xref: /linux/tools/testing/selftests/kvm/include/x86/processor.h (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2018, Google LLC.
4  */
5 
6 #ifndef SELFTEST_KVM_PROCESSOR_H
7 #define SELFTEST_KVM_PROCESSOR_H
8 
9 #include <assert.h>
10 #include <stdint.h>
11 #include <syscall.h>
12 
13 #include <asm/msr-index.h>
14 #include <asm/prctl.h>
15 
16 #include <linux/kvm_para.h>
17 #include <linux/stringify.h>
18 
19 #include "kvm_util.h"
20 #include "ucall_common.h"
21 
22 extern bool host_cpu_is_intel;
23 extern bool host_cpu_is_amd;
24 extern uint64_t guest_tsc_khz;
25 
26 #ifndef MAX_NR_CPUID_ENTRIES
27 #define MAX_NR_CPUID_ENTRIES 100
28 #endif
29 
30 #define NONCANONICAL 0xaaaaaaaaaaaaaaaaull
31 
32 /* Forced emulation prefix, used to invoke the emulator unconditionally. */
33 #define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
34 
35 #define NMI_VECTOR		0x02
36 
37 #define X86_EFLAGS_FIXED	 (1u << 1)
38 
39 #define X86_CR4_VME		(1ul << 0)
40 #define X86_CR4_PVI		(1ul << 1)
41 #define X86_CR4_TSD		(1ul << 2)
42 #define X86_CR4_DE		(1ul << 3)
43 #define X86_CR4_PSE		(1ul << 4)
44 #define X86_CR4_PAE		(1ul << 5)
45 #define X86_CR4_MCE		(1ul << 6)
46 #define X86_CR4_PGE		(1ul << 7)
47 #define X86_CR4_PCE		(1ul << 8)
48 #define X86_CR4_OSFXSR		(1ul << 9)
49 #define X86_CR4_OSXMMEXCPT	(1ul << 10)
50 #define X86_CR4_UMIP		(1ul << 11)
51 #define X86_CR4_LA57		(1ul << 12)
52 #define X86_CR4_VMXE		(1ul << 13)
53 #define X86_CR4_SMXE		(1ul << 14)
54 #define X86_CR4_FSGSBASE	(1ul << 16)
55 #define X86_CR4_PCIDE		(1ul << 17)
56 #define X86_CR4_OSXSAVE		(1ul << 18)
57 #define X86_CR4_SMEP		(1ul << 20)
58 #define X86_CR4_SMAP		(1ul << 21)
59 #define X86_CR4_PKE		(1ul << 22)
60 
61 struct xstate_header {
62 	u64				xstate_bv;
63 	u64				xcomp_bv;
64 	u64				reserved[6];
65 } __attribute__((packed));
66 
67 struct xstate {
68 	u8				i387[512];
69 	struct xstate_header		header;
70 	u8				extended_state_area[0];
71 } __attribute__ ((packed, aligned (64)));
72 
73 #define XFEATURE_MASK_FP		BIT_ULL(0)
74 #define XFEATURE_MASK_SSE		BIT_ULL(1)
75 #define XFEATURE_MASK_YMM		BIT_ULL(2)
76 #define XFEATURE_MASK_BNDREGS		BIT_ULL(3)
77 #define XFEATURE_MASK_BNDCSR		BIT_ULL(4)
78 #define XFEATURE_MASK_OPMASK		BIT_ULL(5)
79 #define XFEATURE_MASK_ZMM_Hi256		BIT_ULL(6)
80 #define XFEATURE_MASK_Hi16_ZMM		BIT_ULL(7)
81 #define XFEATURE_MASK_PT		BIT_ULL(8)
82 #define XFEATURE_MASK_PKRU		BIT_ULL(9)
83 #define XFEATURE_MASK_PASID		BIT_ULL(10)
84 #define XFEATURE_MASK_CET_USER		BIT_ULL(11)
85 #define XFEATURE_MASK_CET_KERNEL	BIT_ULL(12)
86 #define XFEATURE_MASK_LBR		BIT_ULL(15)
87 #define XFEATURE_MASK_XTILE_CFG		BIT_ULL(17)
88 #define XFEATURE_MASK_XTILE_DATA	BIT_ULL(18)
89 
90 #define XFEATURE_MASK_AVX512		(XFEATURE_MASK_OPMASK | \
91 					 XFEATURE_MASK_ZMM_Hi256 | \
92 					 XFEATURE_MASK_Hi16_ZMM)
93 #define XFEATURE_MASK_XTILE		(XFEATURE_MASK_XTILE_DATA | \
94 					 XFEATURE_MASK_XTILE_CFG)
95 
96 /* Note, these are ordered alphabetically to match kvm_cpuid_entry2.  Eww. */
97 enum cpuid_output_regs {
98 	KVM_CPUID_EAX,
99 	KVM_CPUID_EBX,
100 	KVM_CPUID_ECX,
101 	KVM_CPUID_EDX
102 };
103 
104 /*
105  * Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
106  * passed by value with no overhead.
107  */
108 struct kvm_x86_cpu_feature {
109 	u32	function;
110 	u16	index;
111 	u8	reg;
112 	u8	bit;
113 };
114 #define	KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit)				\
115 ({										\
116 	struct kvm_x86_cpu_feature feature = {					\
117 		.function = fn,							\
118 		.index = idx,							\
119 		.reg = KVM_CPUID_##gpr,						\
120 		.bit = __bit,							\
121 	};									\
122 										\
123 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
124 			  (fn & 0xc0000000) == 0x40000000 ||			\
125 			  (fn & 0xc0000000) == 0x80000000 ||			\
126 			  (fn & 0xc0000000) == 0xc0000000);			\
127 	kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE));	\
128 	feature;								\
129 })
130 
131 /*
132  * Basic Leafs, a.k.a. Intel defined
133  */
134 #define	X86_FEATURE_MWAIT		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
135 #define	X86_FEATURE_VMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
136 #define	X86_FEATURE_SMX			KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
137 #define	X86_FEATURE_PDCM		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
138 #define	X86_FEATURE_PCID		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
139 #define X86_FEATURE_X2APIC		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
140 #define	X86_FEATURE_MOVBE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
141 #define	X86_FEATURE_TSC_DEADLINE_TIMER	KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
142 #define	X86_FEATURE_XSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
143 #define	X86_FEATURE_OSXSAVE		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
144 #define	X86_FEATURE_RDRAND		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
145 #define	X86_FEATURE_HYPERVISOR		KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
146 #define X86_FEATURE_PAE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
147 #define	X86_FEATURE_MCE			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
148 #define	X86_FEATURE_APIC		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
149 #define	X86_FEATURE_CLFLUSH		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
150 #define	X86_FEATURE_XMM			KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
151 #define	X86_FEATURE_XMM2		KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
152 #define	X86_FEATURE_FSGSBASE		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
153 #define	X86_FEATURE_TSC_ADJUST		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
154 #define	X86_FEATURE_SGX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
155 #define	X86_FEATURE_HLE			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
156 #define	X86_FEATURE_SMEP	        KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
157 #define	X86_FEATURE_INVPCID		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
158 #define	X86_FEATURE_RTM			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
159 #define	X86_FEATURE_MPX			KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
160 #define	X86_FEATURE_SMAP		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
161 #define	X86_FEATURE_PCOMMIT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
162 #define	X86_FEATURE_CLFLUSHOPT		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
163 #define	X86_FEATURE_CLWB		KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
164 #define	X86_FEATURE_UMIP		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
165 #define	X86_FEATURE_PKU			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
166 #define	X86_FEATURE_OSPKE		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
167 #define	X86_FEATURE_LA57		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
168 #define	X86_FEATURE_RDPID		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
169 #define	X86_FEATURE_SGX_LC		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
170 #define	X86_FEATURE_SHSTK		KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
171 #define	X86_FEATURE_IBT			KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
172 #define	X86_FEATURE_AMX_TILE		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
173 #define	X86_FEATURE_SPEC_CTRL		KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
174 #define	X86_FEATURE_ARCH_CAPABILITIES	KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
175 #define	X86_FEATURE_PKS			KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
176 #define	X86_FEATURE_XTILECFG		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
177 #define	X86_FEATURE_XTILEDATA		KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
178 #define	X86_FEATURE_XSAVES		KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
179 #define	X86_FEATURE_XFD			KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
180 #define X86_FEATURE_XTILEDATA_XFD	KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
181 
182 /*
183  * Extended Leafs, a.k.a. AMD defined
184  */
185 #define	X86_FEATURE_SVM			KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
186 #define	X86_FEATURE_PERFCTR_CORE	KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 23)
187 #define	X86_FEATURE_PERFCTR_NB		KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 24)
188 #define	X86_FEATURE_PERFCTR_LLC		KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 28)
189 #define	X86_FEATURE_NX			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
190 #define	X86_FEATURE_GBPAGES		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
191 #define	X86_FEATURE_RDTSCP		KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
192 #define	X86_FEATURE_LM			KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
193 #define	X86_FEATURE_INVTSC		KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
194 #define	X86_FEATURE_RDPRU		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
195 #define	X86_FEATURE_AMD_IBPB		KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
196 #define	X86_FEATURE_NPT			KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
197 #define	X86_FEATURE_LBRV		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
198 #define	X86_FEATURE_NRIPS		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
199 #define X86_FEATURE_TSCRATEMSR          KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
200 #define X86_FEATURE_PAUSEFILTER         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
201 #define X86_FEATURE_PFTHRESHOLD         KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
202 #define	X86_FEATURE_VGIF		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
203 #define X86_FEATURE_IDLE_HLT		KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 30)
204 #define X86_FEATURE_SEV			KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
205 #define X86_FEATURE_SEV_ES		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
206 #define X86_FEATURE_SEV_SNP		KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 4)
207 #define	X86_FEATURE_PERFMON_V2		KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 0)
208 #define	X86_FEATURE_LBR_PMC_FREEZE	KVM_X86_CPU_FEATURE(0x80000022, 0, EAX, 2)
209 
210 /*
211  * KVM defined paravirt features.
212  */
213 #define X86_FEATURE_KVM_CLOCKSOURCE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
214 #define X86_FEATURE_KVM_NOP_IO_DELAY	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
215 #define X86_FEATURE_KVM_MMU_OP		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
216 #define X86_FEATURE_KVM_CLOCKSOURCE2	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
217 #define X86_FEATURE_KVM_ASYNC_PF	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
218 #define X86_FEATURE_KVM_STEAL_TIME	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
219 #define X86_FEATURE_KVM_PV_EOI		KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
220 #define X86_FEATURE_KVM_PV_UNHALT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
221 /* Bit 8 apparently isn't used?!?! */
222 #define X86_FEATURE_KVM_PV_TLB_FLUSH	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
223 #define X86_FEATURE_KVM_ASYNC_PF_VMEXIT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
224 #define X86_FEATURE_KVM_PV_SEND_IPI	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
225 #define X86_FEATURE_KVM_POLL_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
226 #define X86_FEATURE_KVM_PV_SCHED_YIELD	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
227 #define X86_FEATURE_KVM_ASYNC_PF_INT	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
228 #define X86_FEATURE_KVM_MSI_EXT_DEST_ID	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
229 #define X86_FEATURE_KVM_HC_MAP_GPA_RANGE	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
230 #define X86_FEATURE_KVM_MIGRATION_CONTROL	KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
231 
232 /*
233  * Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
234  * value/property as opposed to a single-bit feature.  Again, pack the info
235  * into a 64-bit value to pass by value with no overhead.
236  */
237 struct kvm_x86_cpu_property {
238 	u32	function;
239 	u8	index;
240 	u8	reg;
241 	u8	lo_bit;
242 	u8	hi_bit;
243 };
244 #define	KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit)			\
245 ({										\
246 	struct kvm_x86_cpu_property property = {				\
247 		.function = fn,							\
248 		.index = idx,							\
249 		.reg = KVM_CPUID_##gpr,						\
250 		.lo_bit = low_bit,						\
251 		.hi_bit = high_bit,						\
252 	};									\
253 										\
254 	kvm_static_assert(low_bit < high_bit);					\
255 	kvm_static_assert((fn & 0xc0000000) == 0 ||				\
256 			  (fn & 0xc0000000) == 0x40000000 ||			\
257 			  (fn & 0xc0000000) == 0x80000000 ||			\
258 			  (fn & 0xc0000000) == 0xc0000000);			\
259 	kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE));	\
260 	property;								\
261 })
262 
263 #define X86_PROPERTY_MAX_BASIC_LEAF		KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
264 #define X86_PROPERTY_PMU_VERSION		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
265 #define X86_PROPERTY_PMU_NR_GP_COUNTERS		KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
266 #define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
267 #define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH	KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
268 #define X86_PROPERTY_PMU_EVENTS_MASK		KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
269 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK	KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
270 #define X86_PROPERTY_PMU_NR_FIXED_COUNTERS	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
271 #define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH	KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
272 
273 #define X86_PROPERTY_SUPPORTED_XCR0_LO		KVM_X86_CPU_PROPERTY(0xd,  0, EAX,  0, 31)
274 #define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0	KVM_X86_CPU_PROPERTY(0xd,  0, EBX,  0, 31)
275 #define X86_PROPERTY_XSTATE_MAX_SIZE		KVM_X86_CPU_PROPERTY(0xd,  0, ECX,  0, 31)
276 #define X86_PROPERTY_SUPPORTED_XCR0_HI		KVM_X86_CPU_PROPERTY(0xd,  0, EDX,  0, 31)
277 
278 #define X86_PROPERTY_XSTATE_TILE_SIZE		KVM_X86_CPU_PROPERTY(0xd, 18, EAX,  0, 31)
279 #define X86_PROPERTY_XSTATE_TILE_OFFSET		KVM_X86_CPU_PROPERTY(0xd, 18, EBX,  0, 31)
280 #define X86_PROPERTY_AMX_MAX_PALETTE_TABLES	KVM_X86_CPU_PROPERTY(0x1d, 0, EAX,  0, 31)
281 #define X86_PROPERTY_AMX_TOTAL_TILE_BYTES	KVM_X86_CPU_PROPERTY(0x1d, 1, EAX,  0, 15)
282 #define X86_PROPERTY_AMX_BYTES_PER_TILE		KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
283 #define X86_PROPERTY_AMX_BYTES_PER_ROW		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0,  15)
284 #define X86_PROPERTY_AMX_NR_TILE_REGS		KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
285 #define X86_PROPERTY_AMX_MAX_ROWS		KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0,  15)
286 
287 #define X86_PROPERTY_MAX_KVM_LEAF		KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
288 
289 #define X86_PROPERTY_MAX_EXT_LEAF		KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
290 #define X86_PROPERTY_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
291 #define X86_PROPERTY_MAX_VIRT_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
292 #define X86_PROPERTY_GUEST_MAX_PHY_ADDR		KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 16, 23)
293 #define X86_PROPERTY_SEV_C_BIT			KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
294 #define X86_PROPERTY_PHYS_ADDR_REDUCTION	KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
295 #define X86_PROPERTY_NR_PERFCTR_CORE		KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 0, 3)
296 #define X86_PROPERTY_NR_PERFCTR_NB		KVM_X86_CPU_PROPERTY(0x80000022, 0, EBX, 10, 15)
297 
298 #define X86_PROPERTY_MAX_CENTAUR_LEAF		KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
299 
300 /*
301  * Intel's architectural PMU events are bizarre.  They have a "feature" bit
302  * that indicates the feature is _not_ supported, and a property that states
303  * the length of the bit mask of unsupported features.  A feature is supported
304  * if the size of the bit mask is larger than the "unavailable" bit, and said
305  * bit is not set.  Fixed counters also bizarre enumeration, but inverted from
306  * arch events for general purpose counters.  Fixed counters are supported if a
307  * feature flag is set **OR** the total number of fixed counters is greater
308  * than index of the counter.
309  *
310  * Wrap the events for general purpose and fixed counters to simplify checking
311  * whether or not a given architectural event is supported.
312  */
313 struct kvm_x86_pmu_feature {
314 	struct kvm_x86_cpu_feature f;
315 };
316 #define	KVM_X86_PMU_FEATURE(__reg, __bit)				\
317 ({									\
318 	struct kvm_x86_pmu_feature feature = {				\
319 		.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit),		\
320 	};								\
321 									\
322 	kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX ||		\
323 			  KVM_CPUID_##__reg == KVM_CPUID_ECX);		\
324 	feature;							\
325 })
326 
327 #define X86_PMU_FEATURE_CPU_CYCLES			KVM_X86_PMU_FEATURE(EBX, 0)
328 #define X86_PMU_FEATURE_INSNS_RETIRED			KVM_X86_PMU_FEATURE(EBX, 1)
329 #define X86_PMU_FEATURE_REFERENCE_CYCLES		KVM_X86_PMU_FEATURE(EBX, 2)
330 #define X86_PMU_FEATURE_LLC_REFERENCES			KVM_X86_PMU_FEATURE(EBX, 3)
331 #define X86_PMU_FEATURE_LLC_MISSES			KVM_X86_PMU_FEATURE(EBX, 4)
332 #define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED		KVM_X86_PMU_FEATURE(EBX, 5)
333 #define X86_PMU_FEATURE_BRANCHES_MISPREDICTED		KVM_X86_PMU_FEATURE(EBX, 6)
334 #define X86_PMU_FEATURE_TOPDOWN_SLOTS			KVM_X86_PMU_FEATURE(EBX, 7)
335 
336 #define X86_PMU_FEATURE_INSNS_RETIRED_FIXED		KVM_X86_PMU_FEATURE(ECX, 0)
337 #define X86_PMU_FEATURE_CPU_CYCLES_FIXED		KVM_X86_PMU_FEATURE(ECX, 1)
338 #define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED	KVM_X86_PMU_FEATURE(ECX, 2)
339 #define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED		KVM_X86_PMU_FEATURE(ECX, 3)
340 
x86_family(unsigned int eax)341 static inline unsigned int x86_family(unsigned int eax)
342 {
343 	unsigned int x86;
344 
345 	x86 = (eax >> 8) & 0xf;
346 
347 	if (x86 == 0xf)
348 		x86 += (eax >> 20) & 0xff;
349 
350 	return x86;
351 }
352 
x86_model(unsigned int eax)353 static inline unsigned int x86_model(unsigned int eax)
354 {
355 	return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
356 }
357 
358 /* Page table bitfield declarations */
359 #define PTE_PRESENT_MASK        BIT_ULL(0)
360 #define PTE_WRITABLE_MASK       BIT_ULL(1)
361 #define PTE_USER_MASK           BIT_ULL(2)
362 #define PTE_ACCESSED_MASK       BIT_ULL(5)
363 #define PTE_DIRTY_MASK          BIT_ULL(6)
364 #define PTE_LARGE_MASK          BIT_ULL(7)
365 #define PTE_GLOBAL_MASK         BIT_ULL(8)
366 #define PTE_NX_MASK             BIT_ULL(63)
367 
368 #define PHYSICAL_PAGE_MASK      GENMASK_ULL(51, 12)
369 
370 #define PAGE_SHIFT		12
371 #define PAGE_SIZE		(1ULL << PAGE_SHIFT)
372 #define PAGE_MASK		(~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
373 
374 #define HUGEPAGE_SHIFT(x)	(PAGE_SHIFT + (((x) - 1) * 9))
375 #define HUGEPAGE_SIZE(x)	(1UL << HUGEPAGE_SHIFT(x))
376 #define HUGEPAGE_MASK(x)	(~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
377 
378 #define PTE_GET_PA(pte)		((pte) & PHYSICAL_PAGE_MASK)
379 #define PTE_GET_PFN(pte)        (PTE_GET_PA(pte) >> PAGE_SHIFT)
380 
381 /* General Registers in 64-Bit Mode */
382 struct gpr64_regs {
383 	u64 rax;
384 	u64 rcx;
385 	u64 rdx;
386 	u64 rbx;
387 	u64 rsp;
388 	u64 rbp;
389 	u64 rsi;
390 	u64 rdi;
391 	u64 r8;
392 	u64 r9;
393 	u64 r10;
394 	u64 r11;
395 	u64 r12;
396 	u64 r13;
397 	u64 r14;
398 	u64 r15;
399 };
400 
401 struct desc64 {
402 	uint16_t limit0;
403 	uint16_t base0;
404 	unsigned base1:8, type:4, s:1, dpl:2, p:1;
405 	unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
406 	uint32_t base3;
407 	uint32_t zero1;
408 } __attribute__((packed));
409 
410 struct desc_ptr {
411 	uint16_t size;
412 	uint64_t address;
413 } __attribute__((packed));
414 
415 struct kvm_x86_state {
416 	struct kvm_xsave *xsave;
417 	struct kvm_vcpu_events events;
418 	struct kvm_mp_state mp_state;
419 	struct kvm_regs regs;
420 	struct kvm_xcrs xcrs;
421 	struct kvm_sregs sregs;
422 	struct kvm_debugregs debugregs;
423 	union {
424 		struct kvm_nested_state nested;
425 		char nested_[16384];
426 	};
427 	struct kvm_msrs msrs;
428 };
429 
get_desc64_base(const struct desc64 * desc)430 static inline uint64_t get_desc64_base(const struct desc64 *desc)
431 {
432 	return ((uint64_t)desc->base3 << 32) |
433 		(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
434 }
435 
rdtsc(void)436 static inline uint64_t rdtsc(void)
437 {
438 	uint32_t eax, edx;
439 	uint64_t tsc_val;
440 	/*
441 	 * The lfence is to wait (on Intel CPUs) until all previous
442 	 * instructions have been executed. If software requires RDTSC to be
443 	 * executed prior to execution of any subsequent instruction, it can
444 	 * execute LFENCE immediately after RDTSC
445 	 */
446 	__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
447 	tsc_val = ((uint64_t)edx) << 32 | eax;
448 	return tsc_val;
449 }
450 
rdtscp(uint32_t * aux)451 static inline uint64_t rdtscp(uint32_t *aux)
452 {
453 	uint32_t eax, edx;
454 
455 	__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
456 	return ((uint64_t)edx) << 32 | eax;
457 }
458 
rdmsr(uint32_t msr)459 static inline uint64_t rdmsr(uint32_t msr)
460 {
461 	uint32_t a, d;
462 
463 	__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
464 
465 	return a | ((uint64_t) d << 32);
466 }
467 
wrmsr(uint32_t msr,uint64_t value)468 static inline void wrmsr(uint32_t msr, uint64_t value)
469 {
470 	uint32_t a = value;
471 	uint32_t d = value >> 32;
472 
473 	__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
474 }
475 
476 
inw(uint16_t port)477 static inline uint16_t inw(uint16_t port)
478 {
479 	uint16_t tmp;
480 
481 	__asm__ __volatile__("in %%dx, %%ax"
482 		: /* output */ "=a" (tmp)
483 		: /* input */ "d" (port));
484 
485 	return tmp;
486 }
487 
get_es(void)488 static inline uint16_t get_es(void)
489 {
490 	uint16_t es;
491 
492 	__asm__ __volatile__("mov %%es, %[es]"
493 			     : /* output */ [es]"=rm"(es));
494 	return es;
495 }
496 
get_cs(void)497 static inline uint16_t get_cs(void)
498 {
499 	uint16_t cs;
500 
501 	__asm__ __volatile__("mov %%cs, %[cs]"
502 			     : /* output */ [cs]"=rm"(cs));
503 	return cs;
504 }
505 
get_ss(void)506 static inline uint16_t get_ss(void)
507 {
508 	uint16_t ss;
509 
510 	__asm__ __volatile__("mov %%ss, %[ss]"
511 			     : /* output */ [ss]"=rm"(ss));
512 	return ss;
513 }
514 
get_ds(void)515 static inline uint16_t get_ds(void)
516 {
517 	uint16_t ds;
518 
519 	__asm__ __volatile__("mov %%ds, %[ds]"
520 			     : /* output */ [ds]"=rm"(ds));
521 	return ds;
522 }
523 
get_fs(void)524 static inline uint16_t get_fs(void)
525 {
526 	uint16_t fs;
527 
528 	__asm__ __volatile__("mov %%fs, %[fs]"
529 			     : /* output */ [fs]"=rm"(fs));
530 	return fs;
531 }
532 
get_gs(void)533 static inline uint16_t get_gs(void)
534 {
535 	uint16_t gs;
536 
537 	__asm__ __volatile__("mov %%gs, %[gs]"
538 			     : /* output */ [gs]"=rm"(gs));
539 	return gs;
540 }
541 
get_tr(void)542 static inline uint16_t get_tr(void)
543 {
544 	uint16_t tr;
545 
546 	__asm__ __volatile__("str %[tr]"
547 			     : /* output */ [tr]"=rm"(tr));
548 	return tr;
549 }
550 
get_cr0(void)551 static inline uint64_t get_cr0(void)
552 {
553 	uint64_t cr0;
554 
555 	__asm__ __volatile__("mov %%cr0, %[cr0]"
556 			     : /* output */ [cr0]"=r"(cr0));
557 	return cr0;
558 }
559 
get_cr3(void)560 static inline uint64_t get_cr3(void)
561 {
562 	uint64_t cr3;
563 
564 	__asm__ __volatile__("mov %%cr3, %[cr3]"
565 			     : /* output */ [cr3]"=r"(cr3));
566 	return cr3;
567 }
568 
get_cr4(void)569 static inline uint64_t get_cr4(void)
570 {
571 	uint64_t cr4;
572 
573 	__asm__ __volatile__("mov %%cr4, %[cr4]"
574 			     : /* output */ [cr4]"=r"(cr4));
575 	return cr4;
576 }
577 
set_cr4(uint64_t val)578 static inline void set_cr4(uint64_t val)
579 {
580 	__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
581 }
582 
set_idt(const struct desc_ptr * idt_desc)583 static inline void set_idt(const struct desc_ptr *idt_desc)
584 {
585 	__asm__ __volatile__("lidt %0"::"m"(*idt_desc));
586 }
587 
xgetbv(u32 index)588 static inline u64 xgetbv(u32 index)
589 {
590 	u32 eax, edx;
591 
592 	__asm__ __volatile__("xgetbv;"
593 		     : "=a" (eax), "=d" (edx)
594 		     : "c" (index));
595 	return eax | ((u64)edx << 32);
596 }
597 
xsetbv(u32 index,u64 value)598 static inline void xsetbv(u32 index, u64 value)
599 {
600 	u32 eax = value;
601 	u32 edx = value >> 32;
602 
603 	__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
604 }
605 
wrpkru(u32 pkru)606 static inline void wrpkru(u32 pkru)
607 {
608 	/* Note, ECX and EDX are architecturally required to be '0'. */
609 	asm volatile(".byte 0x0f,0x01,0xef\n\t"
610 		     : : "a" (pkru), "c"(0), "d"(0));
611 }
612 
get_gdt(void)613 static inline struct desc_ptr get_gdt(void)
614 {
615 	struct desc_ptr gdt;
616 	__asm__ __volatile__("sgdt %[gdt]"
617 			     : /* output */ [gdt]"=m"(gdt));
618 	return gdt;
619 }
620 
get_idt(void)621 static inline struct desc_ptr get_idt(void)
622 {
623 	struct desc_ptr idt;
624 	__asm__ __volatile__("sidt %[idt]"
625 			     : /* output */ [idt]"=m"(idt));
626 	return idt;
627 }
628 
outl(uint16_t port,uint32_t value)629 static inline void outl(uint16_t port, uint32_t value)
630 {
631 	__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
632 }
633 
__cpuid(uint32_t function,uint32_t index,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)634 static inline void __cpuid(uint32_t function, uint32_t index,
635 			   uint32_t *eax, uint32_t *ebx,
636 			   uint32_t *ecx, uint32_t *edx)
637 {
638 	*eax = function;
639 	*ecx = index;
640 
641 	asm volatile("cpuid"
642 	    : "=a" (*eax),
643 	      "=b" (*ebx),
644 	      "=c" (*ecx),
645 	      "=d" (*edx)
646 	    : "0" (*eax), "2" (*ecx)
647 	    : "memory");
648 }
649 
cpuid(uint32_t function,uint32_t * eax,uint32_t * ebx,uint32_t * ecx,uint32_t * edx)650 static inline void cpuid(uint32_t function,
651 			 uint32_t *eax, uint32_t *ebx,
652 			 uint32_t *ecx, uint32_t *edx)
653 {
654 	return __cpuid(function, 0, eax, ebx, ecx, edx);
655 }
656 
this_cpu_fms(void)657 static inline uint32_t this_cpu_fms(void)
658 {
659 	uint32_t eax, ebx, ecx, edx;
660 
661 	cpuid(1, &eax, &ebx, &ecx, &edx);
662 	return eax;
663 }
664 
this_cpu_family(void)665 static inline uint32_t this_cpu_family(void)
666 {
667 	return x86_family(this_cpu_fms());
668 }
669 
this_cpu_model(void)670 static inline uint32_t this_cpu_model(void)
671 {
672 	return x86_model(this_cpu_fms());
673 }
674 
this_cpu_vendor_string_is(const char * vendor)675 static inline bool this_cpu_vendor_string_is(const char *vendor)
676 {
677 	const uint32_t *chunk = (const uint32_t *)vendor;
678 	uint32_t eax, ebx, ecx, edx;
679 
680 	cpuid(0, &eax, &ebx, &ecx, &edx);
681 	return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
682 }
683 
this_cpu_is_intel(void)684 static inline bool this_cpu_is_intel(void)
685 {
686 	return this_cpu_vendor_string_is("GenuineIntel");
687 }
688 
689 /*
690  * Exclude early K5 samples with a vendor string of "AMDisbetter!"
691  */
this_cpu_is_amd(void)692 static inline bool this_cpu_is_amd(void)
693 {
694 	return this_cpu_vendor_string_is("AuthenticAMD");
695 }
696 
__this_cpu_has(uint32_t function,uint32_t index,uint8_t reg,uint8_t lo,uint8_t hi)697 static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
698 				      uint8_t reg, uint8_t lo, uint8_t hi)
699 {
700 	uint32_t gprs[4];
701 
702 	__cpuid(function, index,
703 		&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
704 		&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
705 
706 	return (gprs[reg] & GENMASK(hi, lo)) >> lo;
707 }
708 
this_cpu_has(struct kvm_x86_cpu_feature feature)709 static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
710 {
711 	return __this_cpu_has(feature.function, feature.index,
712 			      feature.reg, feature.bit, feature.bit);
713 }
714 
this_cpu_property(struct kvm_x86_cpu_property property)715 static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
716 {
717 	return __this_cpu_has(property.function, property.index,
718 			      property.reg, property.lo_bit, property.hi_bit);
719 }
720 
this_cpu_has_p(struct kvm_x86_cpu_property property)721 static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
722 {
723 	uint32_t max_leaf;
724 
725 	switch (property.function & 0xc0000000) {
726 	case 0:
727 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
728 		break;
729 	case 0x40000000:
730 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
731 		break;
732 	case 0x80000000:
733 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
734 		break;
735 	case 0xc0000000:
736 		max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
737 	}
738 	return max_leaf >= property.function;
739 }
740 
this_pmu_has(struct kvm_x86_pmu_feature feature)741 static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
742 {
743 	uint32_t nr_bits;
744 
745 	if (feature.f.reg == KVM_CPUID_EBX) {
746 		nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
747 		return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
748 	}
749 
750 	GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
751 	nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
752 	return nr_bits > feature.f.bit || this_cpu_has(feature.f);
753 }
754 
this_cpu_supported_xcr0(void)755 static __always_inline uint64_t this_cpu_supported_xcr0(void)
756 {
757 	if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
758 		return 0;
759 
760 	return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
761 	       ((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
762 }
763 
764 typedef u32		__attribute__((vector_size(16))) sse128_t;
765 #define __sse128_u	union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
766 #define sse128_lo(x)	({ __sse128_u t; t.vec = x; t.as_u64[0]; })
767 #define sse128_hi(x)	({ __sse128_u t; t.vec = x; t.as_u64[1]; })
768 
read_sse_reg(int reg,sse128_t * data)769 static inline void read_sse_reg(int reg, sse128_t *data)
770 {
771 	switch (reg) {
772 	case 0:
773 		asm("movdqa %%xmm0, %0" : "=m"(*data));
774 		break;
775 	case 1:
776 		asm("movdqa %%xmm1, %0" : "=m"(*data));
777 		break;
778 	case 2:
779 		asm("movdqa %%xmm2, %0" : "=m"(*data));
780 		break;
781 	case 3:
782 		asm("movdqa %%xmm3, %0" : "=m"(*data));
783 		break;
784 	case 4:
785 		asm("movdqa %%xmm4, %0" : "=m"(*data));
786 		break;
787 	case 5:
788 		asm("movdqa %%xmm5, %0" : "=m"(*data));
789 		break;
790 	case 6:
791 		asm("movdqa %%xmm6, %0" : "=m"(*data));
792 		break;
793 	case 7:
794 		asm("movdqa %%xmm7, %0" : "=m"(*data));
795 		break;
796 	default:
797 		BUG();
798 	}
799 }
800 
write_sse_reg(int reg,const sse128_t * data)801 static inline void write_sse_reg(int reg, const sse128_t *data)
802 {
803 	switch (reg) {
804 	case 0:
805 		asm("movdqa %0, %%xmm0" : : "m"(*data));
806 		break;
807 	case 1:
808 		asm("movdqa %0, %%xmm1" : : "m"(*data));
809 		break;
810 	case 2:
811 		asm("movdqa %0, %%xmm2" : : "m"(*data));
812 		break;
813 	case 3:
814 		asm("movdqa %0, %%xmm3" : : "m"(*data));
815 		break;
816 	case 4:
817 		asm("movdqa %0, %%xmm4" : : "m"(*data));
818 		break;
819 	case 5:
820 		asm("movdqa %0, %%xmm5" : : "m"(*data));
821 		break;
822 	case 6:
823 		asm("movdqa %0, %%xmm6" : : "m"(*data));
824 		break;
825 	case 7:
826 		asm("movdqa %0, %%xmm7" : : "m"(*data));
827 		break;
828 	default:
829 		BUG();
830 	}
831 }
832 
cpu_relax(void)833 static inline void cpu_relax(void)
834 {
835 	asm volatile("rep; nop" ::: "memory");
836 }
837 
udelay(unsigned long usec)838 static inline void udelay(unsigned long usec)
839 {
840 	uint64_t start, now, cycles;
841 
842 	GUEST_ASSERT(guest_tsc_khz);
843 	cycles = guest_tsc_khz / 1000 * usec;
844 
845 	/*
846 	 * Deliberately don't PAUSE, a.k.a. cpu_relax(), so that the delay is
847 	 * as accurate as possible, e.g. doesn't trigger PAUSE-Loop VM-Exits.
848 	 */
849 	start = rdtsc();
850 	do {
851 		now = rdtsc();
852 	} while (now - start < cycles);
853 }
854 
855 #define ud2()			\
856 	__asm__ __volatile__(	\
857 		"ud2\n"	\
858 		)
859 
860 #define hlt()			\
861 	__asm__ __volatile__(	\
862 		"hlt\n"	\
863 		)
864 
865 struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
866 void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
867 void kvm_x86_state_cleanup(struct kvm_x86_state *state);
868 
869 const struct kvm_msr_list *kvm_get_msr_index_list(void);
870 const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
871 bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
872 uint64_t kvm_get_feature_msr(uint64_t msr_index);
873 
vcpu_msrs_get(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)874 static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
875 				 struct kvm_msrs *msrs)
876 {
877 	int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
878 
879 	TEST_ASSERT(r == msrs->nmsrs,
880 		    "KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
881 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
882 }
vcpu_msrs_set(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs)883 static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
884 {
885 	int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
886 
887 	TEST_ASSERT(r == msrs->nmsrs,
888 		    "KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
889 		    r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
890 }
vcpu_debugregs_get(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)891 static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
892 				      struct kvm_debugregs *debugregs)
893 {
894 	vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
895 }
vcpu_debugregs_set(struct kvm_vcpu * vcpu,struct kvm_debugregs * debugregs)896 static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
897 				      struct kvm_debugregs *debugregs)
898 {
899 	vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
900 }
vcpu_xsave_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)901 static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
902 				  struct kvm_xsave *xsave)
903 {
904 	vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
905 }
vcpu_xsave2_get(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)906 static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
907 				   struct kvm_xsave *xsave)
908 {
909 	vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
910 }
vcpu_xsave_set(struct kvm_vcpu * vcpu,struct kvm_xsave * xsave)911 static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
912 				  struct kvm_xsave *xsave)
913 {
914 	vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
915 }
vcpu_xcrs_get(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)916 static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
917 				 struct kvm_xcrs *xcrs)
918 {
919 	vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
920 }
vcpu_xcrs_set(struct kvm_vcpu * vcpu,struct kvm_xcrs * xcrs)921 static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
922 {
923 	vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
924 }
925 
926 const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
927 					       uint32_t function, uint32_t index);
928 const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
929 
kvm_cpu_fms(void)930 static inline uint32_t kvm_cpu_fms(void)
931 {
932 	return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
933 }
934 
kvm_cpu_family(void)935 static inline uint32_t kvm_cpu_family(void)
936 {
937 	return x86_family(kvm_cpu_fms());
938 }
939 
kvm_cpu_model(void)940 static inline uint32_t kvm_cpu_model(void)
941 {
942 	return x86_model(kvm_cpu_fms());
943 }
944 
945 bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
946 		   struct kvm_x86_cpu_feature feature);
947 
kvm_cpu_has(struct kvm_x86_cpu_feature feature)948 static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
949 {
950 	return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
951 }
952 
953 uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
954 			    struct kvm_x86_cpu_property property);
955 
kvm_cpu_property(struct kvm_x86_cpu_property property)956 static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
957 {
958 	return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
959 }
960 
kvm_cpu_has_p(struct kvm_x86_cpu_property property)961 static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
962 {
963 	uint32_t max_leaf;
964 
965 	switch (property.function & 0xc0000000) {
966 	case 0:
967 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
968 		break;
969 	case 0x40000000:
970 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
971 		break;
972 	case 0x80000000:
973 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
974 		break;
975 	case 0xc0000000:
976 		max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
977 	}
978 	return max_leaf >= property.function;
979 }
980 
kvm_pmu_has(struct kvm_x86_pmu_feature feature)981 static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
982 {
983 	uint32_t nr_bits;
984 
985 	if (feature.f.reg == KVM_CPUID_EBX) {
986 		nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
987 		return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
988 	}
989 
990 	TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
991 	nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
992 	return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
993 }
994 
kvm_cpu_supported_xcr0(void)995 static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
996 {
997 	if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
998 		return 0;
999 
1000 	return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
1001 	       ((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
1002 }
1003 
kvm_cpuid2_size(int nr_entries)1004 static inline size_t kvm_cpuid2_size(int nr_entries)
1005 {
1006 	return sizeof(struct kvm_cpuid2) +
1007 	       sizeof(struct kvm_cpuid_entry2) * nr_entries;
1008 }
1009 
1010 /*
1011  * Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
1012  * entries sized to hold @nr_entries.  The caller is responsible for freeing
1013  * the struct.
1014  */
allocate_kvm_cpuid2(int nr_entries)1015 static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
1016 {
1017 	struct kvm_cpuid2 *cpuid;
1018 
1019 	cpuid = malloc(kvm_cpuid2_size(nr_entries));
1020 	TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
1021 
1022 	cpuid->nent = nr_entries;
1023 
1024 	return cpuid;
1025 }
1026 
1027 void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
1028 
vcpu_get_cpuid(struct kvm_vcpu * vcpu)1029 static inline void vcpu_get_cpuid(struct kvm_vcpu *vcpu)
1030 {
1031 	vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
1032 }
1033 
__vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function,uint32_t index)1034 static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1035 							      uint32_t function,
1036 							      uint32_t index)
1037 {
1038 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first (or equivalent)");
1039 
1040 	vcpu_get_cpuid(vcpu);
1041 
1042 	return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
1043 							  function, index);
1044 }
1045 
vcpu_get_cpuid_entry(struct kvm_vcpu * vcpu,uint32_t function)1046 static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
1047 							    uint32_t function)
1048 {
1049 	return __vcpu_get_cpuid_entry(vcpu, function, 0);
1050 }
1051 
__vcpu_set_cpuid(struct kvm_vcpu * vcpu)1052 static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1053 {
1054 	int r;
1055 
1056 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1057 	r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1058 	if (r)
1059 		return r;
1060 
1061 	/* On success, refresh the cache to pick up adjustments made by KVM. */
1062 	vcpu_get_cpuid(vcpu);
1063 	return 0;
1064 }
1065 
vcpu_set_cpuid(struct kvm_vcpu * vcpu)1066 static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
1067 {
1068 	TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
1069 	vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
1070 
1071 	/* Refresh the cache to pick up adjustments made by KVM. */
1072 	vcpu_get_cpuid(vcpu);
1073 }
1074 
1075 void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
1076 			     struct kvm_x86_cpu_property property,
1077 			     uint32_t value);
1078 void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
1079 
1080 void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
1081 
vcpu_cpuid_has(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1082 static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
1083 				  struct kvm_x86_cpu_feature feature)
1084 {
1085 	struct kvm_cpuid_entry2 *entry;
1086 
1087 	entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
1088 	return *((&entry->eax) + feature.reg) & BIT(feature.bit);
1089 }
1090 
1091 void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1092 				     struct kvm_x86_cpu_feature feature,
1093 				     bool set);
1094 
vcpu_set_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1095 static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
1096 					  struct kvm_x86_cpu_feature feature)
1097 {
1098 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
1099 
1100 }
1101 
vcpu_clear_cpuid_feature(struct kvm_vcpu * vcpu,struct kvm_x86_cpu_feature feature)1102 static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
1103 					    struct kvm_x86_cpu_feature feature)
1104 {
1105 	vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
1106 }
1107 
1108 uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
1109 int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
1110 
1111 /*
1112  * Assert on an MSR access(es) and pretty print the MSR name when possible.
1113  * Note, the caller provides the stringified name so that the name of macro is
1114  * printed, not the value the macro resolves to (due to macro expansion).
1115  */
1116 #define TEST_ASSERT_MSR(cond, fmt, msr, str, args...)				\
1117 do {										\
1118 	if (__builtin_constant_p(msr)) {					\
1119 		TEST_ASSERT(cond, fmt, str, args);				\
1120 	} else if (!(cond)) {							\
1121 		char buf[16];							\
1122 										\
1123 		snprintf(buf, sizeof(buf), "MSR 0x%x", msr);			\
1124 		TEST_ASSERT(cond, fmt, buf, args);				\
1125 	}									\
1126 } while (0)
1127 
1128 /*
1129  * Returns true if KVM should return the last written value when reading an MSR
1130  * from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
1131  * is changing, etc.  This is NOT an exhaustive list!  The intent is to filter
1132  * out MSRs that are not durable _and_ that a selftest wants to write.
1133  */
is_durable_msr(uint32_t msr)1134 static inline bool is_durable_msr(uint32_t msr)
1135 {
1136 	return msr != MSR_IA32_TSC;
1137 }
1138 
1139 #define vcpu_set_msr(vcpu, msr, val)							\
1140 do {											\
1141 	uint64_t r, v = val;								\
1142 											\
1143 	TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1,				\
1144 			"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v);	\
1145 	if (!is_durable_msr(msr))							\
1146 		break;									\
1147 	r = vcpu_get_msr(vcpu, msr);							\
1148 	TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
1149 } while (0)
1150 
1151 void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
1152 void kvm_init_vm_address_properties(struct kvm_vm *vm);
1153 
1154 struct ex_regs {
1155 	uint64_t rax, rcx, rdx, rbx;
1156 	uint64_t rbp, rsi, rdi;
1157 	uint64_t r8, r9, r10, r11;
1158 	uint64_t r12, r13, r14, r15;
1159 	uint64_t vector;
1160 	uint64_t error_code;
1161 	uint64_t rip;
1162 	uint64_t cs;
1163 	uint64_t rflags;
1164 };
1165 
1166 struct idt_entry {
1167 	uint16_t offset0;
1168 	uint16_t selector;
1169 	uint16_t ist : 3;
1170 	uint16_t : 5;
1171 	uint16_t type : 4;
1172 	uint16_t : 1;
1173 	uint16_t dpl : 2;
1174 	uint16_t p : 1;
1175 	uint16_t offset1;
1176 	uint32_t offset2; uint32_t reserved;
1177 };
1178 
1179 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
1180 			void (*handler)(struct ex_regs *));
1181 
1182 /* If a toddler were to say "abracadabra". */
1183 #define KVM_EXCEPTION_MAGIC 0xabacadabaULL
1184 
1185 /*
1186  * KVM selftest exception fixup uses registers to coordinate with the exception
1187  * handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
1188  * per-CPU data.  Using only registers avoids having to map memory into the
1189  * guest, doesn't require a valid, stable GS.base, and reduces the risk of
1190  * for recursive faults when accessing memory in the handler.  The downside to
1191  * using registers is that it restricts what registers can be used by the actual
1192  * instruction.  But, selftests are 64-bit only, making register* pressure a
1193  * minor concern.  Use r9-r11 as they are volatile, i.e. don't need to be saved
1194  * by the callee, and except for r11 are not implicit parameters to any
1195  * instructions.  Ideally, fixup would use r8-r10 and thus avoid implicit
1196  * parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
1197  * is higher priority than testing non-faulting SYSCALL/SYSRET.
1198  *
1199  * Note, the fixup handler deliberately does not handle #DE, i.e. the vector
1200  * is guaranteed to be non-zero on fault.
1201  *
1202  * REGISTER INPUTS:
1203  * r9  = MAGIC
1204  * r10 = RIP
1205  * r11 = new RIP on fault
1206  *
1207  * REGISTER OUTPUTS:
1208  * r9  = exception vector (non-zero)
1209  * r10 = error code
1210  */
1211 #define __KVM_ASM_SAFE(insn, fep)				\
1212 	"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t"	\
1213 	"lea 1f(%%rip), %%r10\n\t"				\
1214 	"lea 2f(%%rip), %%r11\n\t"				\
1215 	fep "1: " insn "\n\t"					\
1216 	"xor %%r9, %%r9\n\t"					\
1217 	"2:\n\t"						\
1218 	"mov  %%r9b, %[vector]\n\t"				\
1219 	"mov  %%r10, %[error_code]\n\t"
1220 
1221 #define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
1222 #define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
1223 
1224 #define KVM_ASM_SAFE_OUTPUTS(v, ec)	[vector] "=qm"(v), [error_code] "=rm"(ec)
1225 #define KVM_ASM_SAFE_CLOBBERS	"r9", "r10", "r11"
1226 
1227 #define kvm_asm_safe(insn, inputs...)					\
1228 ({									\
1229 	uint64_t ign_error_code;					\
1230 	uint8_t vector;							\
1231 									\
1232 	asm volatile(KVM_ASM_SAFE(insn)					\
1233 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1234 		     : inputs						\
1235 		     : KVM_ASM_SAFE_CLOBBERS);				\
1236 	vector;								\
1237 })
1238 
1239 #define kvm_asm_safe_ec(insn, error_code, inputs...)			\
1240 ({									\
1241 	uint8_t vector;							\
1242 									\
1243 	asm volatile(KVM_ASM_SAFE(insn)					\
1244 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1245 		     : inputs						\
1246 		     : KVM_ASM_SAFE_CLOBBERS);				\
1247 	vector;								\
1248 })
1249 
1250 #define kvm_asm_safe_fep(insn, inputs...)				\
1251 ({									\
1252 	uint64_t ign_error_code;					\
1253 	uint8_t vector;							\
1254 									\
1255 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1256 		     : KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code)	\
1257 		     : inputs						\
1258 		     : KVM_ASM_SAFE_CLOBBERS);				\
1259 	vector;								\
1260 })
1261 
1262 #define kvm_asm_safe_ec_fep(insn, error_code, inputs...)		\
1263 ({									\
1264 	uint8_t vector;							\
1265 									\
1266 	asm volatile(KVM_ASM_SAFE_FEP(insn)				\
1267 		     : KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1268 		     : inputs						\
1269 		     : KVM_ASM_SAFE_CLOBBERS);				\
1270 	vector;								\
1271 })
1272 
1273 #define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1274 static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val)	\
1275 {									\
1276 	uint64_t error_code;						\
1277 	uint8_t vector;							\
1278 	uint32_t a, d;							\
1279 									\
1280 	asm volatile(KVM_ASM_SAFE##_FEP(#insn)				\
1281 		     : "=a"(a), "=d"(d),				\
1282 		       KVM_ASM_SAFE_OUTPUTS(vector, error_code)		\
1283 		     : "c"(idx)						\
1284 		     : KVM_ASM_SAFE_CLOBBERS);				\
1285 									\
1286 	*val = (uint64_t)a | ((uint64_t)d << 32);			\
1287 	return vector;							\
1288 }
1289 
1290 /*
1291  * Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
1292  * use ECX as in input index, and EDX:EAX as a 64-bit output.
1293  */
1294 #define BUILD_READ_U64_SAFE_HELPERS(insn)				\
1295 	BUILD_READ_U64_SAFE_HELPER(insn, , )				\
1296 	BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP)			\
1297 
1298 BUILD_READ_U64_SAFE_HELPERS(rdmsr)
BUILD_READ_U64_SAFE_HELPERS(rdpmc)1299 BUILD_READ_U64_SAFE_HELPERS(rdpmc)
1300 BUILD_READ_U64_SAFE_HELPERS(xgetbv)
1301 
1302 static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
1303 {
1304 	return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
1305 }
1306 
xsetbv_safe(uint32_t index,uint64_t value)1307 static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
1308 {
1309 	u32 eax = value;
1310 	u32 edx = value >> 32;
1311 
1312 	return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
1313 }
1314 
1315 bool kvm_is_tdp_enabled(void);
1316 
kvm_is_pmu_enabled(void)1317 static inline bool kvm_is_pmu_enabled(void)
1318 {
1319 	return get_kvm_param_bool("enable_pmu");
1320 }
1321 
kvm_is_forced_emulation_enabled(void)1322 static inline bool kvm_is_forced_emulation_enabled(void)
1323 {
1324 	return !!get_kvm_param_integer("force_emulation_prefix");
1325 }
1326 
kvm_is_unrestricted_guest_enabled(void)1327 static inline bool kvm_is_unrestricted_guest_enabled(void)
1328 {
1329 	return get_kvm_intel_param_bool("unrestricted_guest");
1330 }
1331 
1332 uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
1333 				    int *level);
1334 uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
1335 
1336 uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
1337 		       uint64_t a3);
1338 uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1339 void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
1340 
__kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1341 static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
1342 						     uint64_t size, uint64_t flags)
1343 {
1344 	return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
1345 }
1346 
kvm_hypercall_map_gpa_range(uint64_t gpa,uint64_t size,uint64_t flags)1347 static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
1348 					       uint64_t flags)
1349 {
1350 	uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
1351 
1352 	GUEST_ASSERT(!ret);
1353 }
1354 
1355 /*
1356  * Execute HLT in an STI interrupt shadow to ensure that a pending IRQ that's
1357  * intended to be a wake event arrives *after* HLT is executed.  Modern CPUs,
1358  * except for a few oddballs that KVM is unlikely to run on, block IRQs for one
1359  * instruction after STI, *if* RFLAGS.IF=0 before STI.  Note, Intel CPUs may
1360  * block other events beyond regular IRQs, e.g. may block NMIs and SMIs too.
1361  */
safe_halt(void)1362 static inline void safe_halt(void)
1363 {
1364 	asm volatile("sti; hlt");
1365 }
1366 
1367 /*
1368  * Enable interrupts and ensure that interrupts are evaluated upon return from
1369  * this function, i.e. execute a nop to consume the STi interrupt shadow.
1370  */
sti_nop(void)1371 static inline void sti_nop(void)
1372 {
1373 	asm volatile ("sti; nop");
1374 }
1375 
1376 /*
1377  * Enable interrupts for one instruction (nop), to allow the CPU to process all
1378  * interrupts that are already pending.
1379  */
sti_nop_cli(void)1380 static inline void sti_nop_cli(void)
1381 {
1382 	asm volatile ("sti; nop; cli");
1383 }
1384 
sti(void)1385 static inline void sti(void)
1386 {
1387 	asm volatile("sti");
1388 }
1389 
cli(void)1390 static inline void cli(void)
1391 {
1392 	asm volatile ("cli");
1393 }
1394 
1395 void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
1396 
1397 #define vm_xsave_require_permission(xfeature)	\
1398 	__vm_xsave_require_permission(xfeature, #xfeature)
1399 
1400 enum pg_level {
1401 	PG_LEVEL_NONE,
1402 	PG_LEVEL_4K,
1403 	PG_LEVEL_2M,
1404 	PG_LEVEL_1G,
1405 	PG_LEVEL_512G,
1406 	PG_LEVEL_NUM
1407 };
1408 
1409 #define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
1410 #define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
1411 
1412 #define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
1413 #define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
1414 #define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
1415 
1416 void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
1417 void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1418 		    uint64_t nr_bytes, int level);
1419 
1420 /*
1421  * Basic CPU control in CR0
1422  */
1423 #define X86_CR0_PE          (1UL<<0) /* Protection Enable */
1424 #define X86_CR0_MP          (1UL<<1) /* Monitor Coprocessor */
1425 #define X86_CR0_EM          (1UL<<2) /* Emulation */
1426 #define X86_CR0_TS          (1UL<<3) /* Task Switched */
1427 #define X86_CR0_ET          (1UL<<4) /* Extension Type */
1428 #define X86_CR0_NE          (1UL<<5) /* Numeric Error */
1429 #define X86_CR0_WP          (1UL<<16) /* Write Protect */
1430 #define X86_CR0_AM          (1UL<<18) /* Alignment Mask */
1431 #define X86_CR0_NW          (1UL<<29) /* Not Write-through */
1432 #define X86_CR0_CD          (1UL<<30) /* Cache Disable */
1433 #define X86_CR0_PG          (1UL<<31) /* Paging */
1434 
1435 #define PFERR_PRESENT_BIT 0
1436 #define PFERR_WRITE_BIT 1
1437 #define PFERR_USER_BIT 2
1438 #define PFERR_RSVD_BIT 3
1439 #define PFERR_FETCH_BIT 4
1440 #define PFERR_PK_BIT 5
1441 #define PFERR_SGX_BIT 15
1442 #define PFERR_GUEST_FINAL_BIT 32
1443 #define PFERR_GUEST_PAGE_BIT 33
1444 #define PFERR_IMPLICIT_ACCESS_BIT 48
1445 
1446 #define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
1447 #define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
1448 #define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
1449 #define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
1450 #define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
1451 #define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
1452 #define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
1453 #define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
1454 #define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
1455 #define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
1456 
1457 bool sys_clocksource_is_based_on_tsc(void);
1458 
1459 #endif /* SELFTEST_KVM_PROCESSOR_H */
1460