1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Volume Management Device driver
4 * Copyright (c) 2015, Intel Corporation.
5 */
6
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/irqchip/irq-msi-lib.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/msi.h>
14 #include <linux/pci.h>
15 #include <linux/pci-acpi.h>
16 #include <linux/pci-ecam.h>
17 #include <linux/srcu.h>
18 #include <linux/rculist.h>
19 #include <linux/rcupdate.h>
20
21 #include <xen/xen.h>
22
23 #include <asm/irqdomain.h>
24
25 #define VMD_CFGBAR 0
26 #define VMD_MEMBAR1 2
27 #define VMD_MEMBAR2 4
28
29 #define PCI_REG_VMCAP 0x40
30 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
31 #define PCI_REG_VMCONFIG 0x44
32 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
33 #define VMCONFIG_MSI_REMAP 0x2
34 #define PCI_REG_VMLOCK 0x70
35 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2)
36
37 #define MB2_SHADOW_OFFSET 0x2000
38 #define MB2_SHADOW_SIZE 16
39
40 enum vmd_features {
41 /*
42 * Device may contain registers which hint the physical location of the
43 * membars, in order to allow proper address translation during
44 * resource assignment to enable guest virtualization
45 */
46 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0),
47
48 /*
49 * Device may provide root port configuration information which limits
50 * bus numbering
51 */
52 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1),
53
54 /*
55 * Device contains physical location shadow registers in
56 * vendor-specific capability space
57 */
58 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2),
59
60 /*
61 * Device may use MSI-X vector 0 for software triggering and will not
62 * be used for MSI remapping
63 */
64 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3),
65
66 /*
67 * Device can bypass remapping MSI-X transactions into its MSI-X table,
68 * avoiding the requirement of a VMD MSI domain for child device
69 * interrupt handling.
70 */
71 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4),
72
73 /*
74 * Enable ASPM on the PCIE root ports and set the default LTR of the
75 * storage devices on platforms where these values are not configured by
76 * BIOS. This is needed for laptops, which require these settings for
77 * proper power management of the SoC.
78 */
79 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5),
80 };
81
82 #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */
83
84 #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \
85 VMD_FEAT_HAS_BUS_RESTRICTIONS | \
86 VMD_FEAT_OFFSET_FIRST_VECTOR | \
87 VMD_FEAT_BIOS_PM_QUIRK)
88
89 static DEFINE_IDA(vmd_instance_ida);
90
91 /*
92 * Lock for manipulating VMD IRQ lists.
93 */
94 static DEFINE_RAW_SPINLOCK(list_lock);
95
96 /**
97 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
98 * @node: list item for parent traversal.
99 * @irq: back pointer to parent.
100 * @enabled: true if driver enabled IRQ
101 * @virq: the virtual IRQ value provided to the requesting driver.
102 *
103 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
104 * a VMD IRQ using this structure.
105 */
106 struct vmd_irq {
107 struct list_head node;
108 struct vmd_irq_list *irq;
109 bool enabled;
110 unsigned int virq;
111 };
112
113 /**
114 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
115 * @irq_list: the list of irq's the VMD one demuxes to.
116 * @srcu: SRCU struct for local synchronization.
117 * @count: number of child IRQs assigned to this vector; used to track
118 * sharing.
119 * @virq: The underlying VMD Linux interrupt number
120 */
121 struct vmd_irq_list {
122 struct list_head irq_list;
123 struct srcu_struct srcu;
124 unsigned int count;
125 unsigned int virq;
126 };
127
128 struct vmd_dev {
129 struct pci_dev *dev;
130
131 raw_spinlock_t cfg_lock;
132 void __iomem *cfgbar;
133
134 int msix_count;
135 struct vmd_irq_list *irqs;
136
137 struct pci_sysdata sysdata;
138 struct resource resources[3];
139 struct irq_domain *irq_domain;
140 struct pci_bus *bus;
141 u8 busn_start;
142 u8 first_vec;
143 char *name;
144 int instance;
145 };
146
vmd_from_bus(struct pci_bus * bus)147 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
148 {
149 return container_of(bus->sysdata, struct vmd_dev, sysdata);
150 }
151
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)152 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
153 struct vmd_irq_list *irqs)
154 {
155 return irqs - vmd->irqs;
156 }
157
158 /*
159 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
160 * but the MSI entry for the hardware it's driving will be programmed with a
161 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its
162 * domain into one of its own, and the VMD driver de-muxes these for the
163 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations
164 * and irq_chip to set this up.
165 */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)166 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
167 {
168 struct vmd_irq *vmdirq = data->chip_data;
169 struct vmd_irq_list *irq = vmdirq->irq;
170 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
171
172 memset(msg, 0, sizeof(*msg));
173 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
174 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
175 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
176 }
177
vmd_irq_enable(struct irq_data * data)178 static void vmd_irq_enable(struct irq_data *data)
179 {
180 struct vmd_irq *vmdirq = data->chip_data;
181
182 scoped_guard(raw_spinlock_irqsave, &list_lock) {
183 WARN_ON(vmdirq->enabled);
184 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
185 vmdirq->enabled = true;
186 }
187 }
188
vmd_pci_msi_enable(struct irq_data * data)189 static void vmd_pci_msi_enable(struct irq_data *data)
190 {
191 vmd_irq_enable(data->parent_data);
192 data->chip->irq_unmask(data);
193 }
194
vmd_irq_disable(struct irq_data * data)195 static void vmd_irq_disable(struct irq_data *data)
196 {
197 struct vmd_irq *vmdirq = data->chip_data;
198
199 scoped_guard(raw_spinlock_irqsave, &list_lock) {
200 if (vmdirq->enabled) {
201 list_del_rcu(&vmdirq->node);
202 vmdirq->enabled = false;
203 }
204 }
205 }
206
vmd_pci_msi_disable(struct irq_data * data)207 static void vmd_pci_msi_disable(struct irq_data *data)
208 {
209 data->chip->irq_mask(data);
210 vmd_irq_disable(data->parent_data);
211 }
212
213 static struct irq_chip vmd_msi_controller = {
214 .name = "VMD-MSI",
215 .irq_compose_msi_msg = vmd_compose_msi_msg,
216 };
217
218 /*
219 * XXX: We can be even smarter selecting the best IRQ once we solve the
220 * affinity problem.
221 */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)222 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
223 {
224 int i, best;
225
226 if (vmd->msix_count == 1 + vmd->first_vec)
227 return &vmd->irqs[vmd->first_vec];
228
229 /*
230 * White list for fast-interrupt handlers. All others will share the
231 * "slow" interrupt vector.
232 */
233 switch (msi_desc_to_pci_dev(desc)->class) {
234 case PCI_CLASS_STORAGE_EXPRESS:
235 break;
236 default:
237 return &vmd->irqs[vmd->first_vec];
238 }
239
240 scoped_guard(raw_spinlock_irq, &list_lock) {
241 best = vmd->first_vec + 1;
242 for (i = best; i < vmd->msix_count; i++)
243 if (vmd->irqs[i].count < vmd->irqs[best].count)
244 best = i;
245 vmd->irqs[best].count++;
246 }
247
248 return &vmd->irqs[best];
249 }
250
251 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
252 unsigned int nr_irqs);
253
vmd_msi_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)254 static int vmd_msi_alloc(struct irq_domain *domain, unsigned int virq,
255 unsigned int nr_irqs, void *arg)
256 {
257 struct msi_desc *desc = ((msi_alloc_info_t *)arg)->desc;
258 struct vmd_dev *vmd = domain->host_data;
259 struct vmd_irq *vmdirq;
260
261 for (int i = 0; i < nr_irqs; ++i) {
262 vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
263 if (!vmdirq) {
264 vmd_msi_free(domain, virq, i);
265 return -ENOMEM;
266 }
267
268 INIT_LIST_HEAD(&vmdirq->node);
269 vmdirq->irq = vmd_next_irq(vmd, desc);
270 vmdirq->virq = virq + i;
271
272 irq_domain_set_info(domain, virq + i, vmdirq->irq->virq,
273 &vmd_msi_controller, vmdirq,
274 handle_untracked_irq, vmd, NULL);
275 }
276
277 return 0;
278 }
279
vmd_msi_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)280 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
281 unsigned int nr_irqs)
282 {
283 struct vmd_irq *vmdirq;
284
285 for (int i = 0; i < nr_irqs; ++i) {
286 vmdirq = irq_get_chip_data(virq + i);
287
288 synchronize_srcu(&vmdirq->irq->srcu);
289
290 /* XXX: Potential optimization to rebalance */
291 scoped_guard(raw_spinlock_irq, &list_lock)
292 vmdirq->irq->count--;
293
294 kfree(vmdirq);
295 }
296 }
297
298 static const struct irq_domain_ops vmd_msi_domain_ops = {
299 .alloc = vmd_msi_alloc,
300 .free = vmd_msi_free,
301 };
302
vmd_init_dev_msi_info(struct device * dev,struct irq_domain * domain,struct irq_domain * real_parent,struct msi_domain_info * info)303 static bool vmd_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
304 struct irq_domain *real_parent,
305 struct msi_domain_info *info)
306 {
307 if (WARN_ON_ONCE(info->bus_token != DOMAIN_BUS_PCI_DEVICE_MSIX))
308 return false;
309
310 if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
311 return false;
312
313 info->chip->irq_enable = vmd_pci_msi_enable;
314 info->chip->irq_disable = vmd_pci_msi_disable;
315 return true;
316 }
317
318 #define VMD_MSI_FLAGS_SUPPORTED (MSI_GENERIC_FLAGS_MASK | MSI_FLAG_PCI_MSIX)
319 #define VMD_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_NO_AFFINITY)
320
321 static const struct msi_parent_ops vmd_msi_parent_ops = {
322 .supported_flags = VMD_MSI_FLAGS_SUPPORTED,
323 .required_flags = VMD_MSI_FLAGS_REQUIRED,
324 .bus_select_token = DOMAIN_BUS_VMD_MSI,
325 .bus_select_mask = MATCH_PCI_MSI,
326 .prefix = "VMD-",
327 .init_dev_msi_info = vmd_init_dev_msi_info,
328 };
329
vmd_create_irq_domain(struct vmd_dev * vmd)330 static int vmd_create_irq_domain(struct vmd_dev *vmd)
331 {
332 struct irq_domain_info info = {
333 .size = vmd->msix_count,
334 .ops = &vmd_msi_domain_ops,
335 .host_data = vmd,
336 };
337
338 info.fwnode = irq_domain_alloc_named_id_fwnode("VMD-MSI",
339 vmd->sysdata.domain);
340 if (!info.fwnode)
341 return -ENODEV;
342
343 vmd->irq_domain = msi_create_parent_irq_domain(&info,
344 &vmd_msi_parent_ops);
345 if (!vmd->irq_domain) {
346 irq_domain_free_fwnode(info.fwnode);
347 return -ENODEV;
348 }
349
350 return 0;
351 }
352
vmd_set_msi_remapping(struct vmd_dev * vmd,bool enable)353 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
354 {
355 u16 reg;
356
357 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®);
358 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
359 (reg | VMCONFIG_MSI_REMAP);
360 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
361 }
362
vmd_remove_irq_domain(struct vmd_dev * vmd)363 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
364 {
365 /*
366 * Some production BIOS won't enable remapping between soft reboots.
367 * Ensure remapping is restored before unloading the driver.
368 */
369 if (!vmd->msix_count)
370 vmd_set_msi_remapping(vmd, true);
371
372 if (vmd->irq_domain) {
373 struct fwnode_handle *fn = vmd->irq_domain->fwnode;
374
375 irq_domain_remove(vmd->irq_domain);
376 irq_domain_free_fwnode(fn);
377 }
378 }
379
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)380 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
381 unsigned int devfn, int reg, int len)
382 {
383 unsigned int busnr_ecam = bus->number - vmd->busn_start;
384 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
385
386 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
387 return NULL;
388
389 return vmd->cfgbar + offset;
390 }
391
392 /*
393 * CPU may deadlock if config space is not serialized on some versions of this
394 * hardware, so all config space access is done under a spinlock.
395 */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)396 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
397 int len, u32 *value)
398 {
399 struct vmd_dev *vmd = vmd_from_bus(bus);
400 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
401
402 if (!addr)
403 return -EFAULT;
404
405 guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
406 switch (len) {
407 case 1:
408 *value = readb(addr);
409 return 0;
410 case 2:
411 *value = readw(addr);
412 return 0;
413 case 4:
414 *value = readl(addr);
415 return 0;
416 default:
417 return -EINVAL;
418 }
419 }
420
421 /*
422 * VMD h/w converts non-posted config writes to posted memory writes. The
423 * read-back in this function forces the completion so it returns only after
424 * the config space was written, as expected.
425 */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)426 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
427 int len, u32 value)
428 {
429 struct vmd_dev *vmd = vmd_from_bus(bus);
430 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
431
432 if (!addr)
433 return -EFAULT;
434
435 guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
436 switch (len) {
437 case 1:
438 writeb(value, addr);
439 readb(addr);
440 return 0;
441 case 2:
442 writew(value, addr);
443 readw(addr);
444 return 0;
445 case 4:
446 writel(value, addr);
447 readl(addr);
448 return 0;
449 default:
450 return -EINVAL;
451 }
452 }
453
454 static struct pci_ops vmd_ops = {
455 .read = vmd_pci_read,
456 .write = vmd_pci_write,
457 };
458
459 #ifdef CONFIG_ACPI
vmd_acpi_find_companion(struct pci_dev * pci_dev)460 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
461 {
462 struct pci_host_bridge *bridge;
463 u32 busnr, addr;
464
465 if (pci_dev->bus->ops != &vmd_ops)
466 return NULL;
467
468 bridge = pci_find_host_bridge(pci_dev->bus);
469 busnr = pci_dev->bus->number - bridge->bus->number;
470 /*
471 * The address computation below is only applicable to relative bus
472 * numbers below 32.
473 */
474 if (busnr > 31)
475 return NULL;
476
477 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
478
479 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
480 addr);
481
482 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
483 false);
484 }
485
486 static bool hook_installed;
487
vmd_acpi_begin(void)488 static void vmd_acpi_begin(void)
489 {
490 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
491 return;
492
493 hook_installed = true;
494 }
495
vmd_acpi_end(void)496 static void vmd_acpi_end(void)
497 {
498 if (!hook_installed)
499 return;
500
501 pci_acpi_clear_companion_lookup_hook();
502 hook_installed = false;
503 }
504 #else
vmd_acpi_begin(void)505 static inline void vmd_acpi_begin(void) { }
vmd_acpi_end(void)506 static inline void vmd_acpi_end(void) { }
507 #endif /* CONFIG_ACPI */
508
vmd_domain_reset(struct vmd_dev * vmd)509 static void vmd_domain_reset(struct vmd_dev *vmd)
510 {
511 u16 bus, max_buses = resource_size(&vmd->resources[0]);
512 u8 dev, functions, fn, hdr_type;
513 char __iomem *base;
514
515 for (bus = 0; bus < max_buses; bus++) {
516 for (dev = 0; dev < 32; dev++) {
517 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
518 PCI_DEVFN(dev, 0), 0);
519
520 hdr_type = readb(base + PCI_HEADER_TYPE);
521
522 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
523 for (fn = 0; fn < functions; fn++) {
524 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
525 PCI_DEVFN(dev, fn), 0);
526
527 hdr_type = readb(base + PCI_HEADER_TYPE) &
528 PCI_HEADER_TYPE_MASK;
529
530 if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
531 (readw(base + PCI_CLASS_DEVICE) !=
532 PCI_CLASS_BRIDGE_PCI))
533 continue;
534
535 /*
536 * Temporarily disable the I/O range before updating
537 * PCI_IO_BASE.
538 */
539 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
540 /* Update lower 16 bits of I/O base/limit */
541 writew(0x00f0, base + PCI_IO_BASE);
542 /* Update upper 16 bits of I/O base/limit */
543 writel(0, base + PCI_IO_BASE_UPPER16);
544
545 /* MMIO Base/Limit */
546 writel(0x0000fff0, base + PCI_MEMORY_BASE);
547
548 /* Prefetchable MMIO Base/Limit */
549 writel(0, base + PCI_PREF_LIMIT_UPPER32);
550 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
551 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
552 }
553 }
554 }
555 }
556
vmd_attach_resources(struct vmd_dev * vmd)557 static void vmd_attach_resources(struct vmd_dev *vmd)
558 {
559 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
560 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
561 }
562
vmd_detach_resources(struct vmd_dev * vmd)563 static void vmd_detach_resources(struct vmd_dev *vmd)
564 {
565 vmd->dev->resource[VMD_MEMBAR1].child = NULL;
566 vmd->dev->resource[VMD_MEMBAR2].child = NULL;
567 }
568
569 /*
570 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
571 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower
572 * 16 bits are the PCI Segment Group (domain) number. Other bits are
573 * currently reserved.
574 */
vmd_find_free_domain(void)575 static int vmd_find_free_domain(void)
576 {
577 int domain = 0xffff;
578 struct pci_bus *bus = NULL;
579
580 while ((bus = pci_find_next_bus(bus)) != NULL)
581 domain = max_t(int, domain, pci_domain_nr(bus));
582 return domain + 1;
583 }
584
vmd_get_phys_offsets(struct vmd_dev * vmd,bool native_hint,resource_size_t * offset1,resource_size_t * offset2)585 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
586 resource_size_t *offset1,
587 resource_size_t *offset2)
588 {
589 struct pci_dev *dev = vmd->dev;
590 u64 phys1, phys2;
591
592 if (native_hint) {
593 u32 vmlock;
594 int ret;
595
596 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
597 if (ret || PCI_POSSIBLE_ERROR(vmlock))
598 return -ENODEV;
599
600 if (MB2_SHADOW_EN(vmlock)) {
601 void __iomem *membar2;
602
603 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
604 if (!membar2)
605 return -ENOMEM;
606 phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
607 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
608 pci_iounmap(dev, membar2);
609 } else
610 return 0;
611 } else {
612 /* Hypervisor-Emulated Vendor-Specific Capability */
613 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
614 u32 reg, regu;
615
616 pci_read_config_dword(dev, pos + 4, ®);
617
618 /* "SHDW" */
619 if (pos && reg == 0x53484457) {
620 pci_read_config_dword(dev, pos + 8, ®);
621 pci_read_config_dword(dev, pos + 12, ®u);
622 phys1 = (u64) regu << 32 | reg;
623
624 pci_read_config_dword(dev, pos + 16, ®);
625 pci_read_config_dword(dev, pos + 20, ®u);
626 phys2 = (u64) regu << 32 | reg;
627 } else
628 return 0;
629 }
630
631 *offset1 = dev->resource[VMD_MEMBAR1].start -
632 (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
633 *offset2 = dev->resource[VMD_MEMBAR2].start -
634 (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
635
636 return 0;
637 }
638
vmd_get_bus_number_start(struct vmd_dev * vmd)639 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
640 {
641 struct pci_dev *dev = vmd->dev;
642 u16 reg;
643
644 pci_read_config_word(dev, PCI_REG_VMCAP, ®);
645 if (BUS_RESTRICT_CAP(reg)) {
646 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®);
647
648 switch (BUS_RESTRICT_CFG(reg)) {
649 case 0:
650 vmd->busn_start = 0;
651 break;
652 case 1:
653 vmd->busn_start = 128;
654 break;
655 case 2:
656 vmd->busn_start = 224;
657 break;
658 default:
659 pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
660 BUS_RESTRICT_CFG(reg));
661 return -ENODEV;
662 }
663 }
664
665 return 0;
666 }
667
vmd_irq(int irq,void * data)668 static irqreturn_t vmd_irq(int irq, void *data)
669 {
670 struct vmd_irq_list *irqs = data;
671 struct vmd_irq *vmdirq;
672 int idx;
673
674 idx = srcu_read_lock(&irqs->srcu);
675 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
676 generic_handle_irq(vmdirq->virq);
677 srcu_read_unlock(&irqs->srcu, idx);
678
679 return IRQ_HANDLED;
680 }
681
vmd_alloc_irqs(struct vmd_dev * vmd)682 static int vmd_alloc_irqs(struct vmd_dev *vmd)
683 {
684 struct pci_dev *dev = vmd->dev;
685 int i, err;
686
687 vmd->msix_count = pci_msix_vec_count(dev);
688 if (vmd->msix_count < 0)
689 return -ENODEV;
690
691 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
692 vmd->msix_count, PCI_IRQ_MSIX);
693 if (vmd->msix_count < 0)
694 return vmd->msix_count;
695
696 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
697 GFP_KERNEL);
698 if (!vmd->irqs)
699 return -ENOMEM;
700
701 for (i = 0; i < vmd->msix_count; i++) {
702 err = init_srcu_struct(&vmd->irqs[i].srcu);
703 if (err)
704 return err;
705
706 INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
707 vmd->irqs[i].virq = pci_irq_vector(dev, i);
708 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
709 vmd_irq, IRQF_NO_THREAD,
710 vmd->name, &vmd->irqs[i]);
711 if (err)
712 return err;
713 }
714
715 return 0;
716 }
717
718 /*
719 * Since VMD is an aperture to regular PCIe root ports, only allow it to
720 * control features that the OS is allowed to control on the physical PCI bus.
721 */
vmd_copy_host_bridge_flags(struct pci_host_bridge * root_bridge,struct pci_host_bridge * vmd_bridge)722 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
723 struct pci_host_bridge *vmd_bridge)
724 {
725 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
726 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
727 vmd_bridge->native_aer = root_bridge->native_aer;
728 vmd_bridge->native_pme = root_bridge->native_pme;
729 vmd_bridge->native_ltr = root_bridge->native_ltr;
730 vmd_bridge->native_dpc = root_bridge->native_dpc;
731 }
732
733 /*
734 * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
735 */
vmd_pm_enable_quirk(struct pci_dev * pdev,void * userdata)736 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
737 {
738 unsigned long features = *(unsigned long *)userdata;
739 u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
740 u32 ltr_reg;
741 int pos;
742
743 if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
744 return 0;
745
746 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
747 if (!pos)
748 goto out_state_change;
749
750 /*
751 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
752 * so the LTR quirk is not needed.
753 */
754 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg);
755 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
756 goto out_state_change;
757
758 /*
759 * Set the default values to the maximum required by the platform to
760 * allow the deepest power management savings. Write as a DWORD where
761 * the lower word is the max snoop latency and the upper word is the
762 * max non-snoop latency.
763 */
764 ltr_reg = (ltr << 16) | ltr;
765 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
766 pci_info(pdev, "VMD: Default LTR value set by driver\n");
767
768 out_state_change:
769 /*
770 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
771 * PCIe r6.0, sec 5.5.4.
772 */
773 pci_set_power_state_locked(pdev, PCI_D0);
774 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
775 return 0;
776 }
777
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)778 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
779 {
780 struct pci_sysdata *sd = &vmd->sysdata;
781 struct resource *res;
782 u32 upper_bits;
783 unsigned long flags;
784 LIST_HEAD(resources);
785 resource_size_t offset[2] = {0};
786 resource_size_t membar2_offset = 0x2000;
787 struct pci_bus *child;
788 struct pci_dev *dev;
789 int ret;
790
791 /*
792 * Shadow registers may exist in certain VMD device ids which allow
793 * guests to correctly assign host physical addresses to the root ports
794 * and child devices. These registers will either return the host value
795 * or 0, depending on an enable bit in the VMD device.
796 */
797 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
798 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
799 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
800 if (ret)
801 return ret;
802 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
803 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
804 if (ret)
805 return ret;
806 }
807
808 /*
809 * Certain VMD devices may have a root port configuration option which
810 * limits the bus range to between 0-127, 128-255, or 224-255
811 */
812 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
813 ret = vmd_get_bus_number_start(vmd);
814 if (ret)
815 return ret;
816 }
817
818 res = &vmd->dev->resource[VMD_CFGBAR];
819 vmd->resources[0] = (struct resource) {
820 .name = "VMD CFGBAR",
821 .start = vmd->busn_start,
822 .end = vmd->busn_start + (resource_size(res) >> 20) - 1,
823 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
824 };
825
826 /*
827 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
828 * put 32-bit resources in the window.
829 *
830 * There's no hardware reason why a 64-bit window *couldn't*
831 * contain a 32-bit resource, but pbus_size_mem() computes the
832 * bridge window size assuming a 64-bit window will contain no
833 * 32-bit resources. __pci_assign_resource() enforces that
834 * artificial restriction to make sure everything will fit.
835 *
836 * The only way we could use a 64-bit non-prefetchable MEMBAR is
837 * if its address is <4GB so that we can convert it to a 32-bit
838 * resource. To be visible to the host OS, all VMD endpoints must
839 * be initially configured by platform BIOS, which includes setting
840 * up these resources. We can assume the device is configured
841 * according to the platform needs.
842 */
843 res = &vmd->dev->resource[VMD_MEMBAR1];
844 upper_bits = upper_32_bits(res->end);
845 flags = res->flags & ~IORESOURCE_SIZEALIGN;
846 if (!upper_bits)
847 flags &= ~IORESOURCE_MEM_64;
848 vmd->resources[1] = (struct resource) {
849 .name = "VMD MEMBAR1",
850 .start = res->start,
851 .end = res->end,
852 .flags = flags,
853 .parent = res,
854 };
855
856 res = &vmd->dev->resource[VMD_MEMBAR2];
857 upper_bits = upper_32_bits(res->end);
858 flags = res->flags & ~IORESOURCE_SIZEALIGN;
859 if (!upper_bits)
860 flags &= ~IORESOURCE_MEM_64;
861 vmd->resources[2] = (struct resource) {
862 .name = "VMD MEMBAR2",
863 .start = res->start + membar2_offset,
864 .end = res->end,
865 .flags = flags,
866 .parent = res,
867 };
868
869 sd->vmd_dev = vmd->dev;
870 sd->domain = vmd_find_free_domain();
871 if (sd->domain < 0)
872 return sd->domain;
873
874 sd->node = pcibus_to_node(vmd->dev->bus);
875
876 /*
877 * Currently MSI remapping must be enabled in guest passthrough mode
878 * due to some missing interrupt remapping plumbing. This is probably
879 * acceptable because the guest is usually CPU-limited and MSI
880 * remapping doesn't become a performance bottleneck.
881 */
882 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
883 offset[0] || offset[1]) {
884 ret = vmd_alloc_irqs(vmd);
885 if (ret)
886 return ret;
887
888 vmd_set_msi_remapping(vmd, true);
889
890 ret = vmd_create_irq_domain(vmd);
891 if (ret)
892 return ret;
893 } else {
894 vmd_set_msi_remapping(vmd, false);
895 }
896
897 pci_add_resource(&resources, &vmd->resources[0]);
898 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
899 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
900
901 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
902 &vmd_ops, sd, &resources);
903 if (!vmd->bus) {
904 pci_free_resource_list(&resources);
905 vmd_remove_irq_domain(vmd);
906 return -ENODEV;
907 }
908
909 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
910 to_pci_host_bridge(vmd->bus->bridge));
911
912 vmd_attach_resources(vmd);
913 if (vmd->irq_domain)
914 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
915 else
916 dev_set_msi_domain(&vmd->bus->dev,
917 dev_get_msi_domain(&vmd->dev->dev));
918
919 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
920 "domain"), "Can't create symlink to domain\n");
921
922 vmd_acpi_begin();
923
924 pci_scan_child_bus(vmd->bus);
925 vmd_domain_reset(vmd);
926
927 /* When Intel VMD is enabled, the OS does not discover the Root Ports
928 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
929 * a reset to the parent of the PCI device supplied as argument. This
930 * is why we pass a child device, so the reset can be triggered at
931 * the Intel bridge level and propagated to all the children in the
932 * hierarchy.
933 */
934 list_for_each_entry(child, &vmd->bus->children, node) {
935 if (!list_empty(&child->devices)) {
936 dev = list_first_entry(&child->devices,
937 struct pci_dev, bus_list);
938 ret = pci_reset_bus(dev);
939 if (ret)
940 pci_warn(dev, "can't reset device: %d\n", ret);
941
942 break;
943 }
944 }
945
946 pci_assign_unassigned_bus_resources(vmd->bus);
947
948 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
949
950 /*
951 * VMD root buses are virtual and don't return true on pci_is_pcie()
952 * and will fail pcie_bus_configure_settings() early. It can instead be
953 * run on each of the real root ports.
954 */
955 list_for_each_entry(child, &vmd->bus->children, node)
956 pcie_bus_configure_settings(child);
957
958 pci_bus_add_devices(vmd->bus);
959
960 vmd_acpi_end();
961 return 0;
962 }
963
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)964 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
965 {
966 unsigned long features = (unsigned long) id->driver_data;
967 struct vmd_dev *vmd;
968 int err;
969
970 if (xen_domain()) {
971 /*
972 * Xen doesn't have knowledge about devices in the VMD bus
973 * because the config space of devices behind the VMD bridge is
974 * not known to Xen, and hence Xen cannot discover or configure
975 * them in any way.
976 *
977 * Bypass of MSI remapping won't work in that case as direct
978 * write by Linux to the MSI entries won't result in functional
979 * interrupts, as Xen is the entity that manages the host
980 * interrupt controller and must configure interrupts. However
981 * multiplexing of interrupts by the VMD bridge will work under
982 * Xen, so force the usage of that mode which must always be
983 * supported by VMD bridges.
984 */
985 features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP;
986 }
987
988 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
989 return -ENOMEM;
990
991 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
992 if (!vmd)
993 return -ENOMEM;
994
995 vmd->dev = dev;
996 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
997 if (vmd->instance < 0)
998 return vmd->instance;
999
1000 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
1001 vmd->instance);
1002 if (!vmd->name) {
1003 err = -ENOMEM;
1004 goto out_release_instance;
1005 }
1006
1007 err = pcim_enable_device(dev);
1008 if (err < 0)
1009 goto out_release_instance;
1010
1011 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1012 if (!vmd->cfgbar) {
1013 err = -ENOMEM;
1014 goto out_release_instance;
1015 }
1016
1017 pci_set_master(dev);
1018 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1019 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1020 err = -ENODEV;
1021 goto out_release_instance;
1022 }
1023
1024 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1025 vmd->first_vec = 1;
1026
1027 raw_spin_lock_init(&vmd->cfg_lock);
1028 pci_set_drvdata(dev, vmd);
1029 err = vmd_enable_domain(vmd, features);
1030 if (err)
1031 goto out_release_instance;
1032
1033 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1034 vmd->sysdata.domain);
1035 return 0;
1036
1037 out_release_instance:
1038 ida_free(&vmd_instance_ida, vmd->instance);
1039 return err;
1040 }
1041
vmd_cleanup_srcu(struct vmd_dev * vmd)1042 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1043 {
1044 int i;
1045
1046 for (i = 0; i < vmd->msix_count; i++)
1047 cleanup_srcu_struct(&vmd->irqs[i].srcu);
1048 }
1049
vmd_remove(struct pci_dev * dev)1050 static void vmd_remove(struct pci_dev *dev)
1051 {
1052 struct vmd_dev *vmd = pci_get_drvdata(dev);
1053
1054 pci_stop_root_bus(vmd->bus);
1055 sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1056 pci_remove_root_bus(vmd->bus);
1057 vmd_cleanup_srcu(vmd);
1058 vmd_detach_resources(vmd);
1059 vmd_remove_irq_domain(vmd);
1060 ida_free(&vmd_instance_ida, vmd->instance);
1061 }
1062
vmd_shutdown(struct pci_dev * dev)1063 static void vmd_shutdown(struct pci_dev *dev)
1064 {
1065 struct vmd_dev *vmd = pci_get_drvdata(dev);
1066
1067 vmd_remove_irq_domain(vmd);
1068 }
1069
1070 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)1071 static int vmd_suspend(struct device *dev)
1072 {
1073 struct pci_dev *pdev = to_pci_dev(dev);
1074 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1075 int i;
1076
1077 for (i = 0; i < vmd->msix_count; i++)
1078 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1079
1080 return 0;
1081 }
1082
vmd_resume(struct device * dev)1083 static int vmd_resume(struct device *dev)
1084 {
1085 struct pci_dev *pdev = to_pci_dev(dev);
1086 struct vmd_dev *vmd = pci_get_drvdata(pdev);
1087 int err, i;
1088
1089 vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1090
1091 for (i = 0; i < vmd->msix_count; i++) {
1092 err = devm_request_irq(dev, vmd->irqs[i].virq,
1093 vmd_irq, IRQF_NO_THREAD,
1094 vmd->name, &vmd->irqs[i]);
1095 if (err)
1096 return err;
1097 }
1098
1099 return 0;
1100 }
1101 #endif
1102 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1103
1104 static const struct pci_device_id vmd_ids[] = {
1105 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1106 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1107 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1108 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1109 VMD_FEAT_HAS_BUS_RESTRICTIONS |
1110 VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1111 {PCI_VDEVICE(INTEL, 0x467f),
1112 .driver_data = VMD_FEATS_CLIENT,},
1113 {PCI_VDEVICE(INTEL, 0x4c3d),
1114 .driver_data = VMD_FEATS_CLIENT,},
1115 {PCI_VDEVICE(INTEL, 0xa77f),
1116 .driver_data = VMD_FEATS_CLIENT,},
1117 {PCI_VDEVICE(INTEL, 0x7d0b),
1118 .driver_data = VMD_FEATS_CLIENT,},
1119 {PCI_VDEVICE(INTEL, 0xad0b),
1120 .driver_data = VMD_FEATS_CLIENT,},
1121 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1122 .driver_data = VMD_FEATS_CLIENT,},
1123 {PCI_VDEVICE(INTEL, 0xb60b),
1124 .driver_data = VMD_FEATS_CLIENT,},
1125 {PCI_VDEVICE(INTEL, 0xb06f),
1126 .driver_data = VMD_FEATS_CLIENT,},
1127 {PCI_VDEVICE(INTEL, 0xb07f),
1128 .driver_data = VMD_FEATS_CLIENT,},
1129 {0,}
1130 };
1131 MODULE_DEVICE_TABLE(pci, vmd_ids);
1132
1133 static struct pci_driver vmd_drv = {
1134 .name = "vmd",
1135 .id_table = vmd_ids,
1136 .probe = vmd_probe,
1137 .remove = vmd_remove,
1138 .shutdown = vmd_shutdown,
1139 .driver = {
1140 .pm = &vmd_dev_pm_ops,
1141 },
1142 };
1143 module_pci_driver(vmd_drv);
1144
1145 MODULE_AUTHOR("Intel Corporation");
1146 MODULE_DESCRIPTION("Volume Management Device driver");
1147 MODULE_LICENSE("GPL v2");
1148 MODULE_VERSION("0.6");
1149