xref: /linux/drivers/md/dm-verity-target.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2012 Red Hat, Inc.
4  *
5  * Author: Mikulas Patocka <mpatocka@redhat.com>
6  *
7  * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8  *
9  * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10  * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11  * hash device. Setting this greatly improves performance when data and hash
12  * are on the same disk on different partitions on devices with poor random
13  * access behavior.
14  */
15 
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include "dm-audit.h"
20 #include <linux/module.h>
21 #include <linux/reboot.h>
22 #include <linux/scatterlist.h>
23 #include <linux/string.h>
24 #include <linux/jump_label.h>
25 #include <linux/security.h>
26 
27 #define DM_MSG_PREFIX			"verity"
28 
29 #define DM_VERITY_ENV_LENGTH		42
30 #define DM_VERITY_ENV_VAR_NAME		"DM_VERITY_ERR_BLOCK_NR"
31 
32 #define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
33 #define DM_VERITY_USE_BH_DEFAULT_BYTES	8192
34 
35 #define DM_VERITY_MAX_CORRUPTED_ERRS	100
36 
37 #define DM_VERITY_OPT_LOGGING		"ignore_corruption"
38 #define DM_VERITY_OPT_RESTART		"restart_on_corruption"
39 #define DM_VERITY_OPT_PANIC		"panic_on_corruption"
40 #define DM_VERITY_OPT_ERROR_RESTART	"restart_on_error"
41 #define DM_VERITY_OPT_ERROR_PANIC	"panic_on_error"
42 #define DM_VERITY_OPT_IGN_ZEROES	"ignore_zero_blocks"
43 #define DM_VERITY_OPT_AT_MOST_ONCE	"check_at_most_once"
44 #define DM_VERITY_OPT_TASKLET_VERIFY	"try_verify_in_tasklet"
45 
46 #define DM_VERITY_OPTS_MAX		(5 + DM_VERITY_OPTS_FEC + \
47 					 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
48 
49 static unsigned int dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
50 
51 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, 0644);
52 
53 static unsigned int dm_verity_use_bh_bytes[4] = {
54 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_NONE
55 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_RT
56 	DM_VERITY_USE_BH_DEFAULT_BYTES,	// IOPRIO_CLASS_BE
57 	0				// IOPRIO_CLASS_IDLE
58 };
59 
60 module_param_array_named(use_bh_bytes, dm_verity_use_bh_bytes, uint, NULL, 0644);
61 
62 static DEFINE_STATIC_KEY_FALSE(use_bh_wq_enabled);
63 
64 /* Is at least one dm-verity instance using ahash_tfm instead of shash_tfm? */
65 static DEFINE_STATIC_KEY_FALSE(ahash_enabled);
66 
67 struct dm_verity_prefetch_work {
68 	struct work_struct work;
69 	struct dm_verity *v;
70 	unsigned short ioprio;
71 	sector_t block;
72 	unsigned int n_blocks;
73 };
74 
75 /*
76  * Auxiliary structure appended to each dm-bufio buffer. If the value
77  * hash_verified is nonzero, hash of the block has been verified.
78  *
79  * The variable hash_verified is set to 0 when allocating the buffer, then
80  * it can be changed to 1 and it is never reset to 0 again.
81  *
82  * There is no lock around this value, a race condition can at worst cause
83  * that multiple processes verify the hash of the same buffer simultaneously
84  * and write 1 to hash_verified simultaneously.
85  * This condition is harmless, so we don't need locking.
86  */
87 struct buffer_aux {
88 	int hash_verified;
89 };
90 
91 /*
92  * Initialize struct buffer_aux for a freshly created buffer.
93  */
dm_bufio_alloc_callback(struct dm_buffer * buf)94 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
95 {
96 	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
97 
98 	aux->hash_verified = 0;
99 }
100 
101 /*
102  * Translate input sector number to the sector number on the target device.
103  */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)104 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
105 {
106 	return dm_target_offset(v->ti, bi_sector);
107 }
108 
109 /*
110  * Return hash position of a specified block at a specified tree level
111  * (0 is the lowest level).
112  * The lowest "hash_per_block_bits"-bits of the result denote hash position
113  * inside a hash block. The remaining bits denote location of the hash block.
114  */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)115 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
116 					 int level)
117 {
118 	return block >> (level * v->hash_per_block_bits);
119 }
120 
verity_ahash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)121 static int verity_ahash_update(struct dm_verity *v, struct ahash_request *req,
122 				const u8 *data, size_t len,
123 				struct crypto_wait *wait)
124 {
125 	struct scatterlist sg;
126 
127 	if (likely(!is_vmalloc_addr(data))) {
128 		sg_init_one(&sg, data, len);
129 		ahash_request_set_crypt(req, &sg, NULL, len);
130 		return crypto_wait_req(crypto_ahash_update(req), wait);
131 	}
132 
133 	do {
134 		int r;
135 		size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
136 
137 		flush_kernel_vmap_range((void *)data, this_step);
138 		sg_init_table(&sg, 1);
139 		sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
140 		ahash_request_set_crypt(req, &sg, NULL, this_step);
141 		r = crypto_wait_req(crypto_ahash_update(req), wait);
142 		if (unlikely(r))
143 			return r;
144 		data += this_step;
145 		len -= this_step;
146 	} while (len);
147 
148 	return 0;
149 }
150 
151 /*
152  * Wrapper for crypto_ahash_init, which handles verity salting.
153  */
verity_ahash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait,bool may_sleep)154 static int verity_ahash_init(struct dm_verity *v, struct ahash_request *req,
155 				struct crypto_wait *wait, bool may_sleep)
156 {
157 	int r;
158 
159 	ahash_request_set_tfm(req, v->ahash_tfm);
160 	ahash_request_set_callback(req,
161 		may_sleep ? CRYPTO_TFM_REQ_MAY_SLEEP | CRYPTO_TFM_REQ_MAY_BACKLOG : 0,
162 		crypto_req_done, (void *)wait);
163 	crypto_init_wait(wait);
164 
165 	r = crypto_wait_req(crypto_ahash_init(req), wait);
166 
167 	if (unlikely(r < 0)) {
168 		if (r != -ENOMEM)
169 			DMERR("crypto_ahash_init failed: %d", r);
170 		return r;
171 	}
172 
173 	if (likely(v->salt_size && (v->version >= 1)))
174 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
175 
176 	return r;
177 }
178 
verity_ahash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)179 static int verity_ahash_final(struct dm_verity *v, struct ahash_request *req,
180 			      u8 *digest, struct crypto_wait *wait)
181 {
182 	int r;
183 
184 	if (unlikely(v->salt_size && (!v->version))) {
185 		r = verity_ahash_update(v, req, v->salt, v->salt_size, wait);
186 
187 		if (r < 0) {
188 			DMERR("%s failed updating salt: %d", __func__, r);
189 			goto out;
190 		}
191 	}
192 
193 	ahash_request_set_crypt(req, NULL, digest, 0);
194 	r = crypto_wait_req(crypto_ahash_final(req), wait);
195 out:
196 	return r;
197 }
198 
verity_hash(struct dm_verity * v,struct dm_verity_io * io,const u8 * data,size_t len,u8 * digest,bool may_sleep)199 int verity_hash(struct dm_verity *v, struct dm_verity_io *io,
200 		const u8 *data, size_t len, u8 *digest, bool may_sleep)
201 {
202 	int r;
203 
204 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm) {
205 		struct ahash_request *req = verity_io_hash_req(v, io);
206 		struct crypto_wait wait;
207 
208 		r = verity_ahash_init(v, req, &wait, may_sleep) ?:
209 		    verity_ahash_update(v, req, data, len, &wait) ?:
210 		    verity_ahash_final(v, req, digest, &wait);
211 	} else {
212 		struct shash_desc *desc = verity_io_hash_req(v, io);
213 
214 		desc->tfm = v->shash_tfm;
215 		r = crypto_shash_import(desc, v->initial_hashstate) ?:
216 		    crypto_shash_finup(desc, data, len, digest);
217 	}
218 	if (unlikely(r))
219 		DMERR("Error hashing block: %d", r);
220 	return r;
221 }
222 
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned int * offset)223 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
224 				 sector_t *hash_block, unsigned int *offset)
225 {
226 	sector_t position = verity_position_at_level(v, block, level);
227 	unsigned int idx;
228 
229 	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
230 
231 	if (!offset)
232 		return;
233 
234 	idx = position & ((1 << v->hash_per_block_bits) - 1);
235 	if (!v->version)
236 		*offset = idx * v->digest_size;
237 	else
238 		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
239 }
240 
241 /*
242  * Handle verification errors.
243  */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)244 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
245 			     unsigned long long block)
246 {
247 	char verity_env[DM_VERITY_ENV_LENGTH];
248 	char *envp[] = { verity_env, NULL };
249 	const char *type_str = "";
250 	struct mapped_device *md = dm_table_get_md(v->ti->table);
251 
252 	/* Corruption should be visible in device status in all modes */
253 	v->hash_failed = true;
254 
255 	if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
256 		goto out;
257 
258 	v->corrupted_errs++;
259 
260 	switch (type) {
261 	case DM_VERITY_BLOCK_TYPE_DATA:
262 		type_str = "data";
263 		break;
264 	case DM_VERITY_BLOCK_TYPE_METADATA:
265 		type_str = "metadata";
266 		break;
267 	default:
268 		BUG();
269 	}
270 
271 	DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
272 		    type_str, block);
273 
274 	if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS) {
275 		DMERR("%s: reached maximum errors", v->data_dev->name);
276 		dm_audit_log_target(DM_MSG_PREFIX, "max-corrupted-errors", v->ti, 0);
277 	}
278 
279 	snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
280 		DM_VERITY_ENV_VAR_NAME, type, block);
281 
282 	kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
283 
284 out:
285 	if (v->mode == DM_VERITY_MODE_LOGGING)
286 		return 0;
287 
288 	if (v->mode == DM_VERITY_MODE_RESTART)
289 		kernel_restart("dm-verity device corrupted");
290 
291 	if (v->mode == DM_VERITY_MODE_PANIC)
292 		panic("dm-verity device corrupted");
293 
294 	return 1;
295 }
296 
297 /*
298  * Verify hash of a metadata block pertaining to the specified data block
299  * ("block" argument) at a specified level ("level" argument).
300  *
301  * On successful return, verity_io_want_digest(v, io) contains the hash value
302  * for a lower tree level or for the data block (if we're at the lowest level).
303  *
304  * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
305  * If "skip_unverified" is false, unverified buffer is hashed and verified
306  * against current value of verity_io_want_digest(v, io).
307  */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)308 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
309 			       sector_t block, int level, bool skip_unverified,
310 			       u8 *want_digest)
311 {
312 	struct dm_buffer *buf;
313 	struct buffer_aux *aux;
314 	u8 *data;
315 	int r;
316 	sector_t hash_block;
317 	unsigned int offset;
318 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
319 
320 	verity_hash_at_level(v, block, level, &hash_block, &offset);
321 
322 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
323 		data = dm_bufio_get(v->bufio, hash_block, &buf);
324 		if (IS_ERR_OR_NULL(data)) {
325 			/*
326 			 * In tasklet and the hash was not in the bufio cache.
327 			 * Return early and resume execution from a work-queue
328 			 * to read the hash from disk.
329 			 */
330 			return -EAGAIN;
331 		}
332 	} else {
333 		data = dm_bufio_read_with_ioprio(v->bufio, hash_block,
334 						&buf, bio->bi_ioprio);
335 	}
336 
337 	if (IS_ERR(data)) {
338 		if (skip_unverified)
339 			return 1;
340 		r = PTR_ERR(data);
341 		data = dm_bufio_new(v->bufio, hash_block, &buf);
342 		if (IS_ERR(data))
343 			return r;
344 		if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
345 				      hash_block, data) == 0) {
346 			aux = dm_bufio_get_aux_data(buf);
347 			aux->hash_verified = 1;
348 			goto release_ok;
349 		} else {
350 			dm_bufio_release(buf);
351 			dm_bufio_forget(v->bufio, hash_block);
352 			return r;
353 		}
354 	}
355 
356 	aux = dm_bufio_get_aux_data(buf);
357 
358 	if (!aux->hash_verified) {
359 		if (skip_unverified) {
360 			r = 1;
361 			goto release_ret_r;
362 		}
363 
364 		r = verity_hash(v, io, data, 1 << v->hash_dev_block_bits,
365 				verity_io_real_digest(v, io), !io->in_bh);
366 		if (unlikely(r < 0))
367 			goto release_ret_r;
368 
369 		if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
370 				  v->digest_size) == 0))
371 			aux->hash_verified = 1;
372 		else if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
373 			/*
374 			 * Error handling code (FEC included) cannot be run in a
375 			 * tasklet since it may sleep, so fallback to work-queue.
376 			 */
377 			r = -EAGAIN;
378 			goto release_ret_r;
379 		} else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_METADATA,
380 					     hash_block, data) == 0)
381 			aux->hash_verified = 1;
382 		else if (verity_handle_err(v,
383 					   DM_VERITY_BLOCK_TYPE_METADATA,
384 					   hash_block)) {
385 			struct bio *bio;
386 			io->had_mismatch = true;
387 			bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
388 			dm_audit_log_bio(DM_MSG_PREFIX, "verify-metadata", bio,
389 					 block, 0);
390 			r = -EIO;
391 			goto release_ret_r;
392 		}
393 	}
394 
395 release_ok:
396 	data += offset;
397 	memcpy(want_digest, data, v->digest_size);
398 	r = 0;
399 
400 release_ret_r:
401 	dm_bufio_release(buf);
402 	return r;
403 }
404 
405 /*
406  * Find a hash for a given block, write it to digest and verify the integrity
407  * of the hash tree if necessary.
408  */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)409 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
410 			  sector_t block, u8 *digest, bool *is_zero)
411 {
412 	int r = 0, i;
413 
414 	if (likely(v->levels)) {
415 		/*
416 		 * First, we try to get the requested hash for
417 		 * the current block. If the hash block itself is
418 		 * verified, zero is returned. If it isn't, this
419 		 * function returns 1 and we fall back to whole
420 		 * chain verification.
421 		 */
422 		r = verity_verify_level(v, io, block, 0, true, digest);
423 		if (likely(r <= 0))
424 			goto out;
425 	}
426 
427 	memcpy(digest, v->root_digest, v->digest_size);
428 
429 	for (i = v->levels - 1; i >= 0; i--) {
430 		r = verity_verify_level(v, io, block, i, false, digest);
431 		if (unlikely(r))
432 			goto out;
433 	}
434 out:
435 	if (!r && v->zero_digest)
436 		*is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
437 	else
438 		*is_zero = false;
439 
440 	return r;
441 }
442 
verity_recheck(struct dm_verity * v,struct dm_verity_io * io,sector_t cur_block,u8 * dest)443 static noinline int verity_recheck(struct dm_verity *v, struct dm_verity_io *io,
444 				   sector_t cur_block, u8 *dest)
445 {
446 	struct page *page;
447 	void *buffer;
448 	int r;
449 	struct dm_io_request io_req;
450 	struct dm_io_region io_loc;
451 
452 	page = mempool_alloc(&v->recheck_pool, GFP_NOIO);
453 	buffer = page_to_virt(page);
454 
455 	io_req.bi_opf = REQ_OP_READ;
456 	io_req.mem.type = DM_IO_KMEM;
457 	io_req.mem.ptr.addr = buffer;
458 	io_req.notify.fn = NULL;
459 	io_req.client = v->io;
460 	io_loc.bdev = v->data_dev->bdev;
461 	io_loc.sector = cur_block << (v->data_dev_block_bits - SECTOR_SHIFT);
462 	io_loc.count = 1 << (v->data_dev_block_bits - SECTOR_SHIFT);
463 	r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
464 	if (unlikely(r))
465 		goto free_ret;
466 
467 	r = verity_hash(v, io, buffer, 1 << v->data_dev_block_bits,
468 			verity_io_real_digest(v, io), true);
469 	if (unlikely(r))
470 		goto free_ret;
471 
472 	if (memcmp(verity_io_real_digest(v, io),
473 		   verity_io_want_digest(v, io), v->digest_size)) {
474 		r = -EIO;
475 		goto free_ret;
476 	}
477 
478 	memcpy(dest, buffer, 1 << v->data_dev_block_bits);
479 	r = 0;
480 free_ret:
481 	mempool_free(page, &v->recheck_pool);
482 
483 	return r;
484 }
485 
verity_handle_data_hash_mismatch(struct dm_verity * v,struct dm_verity_io * io,struct bio * bio,sector_t blkno,u8 * data)486 static int verity_handle_data_hash_mismatch(struct dm_verity *v,
487 					    struct dm_verity_io *io,
488 					    struct bio *bio, sector_t blkno,
489 					    u8 *data)
490 {
491 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
492 		/*
493 		 * Error handling code (FEC included) cannot be run in the
494 		 * BH workqueue, so fallback to a standard workqueue.
495 		 */
496 		return -EAGAIN;
497 	}
498 	if (verity_recheck(v, io, blkno, data) == 0) {
499 		if (v->validated_blocks)
500 			set_bit(blkno, v->validated_blocks);
501 		return 0;
502 	}
503 #if defined(CONFIG_DM_VERITY_FEC)
504 	if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA, blkno,
505 			      data) == 0)
506 		return 0;
507 #endif
508 	if (bio->bi_status)
509 		return -EIO; /* Error correction failed; Just return error */
510 
511 	if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA, blkno)) {
512 		io->had_mismatch = true;
513 		dm_audit_log_bio(DM_MSG_PREFIX, "verify-data", bio, blkno, 0);
514 		return -EIO;
515 	}
516 	return 0;
517 }
518 
519 /*
520  * Verify one "dm_verity_io" structure.
521  */
verity_verify_io(struct dm_verity_io * io)522 static int verity_verify_io(struct dm_verity_io *io)
523 {
524 	struct dm_verity *v = io->v;
525 	const unsigned int block_size = 1 << v->data_dev_block_bits;
526 	struct bvec_iter iter_copy;
527 	struct bvec_iter *iter;
528 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
529 	unsigned int b;
530 
531 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->in_bh) {
532 		/*
533 		 * Copy the iterator in case we need to restart
534 		 * verification in a work-queue.
535 		 */
536 		iter_copy = io->iter;
537 		iter = &iter_copy;
538 	} else
539 		iter = &io->iter;
540 
541 	for (b = 0; b < io->n_blocks;
542 	     b++, bio_advance_iter(bio, iter, block_size)) {
543 		int r;
544 		sector_t cur_block = io->block + b;
545 		bool is_zero;
546 		struct bio_vec bv;
547 		void *data;
548 
549 		if (v->validated_blocks && bio->bi_status == BLK_STS_OK &&
550 		    likely(test_bit(cur_block, v->validated_blocks)))
551 			continue;
552 
553 		r = verity_hash_for_block(v, io, cur_block,
554 					  verity_io_want_digest(v, io),
555 					  &is_zero);
556 		if (unlikely(r < 0))
557 			return r;
558 
559 		bv = bio_iter_iovec(bio, *iter);
560 		if (unlikely(bv.bv_len < block_size)) {
561 			/*
562 			 * Data block spans pages.  This should not happen,
563 			 * since dm-verity sets dma_alignment to the data block
564 			 * size minus 1, and dm-verity also doesn't allow the
565 			 * data block size to be greater than PAGE_SIZE.
566 			 */
567 			DMERR_LIMIT("unaligned io (data block spans pages)");
568 			return -EIO;
569 		}
570 
571 		data = bvec_kmap_local(&bv);
572 
573 		if (is_zero) {
574 			/*
575 			 * If we expect a zero block, don't validate, just
576 			 * return zeros.
577 			 */
578 			memset(data, 0, block_size);
579 			kunmap_local(data);
580 			continue;
581 		}
582 
583 		r = verity_hash(v, io, data, block_size,
584 				verity_io_real_digest(v, io), !io->in_bh);
585 		if (unlikely(r < 0)) {
586 			kunmap_local(data);
587 			return r;
588 		}
589 
590 		if (likely(memcmp(verity_io_real_digest(v, io),
591 				  verity_io_want_digest(v, io), v->digest_size) == 0)) {
592 			if (v->validated_blocks)
593 				set_bit(cur_block, v->validated_blocks);
594 			kunmap_local(data);
595 			continue;
596 		}
597 		r = verity_handle_data_hash_mismatch(v, io, bio, cur_block,
598 						     data);
599 		kunmap_local(data);
600 		if (unlikely(r))
601 			return r;
602 	}
603 
604 	return 0;
605 }
606 
607 /*
608  * Skip verity work in response to I/O error when system is shutting down.
609  */
verity_is_system_shutting_down(void)610 static inline bool verity_is_system_shutting_down(void)
611 {
612 	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
613 		|| system_state == SYSTEM_RESTART;
614 }
615 
restart_io_error(struct work_struct * w)616 static void restart_io_error(struct work_struct *w)
617 {
618 	kernel_restart("dm-verity device has I/O error");
619 }
620 
621 /*
622  * End one "io" structure with a given error.
623  */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)624 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
625 {
626 	struct dm_verity *v = io->v;
627 	struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
628 
629 	bio->bi_end_io = io->orig_bi_end_io;
630 	bio->bi_status = status;
631 
632 	if (!static_branch_unlikely(&use_bh_wq_enabled) || !io->in_bh)
633 		verity_fec_finish_io(io);
634 
635 	if (unlikely(status != BLK_STS_OK) &&
636 	    unlikely(!(bio->bi_opf & REQ_RAHEAD)) &&
637 	    !io->had_mismatch &&
638 	    !verity_is_system_shutting_down()) {
639 		if (v->error_mode == DM_VERITY_MODE_PANIC) {
640 			panic("dm-verity device has I/O error");
641 		}
642 		if (v->error_mode == DM_VERITY_MODE_RESTART) {
643 			static DECLARE_WORK(restart_work, restart_io_error);
644 			queue_work(v->verify_wq, &restart_work);
645 			/*
646 			 * We deliberately don't call bio_endio here, because
647 			 * the machine will be restarted anyway.
648 			 */
649 			return;
650 		}
651 	}
652 
653 	bio_endio(bio);
654 }
655 
verity_work(struct work_struct * w)656 static void verity_work(struct work_struct *w)
657 {
658 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
659 
660 	io->in_bh = false;
661 
662 	verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
663 }
664 
verity_bh_work(struct work_struct * w)665 static void verity_bh_work(struct work_struct *w)
666 {
667 	struct dm_verity_io *io = container_of(w, struct dm_verity_io, bh_work);
668 	int err;
669 
670 	io->in_bh = true;
671 	err = verity_verify_io(io);
672 	if (err == -EAGAIN || err == -ENOMEM) {
673 		/* fallback to retrying with work-queue */
674 		INIT_WORK(&io->work, verity_work);
675 		queue_work(io->v->verify_wq, &io->work);
676 		return;
677 	}
678 
679 	verity_finish_io(io, errno_to_blk_status(err));
680 }
681 
verity_use_bh(unsigned int bytes,unsigned short ioprio)682 static inline bool verity_use_bh(unsigned int bytes, unsigned short ioprio)
683 {
684 	return ioprio <= IOPRIO_CLASS_IDLE &&
685 		bytes <= READ_ONCE(dm_verity_use_bh_bytes[ioprio]) &&
686 		!need_resched();
687 }
688 
verity_end_io(struct bio * bio)689 static void verity_end_io(struct bio *bio)
690 {
691 	struct dm_verity_io *io = bio->bi_private;
692 	unsigned short ioprio = IOPRIO_PRIO_CLASS(bio->bi_ioprio);
693 	unsigned int bytes = io->n_blocks << io->v->data_dev_block_bits;
694 
695 	if (bio->bi_status &&
696 	    (!verity_fec_is_enabled(io->v) ||
697 	     verity_is_system_shutting_down() ||
698 	     (bio->bi_opf & REQ_RAHEAD))) {
699 		verity_finish_io(io, bio->bi_status);
700 		return;
701 	}
702 
703 	if (static_branch_unlikely(&use_bh_wq_enabled) && io->v->use_bh_wq &&
704 		verity_use_bh(bytes, ioprio)) {
705 		if (in_hardirq() || irqs_disabled()) {
706 			INIT_WORK(&io->bh_work, verity_bh_work);
707 			queue_work(system_bh_wq, &io->bh_work);
708 		} else {
709 			verity_bh_work(&io->bh_work);
710 		}
711 	} else {
712 		INIT_WORK(&io->work, verity_work);
713 		queue_work(io->v->verify_wq, &io->work);
714 	}
715 }
716 
717 /*
718  * Prefetch buffers for the specified io.
719  * The root buffer is not prefetched, it is assumed that it will be cached
720  * all the time.
721  */
verity_prefetch_io(struct work_struct * work)722 static void verity_prefetch_io(struct work_struct *work)
723 {
724 	struct dm_verity_prefetch_work *pw =
725 		container_of(work, struct dm_verity_prefetch_work, work);
726 	struct dm_verity *v = pw->v;
727 	int i;
728 
729 	for (i = v->levels - 2; i >= 0; i--) {
730 		sector_t hash_block_start;
731 		sector_t hash_block_end;
732 
733 		verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
734 		verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
735 
736 		if (!i) {
737 			unsigned int cluster = READ_ONCE(dm_verity_prefetch_cluster);
738 
739 			cluster >>= v->data_dev_block_bits;
740 			if (unlikely(!cluster))
741 				goto no_prefetch_cluster;
742 
743 			if (unlikely(cluster & (cluster - 1)))
744 				cluster = 1 << __fls(cluster);
745 
746 			hash_block_start &= ~(sector_t)(cluster - 1);
747 			hash_block_end |= cluster - 1;
748 			if (unlikely(hash_block_end >= v->hash_blocks))
749 				hash_block_end = v->hash_blocks - 1;
750 		}
751 no_prefetch_cluster:
752 		dm_bufio_prefetch_with_ioprio(v->bufio, hash_block_start,
753 					hash_block_end - hash_block_start + 1,
754 					pw->ioprio);
755 	}
756 
757 	kfree(pw);
758 }
759 
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io,unsigned short ioprio)760 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io,
761 				   unsigned short ioprio)
762 {
763 	sector_t block = io->block;
764 	unsigned int n_blocks = io->n_blocks;
765 	struct dm_verity_prefetch_work *pw;
766 
767 	if (v->validated_blocks) {
768 		while (n_blocks && test_bit(block, v->validated_blocks)) {
769 			block++;
770 			n_blocks--;
771 		}
772 		while (n_blocks && test_bit(block + n_blocks - 1,
773 					    v->validated_blocks))
774 			n_blocks--;
775 		if (!n_blocks)
776 			return;
777 	}
778 
779 	pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
780 		GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
781 
782 	if (!pw)
783 		return;
784 
785 	INIT_WORK(&pw->work, verity_prefetch_io);
786 	pw->v = v;
787 	pw->block = block;
788 	pw->n_blocks = n_blocks;
789 	pw->ioprio = ioprio;
790 	queue_work(v->verify_wq, &pw->work);
791 }
792 
793 /*
794  * Bio map function. It allocates dm_verity_io structure and bio vector and
795  * fills them. Then it issues prefetches and the I/O.
796  */
verity_map(struct dm_target * ti,struct bio * bio)797 static int verity_map(struct dm_target *ti, struct bio *bio)
798 {
799 	struct dm_verity *v = ti->private;
800 	struct dm_verity_io *io;
801 
802 	bio_set_dev(bio, v->data_dev->bdev);
803 	bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
804 
805 	if (((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
806 	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
807 		DMERR_LIMIT("unaligned io");
808 		return DM_MAPIO_KILL;
809 	}
810 
811 	if (bio_end_sector(bio) >>
812 	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
813 		DMERR_LIMIT("io out of range");
814 		return DM_MAPIO_KILL;
815 	}
816 
817 	if (bio_data_dir(bio) == WRITE)
818 		return DM_MAPIO_KILL;
819 
820 	io = dm_per_bio_data(bio, ti->per_io_data_size);
821 	io->v = v;
822 	io->orig_bi_end_io = bio->bi_end_io;
823 	io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
824 	io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
825 	io->had_mismatch = false;
826 
827 	bio->bi_end_io = verity_end_io;
828 	bio->bi_private = io;
829 	io->iter = bio->bi_iter;
830 
831 	verity_fec_init_io(io);
832 
833 	verity_submit_prefetch(v, io, bio->bi_ioprio);
834 
835 	submit_bio_noacct(bio);
836 
837 	return DM_MAPIO_SUBMITTED;
838 }
839 
verity_postsuspend(struct dm_target * ti)840 static void verity_postsuspend(struct dm_target *ti)
841 {
842 	struct dm_verity *v = ti->private;
843 	flush_workqueue(v->verify_wq);
844 	dm_bufio_client_reset(v->bufio);
845 }
846 
847 /*
848  * Status: V (valid) or C (corruption found)
849  */
verity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)850 static void verity_status(struct dm_target *ti, status_type_t type,
851 			  unsigned int status_flags, char *result, unsigned int maxlen)
852 {
853 	struct dm_verity *v = ti->private;
854 	unsigned int args = 0;
855 	unsigned int sz = 0;
856 	unsigned int x;
857 
858 	switch (type) {
859 	case STATUSTYPE_INFO:
860 		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
861 		break;
862 	case STATUSTYPE_TABLE:
863 		DMEMIT("%u %s %s %u %u %llu %llu %s ",
864 			v->version,
865 			v->data_dev->name,
866 			v->hash_dev->name,
867 			1 << v->data_dev_block_bits,
868 			1 << v->hash_dev_block_bits,
869 			(unsigned long long)v->data_blocks,
870 			(unsigned long long)v->hash_start,
871 			v->alg_name
872 			);
873 		for (x = 0; x < v->digest_size; x++)
874 			DMEMIT("%02x", v->root_digest[x]);
875 		DMEMIT(" ");
876 		if (!v->salt_size)
877 			DMEMIT("-");
878 		else
879 			for (x = 0; x < v->salt_size; x++)
880 				DMEMIT("%02x", v->salt[x]);
881 		if (v->mode != DM_VERITY_MODE_EIO)
882 			args++;
883 		if (v->error_mode != DM_VERITY_MODE_EIO)
884 			args++;
885 		if (verity_fec_is_enabled(v))
886 			args += DM_VERITY_OPTS_FEC;
887 		if (v->zero_digest)
888 			args++;
889 		if (v->validated_blocks)
890 			args++;
891 		if (v->use_bh_wq)
892 			args++;
893 		if (v->signature_key_desc)
894 			args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
895 		if (!args)
896 			return;
897 		DMEMIT(" %u", args);
898 		if (v->mode != DM_VERITY_MODE_EIO) {
899 			DMEMIT(" ");
900 			switch (v->mode) {
901 			case DM_VERITY_MODE_LOGGING:
902 				DMEMIT(DM_VERITY_OPT_LOGGING);
903 				break;
904 			case DM_VERITY_MODE_RESTART:
905 				DMEMIT(DM_VERITY_OPT_RESTART);
906 				break;
907 			case DM_VERITY_MODE_PANIC:
908 				DMEMIT(DM_VERITY_OPT_PANIC);
909 				break;
910 			default:
911 				BUG();
912 			}
913 		}
914 		if (v->error_mode != DM_VERITY_MODE_EIO) {
915 			DMEMIT(" ");
916 			switch (v->error_mode) {
917 			case DM_VERITY_MODE_RESTART:
918 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
919 				break;
920 			case DM_VERITY_MODE_PANIC:
921 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
922 				break;
923 			default:
924 				BUG();
925 			}
926 		}
927 		if (v->zero_digest)
928 			DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
929 		if (v->validated_blocks)
930 			DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
931 		if (v->use_bh_wq)
932 			DMEMIT(" " DM_VERITY_OPT_TASKLET_VERIFY);
933 		sz = verity_fec_status_table(v, sz, result, maxlen);
934 		if (v->signature_key_desc)
935 			DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
936 				" %s", v->signature_key_desc);
937 		break;
938 
939 	case STATUSTYPE_IMA:
940 		DMEMIT_TARGET_NAME_VERSION(ti->type);
941 		DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
942 		DMEMIT(",verity_version=%u", v->version);
943 		DMEMIT(",data_device_name=%s", v->data_dev->name);
944 		DMEMIT(",hash_device_name=%s", v->hash_dev->name);
945 		DMEMIT(",verity_algorithm=%s", v->alg_name);
946 
947 		DMEMIT(",root_digest=");
948 		for (x = 0; x < v->digest_size; x++)
949 			DMEMIT("%02x", v->root_digest[x]);
950 
951 		DMEMIT(",salt=");
952 		if (!v->salt_size)
953 			DMEMIT("-");
954 		else
955 			for (x = 0; x < v->salt_size; x++)
956 				DMEMIT("%02x", v->salt[x]);
957 
958 		DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
959 		DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
960 		if (v->signature_key_desc)
961 			DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
962 
963 		if (v->mode != DM_VERITY_MODE_EIO) {
964 			DMEMIT(",verity_mode=");
965 			switch (v->mode) {
966 			case DM_VERITY_MODE_LOGGING:
967 				DMEMIT(DM_VERITY_OPT_LOGGING);
968 				break;
969 			case DM_VERITY_MODE_RESTART:
970 				DMEMIT(DM_VERITY_OPT_RESTART);
971 				break;
972 			case DM_VERITY_MODE_PANIC:
973 				DMEMIT(DM_VERITY_OPT_PANIC);
974 				break;
975 			default:
976 				DMEMIT("invalid");
977 			}
978 		}
979 		if (v->error_mode != DM_VERITY_MODE_EIO) {
980 			DMEMIT(",verity_error_mode=");
981 			switch (v->error_mode) {
982 			case DM_VERITY_MODE_RESTART:
983 				DMEMIT(DM_VERITY_OPT_ERROR_RESTART);
984 				break;
985 			case DM_VERITY_MODE_PANIC:
986 				DMEMIT(DM_VERITY_OPT_ERROR_PANIC);
987 				break;
988 			default:
989 				DMEMIT("invalid");
990 			}
991 		}
992 		DMEMIT(";");
993 		break;
994 	}
995 }
996 
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)997 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev,
998 				unsigned int cmd, unsigned long arg,
999 				bool *forward)
1000 {
1001 	struct dm_verity *v = ti->private;
1002 
1003 	*bdev = v->data_dev->bdev;
1004 
1005 	if (ti->len != bdev_nr_sectors(v->data_dev->bdev))
1006 		return 1;
1007 	return 0;
1008 }
1009 
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1010 static int verity_iterate_devices(struct dm_target *ti,
1011 				  iterate_devices_callout_fn fn, void *data)
1012 {
1013 	struct dm_verity *v = ti->private;
1014 
1015 	return fn(ti, v->data_dev, 0, ti->len, data);
1016 }
1017 
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)1018 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
1019 {
1020 	struct dm_verity *v = ti->private;
1021 
1022 	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
1023 		limits->logical_block_size = 1 << v->data_dev_block_bits;
1024 
1025 	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
1026 		limits->physical_block_size = 1 << v->data_dev_block_bits;
1027 
1028 	limits->io_min = limits->logical_block_size;
1029 
1030 	/*
1031 	 * Similar to what dm-crypt does, opt dm-verity out of support for
1032 	 * direct I/O that is aligned to less than the traditional direct I/O
1033 	 * alignment requirement of logical_block_size.  This prevents dm-verity
1034 	 * data blocks from crossing pages, eliminating various edge cases.
1035 	 */
1036 	limits->dma_alignment = limits->logical_block_size - 1;
1037 }
1038 
1039 #ifdef CONFIG_SECURITY
1040 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)1041 static int verity_init_sig(struct dm_verity *v, const void *sig,
1042 			   size_t sig_size)
1043 {
1044 	v->sig_size = sig_size;
1045 
1046 	if (sig) {
1047 		v->root_digest_sig = kmemdup(sig, v->sig_size, GFP_KERNEL);
1048 		if (!v->root_digest_sig)
1049 			return -ENOMEM;
1050 	}
1051 
1052 	return 0;
1053 }
1054 
verity_free_sig(struct dm_verity * v)1055 static void verity_free_sig(struct dm_verity *v)
1056 {
1057 	kfree(v->root_digest_sig);
1058 }
1059 
1060 #else
1061 
verity_init_sig(struct dm_verity * v,const void * sig,size_t sig_size)1062 static inline int verity_init_sig(struct dm_verity *v, const void *sig,
1063 				  size_t sig_size)
1064 {
1065 	return 0;
1066 }
1067 
verity_free_sig(struct dm_verity * v)1068 static inline void verity_free_sig(struct dm_verity *v)
1069 {
1070 }
1071 
1072 #endif /* CONFIG_SECURITY */
1073 
verity_dtr(struct dm_target * ti)1074 static void verity_dtr(struct dm_target *ti)
1075 {
1076 	struct dm_verity *v = ti->private;
1077 
1078 	if (v->verify_wq)
1079 		destroy_workqueue(v->verify_wq);
1080 
1081 	mempool_exit(&v->recheck_pool);
1082 	if (v->io)
1083 		dm_io_client_destroy(v->io);
1084 
1085 	if (v->bufio)
1086 		dm_bufio_client_destroy(v->bufio);
1087 
1088 	kvfree(v->validated_blocks);
1089 	kfree(v->salt);
1090 	kfree(v->initial_hashstate);
1091 	kfree(v->root_digest);
1092 	kfree(v->zero_digest);
1093 	verity_free_sig(v);
1094 
1095 	if (v->ahash_tfm) {
1096 		static_branch_dec(&ahash_enabled);
1097 		crypto_free_ahash(v->ahash_tfm);
1098 	} else {
1099 		crypto_free_shash(v->shash_tfm);
1100 	}
1101 
1102 	kfree(v->alg_name);
1103 
1104 	if (v->hash_dev)
1105 		dm_put_device(ti, v->hash_dev);
1106 
1107 	if (v->data_dev)
1108 		dm_put_device(ti, v->data_dev);
1109 
1110 	verity_fec_dtr(v);
1111 
1112 	kfree(v->signature_key_desc);
1113 
1114 	if (v->use_bh_wq)
1115 		static_branch_dec(&use_bh_wq_enabled);
1116 
1117 	kfree(v);
1118 
1119 	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
1120 }
1121 
verity_alloc_most_once(struct dm_verity * v)1122 static int verity_alloc_most_once(struct dm_verity *v)
1123 {
1124 	struct dm_target *ti = v->ti;
1125 
1126 	if (v->validated_blocks)
1127 		return 0;
1128 
1129 	/* the bitset can only handle INT_MAX blocks */
1130 	if (v->data_blocks > INT_MAX) {
1131 		ti->error = "device too large to use check_at_most_once";
1132 		return -E2BIG;
1133 	}
1134 
1135 	v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
1136 				       sizeof(unsigned long),
1137 				       GFP_KERNEL);
1138 	if (!v->validated_blocks) {
1139 		ti->error = "failed to allocate bitset for check_at_most_once";
1140 		return -ENOMEM;
1141 	}
1142 
1143 	return 0;
1144 }
1145 
verity_alloc_zero_digest(struct dm_verity * v)1146 static int verity_alloc_zero_digest(struct dm_verity *v)
1147 {
1148 	int r = -ENOMEM;
1149 	struct dm_verity_io *io;
1150 	u8 *zero_data;
1151 
1152 	if (v->zero_digest)
1153 		return 0;
1154 
1155 	v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
1156 
1157 	if (!v->zero_digest)
1158 		return r;
1159 
1160 	io = kmalloc(sizeof(*io) + v->hash_reqsize, GFP_KERNEL);
1161 
1162 	if (!io)
1163 		return r; /* verity_dtr will free zero_digest */
1164 
1165 	zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
1166 
1167 	if (!zero_data)
1168 		goto out;
1169 
1170 	r = verity_hash(v, io, zero_data, 1 << v->data_dev_block_bits,
1171 			v->zero_digest, true);
1172 
1173 out:
1174 	kfree(io);
1175 	kfree(zero_data);
1176 
1177 	return r;
1178 }
1179 
verity_is_verity_mode(const char * arg_name)1180 static inline bool verity_is_verity_mode(const char *arg_name)
1181 {
1182 	return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
1183 		!strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
1184 		!strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
1185 }
1186 
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)1187 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
1188 {
1189 	if (v->mode)
1190 		return -EINVAL;
1191 
1192 	if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
1193 		v->mode = DM_VERITY_MODE_LOGGING;
1194 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
1195 		v->mode = DM_VERITY_MODE_RESTART;
1196 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
1197 		v->mode = DM_VERITY_MODE_PANIC;
1198 
1199 	return 0;
1200 }
1201 
verity_is_verity_error_mode(const char * arg_name)1202 static inline bool verity_is_verity_error_mode(const char *arg_name)
1203 {
1204 	return (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART) ||
1205 		!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC));
1206 }
1207 
verity_parse_verity_error_mode(struct dm_verity * v,const char * arg_name)1208 static int verity_parse_verity_error_mode(struct dm_verity *v, const char *arg_name)
1209 {
1210 	if (v->error_mode)
1211 		return -EINVAL;
1212 
1213 	if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_RESTART))
1214 		v->error_mode = DM_VERITY_MODE_RESTART;
1215 	else if (!strcasecmp(arg_name, DM_VERITY_OPT_ERROR_PANIC))
1216 		v->error_mode = DM_VERITY_MODE_PANIC;
1217 
1218 	return 0;
1219 }
1220 
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args,bool only_modifier_opts)1221 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
1222 				 struct dm_verity_sig_opts *verify_args,
1223 				 bool only_modifier_opts)
1224 {
1225 	int r = 0;
1226 	unsigned int argc;
1227 	struct dm_target *ti = v->ti;
1228 	const char *arg_name;
1229 
1230 	static const struct dm_arg _args[] = {
1231 		{0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
1232 	};
1233 
1234 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1235 	if (r)
1236 		return -EINVAL;
1237 
1238 	if (!argc)
1239 		return 0;
1240 
1241 	do {
1242 		arg_name = dm_shift_arg(as);
1243 		argc--;
1244 
1245 		if (verity_is_verity_mode(arg_name)) {
1246 			if (only_modifier_opts)
1247 				continue;
1248 			r = verity_parse_verity_mode(v, arg_name);
1249 			if (r) {
1250 				ti->error = "Conflicting error handling parameters";
1251 				return r;
1252 			}
1253 			continue;
1254 
1255 		} else if (verity_is_verity_error_mode(arg_name)) {
1256 			if (only_modifier_opts)
1257 				continue;
1258 			r = verity_parse_verity_error_mode(v, arg_name);
1259 			if (r) {
1260 				ti->error = "Conflicting error handling parameters";
1261 				return r;
1262 			}
1263 			continue;
1264 
1265 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1266 			if (only_modifier_opts)
1267 				continue;
1268 			r = verity_alloc_zero_digest(v);
1269 			if (r) {
1270 				ti->error = "Cannot allocate zero digest";
1271 				return r;
1272 			}
1273 			continue;
1274 
1275 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1276 			if (only_modifier_opts)
1277 				continue;
1278 			r = verity_alloc_most_once(v);
1279 			if (r)
1280 				return r;
1281 			continue;
1282 
1283 		} else if (!strcasecmp(arg_name, DM_VERITY_OPT_TASKLET_VERIFY)) {
1284 			v->use_bh_wq = true;
1285 			static_branch_inc(&use_bh_wq_enabled);
1286 			continue;
1287 
1288 		} else if (verity_is_fec_opt_arg(arg_name)) {
1289 			if (only_modifier_opts)
1290 				continue;
1291 			r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1292 			if (r)
1293 				return r;
1294 			continue;
1295 
1296 		} else if (verity_verify_is_sig_opt_arg(arg_name)) {
1297 			if (only_modifier_opts)
1298 				continue;
1299 			r = verity_verify_sig_parse_opt_args(as, v,
1300 							     verify_args,
1301 							     &argc, arg_name);
1302 			if (r)
1303 				return r;
1304 			continue;
1305 
1306 		} else if (only_modifier_opts) {
1307 			/*
1308 			 * Ignore unrecognized opt, could easily be an extra
1309 			 * argument to an option whose parsing was skipped.
1310 			 * Normal parsing (@only_modifier_opts=false) will
1311 			 * properly parse all options (and their extra args).
1312 			 */
1313 			continue;
1314 		}
1315 
1316 		DMERR("Unrecognized verity feature request: %s", arg_name);
1317 		ti->error = "Unrecognized verity feature request";
1318 		return -EINVAL;
1319 	} while (argc && !r);
1320 
1321 	return r;
1322 }
1323 
verity_setup_hash_alg(struct dm_verity * v,const char * alg_name)1324 static int verity_setup_hash_alg(struct dm_verity *v, const char *alg_name)
1325 {
1326 	struct dm_target *ti = v->ti;
1327 	struct crypto_ahash *ahash;
1328 	struct crypto_shash *shash = NULL;
1329 	const char *driver_name;
1330 
1331 	v->alg_name = kstrdup(alg_name, GFP_KERNEL);
1332 	if (!v->alg_name) {
1333 		ti->error = "Cannot allocate algorithm name";
1334 		return -ENOMEM;
1335 	}
1336 
1337 	/*
1338 	 * Allocate the hash transformation object that this dm-verity instance
1339 	 * will use.  The vast majority of dm-verity users use CPU-based
1340 	 * hashing, so when possible use the shash API to minimize the crypto
1341 	 * API overhead.  If the ahash API resolves to a different driver
1342 	 * (likely an off-CPU hardware offload), use ahash instead.  Also use
1343 	 * ahash if the obsolete dm-verity format with the appended salt is
1344 	 * being used, so that quirk only needs to be handled in one place.
1345 	 */
1346 	ahash = crypto_alloc_ahash(alg_name, 0,
1347 				   v->use_bh_wq ? CRYPTO_ALG_ASYNC : 0);
1348 	if (IS_ERR(ahash)) {
1349 		ti->error = "Cannot initialize hash function";
1350 		return PTR_ERR(ahash);
1351 	}
1352 	driver_name = crypto_ahash_driver_name(ahash);
1353 	if (v->version >= 1 /* salt prepended, not appended? */) {
1354 		shash = crypto_alloc_shash(alg_name, 0, 0);
1355 		if (!IS_ERR(shash) &&
1356 		    strcmp(crypto_shash_driver_name(shash), driver_name) != 0) {
1357 			/*
1358 			 * ahash gave a different driver than shash, so probably
1359 			 * this is a case of real hardware offload.  Use ahash.
1360 			 */
1361 			crypto_free_shash(shash);
1362 			shash = NULL;
1363 		}
1364 	}
1365 	if (!IS_ERR_OR_NULL(shash)) {
1366 		crypto_free_ahash(ahash);
1367 		ahash = NULL;
1368 		v->shash_tfm = shash;
1369 		v->digest_size = crypto_shash_digestsize(shash);
1370 		v->hash_reqsize = sizeof(struct shash_desc) +
1371 				  crypto_shash_descsize(shash);
1372 		DMINFO("%s using shash \"%s\"", alg_name, driver_name);
1373 	} else {
1374 		v->ahash_tfm = ahash;
1375 		static_branch_inc(&ahash_enabled);
1376 		v->digest_size = crypto_ahash_digestsize(ahash);
1377 		v->hash_reqsize = sizeof(struct ahash_request) +
1378 				  crypto_ahash_reqsize(ahash);
1379 		DMINFO("%s using ahash \"%s\"", alg_name, driver_name);
1380 	}
1381 	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1382 		ti->error = "Digest size too big";
1383 		return -EINVAL;
1384 	}
1385 	return 0;
1386 }
1387 
verity_setup_salt_and_hashstate(struct dm_verity * v,const char * arg)1388 static int verity_setup_salt_and_hashstate(struct dm_verity *v, const char *arg)
1389 {
1390 	struct dm_target *ti = v->ti;
1391 
1392 	if (strcmp(arg, "-") != 0) {
1393 		v->salt_size = strlen(arg) / 2;
1394 		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1395 		if (!v->salt) {
1396 			ti->error = "Cannot allocate salt";
1397 			return -ENOMEM;
1398 		}
1399 		if (strlen(arg) != v->salt_size * 2 ||
1400 		    hex2bin(v->salt, arg, v->salt_size)) {
1401 			ti->error = "Invalid salt";
1402 			return -EINVAL;
1403 		}
1404 	}
1405 	if (v->shash_tfm) {
1406 		SHASH_DESC_ON_STACK(desc, v->shash_tfm);
1407 		int r;
1408 
1409 		/*
1410 		 * Compute the pre-salted hash state that can be passed to
1411 		 * crypto_shash_import() for each block later.
1412 		 */
1413 		v->initial_hashstate = kmalloc(
1414 			crypto_shash_statesize(v->shash_tfm), GFP_KERNEL);
1415 		if (!v->initial_hashstate) {
1416 			ti->error = "Cannot allocate initial hash state";
1417 			return -ENOMEM;
1418 		}
1419 		desc->tfm = v->shash_tfm;
1420 		r = crypto_shash_init(desc) ?:
1421 		    crypto_shash_update(desc, v->salt, v->salt_size) ?:
1422 		    crypto_shash_export(desc, v->initial_hashstate);
1423 		if (r) {
1424 			ti->error = "Cannot set up initial hash state";
1425 			return r;
1426 		}
1427 	}
1428 	return 0;
1429 }
1430 
1431 /*
1432  * Target parameters:
1433  *	<version>	The current format is version 1.
1434  *			Vsn 0 is compatible with original Chromium OS releases.
1435  *	<data device>
1436  *	<hash device>
1437  *	<data block size>
1438  *	<hash block size>
1439  *	<the number of data blocks>
1440  *	<hash start block>
1441  *	<algorithm>
1442  *	<digest>
1443  *	<salt>		Hex string or "-" if no salt.
1444  */
verity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1445 static int verity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1446 {
1447 	struct dm_verity *v;
1448 	struct dm_verity_sig_opts verify_args = {0};
1449 	struct dm_arg_set as;
1450 	unsigned int num;
1451 	unsigned long long num_ll;
1452 	int r;
1453 	int i;
1454 	sector_t hash_position;
1455 	char dummy;
1456 	char *root_hash_digest_to_validate;
1457 
1458 	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1459 	if (!v) {
1460 		ti->error = "Cannot allocate verity structure";
1461 		return -ENOMEM;
1462 	}
1463 	ti->private = v;
1464 	v->ti = ti;
1465 
1466 	r = verity_fec_ctr_alloc(v);
1467 	if (r)
1468 		goto bad;
1469 
1470 	if ((dm_table_get_mode(ti->table) & ~BLK_OPEN_READ)) {
1471 		ti->error = "Device must be readonly";
1472 		r = -EINVAL;
1473 		goto bad;
1474 	}
1475 
1476 	if (argc < 10) {
1477 		ti->error = "Not enough arguments";
1478 		r = -EINVAL;
1479 		goto bad;
1480 	}
1481 
1482 	/* Parse optional parameters that modify primary args */
1483 	if (argc > 10) {
1484 		as.argc = argc - 10;
1485 		as.argv = argv + 10;
1486 		r = verity_parse_opt_args(&as, v, &verify_args, true);
1487 		if (r < 0)
1488 			goto bad;
1489 	}
1490 
1491 	if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1492 	    num > 1) {
1493 		ti->error = "Invalid version";
1494 		r = -EINVAL;
1495 		goto bad;
1496 	}
1497 	v->version = num;
1498 
1499 	r = dm_get_device(ti, argv[1], BLK_OPEN_READ, &v->data_dev);
1500 	if (r) {
1501 		ti->error = "Data device lookup failed";
1502 		goto bad;
1503 	}
1504 
1505 	r = dm_get_device(ti, argv[2], BLK_OPEN_READ, &v->hash_dev);
1506 	if (r) {
1507 		ti->error = "Hash device lookup failed";
1508 		goto bad;
1509 	}
1510 
1511 	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1512 	    !num || (num & (num - 1)) ||
1513 	    num < bdev_logical_block_size(v->data_dev->bdev) ||
1514 	    num > PAGE_SIZE) {
1515 		ti->error = "Invalid data device block size";
1516 		r = -EINVAL;
1517 		goto bad;
1518 	}
1519 	v->data_dev_block_bits = __ffs(num);
1520 
1521 	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1522 	    !num || (num & (num - 1)) ||
1523 	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
1524 	    num > INT_MAX) {
1525 		ti->error = "Invalid hash device block size";
1526 		r = -EINVAL;
1527 		goto bad;
1528 	}
1529 	v->hash_dev_block_bits = __ffs(num);
1530 
1531 	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1532 	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1533 	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1534 		ti->error = "Invalid data blocks";
1535 		r = -EINVAL;
1536 		goto bad;
1537 	}
1538 	v->data_blocks = num_ll;
1539 
1540 	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1541 		ti->error = "Data device is too small";
1542 		r = -EINVAL;
1543 		goto bad;
1544 	}
1545 
1546 	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1547 	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1548 	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1549 		ti->error = "Invalid hash start";
1550 		r = -EINVAL;
1551 		goto bad;
1552 	}
1553 	v->hash_start = num_ll;
1554 
1555 	r = verity_setup_hash_alg(v, argv[7]);
1556 	if (r)
1557 		goto bad;
1558 
1559 	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1560 	if (!v->root_digest) {
1561 		ti->error = "Cannot allocate root digest";
1562 		r = -ENOMEM;
1563 		goto bad;
1564 	}
1565 	if (strlen(argv[8]) != v->digest_size * 2 ||
1566 	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
1567 		ti->error = "Invalid root digest";
1568 		r = -EINVAL;
1569 		goto bad;
1570 	}
1571 	root_hash_digest_to_validate = argv[8];
1572 
1573 	r = verity_setup_salt_and_hashstate(v, argv[9]);
1574 	if (r)
1575 		goto bad;
1576 
1577 	argv += 10;
1578 	argc -= 10;
1579 
1580 	/* Optional parameters */
1581 	if (argc) {
1582 		as.argc = argc;
1583 		as.argv = argv;
1584 		r = verity_parse_opt_args(&as, v, &verify_args, false);
1585 		if (r < 0)
1586 			goto bad;
1587 	}
1588 
1589 	/* Root hash signature is an optional parameter */
1590 	r = verity_verify_root_hash(root_hash_digest_to_validate,
1591 				    strlen(root_hash_digest_to_validate),
1592 				    verify_args.sig,
1593 				    verify_args.sig_size);
1594 	if (r < 0) {
1595 		ti->error = "Root hash verification failed";
1596 		goto bad;
1597 	}
1598 
1599 	r = verity_init_sig(v, verify_args.sig, verify_args.sig_size);
1600 	if (r < 0) {
1601 		ti->error = "Cannot allocate root digest signature";
1602 		goto bad;
1603 	}
1604 
1605 	v->hash_per_block_bits =
1606 		__fls((1 << v->hash_dev_block_bits) / v->digest_size);
1607 
1608 	v->levels = 0;
1609 	if (v->data_blocks)
1610 		while (v->hash_per_block_bits * v->levels < 64 &&
1611 		       (unsigned long long)(v->data_blocks - 1) >>
1612 		       (v->hash_per_block_bits * v->levels))
1613 			v->levels++;
1614 
1615 	if (v->levels > DM_VERITY_MAX_LEVELS) {
1616 		ti->error = "Too many tree levels";
1617 		r = -E2BIG;
1618 		goto bad;
1619 	}
1620 
1621 	hash_position = v->hash_start;
1622 	for (i = v->levels - 1; i >= 0; i--) {
1623 		sector_t s;
1624 
1625 		v->hash_level_block[i] = hash_position;
1626 		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1627 					>> ((i + 1) * v->hash_per_block_bits);
1628 		if (hash_position + s < hash_position) {
1629 			ti->error = "Hash device offset overflow";
1630 			r = -E2BIG;
1631 			goto bad;
1632 		}
1633 		hash_position += s;
1634 	}
1635 	v->hash_blocks = hash_position;
1636 
1637 	r = mempool_init_page_pool(&v->recheck_pool, 1, 0);
1638 	if (unlikely(r)) {
1639 		ti->error = "Cannot allocate mempool";
1640 		goto bad;
1641 	}
1642 
1643 	v->io = dm_io_client_create();
1644 	if (IS_ERR(v->io)) {
1645 		r = PTR_ERR(v->io);
1646 		v->io = NULL;
1647 		ti->error = "Cannot allocate dm io";
1648 		goto bad;
1649 	}
1650 
1651 	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1652 		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1653 		dm_bufio_alloc_callback, NULL,
1654 		v->use_bh_wq ? DM_BUFIO_CLIENT_NO_SLEEP : 0);
1655 	if (IS_ERR(v->bufio)) {
1656 		ti->error = "Cannot initialize dm-bufio";
1657 		r = PTR_ERR(v->bufio);
1658 		v->bufio = NULL;
1659 		goto bad;
1660 	}
1661 
1662 	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1663 		ti->error = "Hash device is too small";
1664 		r = -E2BIG;
1665 		goto bad;
1666 	}
1667 
1668 	/*
1669 	 * Using WQ_HIGHPRI improves throughput and completion latency by
1670 	 * reducing wait times when reading from a dm-verity device.
1671 	 *
1672 	 * Also as required for the "try_verify_in_tasklet" feature: WQ_HIGHPRI
1673 	 * allows verify_wq to preempt softirq since verification in BH workqueue
1674 	 * will fall-back to using it for error handling (or if the bufio cache
1675 	 * doesn't have required hashes).
1676 	 */
1677 	v->verify_wq = alloc_workqueue("kverityd", WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1678 	if (!v->verify_wq) {
1679 		ti->error = "Cannot allocate workqueue";
1680 		r = -ENOMEM;
1681 		goto bad;
1682 	}
1683 
1684 	ti->per_io_data_size = sizeof(struct dm_verity_io) + v->hash_reqsize;
1685 
1686 	r = verity_fec_ctr(v);
1687 	if (r)
1688 		goto bad;
1689 
1690 	ti->per_io_data_size = roundup(ti->per_io_data_size,
1691 				       __alignof__(struct dm_verity_io));
1692 
1693 	verity_verify_sig_opts_cleanup(&verify_args);
1694 
1695 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
1696 
1697 	return 0;
1698 
1699 bad:
1700 
1701 	verity_verify_sig_opts_cleanup(&verify_args);
1702 	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
1703 	verity_dtr(ti);
1704 
1705 	return r;
1706 }
1707 
1708 /*
1709  * Get the verity mode (error behavior) of a verity target.
1710  *
1711  * Returns the verity mode of the target, or -EINVAL if 'ti' is not a verity
1712  * target.
1713  */
dm_verity_get_mode(struct dm_target * ti)1714 int dm_verity_get_mode(struct dm_target *ti)
1715 {
1716 	struct dm_verity *v = ti->private;
1717 
1718 	if (!dm_is_verity_target(ti))
1719 		return -EINVAL;
1720 
1721 	return v->mode;
1722 }
1723 
1724 /*
1725  * Get the root digest of a verity target.
1726  *
1727  * Returns a copy of the root digest, the caller is responsible for
1728  * freeing the memory of the digest.
1729  */
dm_verity_get_root_digest(struct dm_target * ti,u8 ** root_digest,unsigned int * digest_size)1730 int dm_verity_get_root_digest(struct dm_target *ti, u8 **root_digest, unsigned int *digest_size)
1731 {
1732 	struct dm_verity *v = ti->private;
1733 
1734 	if (!dm_is_verity_target(ti))
1735 		return -EINVAL;
1736 
1737 	*root_digest = kmemdup(v->root_digest, v->digest_size, GFP_KERNEL);
1738 	if (*root_digest == NULL)
1739 		return -ENOMEM;
1740 
1741 	*digest_size = v->digest_size;
1742 
1743 	return 0;
1744 }
1745 
1746 #ifdef CONFIG_SECURITY
1747 
1748 #ifdef CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG
1749 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1750 static int verity_security_set_signature(struct block_device *bdev,
1751 					 struct dm_verity *v)
1752 {
1753 	/*
1754 	 * if the dm-verity target is unsigned, v->root_digest_sig will
1755 	 * be NULL, and the hook call is still required to let LSMs mark
1756 	 * the device as unsigned. This information is crucial for LSMs to
1757 	 * block operations such as execution on unsigned files
1758 	 */
1759 	return security_bdev_setintegrity(bdev,
1760 					  LSM_INT_DMVERITY_SIG_VALID,
1761 					  v->root_digest_sig,
1762 					  v->sig_size);
1763 }
1764 
1765 #else
1766 
verity_security_set_signature(struct block_device * bdev,struct dm_verity * v)1767 static inline int verity_security_set_signature(struct block_device *bdev,
1768 						struct dm_verity *v)
1769 {
1770 	return 0;
1771 }
1772 
1773 #endif /* CONFIG_DM_VERITY_VERIFY_ROOTHASH_SIG */
1774 
1775 /*
1776  * Expose verity target's root hash and signature data to LSMs before resume.
1777  *
1778  * Returns 0 on success, or -ENOMEM if the system is out of memory.
1779  */
verity_preresume(struct dm_target * ti)1780 static int verity_preresume(struct dm_target *ti)
1781 {
1782 	struct block_device *bdev;
1783 	struct dm_verity_digest root_digest;
1784 	struct dm_verity *v;
1785 	int r;
1786 
1787 	v = ti->private;
1788 	bdev = dm_disk(dm_table_get_md(ti->table))->part0;
1789 	root_digest.digest = v->root_digest;
1790 	root_digest.digest_len = v->digest_size;
1791 	if (static_branch_unlikely(&ahash_enabled) && !v->shash_tfm)
1792 		root_digest.alg = crypto_ahash_alg_name(v->ahash_tfm);
1793 	else
1794 		root_digest.alg = crypto_shash_alg_name(v->shash_tfm);
1795 
1796 	r = security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, &root_digest,
1797 				       sizeof(root_digest));
1798 	if (r)
1799 		return r;
1800 
1801 	r =  verity_security_set_signature(bdev, v);
1802 	if (r)
1803 		goto bad;
1804 
1805 	return 0;
1806 
1807 bad:
1808 
1809 	security_bdev_setintegrity(bdev, LSM_INT_DMVERITY_ROOTHASH, NULL, 0);
1810 
1811 	return r;
1812 }
1813 
1814 #endif /* CONFIG_SECURITY */
1815 
1816 static struct target_type verity_target = {
1817 	.name		= "verity",
1818 /* Note: the LSMs depend on the singleton and immutable features */
1819 	.features	= DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE,
1820 	.version	= {1, 11, 0},
1821 	.module		= THIS_MODULE,
1822 	.ctr		= verity_ctr,
1823 	.dtr		= verity_dtr,
1824 	.map		= verity_map,
1825 	.postsuspend	= verity_postsuspend,
1826 	.status		= verity_status,
1827 	.prepare_ioctl	= verity_prepare_ioctl,
1828 	.iterate_devices = verity_iterate_devices,
1829 	.io_hints	= verity_io_hints,
1830 #ifdef CONFIG_SECURITY
1831 	.preresume	= verity_preresume,
1832 #endif /* CONFIG_SECURITY */
1833 };
1834 module_dm(verity);
1835 
1836 /*
1837  * Check whether a DM target is a verity target.
1838  */
dm_is_verity_target(struct dm_target * ti)1839 bool dm_is_verity_target(struct dm_target *ti)
1840 {
1841 	return ti->type == &verity_target;
1842 }
1843 
1844 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1845 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1846 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1847 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1848 MODULE_LICENSE("GPL");
1849