xref: /linux/drivers/gpu/drm/vkms/vkms_composer.c (revision 76544811c850a1f4c055aa182b513b7a843868ea)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <linux/crc32.h>
4 
5 #include <drm/drm_atomic.h>
6 #include <drm/drm_atomic_helper.h>
7 #include <drm/drm_blend.h>
8 #include <drm/drm_fourcc.h>
9 #include <drm/drm_fixed.h>
10 #include <drm/drm_gem_framebuffer_helper.h>
11 #include <drm/drm_vblank.h>
12 #include <linux/minmax.h>
13 
14 #include "vkms_drv.h"
15 
pre_mul_blend_channel(u16 src,u16 dst,u16 alpha)16 static u16 pre_mul_blend_channel(u16 src, u16 dst, u16 alpha)
17 {
18 	u32 new_color;
19 
20 	new_color = (src * 0xffff + dst * (0xffff - alpha));
21 
22 	return DIV_ROUND_CLOSEST(new_color, 0xffff);
23 }
24 
25 /**
26  * pre_mul_alpha_blend - alpha blending equation
27  * @stage_buffer: The line with the pixels from src_plane
28  * @output_buffer: A line buffer that receives all the blends output
29  * @x_start: The start offset
30  * @pixel_count: The number of pixels to blend
31  *
32  * The pixels [@x_start;@x_start+@pixel_count) in stage_buffer are blended at
33  * [@x_start;@x_start+@pixel_count) in output_buffer.
34  *
35  * The current DRM assumption is that pixel color values have been already
36  * pre-multiplied with the alpha channel values. See more
37  * drm_plane_create_blend_mode_property(). Also, this formula assumes a
38  * completely opaque background.
39  */
pre_mul_alpha_blend(const struct line_buffer * stage_buffer,struct line_buffer * output_buffer,int x_start,int pixel_count)40 static void pre_mul_alpha_blend(const struct line_buffer *stage_buffer,
41 				struct line_buffer *output_buffer, int x_start, int pixel_count)
42 {
43 	struct pixel_argb_u16 *out = &output_buffer->pixels[x_start];
44 	const struct pixel_argb_u16 *in = &stage_buffer->pixels[x_start];
45 
46 	for (int i = 0; i < pixel_count; i++) {
47 		out[i].a = (u16)0xffff;
48 		out[i].r = pre_mul_blend_channel(in[i].r, out[i].r, in[i].a);
49 		out[i].g = pre_mul_blend_channel(in[i].g, out[i].g, in[i].a);
50 		out[i].b = pre_mul_blend_channel(in[i].b, out[i].b, in[i].a);
51 	}
52 }
53 
54 
fill_background(const struct pixel_argb_u16 * background_color,struct line_buffer * output_buffer)55 static void fill_background(const struct pixel_argb_u16 *background_color,
56 			    struct line_buffer *output_buffer)
57 {
58 	for (size_t i = 0; i < output_buffer->n_pixels; i++)
59 		output_buffer->pixels[i] = *background_color;
60 }
61 
62 // lerp(a, b, t) = a + (b - a) * t
lerp_u16(u16 a,u16 b,s64 t)63 static u16 lerp_u16(u16 a, u16 b, s64 t)
64 {
65 	s64 a_fp = drm_int2fixp(a);
66 	s64 b_fp = drm_int2fixp(b);
67 
68 	s64 delta = drm_fixp_mul(b_fp - a_fp, t);
69 
70 	return drm_fixp2int_round(a_fp + delta);
71 }
72 
get_lut_index(const struct vkms_color_lut * lut,u16 channel_value)73 static s64 get_lut_index(const struct vkms_color_lut *lut, u16 channel_value)
74 {
75 	s64 color_channel_fp = drm_int2fixp(channel_value);
76 
77 	return drm_fixp_mul(color_channel_fp, lut->channel_value2index_ratio);
78 }
79 
80 /*
81  * This enum is related to the positions of the variables inside
82  * `struct drm_color_lut`, so the order of both needs to be the same.
83  */
84 enum lut_channel {
85 	LUT_RED = 0,
86 	LUT_GREEN,
87 	LUT_BLUE,
88 	LUT_RESERVED
89 };
90 
apply_lut_to_channel_value(const struct vkms_color_lut * lut,u16 channel_value,enum lut_channel channel)91 static u16 apply_lut_to_channel_value(const struct vkms_color_lut *lut, u16 channel_value,
92 				      enum lut_channel channel)
93 {
94 	s64 lut_index = get_lut_index(lut, channel_value);
95 	u16 *floor_lut_value, *ceil_lut_value;
96 	u16 floor_channel_value, ceil_channel_value;
97 
98 	/*
99 	 * This checks if `struct drm_color_lut` has any gap added by the compiler
100 	 * between the struct fields.
101 	 */
102 	static_assert(sizeof(struct drm_color_lut) == sizeof(__u16) * 4);
103 
104 	floor_lut_value = (__u16 *)&lut->base[drm_fixp2int(lut_index)];
105 	if (drm_fixp2int(lut_index) == (lut->lut_length - 1))
106 		/* We're at the end of the LUT array, use same value for ceil and floor */
107 		ceil_lut_value = floor_lut_value;
108 	else
109 		ceil_lut_value = (__u16 *)&lut->base[drm_fixp2int_ceil(lut_index)];
110 
111 	floor_channel_value = floor_lut_value[channel];
112 	ceil_channel_value = ceil_lut_value[channel];
113 
114 	return lerp_u16(floor_channel_value, ceil_channel_value,
115 			lut_index & DRM_FIXED_DECIMAL_MASK);
116 }
117 
apply_lut(const struct vkms_crtc_state * crtc_state,struct line_buffer * output_buffer)118 static void apply_lut(const struct vkms_crtc_state *crtc_state, struct line_buffer *output_buffer)
119 {
120 	if (!crtc_state->gamma_lut.base)
121 		return;
122 
123 	if (!crtc_state->gamma_lut.lut_length)
124 		return;
125 
126 	for (size_t x = 0; x < output_buffer->n_pixels; x++) {
127 		struct pixel_argb_u16 *pixel = &output_buffer->pixels[x];
128 
129 		pixel->r = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->r, LUT_RED);
130 		pixel->g = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->g, LUT_GREEN);
131 		pixel->b = apply_lut_to_channel_value(&crtc_state->gamma_lut, pixel->b, LUT_BLUE);
132 	}
133 }
134 
135 /**
136  * direction_for_rotation() - Get the correct reading direction for a given rotation
137  *
138  * @rotation: Rotation to analyze. It correspond the field @frame_info.rotation.
139  *
140  * This function will use the @rotation setting of a source plane to compute the reading
141  * direction in this plane which correspond to a "left to right writing" in the CRTC.
142  * For example, if the buffer is reflected on X axis, the pixel must be read from right to left
143  * to be written from left to right on the CRTC.
144  */
direction_for_rotation(unsigned int rotation)145 static enum pixel_read_direction direction_for_rotation(unsigned int rotation)
146 {
147 	struct drm_rect tmp_a, tmp_b;
148 	int x, y;
149 
150 	/*
151 	 * Points A and B are depicted as zero-size rectangles on the CRTC.
152 	 * The CRTC writing direction is from A to B. The plane reading direction
153 	 * is discovered by inverse-transforming A and B.
154 	 * The reading direction is computed by rotating the vector AB (top-left to top-right) in a
155 	 * 1x1 square.
156 	 */
157 
158 	tmp_a = DRM_RECT_INIT(0, 0, 0, 0);
159 	tmp_b = DRM_RECT_INIT(1, 0, 0, 0);
160 	drm_rect_rotate_inv(&tmp_a, 1, 1, rotation);
161 	drm_rect_rotate_inv(&tmp_b, 1, 1, rotation);
162 
163 	x = tmp_b.x1 - tmp_a.x1;
164 	y = tmp_b.y1 - tmp_a.y1;
165 
166 	if (x == 1 && y == 0)
167 		return READ_LEFT_TO_RIGHT;
168 	else if (x == -1 && y == 0)
169 		return READ_RIGHT_TO_LEFT;
170 	else if (y == 1 && x == 0)
171 		return READ_TOP_TO_BOTTOM;
172 	else if (y == -1 && x == 0)
173 		return READ_BOTTOM_TO_TOP;
174 
175 	WARN_ONCE(true, "The inverse of the rotation gives an incorrect direction.");
176 	return READ_LEFT_TO_RIGHT;
177 }
178 
179 /**
180  * clamp_line_coordinates() - Compute and clamp the coordinate to read and write during the blend
181  * process.
182  *
183  * @direction: direction of the reading
184  * @current_plane: current plane blended
185  * @src_line: source line of the reading. Only the top-left coordinate is used. This rectangle
186  * must be rotated and have a shape of 1*pixel_count if @direction is vertical and a shape of
187  * pixel_count*1 if @direction is horizontal.
188  * @src_x_start: x start coordinate for the line reading
189  * @src_y_start: y start coordinate for the line reading
190  * @dst_x_start: x coordinate to blend the read line
191  * @pixel_count: number of pixels to blend
192  *
193  * This function is mainly a safety net to avoid reading outside the source buffer. As the
194  * userspace should never ask to read outside the source plane, all the cases covered here should
195  * be dead code.
196  */
clamp_line_coordinates(enum pixel_read_direction direction,const struct vkms_plane_state * current_plane,const struct drm_rect * src_line,int * src_x_start,int * src_y_start,int * dst_x_start,int * pixel_count)197 static void clamp_line_coordinates(enum pixel_read_direction direction,
198 				   const struct vkms_plane_state *current_plane,
199 				   const struct drm_rect *src_line, int *src_x_start,
200 				   int *src_y_start, int *dst_x_start, int *pixel_count)
201 {
202 	/* By default the start points are correct */
203 	*src_x_start = src_line->x1;
204 	*src_y_start = src_line->y1;
205 	*dst_x_start = current_plane->frame_info->dst.x1;
206 
207 	/* Get the correct number of pixel to blend, it depends of the direction */
208 	switch (direction) {
209 	case READ_LEFT_TO_RIGHT:
210 	case READ_RIGHT_TO_LEFT:
211 		*pixel_count = drm_rect_width(src_line);
212 		break;
213 	case READ_BOTTOM_TO_TOP:
214 	case READ_TOP_TO_BOTTOM:
215 		*pixel_count = drm_rect_height(src_line);
216 		break;
217 	}
218 
219 	/*
220 	 * Clamp the coordinates to avoid reading outside the buffer
221 	 *
222 	 * This is mainly a security check to avoid reading outside the buffer, the userspace
223 	 * should never request to read outside the source buffer.
224 	 */
225 	switch (direction) {
226 	case READ_LEFT_TO_RIGHT:
227 	case READ_RIGHT_TO_LEFT:
228 		if (*src_x_start < 0) {
229 			*pixel_count += *src_x_start;
230 			*dst_x_start -= *src_x_start;
231 			*src_x_start = 0;
232 		}
233 		if (*src_x_start + *pixel_count > current_plane->frame_info->fb->width)
234 			*pixel_count = max(0, (int)current_plane->frame_info->fb->width -
235 				*src_x_start);
236 		break;
237 	case READ_BOTTOM_TO_TOP:
238 	case READ_TOP_TO_BOTTOM:
239 		if (*src_y_start < 0) {
240 			*pixel_count += *src_y_start;
241 			*dst_x_start -= *src_y_start;
242 			*src_y_start = 0;
243 		}
244 		if (*src_y_start + *pixel_count > current_plane->frame_info->fb->height)
245 			*pixel_count = max(0, (int)current_plane->frame_info->fb->height -
246 				*src_y_start);
247 		break;
248 	}
249 }
250 
251 /**
252  * blend_line() - Blend a line from a plane to the output buffer
253  *
254  * @current_plane: current plane to work on
255  * @y: line to write in the output buffer
256  * @crtc_x_limit: width of the output buffer
257  * @stage_buffer: temporary buffer to convert the pixel line from the source buffer
258  * @output_buffer: buffer to blend the read line into.
259  */
blend_line(struct vkms_plane_state * current_plane,int y,int crtc_x_limit,struct line_buffer * stage_buffer,struct line_buffer * output_buffer)260 static void blend_line(struct vkms_plane_state *current_plane, int y,
261 		       int crtc_x_limit, struct line_buffer *stage_buffer,
262 		       struct line_buffer *output_buffer)
263 {
264 	int src_x_start, src_y_start, dst_x_start, pixel_count;
265 	struct drm_rect dst_line, tmp_src, src_line;
266 
267 	/* Avoid rendering useless lines */
268 	if (y < current_plane->frame_info->dst.y1 ||
269 	    y >= current_plane->frame_info->dst.y2)
270 		return;
271 
272 	/*
273 	 * dst_line is the line to copy. The initial coordinates are inside the
274 	 * destination framebuffer, and then drm_rect_* helpers are used to
275 	 * compute the correct position into the source framebuffer.
276 	 */
277 	dst_line = DRM_RECT_INIT(current_plane->frame_info->dst.x1, y,
278 				 drm_rect_width(&current_plane->frame_info->dst),
279 				 1);
280 
281 	drm_rect_fp_to_int(&tmp_src, &current_plane->frame_info->src);
282 
283 	/*
284 	 * [1]: Clamping src_line to the crtc_x_limit to avoid writing outside of
285 	 * the destination buffer
286 	 */
287 	dst_line.x1 = max_t(int, dst_line.x1, 0);
288 	dst_line.x2 = min_t(int, dst_line.x2, crtc_x_limit);
289 	/* The destination is completely outside of the crtc. */
290 	if (dst_line.x2 <= dst_line.x1)
291 		return;
292 
293 	src_line = dst_line;
294 
295 	/*
296 	 * Transform the coordinate x/y from the crtc to coordinates into
297 	 * coordinates for the src buffer.
298 	 *
299 	 * - Cancel the offset of the dst buffer.
300 	 * - Invert the rotation. This assumes that
301 	 *   dst = drm_rect_rotate(src, rotation) (dst and src have the
302 	 *   same size, but can be rotated).
303 	 * - Apply the offset of the source rectangle to the coordinate.
304 	 */
305 	drm_rect_translate(&src_line, -current_plane->frame_info->dst.x1,
306 			   -current_plane->frame_info->dst.y1);
307 	drm_rect_rotate_inv(&src_line, drm_rect_width(&tmp_src),
308 			    drm_rect_height(&tmp_src),
309 			    current_plane->frame_info->rotation);
310 	drm_rect_translate(&src_line, tmp_src.x1, tmp_src.y1);
311 
312 	/* Get the correct reading direction in the source buffer. */
313 
314 	enum pixel_read_direction direction =
315 		direction_for_rotation(current_plane->frame_info->rotation);
316 
317 	/* [2]: Compute and clamp the number of pixel to read */
318 	clamp_line_coordinates(direction, current_plane, &src_line, &src_x_start, &src_y_start,
319 			       &dst_x_start, &pixel_count);
320 
321 	if (pixel_count <= 0) {
322 		/* Nothing to read, so avoid multiple function calls */
323 		return;
324 	}
325 
326 	/*
327 	 * Modify the starting point to take in account the rotation
328 	 *
329 	 * src_line is the top-left corner, so when reading READ_RIGHT_TO_LEFT or
330 	 * READ_BOTTOM_TO_TOP, it must be changed to the top-right/bottom-left
331 	 * corner.
332 	 */
333 	if (direction == READ_RIGHT_TO_LEFT) {
334 		// src_x_start is now the right point
335 		src_x_start += pixel_count - 1;
336 	} else if (direction == READ_BOTTOM_TO_TOP) {
337 		// src_y_start is now the bottom point
338 		src_y_start += pixel_count - 1;
339 	}
340 
341 	/*
342 	 * Perform the conversion and the blending
343 	 *
344 	 * Here we know that the read line (x_start, y_start, pixel_count) is
345 	 * inside the source buffer [2] and we don't write outside the stage
346 	 * buffer [1].
347 	 */
348 	current_plane->pixel_read_line(current_plane, src_x_start, src_y_start, direction,
349 				       pixel_count, &stage_buffer->pixels[dst_x_start]);
350 
351 	pre_mul_alpha_blend(stage_buffer, output_buffer,
352 			    dst_x_start, pixel_count);
353 }
354 
355 /**
356  * blend - blend the pixels from all planes and compute crc
357  * @wb: The writeback frame buffer metadata
358  * @crtc_state: The crtc state
359  * @crc32: The crc output of the final frame
360  * @output_buffer: A buffer of a row that will receive the result of the blend(s)
361  * @stage_buffer: The line with the pixels from plane being blend to the output
362  * @row_size: The size, in bytes, of a single row
363  *
364  * This function blends the pixels (Using the `pre_mul_alpha_blend`)
365  * from all planes, calculates the crc32 of the output from the former step,
366  * and, if necessary, convert and store the output to the writeback buffer.
367  */
blend(struct vkms_writeback_job * wb,struct vkms_crtc_state * crtc_state,u32 * crc32,struct line_buffer * stage_buffer,struct line_buffer * output_buffer,size_t row_size)368 static void blend(struct vkms_writeback_job *wb,
369 		  struct vkms_crtc_state *crtc_state,
370 		  u32 *crc32, struct line_buffer *stage_buffer,
371 		  struct line_buffer *output_buffer, size_t row_size)
372 {
373 	struct vkms_plane_state **plane = crtc_state->active_planes;
374 	u32 n_active_planes = crtc_state->num_active_planes;
375 
376 	const struct pixel_argb_u16 background_color = { .a = 0xffff };
377 
378 	int crtc_y_limit = crtc_state->base.mode.vdisplay;
379 	int crtc_x_limit = crtc_state->base.mode.hdisplay;
380 
381 	/*
382 	 * The planes are composed line-by-line to avoid heavy memory usage. It is a necessary
383 	 * complexity to avoid poor blending performance.
384 	 *
385 	 * The function pixel_read_line callback is used to read a line, using an efficient
386 	 * algorithm for a specific format, into the staging buffer.
387 	 */
388 	for (int y = 0; y < crtc_y_limit; y++) {
389 		fill_background(&background_color, output_buffer);
390 
391 		/* The active planes are composed associatively in z-order. */
392 		for (size_t i = 0; i < n_active_planes; i++) {
393 			blend_line(plane[i], y, crtc_x_limit, stage_buffer, output_buffer);
394 		}
395 
396 		apply_lut(crtc_state, output_buffer);
397 
398 		*crc32 = crc32_le(*crc32, (void *)output_buffer->pixels, row_size);
399 
400 		if (wb)
401 			vkms_writeback_row(wb, output_buffer, y);
402 	}
403 }
404 
check_format_funcs(struct vkms_crtc_state * crtc_state,struct vkms_writeback_job * active_wb)405 static int check_format_funcs(struct vkms_crtc_state *crtc_state,
406 			      struct vkms_writeback_job *active_wb)
407 {
408 	struct vkms_plane_state **planes = crtc_state->active_planes;
409 	u32 n_active_planes = crtc_state->num_active_planes;
410 
411 	for (size_t i = 0; i < n_active_planes; i++)
412 		if (!planes[i]->pixel_read_line)
413 			return -1;
414 
415 	if (active_wb && !active_wb->pixel_write)
416 		return -1;
417 
418 	return 0;
419 }
420 
check_iosys_map(struct vkms_crtc_state * crtc_state)421 static int check_iosys_map(struct vkms_crtc_state *crtc_state)
422 {
423 	struct vkms_plane_state **plane_state = crtc_state->active_planes;
424 	u32 n_active_planes = crtc_state->num_active_planes;
425 
426 	for (size_t i = 0; i < n_active_planes; i++)
427 		if (iosys_map_is_null(&plane_state[i]->frame_info->map[0]))
428 			return -1;
429 
430 	return 0;
431 }
432 
compose_active_planes(struct vkms_writeback_job * active_wb,struct vkms_crtc_state * crtc_state,u32 * crc32)433 static int compose_active_planes(struct vkms_writeback_job *active_wb,
434 				 struct vkms_crtc_state *crtc_state,
435 				 u32 *crc32)
436 {
437 	size_t line_width, pixel_size = sizeof(struct pixel_argb_u16);
438 	struct line_buffer output_buffer, stage_buffer;
439 	int ret = 0;
440 
441 	/*
442 	 * This check exists so we can call `crc32_le` for the entire line
443 	 * instead doing it for each channel of each pixel in case
444 	 * `struct `pixel_argb_u16` had any gap added by the compiler
445 	 * between the struct fields.
446 	 */
447 	static_assert(sizeof(struct pixel_argb_u16) == 8);
448 
449 	if (WARN_ON(check_iosys_map(crtc_state)))
450 		return -EINVAL;
451 
452 	if (WARN_ON(check_format_funcs(crtc_state, active_wb)))
453 		return -EINVAL;
454 
455 	line_width = crtc_state->base.mode.hdisplay;
456 	stage_buffer.n_pixels = line_width;
457 	output_buffer.n_pixels = line_width;
458 
459 	stage_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
460 	if (!stage_buffer.pixels) {
461 		DRM_ERROR("Cannot allocate memory for the output line buffer");
462 		return -ENOMEM;
463 	}
464 
465 	output_buffer.pixels = kvmalloc(line_width * pixel_size, GFP_KERNEL);
466 	if (!output_buffer.pixels) {
467 		DRM_ERROR("Cannot allocate memory for intermediate line buffer");
468 		ret = -ENOMEM;
469 		goto free_stage_buffer;
470 	}
471 
472 	blend(active_wb, crtc_state, crc32, &stage_buffer,
473 	      &output_buffer, line_width * pixel_size);
474 
475 	kvfree(output_buffer.pixels);
476 free_stage_buffer:
477 	kvfree(stage_buffer.pixels);
478 
479 	return ret;
480 }
481 
482 /**
483  * vkms_composer_worker - ordered work_struct to compute CRC
484  *
485  * @work: work_struct
486  *
487  * Work handler for composing and computing CRCs. work_struct scheduled in
488  * an ordered workqueue that's periodically scheduled to run by
489  * vkms_vblank_simulate() and flushed at vkms_atomic_commit_tail().
490  */
vkms_composer_worker(struct work_struct * work)491 void vkms_composer_worker(struct work_struct *work)
492 {
493 	struct vkms_crtc_state *crtc_state = container_of(work,
494 							  struct vkms_crtc_state,
495 							  composer_work);
496 	struct drm_crtc *crtc = crtc_state->base.crtc;
497 	struct vkms_writeback_job *active_wb = crtc_state->active_writeback;
498 	struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
499 	bool crc_pending, wb_pending;
500 	u64 frame_start, frame_end;
501 	u32 crc32 = 0;
502 	int ret;
503 
504 	spin_lock_irq(&out->composer_lock);
505 	frame_start = crtc_state->frame_start;
506 	frame_end = crtc_state->frame_end;
507 	crc_pending = crtc_state->crc_pending;
508 	wb_pending = crtc_state->wb_pending;
509 	crtc_state->frame_start = 0;
510 	crtc_state->frame_end = 0;
511 	crtc_state->crc_pending = false;
512 
513 	if (crtc->state->gamma_lut) {
514 		s64 max_lut_index_fp;
515 		s64 u16_max_fp = drm_int2fixp(0xffff);
516 
517 		crtc_state->gamma_lut.base = (struct drm_color_lut *)crtc->state->gamma_lut->data;
518 		crtc_state->gamma_lut.lut_length =
519 			crtc->state->gamma_lut->length / sizeof(struct drm_color_lut);
520 		max_lut_index_fp = drm_int2fixp(crtc_state->gamma_lut.lut_length - 1);
521 		crtc_state->gamma_lut.channel_value2index_ratio = drm_fixp_div(max_lut_index_fp,
522 									       u16_max_fp);
523 
524 	} else {
525 		crtc_state->gamma_lut.base = NULL;
526 	}
527 
528 	spin_unlock_irq(&out->composer_lock);
529 
530 	/*
531 	 * We raced with the vblank hrtimer and previous work already computed
532 	 * the crc, nothing to do.
533 	 */
534 	if (!crc_pending)
535 		return;
536 
537 	if (wb_pending)
538 		ret = compose_active_planes(active_wb, crtc_state, &crc32);
539 	else
540 		ret = compose_active_planes(NULL, crtc_state, &crc32);
541 
542 	if (ret)
543 		return;
544 
545 	if (wb_pending) {
546 		drm_writeback_signal_completion(&out->wb_connector, 0);
547 		spin_lock_irq(&out->composer_lock);
548 		crtc_state->wb_pending = false;
549 		spin_unlock_irq(&out->composer_lock);
550 	}
551 
552 	/*
553 	 * The worker can fall behind the vblank hrtimer, make sure we catch up.
554 	 */
555 	while (frame_start <= frame_end)
556 		drm_crtc_add_crc_entry(crtc, true, frame_start++, &crc32);
557 }
558 
559 static const char *const pipe_crc_sources[] = { "auto" };
560 
vkms_get_crc_sources(struct drm_crtc * crtc,size_t * count)561 const char *const *vkms_get_crc_sources(struct drm_crtc *crtc,
562 					size_t *count)
563 {
564 	*count = ARRAY_SIZE(pipe_crc_sources);
565 	return pipe_crc_sources;
566 }
567 
vkms_crc_parse_source(const char * src_name,bool * enabled)568 static int vkms_crc_parse_source(const char *src_name, bool *enabled)
569 {
570 	int ret = 0;
571 
572 	if (!src_name) {
573 		*enabled = false;
574 	} else if (strcmp(src_name, "auto") == 0) {
575 		*enabled = true;
576 	} else {
577 		*enabled = false;
578 		ret = -EINVAL;
579 	}
580 
581 	return ret;
582 }
583 
vkms_verify_crc_source(struct drm_crtc * crtc,const char * src_name,size_t * values_cnt)584 int vkms_verify_crc_source(struct drm_crtc *crtc, const char *src_name,
585 			   size_t *values_cnt)
586 {
587 	bool enabled;
588 
589 	if (vkms_crc_parse_source(src_name, &enabled) < 0) {
590 		DRM_DEBUG_DRIVER("unknown source %s\n", src_name);
591 		return -EINVAL;
592 	}
593 
594 	*values_cnt = 1;
595 
596 	return 0;
597 }
598 
vkms_set_composer(struct vkms_output * out,bool enabled)599 void vkms_set_composer(struct vkms_output *out, bool enabled)
600 {
601 	bool old_enabled;
602 
603 	if (enabled)
604 		drm_crtc_vblank_get(&out->crtc);
605 
606 	spin_lock_irq(&out->lock);
607 	old_enabled = out->composer_enabled;
608 	out->composer_enabled = enabled;
609 	spin_unlock_irq(&out->lock);
610 
611 	if (old_enabled)
612 		drm_crtc_vblank_put(&out->crtc);
613 }
614 
vkms_set_crc_source(struct drm_crtc * crtc,const char * src_name)615 int vkms_set_crc_source(struct drm_crtc *crtc, const char *src_name)
616 {
617 	struct vkms_output *out = drm_crtc_to_vkms_output(crtc);
618 	bool enabled = false;
619 	int ret = 0;
620 
621 	ret = vkms_crc_parse_source(src_name, &enabled);
622 
623 	vkms_set_composer(out, enabled);
624 
625 	return ret;
626 }
627