xref: /linux/fs/crypto/keyring.c (revision 283564a43383d6f26a55546fe9ae345b5fa95e66)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <crypto/skcipher.h>
22 #include <linux/export.h>
23 #include <linux/key-type.h>
24 #include <linux/once.h>
25 #include <linux/random.h>
26 #include <linux/seq_file.h>
27 #include <linux/unaligned.h>
28 
29 #include "fscrypt_private.h"
30 
31 /* The master encryption keys for a filesystem (->s_master_keys) */
32 struct fscrypt_keyring {
33 	/*
34 	 * Lock that protects ->key_hashtable.  It does *not* protect the
35 	 * fscrypt_master_key structs themselves.
36 	 */
37 	spinlock_t lock;
38 
39 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
40 	struct hlist_head key_hashtable[128];
41 };
42 
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)43 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
44 {
45 	fscrypt_destroy_hkdf(&secret->hkdf);
46 	memzero_explicit(secret, sizeof(*secret));
47 }
48 
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)49 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
50 				   struct fscrypt_master_key_secret *src)
51 {
52 	memcpy(dst, src, sizeof(*dst));
53 	memzero_explicit(src, sizeof(*src));
54 }
55 
fscrypt_free_master_key(struct rcu_head * head)56 static void fscrypt_free_master_key(struct rcu_head *head)
57 {
58 	struct fscrypt_master_key *mk =
59 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
60 	/*
61 	 * The master key secret and any embedded subkeys should have already
62 	 * been wiped when the last active reference to the fscrypt_master_key
63 	 * struct was dropped; doing it here would be unnecessarily late.
64 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
65 	 */
66 	kfree_sensitive(mk);
67 }
68 
fscrypt_put_master_key(struct fscrypt_master_key * mk)69 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
70 {
71 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
72 		return;
73 	/*
74 	 * No structural references left, so free ->mk_users, and also free the
75 	 * fscrypt_master_key struct itself after an RCU grace period ensures
76 	 * that concurrent keyring lookups can no longer find it.
77 	 */
78 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
79 	if (mk->mk_users) {
80 		/* Clear the keyring so the quota gets released right away. */
81 		keyring_clear(mk->mk_users);
82 		key_put(mk->mk_users);
83 		mk->mk_users = NULL;
84 	}
85 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
86 }
87 
fscrypt_put_master_key_activeref(struct super_block * sb,struct fscrypt_master_key * mk)88 void fscrypt_put_master_key_activeref(struct super_block *sb,
89 				      struct fscrypt_master_key *mk)
90 {
91 	size_t i;
92 
93 	if (!refcount_dec_and_test(&mk->mk_active_refs))
94 		return;
95 	/*
96 	 * No active references left, so complete the full removal of this
97 	 * fscrypt_master_key struct by removing it from the keyring and
98 	 * destroying any subkeys embedded in it.
99 	 */
100 
101 	if (WARN_ON_ONCE(!sb->s_master_keys))
102 		return;
103 	spin_lock(&sb->s_master_keys->lock);
104 	hlist_del_rcu(&mk->mk_node);
105 	spin_unlock(&sb->s_master_keys->lock);
106 
107 	/*
108 	 * ->mk_active_refs == 0 implies that ->mk_present is false and
109 	 * ->mk_decrypted_inodes is empty.
110 	 */
111 	WARN_ON_ONCE(mk->mk_present);
112 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
113 
114 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
115 		fscrypt_destroy_prepared_key(
116 				sb, &mk->mk_direct_keys[i]);
117 		fscrypt_destroy_prepared_key(
118 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
119 		fscrypt_destroy_prepared_key(
120 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
121 	}
122 	memzero_explicit(&mk->mk_ino_hash_key,
123 			 sizeof(mk->mk_ino_hash_key));
124 	mk->mk_ino_hash_key_initialized = false;
125 
126 	/* Drop the structural ref associated with the active refs. */
127 	fscrypt_put_master_key(mk);
128 }
129 
130 /*
131  * This transitions the key state from present to incompletely removed, and then
132  * potentially to absent (depending on whether inodes remain).
133  */
fscrypt_initiate_key_removal(struct super_block * sb,struct fscrypt_master_key * mk)134 static void fscrypt_initiate_key_removal(struct super_block *sb,
135 					 struct fscrypt_master_key *mk)
136 {
137 	WRITE_ONCE(mk->mk_present, false);
138 	wipe_master_key_secret(&mk->mk_secret);
139 	fscrypt_put_master_key_activeref(sb, mk);
140 }
141 
valid_key_spec(const struct fscrypt_key_specifier * spec)142 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
143 {
144 	if (spec->__reserved)
145 		return false;
146 	return master_key_spec_len(spec) != 0;
147 }
148 
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)149 static int fscrypt_user_key_instantiate(struct key *key,
150 					struct key_preparsed_payload *prep)
151 {
152 	/*
153 	 * We just charge FSCRYPT_MAX_RAW_KEY_SIZE bytes to the user's key quota
154 	 * for each key, regardless of the exact key size.  The amount of memory
155 	 * actually used is greater than the size of the raw key anyway.
156 	 */
157 	return key_payload_reserve(key, FSCRYPT_MAX_RAW_KEY_SIZE);
158 }
159 
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)160 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
161 {
162 	seq_puts(m, key->description);
163 }
164 
165 /*
166  * Type of key in ->mk_users.  Each key of this type represents a particular
167  * user who has added a particular master key.
168  *
169  * Note that the name of this key type really should be something like
170  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
171  * mainly for simplicity of presentation in /proc/keys when read by a non-root
172  * user.  And it is expected to be rare that a key is actually added by multiple
173  * users, since users should keep their encryption keys confidential.
174  */
175 static struct key_type key_type_fscrypt_user = {
176 	.name			= ".fscrypt",
177 	.instantiate		= fscrypt_user_key_instantiate,
178 	.describe		= fscrypt_user_key_describe,
179 };
180 
181 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
182 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
183 	 CONST_STRLEN("-users") + 1)
184 
185 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
186 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
187 
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])188 static void format_mk_users_keyring_description(
189 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
190 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
191 {
192 	sprintf(description, "fscrypt-%*phN-users",
193 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
194 }
195 
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])196 static void format_mk_user_description(
197 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
198 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
199 {
200 
201 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
202 		mk_identifier, __kuid_val(current_fsuid()));
203 }
204 
205 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)206 static int allocate_filesystem_keyring(struct super_block *sb)
207 {
208 	struct fscrypt_keyring *keyring;
209 
210 	if (sb->s_master_keys)
211 		return 0;
212 
213 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
214 	if (!keyring)
215 		return -ENOMEM;
216 	spin_lock_init(&keyring->lock);
217 	/*
218 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
219 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
220 	 * concurrent tasks can ACQUIRE it.
221 	 */
222 	smp_store_release(&sb->s_master_keys, keyring);
223 	return 0;
224 }
225 
226 /*
227  * Release all encryption keys that have been added to the filesystem, along
228  * with the keyring that contains them.
229  *
230  * This is called at unmount time, after all potentially-encrypted inodes have
231  * been evicted.  The filesystem's underlying block device(s) are still
232  * available at this time; this is important because after user file accesses
233  * have been allowed, this function may need to evict keys from the keyslots of
234  * an inline crypto engine, which requires the block device(s).
235  */
fscrypt_destroy_keyring(struct super_block * sb)236 void fscrypt_destroy_keyring(struct super_block *sb)
237 {
238 	struct fscrypt_keyring *keyring = sb->s_master_keys;
239 	size_t i;
240 
241 	if (!keyring)
242 		return;
243 
244 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
245 		struct hlist_head *bucket = &keyring->key_hashtable[i];
246 		struct fscrypt_master_key *mk;
247 		struct hlist_node *tmp;
248 
249 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
250 			/*
251 			 * Since all potentially-encrypted inodes were already
252 			 * evicted, every key remaining in the keyring should
253 			 * have an empty inode list, and should only still be in
254 			 * the keyring due to the single active ref associated
255 			 * with ->mk_present.  There should be no structural
256 			 * refs beyond the one associated with the active ref.
257 			 */
258 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
259 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
260 			WARN_ON_ONCE(!mk->mk_present);
261 			fscrypt_initiate_key_removal(sb, mk);
262 		}
263 	}
264 	kfree_sensitive(keyring);
265 	sb->s_master_keys = NULL;
266 }
267 
268 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)269 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
270 		       const struct fscrypt_key_specifier *mk_spec)
271 {
272 	/*
273 	 * Since key specifiers should be "random" values, it is sufficient to
274 	 * use a trivial hash function that just takes the first several bits of
275 	 * the key specifier.
276 	 */
277 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
278 
279 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
280 }
281 
282 /*
283  * Find the specified master key struct in ->s_master_keys and take a structural
284  * ref to it.  The structural ref guarantees that the key struct continues to
285  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
286  * the key struct.  The structural ref needs to be dropped by
287  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
288  */
289 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)290 fscrypt_find_master_key(struct super_block *sb,
291 			const struct fscrypt_key_specifier *mk_spec)
292 {
293 	struct fscrypt_keyring *keyring;
294 	struct hlist_head *bucket;
295 	struct fscrypt_master_key *mk;
296 
297 	/*
298 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
299 	 * I.e., another task can publish ->s_master_keys concurrently,
300 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
301 	 * to safely ACQUIRE the memory the other task published.
302 	 */
303 	keyring = smp_load_acquire(&sb->s_master_keys);
304 	if (keyring == NULL)
305 		return NULL; /* No keyring yet, so no keys yet. */
306 
307 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
308 	rcu_read_lock();
309 	switch (mk_spec->type) {
310 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
311 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
312 			if (mk->mk_spec.type ==
313 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
314 			    memcmp(mk->mk_spec.u.descriptor,
315 				   mk_spec->u.descriptor,
316 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
317 			    refcount_inc_not_zero(&mk->mk_struct_refs))
318 				goto out;
319 		}
320 		break;
321 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
322 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
323 			if (mk->mk_spec.type ==
324 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
325 			    memcmp(mk->mk_spec.u.identifier,
326 				   mk_spec->u.identifier,
327 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
328 			    refcount_inc_not_zero(&mk->mk_struct_refs))
329 				goto out;
330 		}
331 		break;
332 	}
333 	mk = NULL;
334 out:
335 	rcu_read_unlock();
336 	return mk;
337 }
338 
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)339 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
340 {
341 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
342 	struct key *keyring;
343 
344 	format_mk_users_keyring_description(description,
345 					    mk->mk_spec.u.identifier);
346 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
347 				current_cred(), KEY_POS_SEARCH |
348 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
349 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
350 	if (IS_ERR(keyring))
351 		return PTR_ERR(keyring);
352 
353 	mk->mk_users = keyring;
354 	return 0;
355 }
356 
357 /*
358  * Find the current user's "key" in the master key's ->mk_users.
359  * Returns ERR_PTR(-ENOKEY) if not found.
360  */
find_master_key_user(struct fscrypt_master_key * mk)361 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
362 {
363 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
364 	key_ref_t keyref;
365 
366 	format_mk_user_description(description, mk->mk_spec.u.identifier);
367 
368 	/*
369 	 * We need to mark the keyring reference as "possessed" so that we
370 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
371 	 */
372 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
373 				&key_type_fscrypt_user, description, false);
374 	if (IS_ERR(keyref)) {
375 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
376 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
377 			keyref = ERR_PTR(-ENOKEY);
378 		return ERR_CAST(keyref);
379 	}
380 	return key_ref_to_ptr(keyref);
381 }
382 
383 /*
384  * Give the current user a "key" in ->mk_users.  This charges the user's quota
385  * and marks the master key as added by the current user, so that it cannot be
386  * removed by another user with the key.  Either ->mk_sem must be held for
387  * write, or the master key must be still undergoing initialization.
388  */
add_master_key_user(struct fscrypt_master_key * mk)389 static int add_master_key_user(struct fscrypt_master_key *mk)
390 {
391 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
392 	struct key *mk_user;
393 	int err;
394 
395 	format_mk_user_description(description, mk->mk_spec.u.identifier);
396 	mk_user = key_alloc(&key_type_fscrypt_user, description,
397 			    current_fsuid(), current_gid(), current_cred(),
398 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
399 	if (IS_ERR(mk_user))
400 		return PTR_ERR(mk_user);
401 
402 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
403 	key_put(mk_user);
404 	return err;
405 }
406 
407 /*
408  * Remove the current user's "key" from ->mk_users.
409  * ->mk_sem must be held for write.
410  *
411  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
412  */
remove_master_key_user(struct fscrypt_master_key * mk)413 static int remove_master_key_user(struct fscrypt_master_key *mk)
414 {
415 	struct key *mk_user;
416 	int err;
417 
418 	mk_user = find_master_key_user(mk);
419 	if (IS_ERR(mk_user))
420 		return PTR_ERR(mk_user);
421 	err = key_unlink(mk->mk_users, mk_user);
422 	key_put(mk_user);
423 	return err;
424 }
425 
426 /*
427  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
428  * insert it into sb->s_master_keys.
429  */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)430 static int add_new_master_key(struct super_block *sb,
431 			      struct fscrypt_master_key_secret *secret,
432 			      const struct fscrypt_key_specifier *mk_spec)
433 {
434 	struct fscrypt_keyring *keyring = sb->s_master_keys;
435 	struct fscrypt_master_key *mk;
436 	int err;
437 
438 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
439 	if (!mk)
440 		return -ENOMEM;
441 
442 	init_rwsem(&mk->mk_sem);
443 	refcount_set(&mk->mk_struct_refs, 1);
444 	mk->mk_spec = *mk_spec;
445 
446 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
447 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
448 
449 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
450 		err = allocate_master_key_users_keyring(mk);
451 		if (err)
452 			goto out_put;
453 		err = add_master_key_user(mk);
454 		if (err)
455 			goto out_put;
456 	}
457 
458 	move_master_key_secret(&mk->mk_secret, secret);
459 	mk->mk_present = true;
460 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
461 
462 	spin_lock(&keyring->lock);
463 	hlist_add_head_rcu(&mk->mk_node,
464 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
465 	spin_unlock(&keyring->lock);
466 	return 0;
467 
468 out_put:
469 	fscrypt_put_master_key(mk);
470 	return err;
471 }
472 
473 #define KEY_DEAD	1
474 
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)475 static int add_existing_master_key(struct fscrypt_master_key *mk,
476 				   struct fscrypt_master_key_secret *secret)
477 {
478 	int err;
479 
480 	/*
481 	 * If the current user is already in ->mk_users, then there's nothing to
482 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
483 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
484 	 */
485 	if (mk->mk_users) {
486 		struct key *mk_user = find_master_key_user(mk);
487 
488 		if (mk_user != ERR_PTR(-ENOKEY)) {
489 			if (IS_ERR(mk_user))
490 				return PTR_ERR(mk_user);
491 			key_put(mk_user);
492 			return 0;
493 		}
494 		err = add_master_key_user(mk);
495 		if (err)
496 			return err;
497 	}
498 
499 	/* If the key is incompletely removed, make it present again. */
500 	if (!mk->mk_present) {
501 		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
502 			/*
503 			 * Raced with the last active ref being dropped, so the
504 			 * key has become, or is about to become, "absent".
505 			 * Therefore, we need to allocate a new key struct.
506 			 */
507 			return KEY_DEAD;
508 		}
509 		move_master_key_secret(&mk->mk_secret, secret);
510 		WRITE_ONCE(mk->mk_present, true);
511 	}
512 
513 	return 0;
514 }
515 
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)516 static int do_add_master_key(struct super_block *sb,
517 			     struct fscrypt_master_key_secret *secret,
518 			     const struct fscrypt_key_specifier *mk_spec)
519 {
520 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
521 	struct fscrypt_master_key *mk;
522 	int err;
523 
524 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
525 
526 	mk = fscrypt_find_master_key(sb, mk_spec);
527 	if (!mk) {
528 		/* Didn't find the key in ->s_master_keys.  Add it. */
529 		err = allocate_filesystem_keyring(sb);
530 		if (!err)
531 			err = add_new_master_key(sb, secret, mk_spec);
532 	} else {
533 		/*
534 		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
535 		 * if needed, and make the key "present" again if possible.
536 		 */
537 		down_write(&mk->mk_sem);
538 		err = add_existing_master_key(mk, secret);
539 		up_write(&mk->mk_sem);
540 		if (err == KEY_DEAD) {
541 			/*
542 			 * We found a key struct, but it's already been fully
543 			 * removed.  Ignore the old struct and add a new one.
544 			 * fscrypt_add_key_mutex means we don't need to worry
545 			 * about concurrent adds.
546 			 */
547 			err = add_new_master_key(sb, secret, mk_spec);
548 		}
549 		fscrypt_put_master_key(mk);
550 	}
551 	mutex_unlock(&fscrypt_add_key_mutex);
552 	return err;
553 }
554 
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)555 static int add_master_key(struct super_block *sb,
556 			  struct fscrypt_master_key_secret *secret,
557 			  struct fscrypt_key_specifier *key_spec)
558 {
559 	int err;
560 
561 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
562 		u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE];
563 		u8 *kdf_key = secret->bytes;
564 		unsigned int kdf_key_size = secret->size;
565 		u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY;
566 
567 		/*
568 		 * For raw keys, the fscrypt master key is used directly as the
569 		 * fscrypt KDF key.  For hardware-wrapped keys, we have to pass
570 		 * the master key to the hardware to derive the KDF key, which
571 		 * is then only used to derive non-file-contents subkeys.
572 		 */
573 		if (secret->is_hw_wrapped) {
574 			err = fscrypt_derive_sw_secret(sb, secret->bytes,
575 						       secret->size, sw_secret);
576 			if (err)
577 				return err;
578 			kdf_key = sw_secret;
579 			kdf_key_size = sizeof(sw_secret);
580 			/*
581 			 * To avoid weird behavior if someone manages to
582 			 * determine sw_secret and add it as a raw key, ensure
583 			 * that hardware-wrapped keys and raw keys will have
584 			 * different key identifiers by deriving their key
585 			 * identifiers using different KDF contexts.
586 			 */
587 			keyid_kdf_ctx =
588 				HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY;
589 		}
590 		err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
591 		/*
592 		 * Now that the KDF context is initialized, the raw KDF key is
593 		 * no longer needed.
594 		 */
595 		memzero_explicit(kdf_key, kdf_key_size);
596 		if (err)
597 			return err;
598 
599 		/* Calculate the key identifier */
600 		err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0,
601 					  key_spec->u.identifier,
602 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
603 		if (err)
604 			return err;
605 	}
606 	return do_add_master_key(sb, secret, key_spec);
607 }
608 
609 /*
610  * Validate the size of an fscrypt master key being added.  Note that this is
611  * just an initial check, as we don't know which ciphers will be used yet.
612  * There is a stricter size check later when the key is actually used by a file.
613  */
fscrypt_valid_key_size(size_t size,u32 add_key_flags)614 static inline bool fscrypt_valid_key_size(size_t size, u32 add_key_flags)
615 {
616 	u32 max_size = (add_key_flags & FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ?
617 		       FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
618 		       FSCRYPT_MAX_RAW_KEY_SIZE;
619 
620 	return size >= FSCRYPT_MIN_KEY_SIZE && size <= max_size;
621 }
622 
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)623 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
624 {
625 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
626 
627 	if (prep->datalen < sizeof(*payload))
628 		return -EINVAL;
629 
630 	if (!fscrypt_valid_key_size(prep->datalen - sizeof(*payload),
631 				    payload->flags))
632 		return -EINVAL;
633 
634 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
635 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
636 		return -EINVAL;
637 
638 	if (payload->flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
639 		return -EINVAL;
640 
641 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
642 	if (!prep->payload.data[0])
643 		return -ENOMEM;
644 
645 	prep->quotalen = prep->datalen;
646 	return 0;
647 }
648 
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)649 static void fscrypt_provisioning_key_free_preparse(
650 					struct key_preparsed_payload *prep)
651 {
652 	kfree_sensitive(prep->payload.data[0]);
653 }
654 
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)655 static void fscrypt_provisioning_key_describe(const struct key *key,
656 					      struct seq_file *m)
657 {
658 	seq_puts(m, key->description);
659 	if (key_is_positive(key)) {
660 		const struct fscrypt_provisioning_key_payload *payload =
661 			key->payload.data[0];
662 
663 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
664 	}
665 }
666 
fscrypt_provisioning_key_destroy(struct key * key)667 static void fscrypt_provisioning_key_destroy(struct key *key)
668 {
669 	kfree_sensitive(key->payload.data[0]);
670 }
671 
672 static struct key_type key_type_fscrypt_provisioning = {
673 	.name			= "fscrypt-provisioning",
674 	.preparse		= fscrypt_provisioning_key_preparse,
675 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
676 	.instantiate		= generic_key_instantiate,
677 	.describe		= fscrypt_provisioning_key_describe,
678 	.destroy		= fscrypt_provisioning_key_destroy,
679 };
680 
681 /*
682  * Retrieve the key from the Linux keyring key specified by 'key_id', and store
683  * it into 'secret'.
684  *
685  * The key must be of type "fscrypt-provisioning" and must have the 'type' and
686  * 'flags' field of the payload set to the given values, indicating that the key
687  * is intended for use for the specified purpose.  We don't use the "logon" key
688  * type because there's no way to completely restrict the use of such keys; they
689  * can be used by any kernel API that accepts "logon" keys and doesn't require a
690  * specific service prefix.
691  *
692  * The ability to specify the key via Linux keyring key is intended for cases
693  * where userspace needs to re-add keys after the filesystem is unmounted and
694  * re-mounted.  Most users should just provide the key directly instead.
695  */
get_keyring_key(u32 key_id,u32 type,u32 flags,struct fscrypt_master_key_secret * secret)696 static int get_keyring_key(u32 key_id, u32 type, u32 flags,
697 			   struct fscrypt_master_key_secret *secret)
698 {
699 	key_ref_t ref;
700 	struct key *key;
701 	const struct fscrypt_provisioning_key_payload *payload;
702 	int err;
703 
704 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
705 	if (IS_ERR(ref))
706 		return PTR_ERR(ref);
707 	key = key_ref_to_ptr(ref);
708 
709 	if (key->type != &key_type_fscrypt_provisioning)
710 		goto bad_key;
711 	payload = key->payload.data[0];
712 
713 	/*
714 	 * Don't allow fscrypt v1 keys to be used as v2 keys and vice versa.
715 	 * Similarly, don't allow hardware-wrapped keys to be used as
716 	 * non-hardware-wrapped keys and vice versa.
717 	 */
718 	if (payload->type != type || payload->flags != flags)
719 		goto bad_key;
720 
721 	secret->size = key->datalen - sizeof(*payload);
722 	memcpy(secret->bytes, payload->raw, secret->size);
723 	err = 0;
724 	goto out_put;
725 
726 bad_key:
727 	err = -EKEYREJECTED;
728 out_put:
729 	key_ref_put(ref);
730 	return err;
731 }
732 
733 /*
734  * Add a master encryption key to the filesystem, causing all files which were
735  * encrypted with it to appear "unlocked" (decrypted) when accessed.
736  *
737  * When adding a key for use by v1 encryption policies, this ioctl is
738  * privileged, and userspace must provide the 'key_descriptor'.
739  *
740  * When adding a key for use by v2+ encryption policies, this ioctl is
741  * unprivileged.  This is needed, in general, to allow non-root users to use
742  * encryption without encountering the visibility problems of process-subscribed
743  * keyrings and the inability to properly remove keys.  This works by having
744  * each key identified by its cryptographically secure hash --- the
745  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
746  * cannot add the wrong key for a given identifier.  Furthermore, each added key
747  * is charged to the appropriate user's quota for the keyrings service, which
748  * prevents a malicious user from adding too many keys.  Finally, we forbid a
749  * user from removing a key while other users have added it too, which prevents
750  * a user who knows another user's key from causing a denial-of-service by
751  * removing it at an inopportune time.  (We tolerate that a user who knows a key
752  * can prevent other users from removing it.)
753  *
754  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
755  * Documentation/filesystems/fscrypt.rst.
756  */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)757 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
758 {
759 	struct super_block *sb = file_inode(filp)->i_sb;
760 	struct fscrypt_add_key_arg __user *uarg = _uarg;
761 	struct fscrypt_add_key_arg arg;
762 	struct fscrypt_master_key_secret secret;
763 	int err;
764 
765 	if (copy_from_user(&arg, uarg, sizeof(arg)))
766 		return -EFAULT;
767 
768 	if (!valid_key_spec(&arg.key_spec))
769 		return -EINVAL;
770 
771 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
772 		return -EINVAL;
773 
774 	/*
775 	 * Only root can add keys that are identified by an arbitrary descriptor
776 	 * rather than by a cryptographic hash --- since otherwise a malicious
777 	 * user could add the wrong key.
778 	 */
779 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
780 	    !capable(CAP_SYS_ADMIN))
781 		return -EACCES;
782 
783 	memset(&secret, 0, sizeof(secret));
784 
785 	if (arg.flags) {
786 		if (arg.flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
787 			return -EINVAL;
788 		if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
789 			return -EINVAL;
790 		secret.is_hw_wrapped = true;
791 	}
792 
793 	if (arg.key_id) {
794 		if (arg.raw_size != 0)
795 			return -EINVAL;
796 		err = get_keyring_key(arg.key_id, arg.key_spec.type, arg.flags,
797 				      &secret);
798 		if (err)
799 			goto out_wipe_secret;
800 	} else {
801 		if (!fscrypt_valid_key_size(arg.raw_size, arg.flags))
802 			return -EINVAL;
803 		secret.size = arg.raw_size;
804 		err = -EFAULT;
805 		if (copy_from_user(secret.bytes, uarg->raw, secret.size))
806 			goto out_wipe_secret;
807 	}
808 
809 	err = add_master_key(sb, &secret, &arg.key_spec);
810 	if (err)
811 		goto out_wipe_secret;
812 
813 	/* Return the key identifier to userspace, if applicable */
814 	err = -EFAULT;
815 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
816 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
817 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
818 		goto out_wipe_secret;
819 	err = 0;
820 out_wipe_secret:
821 	wipe_master_key_secret(&secret);
822 	return err;
823 }
824 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
825 
826 static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret * secret)827 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
828 {
829 	static u8 test_key[FSCRYPT_MAX_RAW_KEY_SIZE];
830 
831 	get_random_once(test_key, sizeof(test_key));
832 
833 	memset(secret, 0, sizeof(*secret));
834 	secret->size = sizeof(test_key);
835 	memcpy(secret->bytes, test_key, sizeof(test_key));
836 }
837 
fscrypt_get_test_dummy_key_identifier(u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])838 int fscrypt_get_test_dummy_key_identifier(
839 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
840 {
841 	struct fscrypt_master_key_secret secret;
842 	int err;
843 
844 	fscrypt_get_test_dummy_secret(&secret);
845 
846 	err = fscrypt_init_hkdf(&secret.hkdf, secret.bytes, secret.size);
847 	if (err)
848 		goto out;
849 	err = fscrypt_hkdf_expand(&secret.hkdf,
850 				  HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY,
851 				  NULL, 0, key_identifier,
852 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
853 out:
854 	wipe_master_key_secret(&secret);
855 	return err;
856 }
857 
858 /**
859  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
860  * @sb: the filesystem instance to add the key to
861  * @key_spec: the key specifier of the test dummy encryption key
862  *
863  * Add the key for the test_dummy_encryption mount option to the filesystem.  To
864  * prevent misuse of this mount option, a per-boot random key is used instead of
865  * a hardcoded one.  This makes it so that any encrypted files created using
866  * this option won't be accessible after a reboot.
867  *
868  * Return: 0 on success, -errno on failure
869  */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)870 int fscrypt_add_test_dummy_key(struct super_block *sb,
871 			       struct fscrypt_key_specifier *key_spec)
872 {
873 	struct fscrypt_master_key_secret secret;
874 	int err;
875 
876 	fscrypt_get_test_dummy_secret(&secret);
877 	err = add_master_key(sb, &secret, key_spec);
878 	wipe_master_key_secret(&secret);
879 	return err;
880 }
881 
882 /*
883  * Verify that the current user has added a master key with the given identifier
884  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
885  * their files using some other user's key which they don't actually know.
886  * Cryptographically this isn't much of a problem, but the semantics of this
887  * would be a bit weird, so it's best to just forbid it.
888  *
889  * The system administrator (CAP_FOWNER) can override this, which should be
890  * enough for any use cases where encryption policies are being set using keys
891  * that were chosen ahead of time but aren't available at the moment.
892  *
893  * Note that the key may have already removed by the time this returns, but
894  * that's okay; we just care whether the key was there at some point.
895  *
896  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
897  */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])898 int fscrypt_verify_key_added(struct super_block *sb,
899 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
900 {
901 	struct fscrypt_key_specifier mk_spec;
902 	struct fscrypt_master_key *mk;
903 	struct key *mk_user;
904 	int err;
905 
906 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
907 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
908 
909 	mk = fscrypt_find_master_key(sb, &mk_spec);
910 	if (!mk) {
911 		err = -ENOKEY;
912 		goto out;
913 	}
914 	down_read(&mk->mk_sem);
915 	mk_user = find_master_key_user(mk);
916 	if (IS_ERR(mk_user)) {
917 		err = PTR_ERR(mk_user);
918 	} else {
919 		key_put(mk_user);
920 		err = 0;
921 	}
922 	up_read(&mk->mk_sem);
923 	fscrypt_put_master_key(mk);
924 out:
925 	if (err == -ENOKEY && capable(CAP_FOWNER))
926 		err = 0;
927 	return err;
928 }
929 
930 /*
931  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
932  * directory, then it can have at most one dentry; however, that dentry may be
933  * pinned by child dentries, so first try to evict the children too.
934  */
shrink_dcache_inode(struct inode * inode)935 static void shrink_dcache_inode(struct inode *inode)
936 {
937 	struct dentry *dentry;
938 
939 	if (S_ISDIR(inode->i_mode)) {
940 		dentry = d_find_any_alias(inode);
941 		if (dentry) {
942 			shrink_dcache_parent(dentry);
943 			dput(dentry);
944 		}
945 	}
946 	d_prune_aliases(inode);
947 }
948 
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)949 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
950 {
951 	struct fscrypt_inode_info *ci;
952 	struct inode *inode;
953 	struct inode *toput_inode = NULL;
954 
955 	spin_lock(&mk->mk_decrypted_inodes_lock);
956 
957 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
958 		inode = ci->ci_inode;
959 		spin_lock(&inode->i_lock);
960 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
961 			spin_unlock(&inode->i_lock);
962 			continue;
963 		}
964 		__iget(inode);
965 		spin_unlock(&inode->i_lock);
966 		spin_unlock(&mk->mk_decrypted_inodes_lock);
967 
968 		shrink_dcache_inode(inode);
969 		iput(toput_inode);
970 		toput_inode = inode;
971 
972 		spin_lock(&mk->mk_decrypted_inodes_lock);
973 	}
974 
975 	spin_unlock(&mk->mk_decrypted_inodes_lock);
976 	iput(toput_inode);
977 }
978 
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)979 static int check_for_busy_inodes(struct super_block *sb,
980 				 struct fscrypt_master_key *mk)
981 {
982 	struct list_head *pos;
983 	size_t busy_count = 0;
984 	unsigned long ino;
985 	char ino_str[50] = "";
986 
987 	spin_lock(&mk->mk_decrypted_inodes_lock);
988 
989 	list_for_each(pos, &mk->mk_decrypted_inodes)
990 		busy_count++;
991 
992 	if (busy_count == 0) {
993 		spin_unlock(&mk->mk_decrypted_inodes_lock);
994 		return 0;
995 	}
996 
997 	{
998 		/* select an example file to show for debugging purposes */
999 		struct inode *inode =
1000 			list_first_entry(&mk->mk_decrypted_inodes,
1001 					 struct fscrypt_inode_info,
1002 					 ci_master_key_link)->ci_inode;
1003 		ino = inode->i_ino;
1004 	}
1005 	spin_unlock(&mk->mk_decrypted_inodes_lock);
1006 
1007 	/* If the inode is currently being created, ino may still be 0. */
1008 	if (ino)
1009 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
1010 
1011 	fscrypt_warn(NULL,
1012 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
1013 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
1014 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
1015 		     ino_str);
1016 	return -EBUSY;
1017 }
1018 
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)1019 static int try_to_lock_encrypted_files(struct super_block *sb,
1020 				       struct fscrypt_master_key *mk)
1021 {
1022 	int err1;
1023 	int err2;
1024 
1025 	/*
1026 	 * An inode can't be evicted while it is dirty or has dirty pages.
1027 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
1028 	 *
1029 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
1030 	 * it works, and it's more important to minimize the amount of caches we
1031 	 * drop than the amount of data we sync.  Also, unprivileged users can
1032 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
1033 	 */
1034 	down_read(&sb->s_umount);
1035 	err1 = sync_filesystem(sb);
1036 	up_read(&sb->s_umount);
1037 	/* If a sync error occurs, still try to evict as much as possible. */
1038 
1039 	/*
1040 	 * Inodes are pinned by their dentries, so we have to evict their
1041 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
1042 	 * and inappropriate for use by unprivileged users.  So instead go
1043 	 * through the inodes' alias lists and try to evict each dentry.
1044 	 */
1045 	evict_dentries_for_decrypted_inodes(mk);
1046 
1047 	/*
1048 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
1049 	 * the list; any inodes for which that dropped the last reference will
1050 	 * have been evicted due to fscrypt_drop_inode() detecting the key
1051 	 * removal and telling the VFS to evict the inode.  So to finish, we
1052 	 * just need to check whether any inodes couldn't be evicted.
1053 	 */
1054 	err2 = check_for_busy_inodes(sb, mk);
1055 
1056 	return err1 ?: err2;
1057 }
1058 
1059 /*
1060  * Try to remove an fscrypt master encryption key.
1061  *
1062  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1063  * claim to the key, then removes the key itself if no other users have claims.
1064  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1065  * key itself.
1066  *
1067  * To "remove the key itself", first we transition the key to the "incompletely
1068  * removed" state, so that no more inodes can be unlocked with it.  Then we try
1069  * to evict all cached inodes that had been unlocked with the key.
1070  *
1071  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1072  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1073  * state where it tracks the list of remaining inodes.  Userspace can execute
1074  * the ioctl again later to retry eviction, or alternatively can re-add the key.
1075  *
1076  * For more details, see the "Removing keys" section of
1077  * Documentation/filesystems/fscrypt.rst.
1078  */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)1079 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1080 {
1081 	struct super_block *sb = file_inode(filp)->i_sb;
1082 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1083 	struct fscrypt_remove_key_arg arg;
1084 	struct fscrypt_master_key *mk;
1085 	u32 status_flags = 0;
1086 	int err;
1087 	bool inodes_remain;
1088 
1089 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1090 		return -EFAULT;
1091 
1092 	if (!valid_key_spec(&arg.key_spec))
1093 		return -EINVAL;
1094 
1095 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1096 		return -EINVAL;
1097 
1098 	/*
1099 	 * Only root can add and remove keys that are identified by an arbitrary
1100 	 * descriptor rather than by a cryptographic hash.
1101 	 */
1102 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1103 	    !capable(CAP_SYS_ADMIN))
1104 		return -EACCES;
1105 
1106 	/* Find the key being removed. */
1107 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1108 	if (!mk)
1109 		return -ENOKEY;
1110 	down_write(&mk->mk_sem);
1111 
1112 	/* If relevant, remove current user's (or all users) claim to the key */
1113 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1114 		if (all_users)
1115 			err = keyring_clear(mk->mk_users);
1116 		else
1117 			err = remove_master_key_user(mk);
1118 		if (err) {
1119 			up_write(&mk->mk_sem);
1120 			goto out_put_key;
1121 		}
1122 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1123 			/*
1124 			 * Other users have still added the key too.  We removed
1125 			 * the current user's claim to the key, but we still
1126 			 * can't remove the key itself.
1127 			 */
1128 			status_flags |=
1129 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1130 			err = 0;
1131 			up_write(&mk->mk_sem);
1132 			goto out_put_key;
1133 		}
1134 	}
1135 
1136 	/* No user claims remaining.  Initiate removal of the key. */
1137 	err = -ENOKEY;
1138 	if (mk->mk_present) {
1139 		fscrypt_initiate_key_removal(sb, mk);
1140 		err = 0;
1141 	}
1142 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1143 	up_write(&mk->mk_sem);
1144 
1145 	if (inodes_remain) {
1146 		/* Some inodes still reference this key; try to evict them. */
1147 		err = try_to_lock_encrypted_files(sb, mk);
1148 		if (err == -EBUSY) {
1149 			status_flags |=
1150 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1151 			err = 0;
1152 		}
1153 	}
1154 	/*
1155 	 * We return 0 if we successfully did something: removed a claim to the
1156 	 * key, initiated removal of the key, or tried locking the files again.
1157 	 * Users need to check the informational status flags if they care
1158 	 * whether the key has been fully removed including all files locked.
1159 	 */
1160 out_put_key:
1161 	fscrypt_put_master_key(mk);
1162 	if (err == 0)
1163 		err = put_user(status_flags, &uarg->removal_status_flags);
1164 	return err;
1165 }
1166 
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1167 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1168 {
1169 	return do_remove_key(filp, uarg, false);
1170 }
1171 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1172 
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1173 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1174 {
1175 	if (!capable(CAP_SYS_ADMIN))
1176 		return -EACCES;
1177 	return do_remove_key(filp, uarg, true);
1178 }
1179 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1180 
1181 /*
1182  * Retrieve the status of an fscrypt master encryption key.
1183  *
1184  * We set ->status to indicate whether the key is absent, present, or
1185  * incompletely removed.  (For an explanation of what these statuses mean and
1186  * how they are represented internally, see struct fscrypt_master_key.)  This
1187  * field allows applications to easily determine the status of an encrypted
1188  * directory without using a hack such as trying to open a regular file in it
1189  * (which can confuse the "incompletely removed" status with absent or present).
1190  *
1191  * In addition, for v2 policy keys we allow applications to determine, via
1192  * ->status_flags and ->user_count, whether the key has been added by the
1193  * current user, by other users, or by both.  Most applications should not need
1194  * this, since ordinarily only one user should know a given key.  However, if a
1195  * secret key is shared by multiple users, applications may wish to add an
1196  * already-present key to prevent other users from removing it.  This ioctl can
1197  * be used to check whether that really is the case before the work is done to
1198  * add the key --- which might e.g. require prompting the user for a passphrase.
1199  *
1200  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1201  * Documentation/filesystems/fscrypt.rst.
1202  */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1203 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1204 {
1205 	struct super_block *sb = file_inode(filp)->i_sb;
1206 	struct fscrypt_get_key_status_arg arg;
1207 	struct fscrypt_master_key *mk;
1208 	int err;
1209 
1210 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1211 		return -EFAULT;
1212 
1213 	if (!valid_key_spec(&arg.key_spec))
1214 		return -EINVAL;
1215 
1216 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1217 		return -EINVAL;
1218 
1219 	arg.status_flags = 0;
1220 	arg.user_count = 0;
1221 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1222 
1223 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1224 	if (!mk) {
1225 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1226 		err = 0;
1227 		goto out;
1228 	}
1229 	down_read(&mk->mk_sem);
1230 
1231 	if (!mk->mk_present) {
1232 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1233 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1234 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1235 		err = 0;
1236 		goto out_release_key;
1237 	}
1238 
1239 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1240 	if (mk->mk_users) {
1241 		struct key *mk_user;
1242 
1243 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1244 		mk_user = find_master_key_user(mk);
1245 		if (!IS_ERR(mk_user)) {
1246 			arg.status_flags |=
1247 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1248 			key_put(mk_user);
1249 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1250 			err = PTR_ERR(mk_user);
1251 			goto out_release_key;
1252 		}
1253 	}
1254 	err = 0;
1255 out_release_key:
1256 	up_read(&mk->mk_sem);
1257 	fscrypt_put_master_key(mk);
1258 out:
1259 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1260 		err = -EFAULT;
1261 	return err;
1262 }
1263 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1264 
fscrypt_init_keyring(void)1265 int __init fscrypt_init_keyring(void)
1266 {
1267 	int err;
1268 
1269 	err = register_key_type(&key_type_fscrypt_user);
1270 	if (err)
1271 		return err;
1272 
1273 	err = register_key_type(&key_type_fscrypt_provisioning);
1274 	if (err)
1275 		goto err_unregister_fscrypt_user;
1276 
1277 	return 0;
1278 
1279 err_unregister_fscrypt_user:
1280 	unregister_key_type(&key_type_fscrypt_user);
1281 	return err;
1282 }
1283