entry_failure_reason
6560 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6561 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6562 		return 0;
6563 	}
6564 
6565 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6566 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6567 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6568 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6569 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6570 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6571 	     exit_reason.basic != EXIT_REASON_NOTIFY &&
6572 	     exit_reason.basic != EXIT_REASON_EPT_MISCONFIG)) {
6573 		kvm_prepare_event_vectoring_exit(vcpu, INVALID_GPA);
6574 		return 0;
6575 	}
6576 
6577 	if (unlikely(!enable_vnmi &&
6578 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6579 		if (!vmx_interrupt_blocked(vcpu)) {
6580 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6581 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6582 			   vcpu->arch.nmi_pending) {
6583 			/*
6584 			 * This CPU don't support us in finding the end of an
6585 			 * NMI-blocked window if the guest runs with IRQs
6586 			 * disabled. So we pull the trigger after 1 s of
6587 			 * futile waiting, but inform the user about this.
6588 			 */
6589 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6590 			       "state on VCPU %d after 1 s timeout\n",
6591 			       __func__, vcpu->vcpu_id);
6592 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6593 		}
6594 	}
6595 
6596 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6597 		return 1;
6598 
6599 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6600 		goto unexpected_vmexit;
6601 #ifdef CONFIG_MITIGATION_RETPOLINE
6602 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6603 		return kvm_emulate_wrmsr(vcpu);
6604 	else if (exit_reason.basic == EXIT_REASON_MSR_WRITE_IMM)
6605 		return handle_wrmsr_imm(vcpu);
6606 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6607 		return handle_preemption_timer(vcpu);
6608 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6609 		return handle_interrupt_window(vcpu);
6610 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6611 		return handle_external_interrupt(vcpu);
6612 	else if (exit_reason.basic == EXIT_REASON_HLT)
6613 		return kvm_emulate_halt(vcpu);
6614 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6615 		return handle_ept_misconfig(vcpu);
6616 #endif
6617 
6618 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6619 						kvm_vmx_max_exit_handlers);
6620 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6621 		goto unexpected_vmexit;
6622 
6623 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6624 
6625 unexpected_vmexit:
6626 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6627 		    exit_reason.full);
6628 	dump_vmcs(vcpu);
6629 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6630 	vcpu->run->internal.suberror =
6631 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6632 	vcpu->run->internal.ndata = 2;
6633 	vcpu->run->internal.data[0] = exit_reason.full;
6634 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6635 	return 0;
6636 }
6637 
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6638 int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6639 {
6640 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6641 
6642 	/*
6643 	 * Exit to user space when bus lock detected to inform that there is
6644 	 * a bus lock in guest.
6645 	 */
6646 	if (vmx_get_exit_reason(vcpu).bus_lock_detected) {
6647 		if (ret > 0)
6648 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6649 
6650 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6651 		return 0;
6652 	}
6653 	return ret;
6654 }
6655 
6656 /*
6657  * Software based L1D cache flush which is used when microcode providing
6658  * the cache control MSR is not loaded.
6659  *
6660  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6661  * flush it is required to read in 64 KiB because the replacement algorithm
6662  * is not exactly LRU. This could be sized at runtime via topology
6663  * information but as all relevant affected CPUs have 32KiB L1D cache size
6664  * there is no point in doing so.
6665  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6666 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6667 {
6668 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6669 
6670 	/*
6671 	 * This code is only executed when the flush mode is 'cond' or
6672 	 * 'always'
6673 	 */
6674 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6675 		bool flush_l1d;
6676 
6677 		/*
6678 		 * Clear the per-vcpu flush bit, it gets set again if the vCPU
6679 		 * is reloaded, i.e. if the vCPU is scheduled out or if KVM
6680 		 * exits to userspace, or if KVM reaches one of the unsafe
6681 		 * VMEXIT handlers, e.g. if KVM calls into the emulator.
6682 		 */
6683 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6684 		vcpu->arch.l1tf_flush_l1d = false;
6685 
6686 		/*
6687 		 * Clear the per-cpu flush bit, it gets set again from
6688 		 * the interrupt handlers.
6689 		 */
6690 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6691 		kvm_clear_cpu_l1tf_flush_l1d();
6692 
6693 		if (!flush_l1d)
6694 			return;
6695 	}
6696 
6697 	vcpu->stat.l1d_flush++;
6698 
6699 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6700 		native_wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6701 		return;
6702 	}
6703 
6704 	asm volatile(
6705 		/* First ensure the pages are in the TLB */
6706 		"xorl	%%eax, %%eax\n"
6707 		".Lpopulate_tlb:\n\t"
6708 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6709 		"addl	$4096, %%eax\n\t"
6710 		"cmpl	%%eax, %[size]\n\t"
6711 		"jne	.Lpopulate_tlb\n\t"
6712 		"xorl	%%eax, %%eax\n\t"
6713 		"cpuid\n\t"
6714 		/* Now fill the cache */
6715 		"xorl	%%eax, %%eax\n"
6716 		".Lfill_cache:\n"
6717 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6718 		"addl	$64, %%eax\n\t"
6719 		"cmpl	%%eax, %[size]\n\t"
6720 		"jne	.Lfill_cache\n\t"
6721 		"lfence\n"
6722 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6723 		    [size] "r" (size)
6724 		: "eax", "ebx", "ecx", "edx");
6725 }
6726 
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6727 void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6728 {
6729 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6730 	int tpr_threshold;
6731 
6732 	if (is_guest_mode(vcpu) &&
6733 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6734 		return;
6735 
6736 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6737 	if (is_guest_mode(vcpu))
6738 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6739 	else
6740 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6741 }
6742 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6743 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6744 {
6745 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6746 	u32 sec_exec_control;
6747 
6748 	if (!lapic_in_kernel(vcpu))
6749 		return;
6750 
6751 	if (!flexpriority_enabled &&
6752 	    !cpu_has_vmx_virtualize_x2apic_mode())
6753 		return;
6754 
6755 	/* Postpone execution until vmcs01 is the current VMCS. */
6756 	if (is_guest_mode(vcpu)) {
6757 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6758 		return;
6759 	}
6760 
6761 	sec_exec_control = secondary_exec_controls_get(vmx);
6762 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6763 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6764 
6765 	switch (kvm_get_apic_mode(vcpu)) {
6766 	case LAPIC_MODE_INVALID:
6767 		WARN_ONCE(true, "Invalid local APIC state");
6768 		break;
6769 	case LAPIC_MODE_DISABLED:
6770 		break;
6771 	case LAPIC_MODE_XAPIC:
6772 		if (flexpriority_enabled) {
6773 			sec_exec_control |=
6774 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6775 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6776 
6777 			/*
6778 			 * Flush the TLB, reloading the APIC access page will
6779 			 * only do so if its physical address has changed, but
6780 			 * the guest may have inserted a non-APIC mapping into
6781 			 * the TLB while the APIC access page was disabled.
6782 			 */
6783 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6784 		}
6785 		break;
6786 	case LAPIC_MODE_X2APIC:
6787 		if (cpu_has_vmx_virtualize_x2apic_mode())
6788 			sec_exec_control |=
6789 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6790 		break;
6791 	}
6792 	secondary_exec_controls_set(vmx, sec_exec_control);
6793 
6794 	vmx_update_msr_bitmap_x2apic(vcpu);
6795 }
6796 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6797 void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6798 {
6799 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6800 	struct kvm *kvm = vcpu->kvm;
6801 	struct kvm_memslots *slots = kvm_memslots(kvm);
6802 	struct kvm_memory_slot *slot;
6803 	struct page *refcounted_page;
6804 	unsigned long mmu_seq;
6805 	kvm_pfn_t pfn;
6806 	bool writable;
6807 
6808 	/* Defer reload until vmcs01 is the current VMCS. */
6809 	if (is_guest_mode(vcpu)) {
6810 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6811 		return;
6812 	}
6813 
6814 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6815 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6816 		return;
6817 
6818 	/*
6819 	 * Explicitly grab the memslot using KVM's internal slot ID to ensure
6820 	 * KVM doesn't unintentionally grab a userspace memslot.  It _should_
6821 	 * be impossible for userspace to create a memslot for the APIC when
6822 	 * APICv is enabled, but paranoia won't hurt in this case.
6823 	 */
6824 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6825 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6826 		return;
6827 
6828 	/*
6829 	 * Ensure that the mmu_notifier sequence count is read before KVM
6830 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6831 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6832 	 * in kvm_mmu_invalidate_end().
6833 	 */
6834 	mmu_seq = kvm->mmu_invalidate_seq;
6835 	smp_rmb();
6836 
6837 	/*
6838 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6839 	 * controls the APIC-access page memslot, and only deletes the memslot
6840 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6841 	 */
6842 	pfn = __kvm_faultin_pfn(slot, gfn, FOLL_WRITE, &writable, &refcounted_page);
6843 	if (is_error_noslot_pfn(pfn))
6844 		return;
6845 
6846 	read_lock(&vcpu->kvm->mmu_lock);
6847 	if (mmu_invalidate_retry_gfn(kvm, mmu_seq, gfn))
6848 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6849 	else
6850 		vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6851 
6852 	/*
6853 	 * Do not pin the APIC access page in memory so that it can be freely
6854 	 * migrated, the MMU notifier will call us again if it is migrated or
6855 	 * swapped out.  KVM backs the memslot with anonymous memory, the pfn
6856 	 * should always point at a refcounted page (if the pfn is valid).
6857 	 */
6858 	if (!WARN_ON_ONCE(!refcounted_page))
6859 		kvm_release_page_clean(refcounted_page);
6860 
6861 	/*
6862 	 * No need for a manual TLB flush at this point, KVM has already done a
6863 	 * flush if there were SPTEs pointing at the previous page.
6864 	 */
6865 	read_unlock(&vcpu->kvm->mmu_lock);
6866 }
6867 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6868 void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6869 {
6870 	u16 status;
6871 	u8 old;
6872 
6873 	/*
6874 	 * If L2 is active, defer the SVI update until vmcs01 is loaded, as SVI
6875 	 * is only relevant for if and only if Virtual Interrupt Delivery is
6876 	 * enabled in vmcs12, and if VID is enabled then L2 EOIs affect L2's
6877 	 * vAPIC, not L1's vAPIC.  KVM must update vmcs01 on the next nested
6878 	 * VM-Exit, otherwise L1 with run with a stale SVI.
6879 	 */
6880 	if (is_guest_mode(vcpu)) {
6881 		/*
6882 		 * KVM is supposed to forward intercepted L2 EOIs to L1 if VID
6883 		 * is enabled in vmcs12; as above, the EOIs affect L2's vAPIC.
6884 		 * Note, userspace can stuff state while L2 is active; assert
6885 		 * that VID is disabled if and only if the vCPU is in KVM_RUN
6886 		 * to avoid false positives if userspace is setting APIC state.
6887 		 */
6888 		WARN_ON_ONCE(vcpu->wants_to_run &&
6889 			     nested_cpu_has_vid(get_vmcs12(vcpu)));
6890 		to_vmx(vcpu)->nested.update_vmcs01_hwapic_isr = true;
6891 		return;
6892 	}
6893 
6894 	if (max_isr == -1)
6895 		max_isr = 0;
6896 
6897 	status = vmcs_read16(GUEST_INTR_STATUS);
6898 	old = status >> 8;
6899 	if (max_isr != old) {
6900 		status &= 0xff;
6901 		status |= max_isr << 8;
6902 		vmcs_write16(GUEST_INTR_STATUS, status);
6903 	}
6904 }
6905 
vmx_set_rvi(int vector)6906 static void vmx_set_rvi(int vector)
6907 {
6908 	u16 status;
6909 	u8 old;
6910 
6911 	if (vector == -1)
6912 		vector = 0;
6913 
6914 	status = vmcs_read16(GUEST_INTR_STATUS);
6915 	old = (u8)status & 0xff;
6916 	if ((u8)vector != old) {
6917 		status &= ~0xff;
6918 		status |= (u8)vector;
6919 		vmcs_write16(GUEST_INTR_STATUS, status);
6920 	}
6921 }
6922 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6923 int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6924 {
6925 	struct vcpu_vt *vt = to_vt(vcpu);
6926 	int max_irr;
6927 	bool got_posted_interrupt;
6928 
6929 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6930 		return -EIO;
6931 
6932 	if (pi_test_on(&vt->pi_desc)) {
6933 		pi_clear_on(&vt->pi_desc);
6934 		/*
6935 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6936 		 * But on x86 this is just a compiler barrier anyway.
6937 		 */
6938 		smp_mb__after_atomic();
6939 		got_posted_interrupt =
6940 			kvm_apic_update_irr(vcpu, vt->pi_desc.pir, &max_irr);
6941 	} else {
6942 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6943 		got_posted_interrupt = false;
6944 	}
6945 
6946 	/*
6947 	 * Newly recognized interrupts are injected via either virtual interrupt
6948 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6949 	 * disabled in two cases:
6950 	 *
6951 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6952 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6953 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6954 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6955 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6956 	 *
6957 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6958 	 * attempt to post interrupts.  The posted interrupt vector will cause
6959 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6960 	 */
6961 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6962 		vmx_set_rvi(max_irr);
6963 	else if (got_posted_interrupt)
6964 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6965 
6966 	return max_irr;
6967 }
6968 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6969 void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6970 {
6971 	if (!kvm_vcpu_apicv_active(vcpu))
6972 		return;
6973 
6974 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6975 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6976 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6977 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6978 }
6979 
6980 void vmx_do_interrupt_irqoff(unsigned long entry);
6981 void vmx_do_nmi_irqoff(void);
6982 
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6983 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6984 {
6985 	/*
6986 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6987 	 * MSR value is not clobbered by the host activity before the guest
6988 	 * has chance to consume it.
6989 	 *
6990 	 * Update the guest's XFD_ERR if and only if XFD is enabled, as the #NM
6991 	 * interception may have been caused by L1 interception.  Per the SDM,
6992 	 * XFD_ERR is not modified for non-XFD #NM, i.e. if CR0.TS=1.
6993 	 *
6994 	 * Note, XFD_ERR is updated _before_ the #NM interception check, i.e.
6995 	 * unlike CR2 and DR6, the value is not a payload that is attached to
6996 	 * the #NM exception.
6997 	 */
6998 	if (is_xfd_nm_fault(vcpu))
6999 		rdmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
7000 }
7001 
handle_exception_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7002 static void handle_exception_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
7003 {
7004 	/* if exit due to PF check for async PF */
7005 	if (is_page_fault(intr_info))
7006 		vcpu->arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
7007 	/* if exit due to NM, handle before interrupts are enabled */
7008 	else if (is_nm_fault(intr_info))
7009 		handle_nm_fault_irqoff(vcpu);
7010 	/* Handle machine checks before interrupts are enabled */
7011 	else if (is_machine_check(intr_info))
7012 		kvm_machine_check();
7013 }
7014 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)7015 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu,
7016 					     u32 intr_info)
7017 {
7018 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
7019 
7020 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
7021 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
7022 		return;
7023 
7024 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
7025 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7026 		fred_entry_from_kvm(EVENT_TYPE_EXTINT, vector);
7027 	else
7028 		vmx_do_interrupt_irqoff(gate_offset((gate_desc *)host_idt_base + vector));
7029 	kvm_after_interrupt(vcpu);
7030 
7031 	vcpu->arch.at_instruction_boundary = true;
7032 }
7033 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)7034 void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
7035 {
7036 	if (to_vt(vcpu)->emulation_required)
7037 		return;
7038 
7039 	if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7040 		handle_external_interrupt_irqoff(vcpu, vmx_get_intr_info(vcpu));
7041 	else if (vmx_get_exit_reason(vcpu).basic == EXIT_REASON_EXCEPTION_NMI)
7042 		handle_exception_irqoff(vcpu, vmx_get_intr_info(vcpu));
7043 }
7044 
7045 /*
7046  * The kvm parameter can be NULL (module initialization, or invocation before
7047  * VM creation). Be sure to check the kvm parameter before using it.
7048  */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7049 bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7050 {
7051 	switch (index) {
7052 	case MSR_IA32_SMBASE:
7053 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7054 			return false;
7055 		/*
7056 		 * We cannot do SMM unless we can run the guest in big
7057 		 * real mode.
7058 		 */
7059 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7060 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7061 		return nested;
7062 	case MSR_AMD64_VIRT_SPEC_CTRL:
7063 	case MSR_AMD64_TSC_RATIO:
7064 		/* This is AMD only.  */
7065 		return false;
7066 	default:
7067 		return true;
7068 	}
7069 }
7070 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7071 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7072 {
7073 	u32 exit_intr_info;
7074 	bool unblock_nmi;
7075 	u8 vector;
7076 	bool idtv_info_valid;
7077 
7078 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7079 
7080 	if (enable_vnmi) {
7081 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7082 			return;
7083 
7084 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7085 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7086 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7087 		/*
7088 		 * SDM 3: 27.7.1.2 (September 2008)
7089 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7090 		 * a guest IRET fault.
7091 		 * SDM 3: 23.2.2 (September 2008)
7092 		 * Bit 12 is undefined in any of the following cases:
7093 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7094 		 *   information field.
7095 		 *  If the VM exit is due to a double fault.
7096 		 */
7097 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7098 		    vector != DF_VECTOR && !idtv_info_valid)
7099 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7100 				      GUEST_INTR_STATE_NMI);
7101 		else
7102 			vmx->loaded_vmcs->nmi_known_unmasked =
7103 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7104 				  & GUEST_INTR_STATE_NMI);
7105 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7106 		vmx->loaded_vmcs->vnmi_blocked_time +=
7107 			ktime_to_ns(ktime_sub(ktime_get(),
7108 					      vmx->loaded_vmcs->entry_time));
7109 }
7110 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7111 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7112 				      u32 idt_vectoring_info,
7113 				      int instr_len_field,
7114 				      int error_code_field)
7115 {
7116 	u8 vector;
7117 	int type;
7118 	bool idtv_info_valid;
7119 
7120 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7121 
7122 	vcpu->arch.nmi_injected = false;
7123 	kvm_clear_exception_queue(vcpu);
7124 	kvm_clear_interrupt_queue(vcpu);
7125 
7126 	if (!idtv_info_valid)
7127 		return;
7128 
7129 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7130 
7131 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7132 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7133 
7134 	switch (type) {
7135 	case INTR_TYPE_NMI_INTR:
7136 		vcpu->arch.nmi_injected = true;
7137 		/*
7138 		 * SDM 3: 27.7.1.2 (September 2008)
7139 		 * Clear bit "block by NMI" before VM entry if a NMI
7140 		 * delivery faulted.
7141 		 */
7142 		vmx_set_nmi_mask(vcpu, false);
7143 		break;
7144 	case INTR_TYPE_SOFT_EXCEPTION:
7145 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7146 		fallthrough;
7147 	case INTR_TYPE_HARD_EXCEPTION: {
7148 		u32 error_code = 0;
7149 
7150 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK)
7151 			error_code = vmcs_read32(error_code_field);
7152 
7153 		kvm_requeue_exception(vcpu, vector,
7154 				      idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK,
7155 				      error_code);
7156 		break;
7157 	}
7158 	case INTR_TYPE_SOFT_INTR:
7159 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7160 		fallthrough;
7161 	case INTR_TYPE_EXT_INTR:
7162 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7163 		break;
7164 	default:
7165 		break;
7166 	}
7167 }
7168 
vmx_complete_interrupts(struct vcpu_vmx * vmx)7169 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7170 {
7171 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7172 				  VM_EXIT_INSTRUCTION_LEN,
7173 				  IDT_VECTORING_ERROR_CODE);
7174 }
7175 
vmx_cancel_injection(struct kvm_vcpu * vcpu)7176 void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7177 {
7178 	__vmx_complete_interrupts(vcpu,
7179 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7180 				  VM_ENTRY_INSTRUCTION_LEN,
7181 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7182 
7183 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7184 }
7185 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7186 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7187 {
7188 	int i, nr_msrs;
7189 	struct perf_guest_switch_msr *msrs;
7190 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7191 
7192 	pmu->host_cross_mapped_mask = 0;
7193 	if (pmu->pebs_enable & pmu->global_ctrl)
7194 		intel_pmu_cross_mapped_check(pmu);
7195 
7196 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7197 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7198 	if (!msrs)
7199 		return;
7200 
7201 	for (i = 0; i < nr_msrs; i++)
7202 		if (msrs[i].host == msrs[i].guest)
7203 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7204 		else
7205 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7206 					msrs[i].host, false);
7207 }
7208 
vmx_update_hv_timer(struct kvm_vcpu * vcpu,bool force_immediate_exit)7209 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu, bool force_immediate_exit)
7210 {
7211 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7212 	u64 tscl;
7213 	u32 delta_tsc;
7214 
7215 	if (force_immediate_exit) {
7216 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7217 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7218 	} else if (vmx->hv_deadline_tsc != -1) {
7219 		tscl = rdtsc();
7220 		if (vmx->hv_deadline_tsc > tscl)
7221 			/* set_hv_timer ensures the delta fits in 32-bits */
7222 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7223 				cpu_preemption_timer_multi);
7224 		else
7225 			delta_tsc = 0;
7226 
7227 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7228 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7229 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7230 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7231 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7232 	}
7233 }
7234 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7235 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7236 {
7237 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7238 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7239 		vmcs_writel(HOST_RSP, host_rsp);
7240 	}
7241 }
7242 
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7243 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7244 					unsigned int flags)
7245 {
7246 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7247 
7248 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7249 		return;
7250 
7251 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7252 		vmx->spec_ctrl = native_rdmsrq(MSR_IA32_SPEC_CTRL);
7253 
7254 	/*
7255 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7256 	 *
7257 	 * For legacy IBRS, the IBRS bit always needs to be written after
7258 	 * transitioning from a less privileged predictor mode, regardless of
7259 	 * whether the guest/host values differ.
7260 	 */
7261 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7262 	    vmx->spec_ctrl != hostval)
7263 		native_wrmsrq(MSR_IA32_SPEC_CTRL, hostval);
7264 
7265 	barrier_nospec();
7266 }
7267 
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu,bool force_immediate_exit)7268 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu,
7269 					     bool force_immediate_exit)
7270 {
7271 	/*
7272 	 * If L2 is active, some VMX preemption timer exits can be handled in
7273 	 * the fastpath even, all other exits must use the slow path.
7274 	 */
7275 	if (is_guest_mode(vcpu) &&
7276 	    vmx_get_exit_reason(vcpu).basic != EXIT_REASON_PREEMPTION_TIMER)
7277 		return EXIT_FASTPATH_NONE;
7278 
7279 	switch (vmx_get_exit_reason(vcpu).basic) {
7280 	case EXIT_REASON_MSR_WRITE:
7281 		return handle_fastpath_wrmsr(vcpu);
7282 	case EXIT_REASON_MSR_WRITE_IMM:
7283 		return handle_fastpath_wrmsr_imm(vcpu, vmx_get_exit_qual(vcpu),
7284 						 vmx_get_msr_imm_reg(vcpu));
7285 	case EXIT_REASON_PREEMPTION_TIMER:
7286 		return handle_fastpath_preemption_timer(vcpu, force_immediate_exit);
7287 	case EXIT_REASON_HLT:
7288 		return handle_fastpath_hlt(vcpu);
7289 	case EXIT_REASON_INVD:
7290 		return handle_fastpath_invd(vcpu);
7291 	default:
7292 		return EXIT_FASTPATH_NONE;
7293 	}
7294 }
7295 
vmx_handle_nmi(struct kvm_vcpu * vcpu)7296 noinstr void vmx_handle_nmi(struct kvm_vcpu *vcpu)
7297 {
7298 	if ((u16)vmx_get_exit_reason(vcpu).basic != EXIT_REASON_EXCEPTION_NMI ||
7299 	    !is_nmi(vmx_get_intr_info(vcpu)))
7300 		return;
7301 
7302 	kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7303 	if (cpu_feature_enabled(X86_FEATURE_FRED))
7304 		fred_entry_from_kvm(EVENT_TYPE_NMI, NMI_VECTOR);
7305 	else
7306 		vmx_do_nmi_irqoff();
7307 	kvm_after_interrupt(vcpu);
7308 }
7309 
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7310 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7311 					unsigned int flags)
7312 {
7313 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7314 
7315 	guest_state_enter_irqoff();
7316 
7317 	/*
7318 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7319 	 * mitigation for MDS is done late in VMentry and is still
7320 	 * executed in spite of L1D Flush. This is because an extra VERW
7321 	 * should not matter much after the big hammer L1D Flush.
7322 	 *
7323 	 * cpu_buf_vm_clear is used when system is not vulnerable to MDS/TAA,
7324 	 * and is affected by MMIO Stale Data. In such cases mitigation in only
7325 	 * needed against an MMIO capable guest.
7326 	 */
7327 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7328 		vmx_l1d_flush(vcpu);
7329 	else if (static_branch_unlikely(&cpu_buf_vm_clear) &&
7330 		 (flags & VMX_RUN_CLEAR_CPU_BUFFERS_FOR_MMIO))
7331 		x86_clear_cpu_buffers();
7332 
7333 	vmx_disable_fb_clear(vmx);
7334 
7335 	if (vcpu->arch.cr2 != native_read_cr2())
7336 		native_write_cr2(vcpu->arch.cr2);
7337 
7338 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7339 				   flags);
7340 
7341 	vcpu->arch.cr2 = native_read_cr2();
7342 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7343 
7344 	vmx->idt_vectoring_info = 0;
7345 
7346 	vmx_enable_fb_clear(vmx);
7347 
7348 	if (unlikely(vmx->fail)) {
7349 		vmx->vt.exit_reason.full = 0xdead;
7350 		goto out;
7351 	}
7352 
7353 	vmx->vt.exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7354 	if (likely(!vmx_get_exit_reason(vcpu).failed_vmentry))
7355 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7356 
7357 	vmx_handle_nmi(vcpu);
7358 
7359 out:
7360 	guest_state_exit_irqoff();
7361 }
7362 
vmx_vcpu_run(struct kvm_vcpu * vcpu,u64 run_flags)7363 fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu, u64 run_flags)
7364 {
7365 	bool force_immediate_exit = run_flags & KVM_RUN_FORCE_IMMEDIATE_EXIT;
7366 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7367 	unsigned long cr3, cr4;
7368 
7369 	/* Record the guest's net vcpu time for enforced NMI injections. */
7370 	if (unlikely(!enable_vnmi &&
7371 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7372 		vmx->loaded_vmcs->entry_time = ktime_get();
7373 
7374 	/*
7375 	 * Don't enter VMX if guest state is invalid, let the exit handler
7376 	 * start emulation until we arrive back to a valid state.  Synthesize a
7377 	 * consistency check VM-Exit due to invalid guest state and bail.
7378 	 */
7379 	if (unlikely(vmx->vt.emulation_required)) {
7380 		vmx->fail = 0;
7381 
7382 		vmx->vt.exit_reason.full = EXIT_REASON_INVALID_STATE;
7383 		vmx->vt.exit_reason.failed_vmentry = 1;
7384 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7385 		vmx->vt.exit_qualification = ENTRY_FAIL_DEFAULT;
7386 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7387 		vmx->vt.exit_intr_info = 0;
7388 		return EXIT_FASTPATH_NONE;
7389 	}
7390 
7391 	trace_kvm_entry(vcpu, force_immediate_exit);
7392 
7393 	if (vmx->ple_window_dirty) {
7394 		vmx->ple_window_dirty = false;
7395 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7396 	}
7397 
7398 	/*
7399 	 * We did this in prepare_switch_to_guest, because it needs to
7400 	 * be within srcu_read_lock.
7401 	 */
7402 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7403 
7404 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7405 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7406 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7407 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7408 	vcpu->arch.regs_dirty = 0;
7409 
7410 	if (run_flags & KVM_RUN_LOAD_GUEST_DR6)
7411 		set_debugreg(vcpu->arch.dr6, 6);
7412 
7413 	if (run_flags & KVM_RUN_LOAD_DEBUGCTL)
7414 		vmx_reload_guest_debugctl(vcpu);
7415 
7416 	/*
7417 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7418 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7419 	 * it switches back to the current->mm, which can occur in KVM context
7420 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7421 	 * toggles a static key while handling a VM-Exit.
7422 	 */
7423 	cr3 = __get_current_cr3_fast();
7424 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7425 		vmcs_writel(HOST_CR3, cr3);
7426 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7427 	}
7428 
7429 	cr4 = cr4_read_shadow();
7430 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7431 		vmcs_writel(HOST_CR4, cr4);
7432 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7433 	}
7434 
7435 	/* When single-stepping over STI and MOV SS, we must clear the
7436 	 * corresponding interruptibility bits in the guest state. Otherwise
7437 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7438 	 * exceptions being set, but that's not correct for the guest debugging
7439 	 * case. */
7440 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7441 		vmx_set_interrupt_shadow(vcpu, 0);
7442 
7443 	kvm_load_guest_xsave_state(vcpu);
7444 
7445 	pt_guest_enter(vmx);
7446 
7447 	atomic_switch_perf_msrs(vmx);
7448 	if (intel_pmu_lbr_is_enabled(vcpu))
7449 		vmx_passthrough_lbr_msrs(vcpu);
7450 
7451 	if (enable_preemption_timer)
7452 		vmx_update_hv_timer(vcpu, force_immediate_exit);
7453 	else if (force_immediate_exit)
7454 		smp_send_reschedule(vcpu->cpu);
7455 
7456 	kvm_wait_lapic_expire(vcpu);
7457 
7458 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7459 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7460 
7461 	/* All fields are clean at this point */
7462 	if (kvm_is_using_evmcs()) {
7463 		current_evmcs->hv_clean_fields |=
7464 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7465 
7466 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7467 	}
7468 
7469 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7470 	if (vcpu->arch.host_debugctl)
7471 		update_debugctlmsr(vcpu->arch.host_debugctl);
7472 
7473 #ifndef CONFIG_X86_64
7474 	/*
7475 	 * The sysexit path does not restore ds/es, so we must set them to
7476 	 * a reasonable value ourselves.
7477 	 *
7478 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7479 	 * function may be executed in interrupt context, which saves and
7480 	 * restore segments around it, nullifying its effect.
7481 	 */
7482 	loadsegment(ds, __USER_DS);
7483 	loadsegment(es, __USER_DS);
7484 #endif
7485 
7486 	pt_guest_exit(vmx);
7487 
7488 	kvm_load_host_xsave_state(vcpu);
7489 
7490 	if (is_guest_mode(vcpu)) {
7491 		/*
7492 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7493 		 * checking.
7494 		 */
7495 		if (vmx->nested.nested_run_pending &&
7496 		    !vmx_get_exit_reason(vcpu).failed_vmentry)
7497 			++vcpu->stat.nested_run;
7498 
7499 		vmx->nested.nested_run_pending = 0;
7500 	}
7501 
7502 	if (unlikely(vmx->fail))
7503 		return EXIT_FASTPATH_NONE;
7504 
7505 	if (unlikely((u16)vmx_get_exit_reason(vcpu).basic == EXIT_REASON_MCE_DURING_VMENTRY))
7506 		kvm_machine_check();
7507 
7508 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7509 
7510 	if (unlikely(vmx_get_exit_reason(vcpu).failed_vmentry))
7511 		return EXIT_FASTPATH_NONE;
7512 
7513 	vmx->loaded_vmcs->launched = 1;
7514 
7515 	vmx_recover_nmi_blocking(vmx);
7516 	vmx_complete_interrupts(vmx);
7517 
7518 	return vmx_exit_handlers_fastpath(vcpu, force_immediate_exit);
7519 }
7520 
vmx_vcpu_free(struct kvm_vcpu * vcpu)7521 void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7522 {
7523 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7524 
7525 	if (enable_pml)
7526 		vmx_destroy_pml_buffer(vmx);
7527 	free_vpid(vmx->vpid);
7528 	nested_vmx_free_vcpu(vcpu);
7529 	free_loaded_vmcs(vmx->loaded_vmcs);
7530 	free_page((unsigned long)vmx->ve_info);
7531 }
7532 
vmx_vcpu_create(struct kvm_vcpu * vcpu)7533 int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7534 {
7535 	struct vmx_uret_msr *tsx_ctrl;
7536 	struct vcpu_vmx *vmx;
7537 	int i, err;
7538 
7539 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7540 	vmx = to_vmx(vcpu);
7541 
7542 	INIT_LIST_HEAD(&vmx->vt.pi_wakeup_list);
7543 
7544 	err = -ENOMEM;
7545 
7546 	vmx->vpid = allocate_vpid();
7547 
7548 	/*
7549 	 * If PML is turned on, failure on enabling PML just results in failure
7550 	 * of creating the vcpu, therefore we can simplify PML logic (by
7551 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7552 	 * for the guest), etc.
7553 	 */
7554 	if (enable_pml) {
7555 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7556 		if (!vmx->pml_pg)
7557 			goto free_vpid;
7558 	}
7559 
7560 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7561 		vmx->guest_uret_msrs[i].mask = -1ull;
7562 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7563 		/*
7564 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7565 		 * Keep the host value unchanged to avoid changing CPUID bits
7566 		 * under the host kernel's feet.
7567 		 */
7568 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7569 		if (tsx_ctrl)
7570 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7571 	}
7572 
7573 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7574 	if (err < 0)
7575 		goto free_pml;
7576 
7577 	/*
7578 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7579 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7580 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7581 	 * performance benefits from enabling it for vmcs02.
7582 	 */
7583 	if (kvm_is_using_evmcs() &&
7584 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7585 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7586 
7587 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7588 	}
7589 
7590 	vmx->loaded_vmcs = &vmx->vmcs01;
7591 
7592 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7593 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7594 		if (err)
7595 			goto free_vmcs;
7596 	}
7597 
7598 	if (enable_ept && !enable_unrestricted_guest) {
7599 		err = init_rmode_identity_map(vcpu->kvm);
7600 		if (err)
7601 			goto free_vmcs;
7602 	}
7603 
7604 	err = -ENOMEM;
7605 	if (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_EPT_VIOLATION_VE) {
7606 		struct page *page;
7607 
7608 		BUILD_BUG_ON(sizeof(*vmx->ve_info) > PAGE_SIZE);
7609 
7610 		/* ve_info must be page aligned. */
7611 		page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7612 		if (!page)
7613 			goto free_vmcs;
7614 
7615 		vmx->ve_info = page_to_virt(page);
7616 	}
7617 
7618 	if (vmx_can_use_ipiv(vcpu))
7619 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7620 			   __pa(&vmx->vt.pi_desc) | PID_TABLE_ENTRY_VALID);
7621 
7622 	return 0;
7623 
7624 free_vmcs:
7625 	free_loaded_vmcs(vmx->loaded_vmcs);
7626 free_pml:
7627 	vmx_destroy_pml_buffer(vmx);
7628 free_vpid:
7629 	free_vpid(vmx->vpid);
7630 	return err;
7631 }
7632 
7633 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7634 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7635 
vmx_vm_init(struct kvm * kvm)7636 int vmx_vm_init(struct kvm *kvm)
7637 {
7638 	if (!ple_gap)
7639 		kvm_disable_exits(kvm, KVM_X86_DISABLE_EXITS_PAUSE);
7640 
7641 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7642 		switch (l1tf_mitigation) {
7643 		case L1TF_MITIGATION_OFF:
7644 		case L1TF_MITIGATION_FLUSH_NOWARN:
7645 			/* 'I explicitly don't care' is set */
7646 			break;
7647 		case L1TF_MITIGATION_AUTO:
7648 		case L1TF_MITIGATION_FLUSH:
7649 		case L1TF_MITIGATION_FLUSH_NOSMT:
7650 		case L1TF_MITIGATION_FULL:
7651 			/*
7652 			 * Warn upon starting the first VM in a potentially
7653 			 * insecure environment.
7654 			 */
7655 			if (sched_smt_active())
7656 				pr_warn_once(L1TF_MSG_SMT);
7657 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7658 				pr_warn_once(L1TF_MSG_L1D);
7659 			break;
7660 		case L1TF_MITIGATION_FULL_FORCE:
7661 			/* Flush is enforced */
7662 			break;
7663 		}
7664 	}
7665 
7666 	if (enable_pml)
7667 		kvm->arch.cpu_dirty_log_size = PML_LOG_NR_ENTRIES;
7668 	return 0;
7669 }
7670 
vmx_ignore_guest_pat(struct kvm * kvm)7671 static inline bool vmx_ignore_guest_pat(struct kvm *kvm)
7672 {
7673 	/*
7674 	 * Non-coherent DMA devices need the guest to flush CPU properly.
7675 	 * In that case it is not possible to map all guest RAM as WB, so
7676 	 * always trust guest PAT.
7677 	 */
7678 	return !kvm_arch_has_noncoherent_dma(kvm) &&
7679 	       kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT);
7680 }
7681 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7682 u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7683 {
7684 	/*
7685 	 * Force UC for host MMIO regions, as allowing the guest to access MMIO
7686 	 * with cacheable accesses will result in Machine Checks.
7687 	 */
7688 	if (is_mmio)
7689 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7690 
7691 	/* Force WB if ignoring guest PAT */
7692 	if (vmx_ignore_guest_pat(vcpu->kvm))
7693 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7694 
7695 	return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT);
7696 }
7697 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7698 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7699 {
7700 	/*
7701 	 * These bits in the secondary execution controls field
7702 	 * are dynamic, the others are mostly based on the hypervisor
7703 	 * architecture and the guest's CPUID.  Do not touch the
7704 	 * dynamic bits.
7705 	 */
7706 	u32 mask =
7707 		SECONDARY_EXEC_SHADOW_VMCS |
7708 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7709 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7710 		SECONDARY_EXEC_DESC;
7711 
7712 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7713 
7714 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7715 }
7716 
7717 /*
7718  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7719  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7720  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7721 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7722 {
7723 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7724 	struct kvm_cpuid_entry2 *entry;
7725 
7726 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7727 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7728 
7729 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7730 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7731 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7732 } while (0)
7733 
7734 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7735 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7736 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7737 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7738 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7739 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7740 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7741 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7742 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7743 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7744 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7745 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7746 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7747 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7748 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7749 
7750 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7751 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7752 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7753 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7754 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7755 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7756 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7757 	cr4_fixed1_update(X86_CR4_CET,	      ecx, feature_bit(SHSTK));
7758 	cr4_fixed1_update(X86_CR4_CET,	      edx, feature_bit(IBT));
7759 
7760 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 1);
7761 	cr4_fixed1_update(X86_CR4_LAM_SUP,    eax, feature_bit(LAM));
7762 
7763 #undef cr4_fixed1_update
7764 }
7765 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7766 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7767 {
7768 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7769 	struct kvm_cpuid_entry2 *best = NULL;
7770 	int i;
7771 
7772 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7773 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7774 		if (!best)
7775 			return;
7776 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7777 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7778 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7779 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7780 	}
7781 
7782 	/* Get the number of configurable Address Ranges for filtering */
7783 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7784 						PT_CAP_num_address_ranges);
7785 
7786 	/* Initialize and clear the no dependency bits */
7787 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7788 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7789 			RTIT_CTL_BRANCH_EN);
7790 
7791 	/*
7792 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7793 	 * will inject an #GP
7794 	 */
7795 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7796 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7797 
7798 	/*
7799 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7800 	 * PSBFreq can be set
7801 	 */
7802 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7803 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7804 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7805 
7806 	/*
7807 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7808 	 */
7809 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7810 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7811 					      RTIT_CTL_MTC_RANGE);
7812 
7813 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7814 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7815 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7816 							RTIT_CTL_PTW_EN);
7817 
7818 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7819 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7820 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7821 
7822 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7823 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7824 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7825 
7826 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7827 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7828 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7829 
7830 	/* unmask address range configure area */
7831 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7832 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7833 }
7834 
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7835 void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7836 {
7837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7838 
7839 	/*
7840 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7841 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7842 	 * set if and only if XSAVE is supported.
7843 	 */
7844 	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVE))
7845 		guest_cpu_cap_clear(vcpu, X86_FEATURE_XSAVES);
7846 
7847 	vmx_setup_uret_msrs(vmx);
7848 
7849 	if (cpu_has_secondary_exec_ctrls())
7850 		vmcs_set_secondary_exec_control(vmx,
7851 						vmx_secondary_exec_control(vmx));
7852 
7853 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7854 		vmx->msr_ia32_feature_control_valid_bits |=
7855 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7856 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7857 	else
7858 		vmx->msr_ia32_feature_control_valid_bits &=
7859 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7860 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7861 
7862 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
7863 		nested_vmx_cr_fixed1_bits_update(vcpu);
7864 
7865 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7866 			guest_cpu_cap_has(vcpu, X86_FEATURE_INTEL_PT))
7867 		update_intel_pt_cfg(vcpu);
7868 
7869 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7870 		struct vmx_uret_msr *msr;
7871 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7872 		if (msr) {
7873 			bool enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_RTM);
7874 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7875 		}
7876 	}
7877 
7878 	set_cr4_guest_host_mask(vmx);
7879 
7880 	vmx_write_encls_bitmap(vcpu, NULL);
7881 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX))
7882 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7883 	else
7884 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7885 
7886 	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SGX_LC))
7887 		vmx->msr_ia32_feature_control_valid_bits |=
7888 			FEAT_CTL_SGX_LC_ENABLED;
7889 	else
7890 		vmx->msr_ia32_feature_control_valid_bits &=
7891 			~FEAT_CTL_SGX_LC_ENABLED;
7892 
7893 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7894 	vmx_update_exception_bitmap(vcpu);
7895 }
7896 
vmx_get_perf_capabilities(void)7897 static __init u64 vmx_get_perf_capabilities(void)
7898 {
7899 	u64 perf_cap = PERF_CAP_FW_WRITES;
7900 	u64 host_perf_cap = 0;
7901 
7902 	if (!enable_pmu)
7903 		return 0;
7904 
7905 	if (boot_cpu_has(X86_FEATURE_PDCM))
7906 		rdmsrq(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7907 
7908 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7909 		x86_perf_get_lbr(&vmx_lbr_caps);
7910 
7911 		/*
7912 		 * KVM requires LBR callstack support, as the overhead due to
7913 		 * context switching LBRs without said support is too high.
7914 		 * See intel_pmu_create_guest_lbr_event() for more info.
7915 		 */
7916 		if (!vmx_lbr_caps.has_callstack)
7917 			memset(&vmx_lbr_caps, 0, sizeof(vmx_lbr_caps));
7918 		else if (vmx_lbr_caps.nr)
7919 			perf_cap |= host_perf_cap & PERF_CAP_LBR_FMT;
7920 	}
7921 
7922 	if (vmx_pebs_supported()) {
7923 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7924 
7925 		/*
7926 		 * Disallow adaptive PEBS as it is functionally broken, can be
7927 		 * used by the guest to read *host* LBRs, and can be used to
7928 		 * bypass userspace event filters.  To correctly and safely
7929 		 * support adaptive PEBS, KVM needs to:
7930 		 *
7931 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7932 		 *    counters.
7933 		 *
7934 		 * 2. Gain support from perf (or take direct control of counter
7935 		 *    programming) to support events without adaptive PEBS
7936 		 *    enabled for the hardware counter.
7937 		 *
7938 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7939 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7940 		 *
7941 		 * 4. Document which PMU events are effectively exposed to the
7942 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7943 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7944 		 */
7945 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7946 	}
7947 
7948 	return perf_cap;
7949 }
7950 
vmx_set_cpu_caps(void)7951 static __init void vmx_set_cpu_caps(void)
7952 {
7953 	kvm_set_cpu_caps();
7954 
7955 	/* CPUID 0x1 */
7956 	if (nested)
7957 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7958 
7959 	/* CPUID 0x7 */
7960 	if (kvm_mpx_supported())
7961 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7962 	if (!cpu_has_vmx_invpcid())
7963 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7964 	if (vmx_pt_mode_is_host_guest())
7965 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7966 	if (vmx_pebs_supported()) {
7967 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7968 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7969 	}
7970 
7971 	if (!enable_pmu)
7972 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7973 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7974 
7975 	if (!enable_sgx) {
7976 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7977 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7978 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7979 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7980 		kvm_cpu_cap_clear(X86_FEATURE_SGX_EDECCSSA);
7981 	}
7982 
7983 	if (vmx_umip_emulated())
7984 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7985 
7986 	/* CPUID 0xD.1 */
7987 	if (!cpu_has_vmx_xsaves())
7988 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7989 
7990 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7991 	if (!cpu_has_vmx_rdtscp()) {
7992 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7993 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7994 	}
7995 
7996 	if (cpu_has_vmx_waitpkg())
7997 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7998 
7999 	/*
8000 	 * Disable CET if unrestricted_guest is unsupported as KVM doesn't
8001 	 * enforce CET HW behaviors in emulator. On platforms with
8002 	 * VMX_BASIC[bit56] == 0, inject #CP at VMX entry with error code
8003 	 * fails, so disable CET in this case too.
8004 	 */
8005 	if (!cpu_has_load_cet_ctrl() || !enable_unrestricted_guest ||
8006 	    !cpu_has_vmx_basic_no_hw_errcode_cc()) {
8007 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
8008 		kvm_cpu_cap_clear(X86_FEATURE_IBT);
8009 	}
8010 }
8011 
vmx_is_io_intercepted(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,unsigned long * exit_qualification)8012 static bool vmx_is_io_intercepted(struct kvm_vcpu *vcpu,
8013 				  struct x86_instruction_info *info,
8014 				  unsigned long *exit_qualification)
8015 {
8016 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8017 	unsigned short port;
8018 	int size;
8019 	bool imm;
8020 
8021 	/*
8022 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
8023 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
8024 	 * control.
8025 	 *
8026 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
8027 	 */
8028 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
8029 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
8030 
8031 	if (info->intercept == x86_intercept_in ||
8032 	    info->intercept == x86_intercept_ins) {
8033 		port = info->src_val;
8034 		size = info->dst_bytes;
8035 		imm  = info->src_type == OP_IMM;
8036 	} else {
8037 		port = info->dst_val;
8038 		size = info->src_bytes;
8039 		imm  = info->dst_type == OP_IMM;
8040 	}
8041 
8042 
8043 	*exit_qualification = ((unsigned long)port << 16) | (size - 1);
8044 
8045 	if (info->intercept == x86_intercept_ins ||
8046 	    info->intercept == x86_intercept_outs)
8047 		*exit_qualification |= BIT(4);
8048 
8049 	if (info->rep_prefix)
8050 		*exit_qualification |= BIT(5);
8051 
8052 	if (imm)
8053 		*exit_qualification |= BIT(6);
8054 
8055 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
8056 }
8057 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)8058 int vmx_check_intercept(struct kvm_vcpu *vcpu,
8059 			struct x86_instruction_info *info,
8060 			enum x86_intercept_stage stage,
8061 			struct x86_exception *exception)
8062 {
8063 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8064 	unsigned long exit_qualification = 0;
8065 	u32 vm_exit_reason;
8066 	u64 exit_insn_len;
8067 
8068 	switch (info->intercept) {
8069 	case x86_intercept_rdpid:
8070 		/*
8071 		 * RDPID causes #UD if not enabled through secondary execution
8072 		 * controls (ENABLE_RDTSCP).  Note, the implicit MSR access to
8073 		 * TSC_AUX is NOT subject to interception, i.e. checking only
8074 		 * the dedicated execution control is architecturally correct.
8075 		 */
8076 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
8077 			exception->vector = UD_VECTOR;
8078 			exception->error_code_valid = false;
8079 			return X86EMUL_PROPAGATE_FAULT;
8080 		}
8081 		return X86EMUL_CONTINUE;
8082 
8083 	case x86_intercept_in:
8084 	case x86_intercept_ins:
8085 	case x86_intercept_out:
8086 	case x86_intercept_outs:
8087 		if (!vmx_is_io_intercepted(vcpu, info, &exit_qualification))
8088 			return X86EMUL_CONTINUE;
8089 
8090 		vm_exit_reason = EXIT_REASON_IO_INSTRUCTION;
8091 		break;
8092 
8093 	case x86_intercept_lgdt:
8094 	case x86_intercept_lidt:
8095 	case x86_intercept_lldt:
8096 	case x86_intercept_ltr:
8097 	case x86_intercept_sgdt:
8098 	case x86_intercept_sidt:
8099 	case x86_intercept_sldt:
8100 	case x86_intercept_str:
8101 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8102 			return X86EMUL_CONTINUE;
8103 
8104 		if (info->intercept == x86_intercept_lldt ||
8105 		    info->intercept == x86_intercept_ltr ||
8106 		    info->intercept == x86_intercept_sldt ||
8107 		    info->intercept == x86_intercept_str)
8108 			vm_exit_reason = EXIT_REASON_LDTR_TR;
8109 		else
8110 			vm_exit_reason = EXIT_REASON_GDTR_IDTR;
8111 		/*
8112 		 * FIXME: Decode the ModR/M to generate the correct exit
8113 		 *        qualification for memory operands.
8114 		 */
8115 		break;
8116 
8117 	case x86_intercept_hlt:
8118 		if (!nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING))
8119 			return X86EMUL_CONTINUE;
8120 
8121 		vm_exit_reason = EXIT_REASON_HLT;
8122 		break;
8123 
8124 	case x86_intercept_pause:
8125 		/*
8126 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8127 		 * with vanilla NOPs in the emulator.  Apply the interception
8128 		 * check only to actual PAUSE instructions.  Don't check
8129 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8130 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8131 		 * the PAUSE.
8132 		 */
8133 		if ((info->rep_prefix != REPE_PREFIX) ||
8134 		    !nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING))
8135 			return X86EMUL_CONTINUE;
8136 
8137 		vm_exit_reason = EXIT_REASON_PAUSE_INSTRUCTION;
8138 		break;
8139 
8140 	/* TODO: check more intercepts... */
8141 	default:
8142 		return X86EMUL_UNHANDLEABLE;
8143 	}
8144 
8145 	exit_insn_len = abs_diff((s64)info->next_rip, (s64)info->rip);
8146 	if (!exit_insn_len || exit_insn_len > X86_MAX_INSTRUCTION_LENGTH)
8147 		return X86EMUL_UNHANDLEABLE;
8148 
8149 	__nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification,
8150 			    exit_insn_len);
8151 	return X86EMUL_INTERCEPTED;
8152 }
8153 
8154 #ifdef CONFIG_X86_64
8155 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8156 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8157 				  u64 divisor, u64 *result)
8158 {
8159 	u64 low = a << shift, high = a >> (64 - shift);
8160 
8161 	/* To avoid the overflow on divq */
8162 	if (high >= divisor)
8163 		return 1;
8164 
8165 	/* Low hold the result, high hold rem which is discarded */
8166 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8167 	    "rm" (divisor), "0" (low), "1" (high));
8168 	*result = low;
8169 
8170 	return 0;
8171 }
8172 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8173 int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8174 		     bool *expired)
8175 {
8176 	struct vcpu_vmx *vmx;
8177 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8178 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8179 
8180 	vmx = to_vmx(vcpu);
8181 	tscl = rdtsc();
8182 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8183 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8184 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8185 						    ktimer->timer_advance_ns);
8186 
8187 	if (delta_tsc > lapic_timer_advance_cycles)
8188 		delta_tsc -= lapic_timer_advance_cycles;
8189 	else
8190 		delta_tsc = 0;
8191 
8192 	/* Convert to host delta tsc if tsc scaling is enabled */
8193 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8194 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8195 				kvm_caps.tsc_scaling_ratio_frac_bits,
8196 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8197 		return -ERANGE;
8198 
8199 	/*
8200 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8201 	 * we can't use the preemption timer.
8202 	 * It's possible that it fits on later vmentries, but checking
8203 	 * on every vmentry is costly so we just use an hrtimer.
8204 	 */
8205 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8206 		return -ERANGE;
8207 
8208 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8209 	*expired = !delta_tsc;
8210 	return 0;
8211 }
8212 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8213 void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8214 {
8215 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8216 }
8217 #endif
8218 
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8219 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8220 {
8221 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8222 
8223 	if (WARN_ON_ONCE(!enable_pml))
8224 		return;
8225 
8226 	if (is_guest_mode(vcpu)) {
8227 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8228 		return;
8229 	}
8230 
8231 	/*
8232 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8233 	 * code, but in that case another update request will be made and so
8234 	 * the guest will never run with a stale PML value.
8235 	 */
8236 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8237 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8238 	else
8239 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8240 }
8241 
vmx_setup_mce(struct kvm_vcpu * vcpu)8242 void vmx_setup_mce(struct kvm_vcpu *vcpu)
8243 {
8244 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8245 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8246 			FEAT_CTL_LMCE_ENABLED;
8247 	else
8248 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8249 			~FEAT_CTL_LMCE_ENABLED;
8250 }
8251 
8252 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8253 int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8254 {
8255 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8256 	if (to_vmx(vcpu)->nested.nested_run_pending)
8257 		return -EBUSY;
8258 	return !is_smm(vcpu);
8259 }
8260 
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8261 int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8262 {
8263 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8264 
8265 	/*
8266 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8267 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8268 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8269 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8270 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8271 	 */
8272 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8273 	if (vmx->nested.smm.guest_mode)
8274 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8275 
8276 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8277 	vmx->nested.vmxon = false;
8278 	vmx_clear_hlt(vcpu);
8279 	return 0;
8280 }
8281 
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8282 int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8283 {
8284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8285 	int ret;
8286 
8287 	if (vmx->nested.smm.vmxon) {
8288 		vmx->nested.vmxon = true;
8289 		vmx->nested.smm.vmxon = false;
8290 	}
8291 
8292 	if (vmx->nested.smm.guest_mode) {
8293 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8294 		if (ret)
8295 			return ret;
8296 
8297 		vmx->nested.nested_run_pending = 1;
8298 		vmx->nested.smm.guest_mode = false;
8299 	}
8300 	return 0;
8301 }
8302 
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8303 void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8304 {
8305 	/* RSM will cause a vmexit anyway.  */
8306 }
8307 #endif
8308 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8309 bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8310 {
8311 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8312 }
8313 
vmx_migrate_timers(struct kvm_vcpu * vcpu)8314 void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8315 {
8316 	if (is_guest_mode(vcpu)) {
8317 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8318 
8319 		if (hrtimer_try_to_cancel(timer) == 1)
8320 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8321 	}
8322 }
8323 
vmx_hardware_unsetup(void)8324 void vmx_hardware_unsetup(void)
8325 {
8326 	kvm_set_posted_intr_wakeup_handler(NULL);
8327 
8328 	if (nested)
8329 		nested_vmx_hardware_unsetup();
8330 
8331 	free_kvm_area();
8332 }
8333 
vmx_vm_destroy(struct kvm * kvm)8334 void vmx_vm_destroy(struct kvm *kvm)
8335 {
8336 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8337 
8338 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8339 }
8340 
8341 /*
8342  * Note, the SDM states that the linear address is masked *after* the modified
8343  * canonicality check, whereas KVM masks (untags) the address and then performs
8344  * a "normal" canonicality check.  Functionally, the two methods are identical,
8345  * and when the masking occurs relative to the canonicality check isn't visible
8346  * to software, i.e. KVM's behavior doesn't violate the SDM.
8347  */
vmx_get_untagged_addr(struct kvm_vcpu * vcpu,gva_t gva,unsigned int flags)8348 gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags)
8349 {
8350 	int lam_bit;
8351 	unsigned long cr3_bits;
8352 
8353 	if (flags & (X86EMUL_F_FETCH | X86EMUL_F_IMPLICIT | X86EMUL_F_INVLPG))
8354 		return gva;
8355 
8356 	if (!is_64_bit_mode(vcpu))
8357 		return gva;
8358 
8359 	/*
8360 	 * Bit 63 determines if the address should be treated as user address
8361 	 * or a supervisor address.
8362 	 */
8363 	if (!(gva & BIT_ULL(63))) {
8364 		cr3_bits = kvm_get_active_cr3_lam_bits(vcpu);
8365 		if (!(cr3_bits & (X86_CR3_LAM_U57 | X86_CR3_LAM_U48)))
8366 			return gva;
8367 
8368 		/* LAM_U48 is ignored if LAM_U57 is set. */
8369 		lam_bit = cr3_bits & X86_CR3_LAM_U57 ? 56 : 47;
8370 	} else {
8371 		if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_LAM_SUP))
8372 			return gva;
8373 
8374 		lam_bit = kvm_is_cr4_bit_set(vcpu, X86_CR4_LA57) ? 56 : 47;
8375 	}
8376 
8377 	/*
8378 	 * Untag the address by sign-extending the lam_bit, but NOT to bit 63.
8379 	 * Bit 63 is retained from the raw virtual address so that untagging
8380 	 * doesn't change a user access to a supervisor access, and vice versa.
8381 	 */
8382 	return (sign_extend64(gva, lam_bit) & ~BIT_ULL(63)) | (gva & BIT_ULL(63));
8383 }
8384 
vmx_handle_intel_pt_intr(void)8385 static unsigned int vmx_handle_intel_pt_intr(void)
8386 {
8387 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8388 
8389 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8390 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8391 		return 0;
8392 
8393 	kvm_make_request(KVM_REQ_PMI, vcpu);
8394 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8395 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8396 	return 1;
8397 }
8398 
vmx_setup_user_return_msrs(void)8399 static __init void vmx_setup_user_return_msrs(void)
8400 {
8401 
8402 	/*
8403 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8404 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8405 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8406 	 * support this emulation, MSR_STAR is included in the list for i386,
8407 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8408 	 * into hardware and is here purely for emulation purposes.
8409 	 */
8410 	const u32 vmx_uret_msrs_list[] = {
8411 	#ifdef CONFIG_X86_64
8412 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8413 	#endif
8414 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8415 		MSR_IA32_TSX_CTRL,
8416 	};
8417 	int i;
8418 
8419 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8420 
8421 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8422 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8423 }
8424 
vmx_setup_me_spte_mask(void)8425 static void __init vmx_setup_me_spte_mask(void)
8426 {
8427 	u64 me_mask = 0;
8428 
8429 	/*
8430 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8431 	 * kvm_host.maxphyaddr.  On MKTME and/or TDX capable systems,
8432 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8433 	 * w/o the KeyID bits, and kvm_host.maxphyaddr equals to
8434 	 * MAXPHYADDR reported by CPUID.  Those bits between are KeyID bits.
8435 	 */
8436 	if (boot_cpu_data.x86_phys_bits != kvm_host.maxphyaddr)
8437 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8438 				    kvm_host.maxphyaddr - 1);
8439 
8440 	/*
8441 	 * Unlike SME, host kernel doesn't support setting up any
8442 	 * MKTME KeyID on Intel platforms.  No memory encryption
8443 	 * bits should be included into the SPTE.
8444 	 */
8445 	kvm_mmu_set_me_spte_mask(0, me_mask);
8446 }
8447 
vmx_hardware_setup(void)8448 __init int vmx_hardware_setup(void)
8449 {
8450 	unsigned long host_bndcfgs;
8451 	struct desc_ptr dt;
8452 	int r;
8453 
8454 	store_idt(&dt);
8455 	host_idt_base = dt.address;
8456 
8457 	vmx_setup_user_return_msrs();
8458 
8459 
8460 	if (boot_cpu_has(X86_FEATURE_NX))
8461 		kvm_enable_efer_bits(EFER_NX);
8462 
8463 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8464 		rdmsrq(MSR_IA32_BNDCFGS, host_bndcfgs);
8465 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8466 	}
8467 
8468 	if (!cpu_has_vmx_mpx())
8469 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8470 					     XFEATURE_MASK_BNDCSR);
8471 
8472 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8473 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8474 		enable_vpid = 0;
8475 
8476 	if (!cpu_has_vmx_ept() ||
8477 	    !cpu_has_vmx_ept_4levels() ||
8478 	    !cpu_has_vmx_ept_mt_wb() ||
8479 	    !cpu_has_vmx_invept_global())
8480 		enable_ept = 0;
8481 
8482 	/* NX support is required for shadow paging. */
8483 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8484 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8485 		return -EOPNOTSUPP;
8486 	}
8487 
8488 	/*
8489 	 * Shadow paging doesn't have a (further) performance penalty
8490 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8491 	 * by default
8492 	 */
8493 	if (!enable_ept)
8494 		allow_smaller_maxphyaddr = true;
8495 
8496 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8497 		enable_ept_ad_bits = 0;
8498 
8499 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8500 		enable_unrestricted_guest = 0;
8501 
8502 	if (!cpu_has_vmx_flexpriority())
8503 		flexpriority_enabled = 0;
8504 
8505 	if (!cpu_has_virtual_nmis())
8506 		enable_vnmi = 0;
8507 
8508 #ifdef CONFIG_X86_SGX_KVM
8509 	if (!cpu_has_vmx_encls_vmexit())
8510 		enable_sgx = false;
8511 #endif
8512 
8513 	/*
8514 	 * set_apic_access_page_addr() is used to reload apic access
8515 	 * page upon invalidation.  No need to do anything if not
8516 	 * using the APIC_ACCESS_ADDR VMCS field.
8517 	 */
8518 	if (!flexpriority_enabled)
8519 		vt_x86_ops.set_apic_access_page_addr = NULL;
8520 
8521 	if (!cpu_has_vmx_tpr_shadow())
8522 		vt_x86_ops.update_cr8_intercept = NULL;
8523 
8524 #if IS_ENABLED(CONFIG_HYPERV)
8525 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8526 	    && enable_ept) {
8527 		vt_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8528 		vt_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8529 	}
8530 #endif
8531 
8532 	if (!cpu_has_vmx_ple()) {
8533 		ple_gap = 0;
8534 		ple_window = 0;
8535 		ple_window_grow = 0;
8536 		ple_window_max = 0;
8537 		ple_window_shrink = 0;
8538 	}
8539 
8540 	if (!cpu_has_vmx_apicv())
8541 		enable_apicv = 0;
8542 	if (!enable_apicv)
8543 		vt_x86_ops.sync_pir_to_irr = NULL;
8544 
8545 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8546 		enable_ipiv = false;
8547 
8548 	if (cpu_has_vmx_tsc_scaling())
8549 		kvm_caps.has_tsc_control = true;
8550 
8551 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8552 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8553 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8554 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8555 
8556 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8557 
8558 	if (enable_ept)
8559 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8560 				      cpu_has_vmx_ept_execute_only());
8561 	else
8562 		vt_x86_ops.get_mt_mask = NULL;
8563 
8564 	/*
8565 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8566 	 * bits to shadow_zero_check.
8567 	 */
8568 	vmx_setup_me_spte_mask();
8569 
8570 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8571 			  ept_caps_to_lpage_level(vmx_capability.ept));
8572 
8573 	/*
8574 	 * Only enable PML when hardware supports PML feature, and both EPT
8575 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8576 	 */
8577 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8578 		enable_pml = 0;
8579 
8580 	if (!cpu_has_vmx_preemption_timer())
8581 		enable_preemption_timer = false;
8582 
8583 	if (enable_preemption_timer) {
8584 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8585 
8586 		cpu_preemption_timer_multi =
8587 			vmx_misc_preemption_timer_rate(vmcs_config.misc);
8588 
8589 		if (tsc_khz)
8590 			use_timer_freq = (u64)tsc_khz * 1000;
8591 		use_timer_freq >>= cpu_preemption_timer_multi;
8592 
8593 		/*
8594 		 * KVM "disables" the preemption timer by setting it to its max
8595 		 * value.  Don't use the timer if it might cause spurious exits
8596 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8597 		 */
8598 		if (use_timer_freq > 0xffffffffu / 10)
8599 			enable_preemption_timer = false;
8600 	}
8601 
8602 	if (!enable_preemption_timer) {
8603 		vt_x86_ops.set_hv_timer = NULL;
8604 		vt_x86_ops.cancel_hv_timer = NULL;
8605 	}
8606 
8607 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8608 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8609 
8610 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8611 		return -EINVAL;
8612 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8613 		pt_mode = PT_MODE_SYSTEM;
8614 	if (pt_mode == PT_MODE_HOST_GUEST)
8615 		vt_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8616 	else
8617 		vt_init_ops.handle_intel_pt_intr = NULL;
8618 
8619 	setup_default_sgx_lepubkeyhash();
8620 
8621 	vmx_set_cpu_caps();
8622 
8623 	/*
8624 	 * Configure nested capabilities after core CPU capabilities so that
8625 	 * nested support can be conditional on base support, e.g. so that KVM
8626 	 * can hide/show features based on kvm_cpu_cap_has().
8627 	 */
8628 	if (nested) {
8629 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8630 
8631 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8632 		if (r)
8633 			return r;
8634 	}
8635 
8636 	r = alloc_kvm_area();
8637 	if (r && nested)
8638 		nested_vmx_hardware_unsetup();
8639 
8640 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8641 
8642 	/*
8643 	 * On Intel CPUs that lack self-snoop feature, letting the guest control
8644 	 * memory types may result in unexpected behavior. So always ignore guest
8645 	 * PAT on those CPUs and map VM as writeback, not allowing userspace to
8646 	 * disable the quirk.
8647 	 *
8648 	 * On certain Intel CPUs (e.g. SPR, ICX), though self-snoop feature is
8649 	 * supported, UC is slow enough to cause issues with some older guests (e.g.
8650 	 * an old version of bochs driver uses ioremap() instead of ioremap_wc() to
8651 	 * map the video RAM, causing wayland desktop to fail to get started
8652 	 * correctly). To avoid breaking those older guests that rely on KVM to force
8653 	 * memory type to WB, provide KVM_X86_QUIRK_IGNORE_GUEST_PAT to preserve the
8654 	 * safer (for performance) default behavior.
8655 	 *
8656 	 * On top of this, non-coherent DMA devices need the guest to flush CPU
8657 	 * caches properly.  This also requires honoring guest PAT, and is forced
8658 	 * independent of the quirk in vmx_ignore_guest_pat().
8659 	 */
8660 	if (!static_cpu_has(X86_FEATURE_SELFSNOOP))
8661 		kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8662 
8663 	kvm_caps.inapplicable_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT;
8664 
8665 	return r;
8666 }
8667 
vmx_cleanup_l1d_flush(void)8668 static void vmx_cleanup_l1d_flush(void)
8669 {
8670 	if (vmx_l1d_flush_pages) {
8671 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8672 		vmx_l1d_flush_pages = NULL;
8673 	}
8674 	/* Restore state so sysfs ignores VMX */
8675 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8676 }
8677 
vmx_exit(void)8678 void vmx_exit(void)
8679 {
8680 	allow_smaller_maxphyaddr = false;
8681 
8682 	vmx_cleanup_l1d_flush();
8683 
8684 	kvm_x86_vendor_exit();
8685 }
8686 
vmx_init(void)8687 int __init vmx_init(void)
8688 {
8689 	int r, cpu;
8690 
8691 	KVM_SANITY_CHECK_VM_STRUCT_SIZE(kvm_vmx);
8692 
8693 	if (!kvm_is_vmx_supported())
8694 		return -EOPNOTSUPP;
8695 
8696 	/*
8697 	 * Note, VMCS and eVMCS configuration only touch VMX knobs/variables,
8698 	 * i.e. there's nothing to unwind if a later step fails.
8699 	 */
8700 	hv_init_evmcs();
8701 
8702 	/*
8703 	 * Parse the VMCS config and VMX capabilities before anything else, so
8704 	 * that the information is available to all setup flows.
8705 	 */
8706 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8707 		return -EIO;
8708 
8709 	r = kvm_x86_vendor_init(&vt_init_ops);
8710 	if (r)
8711 		return r;
8712 
8713 	/*
8714 	 * Must be called after common x86 init so enable_ept is properly set
8715 	 * up. Hand the parameter mitigation value in which was stored in
8716 	 * the pre module init parser. If no parameter was given, it will
8717 	 * contain 'auto' which will be turned into the default 'cond'
8718 	 * mitigation mode.
8719 	 */
8720 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8721 	if (r)
8722 		goto err_l1d_flush;
8723 
8724 	for_each_possible_cpu(cpu) {
8725 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8726 
8727 		pi_init_cpu(cpu);
8728 	}
8729 
8730 	vmx_check_vmcs12_offsets();
8731 
8732 	return 0;
8733 
8734 err_l1d_flush:
8735 	kvm_x86_vendor_exit();
8736 	return r;
8737 }
8738