xref: /linux/drivers/md/dm-verity-target.c (revision d632ab86aff2cef21f794e337a8e7f2320ac3973)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/string.h>
23 #include <linux/jump_label.h>
24 #include <linux/security.h>
25 
26 #define DM_MSG_PREFIX			"verity"
27 
28 #define DM_VERITY_ENV_LENGTH		42
29 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
30 
31 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
32 #define DM_VERITY_USE_BH_DEFAULT_BYTES	8192
33 
34 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
35 
36 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
37 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
38 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
39 #define DM_VERITY_OPT_ERROR_RESTART	"restart_on_error"
40 #define DM_VERITY_OPT_ERROR_PANIC	"panic_on_error"
41 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
42 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
43 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
44 
45 #define DM_VERITY_OPTS_MAX		(5 + DM_VERITY_OPTS_FEC + \
46 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
47 
48 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
49 
50 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
51 
52 static unsigned int dm_verity_use_bh_bytes[4] = {
53 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_NONE
54 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_RT
55 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_BE
56 	0				// IOPRIO_CLASS_IDLE
57 };
58 
59 module_param_array_named(use_bh_bytes, dm_verity_use_bh_bytes, uint, NULL, 0644);
60 
61 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
62 
63 struct dm_verity_prefetch_work {
64 	struct work_struct work;
65 	struct dm_verity *v;
66 	unsigned short ioprio;
67 	sector_t block;
68 	unsigned int n_blocks;
69 };
70 
71 /*
72  * Auxiliary structure appended to each dm-bufio buffer. If the value
73  * hash_verified is nonzero, hash of the block has been verified.
74  *
75  * The variable hash_verified is set to 0 when allocating the buffer, then
76  * it can be changed to 1 and it is never reset to 0 again.
77  *
78  * There is no lock around this value, a race condition can at worst cause
79  * that multiple processes verify the hash of the same buffer simultaneously
80  * and write 1 to hash_verified simultaneously.
81  * This condition is harmless, so we don't need locking.
82  */
83 struct buffer_aux {
84 	int hash_verified;
85 };
86 
87 /*
88  * Initialize struct buffer_aux for a freshly created buffer.
89  */
dm_bufio_alloc_callback(struct dm_buffer * buf)90 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
91 {
92 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
93 
94 	aux->hash_verified = 0;
95 }
96 
97 /*
98  * Translate input sector number to the sector number on the target device.
99  */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)100 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
101 {
102 	return dm_target_offset(v->ti, bi_sector);
103 }
104 
105 /*
106  * Return hash position of a specified block at a specified tree level
107  * (0 is the lowest level).
108  * The lowest "hash_per_block_bits"-bits of the result denote hash position
109  * inside a hash block. The remaining bits denote location of the hash block.
110  */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)111 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
112 					 int level)
113 {
114 	return block >> (level * v->hash_per_block_bits);
115 }
116 
verity_hash(struct dm_verity * v,struct dm_verity_io * io,const u8 * data,size_t len,u8 * digest)117 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
118 		const u8 *data, size_t len, u8 *digest)
119 {
120 	struct shash_desc *desc = &io->hash_desc;
121 	int r;
122 
123 	desc->tfm = v->shash_tfm;
124 	if (unlikely(v->initial_hashstate == NULL)) {
125 		/* Version 0: salt at end */
126 		r = crypto_shash_init(desc) ?:
127 		    crypto_shash_update(desc, data, len) ?:
128 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
129 		    crypto_shash_final(desc, digest);
130 	} else {
131 		/* Version 1: salt at beginning */
132 		r = crypto_shash_import(desc, v->initial_hashstate) ?:
133 		    crypto_shash_finup(desc, data, len, digest);
134 	}
135 	if (unlikely(r))
136 		DMERR("Error hashing block: %d", r);
137 	return r;
138 }
139 
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned int * offset)140 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
141 				 sector_t *hash_block, unsigned int *offset)
142 {
143 	sector_t position = verity_position_at_level(v, block, level);
144 	unsigned int idx;
145 
146 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
147 
148 	if (!offset)
149 		return;
150 
151 	idx = position & ((1 << v->hash_per_block_bits) - 1);
152 	if (!v->version)
153 		*offset = idx * v->digest_size;
154 	else
155 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
156 }
157 
158 /*
159  * Handle verification errors.
160  */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)161 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
162 			     unsigned long long block)
163 {
164 	char verity_env[DM_VERITY_ENV_LENGTH];
165 	char *envp[] = { verity_env, NULL };
166 	const char *type_str = "";
167 	struct mapped_device *md = dm_table_get_md(v->ti->table);
168 
169 	/* Corruption should be visible in device status in all modes */
170 	v->hash_failed = true;
171 
172 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
173 		goto out;
174 
175 	v->corrupted_errs++;
176 
177 	switch (type) {
178 	case DM_VERITY_BLOCK_TYPE_DATA:
179 		type_str = "data";
180 		break;
181 	case DM_VERITY_BLOCK_TYPE_METADATA:
182 		type_str = "metadata";
183 		break;
184 	default:
185 		BUG();
186 	}
187 
188 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
189 		    type_str, block);
190 
191 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
192 		DMERR("%s: reached maximum errors", v->data_dev->name);
193 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
194 	}
195 
196 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
197 		DM_VERITY_ENV_VAR_NAME, type, block);
198 
199 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
200 
201 out:
202 	if (v->mode == DM_VERITY_MODE_LOGGING)
203 		return 0;
204 
205 	if (v->mode == DM_VERITY_MODE_RESTART)
206 		kernel_restart("dm-verity device corrupted");
207 
208 	if (v->mode == DM_VERITY_MODE_PANIC)
209 		panic("dm-verity device corrupted");
210 
211 	return 1;
212 }
213 
214 /*
215  * Verify hash of a metadata block pertaining to the specified data block
216  * ("block" argument) at a specified level ("level" argument).
217  *
218  * On successful return, verity_io_want_digest(v, io) contains the hash value
219  * for a lower tree level or for the data block (if we're at the lowest level).
220  *
221  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
222  * If "skip_unverified" is false, unverified buffer is hashed and verified
223  * against current value of verity_io_want_digest(v, io).
224  */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)225 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
226 			       sector_t block, int level, bool skip_unverified,
227 			       u8 *want_digest)
228 {
229 	struct dm_buffer *buf;
230 	struct buffer_aux *aux;
231 	u8 *data;
232 	int r;
233 	sector_t hash_block;
234 	unsigned int offset;
235 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
236 
237 	verity_hash_at_level(v, block, level, &hash_block, &offset);
238 
239 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
240 		data = dm_bufio_get(v->bufio, hash_block, &buf);
241 		if (IS_ERR_OR_NULL(data)) {
242 			/*
243 			 * In tasklet and the hash was not in the bufio cache.
244 			 * Return early and resume execution from a work-queue
245 			 * to read the hash from disk.
246 			 */
247 			return -EAGAIN;
248 		}
249 	} else {
250 		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
251 						&buf, bio->bi_ioprio);
252 	}
253 
254 	if (IS_ERR(data)) {
255 		if (skip_unverified)
256 			return 1;
257 		r = PTR_ERR(data);
258 		data = dm_bufio_new(v->bufio, hash_block, &buf);
259 		if (IS_ERR(data))
260 			return r;
261 		if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
262 				      hash_block, data) == 0) {
263 			aux = dm_bufio_get_aux_data(buf);
264 			aux->hash_verified = 1;
265 			goto release_ok;
266 		} else {
267 			dm_bufio_release(buf);
268 			dm_bufio_forget(v->bufio, hash_block);
269 			return r;
270 		}
271 	}
272 
273 	aux = dm_bufio_get_aux_data(buf);
274 
275 	if (!aux->hash_verified) {
276 		if (skip_unverified) {
277 			r = 1;
278 			goto release_ret_r;
279 		}
280 
281 		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
282 				verity_io_real_digest(v, io));
283 		if (unlikely(r < 0))
284 			goto release_ret_r;
285 
286 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
287 				  v->digest_size) == 0))
288 			aux->hash_verified = 1;
289 		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
290 			/*
291 			 * Error handling code (FEC included) cannot be run in a
292 			 * tasklet since it may sleep, so fallback to work-queue.
293 			 */
294 			r = -EAGAIN;
295 			goto release_ret_r;
296 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
297 					     hash_block, data) == 0)
298 			aux->hash_verified = 1;
299 		else if (verity_handle_err(v,
300 					   DM_VERITY_BLOCK_TYPE_METADATA,
301 					   hash_block)) {
302 			struct bio *bio;
303 			io->had_mismatch = true;
304 			bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
305 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
306 					 block, 0);
307 			r = -EIO;
308 			goto release_ret_r;
309 		}
310 	}
311 
312 release_ok:
313 	data += offset;
314 	memcpy(want_digest, data, v->digest_size);
315 	r = 0;
316 
317 release_ret_r:
318 	dm_bufio_release(buf);
319 	return r;
320 }
321 
322 /*
323  * Find a hash for a given block, write it to digest and verify the integrity
324  * of the hash tree if necessary.
325  */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)326 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
327 			  sector_t block, u8 *digest, bool *is_zero)
328 {
329 	int r = 0, i;
330 
331 	if (likely(v->levels)) {
332 		/*
333 		 * First, we try to get the requested hash for
334 		 * the current block. If the hash block itself is
335 		 * verified, zero is returned. If it isn't, this
336 		 * function returns 1 and we fall back to whole
337 		 * chain verification.
338 		 */
339 		r = verity_verify_level(v, io, block, 0, true, digest);
340 		if (likely(r <= 0))
341 			goto out;
342 	}
343 
344 	memcpy(digest, v->root_digest, v->digest_size);
345 
346 	for (i = v->levels - 1; i >= 0; i--) {
347 		r = verity_verify_level(v, io, block, i, false, digest);
348 		if (unlikely(r))
349 			goto out;
350 	}
351 out:
352 	if (!r && v->zero_digest)
353 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
354 	else
355 		*is_zero = false;
356 
357 	return r;
358 }
359 
verity_recheck(struct dm_verity * v,struct dm_verity_io * io,sector_t cur_block,u8 * dest)360 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
361 				   sector_t cur_block, u8 *dest)
362 {
363 	struct page *page;
364 	void *buffer;
365 	int r;
366 	struct dm_io_request io_req;
367 	struct dm_io_region io_loc;
368 
369 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
370 	buffer = page_to_virt(page);
371 
372 	io_req.bi_opf = REQ_OP_READ;
373 	io_req.mem.type = DM_IO_KMEM;
374 	io_req.mem.ptr.addr = buffer;
375 	io_req.notify.fn = NULL;
376 	io_req.client = v->io;
377 	io_loc.bdev = v->data_dev->bdev;
378 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
379 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
380 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
381 	if (unlikely(r))
382 		goto free_ret;
383 
384 	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
385 			verity_io_real_digest(v, io));
386 	if (unlikely(r))
387 		goto free_ret;
388 
389 	if (memcmp(verity_io_real_digest(v, io),
390 		   verity_io_want_digest(v, io), v->digest_size)) {
391 		r = -EIO;
392 		goto free_ret;
393 	}
394 
395 	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
396 	r = 0;
397 free_ret:
398 	mempool_free(page, &v->recheck_pool);
399 
400 	return r;
401 }
402 
verity_handle_data_hash_mismatch(struct dm_verity * v,struct dm_verity_io * io,struct bio * bio,sector_t blkno,u8 * data)403 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
404 					    struct dm_verity_io *io,
405 					    struct bio *bio, sector_t blkno,
406 					    u8 *data)
407 {
408 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
409 		/*
410 		 * Error handling code (FEC included) cannot be run in the
411 		 * BH workqueue, so fallback to a standard workqueue.
412 		 */
413 		return -EAGAIN;
414 	}
415 	if (verity_recheck(v, io, blkno, data) == 0) {
416 		if (v->validated_blocks)
417 			set_bit(blkno, v->validated_blocks);
418 		return 0;
419 	}
420 #if defined(CONFIG_DM_VERITY_FEC)
421 	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
422 			      data) == 0)
423 		return 0;
424 #endif
425 	if (bio->bi_status)
426 		return -EIO; /* Error correction failed; Just return error */
427 
428 	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
429 		io->had_mismatch = true;
430 		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
431 		return -EIO;
432 	}
433 	return 0;
434 }
435 
436 /*
437  * Verify one "dm_verity_io" structure.
438  */
verity_verify_io(struct dm_verity_io * io)439 static int verity_verify_io(struct dm_verity_io *io)
440 {
441 	struct dm_verity *v = io->v;
442 	const unsigned int block_size = 1 << v->data_dev_block_bits;
443 	struct bvec_iter iter_copy;
444 	struct bvec_iter *iter;
445 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
446 	unsigned int b;
447 
448 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
449 		/*
450 		 * Copy the iterator in case we need to restart
451 		 * verification in a work-queue.
452 		 */
453 		iter_copy = io->iter;
454 		iter = &iter_copy;
455 	} else
456 		iter = &io->iter;
457 
458 	for (b = 0; b < io->n_blocks;
459 	     b++, bio_advance_iter(bio, iter, block_size)) {
460 		int r;
461 		sector_t cur_block = io->block + b;
462 		bool is_zero;
463 		struct bio_vec bv;
464 		void *data;
465 
466 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
467 		    likely(test_bit(cur_block, v->validated_blocks)))
468 			continue;
469 
470 		r = verity_hash_for_block(v, io, cur_block,
471 					  verity_io_want_digest(v, io),
472 					  &is_zero);
473 		if (unlikely(r < 0))
474 			return r;
475 
476 		bv = bio_iter_iovec(bio, *iter);
477 		if (unlikely(bv.bv_len < block_size)) {
478 			/*
479 			 * Data block spans pages.  This should not happen,
480 			 * since dm-verity sets dma_alignment to the data block
481 			 * size minus 1, and dm-verity also doesn't allow the
482 			 * data block size to be greater than PAGE_SIZE.
483 			 */
484 			DMERR_LIMIT("unaligned io (data block spans pages)");
485 			return -EIO;
486 		}
487 
488 		data = bvec_kmap_local(&bv);
489 
490 		if (is_zero) {
491 			/*
492 			 * If we expect a zero block, don't validate, just
493 			 * return zeros.
494 			 */
495 			memset(data, 0, block_size);
496 			kunmap_local(data);
497 			continue;
498 		}
499 
500 		r = verity_hash(v, io, data, block_size,
501 				verity_io_real_digest(v, io));
502 		if (unlikely(r < 0)) {
503 			kunmap_local(data);
504 			return r;
505 		}
506 
507 		if (likely(memcmp(verity_io_real_digest(v, io),
508 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
509 			if (v->validated_blocks)
510 				set_bit(cur_block, v->validated_blocks);
511 			kunmap_local(data);
512 			continue;
513 		}
514 		r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
515 						     data);
516 		kunmap_local(data);
517 		if (unlikely(r))
518 			return r;
519 	}
520 
521 	return 0;
522 }
523 
524 /*
525  * Skip verity work in response to I/O error when system is shutting down.
526  */
verity_is_system_shutting_down(void)527 static inline bool verity_is_system_shutting_down(void)
528 {
529 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
530 		|| system_state == SYSTEM_RESTART;
531 }
532 
restart_io_error(struct work_struct * w)533 static void restart_io_error(struct work_struct *w)
534 {
535 	kernel_restart("dm-verity device has I/O error");
536 }
537 
538 /*
539  * End one "io" structure with a given error.
540  */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)541 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
542 {
543 	struct dm_verity *v = io->v;
544 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
545 
546 	bio->bi_end_io = io->orig_bi_end_io;
547 	bio->bi_status = status;
548 
549 	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
550 		verity_fec_finish_io(io);
551 
552 	if (unlikely(status != BLK_STS_OK) &&
553 	    unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
554 	    !io->had_mismatch &&
555 	    !verity_is_system_shutting_down()) {
556 		if (v->error_mode == DM_VERITY_MODE_PANIC) {
557 			panic("dm-verity device has I/O error");
558 		}
559 		if (v->error_mode == DM_VERITY_MODE_RESTART) {
560 			static DECLARE_WORK(restart_work, restart_io_error);
561 			queue_work(v->verify_wq, &restart_work);
562 			/*
563 			 * We deliberately don't call bio_endio here, because
564 			 * the machine will be restarted anyway.
565 			 */
566 			return;
567 		}
568 	}
569 
570 	bio_endio(bio);
571 }
572 
verity_work(struct work_struct * w)573 static void verity_work(struct work_struct *w)
574 {
575 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
576 
577 	io->in_bh = false;
578 
579 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
580 }
581 
verity_bh_work(struct work_struct * w)582 static void verity_bh_work(struct work_struct *w)
583 {
584 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
585 	int err;
586 
587 	io->in_bh = true;
588 	err = verity_verify_io(io);
589 	if (err == -EAGAIN || err == -ENOMEM) {
590 		/* fallback to retrying with work-queue */
591 		INIT_WORK(&io->work, verity_work);
592 		queue_work(io->v->verify_wq, &io->work);
593 		return;
594 	}
595 
596 	verity_finish_io(io, errno_to_blk_status(err));
597 }
598 
verity_use_bh(unsigned int bytes,unsigned short ioprio)599 static inline bool verity_use_bh(unsigned int bytes, unsigned short ioprio)
600 {
601 	return ioprio <= IOPRIO_CLASS_IDLE &&
602 		bytes <= READ_ONCE(dm_verity_use_bh_bytes[ioprio]) &&
603 		!need_resched();
604 }
605 
verity_end_io(struct bio * bio)606 static void verity_end_io(struct bio *bio)
607 {
608 	struct dm_verity_io *io = bio->bi_private;
609 	unsigned short ioprio = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
610 	unsigned int bytes = io->n_blocks << io->v->data_dev_block_bits;
611 
612 	if (bio->bi_status &&
613 	    (!verity_fec_is_enabled(io->v) ||
614 	     verity_is_system_shutting_down() ||
615 	     (bio->bi_opf & REQ_RAHEAD))) {
616 		verity_finish_io(io, bio->bi_status);
617 		return;
618 	}
619 
620 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq &&
621 		verity_use_bh(bytes, ioprio)) {
622 		if (in_hardirq() || irqs_disabled()) {
623 			INIT_WORK(&io->bh_work, verity_bh_work);
624 			queue_work(system_bh_wq, &io->bh_work);
625 		} else {
626 			verity_bh_work(&io->bh_work);
627 		}
628 	} else {
629 		INIT_WORK(&io->work, verity_work);
630 		queue_work(io->v->verify_wq, &io->work);
631 	}
632 }
633 
634 /*
635  * Prefetch buffers for the specified io.
636  * The root buffer is not prefetched, it is assumed that it will be cached
637  * all the time.
638  */
verity_prefetch_io(struct work_struct * work)639 static void verity_prefetch_io(struct work_struct *work)
640 {
641 	struct dm_verity_prefetch_work *pw =
642 		container_of(work, struct dm_verity_prefetch_work, work);
643 	struct dm_verity *v = pw->v;
644 	int i;
645 
646 	for (i = v->levels - 2; i >= 0; i--) {
647 		sector_t hash_block_start;
648 		sector_t hash_block_end;
649 
650 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
651 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
652 
653 		if (!i) {
654 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
655 
656 			cluster >>= v->data_dev_block_bits;
657 			if (unlikely(!cluster))
658 				goto no_prefetch_cluster;
659 
660 			if (unlikely(cluster & (cluster - 1)))
661 				cluster = 1 << __fls(cluster);
662 
663 			hash_block_start &= ~(sector_t)(cluster - 1);
664 			hash_block_end |= cluster - 1;
665 			if (unlikely(hash_block_end >= v->hash_blocks))
666 				hash_block_end = v->hash_blocks - 1;
667 		}
668 no_prefetch_cluster:
669 		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
670 					hash_block_end - hash_block_start + 1,
671 					pw->ioprio);
672 	}
673 
674 	kfree(pw);
675 }
676 
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io,unsigned short ioprio)677 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
678 				   unsigned short ioprio)
679 {
680 	sector_t block = io->block;
681 	unsigned int n_blocks = io->n_blocks;
682 	struct dm_verity_prefetch_work *pw;
683 
684 	if (v->validated_blocks) {
685 		while (n_blocks && test_bit(block, v->validated_blocks)) {
686 			block++;
687 			n_blocks--;
688 		}
689 		while (n_blocks && test_bit(block + n_blocks - 1,
690 					    v->validated_blocks))
691 			n_blocks--;
692 		if (!n_blocks)
693 			return;
694 	}
695 
696 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
697 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
698 
699 	if (!pw)
700 		return;
701 
702 	INIT_WORK(&pw->work, verity_prefetch_io);
703 	pw->v = v;
704 	pw->block = block;
705 	pw->n_blocks = n_blocks;
706 	pw->ioprio = ioprio;
707 	queue_work(v->verify_wq, &pw->work);
708 }
709 
710 /*
711  * Bio map function. It allocates dm_verity_io structure and bio vector and
712  * fills them. Then it issues prefetches and the I/O.
713  */
verity_map(struct dm_target * ti,struct bio * bio)714 static int verity_map(struct dm_target *ti, struct bio *bio)
715 {
716 	struct dm_verity *v = ti->private;
717 	struct dm_verity_io *io;
718 
719 	bio_set_dev(bio, v->data_dev->bdev);
720 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
721 
722 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
723 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
724 		DMERR_LIMIT("unaligned io");
725 		return DM_MAPIO_KILL;
726 	}
727 
728 	if (bio_end_sector(bio) >>
729 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
730 		DMERR_LIMIT("io out of range");
731 		return DM_MAPIO_KILL;
732 	}
733 
734 	if (bio_data_dir(bio) == WRITE)
735 		return DM_MAPIO_KILL;
736 
737 	io = dm_per_bio_data(bio, ti->per_io_data_size);
738 	io->v = v;
739 	io->orig_bi_end_io = bio->bi_end_io;
740 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
741 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
742 	io->had_mismatch = false;
743 
744 	bio->bi_end_io = verity_end_io;
745 	bio->bi_private = io;
746 	io->iter = bio->bi_iter;
747 
748 	verity_fec_init_io(io);
749 
750 	verity_submit_prefetch(v, io, bio->bi_ioprio);
751 
752 	submit_bio_noacct(bio);
753 
754 	return DM_MAPIO_SUBMITTED;
755 }
756 
verity_postsuspend(struct dm_target * ti)757 static void verity_postsuspend(struct dm_target *ti)
758 {
759 	struct dm_verity *v = ti->private;
760 	flush_workqueue(v->verify_wq);
761 	dm_bufio_client_reset(v->bufio);
762 }
763 
764 /*
765  * Status: V (valid) or C (corruption found)
766  */
verity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)767 static void verity_status(struct dm_target *ti, status_type_t type,
768 			  unsigned int status_flags, char *result, unsigned int maxlen)
769 {
770 	struct dm_verity *v = ti->private;
771 	unsigned int args = 0;
772 	unsigned int sz = 0;
773 	unsigned int x;
774 
775 	switch (type) {
776 	case STATUSTYPE_INFO:
777 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
778 		break;
779 	case STATUSTYPE_TABLE:
780 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
781 			v->version,
782 			v->data_dev->name,
783 			v->hash_dev->name,
784 			1 << v->data_dev_block_bits,
785 			1 << v->hash_dev_block_bits,
786 			(unsigned long long)v->data_blocks,
787 			(unsigned long long)v->hash_start,
788 			v->alg_name
789 			);
790 		for (x = 0; x < v->digest_size; x++)
791 			DMEMIT("%02x", v->root_digest[x]);
792 		DMEMIT(" ");
793 		if (!v->salt_size)
794 			DMEMIT("-");
795 		else
796 			for (x = 0; x < v->salt_size; x++)
797 				DMEMIT("%02x", v->salt[x]);
798 		if (v->mode != DM_VERITY_MODE_EIO)
799 			args++;
800 		if (v->error_mode != DM_VERITY_MODE_EIO)
801 			args++;
802 		if (verity_fec_is_enabled(v))
803 			args += DM_VERITY_OPTS_FEC;
804 		if (v->zero_digest)
805 			args++;
806 		if (v->validated_blocks)
807 			args++;
808 		if (v->use_bh_wq)
809 			args++;
810 		if (v->signature_key_desc)
811 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
812 		if (!args)
813 			return;
814 		DMEMIT(" %u", args);
815 		if (v->mode != DM_VERITY_MODE_EIO) {
816 			DMEMIT(" ");
817 			switch (v->mode) {
818 			case DM_VERITY_MODE_LOGGING:
819 				DMEMIT(DM_VERITY_OPT_LOGGING);
820 				break;
821 			case DM_VERITY_MODE_RESTART:
822 				DMEMIT(DM_VERITY_OPT_RESTART);
823 				break;
824 			case DM_VERITY_MODE_PANIC:
825 				DMEMIT(DM_VERITY_OPT_PANIC);
826 				break;
827 			default:
828 				BUG();
829 			}
830 		}
831 		if (v->error_mode != DM_VERITY_MODE_EIO) {
832 			DMEMIT(" ");
833 			switch (v->error_mode) {
834 			case DM_VERITY_MODE_RESTART:
835 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
836 				break;
837 			case DM_VERITY_MODE_PANIC:
838 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
839 				break;
840 			default:
841 				BUG();
842 			}
843 		}
844 		if (v->zero_digest)
845 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
846 		if (v->validated_blocks)
847 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
848 		if (v->use_bh_wq)
849 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
850 		sz = verity_fec_status_table(v, sz, result, maxlen);
851 		if (v->signature_key_desc)
852 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
853 				" %s", v->signature_key_desc);
854 		break;
855 
856 	case STATUSTYPE_IMA:
857 		DMEMIT_TARGET_NAME_VERSION(ti->type);
858 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
859 		DMEMIT(",verity_version=%u", v->version);
860 		DMEMIT(",data_device_name=%s", v->data_dev->name);
861 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
862 		DMEMIT(",verity_algorithm=%s", v->alg_name);
863 
864 		DMEMIT(",root_digest=");
865 		for (x = 0; x < v->digest_size; x++)
866 			DMEMIT("%02x", v->root_digest[x]);
867 
868 		DMEMIT(",salt=");
869 		if (!v->salt_size)
870 			DMEMIT("-");
871 		else
872 			for (x = 0; x < v->salt_size; x++)
873 				DMEMIT("%02x", v->salt[x]);
874 
875 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
876 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
877 		if (v->signature_key_desc)
878 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
879 
880 		if (v->mode != DM_VERITY_MODE_EIO) {
881 			DMEMIT(",verity_mode=");
882 			switch (v->mode) {
883 			case DM_VERITY_MODE_LOGGING:
884 				DMEMIT(DM_VERITY_OPT_LOGGING);
885 				break;
886 			case DM_VERITY_MODE_RESTART:
887 				DMEMIT(DM_VERITY_OPT_RESTART);
888 				break;
889 			case DM_VERITY_MODE_PANIC:
890 				DMEMIT(DM_VERITY_OPT_PANIC);
891 				break;
892 			default:
893 				DMEMIT("invalid");
894 			}
895 		}
896 		if (v->error_mode != DM_VERITY_MODE_EIO) {
897 			DMEMIT(",verity_error_mode=");
898 			switch (v->error_mode) {
899 			case DM_VERITY_MODE_RESTART:
900 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
901 				break;
902 			case DM_VERITY_MODE_PANIC:
903 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
904 				break;
905 			default:
906 				DMEMIT("invalid");
907 			}
908 		}
909 		DMEMIT(";");
910 		break;
911 	}
912 }
913 
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)914 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev,
915 				unsigned int cmd, unsigned long arg,
916 				bool *forward)
917 {
918 	struct dm_verity *v = ti->private;
919 
920 	*bdev = v->data_dev->bdev;
921 
922 	if (ti->len != bdev_nr_sectors(v->data_dev->bdev))
923 		return 1;
924 	return 0;
925 }
926 
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)927 static int verity_iterate_devices(struct dm_target *ti,
928 				  iterate_devices_callout_fn fn, void *data)
929 {
930 	struct dm_verity *v = ti->private;
931 
932 	return fn(ti, v->data_dev, 0, ti->len, data);
933 }
934 
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)935 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
936 {
937 	struct dm_verity *v = ti->private;
938 
939 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
940 		limits->logical_block_size = 1 << v->data_dev_block_bits;
941 
942 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
943 		limits->physical_block_size = 1 << v->data_dev_block_bits;
944 
945 	limits->io_min = limits->logical_block_size;
946 
947 	/*
948 	 * Similar to what dm-crypt does, opt dm-verity out of support for
949 	 * direct I/O that is aligned to less than the traditional direct I/O
950 	 * alignment requirement of logical_block_size.  This prevents dm-verity
951 	 * data blocks from crossing pages, eliminating various edge cases.
952 	 */
953 	limits->dma_alignment = limits->logical_block_size - 1;
954 }
955 
956 #ifdef CONFIG_SECURITY
957 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)958 static int verity_init_sig(struct dm_verity *v, const void *sig,
959 			   size_t sig_size)
960 {
961 	v->sig_size = sig_size;
962 
963 	if (sig) {
964 		v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
965 		if (!v->root_digest_sig)
966 			return -ENOMEM;
967 	}
968 
969 	return 0;
970 }
971 
verity_free_sig(struct dm_verity * v)972 static void verity_free_sig(struct dm_verity *v)
973 {
974 	kfree(v->root_digest_sig);
975 }
976 
977 #else
978 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)979 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
980 				  size_t sig_size)
981 {
982 	return 0;
983 }
984 
verity_free_sig(struct dm_verity * v)985 static inline void verity_free_sig(struct dm_verity *v)
986 {
987 }
988 
989 #endif /* CONFIG_SECURITY */
990 
verity_dtr(struct dm_target * ti)991 static void verity_dtr(struct dm_target *ti)
992 {
993 	struct dm_verity *v = ti->private;
994 
995 	if (v->verify_wq)
996 		destroy_workqueue(v->verify_wq);
997 
998 	mempool_exit(&v->recheck_pool);
999 	if (v->io)
1000 		dm_io_client_destroy(v->io);
1001 
1002 	if (v->bufio)
1003 		dm_bufio_client_destroy(v->bufio);
1004 
1005 	kvfree(v->validated_blocks);
1006 	kfree(v->salt);
1007 	kfree(v->initial_hashstate);
1008 	kfree(v->root_digest);
1009 	kfree(v->zero_digest);
1010 	verity_free_sig(v);
1011 
1012 	crypto_free_shash(v->shash_tfm);
1013 
1014 	kfree(v->alg_name);
1015 
1016 	if (v->hash_dev)
1017 		dm_put_device(ti, v->hash_dev);
1018 
1019 	if (v->data_dev)
1020 		dm_put_device(ti, v->data_dev);
1021 
1022 	verity_fec_dtr(v);
1023 
1024 	kfree(v->signature_key_desc);
1025 
1026 	if (v->use_bh_wq)
1027 		static_branch_dec(&use_bh_wq_enabled);
1028 
1029 	kfree(v);
1030 
1031 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1032 }
1033 
verity_alloc_most_once(struct dm_verity * v)1034 static int verity_alloc_most_once(struct dm_verity *v)
1035 {
1036 	struct dm_target *ti = v->ti;
1037 
1038 	if (v->validated_blocks)
1039 		return 0;
1040 
1041 	/* the bitset can only handle INT_MAX blocks */
1042 	if (v->data_blocks > INT_MAX) {
1043 		ti->error = "device too large to use check_at_most_once";
1044 		return -E2BIG;
1045 	}
1046 
1047 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1048 				       sizeof(unsigned long),
1049 				       GFP_KERNEL);
1050 	if (!v->validated_blocks) {
1051 		ti->error = "failed to allocate bitset for check_at_most_once";
1052 		return -ENOMEM;
1053 	}
1054 
1055 	return 0;
1056 }
1057 
verity_alloc_zero_digest(struct dm_verity * v)1058 static int verity_alloc_zero_digest(struct dm_verity *v)
1059 {
1060 	int r = -ENOMEM;
1061 	struct dm_verity_io *io;
1062 	u8 *zero_data;
1063 
1064 	if (v->zero_digest)
1065 		return 0;
1066 
1067 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1068 
1069 	if (!v->zero_digest)
1070 		return r;
1071 
1072 	io = kmalloc(sizeof(*io) + crypto_shash_descsize(v->shash_tfm),
1073 		     GFP_KERNEL);
1074 
1075 	if (!io)
1076 		return r; /* verity_dtr will free zero_digest */
1077 
1078 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1079 
1080 	if (!zero_data)
1081 		goto out;
1082 
1083 	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1084 			v->zero_digest);
1085 
1086 out:
1087 	kfree(io);
1088 	kfree(zero_data);
1089 
1090 	return r;
1091 }
1092 
verity_is_verity_mode(const char * arg_name)1093 static inline bool verity_is_verity_mode(const char *arg_name)
1094 {
1095 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1096 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1097 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1098 }
1099 
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)1100 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1101 {
1102 	if (v->mode)
1103 		return -EINVAL;
1104 
1105 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1106 		v->mode = DM_VERITY_MODE_LOGGING;
1107 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1108 		v->mode = DM_VERITY_MODE_RESTART;
1109 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1110 		v->mode = DM_VERITY_MODE_PANIC;
1111 
1112 	return 0;
1113 }
1114 
verity_is_verity_error_mode(const char * arg_name)1115 static inline bool verity_is_verity_error_mode(const char *arg_name)
1116 {
1117 	return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1118 		!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1119 }
1120 
verity_parse_verity_error_mode(struct dm_verity * v,const char * arg_name)1121 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1122 {
1123 	if (v->error_mode)
1124 		return -EINVAL;
1125 
1126 	if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1127 		v->error_mode = DM_VERITY_MODE_RESTART;
1128 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1129 		v->error_mode = DM_VERITY_MODE_PANIC;
1130 
1131 	return 0;
1132 }
1133 
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args,bool only_modifier_opts)1134 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1135 				 struct dm_verity_sig_opts *verify_args,
1136 				 bool only_modifier_opts)
1137 {
1138 	int r = 0;
1139 	unsigned int argc;
1140 	struct dm_target *ti = v->ti;
1141 	const char *arg_name;
1142 
1143 	static const struct dm_arg _args[] = {
1144 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1145 	};
1146 
1147 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1148 	if (r)
1149 		return -EINVAL;
1150 
1151 	if (!argc)
1152 		return 0;
1153 
1154 	do {
1155 		arg_name = dm_shift_arg(as);
1156 		argc--;
1157 
1158 		if (verity_is_verity_mode(arg_name)) {
1159 			if (only_modifier_opts)
1160 				continue;
1161 			r = verity_parse_verity_mode(v, arg_name);
1162 			if (r) {
1163 				ti->error = "Conflicting error handling parameters";
1164 				return r;
1165 			}
1166 			continue;
1167 
1168 		} else if (verity_is_verity_error_mode(arg_name)) {
1169 			if (only_modifier_opts)
1170 				continue;
1171 			r = verity_parse_verity_error_mode(v, arg_name);
1172 			if (r) {
1173 				ti->error = "Conflicting error handling parameters";
1174 				return r;
1175 			}
1176 			continue;
1177 
1178 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1179 			if (only_modifier_opts)
1180 				continue;
1181 			r = verity_alloc_zero_digest(v);
1182 			if (r) {
1183 				ti->error = "Cannot allocate zero digest";
1184 				return r;
1185 			}
1186 			continue;
1187 
1188 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1189 			if (only_modifier_opts)
1190 				continue;
1191 			r = verity_alloc_most_once(v);
1192 			if (r)
1193 				return r;
1194 			continue;
1195 
1196 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1197 			v->use_bh_wq = true;
1198 			static_branch_inc(&use_bh_wq_enabled);
1199 			continue;
1200 
1201 		} else if (verity_is_fec_opt_arg(arg_name)) {
1202 			if (only_modifier_opts)
1203 				continue;
1204 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1205 			if (r)
1206 				return r;
1207 			continue;
1208 
1209 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1210 			if (only_modifier_opts)
1211 				continue;
1212 			r = verity_verify_sig_parse_opt_args(as, v,
1213 							     verify_args,
1214 							     &argc, arg_name);
1215 			if (r)
1216 				return r;
1217 			continue;
1218 
1219 		} else if (only_modifier_opts) {
1220 			/*
1221 			 * Ignore unrecognized opt, could easily be an extra
1222 			 * argument to an option whose parsing was skipped.
1223 			 * Normal parsing (@only_modifier_opts=false) will
1224 			 * properly parse all options (and their extra args).
1225 			 */
1226 			continue;
1227 		}
1228 
1229 		DMERR("Unrecognized verity feature request: %s", arg_name);
1230 		ti->error = "Unrecognized verity feature request";
1231 		return -EINVAL;
1232 	} while (argc && !r);
1233 
1234 	return r;
1235 }
1236 
verity_setup_hash_alg(struct dm_verity * v,const char * alg_name)1237 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1238 {
1239 	struct dm_target *ti = v->ti;
1240 	struct crypto_shash *shash;
1241 
1242 	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1243 	if (!v->alg_name) {
1244 		ti->error = "Cannot allocate algorithm name";
1245 		return -ENOMEM;
1246 	}
1247 
1248 	shash = crypto_alloc_shash(alg_name, 0, 0);
1249 	if (IS_ERR(shash)) {
1250 		ti->error = "Cannot initialize hash function";
1251 		return PTR_ERR(shash);
1252 	}
1253 	v->shash_tfm = shash;
1254 	v->digest_size = crypto_shash_digestsize(shash);
1255 	DMINFO("%s using \"%s\"", alg_name, crypto_shash_driver_name(shash));
1256 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1257 		ti->error = "Digest size too big";
1258 		return -EINVAL;
1259 	}
1260 	return 0;
1261 }
1262 
verity_setup_salt_and_hashstate(struct dm_verity * v,const char * arg)1263 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1264 {
1265 	struct dm_target *ti = v->ti;
1266 
1267 	if (strcmp(arg, "-") != 0) {
1268 		v->salt_size = strlen(arg) / 2;
1269 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1270 		if (!v->salt) {
1271 			ti->error = "Cannot allocate salt";
1272 			return -ENOMEM;
1273 		}
1274 		if (strlen(arg) != v->salt_size * 2 ||
1275 		    hex2bin(v->salt, arg, v->salt_size)) {
1276 			ti->error = "Invalid salt";
1277 			return -EINVAL;
1278 		}
1279 	}
1280 	if (v->version) { /* Version 1: salt at beginning */
1281 		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1282 		int r;
1283 
1284 		/*
1285 		 * Compute the pre-salted hash state that can be passed to
1286 		 * crypto_shash_import() for each block later.
1287 		 */
1288 		v->initial_hashstate = kmalloc(
1289 			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1290 		if (!v->initial_hashstate) {
1291 			ti->error = "Cannot allocate initial hash state";
1292 			return -ENOMEM;
1293 		}
1294 		desc->tfm = v->shash_tfm;
1295 		r = crypto_shash_init(desc) ?:
1296 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1297 		    crypto_shash_export(desc, v->initial_hashstate);
1298 		if (r) {
1299 			ti->error = "Cannot set up initial hash state";
1300 			return r;
1301 		}
1302 	}
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Target parameters:
1308  *	<version>	The current format is version 1.
1309  *			Vsn 0 is compatible with original Chromium OS releases.
1310  *	<data device>
1311  *	<hash device>
1312  *	<data block size>
1313  *	<hash block size>
1314  *	<the number of data blocks>
1315  *	<hash start block>
1316  *	<algorithm>
1317  *	<digest>
1318  *	<salt>		Hex string or "-" if no salt.
1319  */
verity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1320 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1321 {
1322 	struct dm_verity *v;
1323 	struct dm_verity_sig_opts verify_args = {0};
1324 	struct dm_arg_set as;
1325 	unsigned int num;
1326 	unsigned long long num_ll;
1327 	int r;
1328 	int i;
1329 	sector_t hash_position;
1330 	char dummy;
1331 	char *root_hash_digest_to_validate;
1332 
1333 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1334 	if (!v) {
1335 		ti->error = "Cannot allocate verity structure";
1336 		return -ENOMEM;
1337 	}
1338 	ti->private = v;
1339 	v->ti = ti;
1340 
1341 	r = verity_fec_ctr_alloc(v);
1342 	if (r)
1343 		goto bad;
1344 
1345 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1346 		ti->error = "Device must be readonly";
1347 		r = -EINVAL;
1348 		goto bad;
1349 	}
1350 
1351 	if (argc < 10) {
1352 		ti->error = "Not enough arguments";
1353 		r = -EINVAL;
1354 		goto bad;
1355 	}
1356 
1357 	/* Parse optional parameters that modify primary args */
1358 	if (argc > 10) {
1359 		as.argc = argc - 10;
1360 		as.argv = argv + 10;
1361 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1362 		if (r < 0)
1363 			goto bad;
1364 	}
1365 
1366 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1367 	    num > 1) {
1368 		ti->error = "Invalid version";
1369 		r = -EINVAL;
1370 		goto bad;
1371 	}
1372 	v->version = num;
1373 
1374 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1375 	if (r) {
1376 		ti->error = "Data device lookup failed";
1377 		goto bad;
1378 	}
1379 
1380 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1381 	if (r) {
1382 		ti->error = "Hash device lookup failed";
1383 		goto bad;
1384 	}
1385 
1386 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1387 	    !num || (num & (num - 1)) ||
1388 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1389 	    num > PAGE_SIZE) {
1390 		ti->error = "Invalid data device block size";
1391 		r = -EINVAL;
1392 		goto bad;
1393 	}
1394 	v->data_dev_block_bits = __ffs(num);
1395 
1396 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1397 	    !num || (num & (num - 1)) ||
1398 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1399 	    num > INT_MAX) {
1400 		ti->error = "Invalid hash device block size";
1401 		r = -EINVAL;
1402 		goto bad;
1403 	}
1404 	v->hash_dev_block_bits = __ffs(num);
1405 
1406 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1407 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1408 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1409 		ti->error = "Invalid data blocks";
1410 		r = -EINVAL;
1411 		goto bad;
1412 	}
1413 	v->data_blocks = num_ll;
1414 
1415 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1416 		ti->error = "Data device is too small";
1417 		r = -EINVAL;
1418 		goto bad;
1419 	}
1420 
1421 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1422 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1423 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1424 		ti->error = "Invalid hash start";
1425 		r = -EINVAL;
1426 		goto bad;
1427 	}
1428 	v->hash_start = num_ll;
1429 
1430 	r = verity_setup_hash_alg(v, argv[7]);
1431 	if (r)
1432 		goto bad;
1433 
1434 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1435 	if (!v->root_digest) {
1436 		ti->error = "Cannot allocate root digest";
1437 		r = -ENOMEM;
1438 		goto bad;
1439 	}
1440 	if (strlen(argv[8]) != v->digest_size * 2 ||
1441 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1442 		ti->error = "Invalid root digest";
1443 		r = -EINVAL;
1444 		goto bad;
1445 	}
1446 	root_hash_digest_to_validate = argv[8];
1447 
1448 	r = verity_setup_salt_and_hashstate(v, argv[9]);
1449 	if (r)
1450 		goto bad;
1451 
1452 	argv += 10;
1453 	argc -= 10;
1454 
1455 	/* Optional parameters */
1456 	if (argc) {
1457 		as.argc = argc;
1458 		as.argv = argv;
1459 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1460 		if (r < 0)
1461 			goto bad;
1462 	}
1463 
1464 	/* Root hash signature is an optional parameter */
1465 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1466 				    strlen(root_hash_digest_to_validate),
1467 				    verify_args.sig,
1468 				    verify_args.sig_size);
1469 	if (r < 0) {
1470 		ti->error = "Root hash verification failed";
1471 		goto bad;
1472 	}
1473 
1474 	r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1475 	if (r < 0) {
1476 		ti->error = "Cannot allocate root digest signature";
1477 		goto bad;
1478 	}
1479 
1480 	v->hash_per_block_bits =
1481 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1482 
1483 	v->levels = 0;
1484 	if (v->data_blocks)
1485 		while (v->hash_per_block_bits * v->levels < 64 &&
1486 		       (unsigned long long)(v->data_blocks - 1) >>
1487 		       (v->hash_per_block_bits * v->levels))
1488 			v->levels++;
1489 
1490 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1491 		ti->error = "Too many tree levels";
1492 		r = -E2BIG;
1493 		goto bad;
1494 	}
1495 
1496 	hash_position = v->hash_start;
1497 	for (i = v->levels - 1; i >= 0; i--) {
1498 		sector_t s;
1499 
1500 		v->hash_level_block[i] = hash_position;
1501 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1502 					>> ((i + 1) * v->hash_per_block_bits);
1503 		if (hash_position + s < hash_position) {
1504 			ti->error = "Hash device offset overflow";
1505 			r = -E2BIG;
1506 			goto bad;
1507 		}
1508 		hash_position += s;
1509 	}
1510 	v->hash_blocks = hash_position;
1511 
1512 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1513 	if (unlikely(r)) {
1514 		ti->error = "Cannot allocate mempool";
1515 		goto bad;
1516 	}
1517 
1518 	v->io = dm_io_client_create();
1519 	if (IS_ERR(v->io)) {
1520 		r = PTR_ERR(v->io);
1521 		v->io = NULL;
1522 		ti->error = "Cannot allocate dm io";
1523 		goto bad;
1524 	}
1525 
1526 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1527 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1528 		dm_bufio_alloc_callback, NULL,
1529 		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1530 	if (IS_ERR(v->bufio)) {
1531 		ti->error = "Cannot initialize dm-bufio";
1532 		r = PTR_ERR(v->bufio);
1533 		v->bufio = NULL;
1534 		goto bad;
1535 	}
1536 
1537 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1538 		ti->error = "Hash device is too small";
1539 		r = -E2BIG;
1540 		goto bad;
1541 	}
1542 
1543 	/*
1544 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1545 	 * reducing wait times when reading from a dm-verity device.
1546 	 *
1547 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1548 	 * allows verify_wq to preempt softirq since verification in BH workqueue
1549 	 * will fall-back to using it for error handling (or if the bufio cache
1550 	 * doesn't have required hashes).
1551 	 */
1552 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1553 	if (!v->verify_wq) {
1554 		ti->error = "Cannot allocate workqueue";
1555 		r = -ENOMEM;
1556 		goto bad;
1557 	}
1558 
1559 	ti->per_io_data_size = sizeof(struct dm_verity_io) +
1560 			       crypto_shash_descsize(v->shash_tfm);
1561 
1562 	r = verity_fec_ctr(v);
1563 	if (r)
1564 		goto bad;
1565 
1566 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1567 				       __alignof__(struct dm_verity_io));
1568 
1569 	verity_verify_sig_opts_cleanup(&verify_args);
1570 
1571 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1572 
1573 	return 0;
1574 
1575 bad:
1576 
1577 	verity_verify_sig_opts_cleanup(&verify_args);
1578 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1579 	verity_dtr(ti);
1580 
1581 	return r;
1582 }
1583 
1584 /*
1585  * Get the verity mode (error behavior) of a verity target.
1586  *
1587  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1588  * target.
1589  */
dm_verity_get_mode(struct dm_target * ti)1590 int dm_verity_get_mode(struct dm_target *ti)
1591 {
1592 	struct dm_verity *v = ti->private;
1593 
1594 	if (!dm_is_verity_target(ti))
1595 		return -EINVAL;
1596 
1597 	return v->mode;
1598 }
1599 
1600 /*
1601  * Get the root digest of a verity target.
1602  *
1603  * Returns a copy of the root digest, the caller is responsible for
1604  * freeing the memory of the digest.
1605  */
dm_verity_get_root_digest(struct dm_target * ti,u8 ** root_digest,unsigned int * digest_size)1606 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1607 {
1608 	struct dm_verity *v = ti->private;
1609 
1610 	if (!dm_is_verity_target(ti))
1611 		return -EINVAL;
1612 
1613 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1614 	if (*root_digest == NULL)
1615 		return -ENOMEM;
1616 
1617 	*digest_size = v->digest_size;
1618 
1619 	return 0;
1620 }
1621 
1622 #ifdef CONFIG_SECURITY
1623 
1624 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1625 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1626 static int verity_security_set_signature(struct block_device *bdev,
1627 					 struct dm_verity *v)
1628 {
1629 	/*
1630 	 * if the dm-verity target is unsigned, v->root_digest_sig will
1631 	 * be NULL, and the hook call is still required to let LSMs mark
1632 	 * the device as unsigned. This information is crucial for LSMs to
1633 	 * block operations such as execution on unsigned files
1634 	 */
1635 	return security_bdev_setintegrity(bdev,
1636 					  LSM_INT_DMVERITY_SIG_VALID,
1637 					  v->root_digest_sig,
1638 					  v->sig_size);
1639 }
1640 
1641 #else
1642 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1643 static inline int verity_security_set_signature(struct block_device *bdev,
1644 						struct dm_verity *v)
1645 {
1646 	return 0;
1647 }
1648 
1649 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1650 
1651 /*
1652  * Expose verity target's root hash and signature data to LSMs before resume.
1653  *
1654  * Returns 0 on success, or -ENOMEM if the system is out of memory.
1655  */
verity_preresume(struct dm_target * ti)1656 static int verity_preresume(struct dm_target *ti)
1657 {
1658 	struct block_device *bdev;
1659 	struct dm_verity_digest root_digest;
1660 	struct dm_verity *v;
1661 	int r;
1662 
1663 	v = ti->private;
1664 	bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1665 	root_digest.digest = v->root_digest;
1666 	root_digest.digest_len = v->digest_size;
1667 	root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1668 
1669 	r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1670 				       sizeof(root_digest));
1671 	if (r)
1672 		return r;
1673 
1674 	r =  verity_security_set_signature(bdev, v);
1675 	if (r)
1676 		goto bad;
1677 
1678 	return 0;
1679 
1680 bad:
1681 
1682 	security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1683 
1684 	return r;
1685 }
1686 
1687 #endif /* CONFIG_SECURITY */
1688 
1689 static struct target_type verity_target = {
1690 	.name		= "verity",
1691 /* Note: the LSMs depend on the singleton and immutable features */
1692 	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1693 	.version	= {1, 12, 0},
1694 	.module		= THIS_MODULE,
1695 	.ctr		= verity_ctr,
1696 	.dtr		= verity_dtr,
1697 	.map		= verity_map,
1698 	.postsuspend	= verity_postsuspend,
1699 	.status		= verity_status,
1700 	.prepare_ioctl	= verity_prepare_ioctl,
1701 	.iterate_devices = verity_iterate_devices,
1702 	.io_hints	= verity_io_hints,
1703 #ifdef CONFIG_SECURITY
1704 	.preresume	= verity_preresume,
1705 #endif /* CONFIG_SECURITY */
1706 };
1707 module_dm(verity);
1708 
1709 /*
1710  * Check whether a DM target is a verity target.
1711  */
dm_is_verity_target(struct dm_target * ti)1712 bool dm_is_verity_target(struct dm_target *ti)
1713 {
1714 	return ti->type == &verity_target;
1715 }
1716 
1717 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1718 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1719 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1720 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1721 MODULE_LICENSE("GPL");
1722