1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2018, Google LLC.
4 */
5 #ifndef SELFTEST_KVM_UTIL_H
6 #define SELFTEST_KVM_UTIL_H
7
8 #include "test_util.h"
9
10 #include <linux/compiler.h>
11 #include "linux/hashtable.h"
12 #include "linux/list.h"
13 #include <linux/kernel.h>
14 #include <linux/kvm.h>
15 #include "linux/rbtree.h"
16 #include <linux/types.h>
17
18 #include <asm/atomic.h>
19 #include <asm/kvm.h>
20
21 #include <sys/eventfd.h>
22 #include <sys/ioctl.h>
23
24 #include <pthread.h>
25
26 #include "kvm_util_arch.h"
27 #include "kvm_util_types.h"
28 #include "sparsebit.h"
29
30 #define KVM_DEV_PATH "/dev/kvm"
31 #define KVM_MAX_VCPUS 512
32
33 #define NSEC_PER_SEC 1000000000L
34
35 struct userspace_mem_region {
36 struct kvm_userspace_memory_region2 region;
37 struct sparsebit *unused_phy_pages;
38 struct sparsebit *protected_phy_pages;
39 int fd;
40 off_t offset;
41 enum vm_mem_backing_src_type backing_src_type;
42 void *host_mem;
43 void *host_alias;
44 void *mmap_start;
45 void *mmap_alias;
46 size_t mmap_size;
47 struct rb_node gpa_node;
48 struct rb_node hva_node;
49 struct hlist_node slot_node;
50 };
51
52 struct kvm_binary_stats {
53 int fd;
54 struct kvm_stats_header header;
55 struct kvm_stats_desc *desc;
56 };
57
58 struct kvm_vcpu {
59 struct list_head list;
60 uint32_t id;
61 int fd;
62 struct kvm_vm *vm;
63 struct kvm_run *run;
64 #ifdef __x86_64__
65 struct kvm_cpuid2 *cpuid;
66 #endif
67 struct kvm_binary_stats stats;
68 struct kvm_dirty_gfn *dirty_gfns;
69 uint32_t fetch_index;
70 uint32_t dirty_gfns_count;
71 };
72
73 struct userspace_mem_regions {
74 struct rb_root gpa_tree;
75 struct rb_root hva_tree;
76 DECLARE_HASHTABLE(slot_hash, 9);
77 };
78
79 enum kvm_mem_region_type {
80 MEM_REGION_CODE,
81 MEM_REGION_DATA,
82 MEM_REGION_PT,
83 MEM_REGION_TEST_DATA,
84 NR_MEM_REGIONS,
85 };
86
87 struct kvm_vm {
88 int mode;
89 unsigned long type;
90 int kvm_fd;
91 int fd;
92 unsigned int pgtable_levels;
93 unsigned int page_size;
94 unsigned int page_shift;
95 unsigned int pa_bits;
96 unsigned int va_bits;
97 uint64_t max_gfn;
98 struct list_head vcpus;
99 struct userspace_mem_regions regions;
100 struct sparsebit *vpages_valid;
101 struct sparsebit *vpages_mapped;
102 bool has_irqchip;
103 bool pgd_created;
104 vm_paddr_t ucall_mmio_addr;
105 vm_paddr_t pgd;
106 vm_vaddr_t handlers;
107 uint32_t dirty_ring_size;
108 uint64_t gpa_tag_mask;
109
110 struct kvm_vm_arch arch;
111
112 struct kvm_binary_stats stats;
113
114 /*
115 * KVM region slots. These are the default memslots used by page
116 * allocators, e.g., lib/elf uses the memslots[MEM_REGION_CODE]
117 * memslot.
118 */
119 uint32_t memslots[NR_MEM_REGIONS];
120 };
121
122 struct vcpu_reg_sublist {
123 const char *name;
124 long capability;
125 int feature;
126 int feature_type;
127 bool finalize;
128 __u64 *regs;
129 __u64 regs_n;
130 __u64 *rejects_set;
131 __u64 rejects_set_n;
132 __u64 *skips_set;
133 __u64 skips_set_n;
134 };
135
136 struct vcpu_reg_list {
137 char *name;
138 struct vcpu_reg_sublist sublists[];
139 };
140
141 #define for_each_sublist(c, s) \
142 for ((s) = &(c)->sublists[0]; (s)->regs; ++(s))
143
144 #define kvm_for_each_vcpu(vm, i, vcpu) \
145 for ((i) = 0; (i) <= (vm)->last_vcpu_id; (i)++) \
146 if (!((vcpu) = vm->vcpus[i])) \
147 continue; \
148 else
149
150 struct userspace_mem_region *
151 memslot2region(struct kvm_vm *vm, uint32_t memslot);
152
vm_get_mem_region(struct kvm_vm * vm,enum kvm_mem_region_type type)153 static inline struct userspace_mem_region *vm_get_mem_region(struct kvm_vm *vm,
154 enum kvm_mem_region_type type)
155 {
156 assert(type < NR_MEM_REGIONS);
157 return memslot2region(vm, vm->memslots[type]);
158 }
159
160 /* Minimum allocated guest virtual and physical addresses */
161 #define KVM_UTIL_MIN_VADDR 0x2000
162 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
163
164 #define DEFAULT_GUEST_STACK_VADDR_MIN 0xab6000
165 #define DEFAULT_STACK_PGS 5
166
167 enum vm_guest_mode {
168 VM_MODE_P52V48_4K,
169 VM_MODE_P52V48_16K,
170 VM_MODE_P52V48_64K,
171 VM_MODE_P48V48_4K,
172 VM_MODE_P48V48_16K,
173 VM_MODE_P48V48_64K,
174 VM_MODE_P40V48_4K,
175 VM_MODE_P40V48_16K,
176 VM_MODE_P40V48_64K,
177 VM_MODE_PXXV48_4K, /* For 48bits VA but ANY bits PA */
178 VM_MODE_P47V64_4K,
179 VM_MODE_P44V64_4K,
180 VM_MODE_P36V48_4K,
181 VM_MODE_P36V48_16K,
182 VM_MODE_P36V48_64K,
183 VM_MODE_P47V47_16K,
184 VM_MODE_P36V47_16K,
185 NUM_VM_MODES,
186 };
187
188 struct vm_shape {
189 uint32_t type;
190 uint8_t mode;
191 uint8_t pad0;
192 uint16_t pad1;
193 };
194
195 kvm_static_assert(sizeof(struct vm_shape) == sizeof(uint64_t));
196
197 #define VM_TYPE_DEFAULT 0
198
199 #define VM_SHAPE(__mode) \
200 ({ \
201 struct vm_shape shape = { \
202 .mode = (__mode), \
203 .type = VM_TYPE_DEFAULT \
204 }; \
205 \
206 shape; \
207 })
208
209 #if defined(__aarch64__)
210
211 extern enum vm_guest_mode vm_mode_default;
212
213 #define VM_MODE_DEFAULT vm_mode_default
214 #define MIN_PAGE_SHIFT 12U
215 #define ptes_per_page(page_size) ((page_size) / 8)
216
217 #elif defined(__x86_64__)
218
219 #define VM_MODE_DEFAULT VM_MODE_PXXV48_4K
220 #define MIN_PAGE_SHIFT 12U
221 #define ptes_per_page(page_size) ((page_size) / 8)
222
223 #elif defined(__s390x__)
224
225 #define VM_MODE_DEFAULT VM_MODE_P44V64_4K
226 #define MIN_PAGE_SHIFT 12U
227 #define ptes_per_page(page_size) ((page_size) / 16)
228
229 #elif defined(__riscv)
230
231 #if __riscv_xlen == 32
232 #error "RISC-V 32-bit kvm selftests not supported"
233 #endif
234
235 #define VM_MODE_DEFAULT VM_MODE_P40V48_4K
236 #define MIN_PAGE_SHIFT 12U
237 #define ptes_per_page(page_size) ((page_size) / 8)
238
239 #elif defined(__loongarch__)
240 #define VM_MODE_DEFAULT VM_MODE_P47V47_16K
241 #define MIN_PAGE_SHIFT 12U
242 #define ptes_per_page(page_size) ((page_size) / 8)
243
244 #endif
245
246 #define VM_SHAPE_DEFAULT VM_SHAPE(VM_MODE_DEFAULT)
247
248 #define MIN_PAGE_SIZE (1U << MIN_PAGE_SHIFT)
249 #define PTES_PER_MIN_PAGE ptes_per_page(MIN_PAGE_SIZE)
250
251 struct vm_guest_mode_params {
252 unsigned int pa_bits;
253 unsigned int va_bits;
254 unsigned int page_size;
255 unsigned int page_shift;
256 };
257 extern const struct vm_guest_mode_params vm_guest_mode_params[];
258
259 int __open_path_or_exit(const char *path, int flags, const char *enoent_help);
260 int open_path_or_exit(const char *path, int flags);
261 int open_kvm_dev_path_or_exit(void);
262
263 bool get_kvm_param_bool(const char *param);
264 bool get_kvm_intel_param_bool(const char *param);
265 bool get_kvm_amd_param_bool(const char *param);
266
267 int get_kvm_param_integer(const char *param);
268 int get_kvm_intel_param_integer(const char *param);
269 int get_kvm_amd_param_integer(const char *param);
270
271 unsigned int kvm_check_cap(long cap);
272
kvm_has_cap(long cap)273 static inline bool kvm_has_cap(long cap)
274 {
275 return kvm_check_cap(cap);
276 }
277
278 #define __KVM_SYSCALL_ERROR(_name, _ret) \
279 "%s failed, rc: %i errno: %i (%s)", (_name), (_ret), errno, strerror(errno)
280
281 /*
282 * Use the "inner", double-underscore macro when reporting errors from within
283 * other macros so that the name of ioctl() and not its literal numeric value
284 * is printed on error. The "outer" macro is strongly preferred when reporting
285 * errors "directly", i.e. without an additional layer of macros, as it reduces
286 * the probability of passing in the wrong string.
287 */
288 #define __KVM_IOCTL_ERROR(_name, _ret) __KVM_SYSCALL_ERROR(_name, _ret)
289 #define KVM_IOCTL_ERROR(_ioctl, _ret) __KVM_IOCTL_ERROR(#_ioctl, _ret)
290
291 #define kvm_do_ioctl(fd, cmd, arg) \
292 ({ \
293 kvm_static_assert(!_IOC_SIZE(cmd) || sizeof(*arg) == _IOC_SIZE(cmd)); \
294 ioctl(fd, cmd, arg); \
295 })
296
297 #define __kvm_ioctl(kvm_fd, cmd, arg) \
298 kvm_do_ioctl(kvm_fd, cmd, arg)
299
300 #define kvm_ioctl(kvm_fd, cmd, arg) \
301 ({ \
302 int ret = __kvm_ioctl(kvm_fd, cmd, arg); \
303 \
304 TEST_ASSERT(!ret, __KVM_IOCTL_ERROR(#cmd, ret)); \
305 })
306
static_assert_is_vm(struct kvm_vm * vm)307 static __always_inline void static_assert_is_vm(struct kvm_vm *vm) { }
308
309 #define __vm_ioctl(vm, cmd, arg) \
310 ({ \
311 static_assert_is_vm(vm); \
312 kvm_do_ioctl((vm)->fd, cmd, arg); \
313 })
314
315 /*
316 * Assert that a VM or vCPU ioctl() succeeded, with extra magic to detect if
317 * the ioctl() failed because KVM killed/bugged the VM. To detect a dead VM,
318 * probe KVM_CAP_USER_MEMORY, which (a) has been supported by KVM since before
319 * selftests existed and (b) should never outright fail, i.e. is supposed to
320 * return 0 or 1. If KVM kills a VM, KVM returns -EIO for all ioctl()s for the
321 * VM and its vCPUs, including KVM_CHECK_EXTENSION.
322 */
323 #define __TEST_ASSERT_VM_VCPU_IOCTL(cond, name, ret, vm) \
324 do { \
325 int __errno = errno; \
326 \
327 static_assert_is_vm(vm); \
328 \
329 if (cond) \
330 break; \
331 \
332 if (errno == EIO && \
333 __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)KVM_CAP_USER_MEMORY) < 0) { \
334 TEST_ASSERT(errno == EIO, "KVM killed the VM, should return -EIO"); \
335 TEST_FAIL("KVM killed/bugged the VM, check the kernel log for clues"); \
336 } \
337 errno = __errno; \
338 TEST_ASSERT(cond, __KVM_IOCTL_ERROR(name, ret)); \
339 } while (0)
340
341 #define TEST_ASSERT_VM_VCPU_IOCTL(cond, cmd, ret, vm) \
342 __TEST_ASSERT_VM_VCPU_IOCTL(cond, #cmd, ret, vm)
343
344 #define vm_ioctl(vm, cmd, arg) \
345 ({ \
346 int ret = __vm_ioctl(vm, cmd, arg); \
347 \
348 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, vm); \
349 })
350
static_assert_is_vcpu(struct kvm_vcpu * vcpu)351 static __always_inline void static_assert_is_vcpu(struct kvm_vcpu *vcpu) { }
352
353 #define __vcpu_ioctl(vcpu, cmd, arg) \
354 ({ \
355 static_assert_is_vcpu(vcpu); \
356 kvm_do_ioctl((vcpu)->fd, cmd, arg); \
357 })
358
359 #define vcpu_ioctl(vcpu, cmd, arg) \
360 ({ \
361 int ret = __vcpu_ioctl(vcpu, cmd, arg); \
362 \
363 __TEST_ASSERT_VM_VCPU_IOCTL(!ret, #cmd, ret, (vcpu)->vm); \
364 })
365
366 /*
367 * Looks up and returns the value corresponding to the capability
368 * (KVM_CAP_*) given by cap.
369 */
vm_check_cap(struct kvm_vm * vm,long cap)370 static inline int vm_check_cap(struct kvm_vm *vm, long cap)
371 {
372 int ret = __vm_ioctl(vm, KVM_CHECK_EXTENSION, (void *)cap);
373
374 TEST_ASSERT_VM_VCPU_IOCTL(ret >= 0, KVM_CHECK_EXTENSION, ret, vm);
375 return ret;
376 }
377
__vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)378 static inline int __vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
379 {
380 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
381
382 return __vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
383 }
vm_enable_cap(struct kvm_vm * vm,uint32_t cap,uint64_t arg0)384 static inline void vm_enable_cap(struct kvm_vm *vm, uint32_t cap, uint64_t arg0)
385 {
386 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
387
388 vm_ioctl(vm, KVM_ENABLE_CAP, &enable_cap);
389 }
390
vm_set_memory_attributes(struct kvm_vm * vm,uint64_t gpa,uint64_t size,uint64_t attributes)391 static inline void vm_set_memory_attributes(struct kvm_vm *vm, uint64_t gpa,
392 uint64_t size, uint64_t attributes)
393 {
394 struct kvm_memory_attributes attr = {
395 .attributes = attributes,
396 .address = gpa,
397 .size = size,
398 .flags = 0,
399 };
400
401 /*
402 * KVM_SET_MEMORY_ATTRIBUTES overwrites _all_ attributes. These flows
403 * need significant enhancements to support multiple attributes.
404 */
405 TEST_ASSERT(!attributes || attributes == KVM_MEMORY_ATTRIBUTE_PRIVATE,
406 "Update me to support multiple attributes!");
407
408 vm_ioctl(vm, KVM_SET_MEMORY_ATTRIBUTES, &attr);
409 }
410
411
vm_mem_set_private(struct kvm_vm * vm,uint64_t gpa,uint64_t size)412 static inline void vm_mem_set_private(struct kvm_vm *vm, uint64_t gpa,
413 uint64_t size)
414 {
415 vm_set_memory_attributes(vm, gpa, size, KVM_MEMORY_ATTRIBUTE_PRIVATE);
416 }
417
vm_mem_set_shared(struct kvm_vm * vm,uint64_t gpa,uint64_t size)418 static inline void vm_mem_set_shared(struct kvm_vm *vm, uint64_t gpa,
419 uint64_t size)
420 {
421 vm_set_memory_attributes(vm, gpa, size, 0);
422 }
423
424 void vm_guest_mem_fallocate(struct kvm_vm *vm, uint64_t gpa, uint64_t size,
425 bool punch_hole);
426
vm_guest_mem_punch_hole(struct kvm_vm * vm,uint64_t gpa,uint64_t size)427 static inline void vm_guest_mem_punch_hole(struct kvm_vm *vm, uint64_t gpa,
428 uint64_t size)
429 {
430 vm_guest_mem_fallocate(vm, gpa, size, true);
431 }
432
vm_guest_mem_allocate(struct kvm_vm * vm,uint64_t gpa,uint64_t size)433 static inline void vm_guest_mem_allocate(struct kvm_vm *vm, uint64_t gpa,
434 uint64_t size)
435 {
436 vm_guest_mem_fallocate(vm, gpa, size, false);
437 }
438
439 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size);
440 const char *vm_guest_mode_string(uint32_t i);
441
442 void kvm_vm_free(struct kvm_vm *vmp);
443 void kvm_vm_restart(struct kvm_vm *vmp);
444 void kvm_vm_release(struct kvm_vm *vmp);
445 void kvm_vm_elf_load(struct kvm_vm *vm, const char *filename);
446 int kvm_memfd_alloc(size_t size, bool hugepages);
447
448 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
449
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)450 static inline void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
451 {
452 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
453
454 vm_ioctl(vm, KVM_GET_DIRTY_LOG, &args);
455 }
456
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)457 static inline void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
458 uint64_t first_page, uint32_t num_pages)
459 {
460 struct kvm_clear_dirty_log args = {
461 .dirty_bitmap = log,
462 .slot = slot,
463 .first_page = first_page,
464 .num_pages = num_pages
465 };
466
467 vm_ioctl(vm, KVM_CLEAR_DIRTY_LOG, &args);
468 }
469
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)470 static inline uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
471 {
472 return __vm_ioctl(vm, KVM_RESET_DIRTY_RINGS, NULL);
473 }
474
kvm_vm_register_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)475 static inline void kvm_vm_register_coalesced_io(struct kvm_vm *vm,
476 uint64_t address,
477 uint64_t size, bool pio)
478 {
479 struct kvm_coalesced_mmio_zone zone = {
480 .addr = address,
481 .size = size,
482 .pio = pio,
483 };
484
485 vm_ioctl(vm, KVM_REGISTER_COALESCED_MMIO, &zone);
486 }
487
kvm_vm_unregister_coalesced_io(struct kvm_vm * vm,uint64_t address,uint64_t size,bool pio)488 static inline void kvm_vm_unregister_coalesced_io(struct kvm_vm *vm,
489 uint64_t address,
490 uint64_t size, bool pio)
491 {
492 struct kvm_coalesced_mmio_zone zone = {
493 .addr = address,
494 .size = size,
495 .pio = pio,
496 };
497
498 vm_ioctl(vm, KVM_UNREGISTER_COALESCED_MMIO, &zone);
499 }
500
vm_get_stats_fd(struct kvm_vm * vm)501 static inline int vm_get_stats_fd(struct kvm_vm *vm)
502 {
503 int fd = __vm_ioctl(vm, KVM_GET_STATS_FD, NULL);
504
505 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_GET_STATS_FD, fd, vm);
506 return fd;
507 }
508
__kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)509 static inline int __kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
510 uint32_t flags)
511 {
512 struct kvm_irqfd irqfd = {
513 .fd = eventfd,
514 .gsi = gsi,
515 .flags = flags,
516 .resamplefd = -1,
517 };
518
519 return __vm_ioctl(vm, KVM_IRQFD, &irqfd);
520 }
521
kvm_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd,uint32_t flags)522 static inline void kvm_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd,
523 uint32_t flags)
524 {
525 int ret = __kvm_irqfd(vm, gsi, eventfd, flags);
526
527 TEST_ASSERT_VM_VCPU_IOCTL(!ret, KVM_IRQFD, ret, vm);
528 }
529
kvm_assign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)530 static inline void kvm_assign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
531 {
532 kvm_irqfd(vm, gsi, eventfd, 0);
533 }
534
kvm_deassign_irqfd(struct kvm_vm * vm,uint32_t gsi,int eventfd)535 static inline void kvm_deassign_irqfd(struct kvm_vm *vm, uint32_t gsi, int eventfd)
536 {
537 kvm_irqfd(vm, gsi, eventfd, KVM_IRQFD_FLAG_DEASSIGN);
538 }
539
kvm_new_eventfd(void)540 static inline int kvm_new_eventfd(void)
541 {
542 int fd = eventfd(0, 0);
543
544 TEST_ASSERT(fd >= 0, __KVM_SYSCALL_ERROR("eventfd()", fd));
545 return fd;
546 }
547
read_stats_header(int stats_fd,struct kvm_stats_header * header)548 static inline void read_stats_header(int stats_fd, struct kvm_stats_header *header)
549 {
550 ssize_t ret;
551
552 ret = pread(stats_fd, header, sizeof(*header), 0);
553 TEST_ASSERT(ret == sizeof(*header),
554 "Failed to read '%lu' header bytes, ret = '%ld'",
555 sizeof(*header), ret);
556 }
557
558 struct kvm_stats_desc *read_stats_descriptors(int stats_fd,
559 struct kvm_stats_header *header);
560
get_stats_descriptor_size(struct kvm_stats_header * header)561 static inline ssize_t get_stats_descriptor_size(struct kvm_stats_header *header)
562 {
563 /*
564 * The base size of the descriptor is defined by KVM's ABI, but the
565 * size of the name field is variable, as far as KVM's ABI is
566 * concerned. For a given instance of KVM, the name field is the same
567 * size for all stats and is provided in the overall stats header.
568 */
569 return sizeof(struct kvm_stats_desc) + header->name_size;
570 }
571
get_stats_descriptor(struct kvm_stats_desc * stats,int index,struct kvm_stats_header * header)572 static inline struct kvm_stats_desc *get_stats_descriptor(struct kvm_stats_desc *stats,
573 int index,
574 struct kvm_stats_header *header)
575 {
576 /*
577 * Note, size_desc includes the size of the name field, which is
578 * variable. i.e. this is NOT equivalent to &stats_desc[i].
579 */
580 return (void *)stats + index * get_stats_descriptor_size(header);
581 }
582
583 void read_stat_data(int stats_fd, struct kvm_stats_header *header,
584 struct kvm_stats_desc *desc, uint64_t *data,
585 size_t max_elements);
586
587 void kvm_get_stat(struct kvm_binary_stats *stats, const char *name,
588 uint64_t *data, size_t max_elements);
589
590 #define __get_stat(stats, stat) \
591 ({ \
592 uint64_t data; \
593 \
594 kvm_get_stat(stats, #stat, &data, 1); \
595 data; \
596 })
597
598 #define vm_get_stat(vm, stat) __get_stat(&(vm)->stats, stat)
599 #define vcpu_get_stat(vcpu, stat) __get_stat(&(vcpu)->stats, stat)
600
read_smt_control(char * buf,size_t buf_size)601 static inline bool read_smt_control(char *buf, size_t buf_size)
602 {
603 FILE *f = fopen("/sys/devices/system/cpu/smt/control", "r");
604 bool ret;
605
606 if (!f)
607 return false;
608
609 ret = fread(buf, sizeof(*buf), buf_size, f) > 0;
610 fclose(f);
611
612 return ret;
613 }
614
is_smt_possible(void)615 static inline bool is_smt_possible(void)
616 {
617 char buf[16];
618
619 if (read_smt_control(buf, sizeof(buf)) &&
620 (!strncmp(buf, "forceoff", 8) || !strncmp(buf, "notsupported", 12)))
621 return false;
622
623 return true;
624 }
625
is_smt_on(void)626 static inline bool is_smt_on(void)
627 {
628 char buf[16];
629
630 if (read_smt_control(buf, sizeof(buf)) && !strncmp(buf, "on", 2))
631 return true;
632
633 return false;
634 }
635
636 void vm_create_irqchip(struct kvm_vm *vm);
637
__vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)638 static inline int __vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
639 uint64_t flags)
640 {
641 struct kvm_create_guest_memfd guest_memfd = {
642 .size = size,
643 .flags = flags,
644 };
645
646 return __vm_ioctl(vm, KVM_CREATE_GUEST_MEMFD, &guest_memfd);
647 }
648
vm_create_guest_memfd(struct kvm_vm * vm,uint64_t size,uint64_t flags)649 static inline int vm_create_guest_memfd(struct kvm_vm *vm, uint64_t size,
650 uint64_t flags)
651 {
652 int fd = __vm_create_guest_memfd(vm, size, flags);
653
654 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_GUEST_MEMFD, fd));
655 return fd;
656 }
657
658 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
659 uint64_t gpa, uint64_t size, void *hva);
660 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
661 uint64_t gpa, uint64_t size, void *hva);
662 void vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
663 uint64_t gpa, uint64_t size, void *hva,
664 uint32_t guest_memfd, uint64_t guest_memfd_offset);
665 int __vm_set_user_memory_region2(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
666 uint64_t gpa, uint64_t size, void *hva,
667 uint32_t guest_memfd, uint64_t guest_memfd_offset);
668
669 void vm_userspace_mem_region_add(struct kvm_vm *vm,
670 enum vm_mem_backing_src_type src_type,
671 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
672 uint32_t flags);
673 void vm_mem_add(struct kvm_vm *vm, enum vm_mem_backing_src_type src_type,
674 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
675 uint32_t flags, int guest_memfd_fd, uint64_t guest_memfd_offset);
676
677 #ifndef vm_arch_has_protected_memory
vm_arch_has_protected_memory(struct kvm_vm * vm)678 static inline bool vm_arch_has_protected_memory(struct kvm_vm *vm)
679 {
680 return false;
681 }
682 #endif
683
684 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags);
685 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa);
686 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot);
687 struct kvm_vcpu *__vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
688 void vm_populate_vaddr_bitmap(struct kvm_vm *vm);
689 vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
690 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
691 vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
692 enum kvm_mem_region_type type);
693 vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz,
694 vm_vaddr_t vaddr_min,
695 enum kvm_mem_region_type type);
696 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
697 vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
698 enum kvm_mem_region_type type);
699 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm);
700
701 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
702 unsigned int npages);
703 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa);
704 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva);
705 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva);
706 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa);
707
708 #ifndef vcpu_arch_put_guest
709 #define vcpu_arch_put_guest(mem, val) do { (mem) = (val); } while (0)
710 #endif
711
vm_untag_gpa(struct kvm_vm * vm,vm_paddr_t gpa)712 static inline vm_paddr_t vm_untag_gpa(struct kvm_vm *vm, vm_paddr_t gpa)
713 {
714 return gpa & ~vm->gpa_tag_mask;
715 }
716
717 void vcpu_run(struct kvm_vcpu *vcpu);
718 int _vcpu_run(struct kvm_vcpu *vcpu);
719
__vcpu_run(struct kvm_vcpu * vcpu)720 static inline int __vcpu_run(struct kvm_vcpu *vcpu)
721 {
722 return __vcpu_ioctl(vcpu, KVM_RUN, NULL);
723 }
724
725 void vcpu_run_complete_io(struct kvm_vcpu *vcpu);
726 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vcpu *vcpu);
727
vcpu_enable_cap(struct kvm_vcpu * vcpu,uint32_t cap,uint64_t arg0)728 static inline void vcpu_enable_cap(struct kvm_vcpu *vcpu, uint32_t cap,
729 uint64_t arg0)
730 {
731 struct kvm_enable_cap enable_cap = { .cap = cap, .args = { arg0 } };
732
733 vcpu_ioctl(vcpu, KVM_ENABLE_CAP, &enable_cap);
734 }
735
vcpu_guest_debug_set(struct kvm_vcpu * vcpu,struct kvm_guest_debug * debug)736 static inline void vcpu_guest_debug_set(struct kvm_vcpu *vcpu,
737 struct kvm_guest_debug *debug)
738 {
739 vcpu_ioctl(vcpu, KVM_SET_GUEST_DEBUG, debug);
740 }
741
vcpu_mp_state_get(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)742 static inline void vcpu_mp_state_get(struct kvm_vcpu *vcpu,
743 struct kvm_mp_state *mp_state)
744 {
745 vcpu_ioctl(vcpu, KVM_GET_MP_STATE, mp_state);
746 }
vcpu_mp_state_set(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)747 static inline void vcpu_mp_state_set(struct kvm_vcpu *vcpu,
748 struct kvm_mp_state *mp_state)
749 {
750 vcpu_ioctl(vcpu, KVM_SET_MP_STATE, mp_state);
751 }
752
vcpu_regs_get(struct kvm_vcpu * vcpu,struct kvm_regs * regs)753 static inline void vcpu_regs_get(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
754 {
755 vcpu_ioctl(vcpu, KVM_GET_REGS, regs);
756 }
757
vcpu_regs_set(struct kvm_vcpu * vcpu,struct kvm_regs * regs)758 static inline void vcpu_regs_set(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
759 {
760 vcpu_ioctl(vcpu, KVM_SET_REGS, regs);
761 }
vcpu_sregs_get(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)762 static inline void vcpu_sregs_get(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
763 {
764 vcpu_ioctl(vcpu, KVM_GET_SREGS, sregs);
765
766 }
vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)767 static inline void vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
768 {
769 vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
770 }
_vcpu_sregs_set(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)771 static inline int _vcpu_sregs_set(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
772 {
773 return __vcpu_ioctl(vcpu, KVM_SET_SREGS, sregs);
774 }
vcpu_fpu_get(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)775 static inline void vcpu_fpu_get(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
776 {
777 vcpu_ioctl(vcpu, KVM_GET_FPU, fpu);
778 }
vcpu_fpu_set(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)779 static inline void vcpu_fpu_set(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
780 {
781 vcpu_ioctl(vcpu, KVM_SET_FPU, fpu);
782 }
783
__vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id,void * addr)784 static inline int __vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id, void *addr)
785 {
786 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)addr };
787
788 return __vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
789 }
__vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)790 static inline int __vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
791 {
792 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
793
794 return __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
795 }
vcpu_get_reg(struct kvm_vcpu * vcpu,uint64_t id)796 static inline uint64_t vcpu_get_reg(struct kvm_vcpu *vcpu, uint64_t id)
797 {
798 uint64_t val;
799 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
800
801 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
802
803 vcpu_ioctl(vcpu, KVM_GET_ONE_REG, ®);
804 return val;
805 }
vcpu_set_reg(struct kvm_vcpu * vcpu,uint64_t id,uint64_t val)806 static inline void vcpu_set_reg(struct kvm_vcpu *vcpu, uint64_t id, uint64_t val)
807 {
808 struct kvm_one_reg reg = { .id = id, .addr = (uint64_t)&val };
809
810 TEST_ASSERT(KVM_REG_SIZE(id) <= sizeof(val), "Reg %lx too big", id);
811
812 vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®);
813 }
814
815 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)816 static inline void vcpu_events_get(struct kvm_vcpu *vcpu,
817 struct kvm_vcpu_events *events)
818 {
819 vcpu_ioctl(vcpu, KVM_GET_VCPU_EVENTS, events);
820 }
vcpu_events_set(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)821 static inline void vcpu_events_set(struct kvm_vcpu *vcpu,
822 struct kvm_vcpu_events *events)
823 {
824 vcpu_ioctl(vcpu, KVM_SET_VCPU_EVENTS, events);
825 }
826 #endif
827 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)828 static inline void vcpu_nested_state_get(struct kvm_vcpu *vcpu,
829 struct kvm_nested_state *state)
830 {
831 vcpu_ioctl(vcpu, KVM_GET_NESTED_STATE, state);
832 }
__vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)833 static inline int __vcpu_nested_state_set(struct kvm_vcpu *vcpu,
834 struct kvm_nested_state *state)
835 {
836 return __vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
837 }
838
vcpu_nested_state_set(struct kvm_vcpu * vcpu,struct kvm_nested_state * state)839 static inline void vcpu_nested_state_set(struct kvm_vcpu *vcpu,
840 struct kvm_nested_state *state)
841 {
842 vcpu_ioctl(vcpu, KVM_SET_NESTED_STATE, state);
843 }
844 #endif
vcpu_get_stats_fd(struct kvm_vcpu * vcpu)845 static inline int vcpu_get_stats_fd(struct kvm_vcpu *vcpu)
846 {
847 int fd = __vcpu_ioctl(vcpu, KVM_GET_STATS_FD, NULL);
848
849 TEST_ASSERT_VM_VCPU_IOCTL(fd >= 0, KVM_CHECK_EXTENSION, fd, vcpu->vm);
850 return fd;
851 }
852
853 int __kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr);
854
kvm_has_device_attr(int dev_fd,uint32_t group,uint64_t attr)855 static inline void kvm_has_device_attr(int dev_fd, uint32_t group, uint64_t attr)
856 {
857 int ret = __kvm_has_device_attr(dev_fd, group, attr);
858
859 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
860 }
861
862 int __kvm_device_attr_get(int dev_fd, uint32_t group, uint64_t attr, void *val);
863
kvm_device_attr_get(int dev_fd,uint32_t group,uint64_t attr,void * val)864 static inline void kvm_device_attr_get(int dev_fd, uint32_t group,
865 uint64_t attr, void *val)
866 {
867 int ret = __kvm_device_attr_get(dev_fd, group, attr, val);
868
869 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_GET_DEVICE_ATTR, ret));
870 }
871
872 int __kvm_device_attr_set(int dev_fd, uint32_t group, uint64_t attr, void *val);
873
kvm_device_attr_set(int dev_fd,uint32_t group,uint64_t attr,void * val)874 static inline void kvm_device_attr_set(int dev_fd, uint32_t group,
875 uint64_t attr, void *val)
876 {
877 int ret = __kvm_device_attr_set(dev_fd, group, attr, val);
878
879 TEST_ASSERT(!ret, KVM_IOCTL_ERROR(KVM_SET_DEVICE_ATTR, ret));
880 }
881
__vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)882 static inline int __vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
883 uint64_t attr)
884 {
885 return __kvm_has_device_attr(vcpu->fd, group, attr);
886 }
887
vcpu_has_device_attr(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr)888 static inline void vcpu_has_device_attr(struct kvm_vcpu *vcpu, uint32_t group,
889 uint64_t attr)
890 {
891 kvm_has_device_attr(vcpu->fd, group, attr);
892 }
893
__vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)894 static inline int __vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
895 uint64_t attr, void *val)
896 {
897 return __kvm_device_attr_get(vcpu->fd, group, attr, val);
898 }
899
vcpu_device_attr_get(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)900 static inline void vcpu_device_attr_get(struct kvm_vcpu *vcpu, uint32_t group,
901 uint64_t attr, void *val)
902 {
903 kvm_device_attr_get(vcpu->fd, group, attr, val);
904 }
905
__vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)906 static inline int __vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
907 uint64_t attr, void *val)
908 {
909 return __kvm_device_attr_set(vcpu->fd, group, attr, val);
910 }
911
vcpu_device_attr_set(struct kvm_vcpu * vcpu,uint32_t group,uint64_t attr,void * val)912 static inline void vcpu_device_attr_set(struct kvm_vcpu *vcpu, uint32_t group,
913 uint64_t attr, void *val)
914 {
915 kvm_device_attr_set(vcpu->fd, group, attr, val);
916 }
917
918 int __kvm_test_create_device(struct kvm_vm *vm, uint64_t type);
919 int __kvm_create_device(struct kvm_vm *vm, uint64_t type);
920
kvm_create_device(struct kvm_vm * vm,uint64_t type)921 static inline int kvm_create_device(struct kvm_vm *vm, uint64_t type)
922 {
923 int fd = __kvm_create_device(vm, type);
924
925 TEST_ASSERT(fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_DEVICE, fd));
926 return fd;
927 }
928
929 void *vcpu_map_dirty_ring(struct kvm_vcpu *vcpu);
930
931 /*
932 * VM VCPU Args Set
933 *
934 * Input Args:
935 * vm - Virtual Machine
936 * num - number of arguments
937 * ... - arguments, each of type uint64_t
938 *
939 * Output Args: None
940 *
941 * Return: None
942 *
943 * Sets the first @num input parameters for the function at @vcpu's entry point,
944 * per the C calling convention of the architecture, to the values given as
945 * variable args. Each of the variable args is expected to be of type uint64_t.
946 * The maximum @num can be is specific to the architecture.
947 */
948 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...);
949
950 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
951 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level);
952
953 #define KVM_MAX_IRQ_ROUTES 4096
954
955 struct kvm_irq_routing *kvm_gsi_routing_create(void);
956 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
957 uint32_t gsi, uint32_t pin);
958 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
959 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing);
960
961 const char *exit_reason_str(unsigned int exit_reason);
962
963 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
964 uint32_t memslot);
965 vm_paddr_t __vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
966 vm_paddr_t paddr_min, uint32_t memslot,
967 bool protected);
968 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm);
969
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)970 static inline vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
971 vm_paddr_t paddr_min, uint32_t memslot)
972 {
973 /*
974 * By default, allocate memory as protected for VMs that support
975 * protected memory, as the majority of memory for such VMs is
976 * protected, i.e. using shared memory is effectively opt-in.
977 */
978 return __vm_phy_pages_alloc(vm, num, paddr_min, memslot,
979 vm_arch_has_protected_memory(vm));
980 }
981
982 /*
983 * ____vm_create() does KVM_CREATE_VM and little else. __vm_create() also
984 * loads the test binary into guest memory and creates an IRQ chip (x86 only).
985 * __vm_create() does NOT create vCPUs, @nr_runnable_vcpus is used purely to
986 * calculate the amount of memory needed for per-vCPU data, e.g. stacks.
987 */
988 struct kvm_vm *____vm_create(struct vm_shape shape);
989 struct kvm_vm *__vm_create(struct vm_shape shape, uint32_t nr_runnable_vcpus,
990 uint64_t nr_extra_pages);
991
vm_create_barebones(void)992 static inline struct kvm_vm *vm_create_barebones(void)
993 {
994 return ____vm_create(VM_SHAPE_DEFAULT);
995 }
996
vm_create_barebones_type(unsigned long type)997 static inline struct kvm_vm *vm_create_barebones_type(unsigned long type)
998 {
999 const struct vm_shape shape = {
1000 .mode = VM_MODE_DEFAULT,
1001 .type = type,
1002 };
1003
1004 return ____vm_create(shape);
1005 }
1006
vm_create(uint32_t nr_runnable_vcpus)1007 static inline struct kvm_vm *vm_create(uint32_t nr_runnable_vcpus)
1008 {
1009 return __vm_create(VM_SHAPE_DEFAULT, nr_runnable_vcpus, 0);
1010 }
1011
1012 struct kvm_vm *__vm_create_with_vcpus(struct vm_shape shape, uint32_t nr_vcpus,
1013 uint64_t extra_mem_pages,
1014 void *guest_code, struct kvm_vcpu *vcpus[]);
1015
vm_create_with_vcpus(uint32_t nr_vcpus,void * guest_code,struct kvm_vcpu * vcpus[])1016 static inline struct kvm_vm *vm_create_with_vcpus(uint32_t nr_vcpus,
1017 void *guest_code,
1018 struct kvm_vcpu *vcpus[])
1019 {
1020 return __vm_create_with_vcpus(VM_SHAPE_DEFAULT, nr_vcpus, 0,
1021 guest_code, vcpus);
1022 }
1023
1024
1025 struct kvm_vm *__vm_create_shape_with_one_vcpu(struct vm_shape shape,
1026 struct kvm_vcpu **vcpu,
1027 uint64_t extra_mem_pages,
1028 void *guest_code);
1029
1030 /*
1031 * Create a VM with a single vCPU with reasonable defaults and @extra_mem_pages
1032 * additional pages of guest memory. Returns the VM and vCPU (via out param).
1033 */
__vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,uint64_t extra_mem_pages,void * guest_code)1034 static inline struct kvm_vm *__vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1035 uint64_t extra_mem_pages,
1036 void *guest_code)
1037 {
1038 return __vm_create_shape_with_one_vcpu(VM_SHAPE_DEFAULT, vcpu,
1039 extra_mem_pages, guest_code);
1040 }
1041
vm_create_with_one_vcpu(struct kvm_vcpu ** vcpu,void * guest_code)1042 static inline struct kvm_vm *vm_create_with_one_vcpu(struct kvm_vcpu **vcpu,
1043 void *guest_code)
1044 {
1045 return __vm_create_with_one_vcpu(vcpu, 0, guest_code);
1046 }
1047
vm_create_shape_with_one_vcpu(struct vm_shape shape,struct kvm_vcpu ** vcpu,void * guest_code)1048 static inline struct kvm_vm *vm_create_shape_with_one_vcpu(struct vm_shape shape,
1049 struct kvm_vcpu **vcpu,
1050 void *guest_code)
1051 {
1052 return __vm_create_shape_with_one_vcpu(shape, vcpu, 0, guest_code);
1053 }
1054
1055 struct kvm_vcpu *vm_recreate_with_one_vcpu(struct kvm_vm *vm);
1056
1057 void kvm_set_files_rlimit(uint32_t nr_vcpus);
1058
1059 int __pin_task_to_cpu(pthread_t task, int cpu);
1060
pin_task_to_cpu(pthread_t task,int cpu)1061 static inline void pin_task_to_cpu(pthread_t task, int cpu)
1062 {
1063 int r;
1064
1065 r = __pin_task_to_cpu(task, cpu);
1066 TEST_ASSERT(!r, "Failed to set thread affinity to pCPU '%u'", cpu);
1067 }
1068
pin_task_to_any_cpu(pthread_t task)1069 static inline int pin_task_to_any_cpu(pthread_t task)
1070 {
1071 int cpu = sched_getcpu();
1072
1073 pin_task_to_cpu(task, cpu);
1074 return cpu;
1075 }
1076
pin_self_to_cpu(int cpu)1077 static inline void pin_self_to_cpu(int cpu)
1078 {
1079 pin_task_to_cpu(pthread_self(), cpu);
1080 }
1081
pin_self_to_any_cpu(void)1082 static inline int pin_self_to_any_cpu(void)
1083 {
1084 return pin_task_to_any_cpu(pthread_self());
1085 }
1086
1087 void kvm_print_vcpu_pinning_help(void);
1088 void kvm_parse_vcpu_pinning(const char *pcpus_string, uint32_t vcpu_to_pcpu[],
1089 int nr_vcpus);
1090
1091 unsigned long vm_compute_max_gfn(struct kvm_vm *vm);
1092 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size);
1093 unsigned int vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages);
1094 unsigned int vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages);
1095 static inline unsigned int
vm_adjust_num_guest_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)1096 vm_adjust_num_guest_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
1097 {
1098 unsigned int n;
1099 n = vm_num_guest_pages(mode, vm_num_host_pages(mode, num_guest_pages));
1100 #ifdef __s390x__
1101 /* s390 requires 1M aligned guest sizes */
1102 n = (n + 255) & ~255;
1103 #endif
1104 return n;
1105 }
1106
1107 #define sync_global_to_guest(vm, g) ({ \
1108 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1109 memcpy(_p, &(g), sizeof(g)); \
1110 })
1111
1112 #define sync_global_from_guest(vm, g) ({ \
1113 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1114 memcpy(&(g), _p, sizeof(g)); \
1115 })
1116
1117 /*
1118 * Write a global value, but only in the VM's (guest's) domain. Primarily used
1119 * for "globals" that hold per-VM values (VMs always duplicate code and global
1120 * data into their own region of physical memory), but can be used anytime it's
1121 * undesirable to change the host's copy of the global.
1122 */
1123 #define write_guest_global(vm, g, val) ({ \
1124 typeof(g) *_p = addr_gva2hva(vm, (vm_vaddr_t)&(g)); \
1125 typeof(g) _val = val; \
1126 \
1127 memcpy(_p, &(_val), sizeof(g)); \
1128 })
1129
1130 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu);
1131
1132 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu,
1133 uint8_t indent);
1134
vcpu_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)1135 static inline void vcpu_dump(FILE *stream, struct kvm_vcpu *vcpu,
1136 uint8_t indent)
1137 {
1138 vcpu_arch_dump(stream, vcpu, indent);
1139 }
1140
1141 /*
1142 * Adds a vCPU with reasonable defaults (e.g. a stack)
1143 *
1144 * Input Args:
1145 * vm - Virtual Machine
1146 * vcpu_id - The id of the VCPU to add to the VM.
1147 */
1148 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id);
1149 void vcpu_arch_set_entry_point(struct kvm_vcpu *vcpu, void *guest_code);
1150
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)1151 static inline struct kvm_vcpu *vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
1152 void *guest_code)
1153 {
1154 struct kvm_vcpu *vcpu = vm_arch_vcpu_add(vm, vcpu_id);
1155
1156 vcpu_arch_set_entry_point(vcpu, guest_code);
1157
1158 return vcpu;
1159 }
1160
1161 /* Re-create a vCPU after restarting a VM, e.g. for state save/restore tests. */
1162 struct kvm_vcpu *vm_arch_vcpu_recreate(struct kvm_vm *vm, uint32_t vcpu_id);
1163
vm_vcpu_recreate(struct kvm_vm * vm,uint32_t vcpu_id)1164 static inline struct kvm_vcpu *vm_vcpu_recreate(struct kvm_vm *vm,
1165 uint32_t vcpu_id)
1166 {
1167 return vm_arch_vcpu_recreate(vm, vcpu_id);
1168 }
1169
1170 void vcpu_arch_free(struct kvm_vcpu *vcpu);
1171
1172 void virt_arch_pgd_alloc(struct kvm_vm *vm);
1173
virt_pgd_alloc(struct kvm_vm * vm)1174 static inline void virt_pgd_alloc(struct kvm_vm *vm)
1175 {
1176 virt_arch_pgd_alloc(vm);
1177 }
1178
1179 /*
1180 * VM Virtual Page Map
1181 *
1182 * Input Args:
1183 * vm - Virtual Machine
1184 * vaddr - VM Virtual Address
1185 * paddr - VM Physical Address
1186 * memslot - Memory region slot for new virtual translation tables
1187 *
1188 * Output Args: None
1189 *
1190 * Return: None
1191 *
1192 * Within @vm, creates a virtual translation for the page starting
1193 * at @vaddr to the page starting at @paddr.
1194 */
1195 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr);
1196
virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)1197 static inline void virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
1198 {
1199 virt_arch_pg_map(vm, vaddr, paddr);
1200 }
1201
1202
1203 /*
1204 * Address Guest Virtual to Guest Physical
1205 *
1206 * Input Args:
1207 * vm - Virtual Machine
1208 * gva - VM virtual address
1209 *
1210 * Output Args: None
1211 *
1212 * Return:
1213 * Equivalent VM physical address
1214 *
1215 * Returns the VM physical address of the translated VM virtual
1216 * address given by @gva.
1217 */
1218 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva);
1219
addr_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)1220 static inline vm_paddr_t addr_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
1221 {
1222 return addr_arch_gva2gpa(vm, gva);
1223 }
1224
1225 /*
1226 * Virtual Translation Tables Dump
1227 *
1228 * Input Args:
1229 * stream - Output FILE stream
1230 * vm - Virtual Machine
1231 * indent - Left margin indent amount
1232 *
1233 * Output Args: None
1234 *
1235 * Return: None
1236 *
1237 * Dumps to the FILE stream given by @stream, the contents of all the
1238 * virtual translation tables for the VM given by @vm.
1239 */
1240 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent);
1241
virt_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)1242 static inline void virt_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
1243 {
1244 virt_arch_dump(stream, vm, indent);
1245 }
1246
1247
__vm_disable_nx_huge_pages(struct kvm_vm * vm)1248 static inline int __vm_disable_nx_huge_pages(struct kvm_vm *vm)
1249 {
1250 return __vm_enable_cap(vm, KVM_CAP_VM_DISABLE_NX_HUGE_PAGES, 0);
1251 }
1252
1253 /*
1254 * Arch hook that is invoked via a constructor, i.e. before exeucting main(),
1255 * to allow for arch-specific setup that is common to all tests, e.g. computing
1256 * the default guest "mode".
1257 */
1258 void kvm_selftest_arch_init(void);
1259
1260 void kvm_arch_vm_post_create(struct kvm_vm *vm);
1261
1262 bool vm_is_gpa_protected(struct kvm_vm *vm, vm_paddr_t paddr);
1263
1264 uint32_t guest_get_vcpuid(void);
1265
1266 #endif /* SELFTEST_KVM_UTIL_H */
1267