1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2009 Red Hat, Inc.
3 * Copyright (C) 2006 Rusty Russell IBM Corporation
4 *
5 * Author: Michael S. Tsirkin <mst@redhat.com>
6 *
7 * Inspiration, some code, and most witty comments come from
8 * Documentation/virtual/lguest/lguest.c, by Rusty Russell
9 *
10 * Generic code for virtio server in host kernel.
11 */
12
13 #include <linux/eventfd.h>
14 #include <linux/vhost.h>
15 #include <linux/uio.h>
16 #include <linux/mm.h>
17 #include <linux/miscdevice.h>
18 #include <linux/mutex.h>
19 #include <linux/poll.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/kthread.h>
25 #include <linux/cgroup.h>
26 #include <linux/module.h>
27 #include <linux/sort.h>
28 #include <linux/sched/mm.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/vhost_task.h>
31 #include <linux/interval_tree_generic.h>
32 #include <linux/nospec.h>
33 #include <linux/kcov.h>
34
35 #include "vhost.h"
36
37 static ushort max_mem_regions = 64;
38 module_param(max_mem_regions, ushort, 0444);
39 MODULE_PARM_DESC(max_mem_regions,
40 "Maximum number of memory regions in memory map. (default: 64)");
41 static int max_iotlb_entries = 2048;
42 module_param(max_iotlb_entries, int, 0444);
43 MODULE_PARM_DESC(max_iotlb_entries,
44 "Maximum number of iotlb entries. (default: 2048)");
45 static bool fork_from_owner_default = VHOST_FORK_OWNER_TASK;
46
47 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL
48 module_param(fork_from_owner_default, bool, 0444);
49 MODULE_PARM_DESC(fork_from_owner_default,
50 "Set task mode as the default(default: Y)");
51 #endif
52
53 enum {
54 VHOST_MEMORY_F_LOG = 0x1,
55 };
56
57 #define vhost_used_event(vq) ((__virtio16 __user *)&vq->avail->ring[vq->num])
58 #define vhost_avail_event(vq) ((__virtio16 __user *)&vq->used->ring[vq->num])
59
60 #ifdef CONFIG_VHOST_CROSS_ENDIAN_LEGACY
vhost_disable_cross_endian(struct vhost_virtqueue * vq)61 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
62 {
63 vq->user_be = !virtio_legacy_is_little_endian();
64 }
65
vhost_enable_cross_endian_big(struct vhost_virtqueue * vq)66 static void vhost_enable_cross_endian_big(struct vhost_virtqueue *vq)
67 {
68 vq->user_be = true;
69 }
70
vhost_enable_cross_endian_little(struct vhost_virtqueue * vq)71 static void vhost_enable_cross_endian_little(struct vhost_virtqueue *vq)
72 {
73 vq->user_be = false;
74 }
75
vhost_set_vring_endian(struct vhost_virtqueue * vq,int __user * argp)76 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
77 {
78 struct vhost_vring_state s;
79
80 if (vq->private_data)
81 return -EBUSY;
82
83 if (copy_from_user(&s, argp, sizeof(s)))
84 return -EFAULT;
85
86 if (s.num != VHOST_VRING_LITTLE_ENDIAN &&
87 s.num != VHOST_VRING_BIG_ENDIAN)
88 return -EINVAL;
89
90 if (s.num == VHOST_VRING_BIG_ENDIAN)
91 vhost_enable_cross_endian_big(vq);
92 else
93 vhost_enable_cross_endian_little(vq);
94
95 return 0;
96 }
97
vhost_get_vring_endian(struct vhost_virtqueue * vq,u32 idx,int __user * argp)98 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
99 int __user *argp)
100 {
101 struct vhost_vring_state s = {
102 .index = idx,
103 .num = vq->user_be
104 };
105
106 if (copy_to_user(argp, &s, sizeof(s)))
107 return -EFAULT;
108
109 return 0;
110 }
111
vhost_init_is_le(struct vhost_virtqueue * vq)112 static void vhost_init_is_le(struct vhost_virtqueue *vq)
113 {
114 /* Note for legacy virtio: user_be is initialized at reset time
115 * according to the host endianness. If userspace does not set an
116 * explicit endianness, the default behavior is native endian, as
117 * expected by legacy virtio.
118 */
119 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1) || !vq->user_be;
120 }
121 #else
vhost_disable_cross_endian(struct vhost_virtqueue * vq)122 static void vhost_disable_cross_endian(struct vhost_virtqueue *vq)
123 {
124 }
125
vhost_set_vring_endian(struct vhost_virtqueue * vq,int __user * argp)126 static long vhost_set_vring_endian(struct vhost_virtqueue *vq, int __user *argp)
127 {
128 return -ENOIOCTLCMD;
129 }
130
vhost_get_vring_endian(struct vhost_virtqueue * vq,u32 idx,int __user * argp)131 static long vhost_get_vring_endian(struct vhost_virtqueue *vq, u32 idx,
132 int __user *argp)
133 {
134 return -ENOIOCTLCMD;
135 }
136
vhost_init_is_le(struct vhost_virtqueue * vq)137 static void vhost_init_is_le(struct vhost_virtqueue *vq)
138 {
139 vq->is_le = vhost_has_feature(vq, VIRTIO_F_VERSION_1)
140 || virtio_legacy_is_little_endian();
141 }
142 #endif /* CONFIG_VHOST_CROSS_ENDIAN_LEGACY */
143
vhost_reset_is_le(struct vhost_virtqueue * vq)144 static void vhost_reset_is_le(struct vhost_virtqueue *vq)
145 {
146 vhost_init_is_le(vq);
147 }
148
149 struct vhost_flush_struct {
150 struct vhost_work work;
151 struct completion wait_event;
152 };
153
vhost_flush_work(struct vhost_work * work)154 static void vhost_flush_work(struct vhost_work *work)
155 {
156 struct vhost_flush_struct *s;
157
158 s = container_of(work, struct vhost_flush_struct, work);
159 complete(&s->wait_event);
160 }
161
vhost_poll_func(struct file * file,wait_queue_head_t * wqh,poll_table * pt)162 static void vhost_poll_func(struct file *file, wait_queue_head_t *wqh,
163 poll_table *pt)
164 {
165 struct vhost_poll *poll;
166
167 poll = container_of(pt, struct vhost_poll, table);
168 poll->wqh = wqh;
169 add_wait_queue(wqh, &poll->wait);
170 }
171
vhost_poll_wakeup(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)172 static int vhost_poll_wakeup(wait_queue_entry_t *wait, unsigned mode, int sync,
173 void *key)
174 {
175 struct vhost_poll *poll = container_of(wait, struct vhost_poll, wait);
176 struct vhost_work *work = &poll->work;
177
178 if (!(key_to_poll(key) & poll->mask))
179 return 0;
180
181 if (!poll->dev->use_worker)
182 work->fn(work);
183 else
184 vhost_poll_queue(poll);
185
186 return 0;
187 }
188
vhost_work_init(struct vhost_work * work,vhost_work_fn_t fn)189 void vhost_work_init(struct vhost_work *work, vhost_work_fn_t fn)
190 {
191 clear_bit(VHOST_WORK_QUEUED, &work->flags);
192 work->fn = fn;
193 }
194 EXPORT_SYMBOL_GPL(vhost_work_init);
195
196 /* Init poll structure */
vhost_poll_init(struct vhost_poll * poll,vhost_work_fn_t fn,__poll_t mask,struct vhost_dev * dev,struct vhost_virtqueue * vq)197 void vhost_poll_init(struct vhost_poll *poll, vhost_work_fn_t fn,
198 __poll_t mask, struct vhost_dev *dev,
199 struct vhost_virtqueue *vq)
200 {
201 init_waitqueue_func_entry(&poll->wait, vhost_poll_wakeup);
202 init_poll_funcptr(&poll->table, vhost_poll_func);
203 poll->mask = mask;
204 poll->dev = dev;
205 poll->wqh = NULL;
206 poll->vq = vq;
207
208 vhost_work_init(&poll->work, fn);
209 }
210 EXPORT_SYMBOL_GPL(vhost_poll_init);
211
212 /* Start polling a file. We add ourselves to file's wait queue. The caller must
213 * keep a reference to a file until after vhost_poll_stop is called. */
vhost_poll_start(struct vhost_poll * poll,struct file * file)214 int vhost_poll_start(struct vhost_poll *poll, struct file *file)
215 {
216 __poll_t mask;
217
218 if (poll->wqh)
219 return 0;
220
221 mask = vfs_poll(file, &poll->table);
222 if (mask)
223 vhost_poll_wakeup(&poll->wait, 0, 0, poll_to_key(mask));
224 if (mask & EPOLLERR) {
225 vhost_poll_stop(poll);
226 return -EINVAL;
227 }
228
229 return 0;
230 }
231 EXPORT_SYMBOL_GPL(vhost_poll_start);
232
233 /* Stop polling a file. After this function returns, it becomes safe to drop the
234 * file reference. You must also flush afterwards. */
vhost_poll_stop(struct vhost_poll * poll)235 void vhost_poll_stop(struct vhost_poll *poll)
236 {
237 if (poll->wqh) {
238 remove_wait_queue(poll->wqh, &poll->wait);
239 poll->wqh = NULL;
240 }
241 }
242 EXPORT_SYMBOL_GPL(vhost_poll_stop);
243
vhost_worker_queue(struct vhost_worker * worker,struct vhost_work * work)244 static void vhost_worker_queue(struct vhost_worker *worker,
245 struct vhost_work *work)
246 {
247 if (!test_and_set_bit(VHOST_WORK_QUEUED, &work->flags)) {
248 /* We can only add the work to the list after we're
249 * sure it was not in the list.
250 * test_and_set_bit() implies a memory barrier.
251 */
252 llist_add(&work->node, &worker->work_list);
253 worker->ops->wakeup(worker);
254 }
255 }
256
vhost_vq_work_queue(struct vhost_virtqueue * vq,struct vhost_work * work)257 bool vhost_vq_work_queue(struct vhost_virtqueue *vq, struct vhost_work *work)
258 {
259 struct vhost_worker *worker;
260 bool queued = false;
261
262 rcu_read_lock();
263 worker = rcu_dereference(vq->worker);
264 if (worker) {
265 queued = true;
266 vhost_worker_queue(worker, work);
267 }
268 rcu_read_unlock();
269
270 return queued;
271 }
272 EXPORT_SYMBOL_GPL(vhost_vq_work_queue);
273
274 /**
275 * __vhost_worker_flush - flush a worker
276 * @worker: worker to flush
277 *
278 * The worker's flush_mutex must be held.
279 */
__vhost_worker_flush(struct vhost_worker * worker)280 static void __vhost_worker_flush(struct vhost_worker *worker)
281 {
282 struct vhost_flush_struct flush;
283
284 if (!worker->attachment_cnt || worker->killed)
285 return;
286
287 init_completion(&flush.wait_event);
288 vhost_work_init(&flush.work, vhost_flush_work);
289
290 vhost_worker_queue(worker, &flush.work);
291 /*
292 * Drop mutex in case our worker is killed and it needs to take the
293 * mutex to force cleanup.
294 */
295 mutex_unlock(&worker->mutex);
296 wait_for_completion(&flush.wait_event);
297 mutex_lock(&worker->mutex);
298 }
299
vhost_worker_flush(struct vhost_worker * worker)300 static void vhost_worker_flush(struct vhost_worker *worker)
301 {
302 mutex_lock(&worker->mutex);
303 __vhost_worker_flush(worker);
304 mutex_unlock(&worker->mutex);
305 }
306
vhost_dev_flush(struct vhost_dev * dev)307 void vhost_dev_flush(struct vhost_dev *dev)
308 {
309 struct vhost_worker *worker;
310 unsigned long i;
311
312 xa_for_each(&dev->worker_xa, i, worker)
313 vhost_worker_flush(worker);
314 }
315 EXPORT_SYMBOL_GPL(vhost_dev_flush);
316
317 /* A lockless hint for busy polling code to exit the loop */
vhost_vq_has_work(struct vhost_virtqueue * vq)318 bool vhost_vq_has_work(struct vhost_virtqueue *vq)
319 {
320 struct vhost_worker *worker;
321 bool has_work = false;
322
323 rcu_read_lock();
324 worker = rcu_dereference(vq->worker);
325 if (worker && !llist_empty(&worker->work_list))
326 has_work = true;
327 rcu_read_unlock();
328
329 return has_work;
330 }
331 EXPORT_SYMBOL_GPL(vhost_vq_has_work);
332
vhost_poll_queue(struct vhost_poll * poll)333 void vhost_poll_queue(struct vhost_poll *poll)
334 {
335 vhost_vq_work_queue(poll->vq, &poll->work);
336 }
337 EXPORT_SYMBOL_GPL(vhost_poll_queue);
338
__vhost_vq_meta_reset(struct vhost_virtqueue * vq)339 static void __vhost_vq_meta_reset(struct vhost_virtqueue *vq)
340 {
341 int j;
342
343 for (j = 0; j < VHOST_NUM_ADDRS; j++)
344 vq->meta_iotlb[j] = NULL;
345 }
346
vhost_vq_meta_reset(struct vhost_dev * d)347 static void vhost_vq_meta_reset(struct vhost_dev *d)
348 {
349 int i;
350
351 for (i = 0; i < d->nvqs; ++i)
352 __vhost_vq_meta_reset(d->vqs[i]);
353 }
354
vhost_vring_call_reset(struct vhost_vring_call * call_ctx)355 static void vhost_vring_call_reset(struct vhost_vring_call *call_ctx)
356 {
357 call_ctx->ctx = NULL;
358 memset(&call_ctx->producer, 0x0, sizeof(struct irq_bypass_producer));
359 }
360
vhost_vq_is_setup(struct vhost_virtqueue * vq)361 bool vhost_vq_is_setup(struct vhost_virtqueue *vq)
362 {
363 return vq->avail && vq->desc && vq->used && vhost_vq_access_ok(vq);
364 }
365 EXPORT_SYMBOL_GPL(vhost_vq_is_setup);
366
vhost_vq_reset(struct vhost_dev * dev,struct vhost_virtqueue * vq)367 static void vhost_vq_reset(struct vhost_dev *dev,
368 struct vhost_virtqueue *vq)
369 {
370 vq->num = 1;
371 vq->desc = NULL;
372 vq->avail = NULL;
373 vq->used = NULL;
374 vq->last_avail_idx = 0;
375 vq->next_avail_head = 0;
376 vq->avail_idx = 0;
377 vq->last_used_idx = 0;
378 vq->signalled_used = 0;
379 vq->signalled_used_valid = false;
380 vq->used_flags = 0;
381 vq->log_used = false;
382 vq->log_addr = -1ull;
383 vq->private_data = NULL;
384 virtio_features_zero(vq->acked_features_array);
385 vq->acked_backend_features = 0;
386 vq->log_base = NULL;
387 vq->error_ctx = NULL;
388 vq->kick = NULL;
389 vq->log_ctx = NULL;
390 vhost_disable_cross_endian(vq);
391 vhost_reset_is_le(vq);
392 vq->busyloop_timeout = 0;
393 vq->umem = NULL;
394 vq->iotlb = NULL;
395 rcu_assign_pointer(vq->worker, NULL);
396 vhost_vring_call_reset(&vq->call_ctx);
397 __vhost_vq_meta_reset(vq);
398 }
399
vhost_run_work_kthread_list(void * data)400 static int vhost_run_work_kthread_list(void *data)
401 {
402 struct vhost_worker *worker = data;
403 struct vhost_work *work, *work_next;
404 struct vhost_dev *dev = worker->dev;
405 struct llist_node *node;
406
407 kthread_use_mm(dev->mm);
408
409 for (;;) {
410 /* mb paired w/ kthread_stop */
411 set_current_state(TASK_INTERRUPTIBLE);
412
413 if (kthread_should_stop()) {
414 __set_current_state(TASK_RUNNING);
415 break;
416 }
417 node = llist_del_all(&worker->work_list);
418 if (!node)
419 schedule();
420
421 node = llist_reverse_order(node);
422 /* make sure flag is seen after deletion */
423 smp_wmb();
424 llist_for_each_entry_safe(work, work_next, node, node) {
425 clear_bit(VHOST_WORK_QUEUED, &work->flags);
426 __set_current_state(TASK_RUNNING);
427 kcov_remote_start_common(worker->kcov_handle);
428 work->fn(work);
429 kcov_remote_stop();
430 cond_resched();
431 }
432 }
433 kthread_unuse_mm(dev->mm);
434
435 return 0;
436 }
437
vhost_run_work_list(void * data)438 static bool vhost_run_work_list(void *data)
439 {
440 struct vhost_worker *worker = data;
441 struct vhost_work *work, *work_next;
442 struct llist_node *node;
443
444 node = llist_del_all(&worker->work_list);
445 if (node) {
446 __set_current_state(TASK_RUNNING);
447
448 node = llist_reverse_order(node);
449 /* make sure flag is seen after deletion */
450 smp_wmb();
451 llist_for_each_entry_safe(work, work_next, node, node) {
452 clear_bit(VHOST_WORK_QUEUED, &work->flags);
453 kcov_remote_start_common(worker->kcov_handle);
454 work->fn(work);
455 kcov_remote_stop();
456 cond_resched();
457 }
458 }
459
460 return !!node;
461 }
462
vhost_worker_killed(void * data)463 static void vhost_worker_killed(void *data)
464 {
465 struct vhost_worker *worker = data;
466 struct vhost_dev *dev = worker->dev;
467 struct vhost_virtqueue *vq;
468 int i, attach_cnt = 0;
469
470 mutex_lock(&worker->mutex);
471 worker->killed = true;
472
473 for (i = 0; i < dev->nvqs; i++) {
474 vq = dev->vqs[i];
475
476 mutex_lock(&vq->mutex);
477 if (worker ==
478 rcu_dereference_check(vq->worker,
479 lockdep_is_held(&vq->mutex))) {
480 rcu_assign_pointer(vq->worker, NULL);
481 attach_cnt++;
482 }
483 mutex_unlock(&vq->mutex);
484 }
485
486 worker->attachment_cnt -= attach_cnt;
487 if (attach_cnt)
488 synchronize_rcu();
489 /*
490 * Finish vhost_worker_flush calls and any other works that snuck in
491 * before the synchronize_rcu.
492 */
493 vhost_run_work_list(worker);
494 mutex_unlock(&worker->mutex);
495 }
496
vhost_vq_free_iovecs(struct vhost_virtqueue * vq)497 static void vhost_vq_free_iovecs(struct vhost_virtqueue *vq)
498 {
499 kfree(vq->indirect);
500 vq->indirect = NULL;
501 kfree(vq->log);
502 vq->log = NULL;
503 kfree(vq->heads);
504 vq->heads = NULL;
505 kfree(vq->nheads);
506 vq->nheads = NULL;
507 }
508
509 /* Helper to allocate iovec buffers for all vqs. */
vhost_dev_alloc_iovecs(struct vhost_dev * dev)510 static long vhost_dev_alloc_iovecs(struct vhost_dev *dev)
511 {
512 struct vhost_virtqueue *vq;
513 int i;
514
515 for (i = 0; i < dev->nvqs; ++i) {
516 vq = dev->vqs[i];
517 vq->indirect = kmalloc_array(UIO_MAXIOV,
518 sizeof(*vq->indirect),
519 GFP_KERNEL);
520 vq->log = kmalloc_array(dev->iov_limit, sizeof(*vq->log),
521 GFP_KERNEL);
522 vq->heads = kmalloc_array(dev->iov_limit, sizeof(*vq->heads),
523 GFP_KERNEL);
524 vq->nheads = kmalloc_array(dev->iov_limit, sizeof(*vq->nheads),
525 GFP_KERNEL);
526 if (!vq->indirect || !vq->log || !vq->heads || !vq->nheads)
527 goto err_nomem;
528 }
529 return 0;
530
531 err_nomem:
532 for (; i >= 0; --i)
533 vhost_vq_free_iovecs(dev->vqs[i]);
534 return -ENOMEM;
535 }
536
vhost_dev_free_iovecs(struct vhost_dev * dev)537 static void vhost_dev_free_iovecs(struct vhost_dev *dev)
538 {
539 int i;
540
541 for (i = 0; i < dev->nvqs; ++i)
542 vhost_vq_free_iovecs(dev->vqs[i]);
543 }
544
vhost_exceeds_weight(struct vhost_virtqueue * vq,int pkts,int total_len)545 bool vhost_exceeds_weight(struct vhost_virtqueue *vq,
546 int pkts, int total_len)
547 {
548 struct vhost_dev *dev = vq->dev;
549
550 if ((dev->byte_weight && total_len >= dev->byte_weight) ||
551 pkts >= dev->weight) {
552 vhost_poll_queue(&vq->poll);
553 return true;
554 }
555
556 return false;
557 }
558 EXPORT_SYMBOL_GPL(vhost_exceeds_weight);
559
vhost_get_avail_size(struct vhost_virtqueue * vq,unsigned int num)560 static size_t vhost_get_avail_size(struct vhost_virtqueue *vq,
561 unsigned int num)
562 {
563 size_t event __maybe_unused =
564 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
565
566 return size_add(struct_size(vq->avail, ring, num), event);
567 }
568
vhost_get_used_size(struct vhost_virtqueue * vq,unsigned int num)569 static size_t vhost_get_used_size(struct vhost_virtqueue *vq,
570 unsigned int num)
571 {
572 size_t event __maybe_unused =
573 vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX) ? 2 : 0;
574
575 return size_add(struct_size(vq->used, ring, num), event);
576 }
577
vhost_get_desc_size(struct vhost_virtqueue * vq,unsigned int num)578 static size_t vhost_get_desc_size(struct vhost_virtqueue *vq,
579 unsigned int num)
580 {
581 return sizeof(*vq->desc) * num;
582 }
583
vhost_dev_init(struct vhost_dev * dev,struct vhost_virtqueue ** vqs,int nvqs,int iov_limit,int weight,int byte_weight,bool use_worker,int (* msg_handler)(struct vhost_dev * dev,u32 asid,struct vhost_iotlb_msg * msg))584 void vhost_dev_init(struct vhost_dev *dev,
585 struct vhost_virtqueue **vqs, int nvqs,
586 int iov_limit, int weight, int byte_weight,
587 bool use_worker,
588 int (*msg_handler)(struct vhost_dev *dev, u32 asid,
589 struct vhost_iotlb_msg *msg))
590 {
591 struct vhost_virtqueue *vq;
592 int i;
593
594 dev->vqs = vqs;
595 dev->nvqs = nvqs;
596 mutex_init(&dev->mutex);
597 dev->log_ctx = NULL;
598 dev->umem = NULL;
599 dev->iotlb = NULL;
600 dev->mm = NULL;
601 dev->iov_limit = iov_limit;
602 dev->weight = weight;
603 dev->byte_weight = byte_weight;
604 dev->use_worker = use_worker;
605 dev->msg_handler = msg_handler;
606 dev->fork_owner = fork_from_owner_default;
607 init_waitqueue_head(&dev->wait);
608 INIT_LIST_HEAD(&dev->read_list);
609 INIT_LIST_HEAD(&dev->pending_list);
610 spin_lock_init(&dev->iotlb_lock);
611 xa_init_flags(&dev->worker_xa, XA_FLAGS_ALLOC);
612
613 for (i = 0; i < dev->nvqs; ++i) {
614 vq = dev->vqs[i];
615 vq->log = NULL;
616 vq->indirect = NULL;
617 vq->heads = NULL;
618 vq->dev = dev;
619 mutex_init(&vq->mutex);
620 vhost_vq_reset(dev, vq);
621 if (vq->handle_kick)
622 vhost_poll_init(&vq->poll, vq->handle_kick,
623 EPOLLIN, dev, vq);
624 }
625 }
626 EXPORT_SYMBOL_GPL(vhost_dev_init);
627
628 /* Caller should have device mutex */
vhost_dev_check_owner(struct vhost_dev * dev)629 long vhost_dev_check_owner(struct vhost_dev *dev)
630 {
631 /* Are you the owner? If not, I don't think you mean to do that */
632 return dev->mm == current->mm ? 0 : -EPERM;
633 }
634 EXPORT_SYMBOL_GPL(vhost_dev_check_owner);
635
636 struct vhost_attach_cgroups_struct {
637 struct vhost_work work;
638 struct task_struct *owner;
639 int ret;
640 };
641
vhost_attach_cgroups_work(struct vhost_work * work)642 static void vhost_attach_cgroups_work(struct vhost_work *work)
643 {
644 struct vhost_attach_cgroups_struct *s;
645
646 s = container_of(work, struct vhost_attach_cgroups_struct, work);
647 s->ret = cgroup_attach_task_all(s->owner, current);
648 }
649
vhost_attach_task_to_cgroups(struct vhost_worker * worker)650 static int vhost_attach_task_to_cgroups(struct vhost_worker *worker)
651 {
652 struct vhost_attach_cgroups_struct attach;
653 int saved_cnt;
654
655 attach.owner = current;
656
657 vhost_work_init(&attach.work, vhost_attach_cgroups_work);
658 vhost_worker_queue(worker, &attach.work);
659
660 mutex_lock(&worker->mutex);
661
662 /*
663 * Bypass attachment_cnt check in __vhost_worker_flush:
664 * Temporarily change it to INT_MAX to bypass the check
665 */
666 saved_cnt = worker->attachment_cnt;
667 worker->attachment_cnt = INT_MAX;
668 __vhost_worker_flush(worker);
669 worker->attachment_cnt = saved_cnt;
670
671 mutex_unlock(&worker->mutex);
672
673 return attach.ret;
674 }
675
676 /* Caller should have device mutex */
vhost_dev_has_owner(struct vhost_dev * dev)677 bool vhost_dev_has_owner(struct vhost_dev *dev)
678 {
679 return dev->mm;
680 }
681 EXPORT_SYMBOL_GPL(vhost_dev_has_owner);
682
vhost_attach_mm(struct vhost_dev * dev)683 static void vhost_attach_mm(struct vhost_dev *dev)
684 {
685 /* No owner, become one */
686 if (dev->use_worker) {
687 dev->mm = get_task_mm(current);
688 } else {
689 /* vDPA device does not use worker thread, so there's
690 * no need to hold the address space for mm. This helps
691 * to avoid deadlock in the case of mmap() which may
692 * hold the refcnt of the file and depends on release
693 * method to remove vma.
694 */
695 dev->mm = current->mm;
696 mmgrab(dev->mm);
697 }
698 }
699
vhost_detach_mm(struct vhost_dev * dev)700 static void vhost_detach_mm(struct vhost_dev *dev)
701 {
702 if (!dev->mm)
703 return;
704
705 if (dev->use_worker)
706 mmput(dev->mm);
707 else
708 mmdrop(dev->mm);
709
710 dev->mm = NULL;
711 }
712
vhost_worker_destroy(struct vhost_dev * dev,struct vhost_worker * worker)713 static void vhost_worker_destroy(struct vhost_dev *dev,
714 struct vhost_worker *worker)
715 {
716 if (!worker)
717 return;
718
719 WARN_ON(!llist_empty(&worker->work_list));
720 xa_erase(&dev->worker_xa, worker->id);
721 worker->ops->stop(worker);
722 kfree(worker);
723 }
724
vhost_workers_free(struct vhost_dev * dev)725 static void vhost_workers_free(struct vhost_dev *dev)
726 {
727 struct vhost_worker *worker;
728 unsigned long i;
729
730 if (!dev->use_worker)
731 return;
732
733 for (i = 0; i < dev->nvqs; i++)
734 rcu_assign_pointer(dev->vqs[i]->worker, NULL);
735 /*
736 * Free the default worker we created and cleanup workers userspace
737 * created but couldn't clean up (it forgot or crashed).
738 */
739 xa_for_each(&dev->worker_xa, i, worker)
740 vhost_worker_destroy(dev, worker);
741 xa_destroy(&dev->worker_xa);
742 }
743
vhost_task_wakeup(struct vhost_worker * worker)744 static void vhost_task_wakeup(struct vhost_worker *worker)
745 {
746 return vhost_task_wake(worker->vtsk);
747 }
748
vhost_kthread_wakeup(struct vhost_worker * worker)749 static void vhost_kthread_wakeup(struct vhost_worker *worker)
750 {
751 wake_up_process(worker->kthread_task);
752 }
753
vhost_task_do_stop(struct vhost_worker * worker)754 static void vhost_task_do_stop(struct vhost_worker *worker)
755 {
756 return vhost_task_stop(worker->vtsk);
757 }
758
vhost_kthread_do_stop(struct vhost_worker * worker)759 static void vhost_kthread_do_stop(struct vhost_worker *worker)
760 {
761 kthread_stop(worker->kthread_task);
762 }
763
vhost_task_worker_create(struct vhost_worker * worker,struct vhost_dev * dev,const char * name)764 static int vhost_task_worker_create(struct vhost_worker *worker,
765 struct vhost_dev *dev, const char *name)
766 {
767 struct vhost_task *vtsk;
768 u32 id;
769 int ret;
770
771 vtsk = vhost_task_create(vhost_run_work_list, vhost_worker_killed,
772 worker, name);
773 if (IS_ERR(vtsk))
774 return PTR_ERR(vtsk);
775
776 worker->vtsk = vtsk;
777 vhost_task_start(vtsk);
778 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL);
779 if (ret < 0) {
780 vhost_task_do_stop(worker);
781 return ret;
782 }
783 worker->id = id;
784 return 0;
785 }
786
vhost_kthread_worker_create(struct vhost_worker * worker,struct vhost_dev * dev,const char * name)787 static int vhost_kthread_worker_create(struct vhost_worker *worker,
788 struct vhost_dev *dev, const char *name)
789 {
790 struct task_struct *task;
791 u32 id;
792 int ret;
793
794 task = kthread_create(vhost_run_work_kthread_list, worker, "%s", name);
795 if (IS_ERR(task))
796 return PTR_ERR(task);
797
798 worker->kthread_task = task;
799 wake_up_process(task);
800 ret = xa_alloc(&dev->worker_xa, &id, worker, xa_limit_32b, GFP_KERNEL);
801 if (ret < 0)
802 goto stop_worker;
803
804 ret = vhost_attach_task_to_cgroups(worker);
805 if (ret)
806 goto stop_worker;
807
808 worker->id = id;
809 return 0;
810
811 stop_worker:
812 vhost_kthread_do_stop(worker);
813 return ret;
814 }
815
816 static const struct vhost_worker_ops kthread_ops = {
817 .create = vhost_kthread_worker_create,
818 .stop = vhost_kthread_do_stop,
819 .wakeup = vhost_kthread_wakeup,
820 };
821
822 static const struct vhost_worker_ops vhost_task_ops = {
823 .create = vhost_task_worker_create,
824 .stop = vhost_task_do_stop,
825 .wakeup = vhost_task_wakeup,
826 };
827
vhost_worker_create(struct vhost_dev * dev)828 static struct vhost_worker *vhost_worker_create(struct vhost_dev *dev)
829 {
830 struct vhost_worker *worker;
831 char name[TASK_COMM_LEN];
832 int ret;
833 const struct vhost_worker_ops *ops = dev->fork_owner ? &vhost_task_ops :
834 &kthread_ops;
835
836 worker = kzalloc(sizeof(*worker), GFP_KERNEL_ACCOUNT);
837 if (!worker)
838 return NULL;
839
840 worker->dev = dev;
841 worker->ops = ops;
842 snprintf(name, sizeof(name), "vhost-%d", current->pid);
843
844 mutex_init(&worker->mutex);
845 init_llist_head(&worker->work_list);
846 worker->kcov_handle = kcov_common_handle();
847 ret = ops->create(worker, dev, name);
848 if (ret < 0)
849 goto free_worker;
850
851 return worker;
852
853 free_worker:
854 kfree(worker);
855 return NULL;
856 }
857
858 /* Caller must have device mutex */
__vhost_vq_attach_worker(struct vhost_virtqueue * vq,struct vhost_worker * worker)859 static void __vhost_vq_attach_worker(struct vhost_virtqueue *vq,
860 struct vhost_worker *worker)
861 {
862 struct vhost_worker *old_worker;
863
864 mutex_lock(&worker->mutex);
865 if (worker->killed) {
866 mutex_unlock(&worker->mutex);
867 return;
868 }
869
870 mutex_lock(&vq->mutex);
871
872 old_worker = rcu_dereference_check(vq->worker,
873 lockdep_is_held(&vq->mutex));
874 rcu_assign_pointer(vq->worker, worker);
875 worker->attachment_cnt++;
876
877 if (!old_worker) {
878 mutex_unlock(&vq->mutex);
879 mutex_unlock(&worker->mutex);
880 return;
881 }
882 mutex_unlock(&vq->mutex);
883 mutex_unlock(&worker->mutex);
884
885 /*
886 * Take the worker mutex to make sure we see the work queued from
887 * device wide flushes which doesn't use RCU for execution.
888 */
889 mutex_lock(&old_worker->mutex);
890 if (old_worker->killed) {
891 mutex_unlock(&old_worker->mutex);
892 return;
893 }
894
895 /*
896 * We don't want to call synchronize_rcu for every vq during setup
897 * because it will slow down VM startup. If we haven't done
898 * VHOST_SET_VRING_KICK and not done the driver specific
899 * SET_ENDPOINT/RUNNING then we can skip the sync since there will
900 * not be any works queued for scsi and net.
901 */
902 mutex_lock(&vq->mutex);
903 if (!vhost_vq_get_backend(vq) && !vq->kick) {
904 mutex_unlock(&vq->mutex);
905
906 old_worker->attachment_cnt--;
907 mutex_unlock(&old_worker->mutex);
908 /*
909 * vsock can queue anytime after VHOST_VSOCK_SET_GUEST_CID.
910 * Warn if it adds support for multiple workers but forgets to
911 * handle the early queueing case.
912 */
913 WARN_ON(!old_worker->attachment_cnt &&
914 !llist_empty(&old_worker->work_list));
915 return;
916 }
917 mutex_unlock(&vq->mutex);
918
919 /* Make sure new vq queue/flush/poll calls see the new worker */
920 synchronize_rcu();
921 /* Make sure whatever was queued gets run */
922 __vhost_worker_flush(old_worker);
923 old_worker->attachment_cnt--;
924 mutex_unlock(&old_worker->mutex);
925 }
926
927 /* Caller must have device mutex */
vhost_vq_attach_worker(struct vhost_virtqueue * vq,struct vhost_vring_worker * info)928 static int vhost_vq_attach_worker(struct vhost_virtqueue *vq,
929 struct vhost_vring_worker *info)
930 {
931 unsigned long index = info->worker_id;
932 struct vhost_dev *dev = vq->dev;
933 struct vhost_worker *worker;
934
935 if (!dev->use_worker)
936 return -EINVAL;
937
938 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
939 if (!worker || worker->id != info->worker_id)
940 return -ENODEV;
941
942 __vhost_vq_attach_worker(vq, worker);
943 return 0;
944 }
945
946 /* Caller must have device mutex */
vhost_new_worker(struct vhost_dev * dev,struct vhost_worker_state * info)947 static int vhost_new_worker(struct vhost_dev *dev,
948 struct vhost_worker_state *info)
949 {
950 struct vhost_worker *worker;
951
952 worker = vhost_worker_create(dev);
953 if (!worker)
954 return -ENOMEM;
955
956 info->worker_id = worker->id;
957 return 0;
958 }
959
960 /* Caller must have device mutex */
vhost_free_worker(struct vhost_dev * dev,struct vhost_worker_state * info)961 static int vhost_free_worker(struct vhost_dev *dev,
962 struct vhost_worker_state *info)
963 {
964 unsigned long index = info->worker_id;
965 struct vhost_worker *worker;
966
967 worker = xa_find(&dev->worker_xa, &index, UINT_MAX, XA_PRESENT);
968 if (!worker || worker->id != info->worker_id)
969 return -ENODEV;
970
971 mutex_lock(&worker->mutex);
972 if (worker->attachment_cnt || worker->killed) {
973 mutex_unlock(&worker->mutex);
974 return -EBUSY;
975 }
976 /*
977 * A flush might have raced and snuck in before attachment_cnt was set
978 * to zero. Make sure flushes are flushed from the queue before
979 * freeing.
980 */
981 __vhost_worker_flush(worker);
982 mutex_unlock(&worker->mutex);
983
984 vhost_worker_destroy(dev, worker);
985 return 0;
986 }
987
vhost_get_vq_from_user(struct vhost_dev * dev,void __user * argp,struct vhost_virtqueue ** vq,u32 * id)988 static int vhost_get_vq_from_user(struct vhost_dev *dev, void __user *argp,
989 struct vhost_virtqueue **vq, u32 *id)
990 {
991 u32 __user *idxp = argp;
992 u32 idx;
993 long r;
994
995 r = get_user(idx, idxp);
996 if (r < 0)
997 return r;
998
999 if (idx >= dev->nvqs)
1000 return -ENOBUFS;
1001
1002 idx = array_index_nospec(idx, dev->nvqs);
1003
1004 *vq = dev->vqs[idx];
1005 *id = idx;
1006 return 0;
1007 }
1008
1009 /* Caller must have device mutex */
vhost_worker_ioctl(struct vhost_dev * dev,unsigned int ioctl,void __user * argp)1010 long vhost_worker_ioctl(struct vhost_dev *dev, unsigned int ioctl,
1011 void __user *argp)
1012 {
1013 struct vhost_vring_worker ring_worker;
1014 struct vhost_worker_state state;
1015 struct vhost_worker *worker;
1016 struct vhost_virtqueue *vq;
1017 long ret;
1018 u32 idx;
1019
1020 if (!dev->use_worker)
1021 return -EINVAL;
1022
1023 if (!vhost_dev_has_owner(dev))
1024 return -EINVAL;
1025
1026 ret = vhost_dev_check_owner(dev);
1027 if (ret)
1028 return ret;
1029
1030 switch (ioctl) {
1031 /* dev worker ioctls */
1032 case VHOST_NEW_WORKER:
1033 /*
1034 * vhost_tasks will account for worker threads under the parent's
1035 * NPROC value but kthreads do not. To avoid userspace overflowing
1036 * the system with worker threads fork_owner must be true.
1037 */
1038 if (!dev->fork_owner)
1039 return -EFAULT;
1040
1041 ret = vhost_new_worker(dev, &state);
1042 if (!ret && copy_to_user(argp, &state, sizeof(state)))
1043 ret = -EFAULT;
1044 return ret;
1045 case VHOST_FREE_WORKER:
1046 if (copy_from_user(&state, argp, sizeof(state)))
1047 return -EFAULT;
1048 return vhost_free_worker(dev, &state);
1049 /* vring worker ioctls */
1050 case VHOST_ATTACH_VRING_WORKER:
1051 case VHOST_GET_VRING_WORKER:
1052 break;
1053 default:
1054 return -ENOIOCTLCMD;
1055 }
1056
1057 ret = vhost_get_vq_from_user(dev, argp, &vq, &idx);
1058 if (ret)
1059 return ret;
1060
1061 switch (ioctl) {
1062 case VHOST_ATTACH_VRING_WORKER:
1063 if (copy_from_user(&ring_worker, argp, sizeof(ring_worker))) {
1064 ret = -EFAULT;
1065 break;
1066 }
1067
1068 ret = vhost_vq_attach_worker(vq, &ring_worker);
1069 break;
1070 case VHOST_GET_VRING_WORKER:
1071 worker = rcu_dereference_check(vq->worker,
1072 lockdep_is_held(&dev->mutex));
1073 if (!worker) {
1074 ret = -EINVAL;
1075 break;
1076 }
1077
1078 ring_worker.index = idx;
1079 ring_worker.worker_id = worker->id;
1080
1081 if (copy_to_user(argp, &ring_worker, sizeof(ring_worker)))
1082 ret = -EFAULT;
1083 break;
1084 default:
1085 ret = -ENOIOCTLCMD;
1086 break;
1087 }
1088
1089 return ret;
1090 }
1091 EXPORT_SYMBOL_GPL(vhost_worker_ioctl);
1092
1093 /* Caller should have device mutex */
vhost_dev_set_owner(struct vhost_dev * dev)1094 long vhost_dev_set_owner(struct vhost_dev *dev)
1095 {
1096 struct vhost_worker *worker;
1097 int err, i;
1098
1099 /* Is there an owner already? */
1100 if (vhost_dev_has_owner(dev)) {
1101 err = -EBUSY;
1102 goto err_mm;
1103 }
1104
1105 vhost_attach_mm(dev);
1106
1107 err = vhost_dev_alloc_iovecs(dev);
1108 if (err)
1109 goto err_iovecs;
1110
1111 if (dev->use_worker) {
1112 /*
1113 * This should be done last, because vsock can queue work
1114 * before VHOST_SET_OWNER so it simplifies the failure path
1115 * below since we don't have to worry about vsock queueing
1116 * while we free the worker.
1117 */
1118 worker = vhost_worker_create(dev);
1119 if (!worker) {
1120 err = -ENOMEM;
1121 goto err_worker;
1122 }
1123
1124 for (i = 0; i < dev->nvqs; i++)
1125 __vhost_vq_attach_worker(dev->vqs[i], worker);
1126 }
1127
1128 return 0;
1129
1130 err_worker:
1131 vhost_dev_free_iovecs(dev);
1132 err_iovecs:
1133 vhost_detach_mm(dev);
1134 err_mm:
1135 return err;
1136 }
1137 EXPORT_SYMBOL_GPL(vhost_dev_set_owner);
1138
iotlb_alloc(void)1139 static struct vhost_iotlb *iotlb_alloc(void)
1140 {
1141 return vhost_iotlb_alloc(max_iotlb_entries,
1142 VHOST_IOTLB_FLAG_RETIRE);
1143 }
1144
vhost_dev_reset_owner_prepare(void)1145 struct vhost_iotlb *vhost_dev_reset_owner_prepare(void)
1146 {
1147 return iotlb_alloc();
1148 }
1149 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner_prepare);
1150
1151 /* Caller should have device mutex */
vhost_dev_reset_owner(struct vhost_dev * dev,struct vhost_iotlb * umem)1152 void vhost_dev_reset_owner(struct vhost_dev *dev, struct vhost_iotlb *umem)
1153 {
1154 int i;
1155
1156 vhost_dev_cleanup(dev);
1157
1158 dev->fork_owner = fork_from_owner_default;
1159 dev->umem = umem;
1160 /* We don't need VQ locks below since vhost_dev_cleanup makes sure
1161 * VQs aren't running.
1162 */
1163 for (i = 0; i < dev->nvqs; ++i)
1164 dev->vqs[i]->umem = umem;
1165 }
1166 EXPORT_SYMBOL_GPL(vhost_dev_reset_owner);
1167
vhost_dev_stop(struct vhost_dev * dev)1168 void vhost_dev_stop(struct vhost_dev *dev)
1169 {
1170 int i;
1171
1172 for (i = 0; i < dev->nvqs; ++i) {
1173 if (dev->vqs[i]->kick && dev->vqs[i]->handle_kick)
1174 vhost_poll_stop(&dev->vqs[i]->poll);
1175 }
1176
1177 vhost_dev_flush(dev);
1178 }
1179 EXPORT_SYMBOL_GPL(vhost_dev_stop);
1180
vhost_clear_msg(struct vhost_dev * dev)1181 void vhost_clear_msg(struct vhost_dev *dev)
1182 {
1183 struct vhost_msg_node *node, *n;
1184
1185 spin_lock(&dev->iotlb_lock);
1186
1187 list_for_each_entry_safe(node, n, &dev->read_list, node) {
1188 list_del(&node->node);
1189 kfree(node);
1190 }
1191
1192 list_for_each_entry_safe(node, n, &dev->pending_list, node) {
1193 list_del(&node->node);
1194 kfree(node);
1195 }
1196
1197 spin_unlock(&dev->iotlb_lock);
1198 }
1199 EXPORT_SYMBOL_GPL(vhost_clear_msg);
1200
vhost_dev_cleanup(struct vhost_dev * dev)1201 void vhost_dev_cleanup(struct vhost_dev *dev)
1202 {
1203 int i;
1204
1205 for (i = 0; i < dev->nvqs; ++i) {
1206 if (dev->vqs[i]->error_ctx)
1207 eventfd_ctx_put(dev->vqs[i]->error_ctx);
1208 if (dev->vqs[i]->kick)
1209 fput(dev->vqs[i]->kick);
1210 if (dev->vqs[i]->call_ctx.ctx)
1211 eventfd_ctx_put(dev->vqs[i]->call_ctx.ctx);
1212 vhost_vq_reset(dev, dev->vqs[i]);
1213 }
1214 vhost_dev_free_iovecs(dev);
1215 if (dev->log_ctx)
1216 eventfd_ctx_put(dev->log_ctx);
1217 dev->log_ctx = NULL;
1218 /* No one will access memory at this point */
1219 vhost_iotlb_free(dev->umem);
1220 dev->umem = NULL;
1221 vhost_iotlb_free(dev->iotlb);
1222 dev->iotlb = NULL;
1223 vhost_clear_msg(dev);
1224 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
1225 vhost_workers_free(dev);
1226 vhost_detach_mm(dev);
1227 }
1228 EXPORT_SYMBOL_GPL(vhost_dev_cleanup);
1229
log_access_ok(void __user * log_base,u64 addr,unsigned long sz)1230 static bool log_access_ok(void __user *log_base, u64 addr, unsigned long sz)
1231 {
1232 u64 a = addr / VHOST_PAGE_SIZE / 8;
1233
1234 /* Make sure 64 bit math will not overflow. */
1235 if (a > ULONG_MAX - (unsigned long)log_base ||
1236 a + (unsigned long)log_base > ULONG_MAX)
1237 return false;
1238
1239 return access_ok(log_base + a,
1240 (sz + VHOST_PAGE_SIZE * 8 - 1) / VHOST_PAGE_SIZE / 8);
1241 }
1242
1243 /* Make sure 64 bit math will not overflow. */
vhost_overflow(u64 uaddr,u64 size)1244 static bool vhost_overflow(u64 uaddr, u64 size)
1245 {
1246 if (uaddr > ULONG_MAX || size > ULONG_MAX)
1247 return true;
1248
1249 if (!size)
1250 return false;
1251
1252 return uaddr > ULONG_MAX - size + 1;
1253 }
1254
1255 /* Caller should have vq mutex and device mutex. */
vq_memory_access_ok(void __user * log_base,struct vhost_iotlb * umem,int log_all)1256 static bool vq_memory_access_ok(void __user *log_base, struct vhost_iotlb *umem,
1257 int log_all)
1258 {
1259 struct vhost_iotlb_map *map;
1260
1261 if (!umem)
1262 return false;
1263
1264 list_for_each_entry(map, &umem->list, link) {
1265 unsigned long a = map->addr;
1266
1267 if (vhost_overflow(map->addr, map->size))
1268 return false;
1269
1270
1271 if (!access_ok((void __user *)a, map->size))
1272 return false;
1273 else if (log_all && !log_access_ok(log_base,
1274 map->start,
1275 map->size))
1276 return false;
1277 }
1278 return true;
1279 }
1280
vhost_vq_meta_fetch(struct vhost_virtqueue * vq,u64 addr,unsigned int size,int type)1281 static inline void __user *vhost_vq_meta_fetch(struct vhost_virtqueue *vq,
1282 u64 addr, unsigned int size,
1283 int type)
1284 {
1285 const struct vhost_iotlb_map *map = vq->meta_iotlb[type];
1286
1287 if (!map)
1288 return NULL;
1289
1290 return (void __user *)(uintptr_t)(map->addr + addr - map->start);
1291 }
1292
1293 /* Can we switch to this memory table? */
1294 /* Caller should have device mutex but not vq mutex */
memory_access_ok(struct vhost_dev * d,struct vhost_iotlb * umem,int log_all)1295 static bool memory_access_ok(struct vhost_dev *d, struct vhost_iotlb *umem,
1296 int log_all)
1297 {
1298 int i;
1299
1300 for (i = 0; i < d->nvqs; ++i) {
1301 bool ok;
1302 bool log;
1303
1304 mutex_lock(&d->vqs[i]->mutex);
1305 log = log_all || vhost_has_feature(d->vqs[i], VHOST_F_LOG_ALL);
1306 /* If ring is inactive, will check when it's enabled. */
1307 if (d->vqs[i]->private_data)
1308 ok = vq_memory_access_ok(d->vqs[i]->log_base,
1309 umem, log);
1310 else
1311 ok = true;
1312 mutex_unlock(&d->vqs[i]->mutex);
1313 if (!ok)
1314 return false;
1315 }
1316 return true;
1317 }
1318
1319 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
1320 struct iovec iov[], int iov_size, int access);
1321
vhost_copy_to_user(struct vhost_virtqueue * vq,void __user * to,const void * from,unsigned size)1322 static int vhost_copy_to_user(struct vhost_virtqueue *vq, void __user *to,
1323 const void *from, unsigned size)
1324 {
1325 int ret;
1326
1327 if (!vq->iotlb)
1328 return __copy_to_user(to, from, size);
1329 else {
1330 /* This function should be called after iotlb
1331 * prefetch, which means we're sure that all vq
1332 * could be access through iotlb. So -EAGAIN should
1333 * not happen in this case.
1334 */
1335 struct iov_iter t;
1336 void __user *uaddr = vhost_vq_meta_fetch(vq,
1337 (u64)(uintptr_t)to, size,
1338 VHOST_ADDR_USED);
1339
1340 if (uaddr)
1341 return __copy_to_user(uaddr, from, size);
1342
1343 ret = translate_desc(vq, (u64)(uintptr_t)to, size, vq->iotlb_iov,
1344 ARRAY_SIZE(vq->iotlb_iov),
1345 VHOST_ACCESS_WO);
1346 if (ret < 0)
1347 goto out;
1348 iov_iter_init(&t, ITER_DEST, vq->iotlb_iov, ret, size);
1349 ret = copy_to_iter(from, size, &t);
1350 if (ret == size)
1351 ret = 0;
1352 }
1353 out:
1354 return ret;
1355 }
1356
vhost_copy_from_user(struct vhost_virtqueue * vq,void * to,void __user * from,unsigned size)1357 static int vhost_copy_from_user(struct vhost_virtqueue *vq, void *to,
1358 void __user *from, unsigned size)
1359 {
1360 int ret;
1361
1362 if (!vq->iotlb)
1363 return __copy_from_user(to, from, size);
1364 else {
1365 /* This function should be called after iotlb
1366 * prefetch, which means we're sure that vq
1367 * could be access through iotlb. So -EAGAIN should
1368 * not happen in this case.
1369 */
1370 void __user *uaddr = vhost_vq_meta_fetch(vq,
1371 (u64)(uintptr_t)from, size,
1372 VHOST_ADDR_DESC);
1373 struct iov_iter f;
1374
1375 if (uaddr)
1376 return __copy_from_user(to, uaddr, size);
1377
1378 ret = translate_desc(vq, (u64)(uintptr_t)from, size, vq->iotlb_iov,
1379 ARRAY_SIZE(vq->iotlb_iov),
1380 VHOST_ACCESS_RO);
1381 if (ret < 0) {
1382 vq_err(vq, "IOTLB translation failure: uaddr "
1383 "%p size 0x%llx\n", from,
1384 (unsigned long long) size);
1385 goto out;
1386 }
1387 iov_iter_init(&f, ITER_SOURCE, vq->iotlb_iov, ret, size);
1388 ret = copy_from_iter(to, size, &f);
1389 if (ret == size)
1390 ret = 0;
1391 }
1392
1393 out:
1394 return ret;
1395 }
1396
__vhost_get_user_slow(struct vhost_virtqueue * vq,void __user * addr,unsigned int size,int type)1397 static void __user *__vhost_get_user_slow(struct vhost_virtqueue *vq,
1398 void __user *addr, unsigned int size,
1399 int type)
1400 {
1401 int ret;
1402
1403 ret = translate_desc(vq, (u64)(uintptr_t)addr, size, vq->iotlb_iov,
1404 ARRAY_SIZE(vq->iotlb_iov),
1405 VHOST_ACCESS_RO);
1406 if (ret < 0) {
1407 vq_err(vq, "IOTLB translation failure: uaddr "
1408 "%p size 0x%llx\n", addr,
1409 (unsigned long long) size);
1410 return NULL;
1411 }
1412
1413 if (ret != 1 || vq->iotlb_iov[0].iov_len != size) {
1414 vq_err(vq, "Non atomic userspace memory access: uaddr "
1415 "%p size 0x%llx\n", addr,
1416 (unsigned long long) size);
1417 return NULL;
1418 }
1419
1420 return vq->iotlb_iov[0].iov_base;
1421 }
1422
1423 /* This function should be called after iotlb
1424 * prefetch, which means we're sure that vq
1425 * could be access through iotlb. So -EAGAIN should
1426 * not happen in this case.
1427 */
__vhost_get_user(struct vhost_virtqueue * vq,void __user * addr,unsigned int size,int type)1428 static inline void __user *__vhost_get_user(struct vhost_virtqueue *vq,
1429 void __user *addr, unsigned int size,
1430 int type)
1431 {
1432 void __user *uaddr = vhost_vq_meta_fetch(vq,
1433 (u64)(uintptr_t)addr, size, type);
1434 if (uaddr)
1435 return uaddr;
1436
1437 return __vhost_get_user_slow(vq, addr, size, type);
1438 }
1439
1440 #define vhost_put_user(vq, x, ptr) \
1441 ({ \
1442 int ret; \
1443 if (!vq->iotlb) { \
1444 ret = __put_user(x, ptr); \
1445 } else { \
1446 __typeof__(ptr) to = \
1447 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1448 sizeof(*ptr), VHOST_ADDR_USED); \
1449 if (to != NULL) \
1450 ret = __put_user(x, to); \
1451 else \
1452 ret = -EFAULT; \
1453 } \
1454 ret; \
1455 })
1456
vhost_put_avail_event(struct vhost_virtqueue * vq)1457 static inline int vhost_put_avail_event(struct vhost_virtqueue *vq)
1458 {
1459 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->avail_idx),
1460 vhost_avail_event(vq));
1461 }
1462
vhost_put_used(struct vhost_virtqueue * vq,struct vring_used_elem * head,int idx,int count)1463 static inline int vhost_put_used(struct vhost_virtqueue *vq,
1464 struct vring_used_elem *head, int idx,
1465 int count)
1466 {
1467 return vhost_copy_to_user(vq, vq->used->ring + idx, head,
1468 count * sizeof(*head));
1469 }
1470
vhost_put_used_flags(struct vhost_virtqueue * vq)1471 static inline int vhost_put_used_flags(struct vhost_virtqueue *vq)
1472
1473 {
1474 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->used_flags),
1475 &vq->used->flags);
1476 }
1477
vhost_put_used_idx(struct vhost_virtqueue * vq)1478 static inline int vhost_put_used_idx(struct vhost_virtqueue *vq)
1479
1480 {
1481 return vhost_put_user(vq, cpu_to_vhost16(vq, vq->last_used_idx),
1482 &vq->used->idx);
1483 }
1484
1485 #define vhost_get_user(vq, x, ptr, type) \
1486 ({ \
1487 int ret; \
1488 if (!vq->iotlb) { \
1489 ret = __get_user(x, ptr); \
1490 } else { \
1491 __typeof__(ptr) from = \
1492 (__typeof__(ptr)) __vhost_get_user(vq, ptr, \
1493 sizeof(*ptr), \
1494 type); \
1495 if (from != NULL) \
1496 ret = __get_user(x, from); \
1497 else \
1498 ret = -EFAULT; \
1499 } \
1500 ret; \
1501 })
1502
1503 #define vhost_get_avail(vq, x, ptr) \
1504 vhost_get_user(vq, x, ptr, VHOST_ADDR_AVAIL)
1505
1506 #define vhost_get_used(vq, x, ptr) \
1507 vhost_get_user(vq, x, ptr, VHOST_ADDR_USED)
1508
vhost_dev_lock_vqs(struct vhost_dev * d)1509 static void vhost_dev_lock_vqs(struct vhost_dev *d)
1510 {
1511 int i = 0;
1512 for (i = 0; i < d->nvqs; ++i)
1513 mutex_lock_nested(&d->vqs[i]->mutex, i);
1514 }
1515
vhost_dev_unlock_vqs(struct vhost_dev * d)1516 static void vhost_dev_unlock_vqs(struct vhost_dev *d)
1517 {
1518 int i = 0;
1519 for (i = 0; i < d->nvqs; ++i)
1520 mutex_unlock(&d->vqs[i]->mutex);
1521 }
1522
vhost_get_avail_idx(struct vhost_virtqueue * vq)1523 static inline int vhost_get_avail_idx(struct vhost_virtqueue *vq)
1524 {
1525 __virtio16 idx;
1526 int r;
1527
1528 r = vhost_get_avail(vq, idx, &vq->avail->idx);
1529 if (unlikely(r < 0)) {
1530 vq_err(vq, "Failed to access available index at %p (%d)\n",
1531 &vq->avail->idx, r);
1532 return r;
1533 }
1534
1535 /* Check it isn't doing very strange thing with available indexes */
1536 vq->avail_idx = vhost16_to_cpu(vq, idx);
1537 if (unlikely((u16)(vq->avail_idx - vq->last_avail_idx) > vq->num)) {
1538 vq_err(vq, "Invalid available index change from %u to %u",
1539 vq->last_avail_idx, vq->avail_idx);
1540 return -EINVAL;
1541 }
1542
1543 /* We're done if there is nothing new */
1544 if (vq->avail_idx == vq->last_avail_idx)
1545 return 0;
1546
1547 /*
1548 * We updated vq->avail_idx so we need a memory barrier between
1549 * the index read above and the caller reading avail ring entries.
1550 */
1551 smp_rmb();
1552 return 1;
1553 }
1554
vhost_get_avail_head(struct vhost_virtqueue * vq,__virtio16 * head,int idx)1555 static inline int vhost_get_avail_head(struct vhost_virtqueue *vq,
1556 __virtio16 *head, int idx)
1557 {
1558 return vhost_get_avail(vq, *head,
1559 &vq->avail->ring[idx & (vq->num - 1)]);
1560 }
1561
vhost_get_avail_flags(struct vhost_virtqueue * vq,__virtio16 * flags)1562 static inline int vhost_get_avail_flags(struct vhost_virtqueue *vq,
1563 __virtio16 *flags)
1564 {
1565 return vhost_get_avail(vq, *flags, &vq->avail->flags);
1566 }
1567
vhost_get_used_event(struct vhost_virtqueue * vq,__virtio16 * event)1568 static inline int vhost_get_used_event(struct vhost_virtqueue *vq,
1569 __virtio16 *event)
1570 {
1571 return vhost_get_avail(vq, *event, vhost_used_event(vq));
1572 }
1573
vhost_get_used_idx(struct vhost_virtqueue * vq,__virtio16 * idx)1574 static inline int vhost_get_used_idx(struct vhost_virtqueue *vq,
1575 __virtio16 *idx)
1576 {
1577 return vhost_get_used(vq, *idx, &vq->used->idx);
1578 }
1579
vhost_get_desc(struct vhost_virtqueue * vq,struct vring_desc * desc,int idx)1580 static inline int vhost_get_desc(struct vhost_virtqueue *vq,
1581 struct vring_desc *desc, int idx)
1582 {
1583 return vhost_copy_from_user(vq, desc, vq->desc + idx, sizeof(*desc));
1584 }
1585
vhost_iotlb_notify_vq(struct vhost_dev * d,struct vhost_iotlb_msg * msg)1586 static void vhost_iotlb_notify_vq(struct vhost_dev *d,
1587 struct vhost_iotlb_msg *msg)
1588 {
1589 struct vhost_msg_node *node, *n;
1590
1591 spin_lock(&d->iotlb_lock);
1592
1593 list_for_each_entry_safe(node, n, &d->pending_list, node) {
1594 struct vhost_iotlb_msg *vq_msg = &node->msg.iotlb;
1595 if (msg->iova <= vq_msg->iova &&
1596 msg->iova + msg->size - 1 >= vq_msg->iova &&
1597 vq_msg->type == VHOST_IOTLB_MISS) {
1598 vhost_poll_queue(&node->vq->poll);
1599 list_del(&node->node);
1600 kfree(node);
1601 }
1602 }
1603
1604 spin_unlock(&d->iotlb_lock);
1605 }
1606
umem_access_ok(u64 uaddr,u64 size,int access)1607 static bool umem_access_ok(u64 uaddr, u64 size, int access)
1608 {
1609 unsigned long a = uaddr;
1610
1611 /* Make sure 64 bit math will not overflow. */
1612 if (vhost_overflow(uaddr, size))
1613 return false;
1614
1615 if ((access & VHOST_ACCESS_RO) &&
1616 !access_ok((void __user *)a, size))
1617 return false;
1618 if ((access & VHOST_ACCESS_WO) &&
1619 !access_ok((void __user *)a, size))
1620 return false;
1621 return true;
1622 }
1623
vhost_process_iotlb_msg(struct vhost_dev * dev,u32 asid,struct vhost_iotlb_msg * msg)1624 static int vhost_process_iotlb_msg(struct vhost_dev *dev, u32 asid,
1625 struct vhost_iotlb_msg *msg)
1626 {
1627 int ret = 0;
1628
1629 if (asid != 0)
1630 return -EINVAL;
1631
1632 mutex_lock(&dev->mutex);
1633 vhost_dev_lock_vqs(dev);
1634 switch (msg->type) {
1635 case VHOST_IOTLB_UPDATE:
1636 if (!dev->iotlb) {
1637 ret = -EFAULT;
1638 break;
1639 }
1640 if (!umem_access_ok(msg->uaddr, msg->size, msg->perm)) {
1641 ret = -EFAULT;
1642 break;
1643 }
1644 vhost_vq_meta_reset(dev);
1645 if (vhost_iotlb_add_range(dev->iotlb, msg->iova,
1646 msg->iova + msg->size - 1,
1647 msg->uaddr, msg->perm)) {
1648 ret = -ENOMEM;
1649 break;
1650 }
1651 vhost_iotlb_notify_vq(dev, msg);
1652 break;
1653 case VHOST_IOTLB_INVALIDATE:
1654 if (!dev->iotlb) {
1655 ret = -EFAULT;
1656 break;
1657 }
1658 vhost_vq_meta_reset(dev);
1659 vhost_iotlb_del_range(dev->iotlb, msg->iova,
1660 msg->iova + msg->size - 1);
1661 break;
1662 default:
1663 ret = -EINVAL;
1664 break;
1665 }
1666
1667 vhost_dev_unlock_vqs(dev);
1668 mutex_unlock(&dev->mutex);
1669
1670 return ret;
1671 }
vhost_chr_write_iter(struct vhost_dev * dev,struct iov_iter * from)1672 ssize_t vhost_chr_write_iter(struct vhost_dev *dev,
1673 struct iov_iter *from)
1674 {
1675 struct vhost_iotlb_msg msg;
1676 size_t offset;
1677 int type, ret;
1678 u32 asid = 0;
1679
1680 ret = copy_from_iter(&type, sizeof(type), from);
1681 if (ret != sizeof(type)) {
1682 ret = -EINVAL;
1683 goto done;
1684 }
1685
1686 switch (type) {
1687 case VHOST_IOTLB_MSG:
1688 /* There maybe a hole after type for V1 message type,
1689 * so skip it here.
1690 */
1691 offset = offsetof(struct vhost_msg, iotlb) - sizeof(int);
1692 break;
1693 case VHOST_IOTLB_MSG_V2:
1694 if (vhost_backend_has_feature(dev->vqs[0],
1695 VHOST_BACKEND_F_IOTLB_ASID)) {
1696 ret = copy_from_iter(&asid, sizeof(asid), from);
1697 if (ret != sizeof(asid)) {
1698 ret = -EINVAL;
1699 goto done;
1700 }
1701 offset = 0;
1702 } else
1703 offset = sizeof(__u32);
1704 break;
1705 default:
1706 ret = -EINVAL;
1707 goto done;
1708 }
1709
1710 iov_iter_advance(from, offset);
1711 ret = copy_from_iter(&msg, sizeof(msg), from);
1712 if (ret != sizeof(msg)) {
1713 ret = -EINVAL;
1714 goto done;
1715 }
1716
1717 if (msg.type == VHOST_IOTLB_UPDATE && msg.size == 0) {
1718 ret = -EINVAL;
1719 goto done;
1720 }
1721
1722 if (dev->msg_handler)
1723 ret = dev->msg_handler(dev, asid, &msg);
1724 else
1725 ret = vhost_process_iotlb_msg(dev, asid, &msg);
1726 if (ret) {
1727 ret = -EFAULT;
1728 goto done;
1729 }
1730
1731 ret = (type == VHOST_IOTLB_MSG) ? sizeof(struct vhost_msg) :
1732 sizeof(struct vhost_msg_v2);
1733 done:
1734 return ret;
1735 }
1736 EXPORT_SYMBOL(vhost_chr_write_iter);
1737
vhost_chr_poll(struct file * file,struct vhost_dev * dev,poll_table * wait)1738 __poll_t vhost_chr_poll(struct file *file, struct vhost_dev *dev,
1739 poll_table *wait)
1740 {
1741 __poll_t mask = 0;
1742
1743 poll_wait(file, &dev->wait, wait);
1744
1745 if (!list_empty(&dev->read_list))
1746 mask |= EPOLLIN | EPOLLRDNORM;
1747
1748 return mask;
1749 }
1750 EXPORT_SYMBOL(vhost_chr_poll);
1751
vhost_chr_read_iter(struct vhost_dev * dev,struct iov_iter * to,int noblock)1752 ssize_t vhost_chr_read_iter(struct vhost_dev *dev, struct iov_iter *to,
1753 int noblock)
1754 {
1755 DEFINE_WAIT(wait);
1756 struct vhost_msg_node *node;
1757 ssize_t ret = 0;
1758 unsigned size = sizeof(struct vhost_msg);
1759
1760 if (iov_iter_count(to) < size)
1761 return 0;
1762
1763 while (1) {
1764 if (!noblock)
1765 prepare_to_wait(&dev->wait, &wait,
1766 TASK_INTERRUPTIBLE);
1767
1768 node = vhost_dequeue_msg(dev, &dev->read_list);
1769 if (node)
1770 break;
1771 if (noblock) {
1772 ret = -EAGAIN;
1773 break;
1774 }
1775 if (signal_pending(current)) {
1776 ret = -ERESTARTSYS;
1777 break;
1778 }
1779 if (!dev->iotlb) {
1780 ret = -EBADFD;
1781 break;
1782 }
1783
1784 schedule();
1785 }
1786
1787 if (!noblock)
1788 finish_wait(&dev->wait, &wait);
1789
1790 if (node) {
1791 struct vhost_iotlb_msg *msg;
1792 void *start = &node->msg;
1793
1794 switch (node->msg.type) {
1795 case VHOST_IOTLB_MSG:
1796 size = sizeof(node->msg);
1797 msg = &node->msg.iotlb;
1798 break;
1799 case VHOST_IOTLB_MSG_V2:
1800 size = sizeof(node->msg_v2);
1801 msg = &node->msg_v2.iotlb;
1802 break;
1803 default:
1804 BUG();
1805 break;
1806 }
1807
1808 ret = copy_to_iter(start, size, to);
1809 if (ret != size || msg->type != VHOST_IOTLB_MISS) {
1810 kfree(node);
1811 return ret;
1812 }
1813 vhost_enqueue_msg(dev, &dev->pending_list, node);
1814 }
1815
1816 return ret;
1817 }
1818 EXPORT_SYMBOL_GPL(vhost_chr_read_iter);
1819
vhost_iotlb_miss(struct vhost_virtqueue * vq,u64 iova,int access)1820 static int vhost_iotlb_miss(struct vhost_virtqueue *vq, u64 iova, int access)
1821 {
1822 struct vhost_dev *dev = vq->dev;
1823 struct vhost_msg_node *node;
1824 struct vhost_iotlb_msg *msg;
1825 bool v2 = vhost_backend_has_feature(vq, VHOST_BACKEND_F_IOTLB_MSG_V2);
1826
1827 node = vhost_new_msg(vq, v2 ? VHOST_IOTLB_MSG_V2 : VHOST_IOTLB_MSG);
1828 if (!node)
1829 return -ENOMEM;
1830
1831 if (v2) {
1832 node->msg_v2.type = VHOST_IOTLB_MSG_V2;
1833 msg = &node->msg_v2.iotlb;
1834 } else {
1835 msg = &node->msg.iotlb;
1836 }
1837
1838 msg->type = VHOST_IOTLB_MISS;
1839 msg->iova = iova;
1840 msg->perm = access;
1841
1842 vhost_enqueue_msg(dev, &dev->read_list, node);
1843
1844 return 0;
1845 }
1846
vq_access_ok(struct vhost_virtqueue * vq,unsigned int num,vring_desc_t __user * desc,vring_avail_t __user * avail,vring_used_t __user * used)1847 static bool vq_access_ok(struct vhost_virtqueue *vq, unsigned int num,
1848 vring_desc_t __user *desc,
1849 vring_avail_t __user *avail,
1850 vring_used_t __user *used)
1851
1852 {
1853 /* If an IOTLB device is present, the vring addresses are
1854 * GIOVAs. Access validation occurs at prefetch time. */
1855 if (vq->iotlb)
1856 return true;
1857
1858 return access_ok(desc, vhost_get_desc_size(vq, num)) &&
1859 access_ok(avail, vhost_get_avail_size(vq, num)) &&
1860 access_ok(used, vhost_get_used_size(vq, num));
1861 }
1862
vhost_vq_meta_update(struct vhost_virtqueue * vq,const struct vhost_iotlb_map * map,int type)1863 static void vhost_vq_meta_update(struct vhost_virtqueue *vq,
1864 const struct vhost_iotlb_map *map,
1865 int type)
1866 {
1867 int access = (type == VHOST_ADDR_USED) ?
1868 VHOST_ACCESS_WO : VHOST_ACCESS_RO;
1869
1870 if (likely(map->perm & access))
1871 vq->meta_iotlb[type] = map;
1872 }
1873
iotlb_access_ok(struct vhost_virtqueue * vq,int access,u64 addr,u64 len,int type)1874 static bool iotlb_access_ok(struct vhost_virtqueue *vq,
1875 int access, u64 addr, u64 len, int type)
1876 {
1877 const struct vhost_iotlb_map *map;
1878 struct vhost_iotlb *umem = vq->iotlb;
1879 u64 s = 0, size, orig_addr = addr, last = addr + len - 1;
1880
1881 if (vhost_vq_meta_fetch(vq, addr, len, type))
1882 return true;
1883
1884 while (len > s) {
1885 map = vhost_iotlb_itree_first(umem, addr, last);
1886 if (map == NULL || map->start > addr) {
1887 vhost_iotlb_miss(vq, addr, access);
1888 return false;
1889 } else if (!(map->perm & access)) {
1890 /* Report the possible access violation by
1891 * request another translation from userspace.
1892 */
1893 return false;
1894 }
1895
1896 size = map->size - addr + map->start;
1897
1898 if (orig_addr == addr && size >= len)
1899 vhost_vq_meta_update(vq, map, type);
1900
1901 s += size;
1902 addr += size;
1903 }
1904
1905 return true;
1906 }
1907
vq_meta_prefetch(struct vhost_virtqueue * vq)1908 int vq_meta_prefetch(struct vhost_virtqueue *vq)
1909 {
1910 unsigned int num = vq->num;
1911
1912 if (!vq->iotlb)
1913 return 1;
1914
1915 return iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->desc,
1916 vhost_get_desc_size(vq, num), VHOST_ADDR_DESC) &&
1917 iotlb_access_ok(vq, VHOST_MAP_RO, (u64)(uintptr_t)vq->avail,
1918 vhost_get_avail_size(vq, num),
1919 VHOST_ADDR_AVAIL) &&
1920 iotlb_access_ok(vq, VHOST_MAP_WO, (u64)(uintptr_t)vq->used,
1921 vhost_get_used_size(vq, num), VHOST_ADDR_USED);
1922 }
1923 EXPORT_SYMBOL_GPL(vq_meta_prefetch);
1924
1925 /* Can we log writes? */
1926 /* Caller should have device mutex but not vq mutex */
vhost_log_access_ok(struct vhost_dev * dev)1927 bool vhost_log_access_ok(struct vhost_dev *dev)
1928 {
1929 return memory_access_ok(dev, dev->umem, 1);
1930 }
1931 EXPORT_SYMBOL_GPL(vhost_log_access_ok);
1932
vq_log_used_access_ok(struct vhost_virtqueue * vq,void __user * log_base,bool log_used,u64 log_addr)1933 static bool vq_log_used_access_ok(struct vhost_virtqueue *vq,
1934 void __user *log_base,
1935 bool log_used,
1936 u64 log_addr)
1937 {
1938 /* If an IOTLB device is present, log_addr is a GIOVA that
1939 * will never be logged by log_used(). */
1940 if (vq->iotlb)
1941 return true;
1942
1943 return !log_used || log_access_ok(log_base, log_addr,
1944 vhost_get_used_size(vq, vq->num));
1945 }
1946
1947 /* Verify access for write logging. */
1948 /* Caller should have vq mutex and device mutex */
vq_log_access_ok(struct vhost_virtqueue * vq,void __user * log_base)1949 static bool vq_log_access_ok(struct vhost_virtqueue *vq,
1950 void __user *log_base)
1951 {
1952 return vq_memory_access_ok(log_base, vq->umem,
1953 vhost_has_feature(vq, VHOST_F_LOG_ALL)) &&
1954 vq_log_used_access_ok(vq, log_base, vq->log_used, vq->log_addr);
1955 }
1956
1957 /* Can we start vq? */
1958 /* Caller should have vq mutex and device mutex */
vhost_vq_access_ok(struct vhost_virtqueue * vq)1959 bool vhost_vq_access_ok(struct vhost_virtqueue *vq)
1960 {
1961 if (!vq_log_access_ok(vq, vq->log_base))
1962 return false;
1963
1964 return vq_access_ok(vq, vq->num, vq->desc, vq->avail, vq->used);
1965 }
1966 EXPORT_SYMBOL_GPL(vhost_vq_access_ok);
1967
vhost_set_memory(struct vhost_dev * d,struct vhost_memory __user * m)1968 static long vhost_set_memory(struct vhost_dev *d, struct vhost_memory __user *m)
1969 {
1970 struct vhost_memory mem, *newmem;
1971 struct vhost_memory_region *region;
1972 struct vhost_iotlb *newumem, *oldumem;
1973 unsigned long size = offsetof(struct vhost_memory, regions);
1974 int i;
1975
1976 if (copy_from_user(&mem, m, size))
1977 return -EFAULT;
1978 if (mem.padding)
1979 return -EOPNOTSUPP;
1980 if (mem.nregions > max_mem_regions)
1981 return -E2BIG;
1982 newmem = kvzalloc(struct_size(newmem, regions, mem.nregions),
1983 GFP_KERNEL);
1984 if (!newmem)
1985 return -ENOMEM;
1986
1987 memcpy(newmem, &mem, size);
1988 if (copy_from_user(newmem->regions, m->regions,
1989 flex_array_size(newmem, regions, mem.nregions))) {
1990 kvfree(newmem);
1991 return -EFAULT;
1992 }
1993
1994 newumem = iotlb_alloc();
1995 if (!newumem) {
1996 kvfree(newmem);
1997 return -ENOMEM;
1998 }
1999
2000 for (region = newmem->regions;
2001 region < newmem->regions + mem.nregions;
2002 region++) {
2003 if (vhost_iotlb_add_range(newumem,
2004 region->guest_phys_addr,
2005 region->guest_phys_addr +
2006 region->memory_size - 1,
2007 region->userspace_addr,
2008 VHOST_MAP_RW))
2009 goto err;
2010 }
2011
2012 if (!memory_access_ok(d, newumem, 0))
2013 goto err;
2014
2015 oldumem = d->umem;
2016 d->umem = newumem;
2017
2018 /* All memory accesses are done under some VQ mutex. */
2019 for (i = 0; i < d->nvqs; ++i) {
2020 mutex_lock(&d->vqs[i]->mutex);
2021 d->vqs[i]->umem = newumem;
2022 mutex_unlock(&d->vqs[i]->mutex);
2023 }
2024
2025 kvfree(newmem);
2026 vhost_iotlb_free(oldumem);
2027 return 0;
2028
2029 err:
2030 vhost_iotlb_free(newumem);
2031 kvfree(newmem);
2032 return -EFAULT;
2033 }
2034
vhost_vring_set_num(struct vhost_dev * d,struct vhost_virtqueue * vq,void __user * argp)2035 static long vhost_vring_set_num(struct vhost_dev *d,
2036 struct vhost_virtqueue *vq,
2037 void __user *argp)
2038 {
2039 struct vhost_vring_state s;
2040
2041 /* Resizing ring with an active backend?
2042 * You don't want to do that. */
2043 if (vq->private_data)
2044 return -EBUSY;
2045
2046 if (copy_from_user(&s, argp, sizeof s))
2047 return -EFAULT;
2048
2049 if (!s.num || s.num > 0xffff || (s.num & (s.num - 1)))
2050 return -EINVAL;
2051 vq->num = s.num;
2052
2053 return 0;
2054 }
2055
vhost_vring_set_addr(struct vhost_dev * d,struct vhost_virtqueue * vq,void __user * argp)2056 static long vhost_vring_set_addr(struct vhost_dev *d,
2057 struct vhost_virtqueue *vq,
2058 void __user *argp)
2059 {
2060 struct vhost_vring_addr a;
2061
2062 if (copy_from_user(&a, argp, sizeof a))
2063 return -EFAULT;
2064 if (a.flags & ~(0x1 << VHOST_VRING_F_LOG))
2065 return -EOPNOTSUPP;
2066
2067 /* For 32bit, verify that the top 32bits of the user
2068 data are set to zero. */
2069 if ((u64)(unsigned long)a.desc_user_addr != a.desc_user_addr ||
2070 (u64)(unsigned long)a.used_user_addr != a.used_user_addr ||
2071 (u64)(unsigned long)a.avail_user_addr != a.avail_user_addr)
2072 return -EFAULT;
2073
2074 /* Make sure it's safe to cast pointers to vring types. */
2075 BUILD_BUG_ON(__alignof__ *vq->avail > VRING_AVAIL_ALIGN_SIZE);
2076 BUILD_BUG_ON(__alignof__ *vq->used > VRING_USED_ALIGN_SIZE);
2077 if ((a.avail_user_addr & (VRING_AVAIL_ALIGN_SIZE - 1)) ||
2078 (a.used_user_addr & (VRING_USED_ALIGN_SIZE - 1)) ||
2079 (a.log_guest_addr & (VRING_USED_ALIGN_SIZE - 1)))
2080 return -EINVAL;
2081
2082 /* We only verify access here if backend is configured.
2083 * If it is not, we don't as size might not have been setup.
2084 * We will verify when backend is configured. */
2085 if (vq->private_data) {
2086 if (!vq_access_ok(vq, vq->num,
2087 (void __user *)(unsigned long)a.desc_user_addr,
2088 (void __user *)(unsigned long)a.avail_user_addr,
2089 (void __user *)(unsigned long)a.used_user_addr))
2090 return -EINVAL;
2091
2092 /* Also validate log access for used ring if enabled. */
2093 if (!vq_log_used_access_ok(vq, vq->log_base,
2094 a.flags & (0x1 << VHOST_VRING_F_LOG),
2095 a.log_guest_addr))
2096 return -EINVAL;
2097 }
2098
2099 vq->log_used = !!(a.flags & (0x1 << VHOST_VRING_F_LOG));
2100 vq->desc = (void __user *)(unsigned long)a.desc_user_addr;
2101 vq->avail = (void __user *)(unsigned long)a.avail_user_addr;
2102 vq->log_addr = a.log_guest_addr;
2103 vq->used = (void __user *)(unsigned long)a.used_user_addr;
2104
2105 return 0;
2106 }
2107
vhost_vring_set_num_addr(struct vhost_dev * d,struct vhost_virtqueue * vq,unsigned int ioctl,void __user * argp)2108 static long vhost_vring_set_num_addr(struct vhost_dev *d,
2109 struct vhost_virtqueue *vq,
2110 unsigned int ioctl,
2111 void __user *argp)
2112 {
2113 long r;
2114
2115 mutex_lock(&vq->mutex);
2116
2117 switch (ioctl) {
2118 case VHOST_SET_VRING_NUM:
2119 r = vhost_vring_set_num(d, vq, argp);
2120 break;
2121 case VHOST_SET_VRING_ADDR:
2122 r = vhost_vring_set_addr(d, vq, argp);
2123 break;
2124 default:
2125 BUG();
2126 }
2127
2128 mutex_unlock(&vq->mutex);
2129
2130 return r;
2131 }
vhost_vring_ioctl(struct vhost_dev * d,unsigned int ioctl,void __user * argp)2132 long vhost_vring_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
2133 {
2134 struct file *eventfp, *filep = NULL;
2135 bool pollstart = false, pollstop = false;
2136 struct eventfd_ctx *ctx = NULL;
2137 struct vhost_virtqueue *vq;
2138 struct vhost_vring_state s;
2139 struct vhost_vring_file f;
2140 u32 idx;
2141 long r;
2142
2143 r = vhost_get_vq_from_user(d, argp, &vq, &idx);
2144 if (r < 0)
2145 return r;
2146
2147 if (ioctl == VHOST_SET_VRING_NUM ||
2148 ioctl == VHOST_SET_VRING_ADDR) {
2149 return vhost_vring_set_num_addr(d, vq, ioctl, argp);
2150 }
2151
2152 mutex_lock(&vq->mutex);
2153
2154 switch (ioctl) {
2155 case VHOST_SET_VRING_BASE:
2156 /* Moving base with an active backend?
2157 * You don't want to do that. */
2158 if (vq->private_data) {
2159 r = -EBUSY;
2160 break;
2161 }
2162 if (copy_from_user(&s, argp, sizeof s)) {
2163 r = -EFAULT;
2164 break;
2165 }
2166 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED)) {
2167 vq->next_avail_head = vq->last_avail_idx =
2168 s.num & 0xffff;
2169 vq->last_used_idx = (s.num >> 16) & 0xffff;
2170 } else {
2171 if (s.num > 0xffff) {
2172 r = -EINVAL;
2173 break;
2174 }
2175 vq->next_avail_head = vq->last_avail_idx = s.num;
2176 }
2177 /* Forget the cached index value. */
2178 vq->avail_idx = vq->last_avail_idx;
2179 break;
2180 case VHOST_GET_VRING_BASE:
2181 s.index = idx;
2182 if (vhost_has_feature(vq, VIRTIO_F_RING_PACKED))
2183 s.num = (u32)vq->last_avail_idx | ((u32)vq->last_used_idx << 16);
2184 else
2185 s.num = vq->last_avail_idx;
2186 if (copy_to_user(argp, &s, sizeof s))
2187 r = -EFAULT;
2188 break;
2189 case VHOST_SET_VRING_KICK:
2190 if (copy_from_user(&f, argp, sizeof f)) {
2191 r = -EFAULT;
2192 break;
2193 }
2194 eventfp = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_fget(f.fd);
2195 if (IS_ERR(eventfp)) {
2196 r = PTR_ERR(eventfp);
2197 break;
2198 }
2199 if (eventfp != vq->kick) {
2200 pollstop = (filep = vq->kick) != NULL;
2201 pollstart = (vq->kick = eventfp) != NULL;
2202 } else
2203 filep = eventfp;
2204 break;
2205 case VHOST_SET_VRING_CALL:
2206 if (copy_from_user(&f, argp, sizeof f)) {
2207 r = -EFAULT;
2208 break;
2209 }
2210 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2211 if (IS_ERR(ctx)) {
2212 r = PTR_ERR(ctx);
2213 break;
2214 }
2215
2216 swap(ctx, vq->call_ctx.ctx);
2217 break;
2218 case VHOST_SET_VRING_ERR:
2219 if (copy_from_user(&f, argp, sizeof f)) {
2220 r = -EFAULT;
2221 break;
2222 }
2223 ctx = f.fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(f.fd);
2224 if (IS_ERR(ctx)) {
2225 r = PTR_ERR(ctx);
2226 break;
2227 }
2228 swap(ctx, vq->error_ctx);
2229 break;
2230 case VHOST_SET_VRING_ENDIAN:
2231 r = vhost_set_vring_endian(vq, argp);
2232 break;
2233 case VHOST_GET_VRING_ENDIAN:
2234 r = vhost_get_vring_endian(vq, idx, argp);
2235 break;
2236 case VHOST_SET_VRING_BUSYLOOP_TIMEOUT:
2237 if (copy_from_user(&s, argp, sizeof(s))) {
2238 r = -EFAULT;
2239 break;
2240 }
2241 vq->busyloop_timeout = s.num;
2242 break;
2243 case VHOST_GET_VRING_BUSYLOOP_TIMEOUT:
2244 s.index = idx;
2245 s.num = vq->busyloop_timeout;
2246 if (copy_to_user(argp, &s, sizeof(s)))
2247 r = -EFAULT;
2248 break;
2249 default:
2250 r = -ENOIOCTLCMD;
2251 }
2252
2253 if (pollstop && vq->handle_kick)
2254 vhost_poll_stop(&vq->poll);
2255
2256 if (!IS_ERR_OR_NULL(ctx))
2257 eventfd_ctx_put(ctx);
2258 if (filep)
2259 fput(filep);
2260
2261 if (pollstart && vq->handle_kick)
2262 r = vhost_poll_start(&vq->poll, vq->kick);
2263
2264 mutex_unlock(&vq->mutex);
2265
2266 if (pollstop && vq->handle_kick)
2267 vhost_dev_flush(vq->poll.dev);
2268 return r;
2269 }
2270 EXPORT_SYMBOL_GPL(vhost_vring_ioctl);
2271
vhost_init_device_iotlb(struct vhost_dev * d)2272 int vhost_init_device_iotlb(struct vhost_dev *d)
2273 {
2274 struct vhost_iotlb *niotlb, *oiotlb;
2275 int i;
2276
2277 niotlb = iotlb_alloc();
2278 if (!niotlb)
2279 return -ENOMEM;
2280
2281 oiotlb = d->iotlb;
2282 d->iotlb = niotlb;
2283
2284 for (i = 0; i < d->nvqs; ++i) {
2285 struct vhost_virtqueue *vq = d->vqs[i];
2286
2287 mutex_lock(&vq->mutex);
2288 vq->iotlb = niotlb;
2289 __vhost_vq_meta_reset(vq);
2290 mutex_unlock(&vq->mutex);
2291 }
2292
2293 vhost_iotlb_free(oiotlb);
2294
2295 return 0;
2296 }
2297 EXPORT_SYMBOL_GPL(vhost_init_device_iotlb);
2298
2299 /* Caller must have device mutex */
vhost_dev_ioctl(struct vhost_dev * d,unsigned int ioctl,void __user * argp)2300 long vhost_dev_ioctl(struct vhost_dev *d, unsigned int ioctl, void __user *argp)
2301 {
2302 struct eventfd_ctx *ctx;
2303 u64 p;
2304 long r;
2305 int i, fd;
2306
2307 /* If you are not the owner, you can become one */
2308 if (ioctl == VHOST_SET_OWNER) {
2309 r = vhost_dev_set_owner(d);
2310 goto done;
2311 }
2312
2313 #ifdef CONFIG_VHOST_ENABLE_FORK_OWNER_CONTROL
2314 if (ioctl == VHOST_SET_FORK_FROM_OWNER) {
2315 /* Only allow modification before owner is set */
2316 if (vhost_dev_has_owner(d)) {
2317 r = -EBUSY;
2318 goto done;
2319 }
2320 u8 fork_owner_val;
2321
2322 if (get_user(fork_owner_val, (u8 __user *)argp)) {
2323 r = -EFAULT;
2324 goto done;
2325 }
2326 if (fork_owner_val != VHOST_FORK_OWNER_TASK &&
2327 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) {
2328 r = -EINVAL;
2329 goto done;
2330 }
2331 d->fork_owner = !!fork_owner_val;
2332 r = 0;
2333 goto done;
2334 }
2335 if (ioctl == VHOST_GET_FORK_FROM_OWNER) {
2336 u8 fork_owner_val = d->fork_owner;
2337
2338 if (fork_owner_val != VHOST_FORK_OWNER_TASK &&
2339 fork_owner_val != VHOST_FORK_OWNER_KTHREAD) {
2340 r = -EINVAL;
2341 goto done;
2342 }
2343 if (put_user(fork_owner_val, (u8 __user *)argp)) {
2344 r = -EFAULT;
2345 goto done;
2346 }
2347 r = 0;
2348 goto done;
2349 }
2350 #endif
2351
2352 /* You must be the owner to do anything else */
2353 r = vhost_dev_check_owner(d);
2354 if (r)
2355 goto done;
2356
2357 switch (ioctl) {
2358 case VHOST_SET_MEM_TABLE:
2359 r = vhost_set_memory(d, argp);
2360 break;
2361 case VHOST_SET_LOG_BASE:
2362 if (copy_from_user(&p, argp, sizeof p)) {
2363 r = -EFAULT;
2364 break;
2365 }
2366 if ((u64)(unsigned long)p != p) {
2367 r = -EFAULT;
2368 break;
2369 }
2370 for (i = 0; i < d->nvqs; ++i) {
2371 struct vhost_virtqueue *vq;
2372 void __user *base = (void __user *)(unsigned long)p;
2373 vq = d->vqs[i];
2374 mutex_lock(&vq->mutex);
2375 /* If ring is inactive, will check when it's enabled. */
2376 if (vq->private_data && !vq_log_access_ok(vq, base))
2377 r = -EFAULT;
2378 else
2379 vq->log_base = base;
2380 mutex_unlock(&vq->mutex);
2381 }
2382 break;
2383 case VHOST_SET_LOG_FD:
2384 r = get_user(fd, (int __user *)argp);
2385 if (r < 0)
2386 break;
2387 ctx = fd == VHOST_FILE_UNBIND ? NULL : eventfd_ctx_fdget(fd);
2388 if (IS_ERR(ctx)) {
2389 r = PTR_ERR(ctx);
2390 break;
2391 }
2392 swap(ctx, d->log_ctx);
2393 for (i = 0; i < d->nvqs; ++i) {
2394 mutex_lock(&d->vqs[i]->mutex);
2395 d->vqs[i]->log_ctx = d->log_ctx;
2396 mutex_unlock(&d->vqs[i]->mutex);
2397 }
2398 if (ctx)
2399 eventfd_ctx_put(ctx);
2400 break;
2401 default:
2402 r = -ENOIOCTLCMD;
2403 break;
2404 }
2405 done:
2406 return r;
2407 }
2408 EXPORT_SYMBOL_GPL(vhost_dev_ioctl);
2409
2410 /* TODO: This is really inefficient. We need something like get_user()
2411 * (instruction directly accesses the data, with an exception table entry
2412 * returning -EFAULT). See Documentation/arch/x86/exception-tables.rst.
2413 */
set_bit_to_user(int nr,void __user * addr)2414 static int set_bit_to_user(int nr, void __user *addr)
2415 {
2416 unsigned long log = (unsigned long)addr;
2417 struct page *page;
2418 void *base;
2419 int bit = nr + (log % PAGE_SIZE) * 8;
2420 int r;
2421
2422 r = pin_user_pages_fast(log, 1, FOLL_WRITE, &page);
2423 if (r < 0)
2424 return r;
2425 BUG_ON(r != 1);
2426 base = kmap_atomic(page);
2427 set_bit(bit, base);
2428 kunmap_atomic(base);
2429 unpin_user_pages_dirty_lock(&page, 1, true);
2430 return 0;
2431 }
2432
log_write(void __user * log_base,u64 write_address,u64 write_length)2433 static int log_write(void __user *log_base,
2434 u64 write_address, u64 write_length)
2435 {
2436 u64 write_page = write_address / VHOST_PAGE_SIZE;
2437 int r;
2438
2439 if (!write_length)
2440 return 0;
2441 write_length += write_address % VHOST_PAGE_SIZE;
2442 for (;;) {
2443 u64 base = (u64)(unsigned long)log_base;
2444 u64 log = base + write_page / 8;
2445 int bit = write_page % 8;
2446 if ((u64)(unsigned long)log != log)
2447 return -EFAULT;
2448 r = set_bit_to_user(bit, (void __user *)(unsigned long)log);
2449 if (r < 0)
2450 return r;
2451 if (write_length <= VHOST_PAGE_SIZE)
2452 break;
2453 write_length -= VHOST_PAGE_SIZE;
2454 write_page += 1;
2455 }
2456 return r;
2457 }
2458
log_write_hva(struct vhost_virtqueue * vq,u64 hva,u64 len)2459 static int log_write_hva(struct vhost_virtqueue *vq, u64 hva, u64 len)
2460 {
2461 struct vhost_iotlb *umem = vq->umem;
2462 struct vhost_iotlb_map *u;
2463 u64 start, end, l, min;
2464 int r;
2465 bool hit = false;
2466
2467 while (len) {
2468 min = len;
2469 /* More than one GPAs can be mapped into a single HVA. So
2470 * iterate all possible umems here to be safe.
2471 */
2472 list_for_each_entry(u, &umem->list, link) {
2473 if (u->addr > hva - 1 + len ||
2474 u->addr - 1 + u->size < hva)
2475 continue;
2476 start = max(u->addr, hva);
2477 end = min(u->addr - 1 + u->size, hva - 1 + len);
2478 l = end - start + 1;
2479 r = log_write(vq->log_base,
2480 u->start + start - u->addr,
2481 l);
2482 if (r < 0)
2483 return r;
2484 hit = true;
2485 min = min(l, min);
2486 }
2487
2488 if (!hit)
2489 return -EFAULT;
2490
2491 len -= min;
2492 hva += min;
2493 }
2494
2495 return 0;
2496 }
2497
log_used(struct vhost_virtqueue * vq,u64 used_offset,u64 len)2498 static int log_used(struct vhost_virtqueue *vq, u64 used_offset, u64 len)
2499 {
2500 struct iovec *iov = vq->log_iov;
2501 int i, ret;
2502
2503 if (!vq->iotlb)
2504 return log_write(vq->log_base, vq->log_addr + used_offset, len);
2505
2506 ret = translate_desc(vq, (uintptr_t)vq->used + used_offset,
2507 len, iov, 64, VHOST_ACCESS_WO);
2508 if (ret < 0)
2509 return ret;
2510
2511 for (i = 0; i < ret; i++) {
2512 ret = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2513 iov[i].iov_len);
2514 if (ret)
2515 return ret;
2516 }
2517
2518 return 0;
2519 }
2520
2521 /*
2522 * vhost_log_write() - Log in dirty page bitmap
2523 * @vq: vhost virtqueue.
2524 * @log: Array of dirty memory in GPA.
2525 * @log_num: Size of vhost_log arrary.
2526 * @len: The total length of memory buffer to log in the dirty bitmap.
2527 * Some drivers may only partially use pages shared via the last
2528 * vring descriptor (i.e. vhost-net RX buffer).
2529 * Use (len == U64_MAX) to indicate the driver would log all
2530 * pages of vring descriptors.
2531 * @iov: Array of dirty memory in HVA.
2532 * @count: Size of iovec array.
2533 */
vhost_log_write(struct vhost_virtqueue * vq,struct vhost_log * log,unsigned int log_num,u64 len,struct iovec * iov,int count)2534 int vhost_log_write(struct vhost_virtqueue *vq, struct vhost_log *log,
2535 unsigned int log_num, u64 len, struct iovec *iov, int count)
2536 {
2537 int i, r;
2538
2539 /* Make sure data written is seen before log. */
2540 smp_wmb();
2541
2542 if (vq->iotlb) {
2543 for (i = 0; i < count; i++) {
2544 r = log_write_hva(vq, (uintptr_t)iov[i].iov_base,
2545 iov[i].iov_len);
2546 if (r < 0)
2547 return r;
2548 }
2549 return 0;
2550 }
2551
2552 for (i = 0; i < log_num; ++i) {
2553 u64 l = min(log[i].len, len);
2554 r = log_write(vq->log_base, log[i].addr, l);
2555 if (r < 0)
2556 return r;
2557
2558 if (len != U64_MAX)
2559 len -= l;
2560 }
2561
2562 if (vq->log_ctx)
2563 eventfd_signal(vq->log_ctx);
2564
2565 return 0;
2566 }
2567 EXPORT_SYMBOL_GPL(vhost_log_write);
2568
vhost_update_used_flags(struct vhost_virtqueue * vq)2569 static int vhost_update_used_flags(struct vhost_virtqueue *vq)
2570 {
2571 void __user *used;
2572 if (vhost_put_used_flags(vq))
2573 return -EFAULT;
2574 if (unlikely(vq->log_used)) {
2575 /* Make sure the flag is seen before log. */
2576 smp_wmb();
2577 /* Log used flag write. */
2578 used = &vq->used->flags;
2579 log_used(vq, (used - (void __user *)vq->used),
2580 sizeof vq->used->flags);
2581 if (vq->log_ctx)
2582 eventfd_signal(vq->log_ctx);
2583 }
2584 return 0;
2585 }
2586
vhost_update_avail_event(struct vhost_virtqueue * vq)2587 static int vhost_update_avail_event(struct vhost_virtqueue *vq)
2588 {
2589 if (vhost_put_avail_event(vq))
2590 return -EFAULT;
2591 if (unlikely(vq->log_used)) {
2592 void __user *used;
2593 /* Make sure the event is seen before log. */
2594 smp_wmb();
2595 /* Log avail event write */
2596 used = vhost_avail_event(vq);
2597 log_used(vq, (used - (void __user *)vq->used),
2598 sizeof *vhost_avail_event(vq));
2599 if (vq->log_ctx)
2600 eventfd_signal(vq->log_ctx);
2601 }
2602 return 0;
2603 }
2604
vhost_vq_init_access(struct vhost_virtqueue * vq)2605 int vhost_vq_init_access(struct vhost_virtqueue *vq)
2606 {
2607 __virtio16 last_used_idx;
2608 int r;
2609 bool is_le = vq->is_le;
2610
2611 if (!vq->private_data)
2612 return 0;
2613
2614 vhost_init_is_le(vq);
2615
2616 r = vhost_update_used_flags(vq);
2617 if (r)
2618 goto err;
2619 vq->signalled_used_valid = false;
2620 if (!vq->iotlb &&
2621 !access_ok(&vq->used->idx, sizeof vq->used->idx)) {
2622 r = -EFAULT;
2623 goto err;
2624 }
2625 r = vhost_get_used_idx(vq, &last_used_idx);
2626 if (r) {
2627 vq_err(vq, "Can't access used idx at %p\n",
2628 &vq->used->idx);
2629 goto err;
2630 }
2631 vq->last_used_idx = vhost16_to_cpu(vq, last_used_idx);
2632 return 0;
2633
2634 err:
2635 vq->is_le = is_le;
2636 return r;
2637 }
2638 EXPORT_SYMBOL_GPL(vhost_vq_init_access);
2639
translate_desc(struct vhost_virtqueue * vq,u64 addr,u32 len,struct iovec iov[],int iov_size,int access)2640 static int translate_desc(struct vhost_virtqueue *vq, u64 addr, u32 len,
2641 struct iovec iov[], int iov_size, int access)
2642 {
2643 const struct vhost_iotlb_map *map;
2644 struct vhost_dev *dev = vq->dev;
2645 struct vhost_iotlb *umem = dev->iotlb ? dev->iotlb : dev->umem;
2646 struct iovec *_iov;
2647 u64 s = 0, last = addr + len - 1;
2648 int ret = 0;
2649
2650 while ((u64)len > s) {
2651 u64 size;
2652 if (unlikely(ret >= iov_size)) {
2653 ret = -ENOBUFS;
2654 break;
2655 }
2656
2657 map = vhost_iotlb_itree_first(umem, addr, last);
2658 if (map == NULL || map->start > addr) {
2659 if (umem != dev->iotlb) {
2660 ret = -EFAULT;
2661 break;
2662 }
2663 ret = -EAGAIN;
2664 break;
2665 } else if (!(map->perm & access)) {
2666 ret = -EPERM;
2667 break;
2668 }
2669
2670 _iov = iov + ret;
2671 size = map->size - addr + map->start;
2672 _iov->iov_len = min((u64)len - s, size);
2673 _iov->iov_base = (void __user *)(unsigned long)
2674 (map->addr + addr - map->start);
2675 s += size;
2676 addr += size;
2677 ++ret;
2678 }
2679
2680 if (ret == -EAGAIN)
2681 vhost_iotlb_miss(vq, addr, access);
2682 return ret;
2683 }
2684
2685 /* Each buffer in the virtqueues is actually a chain of descriptors. This
2686 * function returns the next descriptor in the chain,
2687 * or -1U if we're at the end. */
next_desc(struct vhost_virtqueue * vq,struct vring_desc * desc)2688 static unsigned next_desc(struct vhost_virtqueue *vq, struct vring_desc *desc)
2689 {
2690 unsigned int next;
2691
2692 /* If this descriptor says it doesn't chain, we're done. */
2693 if (!(desc->flags & cpu_to_vhost16(vq, VRING_DESC_F_NEXT)))
2694 return -1U;
2695
2696 /* Check they're not leading us off end of descriptors. */
2697 next = vhost16_to_cpu(vq, READ_ONCE(desc->next));
2698 return next;
2699 }
2700
get_indirect(struct vhost_virtqueue * vq,struct iovec iov[],unsigned int iov_size,unsigned int * out_num,unsigned int * in_num,struct vhost_log * log,unsigned int * log_num,struct vring_desc * indirect)2701 static int get_indirect(struct vhost_virtqueue *vq,
2702 struct iovec iov[], unsigned int iov_size,
2703 unsigned int *out_num, unsigned int *in_num,
2704 struct vhost_log *log, unsigned int *log_num,
2705 struct vring_desc *indirect)
2706 {
2707 struct vring_desc desc;
2708 unsigned int i = 0, count, found = 0;
2709 u32 len = vhost32_to_cpu(vq, indirect->len);
2710 struct iov_iter from;
2711 int ret, access;
2712
2713 /* Sanity check */
2714 if (unlikely(len % sizeof desc)) {
2715 vq_err(vq, "Invalid length in indirect descriptor: "
2716 "len 0x%llx not multiple of 0x%zx\n",
2717 (unsigned long long)len,
2718 sizeof desc);
2719 return -EINVAL;
2720 }
2721
2722 ret = translate_desc(vq, vhost64_to_cpu(vq, indirect->addr), len, vq->indirect,
2723 UIO_MAXIOV, VHOST_ACCESS_RO);
2724 if (unlikely(ret < 0)) {
2725 if (ret != -EAGAIN)
2726 vq_err(vq, "Translation failure %d in indirect.\n", ret);
2727 return ret;
2728 }
2729 iov_iter_init(&from, ITER_SOURCE, vq->indirect, ret, len);
2730 count = len / sizeof desc;
2731 /* Buffers are chained via a 16 bit next field, so
2732 * we can have at most 2^16 of these. */
2733 if (unlikely(count > USHRT_MAX + 1)) {
2734 vq_err(vq, "Indirect buffer length too big: %d\n",
2735 indirect->len);
2736 return -E2BIG;
2737 }
2738
2739 do {
2740 unsigned iov_count = *in_num + *out_num;
2741 if (unlikely(++found > count)) {
2742 vq_err(vq, "Loop detected: last one at %u "
2743 "indirect size %u\n",
2744 i, count);
2745 return -EINVAL;
2746 }
2747 if (unlikely(!copy_from_iter_full(&desc, sizeof(desc), &from))) {
2748 vq_err(vq, "Failed indirect descriptor: idx %d, %zx\n",
2749 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2750 return -EINVAL;
2751 }
2752 if (unlikely(desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT))) {
2753 vq_err(vq, "Nested indirect descriptor: idx %d, %zx\n",
2754 i, (size_t)vhost64_to_cpu(vq, indirect->addr) + i * sizeof desc);
2755 return -EINVAL;
2756 }
2757
2758 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2759 access = VHOST_ACCESS_WO;
2760 else
2761 access = VHOST_ACCESS_RO;
2762
2763 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2764 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2765 iov_size - iov_count, access);
2766 if (unlikely(ret < 0)) {
2767 if (ret != -EAGAIN)
2768 vq_err(vq, "Translation failure %d indirect idx %d\n",
2769 ret, i);
2770 return ret;
2771 }
2772 /* If this is an input descriptor, increment that count. */
2773 if (access == VHOST_ACCESS_WO) {
2774 *in_num += ret;
2775 if (unlikely(log && ret)) {
2776 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2777 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2778 ++*log_num;
2779 }
2780 } else {
2781 /* If it's an output descriptor, they're all supposed
2782 * to come before any input descriptors. */
2783 if (unlikely(*in_num)) {
2784 vq_err(vq, "Indirect descriptor "
2785 "has out after in: idx %d\n", i);
2786 return -EINVAL;
2787 }
2788 *out_num += ret;
2789 }
2790 } while ((i = next_desc(vq, &desc)) != -1);
2791 return 0;
2792 }
2793
2794 /* This looks in the virtqueue and for the first available buffer, and converts
2795 * it to an iovec for convenient access. Since descriptors consist of some
2796 * number of output then some number of input descriptors, it's actually two
2797 * iovecs, but we pack them into one and note how many of each there were.
2798 *
2799 * This function returns the descriptor number found, or vq->num (which is
2800 * never a valid descriptor number) if none was found. A negative code is
2801 * returned on error. */
vhost_get_vq_desc(struct vhost_virtqueue * vq,struct iovec iov[],unsigned int iov_size,unsigned int * out_num,unsigned int * in_num,struct vhost_log * log,unsigned int * log_num)2802 int vhost_get_vq_desc(struct vhost_virtqueue *vq,
2803 struct iovec iov[], unsigned int iov_size,
2804 unsigned int *out_num, unsigned int *in_num,
2805 struct vhost_log *log, unsigned int *log_num)
2806 {
2807 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER);
2808 struct vring_desc desc;
2809 unsigned int i, head, found = 0;
2810 u16 last_avail_idx = vq->last_avail_idx;
2811 __virtio16 ring_head;
2812 int ret, access, c = 0;
2813
2814 if (vq->avail_idx == vq->last_avail_idx) {
2815 ret = vhost_get_avail_idx(vq);
2816 if (unlikely(ret < 0))
2817 return ret;
2818
2819 if (!ret)
2820 return vq->num;
2821 }
2822
2823 if (in_order)
2824 head = vq->next_avail_head & (vq->num - 1);
2825 else {
2826 /* Grab the next descriptor number they're
2827 * advertising, and increment the index we've seen. */
2828 if (unlikely(vhost_get_avail_head(vq, &ring_head,
2829 last_avail_idx))) {
2830 vq_err(vq, "Failed to read head: idx %d address %p\n",
2831 last_avail_idx,
2832 &vq->avail->ring[last_avail_idx % vq->num]);
2833 return -EFAULT;
2834 }
2835 head = vhost16_to_cpu(vq, ring_head);
2836 }
2837
2838 /* If their number is silly, that's an error. */
2839 if (unlikely(head >= vq->num)) {
2840 vq_err(vq, "Guest says index %u > %u is available",
2841 head, vq->num);
2842 return -EINVAL;
2843 }
2844
2845 /* When we start there are none of either input nor output. */
2846 *out_num = *in_num = 0;
2847 if (unlikely(log))
2848 *log_num = 0;
2849
2850 i = head;
2851 do {
2852 unsigned iov_count = *in_num + *out_num;
2853 if (unlikely(i >= vq->num)) {
2854 vq_err(vq, "Desc index is %u > %u, head = %u",
2855 i, vq->num, head);
2856 return -EINVAL;
2857 }
2858 if (unlikely(++found > vq->num)) {
2859 vq_err(vq, "Loop detected: last one at %u "
2860 "vq size %u head %u\n",
2861 i, vq->num, head);
2862 return -EINVAL;
2863 }
2864 ret = vhost_get_desc(vq, &desc, i);
2865 if (unlikely(ret)) {
2866 vq_err(vq, "Failed to get descriptor: idx %d addr %p\n",
2867 i, vq->desc + i);
2868 return -EFAULT;
2869 }
2870 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_INDIRECT)) {
2871 ret = get_indirect(vq, iov, iov_size,
2872 out_num, in_num,
2873 log, log_num, &desc);
2874 if (unlikely(ret < 0)) {
2875 if (ret != -EAGAIN)
2876 vq_err(vq, "Failure detected "
2877 "in indirect descriptor at idx %d\n", i);
2878 return ret;
2879 }
2880 ++c;
2881 continue;
2882 }
2883
2884 if (desc.flags & cpu_to_vhost16(vq, VRING_DESC_F_WRITE))
2885 access = VHOST_ACCESS_WO;
2886 else
2887 access = VHOST_ACCESS_RO;
2888 ret = translate_desc(vq, vhost64_to_cpu(vq, desc.addr),
2889 vhost32_to_cpu(vq, desc.len), iov + iov_count,
2890 iov_size - iov_count, access);
2891 if (unlikely(ret < 0)) {
2892 if (ret != -EAGAIN)
2893 vq_err(vq, "Translation failure %d descriptor idx %d\n",
2894 ret, i);
2895 return ret;
2896 }
2897 if (access == VHOST_ACCESS_WO) {
2898 /* If this is an input descriptor,
2899 * increment that count. */
2900 *in_num += ret;
2901 if (unlikely(log && ret)) {
2902 log[*log_num].addr = vhost64_to_cpu(vq, desc.addr);
2903 log[*log_num].len = vhost32_to_cpu(vq, desc.len);
2904 ++*log_num;
2905 }
2906 } else {
2907 /* If it's an output descriptor, they're all supposed
2908 * to come before any input descriptors. */
2909 if (unlikely(*in_num)) {
2910 vq_err(vq, "Descriptor has out after in: "
2911 "idx %d\n", i);
2912 return -EINVAL;
2913 }
2914 *out_num += ret;
2915 }
2916 ++c;
2917 } while ((i = next_desc(vq, &desc)) != -1);
2918
2919 /* On success, increment avail index. */
2920 vq->last_avail_idx++;
2921 vq->next_avail_head += c;
2922
2923 /* Assume notifications from guest are disabled at this point,
2924 * if they aren't we would need to update avail_event index. */
2925 BUG_ON(!(vq->used_flags & VRING_USED_F_NO_NOTIFY));
2926 return head;
2927 }
2928 EXPORT_SYMBOL_GPL(vhost_get_vq_desc);
2929
2930 /* Reverse the effect of vhost_get_vq_desc. Useful for error handling. */
vhost_discard_vq_desc(struct vhost_virtqueue * vq,int n)2931 void vhost_discard_vq_desc(struct vhost_virtqueue *vq, int n)
2932 {
2933 vq->last_avail_idx -= n;
2934 }
2935 EXPORT_SYMBOL_GPL(vhost_discard_vq_desc);
2936
2937 /* After we've used one of their buffers, we tell them about it. We'll then
2938 * want to notify the guest, using eventfd. */
vhost_add_used(struct vhost_virtqueue * vq,unsigned int head,int len)2939 int vhost_add_used(struct vhost_virtqueue *vq, unsigned int head, int len)
2940 {
2941 struct vring_used_elem heads = {
2942 cpu_to_vhost32(vq, head),
2943 cpu_to_vhost32(vq, len)
2944 };
2945 u16 nheads = 1;
2946
2947 return vhost_add_used_n(vq, &heads, &nheads, 1);
2948 }
2949 EXPORT_SYMBOL_GPL(vhost_add_used);
2950
__vhost_add_used_n(struct vhost_virtqueue * vq,struct vring_used_elem * heads,unsigned count)2951 static int __vhost_add_used_n(struct vhost_virtqueue *vq,
2952 struct vring_used_elem *heads,
2953 unsigned count)
2954 {
2955 vring_used_elem_t __user *used;
2956 u16 old, new;
2957 int start;
2958
2959 start = vq->last_used_idx & (vq->num - 1);
2960 used = vq->used->ring + start;
2961 if (vhost_put_used(vq, heads, start, count)) {
2962 vq_err(vq, "Failed to write used");
2963 return -EFAULT;
2964 }
2965 if (unlikely(vq->log_used)) {
2966 /* Make sure data is seen before log. */
2967 smp_wmb();
2968 /* Log used ring entry write. */
2969 log_used(vq, ((void __user *)used - (void __user *)vq->used),
2970 count * sizeof *used);
2971 }
2972 old = vq->last_used_idx;
2973 new = (vq->last_used_idx += count);
2974 /* If the driver never bothers to signal in a very long while,
2975 * used index might wrap around. If that happens, invalidate
2976 * signalled_used index we stored. TODO: make sure driver
2977 * signals at least once in 2^16 and remove this. */
2978 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
2979 vq->signalled_used_valid = false;
2980 return 0;
2981 }
2982
vhost_add_used_n_ooo(struct vhost_virtqueue * vq,struct vring_used_elem * heads,unsigned count)2983 static int vhost_add_used_n_ooo(struct vhost_virtqueue *vq,
2984 struct vring_used_elem *heads,
2985 unsigned count)
2986 {
2987 int start, n, r;
2988
2989 start = vq->last_used_idx & (vq->num - 1);
2990 n = vq->num - start;
2991 if (n < count) {
2992 r = __vhost_add_used_n(vq, heads, n);
2993 if (r < 0)
2994 return r;
2995 heads += n;
2996 count -= n;
2997 }
2998 return __vhost_add_used_n(vq, heads, count);
2999 }
3000
vhost_add_used_n_in_order(struct vhost_virtqueue * vq,struct vring_used_elem * heads,const u16 * nheads,unsigned count)3001 static int vhost_add_used_n_in_order(struct vhost_virtqueue *vq,
3002 struct vring_used_elem *heads,
3003 const u16 *nheads,
3004 unsigned count)
3005 {
3006 vring_used_elem_t __user *used;
3007 u16 old, new = vq->last_used_idx;
3008 int start, i;
3009
3010 if (!nheads)
3011 return -EINVAL;
3012
3013 start = vq->last_used_idx & (vq->num - 1);
3014 used = vq->used->ring + start;
3015
3016 for (i = 0; i < count; i++) {
3017 if (vhost_put_used(vq, &heads[i], start, 1)) {
3018 vq_err(vq, "Failed to write used");
3019 return -EFAULT;
3020 }
3021 start += nheads[i];
3022 new += nheads[i];
3023 if (start >= vq->num)
3024 start -= vq->num;
3025 }
3026
3027 if (unlikely(vq->log_used)) {
3028 /* Make sure data is seen before log. */
3029 smp_wmb();
3030 /* Log used ring entry write. */
3031 log_used(vq, ((void __user *)used - (void __user *)vq->used),
3032 (vq->num - start) * sizeof *used);
3033 if (start + count > vq->num)
3034 log_used(vq, 0,
3035 (start + count - vq->num) * sizeof *used);
3036 }
3037
3038 old = vq->last_used_idx;
3039 vq->last_used_idx = new;
3040 /* If the driver never bothers to signal in a very long while,
3041 * used index might wrap around. If that happens, invalidate
3042 * signalled_used index we stored. TODO: make sure driver
3043 * signals at least once in 2^16 and remove this. */
3044 if (unlikely((u16)(new - vq->signalled_used) < (u16)(new - old)))
3045 vq->signalled_used_valid = false;
3046 return 0;
3047 }
3048
3049 /* After we've used one of their buffers, we tell them about it. We'll then
3050 * want to notify the guest, using eventfd. */
vhost_add_used_n(struct vhost_virtqueue * vq,struct vring_used_elem * heads,u16 * nheads,unsigned count)3051 int vhost_add_used_n(struct vhost_virtqueue *vq, struct vring_used_elem *heads,
3052 u16 *nheads, unsigned count)
3053 {
3054 bool in_order = vhost_has_feature(vq, VIRTIO_F_IN_ORDER);
3055 int r;
3056
3057 if (!in_order || !nheads)
3058 r = vhost_add_used_n_ooo(vq, heads, count);
3059 else
3060 r = vhost_add_used_n_in_order(vq, heads, nheads, count);
3061
3062 if (r < 0)
3063 return r;
3064
3065 /* Make sure buffer is written before we update index. */
3066 smp_wmb();
3067 if (vhost_put_used_idx(vq)) {
3068 vq_err(vq, "Failed to increment used idx");
3069 return -EFAULT;
3070 }
3071 if (unlikely(vq->log_used)) {
3072 /* Make sure used idx is seen before log. */
3073 smp_wmb();
3074 /* Log used index update. */
3075 log_used(vq, offsetof(struct vring_used, idx),
3076 sizeof vq->used->idx);
3077 if (vq->log_ctx)
3078 eventfd_signal(vq->log_ctx);
3079 }
3080 return r;
3081 }
3082 EXPORT_SYMBOL_GPL(vhost_add_used_n);
3083
vhost_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3084 static bool vhost_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3085 {
3086 __u16 old, new;
3087 __virtio16 event;
3088 bool v;
3089 /* Flush out used index updates. This is paired
3090 * with the barrier that the Guest executes when enabling
3091 * interrupts. */
3092 smp_mb();
3093
3094 if (vhost_has_feature(vq, VIRTIO_F_NOTIFY_ON_EMPTY) &&
3095 unlikely(vq->avail_idx == vq->last_avail_idx))
3096 return true;
3097
3098 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3099 __virtio16 flags;
3100 if (vhost_get_avail_flags(vq, &flags)) {
3101 vq_err(vq, "Failed to get flags");
3102 return true;
3103 }
3104 return !(flags & cpu_to_vhost16(vq, VRING_AVAIL_F_NO_INTERRUPT));
3105 }
3106 old = vq->signalled_used;
3107 v = vq->signalled_used_valid;
3108 new = vq->signalled_used = vq->last_used_idx;
3109 vq->signalled_used_valid = true;
3110
3111 if (unlikely(!v))
3112 return true;
3113
3114 if (vhost_get_used_event(vq, &event)) {
3115 vq_err(vq, "Failed to get used event idx");
3116 return true;
3117 }
3118 return vring_need_event(vhost16_to_cpu(vq, event), new, old);
3119 }
3120
3121 /* This actually signals the guest, using eventfd. */
vhost_signal(struct vhost_dev * dev,struct vhost_virtqueue * vq)3122 void vhost_signal(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3123 {
3124 /* Signal the Guest tell them we used something up. */
3125 if (vq->call_ctx.ctx && vhost_notify(dev, vq))
3126 eventfd_signal(vq->call_ctx.ctx);
3127 }
3128 EXPORT_SYMBOL_GPL(vhost_signal);
3129
3130 /* And here's the combo meal deal. Supersize me! */
vhost_add_used_and_signal(struct vhost_dev * dev,struct vhost_virtqueue * vq,unsigned int head,int len)3131 void vhost_add_used_and_signal(struct vhost_dev *dev,
3132 struct vhost_virtqueue *vq,
3133 unsigned int head, int len)
3134 {
3135 vhost_add_used(vq, head, len);
3136 vhost_signal(dev, vq);
3137 }
3138 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal);
3139
3140 /* multi-buffer version of vhost_add_used_and_signal */
vhost_add_used_and_signal_n(struct vhost_dev * dev,struct vhost_virtqueue * vq,struct vring_used_elem * heads,u16 * nheads,unsigned count)3141 void vhost_add_used_and_signal_n(struct vhost_dev *dev,
3142 struct vhost_virtqueue *vq,
3143 struct vring_used_elem *heads,
3144 u16 *nheads,
3145 unsigned count)
3146 {
3147 vhost_add_used_n(vq, heads, nheads, count);
3148 vhost_signal(dev, vq);
3149 }
3150 EXPORT_SYMBOL_GPL(vhost_add_used_and_signal_n);
3151
3152 /* return true if we're sure that available ring is empty */
vhost_vq_avail_empty(struct vhost_dev * dev,struct vhost_virtqueue * vq)3153 bool vhost_vq_avail_empty(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3154 {
3155 int r;
3156
3157 if (vq->avail_idx != vq->last_avail_idx)
3158 return false;
3159
3160 r = vhost_get_avail_idx(vq);
3161
3162 /* Note: we treat error as non-empty here */
3163 return r == 0;
3164 }
3165 EXPORT_SYMBOL_GPL(vhost_vq_avail_empty);
3166
3167 /* OK, now we need to know about added descriptors. */
vhost_enable_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3168 bool vhost_enable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3169 {
3170 int r;
3171
3172 if (!(vq->used_flags & VRING_USED_F_NO_NOTIFY))
3173 return false;
3174 vq->used_flags &= ~VRING_USED_F_NO_NOTIFY;
3175 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3176 r = vhost_update_used_flags(vq);
3177 if (r) {
3178 vq_err(vq, "Failed to enable notification at %p: %d\n",
3179 &vq->used->flags, r);
3180 return false;
3181 }
3182 } else {
3183 r = vhost_update_avail_event(vq);
3184 if (r) {
3185 vq_err(vq, "Failed to update avail event index at %p: %d\n",
3186 vhost_avail_event(vq), r);
3187 return false;
3188 }
3189 }
3190 /* They could have slipped one in as we were doing that: make
3191 * sure it's written, then check again. */
3192 smp_mb();
3193
3194 r = vhost_get_avail_idx(vq);
3195 /* Note: we treat error as empty here */
3196 if (unlikely(r < 0))
3197 return false;
3198
3199 return r;
3200 }
3201 EXPORT_SYMBOL_GPL(vhost_enable_notify);
3202
3203 /* We don't need to be notified again. */
vhost_disable_notify(struct vhost_dev * dev,struct vhost_virtqueue * vq)3204 void vhost_disable_notify(struct vhost_dev *dev, struct vhost_virtqueue *vq)
3205 {
3206 int r;
3207
3208 if (vq->used_flags & VRING_USED_F_NO_NOTIFY)
3209 return;
3210 vq->used_flags |= VRING_USED_F_NO_NOTIFY;
3211 if (!vhost_has_feature(vq, VIRTIO_RING_F_EVENT_IDX)) {
3212 r = vhost_update_used_flags(vq);
3213 if (r)
3214 vq_err(vq, "Failed to disable notification at %p: %d\n",
3215 &vq->used->flags, r);
3216 }
3217 }
3218 EXPORT_SYMBOL_GPL(vhost_disable_notify);
3219
3220 /* Create a new message. */
vhost_new_msg(struct vhost_virtqueue * vq,int type)3221 struct vhost_msg_node *vhost_new_msg(struct vhost_virtqueue *vq, int type)
3222 {
3223 /* Make sure all padding within the structure is initialized. */
3224 struct vhost_msg_node *node = kzalloc(sizeof(*node), GFP_KERNEL);
3225 if (!node)
3226 return NULL;
3227
3228 node->vq = vq;
3229 node->msg.type = type;
3230 return node;
3231 }
3232 EXPORT_SYMBOL_GPL(vhost_new_msg);
3233
vhost_enqueue_msg(struct vhost_dev * dev,struct list_head * head,struct vhost_msg_node * node)3234 void vhost_enqueue_msg(struct vhost_dev *dev, struct list_head *head,
3235 struct vhost_msg_node *node)
3236 {
3237 spin_lock(&dev->iotlb_lock);
3238 list_add_tail(&node->node, head);
3239 spin_unlock(&dev->iotlb_lock);
3240
3241 wake_up_interruptible_poll(&dev->wait, EPOLLIN | EPOLLRDNORM);
3242 }
3243 EXPORT_SYMBOL_GPL(vhost_enqueue_msg);
3244
vhost_dequeue_msg(struct vhost_dev * dev,struct list_head * head)3245 struct vhost_msg_node *vhost_dequeue_msg(struct vhost_dev *dev,
3246 struct list_head *head)
3247 {
3248 struct vhost_msg_node *node = NULL;
3249
3250 spin_lock(&dev->iotlb_lock);
3251 if (!list_empty(head)) {
3252 node = list_first_entry(head, struct vhost_msg_node,
3253 node);
3254 list_del(&node->node);
3255 }
3256 spin_unlock(&dev->iotlb_lock);
3257
3258 return node;
3259 }
3260 EXPORT_SYMBOL_GPL(vhost_dequeue_msg);
3261
vhost_set_backend_features(struct vhost_dev * dev,u64 features)3262 void vhost_set_backend_features(struct vhost_dev *dev, u64 features)
3263 {
3264 struct vhost_virtqueue *vq;
3265 int i;
3266
3267 mutex_lock(&dev->mutex);
3268 for (i = 0; i < dev->nvqs; ++i) {
3269 vq = dev->vqs[i];
3270 mutex_lock(&vq->mutex);
3271 vq->acked_backend_features = features;
3272 mutex_unlock(&vq->mutex);
3273 }
3274 mutex_unlock(&dev->mutex);
3275 }
3276 EXPORT_SYMBOL_GPL(vhost_set_backend_features);
3277
vhost_init(void)3278 static int __init vhost_init(void)
3279 {
3280 return 0;
3281 }
3282
vhost_exit(void)3283 static void __exit vhost_exit(void)
3284 {
3285 }
3286
3287 module_init(vhost_init);
3288 module_exit(vhost_exit);
3289
3290 MODULE_VERSION("0.0.1");
3291 MODULE_LICENSE("GPL v2");
3292 MODULE_AUTHOR("Michael S. Tsirkin");
3293 MODULE_DESCRIPTION("Host kernel accelerator for virtio");
3294