1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Filesystem-level keyring for fscrypt
4 *
5 * Copyright 2019 Google LLC
6 */
7
8 /*
9 * This file implements management of fscrypt master keys in the
10 * filesystem-level keyring, including the ioctls:
11 *
12 * - FS_IOC_ADD_ENCRYPTION_KEY
13 * - FS_IOC_REMOVE_ENCRYPTION_KEY
14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16 *
17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18 * information about these ioctls.
19 */
20
21 #include <crypto/skcipher.h>
22 #include <linux/export.h>
23 #include <linux/key-type.h>
24 #include <linux/once.h>
25 #include <linux/random.h>
26 #include <linux/seq_file.h>
27 #include <linux/unaligned.h>
28
29 #include "fscrypt_private.h"
30
31 /* The master encryption keys for a filesystem (->s_master_keys) */
32 struct fscrypt_keyring {
33 /*
34 * Lock that protects ->key_hashtable. It does *not* protect the
35 * fscrypt_master_key structs themselves.
36 */
37 spinlock_t lock;
38
39 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
40 struct hlist_head key_hashtable[128];
41 };
42
wipe_master_key_secret(struct fscrypt_master_key_secret * secret)43 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
44 {
45 fscrypt_destroy_hkdf(&secret->hkdf);
46 memzero_explicit(secret, sizeof(*secret));
47 }
48
move_master_key_secret(struct fscrypt_master_key_secret * dst,struct fscrypt_master_key_secret * src)49 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
50 struct fscrypt_master_key_secret *src)
51 {
52 memcpy(dst, src, sizeof(*dst));
53 memzero_explicit(src, sizeof(*src));
54 }
55
fscrypt_free_master_key(struct rcu_head * head)56 static void fscrypt_free_master_key(struct rcu_head *head)
57 {
58 struct fscrypt_master_key *mk =
59 container_of(head, struct fscrypt_master_key, mk_rcu_head);
60 /*
61 * The master key secret and any embedded subkeys should have already
62 * been wiped when the last active reference to the fscrypt_master_key
63 * struct was dropped; doing it here would be unnecessarily late.
64 * Nevertheless, use kfree_sensitive() in case anything was missed.
65 */
66 kfree_sensitive(mk);
67 }
68
fscrypt_put_master_key(struct fscrypt_master_key * mk)69 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
70 {
71 if (!refcount_dec_and_test(&mk->mk_struct_refs))
72 return;
73 /*
74 * No structural references left, so free ->mk_users, and also free the
75 * fscrypt_master_key struct itself after an RCU grace period ensures
76 * that concurrent keyring lookups can no longer find it.
77 */
78 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
79 if (mk->mk_users) {
80 /* Clear the keyring so the quota gets released right away. */
81 keyring_clear(mk->mk_users);
82 key_put(mk->mk_users);
83 mk->mk_users = NULL;
84 }
85 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
86 }
87
fscrypt_put_master_key_activeref(struct super_block * sb,struct fscrypt_master_key * mk)88 void fscrypt_put_master_key_activeref(struct super_block *sb,
89 struct fscrypt_master_key *mk)
90 {
91 size_t i;
92
93 if (!refcount_dec_and_test(&mk->mk_active_refs))
94 return;
95 /*
96 * No active references left, so complete the full removal of this
97 * fscrypt_master_key struct by removing it from the keyring and
98 * destroying any subkeys embedded in it.
99 */
100
101 if (WARN_ON_ONCE(!sb->s_master_keys))
102 return;
103 spin_lock(&sb->s_master_keys->lock);
104 hlist_del_rcu(&mk->mk_node);
105 spin_unlock(&sb->s_master_keys->lock);
106
107 /*
108 * ->mk_active_refs == 0 implies that ->mk_present is false and
109 * ->mk_decrypted_inodes is empty.
110 */
111 WARN_ON_ONCE(mk->mk_present);
112 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
113
114 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
115 fscrypt_destroy_prepared_key(
116 sb, &mk->mk_direct_keys[i]);
117 fscrypt_destroy_prepared_key(
118 sb, &mk->mk_iv_ino_lblk_64_keys[i]);
119 fscrypt_destroy_prepared_key(
120 sb, &mk->mk_iv_ino_lblk_32_keys[i]);
121 }
122 memzero_explicit(&mk->mk_ino_hash_key,
123 sizeof(mk->mk_ino_hash_key));
124 mk->mk_ino_hash_key_initialized = false;
125
126 /* Drop the structural ref associated with the active refs. */
127 fscrypt_put_master_key(mk);
128 }
129
130 /*
131 * This transitions the key state from present to incompletely removed, and then
132 * potentially to absent (depending on whether inodes remain).
133 */
fscrypt_initiate_key_removal(struct super_block * sb,struct fscrypt_master_key * mk)134 static void fscrypt_initiate_key_removal(struct super_block *sb,
135 struct fscrypt_master_key *mk)
136 {
137 WRITE_ONCE(mk->mk_present, false);
138 wipe_master_key_secret(&mk->mk_secret);
139 fscrypt_put_master_key_activeref(sb, mk);
140 }
141
valid_key_spec(const struct fscrypt_key_specifier * spec)142 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
143 {
144 if (spec->__reserved)
145 return false;
146 return master_key_spec_len(spec) != 0;
147 }
148
fscrypt_user_key_instantiate(struct key * key,struct key_preparsed_payload * prep)149 static int fscrypt_user_key_instantiate(struct key *key,
150 struct key_preparsed_payload *prep)
151 {
152 /*
153 * We just charge FSCRYPT_MAX_RAW_KEY_SIZE bytes to the user's key quota
154 * for each key, regardless of the exact key size. The amount of memory
155 * actually used is greater than the size of the raw key anyway.
156 */
157 return key_payload_reserve(key, FSCRYPT_MAX_RAW_KEY_SIZE);
158 }
159
fscrypt_user_key_describe(const struct key * key,struct seq_file * m)160 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
161 {
162 seq_puts(m, key->description);
163 }
164
165 /*
166 * Type of key in ->mk_users. Each key of this type represents a particular
167 * user who has added a particular master key.
168 *
169 * Note that the name of this key type really should be something like
170 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen
171 * mainly for simplicity of presentation in /proc/keys when read by a non-root
172 * user. And it is expected to be rare that a key is actually added by multiple
173 * users, since users should keep their encryption keys confidential.
174 */
175 static struct key_type key_type_fscrypt_user = {
176 .name = ".fscrypt",
177 .instantiate = fscrypt_user_key_instantiate,
178 .describe = fscrypt_user_key_describe,
179 };
180
181 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \
182 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
183 CONST_STRLEN("-users") + 1)
184
185 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \
186 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
187
format_mk_users_keyring_description(char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])188 static void format_mk_users_keyring_description(
189 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
190 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
191 {
192 sprintf(description, "fscrypt-%*phN-users",
193 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
194 }
195
format_mk_user_description(char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])196 static void format_mk_user_description(
197 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
198 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
199 {
200
201 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
202 mk_identifier, __kuid_val(current_fsuid()));
203 }
204
205 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */
allocate_filesystem_keyring(struct super_block * sb)206 static int allocate_filesystem_keyring(struct super_block *sb)
207 {
208 struct fscrypt_keyring *keyring;
209
210 if (sb->s_master_keys)
211 return 0;
212
213 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
214 if (!keyring)
215 return -ENOMEM;
216 spin_lock_init(&keyring->lock);
217 /*
218 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
219 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
220 * concurrent tasks can ACQUIRE it.
221 */
222 smp_store_release(&sb->s_master_keys, keyring);
223 return 0;
224 }
225
226 /*
227 * Release all encryption keys that have been added to the filesystem, along
228 * with the keyring that contains them.
229 *
230 * This is called at unmount time, after all potentially-encrypted inodes have
231 * been evicted. The filesystem's underlying block device(s) are still
232 * available at this time; this is important because after user file accesses
233 * have been allowed, this function may need to evict keys from the keyslots of
234 * an inline crypto engine, which requires the block device(s).
235 */
fscrypt_destroy_keyring(struct super_block * sb)236 void fscrypt_destroy_keyring(struct super_block *sb)
237 {
238 struct fscrypt_keyring *keyring = sb->s_master_keys;
239 size_t i;
240
241 if (!keyring)
242 return;
243
244 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
245 struct hlist_head *bucket = &keyring->key_hashtable[i];
246 struct fscrypt_master_key *mk;
247 struct hlist_node *tmp;
248
249 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
250 /*
251 * Since all potentially-encrypted inodes were already
252 * evicted, every key remaining in the keyring should
253 * have an empty inode list, and should only still be in
254 * the keyring due to the single active ref associated
255 * with ->mk_present. There should be no structural
256 * refs beyond the one associated with the active ref.
257 */
258 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
259 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
260 WARN_ON_ONCE(!mk->mk_present);
261 fscrypt_initiate_key_removal(sb, mk);
262 }
263 }
264 kfree_sensitive(keyring);
265 sb->s_master_keys = NULL;
266 }
267
268 static struct hlist_head *
fscrypt_mk_hash_bucket(struct fscrypt_keyring * keyring,const struct fscrypt_key_specifier * mk_spec)269 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
270 const struct fscrypt_key_specifier *mk_spec)
271 {
272 /*
273 * Since key specifiers should be "random" values, it is sufficient to
274 * use a trivial hash function that just takes the first several bits of
275 * the key specifier.
276 */
277 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
278
279 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
280 }
281
282 /*
283 * Find the specified master key struct in ->s_master_keys and take a structural
284 * ref to it. The structural ref guarantees that the key struct continues to
285 * exist, but it does *not* guarantee that ->s_master_keys continues to contain
286 * the key struct. The structural ref needs to be dropped by
287 * fscrypt_put_master_key(). Returns NULL if the key struct is not found.
288 */
289 struct fscrypt_master_key *
fscrypt_find_master_key(struct super_block * sb,const struct fscrypt_key_specifier * mk_spec)290 fscrypt_find_master_key(struct super_block *sb,
291 const struct fscrypt_key_specifier *mk_spec)
292 {
293 struct fscrypt_keyring *keyring;
294 struct hlist_head *bucket;
295 struct fscrypt_master_key *mk;
296
297 /*
298 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
299 * I.e., another task can publish ->s_master_keys concurrently,
300 * executing a RELEASE barrier. We need to use smp_load_acquire() here
301 * to safely ACQUIRE the memory the other task published.
302 */
303 keyring = smp_load_acquire(&sb->s_master_keys);
304 if (keyring == NULL)
305 return NULL; /* No keyring yet, so no keys yet. */
306
307 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
308 rcu_read_lock();
309 switch (mk_spec->type) {
310 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
311 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
312 if (mk->mk_spec.type ==
313 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
314 memcmp(mk->mk_spec.u.descriptor,
315 mk_spec->u.descriptor,
316 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
317 refcount_inc_not_zero(&mk->mk_struct_refs))
318 goto out;
319 }
320 break;
321 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
322 hlist_for_each_entry_rcu(mk, bucket, mk_node) {
323 if (mk->mk_spec.type ==
324 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
325 memcmp(mk->mk_spec.u.identifier,
326 mk_spec->u.identifier,
327 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
328 refcount_inc_not_zero(&mk->mk_struct_refs))
329 goto out;
330 }
331 break;
332 }
333 mk = NULL;
334 out:
335 rcu_read_unlock();
336 return mk;
337 }
338
allocate_master_key_users_keyring(struct fscrypt_master_key * mk)339 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
340 {
341 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
342 struct key *keyring;
343
344 format_mk_users_keyring_description(description,
345 mk->mk_spec.u.identifier);
346 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
347 current_cred(), KEY_POS_SEARCH |
348 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
349 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
350 if (IS_ERR(keyring))
351 return PTR_ERR(keyring);
352
353 mk->mk_users = keyring;
354 return 0;
355 }
356
357 /*
358 * Find the current user's "key" in the master key's ->mk_users.
359 * Returns ERR_PTR(-ENOKEY) if not found.
360 */
find_master_key_user(struct fscrypt_master_key * mk)361 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
362 {
363 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
364 key_ref_t keyref;
365
366 format_mk_user_description(description, mk->mk_spec.u.identifier);
367
368 /*
369 * We need to mark the keyring reference as "possessed" so that we
370 * acquire permission to search it, via the KEY_POS_SEARCH permission.
371 */
372 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
373 &key_type_fscrypt_user, description, false);
374 if (IS_ERR(keyref)) {
375 if (PTR_ERR(keyref) == -EAGAIN || /* not found */
376 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
377 keyref = ERR_PTR(-ENOKEY);
378 return ERR_CAST(keyref);
379 }
380 return key_ref_to_ptr(keyref);
381 }
382
383 /*
384 * Give the current user a "key" in ->mk_users. This charges the user's quota
385 * and marks the master key as added by the current user, so that it cannot be
386 * removed by another user with the key. Either ->mk_sem must be held for
387 * write, or the master key must be still undergoing initialization.
388 */
add_master_key_user(struct fscrypt_master_key * mk)389 static int add_master_key_user(struct fscrypt_master_key *mk)
390 {
391 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
392 struct key *mk_user;
393 int err;
394
395 format_mk_user_description(description, mk->mk_spec.u.identifier);
396 mk_user = key_alloc(&key_type_fscrypt_user, description,
397 current_fsuid(), current_gid(), current_cred(),
398 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
399 if (IS_ERR(mk_user))
400 return PTR_ERR(mk_user);
401
402 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
403 key_put(mk_user);
404 return err;
405 }
406
407 /*
408 * Remove the current user's "key" from ->mk_users.
409 * ->mk_sem must be held for write.
410 *
411 * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
412 */
remove_master_key_user(struct fscrypt_master_key * mk)413 static int remove_master_key_user(struct fscrypt_master_key *mk)
414 {
415 struct key *mk_user;
416 int err;
417
418 mk_user = find_master_key_user(mk);
419 if (IS_ERR(mk_user))
420 return PTR_ERR(mk_user);
421 err = key_unlink(mk->mk_users, mk_user);
422 key_put(mk_user);
423 return err;
424 }
425
426 /*
427 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
428 * insert it into sb->s_master_keys.
429 */
add_new_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)430 static int add_new_master_key(struct super_block *sb,
431 struct fscrypt_master_key_secret *secret,
432 const struct fscrypt_key_specifier *mk_spec)
433 {
434 struct fscrypt_keyring *keyring = sb->s_master_keys;
435 struct fscrypt_master_key *mk;
436 int err;
437
438 mk = kzalloc(sizeof(*mk), GFP_KERNEL);
439 if (!mk)
440 return -ENOMEM;
441
442 init_rwsem(&mk->mk_sem);
443 refcount_set(&mk->mk_struct_refs, 1);
444 mk->mk_spec = *mk_spec;
445
446 INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
447 spin_lock_init(&mk->mk_decrypted_inodes_lock);
448
449 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
450 err = allocate_master_key_users_keyring(mk);
451 if (err)
452 goto out_put;
453 err = add_master_key_user(mk);
454 if (err)
455 goto out_put;
456 }
457
458 move_master_key_secret(&mk->mk_secret, secret);
459 mk->mk_present = true;
460 refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
461
462 spin_lock(&keyring->lock);
463 hlist_add_head_rcu(&mk->mk_node,
464 fscrypt_mk_hash_bucket(keyring, mk_spec));
465 spin_unlock(&keyring->lock);
466 return 0;
467
468 out_put:
469 fscrypt_put_master_key(mk);
470 return err;
471 }
472
473 #define KEY_DEAD 1
474
add_existing_master_key(struct fscrypt_master_key * mk,struct fscrypt_master_key_secret * secret)475 static int add_existing_master_key(struct fscrypt_master_key *mk,
476 struct fscrypt_master_key_secret *secret)
477 {
478 int err;
479
480 /*
481 * If the current user is already in ->mk_users, then there's nothing to
482 * do. Otherwise, we need to add the user to ->mk_users. (Neither is
483 * applicable for v1 policy keys, which have NULL ->mk_users.)
484 */
485 if (mk->mk_users) {
486 struct key *mk_user = find_master_key_user(mk);
487
488 if (mk_user != ERR_PTR(-ENOKEY)) {
489 if (IS_ERR(mk_user))
490 return PTR_ERR(mk_user);
491 key_put(mk_user);
492 return 0;
493 }
494 err = add_master_key_user(mk);
495 if (err)
496 return err;
497 }
498
499 /* If the key is incompletely removed, make it present again. */
500 if (!mk->mk_present) {
501 if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
502 /*
503 * Raced with the last active ref being dropped, so the
504 * key has become, or is about to become, "absent".
505 * Therefore, we need to allocate a new key struct.
506 */
507 return KEY_DEAD;
508 }
509 move_master_key_secret(&mk->mk_secret, secret);
510 WRITE_ONCE(mk->mk_present, true);
511 }
512
513 return 0;
514 }
515
do_add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,const struct fscrypt_key_specifier * mk_spec)516 static int do_add_master_key(struct super_block *sb,
517 struct fscrypt_master_key_secret *secret,
518 const struct fscrypt_key_specifier *mk_spec)
519 {
520 static DEFINE_MUTEX(fscrypt_add_key_mutex);
521 struct fscrypt_master_key *mk;
522 int err;
523
524 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
525
526 mk = fscrypt_find_master_key(sb, mk_spec);
527 if (!mk) {
528 /* Didn't find the key in ->s_master_keys. Add it. */
529 err = allocate_filesystem_keyring(sb);
530 if (!err)
531 err = add_new_master_key(sb, secret, mk_spec);
532 } else {
533 /*
534 * Found the key in ->s_master_keys. Add the user to ->mk_users
535 * if needed, and make the key "present" again if possible.
536 */
537 down_write(&mk->mk_sem);
538 err = add_existing_master_key(mk, secret);
539 up_write(&mk->mk_sem);
540 if (err == KEY_DEAD) {
541 /*
542 * We found a key struct, but it's already been fully
543 * removed. Ignore the old struct and add a new one.
544 * fscrypt_add_key_mutex means we don't need to worry
545 * about concurrent adds.
546 */
547 err = add_new_master_key(sb, secret, mk_spec);
548 }
549 fscrypt_put_master_key(mk);
550 }
551 mutex_unlock(&fscrypt_add_key_mutex);
552 return err;
553 }
554
add_master_key(struct super_block * sb,struct fscrypt_master_key_secret * secret,struct fscrypt_key_specifier * key_spec)555 static int add_master_key(struct super_block *sb,
556 struct fscrypt_master_key_secret *secret,
557 struct fscrypt_key_specifier *key_spec)
558 {
559 int err;
560
561 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
562 u8 sw_secret[BLK_CRYPTO_SW_SECRET_SIZE];
563 u8 *kdf_key = secret->bytes;
564 unsigned int kdf_key_size = secret->size;
565 u8 keyid_kdf_ctx = HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY;
566
567 /*
568 * For raw keys, the fscrypt master key is used directly as the
569 * fscrypt KDF key. For hardware-wrapped keys, we have to pass
570 * the master key to the hardware to derive the KDF key, which
571 * is then only used to derive non-file-contents subkeys.
572 */
573 if (secret->is_hw_wrapped) {
574 err = fscrypt_derive_sw_secret(sb, secret->bytes,
575 secret->size, sw_secret);
576 if (err)
577 return err;
578 kdf_key = sw_secret;
579 kdf_key_size = sizeof(sw_secret);
580 /*
581 * To avoid weird behavior if someone manages to
582 * determine sw_secret and add it as a raw key, ensure
583 * that hardware-wrapped keys and raw keys will have
584 * different key identifiers by deriving their key
585 * identifiers using different KDF contexts.
586 */
587 keyid_kdf_ctx =
588 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_HW_WRAPPED_KEY;
589 }
590 err = fscrypt_init_hkdf(&secret->hkdf, kdf_key, kdf_key_size);
591 /*
592 * Now that the KDF context is initialized, the raw KDF key is
593 * no longer needed.
594 */
595 memzero_explicit(kdf_key, kdf_key_size);
596 if (err)
597 return err;
598
599 /* Calculate the key identifier */
600 err = fscrypt_hkdf_expand(&secret->hkdf, keyid_kdf_ctx, NULL, 0,
601 key_spec->u.identifier,
602 FSCRYPT_KEY_IDENTIFIER_SIZE);
603 if (err)
604 return err;
605 }
606 return do_add_master_key(sb, secret, key_spec);
607 }
608
609 /*
610 * Validate the size of an fscrypt master key being added. Note that this is
611 * just an initial check, as we don't know which ciphers will be used yet.
612 * There is a stricter size check later when the key is actually used by a file.
613 */
fscrypt_valid_key_size(size_t size,u32 add_key_flags)614 static inline bool fscrypt_valid_key_size(size_t size, u32 add_key_flags)
615 {
616 u32 max_size = (add_key_flags & FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ?
617 FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE :
618 FSCRYPT_MAX_RAW_KEY_SIZE;
619
620 return size >= FSCRYPT_MIN_KEY_SIZE && size <= max_size;
621 }
622
fscrypt_provisioning_key_preparse(struct key_preparsed_payload * prep)623 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
624 {
625 const struct fscrypt_provisioning_key_payload *payload = prep->data;
626
627 if (prep->datalen < sizeof(*payload))
628 return -EINVAL;
629
630 if (!fscrypt_valid_key_size(prep->datalen - sizeof(*payload),
631 payload->flags))
632 return -EINVAL;
633
634 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
635 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
636 return -EINVAL;
637
638 if (payload->flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
639 return -EINVAL;
640
641 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
642 if (!prep->payload.data[0])
643 return -ENOMEM;
644
645 prep->quotalen = prep->datalen;
646 return 0;
647 }
648
fscrypt_provisioning_key_free_preparse(struct key_preparsed_payload * prep)649 static void fscrypt_provisioning_key_free_preparse(
650 struct key_preparsed_payload *prep)
651 {
652 kfree_sensitive(prep->payload.data[0]);
653 }
654
fscrypt_provisioning_key_describe(const struct key * key,struct seq_file * m)655 static void fscrypt_provisioning_key_describe(const struct key *key,
656 struct seq_file *m)
657 {
658 seq_puts(m, key->description);
659 if (key_is_positive(key)) {
660 const struct fscrypt_provisioning_key_payload *payload =
661 key->payload.data[0];
662
663 seq_printf(m, ": %u [%u]", key->datalen, payload->type);
664 }
665 }
666
fscrypt_provisioning_key_destroy(struct key * key)667 static void fscrypt_provisioning_key_destroy(struct key *key)
668 {
669 kfree_sensitive(key->payload.data[0]);
670 }
671
672 static struct key_type key_type_fscrypt_provisioning = {
673 .name = "fscrypt-provisioning",
674 .preparse = fscrypt_provisioning_key_preparse,
675 .free_preparse = fscrypt_provisioning_key_free_preparse,
676 .instantiate = generic_key_instantiate,
677 .describe = fscrypt_provisioning_key_describe,
678 .destroy = fscrypt_provisioning_key_destroy,
679 };
680
681 /*
682 * Retrieve the key from the Linux keyring key specified by 'key_id', and store
683 * it into 'secret'.
684 *
685 * The key must be of type "fscrypt-provisioning" and must have the 'type' and
686 * 'flags' field of the payload set to the given values, indicating that the key
687 * is intended for use for the specified purpose. We don't use the "logon" key
688 * type because there's no way to completely restrict the use of such keys; they
689 * can be used by any kernel API that accepts "logon" keys and doesn't require a
690 * specific service prefix.
691 *
692 * The ability to specify the key via Linux keyring key is intended for cases
693 * where userspace needs to re-add keys after the filesystem is unmounted and
694 * re-mounted. Most users should just provide the key directly instead.
695 */
get_keyring_key(u32 key_id,u32 type,u32 flags,struct fscrypt_master_key_secret * secret)696 static int get_keyring_key(u32 key_id, u32 type, u32 flags,
697 struct fscrypt_master_key_secret *secret)
698 {
699 key_ref_t ref;
700 struct key *key;
701 const struct fscrypt_provisioning_key_payload *payload;
702 int err;
703
704 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
705 if (IS_ERR(ref))
706 return PTR_ERR(ref);
707 key = key_ref_to_ptr(ref);
708
709 if (key->type != &key_type_fscrypt_provisioning)
710 goto bad_key;
711 payload = key->payload.data[0];
712
713 /*
714 * Don't allow fscrypt v1 keys to be used as v2 keys and vice versa.
715 * Similarly, don't allow hardware-wrapped keys to be used as
716 * non-hardware-wrapped keys and vice versa.
717 */
718 if (payload->type != type || payload->flags != flags)
719 goto bad_key;
720
721 secret->size = key->datalen - sizeof(*payload);
722 memcpy(secret->bytes, payload->raw, secret->size);
723 err = 0;
724 goto out_put;
725
726 bad_key:
727 err = -EKEYREJECTED;
728 out_put:
729 key_ref_put(ref);
730 return err;
731 }
732
733 /*
734 * Add a master encryption key to the filesystem, causing all files which were
735 * encrypted with it to appear "unlocked" (decrypted) when accessed.
736 *
737 * When adding a key for use by v1 encryption policies, this ioctl is
738 * privileged, and userspace must provide the 'key_descriptor'.
739 *
740 * When adding a key for use by v2+ encryption policies, this ioctl is
741 * unprivileged. This is needed, in general, to allow non-root users to use
742 * encryption without encountering the visibility problems of process-subscribed
743 * keyrings and the inability to properly remove keys. This works by having
744 * each key identified by its cryptographically secure hash --- the
745 * 'key_identifier'. The cryptographic hash ensures that a malicious user
746 * cannot add the wrong key for a given identifier. Furthermore, each added key
747 * is charged to the appropriate user's quota for the keyrings service, which
748 * prevents a malicious user from adding too many keys. Finally, we forbid a
749 * user from removing a key while other users have added it too, which prevents
750 * a user who knows another user's key from causing a denial-of-service by
751 * removing it at an inopportune time. (We tolerate that a user who knows a key
752 * can prevent other users from removing it.)
753 *
754 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
755 * Documentation/filesystems/fscrypt.rst.
756 */
fscrypt_ioctl_add_key(struct file * filp,void __user * _uarg)757 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
758 {
759 struct super_block *sb = file_inode(filp)->i_sb;
760 struct fscrypt_add_key_arg __user *uarg = _uarg;
761 struct fscrypt_add_key_arg arg;
762 struct fscrypt_master_key_secret secret;
763 int err;
764
765 if (copy_from_user(&arg, uarg, sizeof(arg)))
766 return -EFAULT;
767
768 if (!valid_key_spec(&arg.key_spec))
769 return -EINVAL;
770
771 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
772 return -EINVAL;
773
774 /*
775 * Only root can add keys that are identified by an arbitrary descriptor
776 * rather than by a cryptographic hash --- since otherwise a malicious
777 * user could add the wrong key.
778 */
779 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
780 !capable(CAP_SYS_ADMIN))
781 return -EACCES;
782
783 memset(&secret, 0, sizeof(secret));
784
785 if (arg.flags) {
786 if (arg.flags & ~FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
787 return -EINVAL;
788 if (arg.key_spec.type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
789 return -EINVAL;
790 secret.is_hw_wrapped = true;
791 }
792
793 if (arg.key_id) {
794 if (arg.raw_size != 0)
795 return -EINVAL;
796 err = get_keyring_key(arg.key_id, arg.key_spec.type, arg.flags,
797 &secret);
798 if (err)
799 goto out_wipe_secret;
800 } else {
801 if (!fscrypt_valid_key_size(arg.raw_size, arg.flags))
802 return -EINVAL;
803 secret.size = arg.raw_size;
804 err = -EFAULT;
805 if (copy_from_user(secret.bytes, uarg->raw, secret.size))
806 goto out_wipe_secret;
807 }
808
809 err = add_master_key(sb, &secret, &arg.key_spec);
810 if (err)
811 goto out_wipe_secret;
812
813 /* Return the key identifier to userspace, if applicable */
814 err = -EFAULT;
815 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
816 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
817 FSCRYPT_KEY_IDENTIFIER_SIZE))
818 goto out_wipe_secret;
819 err = 0;
820 out_wipe_secret:
821 wipe_master_key_secret(&secret);
822 return err;
823 }
824 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
825
826 static void
fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret * secret)827 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
828 {
829 static u8 test_key[FSCRYPT_MAX_RAW_KEY_SIZE];
830
831 get_random_once(test_key, sizeof(test_key));
832
833 memset(secret, 0, sizeof(*secret));
834 secret->size = sizeof(test_key);
835 memcpy(secret->bytes, test_key, sizeof(test_key));
836 }
837
fscrypt_get_test_dummy_key_identifier(u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])838 int fscrypt_get_test_dummy_key_identifier(
839 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
840 {
841 struct fscrypt_master_key_secret secret;
842 int err;
843
844 fscrypt_get_test_dummy_secret(&secret);
845
846 err = fscrypt_init_hkdf(&secret.hkdf, secret.bytes, secret.size);
847 if (err)
848 goto out;
849 err = fscrypt_hkdf_expand(&secret.hkdf,
850 HKDF_CONTEXT_KEY_IDENTIFIER_FOR_RAW_KEY,
851 NULL, 0, key_identifier,
852 FSCRYPT_KEY_IDENTIFIER_SIZE);
853 out:
854 wipe_master_key_secret(&secret);
855 return err;
856 }
857
858 /**
859 * fscrypt_add_test_dummy_key() - add the test dummy encryption key
860 * @sb: the filesystem instance to add the key to
861 * @key_spec: the key specifier of the test dummy encryption key
862 *
863 * Add the key for the test_dummy_encryption mount option to the filesystem. To
864 * prevent misuse of this mount option, a per-boot random key is used instead of
865 * a hardcoded one. This makes it so that any encrypted files created using
866 * this option won't be accessible after a reboot.
867 *
868 * Return: 0 on success, -errno on failure
869 */
fscrypt_add_test_dummy_key(struct super_block * sb,struct fscrypt_key_specifier * key_spec)870 int fscrypt_add_test_dummy_key(struct super_block *sb,
871 struct fscrypt_key_specifier *key_spec)
872 {
873 struct fscrypt_master_key_secret secret;
874 int err;
875
876 fscrypt_get_test_dummy_secret(&secret);
877 err = add_master_key(sb, &secret, key_spec);
878 wipe_master_key_secret(&secret);
879 return err;
880 }
881
882 /*
883 * Verify that the current user has added a master key with the given identifier
884 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting
885 * their files using some other user's key which they don't actually know.
886 * Cryptographically this isn't much of a problem, but the semantics of this
887 * would be a bit weird, so it's best to just forbid it.
888 *
889 * The system administrator (CAP_FOWNER) can override this, which should be
890 * enough for any use cases where encryption policies are being set using keys
891 * that were chosen ahead of time but aren't available at the moment.
892 *
893 * Note that the key may have already removed by the time this returns, but
894 * that's okay; we just care whether the key was there at some point.
895 *
896 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
897 */
fscrypt_verify_key_added(struct super_block * sb,const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])898 int fscrypt_verify_key_added(struct super_block *sb,
899 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
900 {
901 struct fscrypt_key_specifier mk_spec;
902 struct fscrypt_master_key *mk;
903 struct key *mk_user;
904 int err;
905
906 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
907 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
908
909 mk = fscrypt_find_master_key(sb, &mk_spec);
910 if (!mk) {
911 err = -ENOKEY;
912 goto out;
913 }
914 down_read(&mk->mk_sem);
915 mk_user = find_master_key_user(mk);
916 if (IS_ERR(mk_user)) {
917 err = PTR_ERR(mk_user);
918 } else {
919 key_put(mk_user);
920 err = 0;
921 }
922 up_read(&mk->mk_sem);
923 fscrypt_put_master_key(mk);
924 out:
925 if (err == -ENOKEY && capable(CAP_FOWNER))
926 err = 0;
927 return err;
928 }
929
930 /*
931 * Try to evict the inode's dentries from the dentry cache. If the inode is a
932 * directory, then it can have at most one dentry; however, that dentry may be
933 * pinned by child dentries, so first try to evict the children too.
934 */
shrink_dcache_inode(struct inode * inode)935 static void shrink_dcache_inode(struct inode *inode)
936 {
937 struct dentry *dentry;
938
939 if (S_ISDIR(inode->i_mode)) {
940 dentry = d_find_any_alias(inode);
941 if (dentry) {
942 shrink_dcache_parent(dentry);
943 dput(dentry);
944 }
945 }
946 d_prune_aliases(inode);
947 }
948
evict_dentries_for_decrypted_inodes(struct fscrypt_master_key * mk)949 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
950 {
951 struct fscrypt_inode_info *ci;
952 struct inode *inode;
953 struct inode *toput_inode = NULL;
954
955 spin_lock(&mk->mk_decrypted_inodes_lock);
956
957 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
958 inode = ci->ci_inode;
959 spin_lock(&inode->i_lock);
960 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
961 spin_unlock(&inode->i_lock);
962 continue;
963 }
964 __iget(inode);
965 spin_unlock(&inode->i_lock);
966 spin_unlock(&mk->mk_decrypted_inodes_lock);
967
968 shrink_dcache_inode(inode);
969 iput(toput_inode);
970 toput_inode = inode;
971
972 spin_lock(&mk->mk_decrypted_inodes_lock);
973 }
974
975 spin_unlock(&mk->mk_decrypted_inodes_lock);
976 iput(toput_inode);
977 }
978
check_for_busy_inodes(struct super_block * sb,struct fscrypt_master_key * mk)979 static int check_for_busy_inodes(struct super_block *sb,
980 struct fscrypt_master_key *mk)
981 {
982 struct list_head *pos;
983 size_t busy_count = 0;
984 unsigned long ino;
985 char ino_str[50] = "";
986
987 spin_lock(&mk->mk_decrypted_inodes_lock);
988
989 list_for_each(pos, &mk->mk_decrypted_inodes)
990 busy_count++;
991
992 if (busy_count == 0) {
993 spin_unlock(&mk->mk_decrypted_inodes_lock);
994 return 0;
995 }
996
997 {
998 /* select an example file to show for debugging purposes */
999 struct inode *inode =
1000 list_first_entry(&mk->mk_decrypted_inodes,
1001 struct fscrypt_inode_info,
1002 ci_master_key_link)->ci_inode;
1003 ino = inode->i_ino;
1004 }
1005 spin_unlock(&mk->mk_decrypted_inodes_lock);
1006
1007 /* If the inode is currently being created, ino may still be 0. */
1008 if (ino)
1009 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
1010
1011 fscrypt_warn(NULL,
1012 "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
1013 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
1014 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
1015 ino_str);
1016 return -EBUSY;
1017 }
1018
try_to_lock_encrypted_files(struct super_block * sb,struct fscrypt_master_key * mk)1019 static int try_to_lock_encrypted_files(struct super_block *sb,
1020 struct fscrypt_master_key *mk)
1021 {
1022 int err1;
1023 int err2;
1024
1025 /*
1026 * An inode can't be evicted while it is dirty or has dirty pages.
1027 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
1028 *
1029 * Just do it the easy way: call sync_filesystem(). It's overkill, but
1030 * it works, and it's more important to minimize the amount of caches we
1031 * drop than the amount of data we sync. Also, unprivileged users can
1032 * already call sync_filesystem() via sys_syncfs() or sys_sync().
1033 */
1034 down_read(&sb->s_umount);
1035 err1 = sync_filesystem(sb);
1036 up_read(&sb->s_umount);
1037 /* If a sync error occurs, still try to evict as much as possible. */
1038
1039 /*
1040 * Inodes are pinned by their dentries, so we have to evict their
1041 * dentries. shrink_dcache_sb() would suffice, but would be overkill
1042 * and inappropriate for use by unprivileged users. So instead go
1043 * through the inodes' alias lists and try to evict each dentry.
1044 */
1045 evict_dentries_for_decrypted_inodes(mk);
1046
1047 /*
1048 * evict_dentries_for_decrypted_inodes() already iput() each inode in
1049 * the list; any inodes for which that dropped the last reference will
1050 * have been evicted due to fscrypt_drop_inode() detecting the key
1051 * removal and telling the VFS to evict the inode. So to finish, we
1052 * just need to check whether any inodes couldn't be evicted.
1053 */
1054 err2 = check_for_busy_inodes(sb, mk);
1055
1056 return err1 ?: err2;
1057 }
1058
1059 /*
1060 * Try to remove an fscrypt master encryption key.
1061 *
1062 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1063 * claim to the key, then removes the key itself if no other users have claims.
1064 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1065 * key itself.
1066 *
1067 * To "remove the key itself", first we transition the key to the "incompletely
1068 * removed" state, so that no more inodes can be unlocked with it. Then we try
1069 * to evict all cached inodes that had been unlocked with the key.
1070 *
1071 * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1072 * keyring. Otherwise it remains in the keyring in the "incompletely removed"
1073 * state where it tracks the list of remaining inodes. Userspace can execute
1074 * the ioctl again later to retry eviction, or alternatively can re-add the key.
1075 *
1076 * For more details, see the "Removing keys" section of
1077 * Documentation/filesystems/fscrypt.rst.
1078 */
do_remove_key(struct file * filp,void __user * _uarg,bool all_users)1079 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1080 {
1081 struct super_block *sb = file_inode(filp)->i_sb;
1082 struct fscrypt_remove_key_arg __user *uarg = _uarg;
1083 struct fscrypt_remove_key_arg arg;
1084 struct fscrypt_master_key *mk;
1085 u32 status_flags = 0;
1086 int err;
1087 bool inodes_remain;
1088
1089 if (copy_from_user(&arg, uarg, sizeof(arg)))
1090 return -EFAULT;
1091
1092 if (!valid_key_spec(&arg.key_spec))
1093 return -EINVAL;
1094
1095 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1096 return -EINVAL;
1097
1098 /*
1099 * Only root can add and remove keys that are identified by an arbitrary
1100 * descriptor rather than by a cryptographic hash.
1101 */
1102 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1103 !capable(CAP_SYS_ADMIN))
1104 return -EACCES;
1105
1106 /* Find the key being removed. */
1107 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1108 if (!mk)
1109 return -ENOKEY;
1110 down_write(&mk->mk_sem);
1111
1112 /* If relevant, remove current user's (or all users) claim to the key */
1113 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1114 if (all_users)
1115 err = keyring_clear(mk->mk_users);
1116 else
1117 err = remove_master_key_user(mk);
1118 if (err) {
1119 up_write(&mk->mk_sem);
1120 goto out_put_key;
1121 }
1122 if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1123 /*
1124 * Other users have still added the key too. We removed
1125 * the current user's claim to the key, but we still
1126 * can't remove the key itself.
1127 */
1128 status_flags |=
1129 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1130 err = 0;
1131 up_write(&mk->mk_sem);
1132 goto out_put_key;
1133 }
1134 }
1135
1136 /* No user claims remaining. Initiate removal of the key. */
1137 err = -ENOKEY;
1138 if (mk->mk_present) {
1139 fscrypt_initiate_key_removal(sb, mk);
1140 err = 0;
1141 }
1142 inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1143 up_write(&mk->mk_sem);
1144
1145 if (inodes_remain) {
1146 /* Some inodes still reference this key; try to evict them. */
1147 err = try_to_lock_encrypted_files(sb, mk);
1148 if (err == -EBUSY) {
1149 status_flags |=
1150 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1151 err = 0;
1152 }
1153 }
1154 /*
1155 * We return 0 if we successfully did something: removed a claim to the
1156 * key, initiated removal of the key, or tried locking the files again.
1157 * Users need to check the informational status flags if they care
1158 * whether the key has been fully removed including all files locked.
1159 */
1160 out_put_key:
1161 fscrypt_put_master_key(mk);
1162 if (err == 0)
1163 err = put_user(status_flags, &uarg->removal_status_flags);
1164 return err;
1165 }
1166
fscrypt_ioctl_remove_key(struct file * filp,void __user * uarg)1167 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1168 {
1169 return do_remove_key(filp, uarg, false);
1170 }
1171 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1172
fscrypt_ioctl_remove_key_all_users(struct file * filp,void __user * uarg)1173 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1174 {
1175 if (!capable(CAP_SYS_ADMIN))
1176 return -EACCES;
1177 return do_remove_key(filp, uarg, true);
1178 }
1179 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1180
1181 /*
1182 * Retrieve the status of an fscrypt master encryption key.
1183 *
1184 * We set ->status to indicate whether the key is absent, present, or
1185 * incompletely removed. (For an explanation of what these statuses mean and
1186 * how they are represented internally, see struct fscrypt_master_key.) This
1187 * field allows applications to easily determine the status of an encrypted
1188 * directory without using a hack such as trying to open a regular file in it
1189 * (which can confuse the "incompletely removed" status with absent or present).
1190 *
1191 * In addition, for v2 policy keys we allow applications to determine, via
1192 * ->status_flags and ->user_count, whether the key has been added by the
1193 * current user, by other users, or by both. Most applications should not need
1194 * this, since ordinarily only one user should know a given key. However, if a
1195 * secret key is shared by multiple users, applications may wish to add an
1196 * already-present key to prevent other users from removing it. This ioctl can
1197 * be used to check whether that really is the case before the work is done to
1198 * add the key --- which might e.g. require prompting the user for a passphrase.
1199 *
1200 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1201 * Documentation/filesystems/fscrypt.rst.
1202 */
fscrypt_ioctl_get_key_status(struct file * filp,void __user * uarg)1203 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1204 {
1205 struct super_block *sb = file_inode(filp)->i_sb;
1206 struct fscrypt_get_key_status_arg arg;
1207 struct fscrypt_master_key *mk;
1208 int err;
1209
1210 if (copy_from_user(&arg, uarg, sizeof(arg)))
1211 return -EFAULT;
1212
1213 if (!valid_key_spec(&arg.key_spec))
1214 return -EINVAL;
1215
1216 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1217 return -EINVAL;
1218
1219 arg.status_flags = 0;
1220 arg.user_count = 0;
1221 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1222
1223 mk = fscrypt_find_master_key(sb, &arg.key_spec);
1224 if (!mk) {
1225 arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1226 err = 0;
1227 goto out;
1228 }
1229 down_read(&mk->mk_sem);
1230
1231 if (!mk->mk_present) {
1232 arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1233 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1234 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1235 err = 0;
1236 goto out_release_key;
1237 }
1238
1239 arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1240 if (mk->mk_users) {
1241 struct key *mk_user;
1242
1243 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1244 mk_user = find_master_key_user(mk);
1245 if (!IS_ERR(mk_user)) {
1246 arg.status_flags |=
1247 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1248 key_put(mk_user);
1249 } else if (mk_user != ERR_PTR(-ENOKEY)) {
1250 err = PTR_ERR(mk_user);
1251 goto out_release_key;
1252 }
1253 }
1254 err = 0;
1255 out_release_key:
1256 up_read(&mk->mk_sem);
1257 fscrypt_put_master_key(mk);
1258 out:
1259 if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1260 err = -EFAULT;
1261 return err;
1262 }
1263 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1264
fscrypt_init_keyring(void)1265 int __init fscrypt_init_keyring(void)
1266 {
1267 int err;
1268
1269 err = register_key_type(&key_type_fscrypt_user);
1270 if (err)
1271 return err;
1272
1273 err = register_key_type(&key_type_fscrypt_provisioning);
1274 if (err)
1275 goto err_unregister_fscrypt_user;
1276
1277 return 0;
1278
1279 err_unregister_fscrypt_user:
1280 unregister_key_type(&key_type_fscrypt_user);
1281 return err;
1282 }
1283