xref: /linux/drivers/irqchip/irq-gic-v3-its.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/efi.h>
15 #include <linux/genalloc.h>
16 #include <linux/interrupt.h>
17 #include <linux/iommu.h>
18 #include <linux/iopoll.h>
19 #include <linux/irqdomain.h>
20 #include <linux/list.h>
21 #include <linux/log2.h>
22 #include <linux/mem_encrypt.h>
23 #include <linux/memblock.h>
24 #include <linux/mm.h>
25 #include <linux/msi.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_irq.h>
29 #include <linux/of_pci.h>
30 #include <linux/of_platform.h>
31 #include <linux/percpu.h>
32 #include <linux/set_memory.h>
33 #include <linux/slab.h>
34 #include <linux/syscore_ops.h>
35 
36 #include <linux/irqchip.h>
37 #include <linux/irqchip/arm-gic-v3.h>
38 #include <linux/irqchip/arm-gic-v4.h>
39 
40 #include <asm/cputype.h>
41 #include <asm/exception.h>
42 
43 #include "irq-gic-common.h"
44 #include "irq-gic-its-msi-parent.h"
45 #include <linux/irqchip/irq-msi-lib.h>
46 
47 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
49 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
50 #define ITS_FLAGS_FORCE_NON_SHAREABLE		(1ULL << 3)
51 #define ITS_FLAGS_WORKAROUND_HISILICON_162100801	(1ULL << 4)
52 
53 #define RD_LOCAL_LPI_ENABLED                    BIT(0)
54 #define RD_LOCAL_PENDTABLE_PREALLOCATED         BIT(1)
55 #define RD_LOCAL_MEMRESERVE_DONE                BIT(2)
56 
57 static u32 lpi_id_bits;
58 
59 /*
60  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
61  * deal with (one configuration byte per interrupt). PENDBASE has to
62  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
63  */
64 #define LPI_NRBITS		lpi_id_bits
65 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
66 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
67 
68 static u8 __ro_after_init lpi_prop_prio;
69 static struct its_node *find_4_1_its(void);
70 
71 /*
72  * Collection structure - just an ID, and a redistributor address to
73  * ping. We use one per CPU as a bag of interrupts assigned to this
74  * CPU.
75  */
76 struct its_collection {
77 	u64			target_address;
78 	u16			col_id;
79 };
80 
81 /*
82  * The ITS_BASER structure - contains memory information, cached
83  * value of BASER register configuration and ITS page size.
84  */
85 struct its_baser {
86 	void		*base;
87 	u64		val;
88 	u32		order;
89 	u32		psz;
90 };
91 
92 struct its_device;
93 
94 /*
95  * The ITS structure - contains most of the infrastructure, with the
96  * top-level MSI domain, the command queue, the collections, and the
97  * list of devices writing to it.
98  *
99  * dev_alloc_lock has to be taken for device allocations, while the
100  * spinlock must be taken to parse data structures such as the device
101  * list.
102  */
103 struct its_node {
104 	raw_spinlock_t		lock;
105 	struct mutex		dev_alloc_lock;
106 	struct list_head	entry;
107 	void __iomem		*base;
108 	void __iomem		*sgir_base;
109 	phys_addr_t		phys_base;
110 	struct its_cmd_block	*cmd_base;
111 	struct its_cmd_block	*cmd_write;
112 	struct its_baser	tables[GITS_BASER_NR_REGS];
113 	struct its_collection	*collections;
114 	struct fwnode_handle	*fwnode_handle;
115 	u64			(*get_msi_base)(struct its_device *its_dev);
116 	u64			typer;
117 	u64			cbaser_save;
118 	u32			ctlr_save;
119 	u32			mpidr;
120 	struct list_head	its_device_list;
121 	u64			flags;
122 	unsigned long		list_nr;
123 	int			numa_node;
124 	unsigned int		msi_domain_flags;
125 	u32			pre_its_base; /* for Socionext Synquacer */
126 	int			vlpi_redist_offset;
127 };
128 
129 static DEFINE_PER_CPU(struct its_node *, local_4_1_its);
130 
131 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
132 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
133 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
134 
135 #define ITS_ITT_ALIGN		SZ_256
136 
137 /* The maximum number of VPEID bits supported by VLPI commands */
138 #define ITS_MAX_VPEID_BITS						\
139 	({								\
140 		int nvpeid = 16;					\
141 		if (gic_rdists->has_rvpeid &&				\
142 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
143 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
144 				      GICD_TYPER2_VID);			\
145 									\
146 		nvpeid;							\
147 	})
148 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
149 
150 /* Convert page order to size in bytes */
151 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
152 
153 struct event_lpi_map {
154 	unsigned long		*lpi_map;
155 	u16			*col_map;
156 	irq_hw_number_t		lpi_base;
157 	int			nr_lpis;
158 	raw_spinlock_t		vlpi_lock;
159 	struct its_vm		*vm;
160 	struct its_vlpi_map	*vlpi_maps;
161 	int			nr_vlpis;
162 };
163 
164 /*
165  * The ITS view of a device - belongs to an ITS, owns an interrupt
166  * translation table, and a list of interrupts.  If it some of its
167  * LPIs are injected into a guest (GICv4), the event_map.vm field
168  * indicates which one.
169  */
170 struct its_device {
171 	struct list_head	entry;
172 	struct its_node		*its;
173 	struct event_lpi_map	event_map;
174 	void			*itt;
175 	u32			itt_sz;
176 	u32			nr_ites;
177 	u32			device_id;
178 	bool			shared;
179 };
180 
181 static struct {
182 	raw_spinlock_t		lock;
183 	struct its_device	*dev;
184 	struct its_vpe		**vpes;
185 	int			next_victim;
186 } vpe_proxy;
187 
188 struct cpu_lpi_count {
189 	atomic_t	managed;
190 	atomic_t	unmanaged;
191 };
192 
193 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
194 
195 static LIST_HEAD(its_nodes);
196 static DEFINE_RAW_SPINLOCK(its_lock);
197 static struct rdists *gic_rdists;
198 static struct irq_domain *its_parent;
199 
200 static unsigned long its_list_map;
201 static u16 vmovp_seq_num;
202 static DEFINE_RAW_SPINLOCK(vmovp_lock);
203 
204 static DEFINE_IDA(its_vpeid_ida);
205 
206 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
207 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
208 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
209 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
210 
211 static gfp_t gfp_flags_quirk;
212 
its_alloc_pages_node(int node,gfp_t gfp,unsigned int order)213 static struct page *its_alloc_pages_node(int node, gfp_t gfp,
214 					 unsigned int order)
215 {
216 	struct page *page;
217 	int ret = 0;
218 
219 	page = alloc_pages_node(node, gfp | gfp_flags_quirk, order);
220 
221 	if (!page)
222 		return NULL;
223 
224 	ret = set_memory_decrypted((unsigned long)page_address(page),
225 				   1 << order);
226 	/*
227 	 * If set_memory_decrypted() fails then we don't know what state the
228 	 * page is in, so we can't free it. Instead we leak it.
229 	 * set_memory_decrypted() will already have WARNed.
230 	 */
231 	if (ret)
232 		return NULL;
233 
234 	return page;
235 }
236 
its_alloc_pages(gfp_t gfp,unsigned int order)237 static struct page *its_alloc_pages(gfp_t gfp, unsigned int order)
238 {
239 	return its_alloc_pages_node(NUMA_NO_NODE, gfp, order);
240 }
241 
its_free_pages(void * addr,unsigned int order)242 static void its_free_pages(void *addr, unsigned int order)
243 {
244 	/*
245 	 * If the memory cannot be encrypted again then we must leak the pages.
246 	 * set_memory_encrypted() will already have WARNed.
247 	 */
248 	if (set_memory_encrypted((unsigned long)addr, 1 << order))
249 		return;
250 	free_pages((unsigned long)addr, order);
251 }
252 
253 static struct gen_pool *itt_pool;
254 
itt_alloc_pool(int node,int size)255 static void *itt_alloc_pool(int node, int size)
256 {
257 	unsigned long addr;
258 	struct page *page;
259 
260 	if (size >= PAGE_SIZE) {
261 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, get_order(size));
262 
263 		return page ? page_address(page) : NULL;
264 	}
265 
266 	do {
267 		addr = gen_pool_alloc(itt_pool, size);
268 		if (addr)
269 			break;
270 
271 		page = its_alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
272 		if (!page)
273 			break;
274 
275 		gen_pool_add(itt_pool, (unsigned long)page_address(page), PAGE_SIZE, node);
276 	} while (!addr);
277 
278 	return (void *)addr;
279 }
280 
itt_free_pool(void * addr,int size)281 static void itt_free_pool(void *addr, int size)
282 {
283 	if (!addr)
284 		return;
285 
286 	if (size >= PAGE_SIZE) {
287 		its_free_pages(addr, get_order(size));
288 		return;
289 	}
290 
291 	gen_pool_free(itt_pool, (unsigned long)addr, size);
292 }
293 
294 /*
295  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
296  * always have vSGIs mapped.
297  */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)298 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
299 {
300 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
301 }
302 
rdists_support_shareable(void)303 static bool rdists_support_shareable(void)
304 {
305 	return !(gic_rdists->flags & RDIST_FLAGS_FORCE_NON_SHAREABLE);
306 }
307 
get_its_list(struct its_vm * vm)308 static u16 get_its_list(struct its_vm *vm)
309 {
310 	struct its_node *its;
311 	unsigned long its_list = 0;
312 
313 	list_for_each_entry(its, &its_nodes, entry) {
314 		if (!is_v4(its))
315 			continue;
316 
317 		if (require_its_list_vmovp(vm, its))
318 			__set_bit(its->list_nr, &its_list);
319 	}
320 
321 	return (u16)its_list;
322 }
323 
its_get_event_id(struct irq_data * d)324 static inline u32 its_get_event_id(struct irq_data *d)
325 {
326 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
327 	return d->hwirq - its_dev->event_map.lpi_base;
328 }
329 
dev_event_to_col(struct its_device * its_dev,u32 event)330 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
331 					       u32 event)
332 {
333 	struct its_node *its = its_dev->its;
334 
335 	return its->collections + its_dev->event_map.col_map[event];
336 }
337 
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)338 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
339 					       u32 event)
340 {
341 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
342 		return NULL;
343 
344 	return &its_dev->event_map.vlpi_maps[event];
345 }
346 
get_vlpi_map(struct irq_data * d)347 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
348 {
349 	if (irqd_is_forwarded_to_vcpu(d)) {
350 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
351 		u32 event = its_get_event_id(d);
352 
353 		return dev_event_to_vlpi_map(its_dev, event);
354 	}
355 
356 	return NULL;
357 }
358 
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)359 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
360 {
361 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
362 	return vpe->col_idx;
363 }
364 
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)365 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
366 {
367 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
368 }
369 
370 static struct irq_chip its_vpe_irq_chip;
371 
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)372 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
373 {
374 	struct its_vpe *vpe = NULL;
375 	int cpu;
376 
377 	if (d->chip == &its_vpe_irq_chip) {
378 		vpe = irq_data_get_irq_chip_data(d);
379 	} else {
380 		struct its_vlpi_map *map = get_vlpi_map(d);
381 		if (map)
382 			vpe = map->vpe;
383 	}
384 
385 	if (vpe) {
386 		cpu = vpe_to_cpuid_lock(vpe, flags);
387 	} else {
388 		/* Physical LPIs are already locked via the irq_desc lock */
389 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
390 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
391 		/* Keep GCC quiet... */
392 		*flags = 0;
393 	}
394 
395 	return cpu;
396 }
397 
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)398 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
399 {
400 	struct its_vpe *vpe = NULL;
401 
402 	if (d->chip == &its_vpe_irq_chip) {
403 		vpe = irq_data_get_irq_chip_data(d);
404 	} else {
405 		struct its_vlpi_map *map = get_vlpi_map(d);
406 		if (map)
407 			vpe = map->vpe;
408 	}
409 
410 	if (vpe)
411 		vpe_to_cpuid_unlock(vpe, flags);
412 }
413 
valid_col(struct its_collection * col)414 static struct its_collection *valid_col(struct its_collection *col)
415 {
416 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
417 		return NULL;
418 
419 	return col;
420 }
421 
valid_vpe(struct its_node * its,struct its_vpe * vpe)422 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
423 {
424 	if (valid_col(its->collections + vpe->col_idx))
425 		return vpe;
426 
427 	return NULL;
428 }
429 
430 /*
431  * ITS command descriptors - parameters to be encoded in a command
432  * block.
433  */
434 struct its_cmd_desc {
435 	union {
436 		struct {
437 			struct its_device *dev;
438 			u32 event_id;
439 		} its_inv_cmd;
440 
441 		struct {
442 			struct its_device *dev;
443 			u32 event_id;
444 		} its_clear_cmd;
445 
446 		struct {
447 			struct its_device *dev;
448 			u32 event_id;
449 		} its_int_cmd;
450 
451 		struct {
452 			struct its_device *dev;
453 			int valid;
454 		} its_mapd_cmd;
455 
456 		struct {
457 			struct its_collection *col;
458 			int valid;
459 		} its_mapc_cmd;
460 
461 		struct {
462 			struct its_device *dev;
463 			u32 phys_id;
464 			u32 event_id;
465 		} its_mapti_cmd;
466 
467 		struct {
468 			struct its_device *dev;
469 			struct its_collection *col;
470 			u32 event_id;
471 		} its_movi_cmd;
472 
473 		struct {
474 			struct its_device *dev;
475 			u32 event_id;
476 		} its_discard_cmd;
477 
478 		struct {
479 			struct its_collection *col;
480 		} its_invall_cmd;
481 
482 		struct {
483 			struct its_vpe *vpe;
484 		} its_vinvall_cmd;
485 
486 		struct {
487 			struct its_vpe *vpe;
488 			struct its_collection *col;
489 			bool valid;
490 		} its_vmapp_cmd;
491 
492 		struct {
493 			struct its_vpe *vpe;
494 			struct its_device *dev;
495 			u32 virt_id;
496 			u32 event_id;
497 			bool db_enabled;
498 		} its_vmapti_cmd;
499 
500 		struct {
501 			struct its_vpe *vpe;
502 			struct its_device *dev;
503 			u32 event_id;
504 			bool db_enabled;
505 		} its_vmovi_cmd;
506 
507 		struct {
508 			struct its_vpe *vpe;
509 			struct its_collection *col;
510 			u16 seq_num;
511 			u16 its_list;
512 		} its_vmovp_cmd;
513 
514 		struct {
515 			struct its_vpe *vpe;
516 		} its_invdb_cmd;
517 
518 		struct {
519 			struct its_vpe *vpe;
520 			u8 sgi;
521 			u8 priority;
522 			bool enable;
523 			bool group;
524 			bool clear;
525 		} its_vsgi_cmd;
526 	};
527 };
528 
529 /*
530  * The ITS command block, which is what the ITS actually parses.
531  */
532 struct its_cmd_block {
533 	union {
534 		u64	raw_cmd[4];
535 		__le64	raw_cmd_le[4];
536 	};
537 };
538 
539 #define ITS_CMD_QUEUE_SZ		SZ_64K
540 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
541 
542 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
543 						    struct its_cmd_block *,
544 						    struct its_cmd_desc *);
545 
546 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
547 					      struct its_cmd_block *,
548 					      struct its_cmd_desc *);
549 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)550 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
551 {
552 	u64 mask = GENMASK_ULL(h, l);
553 	*raw_cmd &= ~mask;
554 	*raw_cmd |= (val << l) & mask;
555 }
556 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)557 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
558 {
559 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
560 }
561 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)562 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
563 {
564 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
565 }
566 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)567 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
568 {
569 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
570 }
571 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)572 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
573 {
574 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
575 }
576 
its_encode_size(struct its_cmd_block * cmd,u8 size)577 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
578 {
579 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
580 }
581 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)582 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
583 {
584 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
585 }
586 
its_encode_valid(struct its_cmd_block * cmd,int valid)587 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
588 {
589 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
590 }
591 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)592 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
593 {
594 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
595 }
596 
its_encode_collection(struct its_cmd_block * cmd,u16 col)597 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
598 {
599 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
600 }
601 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)602 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
603 {
604 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
605 }
606 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)607 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
608 {
609 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
610 }
611 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)612 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
613 {
614 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
615 }
616 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)617 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
618 {
619 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
620 }
621 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)622 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
623 {
624 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
625 }
626 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)627 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
628 {
629 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
630 }
631 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)632 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
633 {
634 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
635 }
636 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)637 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
638 {
639 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
640 }
641 
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)642 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
643 {
644 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
645 }
646 
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)647 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
648 {
649 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
650 }
651 
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)652 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
653 {
654 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
655 }
656 
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)657 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
658 					u32 vpe_db_lpi)
659 {
660 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
661 }
662 
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)663 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
664 					u32 vpe_db_lpi)
665 {
666 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
667 }
668 
its_encode_db(struct its_cmd_block * cmd,bool db)669 static void its_encode_db(struct its_cmd_block *cmd, bool db)
670 {
671 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
672 }
673 
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)674 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
675 {
676 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
677 }
678 
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)679 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
680 {
681 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
682 }
683 
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)684 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
685 {
686 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
687 }
688 
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)689 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
690 {
691 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
692 }
693 
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)694 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
695 {
696 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
697 }
698 
its_fixup_cmd(struct its_cmd_block * cmd)699 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
700 {
701 	/* Let's fixup BE commands */
702 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
703 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
704 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
705 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
706 }
707 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)708 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
709 						 struct its_cmd_block *cmd,
710 						 struct its_cmd_desc *desc)
711 {
712 	unsigned long itt_addr;
713 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
714 
715 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
716 
717 	its_encode_cmd(cmd, GITS_CMD_MAPD);
718 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
719 	its_encode_size(cmd, size - 1);
720 	its_encode_itt(cmd, itt_addr);
721 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
722 
723 	its_fixup_cmd(cmd);
724 
725 	return NULL;
726 }
727 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)728 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
729 						 struct its_cmd_block *cmd,
730 						 struct its_cmd_desc *desc)
731 {
732 	its_encode_cmd(cmd, GITS_CMD_MAPC);
733 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
734 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
735 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
736 
737 	its_fixup_cmd(cmd);
738 
739 	return desc->its_mapc_cmd.col;
740 }
741 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)742 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
743 						  struct its_cmd_block *cmd,
744 						  struct its_cmd_desc *desc)
745 {
746 	struct its_collection *col;
747 
748 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
749 			       desc->its_mapti_cmd.event_id);
750 
751 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
752 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
753 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
754 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
755 	its_encode_collection(cmd, col->col_id);
756 
757 	its_fixup_cmd(cmd);
758 
759 	return valid_col(col);
760 }
761 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)762 static struct its_collection *its_build_movi_cmd(struct its_node *its,
763 						 struct its_cmd_block *cmd,
764 						 struct its_cmd_desc *desc)
765 {
766 	struct its_collection *col;
767 
768 	col = dev_event_to_col(desc->its_movi_cmd.dev,
769 			       desc->its_movi_cmd.event_id);
770 
771 	its_encode_cmd(cmd, GITS_CMD_MOVI);
772 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
773 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
774 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
775 
776 	its_fixup_cmd(cmd);
777 
778 	return valid_col(col);
779 }
780 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)781 static struct its_collection *its_build_discard_cmd(struct its_node *its,
782 						    struct its_cmd_block *cmd,
783 						    struct its_cmd_desc *desc)
784 {
785 	struct its_collection *col;
786 
787 	col = dev_event_to_col(desc->its_discard_cmd.dev,
788 			       desc->its_discard_cmd.event_id);
789 
790 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
791 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
792 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
793 
794 	its_fixup_cmd(cmd);
795 
796 	return valid_col(col);
797 }
798 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)799 static struct its_collection *its_build_inv_cmd(struct its_node *its,
800 						struct its_cmd_block *cmd,
801 						struct its_cmd_desc *desc)
802 {
803 	struct its_collection *col;
804 
805 	col = dev_event_to_col(desc->its_inv_cmd.dev,
806 			       desc->its_inv_cmd.event_id);
807 
808 	its_encode_cmd(cmd, GITS_CMD_INV);
809 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
810 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
811 
812 	its_fixup_cmd(cmd);
813 
814 	return valid_col(col);
815 }
816 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)817 static struct its_collection *its_build_int_cmd(struct its_node *its,
818 						struct its_cmd_block *cmd,
819 						struct its_cmd_desc *desc)
820 {
821 	struct its_collection *col;
822 
823 	col = dev_event_to_col(desc->its_int_cmd.dev,
824 			       desc->its_int_cmd.event_id);
825 
826 	its_encode_cmd(cmd, GITS_CMD_INT);
827 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
828 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
829 
830 	its_fixup_cmd(cmd);
831 
832 	return valid_col(col);
833 }
834 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)835 static struct its_collection *its_build_clear_cmd(struct its_node *its,
836 						  struct its_cmd_block *cmd,
837 						  struct its_cmd_desc *desc)
838 {
839 	struct its_collection *col;
840 
841 	col = dev_event_to_col(desc->its_clear_cmd.dev,
842 			       desc->its_clear_cmd.event_id);
843 
844 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
845 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
846 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
847 
848 	its_fixup_cmd(cmd);
849 
850 	return valid_col(col);
851 }
852 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)853 static struct its_collection *its_build_invall_cmd(struct its_node *its,
854 						   struct its_cmd_block *cmd,
855 						   struct its_cmd_desc *desc)
856 {
857 	its_encode_cmd(cmd, GITS_CMD_INVALL);
858 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
859 
860 	its_fixup_cmd(cmd);
861 
862 	return desc->its_invall_cmd.col;
863 }
864 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)865 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
866 					     struct its_cmd_block *cmd,
867 					     struct its_cmd_desc *desc)
868 {
869 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
870 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
871 
872 	its_fixup_cmd(cmd);
873 
874 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
875 }
876 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)877 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
878 					   struct its_cmd_block *cmd,
879 					   struct its_cmd_desc *desc)
880 {
881 	struct its_vpe *vpe = valid_vpe(its, desc->its_vmapp_cmd.vpe);
882 	unsigned long vpt_addr, vconf_addr;
883 	u64 target;
884 	bool alloc;
885 
886 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
887 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
888 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
889 
890 	if (!desc->its_vmapp_cmd.valid) {
891 		alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
892 		if (is_v4_1(its)) {
893 			its_encode_alloc(cmd, alloc);
894 			/*
895 			 * Unmapping a VPE is self-synchronizing on GICv4.1,
896 			 * no need to issue a VSYNC.
897 			 */
898 			vpe = NULL;
899 		}
900 
901 		goto out;
902 	}
903 
904 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
905 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
906 
907 	its_encode_target(cmd, target);
908 	its_encode_vpt_addr(cmd, vpt_addr);
909 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
910 
911 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
912 
913 	if (!is_v4_1(its))
914 		goto out;
915 
916 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
917 
918 	its_encode_alloc(cmd, alloc);
919 
920 	/*
921 	 * GICv4.1 provides a way to get the VLPI state, which needs the vPE
922 	 * to be unmapped first, and in this case, we may remap the vPE
923 	 * back while the VPT is not empty. So we can't assume that the
924 	 * VPT is empty on map. This is why we never advertise PTZ.
925 	 */
926 	its_encode_ptz(cmd, false);
927 	its_encode_vconf_addr(cmd, vconf_addr);
928 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
929 
930 out:
931 	its_fixup_cmd(cmd);
932 
933 	return vpe;
934 }
935 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)936 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
937 					    struct its_cmd_block *cmd,
938 					    struct its_cmd_desc *desc)
939 {
940 	u32 db;
941 
942 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
943 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
944 	else
945 		db = 1023;
946 
947 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
948 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
949 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
950 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
951 	its_encode_db_phys_id(cmd, db);
952 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
953 
954 	its_fixup_cmd(cmd);
955 
956 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
957 }
958 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)959 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
960 					   struct its_cmd_block *cmd,
961 					   struct its_cmd_desc *desc)
962 {
963 	u32 db;
964 
965 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
966 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
967 	else
968 		db = 1023;
969 
970 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
971 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
972 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
973 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
974 	its_encode_db_phys_id(cmd, db);
975 	its_encode_db_valid(cmd, true);
976 
977 	its_fixup_cmd(cmd);
978 
979 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
980 }
981 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)982 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
983 					   struct its_cmd_block *cmd,
984 					   struct its_cmd_desc *desc)
985 {
986 	u64 target;
987 
988 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
989 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
990 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
991 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
992 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
993 	its_encode_target(cmd, target);
994 
995 	if (is_v4_1(its)) {
996 		its_encode_db(cmd, true);
997 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
998 	}
999 
1000 	its_fixup_cmd(cmd);
1001 
1002 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
1003 }
1004 
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1005 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
1006 					  struct its_cmd_block *cmd,
1007 					  struct its_cmd_desc *desc)
1008 {
1009 	struct its_vlpi_map *map;
1010 
1011 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
1012 				    desc->its_inv_cmd.event_id);
1013 
1014 	its_encode_cmd(cmd, GITS_CMD_INV);
1015 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
1016 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
1017 
1018 	its_fixup_cmd(cmd);
1019 
1020 	return valid_vpe(its, map->vpe);
1021 }
1022 
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1023 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
1024 					  struct its_cmd_block *cmd,
1025 					  struct its_cmd_desc *desc)
1026 {
1027 	struct its_vlpi_map *map;
1028 
1029 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
1030 				    desc->its_int_cmd.event_id);
1031 
1032 	its_encode_cmd(cmd, GITS_CMD_INT);
1033 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
1034 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
1035 
1036 	its_fixup_cmd(cmd);
1037 
1038 	return valid_vpe(its, map->vpe);
1039 }
1040 
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1041 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
1042 					    struct its_cmd_block *cmd,
1043 					    struct its_cmd_desc *desc)
1044 {
1045 	struct its_vlpi_map *map;
1046 
1047 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
1048 				    desc->its_clear_cmd.event_id);
1049 
1050 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
1051 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
1052 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
1053 
1054 	its_fixup_cmd(cmd);
1055 
1056 	return valid_vpe(its, map->vpe);
1057 }
1058 
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1059 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
1060 					   struct its_cmd_block *cmd,
1061 					   struct its_cmd_desc *desc)
1062 {
1063 	if (WARN_ON(!is_v4_1(its)))
1064 		return NULL;
1065 
1066 	its_encode_cmd(cmd, GITS_CMD_INVDB);
1067 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
1068 
1069 	its_fixup_cmd(cmd);
1070 
1071 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
1072 }
1073 
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)1074 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
1075 					  struct its_cmd_block *cmd,
1076 					  struct its_cmd_desc *desc)
1077 {
1078 	if (WARN_ON(!is_v4_1(its)))
1079 		return NULL;
1080 
1081 	its_encode_cmd(cmd, GITS_CMD_VSGI);
1082 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
1083 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
1084 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
1085 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
1086 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
1087 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
1088 
1089 	its_fixup_cmd(cmd);
1090 
1091 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
1092 }
1093 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)1094 static u64 its_cmd_ptr_to_offset(struct its_node *its,
1095 				 struct its_cmd_block *ptr)
1096 {
1097 	return (ptr - its->cmd_base) * sizeof(*ptr);
1098 }
1099 
its_queue_full(struct its_node * its)1100 static int its_queue_full(struct its_node *its)
1101 {
1102 	int widx;
1103 	int ridx;
1104 
1105 	widx = its->cmd_write - its->cmd_base;
1106 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
1107 
1108 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
1109 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
1110 		return 1;
1111 
1112 	return 0;
1113 }
1114 
its_allocate_entry(struct its_node * its)1115 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
1116 {
1117 	struct its_cmd_block *cmd;
1118 	u32 count = 1000000;	/* 1s! */
1119 
1120 	while (its_queue_full(its)) {
1121 		count--;
1122 		if (!count) {
1123 			pr_err_ratelimited("ITS queue not draining\n");
1124 			return NULL;
1125 		}
1126 		cpu_relax();
1127 		udelay(1);
1128 	}
1129 
1130 	cmd = its->cmd_write++;
1131 
1132 	/* Handle queue wrapping */
1133 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1134 		its->cmd_write = its->cmd_base;
1135 
1136 	/* Clear command  */
1137 	cmd->raw_cmd[0] = 0;
1138 	cmd->raw_cmd[1] = 0;
1139 	cmd->raw_cmd[2] = 0;
1140 	cmd->raw_cmd[3] = 0;
1141 
1142 	return cmd;
1143 }
1144 
its_post_commands(struct its_node * its)1145 static struct its_cmd_block *its_post_commands(struct its_node *its)
1146 {
1147 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1148 
1149 	writel_relaxed(wr, its->base + GITS_CWRITER);
1150 
1151 	return its->cmd_write;
1152 }
1153 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1154 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1155 {
1156 	/*
1157 	 * Make sure the commands written to memory are observable by
1158 	 * the ITS.
1159 	 */
1160 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1161 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1162 	else
1163 		dsb(ishst);
1164 }
1165 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1166 static int its_wait_for_range_completion(struct its_node *its,
1167 					 u64	prev_idx,
1168 					 struct its_cmd_block *to)
1169 {
1170 	u64 rd_idx, to_idx, linear_idx;
1171 	u32 count = 1000000;	/* 1s! */
1172 
1173 	/* Linearize to_idx if the command set has wrapped around */
1174 	to_idx = its_cmd_ptr_to_offset(its, to);
1175 	if (to_idx < prev_idx)
1176 		to_idx += ITS_CMD_QUEUE_SZ;
1177 
1178 	linear_idx = prev_idx;
1179 
1180 	while (1) {
1181 		s64 delta;
1182 
1183 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1184 
1185 		/*
1186 		 * Compute the read pointer progress, taking the
1187 		 * potential wrap-around into account.
1188 		 */
1189 		delta = rd_idx - prev_idx;
1190 		if (rd_idx < prev_idx)
1191 			delta += ITS_CMD_QUEUE_SZ;
1192 
1193 		linear_idx += delta;
1194 		if (linear_idx >= to_idx)
1195 			break;
1196 
1197 		count--;
1198 		if (!count) {
1199 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1200 					   to_idx, linear_idx);
1201 			return -1;
1202 		}
1203 		prev_idx = rd_idx;
1204 		cpu_relax();
1205 		udelay(1);
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 /* Warning, macro hell follows */
1212 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1213 void name(struct its_node *its,						\
1214 	  buildtype builder,						\
1215 	  struct its_cmd_desc *desc)					\
1216 {									\
1217 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1218 	synctype *sync_obj;						\
1219 	unsigned long flags;						\
1220 	u64 rd_idx;							\
1221 									\
1222 	raw_spin_lock_irqsave(&its->lock, flags);			\
1223 									\
1224 	cmd = its_allocate_entry(its);					\
1225 	if (!cmd) {		/* We're soooooo screewed... */		\
1226 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1227 		return;							\
1228 	}								\
1229 	sync_obj = builder(its, cmd, desc);				\
1230 	its_flush_cmd(its, cmd);					\
1231 									\
1232 	if (sync_obj) {							\
1233 		sync_cmd = its_allocate_entry(its);			\
1234 		if (!sync_cmd)						\
1235 			goto post;					\
1236 									\
1237 		buildfn(its, sync_cmd, sync_obj);			\
1238 		its_flush_cmd(its, sync_cmd);				\
1239 	}								\
1240 									\
1241 post:									\
1242 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1243 	next_cmd = its_post_commands(its);				\
1244 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1245 									\
1246 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1247 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1248 }
1249 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1250 static void its_build_sync_cmd(struct its_node *its,
1251 			       struct its_cmd_block *sync_cmd,
1252 			       struct its_collection *sync_col)
1253 {
1254 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1255 	its_encode_target(sync_cmd, sync_col->target_address);
1256 
1257 	its_fixup_cmd(sync_cmd);
1258 }
1259 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1260 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1261 			     struct its_collection, its_build_sync_cmd)
1262 
1263 static void its_build_vsync_cmd(struct its_node *its,
1264 				struct its_cmd_block *sync_cmd,
1265 				struct its_vpe *sync_vpe)
1266 {
1267 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1268 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1269 
1270 	its_fixup_cmd(sync_cmd);
1271 }
1272 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1273 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1274 			     struct its_vpe, its_build_vsync_cmd)
1275 
1276 static void its_send_int(struct its_device *dev, u32 event_id)
1277 {
1278 	struct its_cmd_desc desc;
1279 
1280 	desc.its_int_cmd.dev = dev;
1281 	desc.its_int_cmd.event_id = event_id;
1282 
1283 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1284 }
1285 
its_send_clear(struct its_device * dev,u32 event_id)1286 static void its_send_clear(struct its_device *dev, u32 event_id)
1287 {
1288 	struct its_cmd_desc desc;
1289 
1290 	desc.its_clear_cmd.dev = dev;
1291 	desc.its_clear_cmd.event_id = event_id;
1292 
1293 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1294 }
1295 
its_send_inv(struct its_device * dev,u32 event_id)1296 static void its_send_inv(struct its_device *dev, u32 event_id)
1297 {
1298 	struct its_cmd_desc desc;
1299 
1300 	desc.its_inv_cmd.dev = dev;
1301 	desc.its_inv_cmd.event_id = event_id;
1302 
1303 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1304 }
1305 
its_send_mapd(struct its_device * dev,int valid)1306 static void its_send_mapd(struct its_device *dev, int valid)
1307 {
1308 	struct its_cmd_desc desc;
1309 
1310 	desc.its_mapd_cmd.dev = dev;
1311 	desc.its_mapd_cmd.valid = !!valid;
1312 
1313 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1314 }
1315 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1316 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1317 			  int valid)
1318 {
1319 	struct its_cmd_desc desc;
1320 
1321 	desc.its_mapc_cmd.col = col;
1322 	desc.its_mapc_cmd.valid = !!valid;
1323 
1324 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1325 }
1326 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1327 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1328 {
1329 	struct its_cmd_desc desc;
1330 
1331 	desc.its_mapti_cmd.dev = dev;
1332 	desc.its_mapti_cmd.phys_id = irq_id;
1333 	desc.its_mapti_cmd.event_id = id;
1334 
1335 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1336 }
1337 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1338 static void its_send_movi(struct its_device *dev,
1339 			  struct its_collection *col, u32 id)
1340 {
1341 	struct its_cmd_desc desc;
1342 
1343 	desc.its_movi_cmd.dev = dev;
1344 	desc.its_movi_cmd.col = col;
1345 	desc.its_movi_cmd.event_id = id;
1346 
1347 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1348 }
1349 
its_send_discard(struct its_device * dev,u32 id)1350 static void its_send_discard(struct its_device *dev, u32 id)
1351 {
1352 	struct its_cmd_desc desc;
1353 
1354 	desc.its_discard_cmd.dev = dev;
1355 	desc.its_discard_cmd.event_id = id;
1356 
1357 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1358 }
1359 
its_send_invall(struct its_node * its,struct its_collection * col)1360 static void its_send_invall(struct its_node *its, struct its_collection *col)
1361 {
1362 	struct its_cmd_desc desc;
1363 
1364 	desc.its_invall_cmd.col = col;
1365 
1366 	its_send_single_command(its, its_build_invall_cmd, &desc);
1367 }
1368 
its_send_vmapti(struct its_device * dev,u32 id)1369 static void its_send_vmapti(struct its_device *dev, u32 id)
1370 {
1371 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1372 	struct its_cmd_desc desc;
1373 
1374 	desc.its_vmapti_cmd.vpe = map->vpe;
1375 	desc.its_vmapti_cmd.dev = dev;
1376 	desc.its_vmapti_cmd.virt_id = map->vintid;
1377 	desc.its_vmapti_cmd.event_id = id;
1378 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1379 
1380 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1381 }
1382 
its_send_vmovi(struct its_device * dev,u32 id)1383 static void its_send_vmovi(struct its_device *dev, u32 id)
1384 {
1385 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1386 	struct its_cmd_desc desc;
1387 
1388 	desc.its_vmovi_cmd.vpe = map->vpe;
1389 	desc.its_vmovi_cmd.dev = dev;
1390 	desc.its_vmovi_cmd.event_id = id;
1391 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1392 
1393 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1394 }
1395 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1396 static void its_send_vmapp(struct its_node *its,
1397 			   struct its_vpe *vpe, bool valid)
1398 {
1399 	struct its_cmd_desc desc;
1400 
1401 	desc.its_vmapp_cmd.vpe = vpe;
1402 	desc.its_vmapp_cmd.valid = valid;
1403 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1404 
1405 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1406 }
1407 
its_send_vmovp(struct its_vpe * vpe)1408 static void its_send_vmovp(struct its_vpe *vpe)
1409 {
1410 	struct its_cmd_desc desc = {};
1411 	struct its_node *its;
1412 	int col_id = vpe->col_idx;
1413 
1414 	desc.its_vmovp_cmd.vpe = vpe;
1415 
1416 	if (!its_list_map) {
1417 		its = list_first_entry(&its_nodes, struct its_node, entry);
1418 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1419 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1420 		return;
1421 	}
1422 
1423 	/*
1424 	 * Yet another marvel of the architecture. If using the
1425 	 * its_list "feature", we need to make sure that all ITSs
1426 	 * receive all VMOVP commands in the same order. The only way
1427 	 * to guarantee this is to make vmovp a serialization point.
1428 	 *
1429 	 * Wall <-- Head.
1430 	 */
1431 	guard(raw_spinlock)(&vmovp_lock);
1432 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1433 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1434 
1435 	/* Emit VMOVPs */
1436 	list_for_each_entry(its, &its_nodes, entry) {
1437 		if (!is_v4(its))
1438 			continue;
1439 
1440 		if (!require_its_list_vmovp(vpe->its_vm, its))
1441 			continue;
1442 
1443 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1444 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1445 	}
1446 }
1447 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1448 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1449 {
1450 	struct its_cmd_desc desc;
1451 
1452 	desc.its_vinvall_cmd.vpe = vpe;
1453 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1454 }
1455 
its_send_vinv(struct its_device * dev,u32 event_id)1456 static void its_send_vinv(struct its_device *dev, u32 event_id)
1457 {
1458 	struct its_cmd_desc desc;
1459 
1460 	/*
1461 	 * There is no real VINV command. This is just a normal INV,
1462 	 * with a VSYNC instead of a SYNC.
1463 	 */
1464 	desc.its_inv_cmd.dev = dev;
1465 	desc.its_inv_cmd.event_id = event_id;
1466 
1467 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1468 }
1469 
its_send_vint(struct its_device * dev,u32 event_id)1470 static void its_send_vint(struct its_device *dev, u32 event_id)
1471 {
1472 	struct its_cmd_desc desc;
1473 
1474 	/*
1475 	 * There is no real VINT command. This is just a normal INT,
1476 	 * with a VSYNC instead of a SYNC.
1477 	 */
1478 	desc.its_int_cmd.dev = dev;
1479 	desc.its_int_cmd.event_id = event_id;
1480 
1481 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1482 }
1483 
its_send_vclear(struct its_device * dev,u32 event_id)1484 static void its_send_vclear(struct its_device *dev, u32 event_id)
1485 {
1486 	struct its_cmd_desc desc;
1487 
1488 	/*
1489 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1490 	 * with a VSYNC instead of a SYNC.
1491 	 */
1492 	desc.its_clear_cmd.dev = dev;
1493 	desc.its_clear_cmd.event_id = event_id;
1494 
1495 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1496 }
1497 
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1498 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1499 {
1500 	struct its_cmd_desc desc;
1501 
1502 	desc.its_invdb_cmd.vpe = vpe;
1503 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1504 }
1505 
1506 /*
1507  * irqchip functions - assumes MSI, mostly.
1508  */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1509 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1510 {
1511 	struct its_vlpi_map *map = get_vlpi_map(d);
1512 	irq_hw_number_t hwirq;
1513 	void *va;
1514 	u8 *cfg;
1515 
1516 	if (map) {
1517 		va = page_address(map->vm->vprop_page);
1518 		hwirq = map->vintid;
1519 
1520 		/* Remember the updated property */
1521 		map->properties &= ~clr;
1522 		map->properties |= set | LPI_PROP_GROUP1;
1523 	} else {
1524 		va = gic_rdists->prop_table_va;
1525 		hwirq = d->hwirq;
1526 	}
1527 
1528 	cfg = va + hwirq - 8192;
1529 	*cfg &= ~clr;
1530 	*cfg |= set | LPI_PROP_GROUP1;
1531 
1532 	/*
1533 	 * Make the above write visible to the redistributors.
1534 	 * And yes, we're flushing exactly: One. Single. Byte.
1535 	 * Humpf...
1536 	 */
1537 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1538 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1539 	else
1540 		dsb(ishst);
1541 }
1542 
wait_for_syncr(void __iomem * rdbase)1543 static void wait_for_syncr(void __iomem *rdbase)
1544 {
1545 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1546 		cpu_relax();
1547 }
1548 
__direct_lpi_inv(struct irq_data * d,u64 val)1549 static void __direct_lpi_inv(struct irq_data *d, u64 val)
1550 {
1551 	void __iomem *rdbase;
1552 	unsigned long flags;
1553 	int cpu;
1554 
1555 	/* Target the redistributor this LPI is currently routed to */
1556 	cpu = irq_to_cpuid_lock(d, &flags);
1557 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1558 
1559 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1560 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1561 	wait_for_syncr(rdbase);
1562 
1563 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1564 	irq_to_cpuid_unlock(d, flags);
1565 }
1566 
direct_lpi_inv(struct irq_data * d)1567 static void direct_lpi_inv(struct irq_data *d)
1568 {
1569 	struct its_vlpi_map *map = get_vlpi_map(d);
1570 	u64 val;
1571 
1572 	if (map) {
1573 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1574 
1575 		WARN_ON(!is_v4_1(its_dev->its));
1576 
1577 		val  = GICR_INVLPIR_V;
1578 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1579 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1580 	} else {
1581 		val = d->hwirq;
1582 	}
1583 
1584 	__direct_lpi_inv(d, val);
1585 }
1586 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1587 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1588 {
1589 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1590 
1591 	lpi_write_config(d, clr, set);
1592 	if (gic_rdists->has_direct_lpi &&
1593 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1594 		direct_lpi_inv(d);
1595 	else if (!irqd_is_forwarded_to_vcpu(d))
1596 		its_send_inv(its_dev, its_get_event_id(d));
1597 	else
1598 		its_send_vinv(its_dev, its_get_event_id(d));
1599 }
1600 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1601 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1602 {
1603 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1604 	u32 event = its_get_event_id(d);
1605 	struct its_vlpi_map *map;
1606 
1607 	/*
1608 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1609 	 * here.
1610 	 */
1611 	if (is_v4_1(its_dev->its))
1612 		return;
1613 
1614 	map = dev_event_to_vlpi_map(its_dev, event);
1615 
1616 	if (map->db_enabled == enable)
1617 		return;
1618 
1619 	map->db_enabled = enable;
1620 
1621 	/*
1622 	 * More fun with the architecture:
1623 	 *
1624 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1625 	 * value or to 1023, depending on the enable bit. But that
1626 	 * would be issuing a mapping for an /existing/ DevID+EventID
1627 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1628 	 * to the /same/ vPE, using this opportunity to adjust the
1629 	 * doorbell. Mouahahahaha. We loves it, Precious.
1630 	 */
1631 	its_send_vmovi(its_dev, event);
1632 }
1633 
its_mask_irq(struct irq_data * d)1634 static void its_mask_irq(struct irq_data *d)
1635 {
1636 	if (irqd_is_forwarded_to_vcpu(d))
1637 		its_vlpi_set_doorbell(d, false);
1638 
1639 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1640 }
1641 
its_unmask_irq(struct irq_data * d)1642 static void its_unmask_irq(struct irq_data *d)
1643 {
1644 	if (irqd_is_forwarded_to_vcpu(d))
1645 		its_vlpi_set_doorbell(d, true);
1646 
1647 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1648 }
1649 
its_read_lpi_count(struct irq_data * d,int cpu)1650 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1651 {
1652 	if (irqd_affinity_is_managed(d))
1653 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1654 
1655 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1656 }
1657 
its_inc_lpi_count(struct irq_data * d,int cpu)1658 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1659 {
1660 	if (irqd_affinity_is_managed(d))
1661 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1662 	else
1663 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1664 }
1665 
its_dec_lpi_count(struct irq_data * d,int cpu)1666 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1667 {
1668 	if (irqd_affinity_is_managed(d))
1669 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1670 	else
1671 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1672 }
1673 
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1674 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1675 					      const struct cpumask *cpu_mask)
1676 {
1677 	unsigned int cpu = nr_cpu_ids, tmp;
1678 	int count = S32_MAX;
1679 
1680 	for_each_cpu(tmp, cpu_mask) {
1681 		int this_count = its_read_lpi_count(d, tmp);
1682 		if (this_count < count) {
1683 			cpu = tmp;
1684 		        count = this_count;
1685 		}
1686 	}
1687 
1688 	return cpu;
1689 }
1690 
1691 /*
1692  * As suggested by Thomas Gleixner in:
1693  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1694  */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1695 static int its_select_cpu(struct irq_data *d,
1696 			  const struct cpumask *aff_mask)
1697 {
1698 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1699 	static DEFINE_RAW_SPINLOCK(tmpmask_lock);
1700 	static struct cpumask __tmpmask;
1701 	struct cpumask *tmpmask;
1702 	unsigned long flags;
1703 	int cpu, node;
1704 	node = its_dev->its->numa_node;
1705 	tmpmask = &__tmpmask;
1706 
1707 	raw_spin_lock_irqsave(&tmpmask_lock, flags);
1708 
1709 	if (!irqd_affinity_is_managed(d)) {
1710 		/* First try the NUMA node */
1711 		if (node != NUMA_NO_NODE) {
1712 			/*
1713 			 * Try the intersection of the affinity mask and the
1714 			 * node mask (and the online mask, just to be safe).
1715 			 */
1716 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1717 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1718 
1719 			/*
1720 			 * Ideally, we would check if the mask is empty, and
1721 			 * try again on the full node here.
1722 			 *
1723 			 * But it turns out that the way ACPI describes the
1724 			 * affinity for ITSs only deals about memory, and
1725 			 * not target CPUs, so it cannot describe a single
1726 			 * ITS placed next to two NUMA nodes.
1727 			 *
1728 			 * Instead, just fallback on the online mask. This
1729 			 * diverges from Thomas' suggestion above.
1730 			 */
1731 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1732 			if (cpu < nr_cpu_ids)
1733 				goto out;
1734 
1735 			/* If we can't cross sockets, give up */
1736 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1737 				goto out;
1738 
1739 			/* If the above failed, expand the search */
1740 		}
1741 
1742 		/* Try the intersection of the affinity and online masks */
1743 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1744 
1745 		/* If that doesn't fly, the online mask is the last resort */
1746 		if (cpumask_empty(tmpmask))
1747 			cpumask_copy(tmpmask, cpu_online_mask);
1748 
1749 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1750 	} else {
1751 		cpumask_copy(tmpmask, aff_mask);
1752 
1753 		/* If we cannot cross sockets, limit the search to that node */
1754 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1755 		    node != NUMA_NO_NODE)
1756 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1757 
1758 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1759 	}
1760 out:
1761 	raw_spin_unlock_irqrestore(&tmpmask_lock, flags);
1762 
1763 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1764 	return cpu;
1765 }
1766 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1767 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1768 			    bool force)
1769 {
1770 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1771 	struct its_collection *target_col;
1772 	u32 id = its_get_event_id(d);
1773 	int cpu, prev_cpu;
1774 
1775 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1776 	if (irqd_is_forwarded_to_vcpu(d))
1777 		return -EINVAL;
1778 
1779 	prev_cpu = its_dev->event_map.col_map[id];
1780 	its_dec_lpi_count(d, prev_cpu);
1781 
1782 	if (!force)
1783 		cpu = its_select_cpu(d, mask_val);
1784 	else
1785 		cpu = cpumask_pick_least_loaded(d, mask_val);
1786 
1787 	if (cpu < 0 || cpu >= nr_cpu_ids)
1788 		goto err;
1789 
1790 	/* don't set the affinity when the target cpu is same as current one */
1791 	if (cpu != prev_cpu) {
1792 		target_col = &its_dev->its->collections[cpu];
1793 		its_send_movi(its_dev, target_col, id);
1794 		its_dev->event_map.col_map[id] = cpu;
1795 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1796 	}
1797 
1798 	its_inc_lpi_count(d, cpu);
1799 
1800 	return IRQ_SET_MASK_OK_DONE;
1801 
1802 err:
1803 	its_inc_lpi_count(d, prev_cpu);
1804 	return -EINVAL;
1805 }
1806 
its_irq_get_msi_base(struct its_device * its_dev)1807 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1808 {
1809 	struct its_node *its = its_dev->its;
1810 
1811 	return its->phys_base + GITS_TRANSLATER;
1812 }
1813 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1814 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1815 {
1816 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1817 
1818 	msg->data = its_get_event_id(d);
1819 	msi_msg_set_addr(irq_data_get_msi_desc(d), msg,
1820 			 its_dev->its->get_msi_base(its_dev));
1821 }
1822 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1823 static int its_irq_set_irqchip_state(struct irq_data *d,
1824 				     enum irqchip_irq_state which,
1825 				     bool state)
1826 {
1827 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1828 	u32 event = its_get_event_id(d);
1829 
1830 	if (which != IRQCHIP_STATE_PENDING)
1831 		return -EINVAL;
1832 
1833 	if (irqd_is_forwarded_to_vcpu(d)) {
1834 		if (state)
1835 			its_send_vint(its_dev, event);
1836 		else
1837 			its_send_vclear(its_dev, event);
1838 	} else {
1839 		if (state)
1840 			its_send_int(its_dev, event);
1841 		else
1842 			its_send_clear(its_dev, event);
1843 	}
1844 
1845 	return 0;
1846 }
1847 
its_irq_retrigger(struct irq_data * d)1848 static int its_irq_retrigger(struct irq_data *d)
1849 {
1850 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1851 }
1852 
1853 /*
1854  * Two favourable cases:
1855  *
1856  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1857  *     for vSGI delivery
1858  *
1859  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1860  *     and we're better off mapping all VPEs always
1861  *
1862  * If neither (a) nor (b) is true, then we map vPEs on demand.
1863  *
1864  */
gic_requires_eager_mapping(void)1865 static bool gic_requires_eager_mapping(void)
1866 {
1867 	if (!its_list_map || gic_rdists->has_rvpeid)
1868 		return true;
1869 
1870 	return false;
1871 }
1872 
its_map_vm(struct its_node * its,struct its_vm * vm)1873 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1874 {
1875 	if (gic_requires_eager_mapping())
1876 		return;
1877 
1878 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1879 
1880 	/*
1881 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1882 	 * them mapped now.
1883 	 */
1884 	vm->vlpi_count[its->list_nr]++;
1885 
1886 	if (vm->vlpi_count[its->list_nr] == 1) {
1887 		int i;
1888 
1889 		for (i = 0; i < vm->nr_vpes; i++) {
1890 			struct its_vpe *vpe = vm->vpes[i];
1891 
1892 			scoped_guard(raw_spinlock, &vpe->vpe_lock)
1893 				its_send_vmapp(its, vpe, true);
1894 
1895 			its_send_vinvall(its, vpe);
1896 		}
1897 	}
1898 }
1899 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1900 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1901 {
1902 	/* Not using the ITS list? Everything is always mapped. */
1903 	if (gic_requires_eager_mapping())
1904 		return;
1905 
1906 	guard(raw_spinlock_irqsave)(&vm->vmapp_lock);
1907 
1908 	if (!--vm->vlpi_count[its->list_nr]) {
1909 		int i;
1910 
1911 		for (i = 0; i < vm->nr_vpes; i++) {
1912 			guard(raw_spinlock)(&vm->vpes[i]->vpe_lock);
1913 			its_send_vmapp(its, vm->vpes[i], false);
1914 		}
1915 	}
1916 }
1917 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1918 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1919 {
1920 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1921 	u32 event = its_get_event_id(d);
1922 
1923 	if (!info->map)
1924 		return -EINVAL;
1925 
1926 	if (!its_dev->event_map.vm) {
1927 		struct its_vlpi_map *maps;
1928 
1929 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1930 			       GFP_ATOMIC);
1931 		if (!maps)
1932 			return -ENOMEM;
1933 
1934 		its_dev->event_map.vm = info->map->vm;
1935 		its_dev->event_map.vlpi_maps = maps;
1936 	} else if (its_dev->event_map.vm != info->map->vm) {
1937 		return -EINVAL;
1938 	}
1939 
1940 	/* Get our private copy of the mapping information */
1941 	its_dev->event_map.vlpi_maps[event] = *info->map;
1942 
1943 	if (irqd_is_forwarded_to_vcpu(d)) {
1944 		/* Already mapped, move it around */
1945 		its_send_vmovi(its_dev, event);
1946 	} else {
1947 		/* Ensure all the VPEs are mapped on this ITS */
1948 		its_map_vm(its_dev->its, info->map->vm);
1949 
1950 		/*
1951 		 * Flag the interrupt as forwarded so that we can
1952 		 * start poking the virtual property table.
1953 		 */
1954 		irqd_set_forwarded_to_vcpu(d);
1955 
1956 		/* Write out the property to the prop table */
1957 		lpi_write_config(d, 0xff, info->map->properties);
1958 
1959 		/* Drop the physical mapping */
1960 		its_send_discard(its_dev, event);
1961 
1962 		/* and install the virtual one */
1963 		its_send_vmapti(its_dev, event);
1964 
1965 		/* Increment the number of VLPIs */
1966 		its_dev->event_map.nr_vlpis++;
1967 	}
1968 
1969 	return 0;
1970 }
1971 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1972 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1973 {
1974 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1975 	struct its_vlpi_map *map;
1976 
1977 	map = get_vlpi_map(d);
1978 
1979 	if (!its_dev->event_map.vm || !map)
1980 		return -EINVAL;
1981 
1982 	/* Copy our mapping information to the incoming request */
1983 	*info->map = *map;
1984 
1985 	return 0;
1986 }
1987 
its_vlpi_unmap(struct irq_data * d)1988 static int its_vlpi_unmap(struct irq_data *d)
1989 {
1990 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1991 	u32 event = its_get_event_id(d);
1992 
1993 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1994 		return -EINVAL;
1995 
1996 	/* Drop the virtual mapping */
1997 	its_send_discard(its_dev, event);
1998 
1999 	/* and restore the physical one */
2000 	irqd_clr_forwarded_to_vcpu(d);
2001 	its_send_mapti(its_dev, d->hwirq, event);
2002 	lpi_update_config(d, 0xff, (lpi_prop_prio |
2003 				    LPI_PROP_ENABLED |
2004 				    LPI_PROP_GROUP1));
2005 
2006 	/* Potentially unmap the VM from this ITS */
2007 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
2008 
2009 	/*
2010 	 * Drop the refcount and make the device available again if
2011 	 * this was the last VLPI.
2012 	 */
2013 	if (!--its_dev->event_map.nr_vlpis) {
2014 		its_dev->event_map.vm = NULL;
2015 		kfree(its_dev->event_map.vlpi_maps);
2016 	}
2017 
2018 	return 0;
2019 }
2020 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)2021 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
2022 {
2023 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2024 
2025 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
2026 		return -EINVAL;
2027 
2028 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
2029 		lpi_update_config(d, 0xff, info->config);
2030 	else
2031 		lpi_write_config(d, 0xff, info->config);
2032 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
2033 
2034 	return 0;
2035 }
2036 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)2037 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2038 {
2039 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2040 	struct its_cmd_info *info = vcpu_info;
2041 
2042 	/* Need a v4 ITS */
2043 	if (!is_v4(its_dev->its))
2044 		return -EINVAL;
2045 
2046 	guard(raw_spinlock)(&its_dev->event_map.vlpi_lock);
2047 
2048 	/* Unmap request? */
2049 	if (!info)
2050 		return its_vlpi_unmap(d);
2051 
2052 	switch (info->cmd_type) {
2053 	case MAP_VLPI:
2054 		return its_vlpi_map(d, info);
2055 
2056 	case GET_VLPI:
2057 		return its_vlpi_get(d, info);
2058 
2059 	case PROP_UPDATE_VLPI:
2060 	case PROP_UPDATE_AND_INV_VLPI:
2061 		return its_vlpi_prop_update(d, info);
2062 
2063 	default:
2064 		return -EINVAL;
2065 	}
2066 }
2067 
2068 static struct irq_chip its_irq_chip = {
2069 	.name			= "ITS",
2070 	.irq_mask		= its_mask_irq,
2071 	.irq_unmask		= its_unmask_irq,
2072 	.irq_eoi		= irq_chip_eoi_parent,
2073 	.irq_set_affinity	= its_set_affinity,
2074 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
2075 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
2076 	.irq_retrigger		= its_irq_retrigger,
2077 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
2078 };
2079 
2080 
2081 /*
2082  * How we allocate LPIs:
2083  *
2084  * lpi_range_list contains ranges of LPIs that are to available to
2085  * allocate from. To allocate LPIs, just pick the first range that
2086  * fits the required allocation, and reduce it by the required
2087  * amount. Once empty, remove the range from the list.
2088  *
2089  * To free a range of LPIs, add a free range to the list, sort it and
2090  * merge the result if the new range happens to be adjacent to an
2091  * already free block.
2092  *
2093  * The consequence of the above is that allocation is cost is low, but
2094  * freeing is expensive. We assumes that freeing rarely occurs.
2095  */
2096 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2097 
2098 static DEFINE_MUTEX(lpi_range_lock);
2099 static LIST_HEAD(lpi_range_list);
2100 
2101 struct lpi_range {
2102 	struct list_head	entry;
2103 	u32			base_id;
2104 	u32			span;
2105 };
2106 
mk_lpi_range(u32 base,u32 span)2107 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2108 {
2109 	struct lpi_range *range;
2110 
2111 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2112 	if (range) {
2113 		range->base_id = base;
2114 		range->span = span;
2115 	}
2116 
2117 	return range;
2118 }
2119 
alloc_lpi_range(u32 nr_lpis,u32 * base)2120 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2121 {
2122 	struct lpi_range *range, *tmp;
2123 	int err = -ENOSPC;
2124 
2125 	mutex_lock(&lpi_range_lock);
2126 
2127 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2128 		if (range->span >= nr_lpis) {
2129 			*base = range->base_id;
2130 			range->base_id += nr_lpis;
2131 			range->span -= nr_lpis;
2132 
2133 			if (range->span == 0) {
2134 				list_del(&range->entry);
2135 				kfree(range);
2136 			}
2137 
2138 			err = 0;
2139 			break;
2140 		}
2141 	}
2142 
2143 	mutex_unlock(&lpi_range_lock);
2144 
2145 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2146 	return err;
2147 }
2148 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2149 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2150 {
2151 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2152 		return;
2153 	if (a->base_id + a->span != b->base_id)
2154 		return;
2155 	b->base_id = a->base_id;
2156 	b->span += a->span;
2157 	list_del(&a->entry);
2158 	kfree(a);
2159 }
2160 
free_lpi_range(u32 base,u32 nr_lpis)2161 static int free_lpi_range(u32 base, u32 nr_lpis)
2162 {
2163 	struct lpi_range *new, *old;
2164 
2165 	new = mk_lpi_range(base, nr_lpis);
2166 	if (!new)
2167 		return -ENOMEM;
2168 
2169 	mutex_lock(&lpi_range_lock);
2170 
2171 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2172 		if (old->base_id < base)
2173 			break;
2174 	}
2175 	/*
2176 	 * old is the last element with ->base_id smaller than base,
2177 	 * so new goes right after it. If there are no elements with
2178 	 * ->base_id smaller than base, &old->entry ends up pointing
2179 	 * at the head of the list, and inserting new it the start of
2180 	 * the list is the right thing to do in that case as well.
2181 	 */
2182 	list_add(&new->entry, &old->entry);
2183 	/*
2184 	 * Now check if we can merge with the preceding and/or
2185 	 * following ranges.
2186 	 */
2187 	merge_lpi_ranges(old, new);
2188 	merge_lpi_ranges(new, list_next_entry(new, entry));
2189 
2190 	mutex_unlock(&lpi_range_lock);
2191 	return 0;
2192 }
2193 
its_lpi_init(u32 id_bits)2194 static int __init its_lpi_init(u32 id_bits)
2195 {
2196 	u32 lpis = (1UL << id_bits) - 8192;
2197 	u32 numlpis;
2198 	int err;
2199 
2200 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2201 
2202 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2203 		lpis = numlpis;
2204 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2205 			lpis);
2206 	}
2207 
2208 	/*
2209 	 * Initializing the allocator is just the same as freeing the
2210 	 * full range of LPIs.
2211 	 */
2212 	err = free_lpi_range(8192, lpis);
2213 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2214 	return err;
2215 }
2216 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2217 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2218 {
2219 	unsigned long *bitmap = NULL;
2220 	int err = 0;
2221 
2222 	do {
2223 		err = alloc_lpi_range(nr_irqs, base);
2224 		if (!err)
2225 			break;
2226 
2227 		nr_irqs /= 2;
2228 	} while (nr_irqs > 0);
2229 
2230 	if (!nr_irqs)
2231 		err = -ENOSPC;
2232 
2233 	if (err)
2234 		goto out;
2235 
2236 	bitmap = bitmap_zalloc(nr_irqs, GFP_ATOMIC);
2237 	if (!bitmap)
2238 		goto out;
2239 
2240 	*nr_ids = nr_irqs;
2241 
2242 out:
2243 	if (!bitmap)
2244 		*base = *nr_ids = 0;
2245 
2246 	return bitmap;
2247 }
2248 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2249 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2250 {
2251 	WARN_ON(free_lpi_range(base, nr_ids));
2252 	bitmap_free(bitmap);
2253 }
2254 
gic_reset_prop_table(void * va)2255 static void gic_reset_prop_table(void *va)
2256 {
2257 	/* Regular IRQ priority, Group-1, disabled */
2258 	memset(va, lpi_prop_prio | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2259 
2260 	/* Make sure the GIC will observe the written configuration */
2261 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2262 }
2263 
its_allocate_prop_table(gfp_t gfp_flags)2264 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2265 {
2266 	struct page *prop_page;
2267 
2268 	prop_page = its_alloc_pages(gfp_flags,
2269 				    get_order(LPI_PROPBASE_SZ));
2270 	if (!prop_page)
2271 		return NULL;
2272 
2273 	gic_reset_prop_table(page_address(prop_page));
2274 
2275 	return prop_page;
2276 }
2277 
its_free_prop_table(struct page * prop_page)2278 static void its_free_prop_table(struct page *prop_page)
2279 {
2280 	its_free_pages(page_address(prop_page), get_order(LPI_PROPBASE_SZ));
2281 }
2282 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2283 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2284 {
2285 	phys_addr_t start, end, addr_end;
2286 	u64 i;
2287 
2288 	/*
2289 	 * We don't bother checking for a kdump kernel as by
2290 	 * construction, the LPI tables are out of this kernel's
2291 	 * memory map.
2292 	 */
2293 	if (is_kdump_kernel())
2294 		return true;
2295 
2296 	addr_end = addr + size - 1;
2297 
2298 	for_each_reserved_mem_range(i, &start, &end) {
2299 		if (addr >= start && addr_end <= end)
2300 			return true;
2301 	}
2302 
2303 	/* Not found, not a good sign... */
2304 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2305 		&addr, &addr_end);
2306 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2307 	return false;
2308 }
2309 
gic_reserve_range(phys_addr_t addr,unsigned long size)2310 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2311 {
2312 	if (efi_enabled(EFI_CONFIG_TABLES))
2313 		return efi_mem_reserve_persistent(addr, size);
2314 
2315 	return 0;
2316 }
2317 
its_setup_lpi_prop_table(void)2318 static int __init its_setup_lpi_prop_table(void)
2319 {
2320 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2321 		u64 val;
2322 
2323 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2324 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2325 
2326 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2327 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2328 						     LPI_PROPBASE_SZ,
2329 						     MEMREMAP_WB);
2330 		gic_reset_prop_table(gic_rdists->prop_table_va);
2331 	} else {
2332 		struct page *page;
2333 
2334 		lpi_id_bits = min_t(u32,
2335 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2336 				    ITS_MAX_LPI_NRBITS);
2337 		page = its_allocate_prop_table(GFP_NOWAIT);
2338 		if (!page) {
2339 			pr_err("Failed to allocate PROPBASE\n");
2340 			return -ENOMEM;
2341 		}
2342 
2343 		gic_rdists->prop_table_pa = page_to_phys(page);
2344 		gic_rdists->prop_table_va = page_address(page);
2345 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2346 					  LPI_PROPBASE_SZ));
2347 	}
2348 
2349 	pr_info("GICv3: using LPI property table @%pa\n",
2350 		&gic_rdists->prop_table_pa);
2351 
2352 	return its_lpi_init(lpi_id_bits);
2353 }
2354 
2355 static const char *its_base_type_string[] = {
2356 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2357 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2358 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2359 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2360 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2361 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2362 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2363 };
2364 
its_read_baser(struct its_node * its,struct its_baser * baser)2365 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2366 {
2367 	u32 idx = baser - its->tables;
2368 
2369 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2370 }
2371 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2372 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2373 			    u64 val)
2374 {
2375 	u32 idx = baser - its->tables;
2376 
2377 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2378 	baser->val = its_read_baser(its, baser);
2379 }
2380 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2381 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2382 			   u64 cache, u64 shr, u32 order, bool indirect)
2383 {
2384 	u64 val = its_read_baser(its, baser);
2385 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2386 	u64 type = GITS_BASER_TYPE(val);
2387 	u64 baser_phys, tmp;
2388 	u32 alloc_pages, psz;
2389 	struct page *page;
2390 	void *base;
2391 
2392 	psz = baser->psz;
2393 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2394 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2395 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2396 			&its->phys_base, its_base_type_string[type],
2397 			alloc_pages, GITS_BASER_PAGES_MAX);
2398 		alloc_pages = GITS_BASER_PAGES_MAX;
2399 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2400 	}
2401 
2402 	page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO, order);
2403 	if (!page)
2404 		return -ENOMEM;
2405 
2406 	base = (void *)page_address(page);
2407 	baser_phys = virt_to_phys(base);
2408 
2409 	/* Check if the physical address of the memory is above 48bits */
2410 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2411 
2412 		/* 52bit PA is supported only when PageSize=64K */
2413 		if (psz != SZ_64K) {
2414 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2415 			its_free_pages(base, order);
2416 			return -ENXIO;
2417 		}
2418 
2419 		/* Convert 52bit PA to 48bit field */
2420 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2421 	}
2422 
2423 retry_baser:
2424 	val = (baser_phys					 |
2425 		(type << GITS_BASER_TYPE_SHIFT)			 |
2426 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2427 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2428 		cache						 |
2429 		shr						 |
2430 		GITS_BASER_VALID);
2431 
2432 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2433 
2434 	switch (psz) {
2435 	case SZ_4K:
2436 		val |= GITS_BASER_PAGE_SIZE_4K;
2437 		break;
2438 	case SZ_16K:
2439 		val |= GITS_BASER_PAGE_SIZE_16K;
2440 		break;
2441 	case SZ_64K:
2442 		val |= GITS_BASER_PAGE_SIZE_64K;
2443 		break;
2444 	}
2445 
2446 	if (!shr)
2447 		gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2448 
2449 	its_write_baser(its, baser, val);
2450 	tmp = baser->val;
2451 
2452 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2453 		/*
2454 		 * Shareability didn't stick. Just use
2455 		 * whatever the read reported, which is likely
2456 		 * to be the only thing this redistributor
2457 		 * supports. If that's zero, make it
2458 		 * non-cacheable as well.
2459 		 */
2460 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2461 		if (!shr)
2462 			cache = GITS_BASER_nC;
2463 
2464 		goto retry_baser;
2465 	}
2466 
2467 	if (val != tmp) {
2468 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2469 		       &its->phys_base, its_base_type_string[type],
2470 		       val, tmp);
2471 		its_free_pages(base, order);
2472 		return -ENXIO;
2473 	}
2474 
2475 	baser->order = order;
2476 	baser->base = base;
2477 	baser->psz = psz;
2478 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2479 
2480 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2481 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2482 		its_base_type_string[type],
2483 		(unsigned long)virt_to_phys(base),
2484 		indirect ? "indirect" : "flat", (int)esz,
2485 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2486 
2487 	return 0;
2488 }
2489 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2490 static bool its_parse_indirect_baser(struct its_node *its,
2491 				     struct its_baser *baser,
2492 				     u32 *order, u32 ids)
2493 {
2494 	u64 tmp = its_read_baser(its, baser);
2495 	u64 type = GITS_BASER_TYPE(tmp);
2496 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2497 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2498 	u32 new_order = *order;
2499 	u32 psz = baser->psz;
2500 	bool indirect = false;
2501 
2502 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2503 	if ((esz << ids) > (psz * 2)) {
2504 		/*
2505 		 * Find out whether hw supports a single or two-level table by
2506 		 * table by reading bit at offset '62' after writing '1' to it.
2507 		 */
2508 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2509 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2510 
2511 		if (indirect) {
2512 			/*
2513 			 * The size of the lvl2 table is equal to ITS page size
2514 			 * which is 'psz'. For computing lvl1 table size,
2515 			 * subtract ID bits that sparse lvl2 table from 'ids'
2516 			 * which is reported by ITS hardware times lvl1 table
2517 			 * entry size.
2518 			 */
2519 			ids -= ilog2(psz / (int)esz);
2520 			esz = GITS_LVL1_ENTRY_SIZE;
2521 		}
2522 	}
2523 
2524 	/*
2525 	 * Allocate as many entries as required to fit the
2526 	 * range of device IDs that the ITS can grok... The ID
2527 	 * space being incredibly sparse, this results in a
2528 	 * massive waste of memory if two-level device table
2529 	 * feature is not supported by hardware.
2530 	 */
2531 	new_order = max_t(u32, get_order(esz << ids), new_order);
2532 	if (new_order > MAX_PAGE_ORDER) {
2533 		new_order = MAX_PAGE_ORDER;
2534 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2535 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2536 			&its->phys_base, its_base_type_string[type],
2537 			device_ids(its), ids);
2538 	}
2539 
2540 	*order = new_order;
2541 
2542 	return indirect;
2543 }
2544 
compute_common_aff(u64 val)2545 static u32 compute_common_aff(u64 val)
2546 {
2547 	u32 aff, clpiaff;
2548 
2549 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2550 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2551 
2552 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2553 }
2554 
compute_its_aff(struct its_node * its)2555 static u32 compute_its_aff(struct its_node *its)
2556 {
2557 	u64 val;
2558 	u32 svpet;
2559 
2560 	/*
2561 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2562 	 * the resulting affinity. We then use that to see if this match
2563 	 * our own affinity.
2564 	 */
2565 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2566 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2567 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2568 	return compute_common_aff(val);
2569 }
2570 
find_sibling_its(struct its_node * cur_its)2571 static struct its_node *find_sibling_its(struct its_node *cur_its)
2572 {
2573 	struct its_node *its;
2574 	u32 aff;
2575 
2576 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2577 		return NULL;
2578 
2579 	aff = compute_its_aff(cur_its);
2580 
2581 	list_for_each_entry(its, &its_nodes, entry) {
2582 		u64 baser;
2583 
2584 		if (!is_v4_1(its) || its == cur_its)
2585 			continue;
2586 
2587 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2588 			continue;
2589 
2590 		if (aff != compute_its_aff(its))
2591 			continue;
2592 
2593 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2594 		baser = its->tables[2].val;
2595 		if (!(baser & GITS_BASER_VALID))
2596 			continue;
2597 
2598 		return its;
2599 	}
2600 
2601 	return NULL;
2602 }
2603 
its_free_tables(struct its_node * its)2604 static void its_free_tables(struct its_node *its)
2605 {
2606 	int i;
2607 
2608 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2609 		if (its->tables[i].base) {
2610 			its_free_pages(its->tables[i].base, its->tables[i].order);
2611 			its->tables[i].base = NULL;
2612 		}
2613 	}
2614 }
2615 
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2616 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2617 {
2618 	u64 psz = SZ_64K;
2619 
2620 	while (psz) {
2621 		u64 val, gpsz;
2622 
2623 		val = its_read_baser(its, baser);
2624 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2625 
2626 		switch (psz) {
2627 		case SZ_64K:
2628 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2629 			break;
2630 		case SZ_16K:
2631 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2632 			break;
2633 		case SZ_4K:
2634 		default:
2635 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2636 			break;
2637 		}
2638 
2639 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2640 
2641 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2642 		its_write_baser(its, baser, val);
2643 
2644 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2645 			break;
2646 
2647 		switch (psz) {
2648 		case SZ_64K:
2649 			psz = SZ_16K;
2650 			break;
2651 		case SZ_16K:
2652 			psz = SZ_4K;
2653 			break;
2654 		case SZ_4K:
2655 		default:
2656 			return -1;
2657 		}
2658 	}
2659 
2660 	baser->psz = psz;
2661 	return 0;
2662 }
2663 
its_alloc_tables(struct its_node * its)2664 static int its_alloc_tables(struct its_node *its)
2665 {
2666 	u64 shr = GITS_BASER_InnerShareable;
2667 	u64 cache = GITS_BASER_RaWaWb;
2668 	int err, i;
2669 
2670 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2671 		/* erratum 24313: ignore memory access type */
2672 		cache = GITS_BASER_nCnB;
2673 
2674 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE) {
2675 		cache = GITS_BASER_nC;
2676 		shr = 0;
2677 	}
2678 
2679 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2680 		struct its_baser *baser = its->tables + i;
2681 		u64 val = its_read_baser(its, baser);
2682 		u64 type = GITS_BASER_TYPE(val);
2683 		bool indirect = false;
2684 		u32 order;
2685 
2686 		if (type == GITS_BASER_TYPE_NONE)
2687 			continue;
2688 
2689 		if (its_probe_baser_psz(its, baser)) {
2690 			its_free_tables(its);
2691 			return -ENXIO;
2692 		}
2693 
2694 		order = get_order(baser->psz);
2695 
2696 		switch (type) {
2697 		case GITS_BASER_TYPE_DEVICE:
2698 			indirect = its_parse_indirect_baser(its, baser, &order,
2699 							    device_ids(its));
2700 			break;
2701 
2702 		case GITS_BASER_TYPE_VCPU:
2703 			if (is_v4_1(its)) {
2704 				struct its_node *sibling;
2705 
2706 				WARN_ON(i != 2);
2707 				if ((sibling = find_sibling_its(its))) {
2708 					*baser = sibling->tables[2];
2709 					its_write_baser(its, baser, baser->val);
2710 					continue;
2711 				}
2712 			}
2713 
2714 			indirect = its_parse_indirect_baser(its, baser, &order,
2715 							    ITS_MAX_VPEID_BITS);
2716 			break;
2717 		}
2718 
2719 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2720 		if (err < 0) {
2721 			its_free_tables(its);
2722 			return err;
2723 		}
2724 
2725 		/* Update settings which will be used for next BASERn */
2726 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2727 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2728 	}
2729 
2730 	return 0;
2731 }
2732 
inherit_vpe_l1_table_from_its(void)2733 static u64 inherit_vpe_l1_table_from_its(void)
2734 {
2735 	struct its_node *its;
2736 	u64 val;
2737 	u32 aff;
2738 
2739 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2740 	aff = compute_common_aff(val);
2741 
2742 	list_for_each_entry(its, &its_nodes, entry) {
2743 		u64 baser, addr;
2744 
2745 		if (!is_v4_1(its))
2746 			continue;
2747 
2748 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2749 			continue;
2750 
2751 		if (aff != compute_its_aff(its))
2752 			continue;
2753 
2754 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2755 		baser = its->tables[2].val;
2756 		if (!(baser & GITS_BASER_VALID))
2757 			continue;
2758 
2759 		/* We have a winner! */
2760 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2761 
2762 		val  = GICR_VPROPBASER_4_1_VALID;
2763 		if (baser & GITS_BASER_INDIRECT)
2764 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2765 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2766 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2767 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2768 		case GIC_PAGE_SIZE_64K:
2769 			addr = GITS_BASER_ADDR_48_to_52(baser);
2770 			break;
2771 		default:
2772 			addr = baser & GENMASK_ULL(47, 12);
2773 			break;
2774 		}
2775 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2776 		if (rdists_support_shareable()) {
2777 			val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2778 					  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2779 			val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2780 					  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2781 		}
2782 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2783 
2784 		*this_cpu_ptr(&local_4_1_its) = its;
2785 		return val;
2786 	}
2787 
2788 	return 0;
2789 }
2790 
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2791 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2792 {
2793 	u32 aff;
2794 	u64 val;
2795 	int cpu;
2796 
2797 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2798 	aff = compute_common_aff(val);
2799 
2800 	for_each_possible_cpu(cpu) {
2801 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2802 
2803 		if (!base || cpu == smp_processor_id())
2804 			continue;
2805 
2806 		val = gic_read_typer(base + GICR_TYPER);
2807 		if (aff != compute_common_aff(val))
2808 			continue;
2809 
2810 		/*
2811 		 * At this point, we have a victim. This particular CPU
2812 		 * has already booted, and has an affinity that matches
2813 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2814 		 * Make sure we don't write the Z bit in that case.
2815 		 */
2816 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2817 		val &= ~GICR_VPROPBASER_4_1_Z;
2818 
2819 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2820 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2821 
2822 		*this_cpu_ptr(&local_4_1_its) = *per_cpu_ptr(&local_4_1_its, cpu);
2823 		return val;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
allocate_vpe_l2_table(int cpu,u32 id)2829 static bool allocate_vpe_l2_table(int cpu, u32 id)
2830 {
2831 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2832 	unsigned int psz, esz, idx, npg, gpsz;
2833 	u64 val;
2834 	struct page *page;
2835 	__le64 *table;
2836 
2837 	if (!gic_rdists->has_rvpeid)
2838 		return true;
2839 
2840 	/* Skip non-present CPUs */
2841 	if (!base)
2842 		return true;
2843 
2844 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2845 
2846 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2847 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2848 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2849 
2850 	switch (gpsz) {
2851 	default:
2852 		WARN_ON(1);
2853 		fallthrough;
2854 	case GIC_PAGE_SIZE_4K:
2855 		psz = SZ_4K;
2856 		break;
2857 	case GIC_PAGE_SIZE_16K:
2858 		psz = SZ_16K;
2859 		break;
2860 	case GIC_PAGE_SIZE_64K:
2861 		psz = SZ_64K;
2862 		break;
2863 	}
2864 
2865 	/* Don't allow vpe_id that exceeds single, flat table limit */
2866 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2867 		return (id < (npg * psz / (esz * SZ_8)));
2868 
2869 	/* Compute 1st level table index & check if that exceeds table limit */
2870 	idx = id >> ilog2(psz / (esz * SZ_8));
2871 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2872 		return false;
2873 
2874 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2875 
2876 	/* Allocate memory for 2nd level table */
2877 	if (!table[idx]) {
2878 		page = its_alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2879 		if (!page)
2880 			return false;
2881 
2882 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2883 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2884 			gic_flush_dcache_to_poc(page_address(page), psz);
2885 
2886 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2887 
2888 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2889 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2890 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2891 
2892 		/* Ensure updated table contents are visible to RD hardware */
2893 		dsb(sy);
2894 	}
2895 
2896 	return true;
2897 }
2898 
allocate_vpe_l1_table(void)2899 static int allocate_vpe_l1_table(void)
2900 {
2901 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2902 	u64 val, gpsz, npg, pa;
2903 	unsigned int psz = SZ_64K;
2904 	unsigned int np, epp, esz;
2905 	struct page *page;
2906 
2907 	if (!gic_rdists->has_rvpeid)
2908 		return 0;
2909 
2910 	/*
2911 	 * if VPENDBASER.Valid is set, disable any previously programmed
2912 	 * VPE by setting PendingLast while clearing Valid. This has the
2913 	 * effect of making sure no doorbell will be generated and we can
2914 	 * then safely clear VPROPBASER.Valid.
2915 	 */
2916 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2917 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2918 				      vlpi_base + GICR_VPENDBASER);
2919 
2920 	/*
2921 	 * If we can inherit the configuration from another RD, let's do
2922 	 * so. Otherwise, we have to go through the allocation process. We
2923 	 * assume that all RDs have the exact same requirements, as
2924 	 * nothing will work otherwise.
2925 	 */
2926 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2927 	if (val & GICR_VPROPBASER_4_1_VALID)
2928 		goto out;
2929 
2930 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2931 	if (!gic_data_rdist()->vpe_table_mask)
2932 		return -ENOMEM;
2933 
2934 	val = inherit_vpe_l1_table_from_its();
2935 	if (val & GICR_VPROPBASER_4_1_VALID)
2936 		goto out;
2937 
2938 	/* First probe the page size */
2939 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2940 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2941 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2942 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2943 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2944 
2945 	switch (gpsz) {
2946 	default:
2947 		gpsz = GIC_PAGE_SIZE_4K;
2948 		fallthrough;
2949 	case GIC_PAGE_SIZE_4K:
2950 		psz = SZ_4K;
2951 		break;
2952 	case GIC_PAGE_SIZE_16K:
2953 		psz = SZ_16K;
2954 		break;
2955 	case GIC_PAGE_SIZE_64K:
2956 		psz = SZ_64K;
2957 		break;
2958 	}
2959 
2960 	/*
2961 	 * Start populating the register from scratch, including RO fields
2962 	 * (which we want to print in debug cases...)
2963 	 */
2964 	val = 0;
2965 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2966 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2967 
2968 	/* How many entries per GIC page? */
2969 	esz++;
2970 	epp = psz / (esz * SZ_8);
2971 
2972 	/*
2973 	 * If we need more than just a single L1 page, flag the table
2974 	 * as indirect and compute the number of required L1 pages.
2975 	 */
2976 	if (epp < ITS_MAX_VPEID) {
2977 		int nl2;
2978 
2979 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2980 
2981 		/* Number of L2 pages required to cover the VPEID space */
2982 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2983 
2984 		/* Number of L1 pages to point to the L2 pages */
2985 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2986 	} else {
2987 		npg = 1;
2988 	}
2989 
2990 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2991 
2992 	/* Right, that's the number of CPU pages we need for L1 */
2993 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2994 
2995 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2996 		 np, npg, psz, epp, esz);
2997 	page = its_alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2998 	if (!page)
2999 		return -ENOMEM;
3000 
3001 	gic_data_rdist()->vpe_l1_base = page_address(page);
3002 	pa = virt_to_phys(page_address(page));
3003 	WARN_ON(!IS_ALIGNED(pa, psz));
3004 
3005 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
3006 	if (rdists_support_shareable()) {
3007 		val |= GICR_VPROPBASER_RaWb;
3008 		val |= GICR_VPROPBASER_InnerShareable;
3009 	}
3010 	val |= GICR_VPROPBASER_4_1_Z;
3011 	val |= GICR_VPROPBASER_4_1_VALID;
3012 
3013 out:
3014 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3015 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
3016 
3017 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
3018 		 smp_processor_id(), val,
3019 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
3020 
3021 	return 0;
3022 }
3023 
its_alloc_collections(struct its_node * its)3024 static int its_alloc_collections(struct its_node *its)
3025 {
3026 	int i;
3027 
3028 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
3029 				   GFP_KERNEL);
3030 	if (!its->collections)
3031 		return -ENOMEM;
3032 
3033 	for (i = 0; i < nr_cpu_ids; i++)
3034 		its->collections[i].target_address = ~0ULL;
3035 
3036 	return 0;
3037 }
3038 
its_allocate_pending_table(gfp_t gfp_flags)3039 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
3040 {
3041 	struct page *pend_page;
3042 
3043 	pend_page = its_alloc_pages(gfp_flags | __GFP_ZERO, get_order(LPI_PENDBASE_SZ));
3044 	if (!pend_page)
3045 		return NULL;
3046 
3047 	/* Make sure the GIC will observe the zero-ed page */
3048 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
3049 
3050 	return pend_page;
3051 }
3052 
its_free_pending_table(struct page * pt)3053 static void its_free_pending_table(struct page *pt)
3054 {
3055 	its_free_pages(page_address(pt), get_order(LPI_PENDBASE_SZ));
3056 }
3057 
3058 /*
3059  * Booting with kdump and LPIs enabled is generally fine. Any other
3060  * case is wrong in the absence of firmware/EFI support.
3061  */
enabled_lpis_allowed(void)3062 static bool enabled_lpis_allowed(void)
3063 {
3064 	phys_addr_t addr;
3065 	u64 val;
3066 
3067 	/* Check whether the property table is in a reserved region */
3068 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
3069 	addr = val & GENMASK_ULL(51, 12);
3070 
3071 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
3072 }
3073 
allocate_lpi_tables(void)3074 static int __init allocate_lpi_tables(void)
3075 {
3076 	u64 val;
3077 	int err, cpu;
3078 
3079 	/*
3080 	 * If LPIs are enabled while we run this from the boot CPU,
3081 	 * flag the RD tables as pre-allocated if the stars do align.
3082 	 */
3083 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
3084 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
3085 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
3086 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
3087 		pr_info("GICv3: Using preallocated redistributor tables\n");
3088 	}
3089 
3090 	err = its_setup_lpi_prop_table();
3091 	if (err)
3092 		return err;
3093 
3094 	/*
3095 	 * We allocate all the pending tables anyway, as we may have a
3096 	 * mix of RDs that have had LPIs enabled, and some that
3097 	 * don't. We'll free the unused ones as each CPU comes online.
3098 	 */
3099 	for_each_possible_cpu(cpu) {
3100 		struct page *pend_page;
3101 
3102 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3103 		if (!pend_page) {
3104 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3105 			return -ENOMEM;
3106 		}
3107 
3108 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3109 	}
3110 
3111 	return 0;
3112 }
3113 
read_vpend_dirty_clear(void __iomem * vlpi_base)3114 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3115 {
3116 	u32 count = 1000000;	/* 1s! */
3117 	bool clean;
3118 	u64 val;
3119 
3120 	do {
3121 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3122 		clean = !(val & GICR_VPENDBASER_Dirty);
3123 		if (!clean) {
3124 			count--;
3125 			cpu_relax();
3126 			udelay(1);
3127 		}
3128 	} while (!clean && count);
3129 
3130 	if (unlikely(!clean))
3131 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3132 
3133 	return val;
3134 }
3135 
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3136 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3137 {
3138 	u64 val;
3139 
3140 	/* Make sure we wait until the RD is done with the initial scan */
3141 	val = read_vpend_dirty_clear(vlpi_base);
3142 	val &= ~GICR_VPENDBASER_Valid;
3143 	val &= ~clr;
3144 	val |= set;
3145 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3146 
3147 	val = read_vpend_dirty_clear(vlpi_base);
3148 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3149 		val |= GICR_VPENDBASER_PendingLast;
3150 
3151 	return val;
3152 }
3153 
its_cpu_init_lpis(void)3154 static void its_cpu_init_lpis(void)
3155 {
3156 	void __iomem *rbase = gic_data_rdist_rd_base();
3157 	struct page *pend_page;
3158 	phys_addr_t paddr;
3159 	u64 val, tmp;
3160 
3161 	if (gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED)
3162 		return;
3163 
3164 	val = readl_relaxed(rbase + GICR_CTLR);
3165 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3166 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3167 		/*
3168 		 * Check that we get the same property table on all
3169 		 * RDs. If we don't, this is hopeless.
3170 		 */
3171 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3172 		paddr &= GENMASK_ULL(51, 12);
3173 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3174 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3175 
3176 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3177 		paddr &= GENMASK_ULL(51, 16);
3178 
3179 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3180 		gic_data_rdist()->flags |= RD_LOCAL_PENDTABLE_PREALLOCATED;
3181 
3182 		goto out;
3183 	}
3184 
3185 	pend_page = gic_data_rdist()->pend_page;
3186 	paddr = page_to_phys(pend_page);
3187 
3188 	/* set PROPBASE */
3189 	val = (gic_rdists->prop_table_pa |
3190 	       GICR_PROPBASER_InnerShareable |
3191 	       GICR_PROPBASER_RaWaWb |
3192 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3193 
3194 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3195 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3196 
3197 	if (!rdists_support_shareable())
3198 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3199 
3200 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3201 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3202 			/*
3203 			 * The HW reports non-shareable, we must
3204 			 * remove the cacheability attributes as
3205 			 * well.
3206 			 */
3207 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3208 				 GICR_PROPBASER_CACHEABILITY_MASK);
3209 			val |= GICR_PROPBASER_nC;
3210 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3211 		}
3212 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3213 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3214 	}
3215 
3216 	/* set PENDBASE */
3217 	val = (page_to_phys(pend_page) |
3218 	       GICR_PENDBASER_InnerShareable |
3219 	       GICR_PENDBASER_RaWaWb);
3220 
3221 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3222 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3223 
3224 	if (!rdists_support_shareable())
3225 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3226 
3227 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3228 		/*
3229 		 * The HW reports non-shareable, we must remove the
3230 		 * cacheability attributes as well.
3231 		 */
3232 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3233 			 GICR_PENDBASER_CACHEABILITY_MASK);
3234 		val |= GICR_PENDBASER_nC;
3235 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3236 	}
3237 
3238 	/* Enable LPIs */
3239 	val = readl_relaxed(rbase + GICR_CTLR);
3240 	val |= GICR_CTLR_ENABLE_LPIS;
3241 	writel_relaxed(val, rbase + GICR_CTLR);
3242 
3243 out:
3244 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3245 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3246 
3247 		/*
3248 		 * It's possible for CPU to receive VLPIs before it is
3249 		 * scheduled as a vPE, especially for the first CPU, and the
3250 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3251 		 * as out of range and dropped by GIC.
3252 		 * So we initialize IDbits to known value to avoid VLPI drop.
3253 		 */
3254 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3255 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3256 			smp_processor_id(), val);
3257 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3258 
3259 		/*
3260 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3261 		 * ancient programming gets left in and has possibility of
3262 		 * corrupting memory.
3263 		 */
3264 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3265 	}
3266 
3267 	if (allocate_vpe_l1_table()) {
3268 		/*
3269 		 * If the allocation has failed, we're in massive trouble.
3270 		 * Disable direct injection, and pray that no VM was
3271 		 * already running...
3272 		 */
3273 		gic_rdists->has_rvpeid = false;
3274 		gic_rdists->has_vlpis = false;
3275 	}
3276 
3277 	/* Make sure the GIC has seen the above */
3278 	dsb(sy);
3279 	gic_data_rdist()->flags |= RD_LOCAL_LPI_ENABLED;
3280 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3281 		smp_processor_id(),
3282 		gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED ?
3283 		"reserved" : "allocated",
3284 		&paddr);
3285 }
3286 
its_cpu_init_collection(struct its_node * its)3287 static void its_cpu_init_collection(struct its_node *its)
3288 {
3289 	int cpu = smp_processor_id();
3290 	u64 target;
3291 
3292 	/* avoid cross node collections and its mapping */
3293 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3294 		struct device_node *cpu_node;
3295 
3296 		cpu_node = of_get_cpu_node(cpu, NULL);
3297 		if (its->numa_node != NUMA_NO_NODE &&
3298 			its->numa_node != of_node_to_nid(cpu_node))
3299 			return;
3300 	}
3301 
3302 	/*
3303 	 * We now have to bind each collection to its target
3304 	 * redistributor.
3305 	 */
3306 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3307 		/*
3308 		 * This ITS wants the physical address of the
3309 		 * redistributor.
3310 		 */
3311 		target = gic_data_rdist()->phys_base;
3312 	} else {
3313 		/* This ITS wants a linear CPU number. */
3314 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3315 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3316 	}
3317 
3318 	/* Perform collection mapping */
3319 	its->collections[cpu].target_address = target;
3320 	its->collections[cpu].col_id = cpu;
3321 
3322 	its_send_mapc(its, &its->collections[cpu], 1);
3323 	its_send_invall(its, &its->collections[cpu]);
3324 }
3325 
its_cpu_init_collections(void)3326 static void its_cpu_init_collections(void)
3327 {
3328 	struct its_node *its;
3329 
3330 	raw_spin_lock(&its_lock);
3331 
3332 	list_for_each_entry(its, &its_nodes, entry)
3333 		its_cpu_init_collection(its);
3334 
3335 	raw_spin_unlock(&its_lock);
3336 }
3337 
its_find_device(struct its_node * its,u32 dev_id)3338 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3339 {
3340 	struct its_device *its_dev = NULL, *tmp;
3341 	unsigned long flags;
3342 
3343 	raw_spin_lock_irqsave(&its->lock, flags);
3344 
3345 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3346 		if (tmp->device_id == dev_id) {
3347 			its_dev = tmp;
3348 			break;
3349 		}
3350 	}
3351 
3352 	raw_spin_unlock_irqrestore(&its->lock, flags);
3353 
3354 	return its_dev;
3355 }
3356 
its_get_baser(struct its_node * its,u32 type)3357 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3358 {
3359 	int i;
3360 
3361 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3362 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3363 			return &its->tables[i];
3364 	}
3365 
3366 	return NULL;
3367 }
3368 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3369 static bool its_alloc_table_entry(struct its_node *its,
3370 				  struct its_baser *baser, u32 id)
3371 {
3372 	struct page *page;
3373 	u32 esz, idx;
3374 	__le64 *table;
3375 
3376 	/* Don't allow device id that exceeds single, flat table limit */
3377 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3378 	if (!(baser->val & GITS_BASER_INDIRECT))
3379 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3380 
3381 	/* Compute 1st level table index & check if that exceeds table limit */
3382 	idx = id >> ilog2(baser->psz / esz);
3383 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3384 		return false;
3385 
3386 	table = baser->base;
3387 
3388 	/* Allocate memory for 2nd level table */
3389 	if (!table[idx]) {
3390 		page = its_alloc_pages_node(its->numa_node, GFP_KERNEL | __GFP_ZERO,
3391 					    get_order(baser->psz));
3392 		if (!page)
3393 			return false;
3394 
3395 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3396 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3397 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3398 
3399 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3400 
3401 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3402 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3403 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3404 
3405 		/* Ensure updated table contents are visible to ITS hardware */
3406 		dsb(sy);
3407 	}
3408 
3409 	return true;
3410 }
3411 
its_alloc_device_table(struct its_node * its,u32 dev_id)3412 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3413 {
3414 	struct its_baser *baser;
3415 
3416 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3417 
3418 	/* Don't allow device id that exceeds ITS hardware limit */
3419 	if (!baser)
3420 		return (ilog2(dev_id) < device_ids(its));
3421 
3422 	return its_alloc_table_entry(its, baser, dev_id);
3423 }
3424 
its_alloc_vpe_table(u32 vpe_id)3425 static bool its_alloc_vpe_table(u32 vpe_id)
3426 {
3427 	struct its_node *its;
3428 	int cpu;
3429 
3430 	/*
3431 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3432 	 * could try and only do it on ITSs corresponding to devices
3433 	 * that have interrupts targeted at this VPE, but the
3434 	 * complexity becomes crazy (and you have tons of memory
3435 	 * anyway, right?).
3436 	 */
3437 	list_for_each_entry(its, &its_nodes, entry) {
3438 		struct its_baser *baser;
3439 
3440 		if (!is_v4(its))
3441 			continue;
3442 
3443 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3444 		if (!baser)
3445 			return false;
3446 
3447 		if (!its_alloc_table_entry(its, baser, vpe_id))
3448 			return false;
3449 	}
3450 
3451 	/* Non v4.1? No need to iterate RDs and go back early. */
3452 	if (!gic_rdists->has_rvpeid)
3453 		return true;
3454 
3455 	/*
3456 	 * Make sure the L2 tables are allocated for all copies of
3457 	 * the L1 table on *all* v4.1 RDs.
3458 	 */
3459 	for_each_possible_cpu(cpu) {
3460 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3461 			return false;
3462 	}
3463 
3464 	return true;
3465 }
3466 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3467 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3468 					    int nvecs, bool alloc_lpis)
3469 {
3470 	struct its_device *dev;
3471 	unsigned long *lpi_map = NULL;
3472 	unsigned long flags;
3473 	u16 *col_map = NULL;
3474 	void *itt;
3475 	int lpi_base;
3476 	int nr_lpis;
3477 	int nr_ites;
3478 	int sz;
3479 
3480 	if (!its_alloc_device_table(its, dev_id))
3481 		return NULL;
3482 
3483 	if (WARN_ON(!is_power_of_2(nvecs)))
3484 		nvecs = roundup_pow_of_two(nvecs);
3485 
3486 	/*
3487 	 * Even if the device wants a single LPI, the ITT must be
3488 	 * sized as a power of two (and you need at least one bit...).
3489 	 */
3490 	nr_ites = max(2, nvecs);
3491 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3492 	sz = max(sz, ITS_ITT_ALIGN);
3493 
3494 	itt = itt_alloc_pool(its->numa_node, sz);
3495 
3496 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3497 
3498 	if (alloc_lpis) {
3499 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3500 		if (lpi_map)
3501 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3502 					  GFP_KERNEL);
3503 	} else {
3504 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3505 		nr_lpis = 0;
3506 		lpi_base = 0;
3507 	}
3508 
3509 	if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3510 		kfree(dev);
3511 		itt_free_pool(itt, sz);
3512 		bitmap_free(lpi_map);
3513 		kfree(col_map);
3514 		return NULL;
3515 	}
3516 
3517 	gic_flush_dcache_to_poc(itt, sz);
3518 
3519 	dev->its = its;
3520 	dev->itt = itt;
3521 	dev->itt_sz = sz;
3522 	dev->nr_ites = nr_ites;
3523 	dev->event_map.lpi_map = lpi_map;
3524 	dev->event_map.col_map = col_map;
3525 	dev->event_map.lpi_base = lpi_base;
3526 	dev->event_map.nr_lpis = nr_lpis;
3527 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3528 	dev->device_id = dev_id;
3529 	INIT_LIST_HEAD(&dev->entry);
3530 
3531 	raw_spin_lock_irqsave(&its->lock, flags);
3532 	list_add(&dev->entry, &its->its_device_list);
3533 	raw_spin_unlock_irqrestore(&its->lock, flags);
3534 
3535 	/* Map device to its ITT */
3536 	its_send_mapd(dev, 1);
3537 
3538 	return dev;
3539 }
3540 
its_free_device(struct its_device * its_dev)3541 static void its_free_device(struct its_device *its_dev)
3542 {
3543 	unsigned long flags;
3544 
3545 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3546 	list_del(&its_dev->entry);
3547 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3548 	kfree(its_dev->event_map.col_map);
3549 	itt_free_pool(its_dev->itt, its_dev->itt_sz);
3550 	kfree(its_dev);
3551 }
3552 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3553 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3554 {
3555 	int idx;
3556 
3557 	/* Find a free LPI region in lpi_map and allocate them. */
3558 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3559 				      dev->event_map.nr_lpis,
3560 				      get_count_order(nvecs));
3561 	if (idx < 0)
3562 		return -ENOSPC;
3563 
3564 	*hwirq = dev->event_map.lpi_base + idx;
3565 
3566 	return 0;
3567 }
3568 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3569 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3570 			   int nvec, msi_alloc_info_t *info)
3571 {
3572 	struct its_node *its;
3573 	struct its_device *its_dev;
3574 	struct msi_domain_info *msi_info;
3575 	u32 dev_id;
3576 	int err = 0;
3577 
3578 	/*
3579 	 * We ignore "dev" entirely, and rely on the dev_id that has
3580 	 * been passed via the scratchpad. This limits this domain's
3581 	 * usefulness to upper layers that definitely know that they
3582 	 * are built on top of the ITS.
3583 	 */
3584 	dev_id = info->scratchpad[0].ul;
3585 
3586 	msi_info = msi_get_domain_info(domain);
3587 	its = msi_info->data;
3588 
3589 	if (!gic_rdists->has_direct_lpi &&
3590 	    vpe_proxy.dev &&
3591 	    vpe_proxy.dev->its == its &&
3592 	    dev_id == vpe_proxy.dev->device_id) {
3593 		/* Bad luck. Get yourself a better implementation */
3594 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3595 			  dev_id);
3596 		return -EINVAL;
3597 	}
3598 
3599 	mutex_lock(&its->dev_alloc_lock);
3600 	its_dev = its_find_device(its, dev_id);
3601 	if (its_dev) {
3602 		/*
3603 		 * We already have seen this ID, probably through
3604 		 * another alias (PCI bridge of some sort). No need to
3605 		 * create the device.
3606 		 */
3607 		its_dev->shared = true;
3608 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3609 		goto out;
3610 	}
3611 
3612 	its_dev = its_create_device(its, dev_id, nvec, true);
3613 	if (!its_dev) {
3614 		err = -ENOMEM;
3615 		goto out;
3616 	}
3617 
3618 	if (info->flags & MSI_ALLOC_FLAGS_PROXY_DEVICE)
3619 		its_dev->shared = true;
3620 
3621 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3622 out:
3623 	mutex_unlock(&its->dev_alloc_lock);
3624 	info->scratchpad[0].ptr = its_dev;
3625 	return err;
3626 }
3627 
its_msi_teardown(struct irq_domain * domain,msi_alloc_info_t * info)3628 static void its_msi_teardown(struct irq_domain *domain, msi_alloc_info_t *info)
3629 {
3630 	struct its_device *its_dev = info->scratchpad[0].ptr;
3631 
3632 	guard(mutex)(&its_dev->its->dev_alloc_lock);
3633 
3634 	/* If the device is shared, keep everything around */
3635 	if (its_dev->shared)
3636 		return;
3637 
3638 	/* LPIs should have been already unmapped at this stage */
3639 	if (WARN_ON_ONCE(!bitmap_empty(its_dev->event_map.lpi_map,
3640 				       its_dev->event_map.nr_lpis)))
3641 		return;
3642 
3643 	its_lpi_free(its_dev->event_map.lpi_map,
3644 		     its_dev->event_map.lpi_base,
3645 		     its_dev->event_map.nr_lpis);
3646 
3647 	/* Unmap device/itt, and get rid of the tracking */
3648 	its_send_mapd(its_dev, 0);
3649 	its_free_device(its_dev);
3650 }
3651 
3652 static struct msi_domain_ops its_msi_domain_ops = {
3653 	.msi_prepare	= its_msi_prepare,
3654 	.msi_teardown	= its_msi_teardown,
3655 };
3656 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3657 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3658 				    unsigned int virq,
3659 				    irq_hw_number_t hwirq)
3660 {
3661 	struct irq_fwspec fwspec;
3662 
3663 	if (irq_domain_get_of_node(domain->parent)) {
3664 		fwspec.fwnode = domain->parent->fwnode;
3665 		fwspec.param_count = 3;
3666 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3667 		fwspec.param[1] = hwirq;
3668 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3669 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3670 		fwspec.fwnode = domain->parent->fwnode;
3671 		fwspec.param_count = 2;
3672 		fwspec.param[0] = hwirq;
3673 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3674 	} else {
3675 		return -EINVAL;
3676 	}
3677 
3678 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3679 }
3680 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3681 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3682 				unsigned int nr_irqs, void *args)
3683 {
3684 	msi_alloc_info_t *info = args;
3685 	struct its_device *its_dev = info->scratchpad[0].ptr;
3686 	struct its_node *its = its_dev->its;
3687 	struct irq_data *irqd;
3688 	irq_hw_number_t hwirq;
3689 	int err;
3690 	int i;
3691 
3692 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3693 	if (err)
3694 		return err;
3695 
3696 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3697 	if (err)
3698 		return err;
3699 
3700 	for (i = 0; i < nr_irqs; i++) {
3701 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3702 		if (err)
3703 			return err;
3704 
3705 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3706 					      hwirq + i, &its_irq_chip, its_dev);
3707 		irqd = irq_get_irq_data(virq + i);
3708 		irqd_set_single_target(irqd);
3709 		irqd_set_affinity_on_activate(irqd);
3710 		irqd_set_resend_when_in_progress(irqd);
3711 		pr_debug("ID:%d pID:%d vID:%d\n",
3712 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3713 			 (int)(hwirq + i), virq + i);
3714 	}
3715 
3716 	return 0;
3717 }
3718 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3719 static int its_irq_domain_activate(struct irq_domain *domain,
3720 				   struct irq_data *d, bool reserve)
3721 {
3722 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3723 	u32 event = its_get_event_id(d);
3724 	int cpu;
3725 
3726 	cpu = its_select_cpu(d, cpu_online_mask);
3727 	if (cpu < 0 || cpu >= nr_cpu_ids)
3728 		return -EINVAL;
3729 
3730 	its_inc_lpi_count(d, cpu);
3731 	its_dev->event_map.col_map[event] = cpu;
3732 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3733 
3734 	/* Map the GIC IRQ and event to the device */
3735 	its_send_mapti(its_dev, d->hwirq, event);
3736 	return 0;
3737 }
3738 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3739 static void its_irq_domain_deactivate(struct irq_domain *domain,
3740 				      struct irq_data *d)
3741 {
3742 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3743 	u32 event = its_get_event_id(d);
3744 
3745 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3746 	/* Stop the delivery of interrupts */
3747 	its_send_discard(its_dev, event);
3748 }
3749 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3750 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3751 				unsigned int nr_irqs)
3752 {
3753 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3754 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3755 	int i;
3756 
3757 	bitmap_release_region(its_dev->event_map.lpi_map,
3758 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3759 			      get_count_order(nr_irqs));
3760 
3761 	for (i = 0; i < nr_irqs; i++) {
3762 		struct irq_data *data = irq_domain_get_irq_data(domain,
3763 								virq + i);
3764 		/* Nuke the entry in the domain */
3765 		irq_domain_reset_irq_data(data);
3766 	}
3767 
3768 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3769 }
3770 
3771 static const struct irq_domain_ops its_domain_ops = {
3772 	.select			= msi_lib_irq_domain_select,
3773 	.alloc			= its_irq_domain_alloc,
3774 	.free			= its_irq_domain_free,
3775 	.activate		= its_irq_domain_activate,
3776 	.deactivate		= its_irq_domain_deactivate,
3777 };
3778 
3779 /*
3780  * This is insane.
3781  *
3782  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3783  * likely), the only way to perform an invalidate is to use a fake
3784  * device to issue an INV command, implying that the LPI has first
3785  * been mapped to some event on that device. Since this is not exactly
3786  * cheap, we try to keep that mapping around as long as possible, and
3787  * only issue an UNMAP if we're short on available slots.
3788  *
3789  * Broken by design(tm).
3790  *
3791  * GICv4.1, on the other hand, mandates that we're able to invalidate
3792  * by writing to a MMIO register. It doesn't implement the whole of
3793  * DirectLPI, but that's good enough. And most of the time, we don't
3794  * even have to invalidate anything, as the redistributor can be told
3795  * whether to generate a doorbell or not (we thus leave it enabled,
3796  * always).
3797  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3798 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3799 {
3800 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3801 	if (gic_rdists->has_rvpeid)
3802 		return;
3803 
3804 	/* Already unmapped? */
3805 	if (vpe->vpe_proxy_event == -1)
3806 		return;
3807 
3808 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3809 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3810 
3811 	/*
3812 	 * We don't track empty slots at all, so let's move the
3813 	 * next_victim pointer if we can quickly reuse that slot
3814 	 * instead of nuking an existing entry. Not clear that this is
3815 	 * always a win though, and this might just generate a ripple
3816 	 * effect... Let's just hope VPEs don't migrate too often.
3817 	 */
3818 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3819 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3820 
3821 	vpe->vpe_proxy_event = -1;
3822 }
3823 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3824 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3825 {
3826 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3827 	if (gic_rdists->has_rvpeid)
3828 		return;
3829 
3830 	if (!gic_rdists->has_direct_lpi) {
3831 		unsigned long flags;
3832 
3833 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3834 		its_vpe_db_proxy_unmap_locked(vpe);
3835 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3836 	}
3837 }
3838 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3839 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3840 {
3841 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3842 	if (gic_rdists->has_rvpeid)
3843 		return;
3844 
3845 	/* Already mapped? */
3846 	if (vpe->vpe_proxy_event != -1)
3847 		return;
3848 
3849 	/* This slot was already allocated. Kick the other VPE out. */
3850 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3851 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3852 
3853 	/* Map the new VPE instead */
3854 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3855 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3856 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3857 
3858 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3859 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3860 }
3861 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3862 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3863 {
3864 	unsigned long flags;
3865 	struct its_collection *target_col;
3866 
3867 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3868 	if (gic_rdists->has_rvpeid)
3869 		return;
3870 
3871 	if (gic_rdists->has_direct_lpi) {
3872 		void __iomem *rdbase;
3873 
3874 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3875 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3876 		wait_for_syncr(rdbase);
3877 
3878 		return;
3879 	}
3880 
3881 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3882 
3883 	its_vpe_db_proxy_map_locked(vpe);
3884 
3885 	target_col = &vpe_proxy.dev->its->collections[to];
3886 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3887 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3888 
3889 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3890 }
3891 
its_vpe_4_1_invall_locked(int cpu,struct its_vpe * vpe)3892 static void its_vpe_4_1_invall_locked(int cpu, struct its_vpe *vpe)
3893 {
3894 	void __iomem *rdbase;
3895 	u64 val;
3896 
3897 	val  = GICR_INVALLR_V;
3898 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
3899 
3900 	guard(raw_spinlock)(&gic_data_rdist_cpu(cpu)->rd_lock);
3901 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
3902 	gic_write_lpir(val, rdbase + GICR_INVALLR);
3903 	wait_for_syncr(rdbase);
3904 }
3905 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3906 static int its_vpe_set_affinity(struct irq_data *d,
3907 				const struct cpumask *mask_val,
3908 				bool force)
3909 {
3910 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3911 	unsigned int from, cpu = nr_cpu_ids;
3912 	struct cpumask *table_mask;
3913 	struct its_node *its;
3914 	unsigned long flags;
3915 
3916 	/*
3917 	 * Check if we're racing against a VPE being destroyed, for
3918 	 * which we don't want to allow a VMOVP.
3919 	 */
3920 	if (!atomic_read(&vpe->vmapp_count)) {
3921 		if (gic_requires_eager_mapping())
3922 			return -EINVAL;
3923 
3924 		/*
3925 		 * If we lazily map the VPEs, this isn't an error and
3926 		 * we can exit cleanly.
3927 		 */
3928 		cpu = cpumask_first(mask_val);
3929 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
3930 		return IRQ_SET_MASK_OK_DONE;
3931 	}
3932 
3933 	/*
3934 	 * Changing affinity is mega expensive, so let's be as lazy as
3935 	 * we can and only do it if we really have to. Also, if mapped
3936 	 * into the proxy device, we need to move the doorbell
3937 	 * interrupt to its new location.
3938 	 *
3939 	 * Another thing is that changing the affinity of a vPE affects
3940 	 * *other interrupts* such as all the vLPIs that are routed to
3941 	 * this vPE. This means that the irq_desc lock is not enough to
3942 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3943 	 * during the update, hence the lock below which must also be
3944 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3945 	 *
3946 	 * Finally, we must protect ourselves against concurrent updates of
3947 	 * the mapping state on this VM should the ITS list be in use (see
3948 	 * the shortcut in its_send_vmovp() otherewise).
3949 	 */
3950 	if (its_list_map)
3951 		raw_spin_lock(&vpe->its_vm->vmapp_lock);
3952 
3953 	from = vpe_to_cpuid_lock(vpe, &flags);
3954 	table_mask = gic_data_rdist_cpu(from)->vpe_table_mask;
3955 
3956 	/*
3957 	 * If we are offered another CPU in the same GICv4.1 ITS
3958 	 * affinity, pick this one. Otherwise, any CPU will do.
3959 	 */
3960 	if (table_mask)
3961 		cpu = cpumask_any_and(mask_val, table_mask);
3962 	if (cpu < nr_cpu_ids) {
3963 		if (cpumask_test_cpu(from, mask_val) &&
3964 		    cpumask_test_cpu(from, table_mask))
3965 			cpu = from;
3966 	} else {
3967 		cpu = cpumask_first(mask_val);
3968 	}
3969 
3970 	if (from == cpu)
3971 		goto out;
3972 
3973 	vpe->col_idx = cpu;
3974 
3975 	its_send_vmovp(vpe);
3976 
3977 	its = find_4_1_its();
3978 	if (its && its->flags & ITS_FLAGS_WORKAROUND_HISILICON_162100801)
3979 		its_vpe_4_1_invall_locked(cpu, vpe);
3980 
3981 	its_vpe_db_proxy_move(vpe, from, cpu);
3982 
3983 out:
3984 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3985 	vpe_to_cpuid_unlock(vpe, flags);
3986 
3987 	if (its_list_map)
3988 		raw_spin_unlock(&vpe->its_vm->vmapp_lock);
3989 
3990 	return IRQ_SET_MASK_OK_DONE;
3991 }
3992 
its_wait_vpt_parse_complete(void)3993 static void its_wait_vpt_parse_complete(void)
3994 {
3995 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3996 	u64 val;
3997 
3998 	if (!gic_rdists->has_vpend_valid_dirty)
3999 		return;
4000 
4001 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
4002 						       val,
4003 						       !(val & GICR_VPENDBASER_Dirty),
4004 						       1, 500));
4005 }
4006 
its_vpe_schedule(struct its_vpe * vpe)4007 static void its_vpe_schedule(struct its_vpe *vpe)
4008 {
4009 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4010 	u64 val;
4011 
4012 	/* Schedule the VPE */
4013 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
4014 		GENMASK_ULL(51, 12);
4015 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
4016 	if (rdists_support_shareable()) {
4017 		val |= GICR_VPROPBASER_RaWb;
4018 		val |= GICR_VPROPBASER_InnerShareable;
4019 	}
4020 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
4021 
4022 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
4023 		GENMASK_ULL(51, 16);
4024 	if (rdists_support_shareable()) {
4025 		val |= GICR_VPENDBASER_RaWaWb;
4026 		val |= GICR_VPENDBASER_InnerShareable;
4027 	}
4028 	/*
4029 	 * There is no good way of finding out if the pending table is
4030 	 * empty as we can race against the doorbell interrupt very
4031 	 * easily. So in the end, vpe->pending_last is only an
4032 	 * indication that the vcpu has something pending, not one
4033 	 * that the pending table is empty. A good implementation
4034 	 * would be able to read its coarse map pretty quickly anyway,
4035 	 * making this a tolerable issue.
4036 	 */
4037 	val |= GICR_VPENDBASER_PendingLast;
4038 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
4039 	val |= GICR_VPENDBASER_Valid;
4040 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4041 }
4042 
its_vpe_deschedule(struct its_vpe * vpe)4043 static void its_vpe_deschedule(struct its_vpe *vpe)
4044 {
4045 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4046 	u64 val;
4047 
4048 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
4049 
4050 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
4051 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4052 }
4053 
its_vpe_invall(struct its_vpe * vpe)4054 static void its_vpe_invall(struct its_vpe *vpe)
4055 {
4056 	struct its_node *its;
4057 
4058 	guard(raw_spinlock_irqsave)(&vpe->its_vm->vmapp_lock);
4059 
4060 	list_for_each_entry(its, &its_nodes, entry) {
4061 		if (!is_v4(its))
4062 			continue;
4063 
4064 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
4065 			continue;
4066 
4067 		/*
4068 		 * Sending a VINVALL to a single ITS is enough, as all
4069 		 * we need is to reach the redistributors.
4070 		 */
4071 		its_send_vinvall(its, vpe);
4072 		return;
4073 	}
4074 }
4075 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4076 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4077 {
4078 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4079 	struct its_cmd_info *info = vcpu_info;
4080 
4081 	switch (info->cmd_type) {
4082 	case SCHEDULE_VPE:
4083 		its_vpe_schedule(vpe);
4084 		return 0;
4085 
4086 	case DESCHEDULE_VPE:
4087 		its_vpe_deschedule(vpe);
4088 		return 0;
4089 
4090 	case COMMIT_VPE:
4091 		its_wait_vpt_parse_complete();
4092 		return 0;
4093 
4094 	case INVALL_VPE:
4095 		its_vpe_invall(vpe);
4096 		return 0;
4097 
4098 	default:
4099 		return -EINVAL;
4100 	}
4101 }
4102 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))4103 static void its_vpe_send_cmd(struct its_vpe *vpe,
4104 			     void (*cmd)(struct its_device *, u32))
4105 {
4106 	unsigned long flags;
4107 
4108 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
4109 
4110 	its_vpe_db_proxy_map_locked(vpe);
4111 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
4112 
4113 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
4114 }
4115 
its_vpe_send_inv(struct irq_data * d)4116 static void its_vpe_send_inv(struct irq_data *d)
4117 {
4118 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4119 
4120 	if (gic_rdists->has_direct_lpi)
4121 		__direct_lpi_inv(d, d->parent_data->hwirq);
4122 	else
4123 		its_vpe_send_cmd(vpe, its_send_inv);
4124 }
4125 
its_vpe_mask_irq(struct irq_data * d)4126 static void its_vpe_mask_irq(struct irq_data *d)
4127 {
4128 	/*
4129 	 * We need to unmask the LPI, which is described by the parent
4130 	 * irq_data. Instead of calling into the parent (which won't
4131 	 * exactly do the right thing, let's simply use the
4132 	 * parent_data pointer. Yes, I'm naughty.
4133 	 */
4134 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4135 	its_vpe_send_inv(d);
4136 }
4137 
its_vpe_unmask_irq(struct irq_data * d)4138 static void its_vpe_unmask_irq(struct irq_data *d)
4139 {
4140 	/* Same hack as above... */
4141 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4142 	its_vpe_send_inv(d);
4143 }
4144 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4145 static int its_vpe_set_irqchip_state(struct irq_data *d,
4146 				     enum irqchip_irq_state which,
4147 				     bool state)
4148 {
4149 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4150 
4151 	if (which != IRQCHIP_STATE_PENDING)
4152 		return -EINVAL;
4153 
4154 	if (gic_rdists->has_direct_lpi) {
4155 		void __iomem *rdbase;
4156 
4157 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4158 		if (state) {
4159 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4160 		} else {
4161 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4162 			wait_for_syncr(rdbase);
4163 		}
4164 	} else {
4165 		if (state)
4166 			its_vpe_send_cmd(vpe, its_send_int);
4167 		else
4168 			its_vpe_send_cmd(vpe, its_send_clear);
4169 	}
4170 
4171 	return 0;
4172 }
4173 
its_vpe_retrigger(struct irq_data * d)4174 static int its_vpe_retrigger(struct irq_data *d)
4175 {
4176 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4177 }
4178 
4179 static struct irq_chip its_vpe_irq_chip = {
4180 	.name			= "GICv4-vpe",
4181 	.irq_mask		= its_vpe_mask_irq,
4182 	.irq_unmask		= its_vpe_unmask_irq,
4183 	.irq_eoi		= irq_chip_eoi_parent,
4184 	.irq_set_affinity	= its_vpe_set_affinity,
4185 	.irq_retrigger		= its_vpe_retrigger,
4186 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4187 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4188 };
4189 
find_4_1_its(void)4190 static struct its_node *find_4_1_its(void)
4191 {
4192 	struct its_node *its = *this_cpu_ptr(&local_4_1_its);
4193 
4194 	if (!its) {
4195 		list_for_each_entry(its, &its_nodes, entry) {
4196 			if (is_v4_1(its))
4197 				return its;
4198 		}
4199 
4200 		/* Oops? */
4201 		its = NULL;
4202 	}
4203 
4204 	return its;
4205 }
4206 
its_vpe_4_1_send_inv(struct irq_data * d)4207 static void its_vpe_4_1_send_inv(struct irq_data *d)
4208 {
4209 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4210 	struct its_node *its;
4211 
4212 	/*
4213 	 * GICv4.1 wants doorbells to be invalidated using the
4214 	 * INVDB command in order to be broadcast to all RDs. Send
4215 	 * it to the first valid ITS, and let the HW do its magic.
4216 	 */
4217 	its = find_4_1_its();
4218 	if (its)
4219 		its_send_invdb(its, vpe);
4220 }
4221 
its_vpe_4_1_mask_irq(struct irq_data * d)4222 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4223 {
4224 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4225 	its_vpe_4_1_send_inv(d);
4226 }
4227 
its_vpe_4_1_unmask_irq(struct irq_data * d)4228 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4229 {
4230 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4231 	its_vpe_4_1_send_inv(d);
4232 }
4233 
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4234 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4235 				 struct its_cmd_info *info)
4236 {
4237 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4238 	u64 val = 0;
4239 
4240 	/* Schedule the VPE */
4241 	val |= GICR_VPENDBASER_Valid;
4242 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4243 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4244 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4245 
4246 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4247 }
4248 
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4249 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4250 				   struct its_cmd_info *info)
4251 {
4252 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4253 	u64 val;
4254 
4255 	if (info->req_db) {
4256 		unsigned long flags;
4257 
4258 		/*
4259 		 * vPE is going to block: make the vPE non-resident with
4260 		 * PendingLast clear and DB set. The GIC guarantees that if
4261 		 * we read-back PendingLast clear, then a doorbell will be
4262 		 * delivered when an interrupt comes.
4263 		 *
4264 		 * Note the locking to deal with the concurrent update of
4265 		 * pending_last from the doorbell interrupt handler that can
4266 		 * run concurrently.
4267 		 */
4268 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4269 		val = its_clear_vpend_valid(vlpi_base,
4270 					    GICR_VPENDBASER_PendingLast,
4271 					    GICR_VPENDBASER_4_1_DB);
4272 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4273 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4274 	} else {
4275 		/*
4276 		 * We're not blocking, so just make the vPE non-resident
4277 		 * with PendingLast set, indicating that we'll be back.
4278 		 */
4279 		val = its_clear_vpend_valid(vlpi_base,
4280 					    0,
4281 					    GICR_VPENDBASER_PendingLast);
4282 		vpe->pending_last = true;
4283 	}
4284 }
4285 
its_vpe_4_1_invall(struct its_vpe * vpe)4286 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4287 {
4288 	unsigned long flags;
4289 	int cpu;
4290 
4291 	/* Target the redistributor this vPE is currently known on */
4292 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4293 	its_vpe_4_1_invall_locked(cpu, vpe);
4294 	vpe_to_cpuid_unlock(vpe, flags);
4295 }
4296 
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4297 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4298 {
4299 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4300 	struct its_cmd_info *info = vcpu_info;
4301 
4302 	switch (info->cmd_type) {
4303 	case SCHEDULE_VPE:
4304 		its_vpe_4_1_schedule(vpe, info);
4305 		return 0;
4306 
4307 	case DESCHEDULE_VPE:
4308 		its_vpe_4_1_deschedule(vpe, info);
4309 		return 0;
4310 
4311 	case COMMIT_VPE:
4312 		its_wait_vpt_parse_complete();
4313 		return 0;
4314 
4315 	case INVALL_VPE:
4316 		its_vpe_4_1_invall(vpe);
4317 		return 0;
4318 
4319 	default:
4320 		return -EINVAL;
4321 	}
4322 }
4323 
4324 static struct irq_chip its_vpe_4_1_irq_chip = {
4325 	.name			= "GICv4.1-vpe",
4326 	.irq_mask		= its_vpe_4_1_mask_irq,
4327 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4328 	.irq_eoi		= irq_chip_eoi_parent,
4329 	.irq_set_affinity	= its_vpe_set_affinity,
4330 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4331 };
4332 
its_configure_sgi(struct irq_data * d,bool clear)4333 static void its_configure_sgi(struct irq_data *d, bool clear)
4334 {
4335 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4336 	struct its_cmd_desc desc;
4337 
4338 	desc.its_vsgi_cmd.vpe = vpe;
4339 	desc.its_vsgi_cmd.sgi = d->hwirq;
4340 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4341 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4342 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4343 	desc.its_vsgi_cmd.clear = clear;
4344 
4345 	/*
4346 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4347 	 * destination VPE is mapped there. Since we map them eagerly at
4348 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4349 	 */
4350 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4351 }
4352 
its_sgi_mask_irq(struct irq_data * d)4353 static void its_sgi_mask_irq(struct irq_data *d)
4354 {
4355 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4356 
4357 	vpe->sgi_config[d->hwirq].enabled = false;
4358 	its_configure_sgi(d, false);
4359 }
4360 
its_sgi_unmask_irq(struct irq_data * d)4361 static void its_sgi_unmask_irq(struct irq_data *d)
4362 {
4363 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4364 
4365 	vpe->sgi_config[d->hwirq].enabled = true;
4366 	its_configure_sgi(d, false);
4367 }
4368 
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4369 static int its_sgi_set_affinity(struct irq_data *d,
4370 				const struct cpumask *mask_val,
4371 				bool force)
4372 {
4373 	/*
4374 	 * There is no notion of affinity for virtual SGIs, at least
4375 	 * not on the host (since they can only be targeting a vPE).
4376 	 * Tell the kernel we've done whatever it asked for.
4377 	 */
4378 	irq_data_update_effective_affinity(d, mask_val);
4379 	return IRQ_SET_MASK_OK;
4380 }
4381 
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4382 static int its_sgi_set_irqchip_state(struct irq_data *d,
4383 				     enum irqchip_irq_state which,
4384 				     bool state)
4385 {
4386 	if (which != IRQCHIP_STATE_PENDING)
4387 		return -EINVAL;
4388 
4389 	if (state) {
4390 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4391 		struct its_node *its = find_4_1_its();
4392 		u64 val;
4393 
4394 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4395 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4396 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4397 	} else {
4398 		its_configure_sgi(d, true);
4399 	}
4400 
4401 	return 0;
4402 }
4403 
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4404 static int its_sgi_get_irqchip_state(struct irq_data *d,
4405 				     enum irqchip_irq_state which, bool *val)
4406 {
4407 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4408 	void __iomem *base;
4409 	unsigned long flags;
4410 	u32 count = 1000000;	/* 1s! */
4411 	u32 status;
4412 	int cpu;
4413 
4414 	if (which != IRQCHIP_STATE_PENDING)
4415 		return -EINVAL;
4416 
4417 	/*
4418 	 * Locking galore! We can race against two different events:
4419 	 *
4420 	 * - Concurrent vPE affinity change: we must make sure it cannot
4421 	 *   happen, or we'll talk to the wrong redistributor. This is
4422 	 *   identical to what happens with vLPIs.
4423 	 *
4424 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4425 	 *   MMIO registers, this must be made atomic one way or another.
4426 	 */
4427 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4428 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4429 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4430 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4431 	do {
4432 		status = readl_relaxed(base + GICR_VSGIPENDR);
4433 		if (!(status & GICR_VSGIPENDR_BUSY))
4434 			goto out;
4435 
4436 		count--;
4437 		if (!count) {
4438 			pr_err_ratelimited("Unable to get SGI status\n");
4439 			goto out;
4440 		}
4441 		cpu_relax();
4442 		udelay(1);
4443 	} while (count);
4444 
4445 out:
4446 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4447 	vpe_to_cpuid_unlock(vpe, flags);
4448 
4449 	if (!count)
4450 		return -ENXIO;
4451 
4452 	*val = !!(status & (1 << d->hwirq));
4453 
4454 	return 0;
4455 }
4456 
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4457 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4458 {
4459 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4460 	struct its_cmd_info *info = vcpu_info;
4461 
4462 	switch (info->cmd_type) {
4463 	case PROP_UPDATE_VSGI:
4464 		vpe->sgi_config[d->hwirq].priority = info->priority;
4465 		vpe->sgi_config[d->hwirq].group = info->group;
4466 		its_configure_sgi(d, false);
4467 		return 0;
4468 
4469 	default:
4470 		return -EINVAL;
4471 	}
4472 }
4473 
4474 static struct irq_chip its_sgi_irq_chip = {
4475 	.name			= "GICv4.1-sgi",
4476 	.irq_mask		= its_sgi_mask_irq,
4477 	.irq_unmask		= its_sgi_unmask_irq,
4478 	.irq_set_affinity	= its_sgi_set_affinity,
4479 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4480 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4481 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4482 };
4483 
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4484 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4485 				    unsigned int virq, unsigned int nr_irqs,
4486 				    void *args)
4487 {
4488 	struct its_vpe *vpe = args;
4489 	int i;
4490 
4491 	/* Yes, we do want 16 SGIs */
4492 	WARN_ON(nr_irqs != 16);
4493 
4494 	for (i = 0; i < 16; i++) {
4495 		vpe->sgi_config[i].priority = 0;
4496 		vpe->sgi_config[i].enabled = false;
4497 		vpe->sgi_config[i].group = false;
4498 
4499 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4500 					      &its_sgi_irq_chip, vpe);
4501 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4502 	}
4503 
4504 	return 0;
4505 }
4506 
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4507 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4508 				    unsigned int virq,
4509 				    unsigned int nr_irqs)
4510 {
4511 	/* Nothing to do */
4512 }
4513 
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4514 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4515 				       struct irq_data *d, bool reserve)
4516 {
4517 	/* Write out the initial SGI configuration */
4518 	its_configure_sgi(d, false);
4519 	return 0;
4520 }
4521 
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4522 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4523 					  struct irq_data *d)
4524 {
4525 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4526 
4527 	/*
4528 	 * The VSGI command is awkward:
4529 	 *
4530 	 * - To change the configuration, CLEAR must be set to false,
4531 	 *   leaving the pending bit unchanged.
4532 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4533 	 *   the configuration unchanged.
4534 	 *
4535 	 * You just can't do both at once, hence the two commands below.
4536 	 */
4537 	vpe->sgi_config[d->hwirq].enabled = false;
4538 	its_configure_sgi(d, false);
4539 	its_configure_sgi(d, true);
4540 }
4541 
4542 static const struct irq_domain_ops its_sgi_domain_ops = {
4543 	.alloc		= its_sgi_irq_domain_alloc,
4544 	.free		= its_sgi_irq_domain_free,
4545 	.activate	= its_sgi_irq_domain_activate,
4546 	.deactivate	= its_sgi_irq_domain_deactivate,
4547 };
4548 
its_vpe_id_alloc(void)4549 static int its_vpe_id_alloc(void)
4550 {
4551 	return ida_alloc_max(&its_vpeid_ida, ITS_MAX_VPEID - 1, GFP_KERNEL);
4552 }
4553 
its_vpe_id_free(u16 id)4554 static void its_vpe_id_free(u16 id)
4555 {
4556 	ida_free(&its_vpeid_ida, id);
4557 }
4558 
its_vpe_init(struct its_vpe * vpe)4559 static int its_vpe_init(struct its_vpe *vpe)
4560 {
4561 	struct page *vpt_page;
4562 	int vpe_id;
4563 
4564 	/* Allocate vpe_id */
4565 	vpe_id = its_vpe_id_alloc();
4566 	if (vpe_id < 0)
4567 		return vpe_id;
4568 
4569 	/* Allocate VPT */
4570 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4571 	if (!vpt_page) {
4572 		its_vpe_id_free(vpe_id);
4573 		return -ENOMEM;
4574 	}
4575 
4576 	if (!its_alloc_vpe_table(vpe_id)) {
4577 		its_vpe_id_free(vpe_id);
4578 		its_free_pending_table(vpt_page);
4579 		return -ENOMEM;
4580 	}
4581 
4582 	raw_spin_lock_init(&vpe->vpe_lock);
4583 	vpe->vpe_id = vpe_id;
4584 	vpe->vpt_page = vpt_page;
4585 	atomic_set(&vpe->vmapp_count, 0);
4586 	if (!gic_rdists->has_rvpeid)
4587 		vpe->vpe_proxy_event = -1;
4588 
4589 	return 0;
4590 }
4591 
its_vpe_teardown(struct its_vpe * vpe)4592 static void its_vpe_teardown(struct its_vpe *vpe)
4593 {
4594 	its_vpe_db_proxy_unmap(vpe);
4595 	its_vpe_id_free(vpe->vpe_id);
4596 	its_free_pending_table(vpe->vpt_page);
4597 }
4598 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4599 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4600 				    unsigned int virq,
4601 				    unsigned int nr_irqs)
4602 {
4603 	struct its_vm *vm = domain->host_data;
4604 	int i;
4605 
4606 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4607 
4608 	for (i = 0; i < nr_irqs; i++) {
4609 		struct irq_data *data = irq_domain_get_irq_data(domain,
4610 								virq + i);
4611 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4612 
4613 		BUG_ON(vm != vpe->its_vm);
4614 
4615 		clear_bit(data->hwirq, vm->db_bitmap);
4616 		its_vpe_teardown(vpe);
4617 		irq_domain_reset_irq_data(data);
4618 	}
4619 
4620 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4621 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4622 		its_free_prop_table(vm->vprop_page);
4623 	}
4624 }
4625 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4626 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4627 				    unsigned int nr_irqs, void *args)
4628 {
4629 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4630 	struct its_vm *vm = args;
4631 	unsigned long *bitmap;
4632 	struct page *vprop_page;
4633 	int base, nr_ids, i, err = 0;
4634 
4635 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4636 	if (!bitmap)
4637 		return -ENOMEM;
4638 
4639 	if (nr_ids < nr_irqs) {
4640 		its_lpi_free(bitmap, base, nr_ids);
4641 		return -ENOMEM;
4642 	}
4643 
4644 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4645 	if (!vprop_page) {
4646 		its_lpi_free(bitmap, base, nr_ids);
4647 		return -ENOMEM;
4648 	}
4649 
4650 	vm->db_bitmap = bitmap;
4651 	vm->db_lpi_base = base;
4652 	vm->nr_db_lpis = nr_ids;
4653 	vm->vprop_page = vprop_page;
4654 	raw_spin_lock_init(&vm->vmapp_lock);
4655 
4656 	if (gic_rdists->has_rvpeid)
4657 		irqchip = &its_vpe_4_1_irq_chip;
4658 
4659 	for (i = 0; i < nr_irqs; i++) {
4660 		vm->vpes[i]->vpe_db_lpi = base + i;
4661 		err = its_vpe_init(vm->vpes[i]);
4662 		if (err)
4663 			break;
4664 		err = its_irq_gic_domain_alloc(domain, virq + i,
4665 					       vm->vpes[i]->vpe_db_lpi);
4666 		if (err)
4667 			break;
4668 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4669 					      irqchip, vm->vpes[i]);
4670 		set_bit(i, bitmap);
4671 		irqd_set_resend_when_in_progress(irq_get_irq_data(virq + i));
4672 	}
4673 
4674 	if (err)
4675 		its_vpe_irq_domain_free(domain, virq, i);
4676 
4677 	return err;
4678 }
4679 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4680 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4681 				       struct irq_data *d, bool reserve)
4682 {
4683 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4684 	struct its_node *its;
4685 
4686 	/* Map the VPE to the first possible CPU */
4687 	vpe->col_idx = cpumask_first(cpu_online_mask);
4688 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4689 
4690 	/*
4691 	 * If we use the list map, we issue VMAPP on demand... Unless
4692 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4693 	 * so that VSGIs can work.
4694 	 */
4695 	if (!gic_requires_eager_mapping())
4696 		return 0;
4697 
4698 	list_for_each_entry(its, &its_nodes, entry) {
4699 		if (!is_v4(its))
4700 			continue;
4701 
4702 		its_send_vmapp(its, vpe, true);
4703 		its_send_vinvall(its, vpe);
4704 	}
4705 
4706 	return 0;
4707 }
4708 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4709 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4710 					  struct irq_data *d)
4711 {
4712 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4713 	struct its_node *its;
4714 
4715 	/*
4716 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4717 	 * VLPIs are associated with the VM.
4718 	 */
4719 	if (!gic_requires_eager_mapping())
4720 		return;
4721 
4722 	list_for_each_entry(its, &its_nodes, entry) {
4723 		if (!is_v4(its))
4724 			continue;
4725 
4726 		its_send_vmapp(its, vpe, false);
4727 	}
4728 
4729 	/*
4730 	 * There may be a direct read to the VPT after unmapping the
4731 	 * vPE, to guarantee the validity of this, we make the VPT
4732 	 * memory coherent with the CPU caches here.
4733 	 */
4734 	if (find_4_1_its() && !atomic_read(&vpe->vmapp_count))
4735 		gic_flush_dcache_to_poc(page_address(vpe->vpt_page),
4736 					LPI_PENDBASE_SZ);
4737 }
4738 
4739 static const struct irq_domain_ops its_vpe_domain_ops = {
4740 	.alloc			= its_vpe_irq_domain_alloc,
4741 	.free			= its_vpe_irq_domain_free,
4742 	.activate		= its_vpe_irq_domain_activate,
4743 	.deactivate		= its_vpe_irq_domain_deactivate,
4744 };
4745 
its_force_quiescent(void __iomem * base)4746 static int its_force_quiescent(void __iomem *base)
4747 {
4748 	u32 count = 1000000;	/* 1s */
4749 	u32 val;
4750 
4751 	val = readl_relaxed(base + GITS_CTLR);
4752 	/*
4753 	 * GIC architecture specification requires the ITS to be both
4754 	 * disabled and quiescent for writes to GITS_BASER<n> or
4755 	 * GITS_CBASER to not have UNPREDICTABLE results.
4756 	 */
4757 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4758 		return 0;
4759 
4760 	/* Disable the generation of all interrupts to this ITS */
4761 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4762 	writel_relaxed(val, base + GITS_CTLR);
4763 
4764 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4765 	while (1) {
4766 		val = readl_relaxed(base + GITS_CTLR);
4767 		if (val & GITS_CTLR_QUIESCENT)
4768 			return 0;
4769 
4770 		count--;
4771 		if (!count)
4772 			return -EBUSY;
4773 
4774 		cpu_relax();
4775 		udelay(1);
4776 	}
4777 }
4778 
its_enable_quirk_cavium_22375(void * data)4779 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4780 {
4781 	struct its_node *its = data;
4782 
4783 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4784 	its->typer &= ~GITS_TYPER_DEVBITS;
4785 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4786 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4787 
4788 	return true;
4789 }
4790 
its_enable_quirk_cavium_23144(void * data)4791 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4792 {
4793 	struct its_node *its = data;
4794 
4795 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4796 
4797 	return true;
4798 }
4799 
its_enable_quirk_qdf2400_e0065(void * data)4800 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4801 {
4802 	struct its_node *its = data;
4803 
4804 	/* On QDF2400, the size of the ITE is 16Bytes */
4805 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4806 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4807 
4808 	return true;
4809 }
4810 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4811 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4812 {
4813 	struct its_node *its = its_dev->its;
4814 
4815 	/*
4816 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4817 	 * which maps 32-bit writes targeted at a separate window of
4818 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4819 	 * with device ID taken from bits [device_id_bits + 1:2] of
4820 	 * the window offset.
4821 	 */
4822 	return its->pre_its_base + (its_dev->device_id << 2);
4823 }
4824 
its_enable_quirk_socionext_synquacer(void * data)4825 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4826 {
4827 	struct its_node *its = data;
4828 	u32 pre_its_window[2];
4829 	u32 ids;
4830 
4831 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4832 					   "socionext,synquacer-pre-its",
4833 					   pre_its_window,
4834 					   ARRAY_SIZE(pre_its_window))) {
4835 
4836 		its->pre_its_base = pre_its_window[0];
4837 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4838 
4839 		ids = ilog2(pre_its_window[1]) - 2;
4840 		if (device_ids(its) > ids) {
4841 			its->typer &= ~GITS_TYPER_DEVBITS;
4842 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4843 		}
4844 
4845 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4846 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_ISOLATED_MSI;
4847 		return true;
4848 	}
4849 	return false;
4850 }
4851 
its_enable_quirk_hip07_161600802(void * data)4852 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4853 {
4854 	struct its_node *its = data;
4855 
4856 	/*
4857 	 * Hip07 insists on using the wrong address for the VLPI
4858 	 * page. Trick it into doing the right thing...
4859 	 */
4860 	its->vlpi_redist_offset = SZ_128K;
4861 	return true;
4862 }
4863 
its_enable_rk3588001(void * data)4864 static bool __maybe_unused its_enable_rk3588001(void *data)
4865 {
4866 	struct its_node *its = data;
4867 
4868 	if (!of_machine_is_compatible("rockchip,rk3588") &&
4869 	    !of_machine_is_compatible("rockchip,rk3588s"))
4870 		return false;
4871 
4872 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4873 	gic_rdists->flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE;
4874 
4875 	return true;
4876 }
4877 
its_set_non_coherent(void * data)4878 static bool its_set_non_coherent(void *data)
4879 {
4880 	struct its_node *its = data;
4881 
4882 	its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
4883 	return true;
4884 }
4885 
its_enable_quirk_hip09_162100801(void * data)4886 static bool __maybe_unused its_enable_quirk_hip09_162100801(void *data)
4887 {
4888 	struct its_node *its = data;
4889 
4890 	its->flags |= ITS_FLAGS_WORKAROUND_HISILICON_162100801;
4891 	return true;
4892 }
4893 
its_enable_rk3568002(void * data)4894 static bool __maybe_unused its_enable_rk3568002(void *data)
4895 {
4896 	if (!of_machine_is_compatible("rockchip,rk3566") &&
4897 	    !of_machine_is_compatible("rockchip,rk3568"))
4898 		return false;
4899 
4900 	gfp_flags_quirk |= GFP_DMA32;
4901 
4902 	return true;
4903 }
4904 
4905 static const struct gic_quirk its_quirks[] = {
4906 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4907 	{
4908 		.desc	= "ITS: Cavium errata 22375, 24313",
4909 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4910 		.mask	= 0xffff0fff,
4911 		.init	= its_enable_quirk_cavium_22375,
4912 	},
4913 #endif
4914 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4915 	{
4916 		.desc	= "ITS: Cavium erratum 23144",
4917 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4918 		.mask	= 0xffff0fff,
4919 		.init	= its_enable_quirk_cavium_23144,
4920 	},
4921 #endif
4922 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4923 	{
4924 		.desc	= "ITS: QDF2400 erratum 0065",
4925 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4926 		.mask	= 0xffffffff,
4927 		.init	= its_enable_quirk_qdf2400_e0065,
4928 	},
4929 #endif
4930 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4931 	{
4932 		/*
4933 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4934 		 * implementation, but with a 'pre-ITS' added that requires
4935 		 * special handling in software.
4936 		 */
4937 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4938 		.iidr	= 0x0001143b,
4939 		.mask	= 0xffffffff,
4940 		.init	= its_enable_quirk_socionext_synquacer,
4941 	},
4942 #endif
4943 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4944 	{
4945 		.desc	= "ITS: Hip07 erratum 161600802",
4946 		.iidr	= 0x00000004,
4947 		.mask	= 0xffffffff,
4948 		.init	= its_enable_quirk_hip07_161600802,
4949 	},
4950 #endif
4951 #ifdef CONFIG_HISILICON_ERRATUM_162100801
4952 	{
4953 		.desc	= "ITS: Hip09 erratum 162100801",
4954 		.iidr	= 0x00051736,
4955 		.mask	= 0xffffffff,
4956 		.init	= its_enable_quirk_hip09_162100801,
4957 	},
4958 #endif
4959 #ifdef CONFIG_ROCKCHIP_ERRATUM_3588001
4960 	{
4961 		.desc   = "ITS: Rockchip erratum RK3588001",
4962 		.iidr   = 0x0201743b,
4963 		.mask   = 0xffffffff,
4964 		.init   = its_enable_rk3588001,
4965 	},
4966 #endif
4967 	{
4968 		.desc   = "ITS: non-coherent attribute",
4969 		.property = "dma-noncoherent",
4970 		.init   = its_set_non_coherent,
4971 	},
4972 #ifdef CONFIG_ROCKCHIP_ERRATUM_3568002
4973 	{
4974 		.desc   = "ITS: Rockchip erratum RK3568002",
4975 		.iidr   = 0x0201743b,
4976 		.mask   = 0xffffffff,
4977 		.init   = its_enable_rk3568002,
4978 	},
4979 #endif
4980 	{
4981 	}
4982 };
4983 
its_enable_quirks(struct its_node * its)4984 static void its_enable_quirks(struct its_node *its)
4985 {
4986 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4987 
4988 	gic_enable_quirks(iidr, its_quirks, its);
4989 
4990 	if (is_of_node(its->fwnode_handle))
4991 		gic_enable_of_quirks(to_of_node(its->fwnode_handle),
4992 				     its_quirks, its);
4993 }
4994 
its_save_disable(void)4995 static int its_save_disable(void)
4996 {
4997 	struct its_node *its;
4998 	int err = 0;
4999 
5000 	raw_spin_lock(&its_lock);
5001 	list_for_each_entry(its, &its_nodes, entry) {
5002 		void __iomem *base;
5003 
5004 		base = its->base;
5005 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
5006 		err = its_force_quiescent(base);
5007 		if (err) {
5008 			pr_err("ITS@%pa: failed to quiesce: %d\n",
5009 			       &its->phys_base, err);
5010 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5011 			goto err;
5012 		}
5013 
5014 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
5015 	}
5016 
5017 err:
5018 	if (err) {
5019 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
5020 			void __iomem *base;
5021 
5022 			base = its->base;
5023 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5024 		}
5025 	}
5026 	raw_spin_unlock(&its_lock);
5027 
5028 	return err;
5029 }
5030 
its_restore_enable(void)5031 static void its_restore_enable(void)
5032 {
5033 	struct its_node *its;
5034 	int ret;
5035 
5036 	raw_spin_lock(&its_lock);
5037 	list_for_each_entry(its, &its_nodes, entry) {
5038 		void __iomem *base;
5039 		int i;
5040 
5041 		base = its->base;
5042 
5043 		/*
5044 		 * Make sure that the ITS is disabled. If it fails to quiesce,
5045 		 * don't restore it since writing to CBASER or BASER<n>
5046 		 * registers is undefined according to the GIC v3 ITS
5047 		 * Specification.
5048 		 *
5049 		 * Firmware resuming with the ITS enabled is terminally broken.
5050 		 */
5051 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
5052 		ret = its_force_quiescent(base);
5053 		if (ret) {
5054 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
5055 			       &its->phys_base, ret);
5056 			continue;
5057 		}
5058 
5059 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
5060 
5061 		/*
5062 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
5063 		 * cmd_write line up with it.
5064 		 */
5065 		its->cmd_write = its->cmd_base;
5066 		gits_write_cwriter(0, base + GITS_CWRITER);
5067 
5068 		/* Restore GITS_BASER from the value cache. */
5069 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
5070 			struct its_baser *baser = &its->tables[i];
5071 
5072 			if (!(baser->val & GITS_BASER_VALID))
5073 				continue;
5074 
5075 			its_write_baser(its, baser, baser->val);
5076 		}
5077 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
5078 
5079 		/*
5080 		 * Reinit the collection if it's stored in the ITS. This is
5081 		 * indicated by the col_id being less than the HCC field.
5082 		 * CID < HCC as specified in the GIC v3 Documentation.
5083 		 */
5084 		if (its->collections[smp_processor_id()].col_id <
5085 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
5086 			its_cpu_init_collection(its);
5087 	}
5088 	raw_spin_unlock(&its_lock);
5089 }
5090 
5091 static struct syscore_ops its_syscore_ops = {
5092 	.suspend = its_save_disable,
5093 	.resume = its_restore_enable,
5094 };
5095 
its_map_one(struct resource * res,int * err)5096 static void __init __iomem *its_map_one(struct resource *res, int *err)
5097 {
5098 	void __iomem *its_base;
5099 	u32 val;
5100 
5101 	its_base = ioremap(res->start, SZ_64K);
5102 	if (!its_base) {
5103 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5104 		*err = -ENOMEM;
5105 		return NULL;
5106 	}
5107 
5108 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5109 	if (val != 0x30 && val != 0x40) {
5110 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5111 		*err = -ENODEV;
5112 		goto out_unmap;
5113 	}
5114 
5115 	*err = its_force_quiescent(its_base);
5116 	if (*err) {
5117 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5118 		goto out_unmap;
5119 	}
5120 
5121 	return its_base;
5122 
5123 out_unmap:
5124 	iounmap(its_base);
5125 	return NULL;
5126 }
5127 
its_init_domain(struct its_node * its)5128 static int its_init_domain(struct its_node *its)
5129 {
5130 	struct irq_domain_info dom_info = {
5131 		.fwnode		= its->fwnode_handle,
5132 		.ops		= &its_domain_ops,
5133 		.domain_flags	= its->msi_domain_flags,
5134 		.parent		= its_parent,
5135 	};
5136 	struct msi_domain_info *info;
5137 
5138 	info = kzalloc(sizeof(*info), GFP_KERNEL);
5139 	if (!info)
5140 		return -ENOMEM;
5141 
5142 	info->ops = &its_msi_domain_ops;
5143 	info->data = its;
5144 	dom_info.host_data = info;
5145 
5146 	if (!msi_create_parent_irq_domain(&dom_info, &gic_v3_its_msi_parent_ops)) {
5147 		kfree(info);
5148 		return -ENOMEM;
5149 	}
5150 	return 0;
5151 }
5152 
its_init_vpe_domain(void)5153 static int its_init_vpe_domain(void)
5154 {
5155 	struct its_node *its;
5156 	u32 devid;
5157 	int entries;
5158 
5159 	if (gic_rdists->has_direct_lpi) {
5160 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
5161 		return 0;
5162 	}
5163 
5164 	/* Any ITS will do, even if not v4 */
5165 	its = list_first_entry(&its_nodes, struct its_node, entry);
5166 
5167 	entries = roundup_pow_of_two(nr_cpu_ids);
5168 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
5169 				 GFP_KERNEL);
5170 	if (!vpe_proxy.vpes)
5171 		return -ENOMEM;
5172 
5173 	/* Use the last possible DevID */
5174 	devid = GENMASK(device_ids(its) - 1, 0);
5175 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
5176 	if (!vpe_proxy.dev) {
5177 		kfree(vpe_proxy.vpes);
5178 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
5179 		return -ENOMEM;
5180 	}
5181 
5182 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
5183 
5184 	raw_spin_lock_init(&vpe_proxy.lock);
5185 	vpe_proxy.next_victim = 0;
5186 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
5187 		devid, vpe_proxy.dev->nr_ites);
5188 
5189 	return 0;
5190 }
5191 
its_compute_its_list_map(struct its_node * its)5192 static int __init its_compute_its_list_map(struct its_node *its)
5193 {
5194 	int its_number;
5195 	u32 ctlr;
5196 
5197 	/*
5198 	 * This is assumed to be done early enough that we're
5199 	 * guaranteed to be single-threaded, hence no
5200 	 * locking. Should this change, we should address
5201 	 * this.
5202 	 */
5203 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
5204 	if (its_number >= GICv4_ITS_LIST_MAX) {
5205 		pr_err("ITS@%pa: No ITSList entry available!\n",
5206 		       &its->phys_base);
5207 		return -EINVAL;
5208 	}
5209 
5210 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5211 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
5212 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
5213 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5214 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5215 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
5216 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
5217 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
5218 	}
5219 
5220 	if (test_and_set_bit(its_number, &its_list_map)) {
5221 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5222 		       &its->phys_base, its_number);
5223 		return -EINVAL;
5224 	}
5225 
5226 	return its_number;
5227 }
5228 
its_probe_one(struct its_node * its)5229 static int __init its_probe_one(struct its_node *its)
5230 {
5231 	u64 baser, tmp;
5232 	struct page *page;
5233 	u32 ctlr;
5234 	int err;
5235 
5236 	its_enable_quirks(its);
5237 
5238 	if (is_v4(its)) {
5239 		if (!(its->typer & GITS_TYPER_VMOVP)) {
5240 			err = its_compute_its_list_map(its);
5241 			if (err < 0)
5242 				goto out;
5243 
5244 			its->list_nr = err;
5245 
5246 			pr_info("ITS@%pa: Using ITS number %d\n",
5247 				&its->phys_base, err);
5248 		} else {
5249 			pr_info("ITS@%pa: Single VMOVP capable\n", &its->phys_base);
5250 		}
5251 
5252 		if (is_v4_1(its)) {
5253 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
5254 
5255 			its->sgir_base = ioremap(its->phys_base + SZ_128K, SZ_64K);
5256 			if (!its->sgir_base) {
5257 				err = -ENOMEM;
5258 				goto out;
5259 			}
5260 
5261 			its->mpidr = readl_relaxed(its->base + GITS_MPIDR);
5262 
5263 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5264 				&its->phys_base, its->mpidr, svpet);
5265 		}
5266 	}
5267 
5268 	page = its_alloc_pages_node(its->numa_node,
5269 				    GFP_KERNEL | __GFP_ZERO,
5270 				    get_order(ITS_CMD_QUEUE_SZ));
5271 	if (!page) {
5272 		err = -ENOMEM;
5273 		goto out_unmap_sgir;
5274 	}
5275 	its->cmd_base = (void *)page_address(page);
5276 	its->cmd_write = its->cmd_base;
5277 
5278 	err = its_alloc_tables(its);
5279 	if (err)
5280 		goto out_free_cmd;
5281 
5282 	err = its_alloc_collections(its);
5283 	if (err)
5284 		goto out_free_tables;
5285 
5286 	baser = (virt_to_phys(its->cmd_base)	|
5287 		 GITS_CBASER_RaWaWb		|
5288 		 GITS_CBASER_InnerShareable	|
5289 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5290 		 GITS_CBASER_VALID);
5291 
5292 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5293 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5294 
5295 	if (its->flags & ITS_FLAGS_FORCE_NON_SHAREABLE)
5296 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5297 
5298 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5299 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5300 			/*
5301 			 * The HW reports non-shareable, we must
5302 			 * remove the cacheability attributes as
5303 			 * well.
5304 			 */
5305 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5306 				   GITS_CBASER_CACHEABILITY_MASK);
5307 			baser |= GITS_CBASER_nC;
5308 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5309 		}
5310 		pr_info("ITS: using cache flushing for cmd queue\n");
5311 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5312 	}
5313 
5314 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5315 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5316 	ctlr |= GITS_CTLR_ENABLE;
5317 	if (is_v4(its))
5318 		ctlr |= GITS_CTLR_ImDe;
5319 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5320 
5321 	err = its_init_domain(its);
5322 	if (err)
5323 		goto out_free_tables;
5324 
5325 	raw_spin_lock(&its_lock);
5326 	list_add(&its->entry, &its_nodes);
5327 	raw_spin_unlock(&its_lock);
5328 
5329 	return 0;
5330 
5331 out_free_tables:
5332 	its_free_tables(its);
5333 out_free_cmd:
5334 	its_free_pages(its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5335 out_unmap_sgir:
5336 	if (its->sgir_base)
5337 		iounmap(its->sgir_base);
5338 out:
5339 	pr_err("ITS@%pa: failed probing (%d)\n", &its->phys_base, err);
5340 	return err;
5341 }
5342 
gic_rdists_supports_plpis(void)5343 static bool gic_rdists_supports_plpis(void)
5344 {
5345 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5346 }
5347 
redist_disable_lpis(void)5348 static int redist_disable_lpis(void)
5349 {
5350 	void __iomem *rbase = gic_data_rdist_rd_base();
5351 	u64 timeout = USEC_PER_SEC;
5352 	u64 val;
5353 
5354 	if (!gic_rdists_supports_plpis()) {
5355 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5356 		return -ENXIO;
5357 	}
5358 
5359 	val = readl_relaxed(rbase + GICR_CTLR);
5360 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5361 		return 0;
5362 
5363 	/*
5364 	 * If coming via a CPU hotplug event, we don't need to disable
5365 	 * LPIs before trying to re-enable them. They are already
5366 	 * configured and all is well in the world.
5367 	 *
5368 	 * If running with preallocated tables, there is nothing to do.
5369 	 */
5370 	if ((gic_data_rdist()->flags & RD_LOCAL_LPI_ENABLED) ||
5371 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5372 		return 0;
5373 
5374 	/*
5375 	 * From that point on, we only try to do some damage control.
5376 	 */
5377 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5378 		smp_processor_id());
5379 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5380 
5381 	/* Disable LPIs */
5382 	val &= ~GICR_CTLR_ENABLE_LPIS;
5383 	writel_relaxed(val, rbase + GICR_CTLR);
5384 
5385 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5386 	dsb(sy);
5387 
5388 	/*
5389 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5390 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5391 	 * Error out if we time out waiting for RWP to clear.
5392 	 */
5393 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5394 		if (!timeout) {
5395 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5396 			       smp_processor_id());
5397 			return -ETIMEDOUT;
5398 		}
5399 		udelay(1);
5400 		timeout--;
5401 	}
5402 
5403 	/*
5404 	 * After it has been written to 1, it is IMPLEMENTATION
5405 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5406 	 * cleared to 0. Error out if clearing the bit failed.
5407 	 */
5408 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5409 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5410 		return -EBUSY;
5411 	}
5412 
5413 	return 0;
5414 }
5415 
its_cpu_init(void)5416 int its_cpu_init(void)
5417 {
5418 	if (!list_empty(&its_nodes)) {
5419 		int ret;
5420 
5421 		ret = redist_disable_lpis();
5422 		if (ret)
5423 			return ret;
5424 
5425 		its_cpu_init_lpis();
5426 		its_cpu_init_collections();
5427 	}
5428 
5429 	return 0;
5430 }
5431 
rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct * work)5432 static void rdist_memreserve_cpuhp_cleanup_workfn(struct work_struct *work)
5433 {
5434 	cpuhp_remove_state_nocalls(gic_rdists->cpuhp_memreserve_state);
5435 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5436 }
5437 
5438 static DECLARE_WORK(rdist_memreserve_cpuhp_cleanup_work,
5439 		    rdist_memreserve_cpuhp_cleanup_workfn);
5440 
its_cpu_memreserve_lpi(unsigned int cpu)5441 static int its_cpu_memreserve_lpi(unsigned int cpu)
5442 {
5443 	struct page *pend_page;
5444 	int ret = 0;
5445 
5446 	/* This gets to run exactly once per CPU */
5447 	if (gic_data_rdist()->flags & RD_LOCAL_MEMRESERVE_DONE)
5448 		return 0;
5449 
5450 	pend_page = gic_data_rdist()->pend_page;
5451 	if (WARN_ON(!pend_page)) {
5452 		ret = -ENOMEM;
5453 		goto out;
5454 	}
5455 	/*
5456 	 * If the pending table was pre-programmed, free the memory we
5457 	 * preemptively allocated. Otherwise, reserve that memory for
5458 	 * later kexecs.
5459 	 */
5460 	if (gic_data_rdist()->flags & RD_LOCAL_PENDTABLE_PREALLOCATED) {
5461 		its_free_pending_table(pend_page);
5462 		gic_data_rdist()->pend_page = NULL;
5463 	} else {
5464 		phys_addr_t paddr = page_to_phys(pend_page);
5465 		WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
5466 	}
5467 
5468 out:
5469 	/* Last CPU being brought up gets to issue the cleanup */
5470 	if (!IS_ENABLED(CONFIG_SMP) ||
5471 	    cpumask_equal(&cpus_booted_once_mask, cpu_possible_mask))
5472 		schedule_work(&rdist_memreserve_cpuhp_cleanup_work);
5473 
5474 	gic_data_rdist()->flags |= RD_LOCAL_MEMRESERVE_DONE;
5475 	return ret;
5476 }
5477 
5478 /* Mark all the BASER registers as invalid before they get reprogrammed */
its_reset_one(struct resource * res)5479 static int __init its_reset_one(struct resource *res)
5480 {
5481 	void __iomem *its_base;
5482 	int err, i;
5483 
5484 	its_base = its_map_one(res, &err);
5485 	if (!its_base)
5486 		return err;
5487 
5488 	for (i = 0; i < GITS_BASER_NR_REGS; i++)
5489 		gits_write_baser(0, its_base + GITS_BASER + (i << 3));
5490 
5491 	iounmap(its_base);
5492 	return 0;
5493 }
5494 
5495 static const struct of_device_id its_device_id[] = {
5496 	{	.compatible	= "arm,gic-v3-its",	},
5497 	{},
5498 };
5499 
its_node_init(struct resource * res,struct fwnode_handle * handle,int numa_node)5500 static struct its_node __init *its_node_init(struct resource *res,
5501 					     struct fwnode_handle *handle, int numa_node)
5502 {
5503 	void __iomem *its_base;
5504 	struct its_node *its;
5505 	int err;
5506 
5507 	its_base = its_map_one(res, &err);
5508 	if (!its_base)
5509 		return NULL;
5510 
5511 	pr_info("ITS %pR\n", res);
5512 
5513 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5514 	if (!its)
5515 		goto out_unmap;
5516 
5517 	raw_spin_lock_init(&its->lock);
5518 	mutex_init(&its->dev_alloc_lock);
5519 	INIT_LIST_HEAD(&its->entry);
5520 	INIT_LIST_HEAD(&its->its_device_list);
5521 
5522 	its->typer = gic_read_typer(its_base + GITS_TYPER);
5523 	its->base = its_base;
5524 	its->phys_base = res->start;
5525 	its->get_msi_base = its_irq_get_msi_base;
5526 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_ISOLATED_MSI | IRQ_DOMAIN_FLAG_MSI_IMMUTABLE;
5527 
5528 	its->numa_node = numa_node;
5529 	its->fwnode_handle = handle;
5530 
5531 	return its;
5532 
5533 out_unmap:
5534 	iounmap(its_base);
5535 	return NULL;
5536 }
5537 
its_node_destroy(struct its_node * its)5538 static void its_node_destroy(struct its_node *its)
5539 {
5540 	iounmap(its->base);
5541 	kfree(its);
5542 }
5543 
its_of_probe(struct device_node * node)5544 static int __init its_of_probe(struct device_node *node)
5545 {
5546 	struct device_node *np;
5547 	struct resource res;
5548 	int err;
5549 
5550 	/*
5551 	 * Make sure *all* the ITS are reset before we probe any, as
5552 	 * they may be sharing memory. If any of the ITS fails to
5553 	 * reset, don't even try to go any further, as this could
5554 	 * result in something even worse.
5555 	 */
5556 	for (np = of_find_matching_node(node, its_device_id); np;
5557 	     np = of_find_matching_node(np, its_device_id)) {
5558 		if (!of_device_is_available(np) ||
5559 		    !of_property_read_bool(np, "msi-controller") ||
5560 		    of_address_to_resource(np, 0, &res))
5561 			continue;
5562 
5563 		err = its_reset_one(&res);
5564 		if (err)
5565 			return err;
5566 	}
5567 
5568 	for (np = of_find_matching_node(node, its_device_id); np;
5569 	     np = of_find_matching_node(np, its_device_id)) {
5570 		struct its_node *its;
5571 
5572 		if (!of_device_is_available(np))
5573 			continue;
5574 		if (!of_property_read_bool(np, "msi-controller")) {
5575 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5576 				np);
5577 			continue;
5578 		}
5579 
5580 		if (of_address_to_resource(np, 0, &res)) {
5581 			pr_warn("%pOF: no regs?\n", np);
5582 			continue;
5583 		}
5584 
5585 
5586 		its = its_node_init(&res, &np->fwnode, of_node_to_nid(np));
5587 		if (!its)
5588 			return -ENOMEM;
5589 
5590 		err = its_probe_one(its);
5591 		if (err)  {
5592 			its_node_destroy(its);
5593 			return err;
5594 		}
5595 	}
5596 	return 0;
5597 }
5598 
5599 #ifdef CONFIG_ACPI
5600 
5601 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5602 
5603 #ifdef CONFIG_ACPI_NUMA
5604 struct its_srat_map {
5605 	/* numa node id */
5606 	u32	numa_node;
5607 	/* GIC ITS ID */
5608 	u32	its_id;
5609 };
5610 
5611 static struct its_srat_map *its_srat_maps __initdata;
5612 static int its_in_srat __initdata;
5613 
acpi_get_its_numa_node(u32 its_id)5614 static int __init acpi_get_its_numa_node(u32 its_id)
5615 {
5616 	int i;
5617 
5618 	for (i = 0; i < its_in_srat; i++) {
5619 		if (its_id == its_srat_maps[i].its_id)
5620 			return its_srat_maps[i].numa_node;
5621 	}
5622 	return NUMA_NO_NODE;
5623 }
5624 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5625 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5626 					  const unsigned long end)
5627 {
5628 	return 0;
5629 }
5630 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5631 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5632 			 const unsigned long end)
5633 {
5634 	int node;
5635 	struct acpi_srat_gic_its_affinity *its_affinity;
5636 
5637 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5638 	if (!its_affinity)
5639 		return -EINVAL;
5640 
5641 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5642 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5643 			its_affinity->header.length);
5644 		return -EINVAL;
5645 	}
5646 
5647 	/*
5648 	 * Note that in theory a new proximity node could be created by this
5649 	 * entry as it is an SRAT resource allocation structure.
5650 	 * We do not currently support doing so.
5651 	 */
5652 	node = pxm_to_node(its_affinity->proximity_domain);
5653 
5654 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5655 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5656 		return 0;
5657 	}
5658 
5659 	its_srat_maps[its_in_srat].numa_node = node;
5660 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5661 	its_in_srat++;
5662 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5663 		its_affinity->proximity_domain, its_affinity->its_id, node);
5664 
5665 	return 0;
5666 }
5667 
acpi_table_parse_srat_its(void)5668 static void __init acpi_table_parse_srat_its(void)
5669 {
5670 	int count;
5671 
5672 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5673 			sizeof(struct acpi_table_srat),
5674 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5675 			gic_acpi_match_srat_its, 0);
5676 	if (count <= 0)
5677 		return;
5678 
5679 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5680 				      GFP_KERNEL);
5681 	if (!its_srat_maps)
5682 		return;
5683 
5684 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5685 			sizeof(struct acpi_table_srat),
5686 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5687 			gic_acpi_parse_srat_its, 0);
5688 }
5689 
5690 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5691 static void __init acpi_its_srat_maps_free(void)
5692 {
5693 	kfree(its_srat_maps);
5694 }
5695 #else
acpi_table_parse_srat_its(void)5696 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)5697 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5698 static void __init acpi_its_srat_maps_free(void) { }
5699 #endif
5700 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5701 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5702 					  const unsigned long end)
5703 {
5704 	struct acpi_madt_generic_translator *its_entry;
5705 	struct fwnode_handle *dom_handle;
5706 	struct its_node *its;
5707 	struct resource res;
5708 	int err;
5709 
5710 	its_entry = (struct acpi_madt_generic_translator *)header;
5711 	memset(&res, 0, sizeof(res));
5712 	res.start = its_entry->base_address;
5713 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5714 	res.flags = IORESOURCE_MEM;
5715 
5716 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5717 	if (!dom_handle) {
5718 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5719 		       &res.start);
5720 		return -ENOMEM;
5721 	}
5722 
5723 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5724 					 dom_handle);
5725 	if (err) {
5726 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5727 		       &res.start, its_entry->translation_id);
5728 		goto dom_err;
5729 	}
5730 
5731 	its = its_node_init(&res, dom_handle,
5732 			    acpi_get_its_numa_node(its_entry->translation_id));
5733 	if (!its) {
5734 		err = -ENOMEM;
5735 		goto node_err;
5736 	}
5737 
5738 	if (acpi_get_madt_revision() >= 7 &&
5739 	    (its_entry->flags & ACPI_MADT_ITS_NON_COHERENT))
5740 		its->flags |= ITS_FLAGS_FORCE_NON_SHAREABLE;
5741 
5742 	err = its_probe_one(its);
5743 	if (!err)
5744 		return 0;
5745 
5746 node_err:
5747 	iort_deregister_domain_token(its_entry->translation_id);
5748 dom_err:
5749 	irq_domain_free_fwnode(dom_handle);
5750 	return err;
5751 }
5752 
its_acpi_reset(union acpi_subtable_headers * header,const unsigned long end)5753 static int __init its_acpi_reset(union acpi_subtable_headers *header,
5754 				 const unsigned long end)
5755 {
5756 	struct acpi_madt_generic_translator *its_entry;
5757 	struct resource res;
5758 
5759 	its_entry = (struct acpi_madt_generic_translator *)header;
5760 	res = (struct resource) {
5761 		.start	= its_entry->base_address,
5762 		.end	= its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1,
5763 		.flags	= IORESOURCE_MEM,
5764 	};
5765 
5766 	return its_reset_one(&res);
5767 }
5768 
its_acpi_probe(void)5769 static void __init its_acpi_probe(void)
5770 {
5771 	acpi_table_parse_srat_its();
5772 	/*
5773 	 * Make sure *all* the ITS are reset before we probe any, as
5774 	 * they may be sharing memory. If any of the ITS fails to
5775 	 * reset, don't even try to go any further, as this could
5776 	 * result in something even worse.
5777 	 */
5778 	if (acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5779 				  its_acpi_reset, 0) > 0)
5780 		acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5781 				      gic_acpi_parse_madt_its, 0);
5782 	acpi_its_srat_maps_free();
5783 }
5784 #else
its_acpi_probe(void)5785 static void __init its_acpi_probe(void) { }
5786 #endif
5787 
its_lpi_memreserve_init(void)5788 int __init its_lpi_memreserve_init(void)
5789 {
5790 	int state;
5791 
5792 	if (!efi_enabled(EFI_CONFIG_TABLES))
5793 		return 0;
5794 
5795 	if (list_empty(&its_nodes))
5796 		return 0;
5797 
5798 	gic_rdists->cpuhp_memreserve_state = CPUHP_INVALID;
5799 	state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN,
5800 				  "irqchip/arm/gicv3/memreserve:online",
5801 				  its_cpu_memreserve_lpi,
5802 				  NULL);
5803 	if (state < 0)
5804 		return state;
5805 
5806 	gic_rdists->cpuhp_memreserve_state = state;
5807 
5808 	return 0;
5809 }
5810 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain,u8 irq_prio)5811 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5812 		    struct irq_domain *parent_domain, u8 irq_prio)
5813 {
5814 	struct device_node *of_node;
5815 	struct its_node *its;
5816 	bool has_v4 = false;
5817 	bool has_v4_1 = false;
5818 	int err;
5819 
5820 	itt_pool = gen_pool_create(get_order(ITS_ITT_ALIGN), -1);
5821 	if (!itt_pool)
5822 		return -ENOMEM;
5823 
5824 	gic_rdists = rdists;
5825 
5826 	lpi_prop_prio = irq_prio;
5827 	its_parent = parent_domain;
5828 	of_node = to_of_node(handle);
5829 	if (of_node)
5830 		its_of_probe(of_node);
5831 	else
5832 		its_acpi_probe();
5833 
5834 	if (list_empty(&its_nodes)) {
5835 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5836 		return -ENXIO;
5837 	}
5838 
5839 	err = allocate_lpi_tables();
5840 	if (err)
5841 		return err;
5842 
5843 	list_for_each_entry(its, &its_nodes, entry) {
5844 		has_v4 |= is_v4(its);
5845 		has_v4_1 |= is_v4_1(its);
5846 	}
5847 
5848 	/* Don't bother with inconsistent systems */
5849 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5850 		rdists->has_rvpeid = false;
5851 
5852 	if (has_v4 & rdists->has_vlpis) {
5853 		const struct irq_domain_ops *sgi_ops;
5854 
5855 		if (has_v4_1)
5856 			sgi_ops = &its_sgi_domain_ops;
5857 		else
5858 			sgi_ops = NULL;
5859 
5860 		if (its_init_vpe_domain() ||
5861 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5862 			rdists->has_vlpis = false;
5863 			pr_err("ITS: Disabling GICv4 support\n");
5864 		}
5865 	}
5866 
5867 	register_syscore_ops(&its_syscore_ops);
5868 
5869 	return 0;
5870 }
5871