xref: /linux/arch/x86/kvm/cpuid.c (revision f2161d5f1aae21a42b0a64d87e10cb31db423f42)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  * cpuid support routines
5  *
6  * derived from arch/x86/kvm/x86.c
7  *
8  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9  * Copyright IBM Corporation, 2008
10  */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/kvm_host.h>
14 #include "linux/lockdep.h"
15 #include <linux/export.h>
16 #include <linux/vmalloc.h>
17 #include <linux/uaccess.h>
18 #include <linux/sched/stat.h>
19 
20 #include <asm/processor.h>
21 #include <asm/user.h>
22 #include <asm/fpu/xstate.h>
23 #include <asm/sgx.h>
24 #include <asm/cpuid/api.h>
25 #include "cpuid.h"
26 #include "lapic.h"
27 #include "mmu.h"
28 #include "trace.h"
29 #include "pmu.h"
30 #include "xen.h"
31 
32 /*
33  * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34  * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35  */
36 u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpu_caps);
38 
39 struct cpuid_xstate_sizes {
40 	u32 eax;
41 	u32 ebx;
42 	u32 ecx;
43 };
44 
45 static struct cpuid_xstate_sizes xstate_sizes[XFEATURE_MAX] __ro_after_init;
46 
kvm_init_xstate_sizes(void)47 void __init kvm_init_xstate_sizes(void)
48 {
49 	u32 ign;
50 	int i;
51 
52 	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes); i++) {
53 		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
54 
55 		cpuid_count(0xD, i, &xs->eax, &xs->ebx, &xs->ecx, &ign);
56 	}
57 }
58 
xstate_required_size(u64 xstate_bv,bool compacted)59 u32 xstate_required_size(u64 xstate_bv, bool compacted)
60 {
61 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
62 	int i;
63 
64 	xstate_bv &= XFEATURE_MASK_EXTEND;
65 	for (i = XFEATURE_YMM; i < ARRAY_SIZE(xstate_sizes) && xstate_bv; i++) {
66 		struct cpuid_xstate_sizes *xs = &xstate_sizes[i];
67 		u32 offset;
68 
69 		if (!(xstate_bv & BIT_ULL(i)))
70 			continue;
71 
72 		/* ECX[1]: 64B alignment in compacted form */
73 		if (compacted)
74 			offset = (xs->ecx & 0x2) ? ALIGN(ret, 64) : ret;
75 		else
76 			offset = xs->ebx;
77 		ret = max(ret, offset + xs->eax);
78 		xstate_bv &= ~BIT_ULL(i);
79 	}
80 
81 	return ret;
82 }
83 
kvm_find_cpuid_entry2(struct kvm_cpuid_entry2 * entries,int nent,u32 function,u64 index)84 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry2(
85 	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
86 {
87 	struct kvm_cpuid_entry2 *e;
88 	int i;
89 
90 	/*
91 	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
92 	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
93 	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
94 	 * typically disabled in KVM only when KVM is in a performance critical
95 	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
96 	 * if this rule is violated, this assertion is purely to flag potential
97 	 * performance issues.  If this fires, consider moving the lookup out
98 	 * of the hotpath, e.g. by caching information during CPUID updates.
99 	 */
100 	lockdep_assert_irqs_enabled();
101 
102 	for (i = 0; i < nent; i++) {
103 		e = &entries[i];
104 
105 		if (e->function != function)
106 			continue;
107 
108 		/*
109 		 * If the index isn't significant, use the first entry with a
110 		 * matching function.  It's userspace's responsibility to not
111 		 * provide "duplicate" entries in all cases.
112 		 */
113 		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
114 			return e;
115 
116 
117 		/*
118 		 * Similarly, use the first matching entry if KVM is doing a
119 		 * lookup (as opposed to emulating CPUID) for a function that's
120 		 * architecturally defined as not having a significant index.
121 		 */
122 		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
123 			/*
124 			 * Direct lookups from KVM should not diverge from what
125 			 * KVM defines internally (the architectural behavior).
126 			 */
127 			WARN_ON_ONCE(cpuid_function_is_indexed(function));
128 			return e;
129 		}
130 	}
131 
132 	return NULL;
133 }
134 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_find_cpuid_entry2);
135 
kvm_check_cpuid(struct kvm_vcpu * vcpu)136 static int kvm_check_cpuid(struct kvm_vcpu *vcpu)
137 {
138 	struct kvm_cpuid_entry2 *best;
139 	u64 xfeatures;
140 
141 	/*
142 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
143 	 * canonical address checks; exit if it is ever changed.
144 	 */
145 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
146 	if (best) {
147 		int vaddr_bits = (best->eax & 0xff00) >> 8;
148 
149 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150 			return -EINVAL;
151 	}
152 
153 	/*
154 	 * Exposing dynamic xfeatures to the guest requires additional
155 	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156 	 */
157 	best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
158 	if (!best)
159 		return 0;
160 
161 	xfeatures = best->eax | ((u64)best->edx << 32);
162 	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163 	if (!xfeatures)
164 		return 0;
165 
166 	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167 }
168 
169 static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu);
170 static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
171 
172 /* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
kvm_cpuid_check_equal(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)173 static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
174 				 int nent)
175 {
176 	struct kvm_cpuid_entry2 *orig;
177 	int i;
178 
179 	/*
180 	 * Apply runtime CPUID updates to the incoming CPUID entries to avoid
181 	 * false positives due mismatches on KVM-owned feature flags.
182 	 *
183 	 * Note!  @e2 and @nent track the _old_ CPUID entries!
184 	 */
185 	kvm_update_cpuid_runtime(vcpu);
186 	kvm_apply_cpuid_pv_features_quirk(vcpu);
187 
188 	if (nent != vcpu->arch.cpuid_nent)
189 		return -EINVAL;
190 
191 	for (i = 0; i < nent; i++) {
192 		orig = &vcpu->arch.cpuid_entries[i];
193 		if (e2[i].function != orig->function ||
194 		    e2[i].index != orig->index ||
195 		    e2[i].flags != orig->flags ||
196 		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
197 		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
198 			return -EINVAL;
199 	}
200 
201 	return 0;
202 }
203 
kvm_get_hypervisor_cpuid(struct kvm_vcpu * vcpu,const char * sig)204 static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
205 							    const char *sig)
206 {
207 	struct kvm_hypervisor_cpuid cpuid = {};
208 	struct kvm_cpuid_entry2 *entry;
209 	u32 base;
210 
211 	for_each_possible_cpuid_base_hypervisor(base) {
212 		entry = kvm_find_cpuid_entry(vcpu, base);
213 
214 		if (entry) {
215 			u32 signature[3];
216 
217 			signature[0] = entry->ebx;
218 			signature[1] = entry->ecx;
219 			signature[2] = entry->edx;
220 
221 			if (!memcmp(signature, sig, sizeof(signature))) {
222 				cpuid.base = base;
223 				cpuid.limit = entry->eax;
224 				break;
225 			}
226 		}
227 	}
228 
229 	return cpuid;
230 }
231 
kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu * vcpu)232 static u32 kvm_apply_cpuid_pv_features_quirk(struct kvm_vcpu *vcpu)
233 {
234 	struct kvm_hypervisor_cpuid kvm_cpuid;
235 	struct kvm_cpuid_entry2 *best;
236 
237 	kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
238 	if (!kvm_cpuid.base)
239 		return 0;
240 
241 	best = kvm_find_cpuid_entry(vcpu, kvm_cpuid.base | KVM_CPUID_FEATURES);
242 	if (!best)
243 		return 0;
244 
245 	if (kvm_hlt_in_guest(vcpu->kvm))
246 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
247 
248 	return best->eax;
249 }
250 
251 /*
252  * Calculate guest's supported XCR0 taking into account guest CPUID data and
253  * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
254  */
cpuid_get_supported_xcr0(struct kvm_vcpu * vcpu)255 static u64 cpuid_get_supported_xcr0(struct kvm_vcpu *vcpu)
256 {
257 	struct kvm_cpuid_entry2 *best;
258 
259 	best = kvm_find_cpuid_entry_index(vcpu, 0xd, 0);
260 	if (!best)
261 		return 0;
262 
263 	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
264 }
265 
cpuid_get_supported_xss(struct kvm_vcpu * vcpu)266 static u64 cpuid_get_supported_xss(struct kvm_vcpu *vcpu)
267 {
268 	struct kvm_cpuid_entry2 *best;
269 
270 	best = kvm_find_cpuid_entry_index(vcpu, 0xd, 1);
271 	if (!best)
272 		return 0;
273 
274 	return (best->ecx | ((u64)best->edx << 32)) & kvm_caps.supported_xss;
275 }
276 
kvm_update_feature_runtime(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * entry,unsigned int x86_feature,bool has_feature)277 static __always_inline void kvm_update_feature_runtime(struct kvm_vcpu *vcpu,
278 						       struct kvm_cpuid_entry2 *entry,
279 						       unsigned int x86_feature,
280 						       bool has_feature)
281 {
282 	cpuid_entry_change(entry, x86_feature, has_feature);
283 	guest_cpu_cap_change(vcpu, x86_feature, has_feature);
284 }
285 
kvm_update_cpuid_runtime(struct kvm_vcpu * vcpu)286 static void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
287 {
288 	struct kvm_cpuid_entry2 *best;
289 
290 	vcpu->arch.cpuid_dynamic_bits_dirty = false;
291 
292 	best = kvm_find_cpuid_entry(vcpu, 1);
293 	if (best) {
294 		kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSXSAVE,
295 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
296 
297 		kvm_update_feature_runtime(vcpu, best, X86_FEATURE_APIC,
298 					   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
299 
300 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT))
301 			kvm_update_feature_runtime(vcpu, best, X86_FEATURE_MWAIT,
302 						   vcpu->arch.ia32_misc_enable_msr &
303 						   MSR_IA32_MISC_ENABLE_MWAIT);
304 	}
305 
306 	best = kvm_find_cpuid_entry_index(vcpu, 7, 0);
307 	if (best)
308 		kvm_update_feature_runtime(vcpu, best, X86_FEATURE_OSPKE,
309 					   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
310 
311 
312 	best = kvm_find_cpuid_entry_index(vcpu, 0xD, 0);
313 	if (best)
314 		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
315 
316 	best = kvm_find_cpuid_entry_index(vcpu, 0xD, 1);
317 	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
318 		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
319 		best->ebx = xstate_required_size(vcpu->arch.xcr0 |
320 						 vcpu->arch.ia32_xss, true);
321 }
322 
kvm_cpuid_has_hyperv(struct kvm_vcpu * vcpu)323 static bool kvm_cpuid_has_hyperv(struct kvm_vcpu *vcpu)
324 {
325 #ifdef CONFIG_KVM_HYPERV
326 	struct kvm_cpuid_entry2 *entry;
327 
328 	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_INTERFACE);
329 	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
330 #else
331 	return false;
332 #endif
333 }
334 
guest_cpuid_is_amd_or_hygon(struct kvm_vcpu * vcpu)335 static bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
336 {
337 	struct kvm_cpuid_entry2 *entry;
338 
339 	entry = kvm_find_cpuid_entry(vcpu, 0);
340 	if (!entry)
341 		return false;
342 
343 	return is_guest_vendor_amd(entry->ebx, entry->ecx, entry->edx) ||
344 	       is_guest_vendor_hygon(entry->ebx, entry->ecx, entry->edx);
345 }
346 
347 /*
348  * This isn't truly "unsafe", but except for the cpu_caps initialization code,
349  * all register lookups should use __cpuid_entry_get_reg(), which provides
350  * compile-time validation of the input.
351  */
cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 * entry,u32 reg)352 static u32 cpuid_get_reg_unsafe(struct kvm_cpuid_entry2 *entry, u32 reg)
353 {
354 	switch (reg) {
355 	case CPUID_EAX:
356 		return entry->eax;
357 	case CPUID_EBX:
358 		return entry->ebx;
359 	case CPUID_ECX:
360 		return entry->ecx;
361 	case CPUID_EDX:
362 		return entry->edx;
363 	default:
364 		WARN_ON_ONCE(1);
365 		return 0;
366 	}
367 }
368 
369 static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
370 			       bool include_partially_emulated);
371 
kvm_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)372 void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
373 {
374 	struct kvm_lapic *apic = vcpu->arch.apic;
375 	struct kvm_cpuid_entry2 *best;
376 	struct kvm_cpuid_entry2 *entry;
377 	bool allow_gbpages;
378 	int i;
379 
380 	memset(vcpu->arch.cpu_caps, 0, sizeof(vcpu->arch.cpu_caps));
381 	BUILD_BUG_ON(ARRAY_SIZE(reverse_cpuid) != NR_KVM_CPU_CAPS);
382 
383 	/*
384 	 * Reset guest capabilities to userspace's guest CPUID definition, i.e.
385 	 * honor userspace's definition for features that don't require KVM or
386 	 * hardware management/support (or that KVM simply doesn't care about).
387 	 */
388 	for (i = 0; i < NR_KVM_CPU_CAPS; i++) {
389 		const struct cpuid_reg cpuid = reverse_cpuid[i];
390 		struct kvm_cpuid_entry2 emulated;
391 
392 		if (!cpuid.function)
393 			continue;
394 
395 		entry = kvm_find_cpuid_entry_index(vcpu, cpuid.function, cpuid.index);
396 		if (!entry)
397 			continue;
398 
399 		cpuid_func_emulated(&emulated, cpuid.function, true);
400 
401 		/*
402 		 * A vCPU has a feature if it's supported by KVM and is enabled
403 		 * in guest CPUID.  Note, this includes features that are
404 		 * supported by KVM but aren't advertised to userspace!
405 		 */
406 		vcpu->arch.cpu_caps[i] = kvm_cpu_caps[i] |
407 					 cpuid_get_reg_unsafe(&emulated, cpuid.reg);
408 		vcpu->arch.cpu_caps[i] &= cpuid_get_reg_unsafe(entry, cpuid.reg);
409 	}
410 
411 	kvm_update_cpuid_runtime(vcpu);
412 
413 	/*
414 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
415 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
416 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
417 	 * walk for performance and complexity reasons.  Not to mention KVM
418 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
419 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
420 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
421 	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
422 	 * and can install smaller shadow pages if the host lacks 1GiB support.
423 	 */
424 	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
425 				      guest_cpu_cap_has(vcpu, X86_FEATURE_GBPAGES);
426 	guest_cpu_cap_change(vcpu, X86_FEATURE_GBPAGES, allow_gbpages);
427 
428 	best = kvm_find_cpuid_entry(vcpu, 1);
429 	if (best && apic) {
430 		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
431 			apic->lapic_timer.timer_mode_mask = 3 << 17;
432 		else
433 			apic->lapic_timer.timer_mode_mask = 1 << 17;
434 
435 		kvm_apic_set_version(vcpu);
436 	}
437 
438 	vcpu->arch.guest_supported_xcr0 = cpuid_get_supported_xcr0(vcpu);
439 	vcpu->arch.guest_supported_xss = cpuid_get_supported_xss(vcpu);
440 
441 	vcpu->arch.pv_cpuid.features = kvm_apply_cpuid_pv_features_quirk(vcpu);
442 
443 	vcpu->arch.is_amd_compatible = guest_cpuid_is_amd_or_hygon(vcpu);
444 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
445 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
446 
447 	kvm_pmu_refresh(vcpu);
448 
449 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
450 	vcpu->arch.cr4_guest_rsvd_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_) |
451 					 __cr4_reserved_bits(guest_cpu_cap_has, vcpu);
452 #undef __kvm_cpu_cap_has
453 
454 	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu));
455 
456 	/* Invoke the vendor callback only after the above state is updated. */
457 	kvm_x86_call(vcpu_after_set_cpuid)(vcpu);
458 
459 	/*
460 	 * Except for the MMU, which needs to do its thing any vendor specific
461 	 * adjustments to the reserved GPA bits.
462 	 */
463 	kvm_mmu_after_set_cpuid(vcpu);
464 
465 	kvm_make_request(KVM_REQ_RECALC_INTERCEPTS, vcpu);
466 }
467 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)468 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
469 {
470 	struct kvm_cpuid_entry2 *best;
471 
472 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
473 	if (!best || best->eax < 0x80000008)
474 		goto not_found;
475 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
476 	if (best)
477 		return best->eax & 0xff;
478 not_found:
479 	return 36;
480 }
481 
cpuid_query_maxguestphyaddr(struct kvm_vcpu * vcpu)482 int cpuid_query_maxguestphyaddr(struct kvm_vcpu *vcpu)
483 {
484 	struct kvm_cpuid_entry2 *best;
485 
486 	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
487 	if (!best || best->eax < 0x80000008)
488 		goto not_found;
489 	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
490 	if (best)
491 		return (best->eax >> 16) & 0xff;
492 not_found:
493 	return 0;
494 }
495 
496 /*
497  * This "raw" version returns the reserved GPA bits without any adjustments for
498  * encryption technologies that usurp bits.  The raw mask should be used if and
499  * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
500  */
kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu * vcpu)501 u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
502 {
503 	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
504 }
505 
kvm_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid_entry2 * e2,int nent)506 static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
507                         int nent)
508 {
509 	u32 vcpu_caps[NR_KVM_CPU_CAPS];
510 	int r;
511 
512 	/*
513 	 * Apply pending runtime CPUID updates to the current CPUID entries to
514 	 * avoid false positives due to mismatches on KVM-owned feature flags.
515 	 */
516 	if (vcpu->arch.cpuid_dynamic_bits_dirty)
517 		kvm_update_cpuid_runtime(vcpu);
518 
519 	/*
520 	 * Swap the existing (old) entries with the incoming (new) entries in
521 	 * order to massage the new entries, e.g. to account for dynamic bits
522 	 * that KVM controls, without losing the current guest CPUID, which KVM
523 	 * needs to preserve in order to unwind on failure.
524 	 *
525 	 * Similarly, save the vCPU's current cpu_caps so that the capabilities
526 	 * can be updated alongside the CPUID entries when performing runtime
527 	 * updates.  Full initialization is done if and only if the vCPU hasn't
528 	 * run, i.e. only if userspace is potentially changing CPUID features.
529 	 */
530 	swap(vcpu->arch.cpuid_entries, e2);
531 	swap(vcpu->arch.cpuid_nent, nent);
532 
533 	memcpy(vcpu_caps, vcpu->arch.cpu_caps, sizeof(vcpu_caps));
534 	BUILD_BUG_ON(sizeof(vcpu_caps) != sizeof(vcpu->arch.cpu_caps));
535 
536 	/*
537 	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
538 	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
539 	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
540 	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
541 	 * the core vCPU model on the fly. It would've been better to forbid any
542 	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
543 	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
544 	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
545 	 * whether the supplied CPUID data is equal to what's already set.
546 	 */
547 	if (kvm_vcpu_has_run(vcpu)) {
548 		r = kvm_cpuid_check_equal(vcpu, e2, nent);
549 		if (r)
550 			goto err;
551 		goto success;
552 	}
553 
554 #ifdef CONFIG_KVM_HYPERV
555 	if (kvm_cpuid_has_hyperv(vcpu)) {
556 		r = kvm_hv_vcpu_init(vcpu);
557 		if (r)
558 			goto err;
559 	}
560 #endif
561 
562 	r = kvm_check_cpuid(vcpu);
563 	if (r)
564 		goto err;
565 
566 #ifdef CONFIG_KVM_XEN
567 	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
568 #endif
569 	kvm_vcpu_after_set_cpuid(vcpu);
570 
571 success:
572 	kvfree(e2);
573 	return 0;
574 
575 err:
576 	memcpy(vcpu->arch.cpu_caps, vcpu_caps, sizeof(vcpu_caps));
577 	swap(vcpu->arch.cpuid_entries, e2);
578 	swap(vcpu->arch.cpuid_nent, nent);
579 	return r;
580 }
581 
582 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)583 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
584 			     struct kvm_cpuid *cpuid,
585 			     struct kvm_cpuid_entry __user *entries)
586 {
587 	int r, i;
588 	struct kvm_cpuid_entry *e = NULL;
589 	struct kvm_cpuid_entry2 *e2 = NULL;
590 
591 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
592 		return -E2BIG;
593 
594 	if (cpuid->nent) {
595 		e = vmemdup_array_user(entries, cpuid->nent, sizeof(*e));
596 		if (IS_ERR(e))
597 			return PTR_ERR(e);
598 
599 		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
600 		if (!e2) {
601 			r = -ENOMEM;
602 			goto out_free_cpuid;
603 		}
604 	}
605 	for (i = 0; i < cpuid->nent; i++) {
606 		e2[i].function = e[i].function;
607 		e2[i].eax = e[i].eax;
608 		e2[i].ebx = e[i].ebx;
609 		e2[i].ecx = e[i].ecx;
610 		e2[i].edx = e[i].edx;
611 		e2[i].index = 0;
612 		e2[i].flags = 0;
613 		e2[i].padding[0] = 0;
614 		e2[i].padding[1] = 0;
615 		e2[i].padding[2] = 0;
616 	}
617 
618 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
619 	if (r)
620 		kvfree(e2);
621 
622 out_free_cpuid:
623 	kvfree(e);
624 
625 	return r;
626 }
627 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)628 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
629 			      struct kvm_cpuid2 *cpuid,
630 			      struct kvm_cpuid_entry2 __user *entries)
631 {
632 	struct kvm_cpuid_entry2 *e2 = NULL;
633 	int r;
634 
635 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
636 		return -E2BIG;
637 
638 	if (cpuid->nent) {
639 		e2 = vmemdup_array_user(entries, cpuid->nent, sizeof(*e2));
640 		if (IS_ERR(e2))
641 			return PTR_ERR(e2);
642 	}
643 
644 	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
645 	if (r)
646 		kvfree(e2);
647 
648 	return r;
649 }
650 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)651 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
652 			      struct kvm_cpuid2 *cpuid,
653 			      struct kvm_cpuid_entry2 __user *entries)
654 {
655 	if (cpuid->nent < vcpu->arch.cpuid_nent)
656 		return -E2BIG;
657 
658 	if (vcpu->arch.cpuid_dynamic_bits_dirty)
659 		kvm_update_cpuid_runtime(vcpu);
660 
661 	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
662 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
663 		return -EFAULT;
664 
665 	cpuid->nent = vcpu->arch.cpuid_nent;
666 	return 0;
667 }
668 
raw_cpuid_get(struct cpuid_reg cpuid)669 static __always_inline u32 raw_cpuid_get(struct cpuid_reg cpuid)
670 {
671 	struct kvm_cpuid_entry2 entry;
672 	u32 base;
673 
674 	/*
675 	 * KVM only supports features defined by Intel (0x0), AMD (0x80000000),
676 	 * and Centaur (0xc0000000).  WARN if a feature for new vendor base is
677 	 * defined, as this and other code would need to be updated.
678 	 */
679 	base = cpuid.function & 0xffff0000;
680 	if (WARN_ON_ONCE(base && base != 0x80000000 && base != 0xc0000000))
681 		return 0;
682 
683 	if (cpuid_eax(base) < cpuid.function)
684 		return 0;
685 
686 	cpuid_count(cpuid.function, cpuid.index,
687 		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
688 
689 	return *__cpuid_entry_get_reg(&entry, cpuid.reg);
690 }
691 
692 /*
693  * For kernel-defined leafs, mask KVM's supported feature set with the kernel's
694  * capabilities as well as raw CPUID.  For KVM-defined leafs, consult only raw
695  * CPUID, as KVM is the one and only authority (in the kernel).
696  */
697 #define kvm_cpu_cap_init(leaf, feature_initializers...)			\
698 do {									\
699 	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);	\
700 	const u32 __maybe_unused kvm_cpu_cap_init_in_progress = leaf;	\
701 	const u32 *kernel_cpu_caps = boot_cpu_data.x86_capability;	\
702 	u32 kvm_cpu_cap_passthrough = 0;				\
703 	u32 kvm_cpu_cap_synthesized = 0;				\
704 	u32 kvm_cpu_cap_emulated = 0;					\
705 	u32 kvm_cpu_cap_features = 0;					\
706 									\
707 	feature_initializers						\
708 									\
709 	kvm_cpu_caps[leaf] = kvm_cpu_cap_features;			\
710 									\
711 	if (leaf < NCAPINTS)						\
712 		kvm_cpu_caps[leaf] &= kernel_cpu_caps[leaf];		\
713 									\
714 	kvm_cpu_caps[leaf] |= kvm_cpu_cap_passthrough;			\
715 	kvm_cpu_caps[leaf] &= (raw_cpuid_get(cpuid) |			\
716 			       kvm_cpu_cap_synthesized);		\
717 	kvm_cpu_caps[leaf] |= kvm_cpu_cap_emulated;			\
718 } while (0)
719 
720 /*
721  * Assert that the feature bit being declared, e.g. via F(), is in the CPUID
722  * word that's being initialized.  Exempt 0x8000_0001.EDX usage of 0x1.EDX
723  * features, as AMD duplicated many 0x1.EDX features into 0x8000_0001.EDX.
724  */
725 #define KVM_VALIDATE_CPU_CAP_USAGE(name)				\
726 do {									\
727 	u32 __leaf = __feature_leaf(X86_FEATURE_##name);		\
728 									\
729 	BUILD_BUG_ON(__leaf != kvm_cpu_cap_init_in_progress);		\
730 } while (0)
731 
732 #define F(name)							\
733 ({								\
734 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
735 	kvm_cpu_cap_features |= feature_bit(name);		\
736 })
737 
738 /* Scattered Flag - For features that are scattered by cpufeatures.h. */
739 #define SCATTERED_F(name)					\
740 ({								\
741 	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
742 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
743 	if (boot_cpu_has(X86_FEATURE_##name))			\
744 		F(name);					\
745 })
746 
747 /* Features that KVM supports only on 64-bit kernels. */
748 #define X86_64_F(name)						\
749 ({								\
750 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
751 	if (IS_ENABLED(CONFIG_X86_64))				\
752 		F(name);					\
753 })
754 
755 /*
756  * Emulated Feature - For features that KVM emulates in software irrespective
757  * of host CPU/kernel support.
758  */
759 #define EMULATED_F(name)					\
760 ({								\
761 	kvm_cpu_cap_emulated |= feature_bit(name);		\
762 	F(name);						\
763 })
764 
765 /*
766  * Synthesized Feature - For features that are synthesized into boot_cpu_data,
767  * i.e. may not be present in the raw CPUID, but can still be advertised to
768  * userspace.  Primarily used for mitigation related feature flags.
769  */
770 #define SYNTHESIZED_F(name)					\
771 ({								\
772 	kvm_cpu_cap_synthesized |= feature_bit(name);		\
773 	F(name);						\
774 })
775 
776 /*
777  * Passthrough Feature - For features that KVM supports based purely on raw
778  * hardware CPUID, i.e. that KVM virtualizes even if the host kernel doesn't
779  * use the feature.  Simply force set the feature in KVM's capabilities, raw
780  * CPUID support will be factored in by kvm_cpu_cap_mask().
781  */
782 #define PASSTHROUGH_F(name)					\
783 ({								\
784 	kvm_cpu_cap_passthrough |= feature_bit(name);		\
785 	F(name);						\
786 })
787 
788 /*
789  * Aliased Features - For features in 0x8000_0001.EDX that are duplicates of
790  * identical 0x1.EDX features, and thus are aliased from 0x1 to 0x8000_0001.
791  */
792 #define ALIASED_1_EDX_F(name)							\
793 ({										\
794 	BUILD_BUG_ON(__feature_leaf(X86_FEATURE_##name) != CPUID_1_EDX);	\
795 	BUILD_BUG_ON(kvm_cpu_cap_init_in_progress != CPUID_8000_0001_EDX);	\
796 	kvm_cpu_cap_features |= feature_bit(name);				\
797 })
798 
799 /*
800  * Vendor Features - For features that KVM supports, but are added in later
801  * because they require additional vendor enabling.
802  */
803 #define VENDOR_F(name)						\
804 ({								\
805 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
806 })
807 
808 /*
809  * Runtime Features - For features that KVM dynamically sets/clears at runtime,
810  * e.g. when CR4 changes, but which are never advertised to userspace.
811  */
812 #define RUNTIME_F(name)						\
813 ({								\
814 	KVM_VALIDATE_CPU_CAP_USAGE(name);			\
815 })
816 
817 /*
818  * Undefine the MSR bit macro to avoid token concatenation issues when
819  * processing X86_FEATURE_SPEC_CTRL_SSBD.
820  */
821 #undef SPEC_CTRL_SSBD
822 
823 /* DS is defined by ptrace-abi.h on 32-bit builds. */
824 #undef DS
825 
kvm_set_cpu_caps(void)826 void kvm_set_cpu_caps(void)
827 {
828 	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
829 
830 	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
831 		     sizeof(boot_cpu_data.x86_capability));
832 
833 	kvm_cpu_cap_init(CPUID_1_ECX,
834 		F(XMM3),
835 		F(PCLMULQDQ),
836 		VENDOR_F(DTES64),
837 		/*
838 		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
839 		 * advertised to guests via CPUID!  MWAIT is also technically a
840 		 * runtime flag thanks to IA32_MISC_ENABLES; mark it as such so
841 		 * that KVM is aware that it's a known, unadvertised flag.
842 		 */
843 		RUNTIME_F(MWAIT),
844 		/* DS-CPL */
845 		VENDOR_F(VMX),
846 		/* SMX, EST */
847 		/* TM2 */
848 		F(SSSE3),
849 		/* CNXT-ID */
850 		/* Reserved */
851 		F(FMA),
852 		F(CX16),
853 		/* xTPR Update */
854 		F(PDCM),
855 		F(PCID),
856 		/* Reserved, DCA */
857 		F(XMM4_1),
858 		F(XMM4_2),
859 		EMULATED_F(X2APIC),
860 		F(MOVBE),
861 		F(POPCNT),
862 		EMULATED_F(TSC_DEADLINE_TIMER),
863 		F(AES),
864 		F(XSAVE),
865 		RUNTIME_F(OSXSAVE),
866 		F(AVX),
867 		F(F16C),
868 		F(RDRAND),
869 		EMULATED_F(HYPERVISOR),
870 	);
871 
872 	kvm_cpu_cap_init(CPUID_1_EDX,
873 		F(FPU),
874 		F(VME),
875 		F(DE),
876 		F(PSE),
877 		F(TSC),
878 		F(MSR),
879 		F(PAE),
880 		F(MCE),
881 		F(CX8),
882 		F(APIC),
883 		/* Reserved */
884 		F(SEP),
885 		F(MTRR),
886 		F(PGE),
887 		F(MCA),
888 		F(CMOV),
889 		F(PAT),
890 		F(PSE36),
891 		/* PSN */
892 		F(CLFLUSH),
893 		/* Reserved */
894 		VENDOR_F(DS),
895 		/* ACPI */
896 		F(MMX),
897 		F(FXSR),
898 		F(XMM),
899 		F(XMM2),
900 		F(SELFSNOOP),
901 		/* HTT, TM, Reserved, PBE */
902 	);
903 
904 	kvm_cpu_cap_init(CPUID_7_0_EBX,
905 		F(FSGSBASE),
906 		EMULATED_F(TSC_ADJUST),
907 		F(SGX),
908 		F(BMI1),
909 		F(HLE),
910 		F(AVX2),
911 		F(FDP_EXCPTN_ONLY),
912 		F(SMEP),
913 		F(BMI2),
914 		F(ERMS),
915 		F(INVPCID),
916 		F(RTM),
917 		F(ZERO_FCS_FDS),
918 		VENDOR_F(MPX),
919 		F(AVX512F),
920 		F(AVX512DQ),
921 		F(RDSEED),
922 		F(ADX),
923 		F(SMAP),
924 		F(AVX512IFMA),
925 		F(CLFLUSHOPT),
926 		F(CLWB),
927 		VENDOR_F(INTEL_PT),
928 		F(AVX512PF),
929 		F(AVX512ER),
930 		F(AVX512CD),
931 		F(SHA_NI),
932 		F(AVX512BW),
933 		F(AVX512VL),
934 	);
935 
936 	kvm_cpu_cap_init(CPUID_7_ECX,
937 		F(AVX512VBMI),
938 		PASSTHROUGH_F(LA57),
939 		F(PKU),
940 		RUNTIME_F(OSPKE),
941 		F(RDPID),
942 		F(AVX512_VPOPCNTDQ),
943 		F(UMIP),
944 		F(AVX512_VBMI2),
945 		F(GFNI),
946 		F(VAES),
947 		F(VPCLMULQDQ),
948 		F(AVX512_VNNI),
949 		F(AVX512_BITALG),
950 		F(CLDEMOTE),
951 		F(MOVDIRI),
952 		F(MOVDIR64B),
953 		VENDOR_F(WAITPKG),
954 		F(SGX_LC),
955 		F(BUS_LOCK_DETECT),
956 		X86_64_F(SHSTK),
957 	);
958 
959 	/*
960 	 * PKU not yet implemented for shadow paging and requires OSPKE
961 	 * to be set on the host. Clear it if that is not the case
962 	 */
963 	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
964 		kvm_cpu_cap_clear(X86_FEATURE_PKU);
965 
966 	/*
967 	 * Shadow Stacks aren't implemented in the Shadow MMU.  Shadow Stack
968 	 * accesses require "magic" Writable=0,Dirty=1 protection, which KVM
969 	 * doesn't know how to emulate or map.
970 	 */
971 	if (!tdp_enabled)
972 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
973 
974 	kvm_cpu_cap_init(CPUID_7_EDX,
975 		F(AVX512_4VNNIW),
976 		F(AVX512_4FMAPS),
977 		F(SPEC_CTRL),
978 		F(SPEC_CTRL_SSBD),
979 		EMULATED_F(ARCH_CAPABILITIES),
980 		F(INTEL_STIBP),
981 		F(MD_CLEAR),
982 		F(AVX512_VP2INTERSECT),
983 		F(FSRM),
984 		F(SERIALIZE),
985 		F(TSXLDTRK),
986 		F(AVX512_FP16),
987 		F(AMX_TILE),
988 		F(AMX_INT8),
989 		F(AMX_BF16),
990 		F(FLUSH_L1D),
991 		F(IBT),
992 	);
993 
994 	/*
995 	 * Disable support for IBT and SHSTK if KVM is configured to emulate
996 	 * accesses to reserved GPAs, as KVM's emulator doesn't support IBT or
997 	 * SHSTK, nor does KVM handle Shadow Stack #PFs (see above).
998 	 */
999 	if (allow_smaller_maxphyaddr) {
1000 		kvm_cpu_cap_clear(X86_FEATURE_SHSTK);
1001 		kvm_cpu_cap_clear(X86_FEATURE_IBT);
1002 	}
1003 
1004 	if (boot_cpu_has(X86_FEATURE_AMD_IBPB_RET) &&
1005 	    boot_cpu_has(X86_FEATURE_AMD_IBPB) &&
1006 	    boot_cpu_has(X86_FEATURE_AMD_IBRS))
1007 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
1008 	if (boot_cpu_has(X86_FEATURE_STIBP))
1009 		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
1010 	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
1011 		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
1012 
1013 	kvm_cpu_cap_init(CPUID_7_1_EAX,
1014 		F(SHA512),
1015 		F(SM3),
1016 		F(SM4),
1017 		F(AVX_VNNI),
1018 		F(AVX512_BF16),
1019 		F(CMPCCXADD),
1020 		F(FZRM),
1021 		F(FSRS),
1022 		F(FSRC),
1023 		F(WRMSRNS),
1024 		X86_64_F(LKGS),
1025 		F(AMX_FP16),
1026 		F(AVX_IFMA),
1027 		F(LAM),
1028 	);
1029 
1030 	kvm_cpu_cap_init(CPUID_7_1_ECX,
1031 		SCATTERED_F(MSR_IMM),
1032 	);
1033 
1034 	kvm_cpu_cap_init(CPUID_7_1_EDX,
1035 		F(AVX_VNNI_INT8),
1036 		F(AVX_NE_CONVERT),
1037 		F(AMX_COMPLEX),
1038 		F(AVX_VNNI_INT16),
1039 		F(PREFETCHITI),
1040 		F(AVX10),
1041 	);
1042 
1043 	kvm_cpu_cap_init(CPUID_7_2_EDX,
1044 		F(INTEL_PSFD),
1045 		F(IPRED_CTRL),
1046 		F(RRSBA_CTRL),
1047 		F(DDPD_U),
1048 		F(BHI_CTRL),
1049 		F(MCDT_NO),
1050 	);
1051 
1052 	kvm_cpu_cap_init(CPUID_D_1_EAX,
1053 		F(XSAVEOPT),
1054 		F(XSAVEC),
1055 		F(XGETBV1),
1056 		F(XSAVES),
1057 		X86_64_F(XFD),
1058 	);
1059 
1060 	kvm_cpu_cap_init(CPUID_12_EAX,
1061 		SCATTERED_F(SGX1),
1062 		SCATTERED_F(SGX2),
1063 		SCATTERED_F(SGX_EDECCSSA),
1064 	);
1065 
1066 	kvm_cpu_cap_init(CPUID_24_0_EBX,
1067 		F(AVX10_128),
1068 		F(AVX10_256),
1069 		F(AVX10_512),
1070 	);
1071 
1072 	kvm_cpu_cap_init(CPUID_8000_0001_ECX,
1073 		F(LAHF_LM),
1074 		F(CMP_LEGACY),
1075 		VENDOR_F(SVM),
1076 		/* ExtApicSpace */
1077 		F(CR8_LEGACY),
1078 		F(ABM),
1079 		F(SSE4A),
1080 		F(MISALIGNSSE),
1081 		F(3DNOWPREFETCH),
1082 		F(OSVW),
1083 		/* IBS */
1084 		F(XOP),
1085 		/* SKINIT, WDT, LWP */
1086 		F(FMA4),
1087 		F(TBM),
1088 		F(TOPOEXT),
1089 		VENDOR_F(PERFCTR_CORE),
1090 	);
1091 
1092 	kvm_cpu_cap_init(CPUID_8000_0001_EDX,
1093 		ALIASED_1_EDX_F(FPU),
1094 		ALIASED_1_EDX_F(VME),
1095 		ALIASED_1_EDX_F(DE),
1096 		ALIASED_1_EDX_F(PSE),
1097 		ALIASED_1_EDX_F(TSC),
1098 		ALIASED_1_EDX_F(MSR),
1099 		ALIASED_1_EDX_F(PAE),
1100 		ALIASED_1_EDX_F(MCE),
1101 		ALIASED_1_EDX_F(CX8),
1102 		ALIASED_1_EDX_F(APIC),
1103 		/* Reserved */
1104 		F(SYSCALL),
1105 		ALIASED_1_EDX_F(MTRR),
1106 		ALIASED_1_EDX_F(PGE),
1107 		ALIASED_1_EDX_F(MCA),
1108 		ALIASED_1_EDX_F(CMOV),
1109 		ALIASED_1_EDX_F(PAT),
1110 		ALIASED_1_EDX_F(PSE36),
1111 		/* Reserved */
1112 		F(NX),
1113 		/* Reserved */
1114 		F(MMXEXT),
1115 		ALIASED_1_EDX_F(MMX),
1116 		ALIASED_1_EDX_F(FXSR),
1117 		F(FXSR_OPT),
1118 		X86_64_F(GBPAGES),
1119 		F(RDTSCP),
1120 		/* Reserved */
1121 		X86_64_F(LM),
1122 		F(3DNOWEXT),
1123 		F(3DNOW),
1124 	);
1125 
1126 	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
1127 		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
1128 
1129 	kvm_cpu_cap_init(CPUID_8000_0007_EDX,
1130 		SCATTERED_F(CONSTANT_TSC),
1131 	);
1132 
1133 	kvm_cpu_cap_init(CPUID_8000_0008_EBX,
1134 		F(CLZERO),
1135 		F(XSAVEERPTR),
1136 		F(WBNOINVD),
1137 		F(AMD_IBPB),
1138 		F(AMD_IBRS),
1139 		F(AMD_SSBD),
1140 		F(VIRT_SSBD),
1141 		F(AMD_SSB_NO),
1142 		F(AMD_STIBP),
1143 		F(AMD_STIBP_ALWAYS_ON),
1144 		F(AMD_IBRS_SAME_MODE),
1145 		PASSTHROUGH_F(EFER_LMSLE_MBZ),
1146 		F(AMD_PSFD),
1147 		F(AMD_IBPB_RET),
1148 	);
1149 
1150 	/*
1151 	 * AMD has separate bits for each SPEC_CTRL bit.
1152 	 * arch/x86/kernel/cpu/bugs.c is kind enough to
1153 	 * record that in cpufeatures so use them.
1154 	 */
1155 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1156 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
1157 		if (boot_cpu_has(X86_FEATURE_SPEC_CTRL) &&
1158 		    !boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB))
1159 			kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB_RET);
1160 	}
1161 	if (boot_cpu_has(X86_FEATURE_IBRS))
1162 		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
1163 	if (boot_cpu_has(X86_FEATURE_STIBP))
1164 		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
1165 	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
1166 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
1167 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1168 		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
1169 	/*
1170 	 * The preference is to use SPEC CTRL MSR instead of the
1171 	 * VIRT_SPEC MSR.
1172 	 */
1173 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
1174 	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
1175 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
1176 
1177 	/* All SVM features required additional vendor module enabling. */
1178 	kvm_cpu_cap_init(CPUID_8000_000A_EDX,
1179 		VENDOR_F(NPT),
1180 		VENDOR_F(VMCBCLEAN),
1181 		VENDOR_F(FLUSHBYASID),
1182 		VENDOR_F(NRIPS),
1183 		VENDOR_F(TSCRATEMSR),
1184 		VENDOR_F(V_VMSAVE_VMLOAD),
1185 		VENDOR_F(LBRV),
1186 		VENDOR_F(PAUSEFILTER),
1187 		VENDOR_F(PFTHRESHOLD),
1188 		VENDOR_F(VGIF),
1189 		VENDOR_F(VNMI),
1190 		VENDOR_F(SVME_ADDR_CHK),
1191 	);
1192 
1193 	kvm_cpu_cap_init(CPUID_8000_001F_EAX,
1194 		VENDOR_F(SME),
1195 		VENDOR_F(SEV),
1196 		/* VM_PAGE_FLUSH */
1197 		VENDOR_F(SEV_ES),
1198 		F(SME_COHERENT),
1199 	);
1200 
1201 	kvm_cpu_cap_init(CPUID_8000_0021_EAX,
1202 		F(NO_NESTED_DATA_BP),
1203 		F(WRMSR_XX_BASE_NS),
1204 		/*
1205 		 * Synthesize "LFENCE is serializing" into the AMD-defined entry
1206 		 * in KVM's supported CPUID, i.e. if the feature is reported as
1207 		 * supported by the kernel.  LFENCE_RDTSC was a Linux-defined
1208 		 * synthetic feature long before AMD joined the bandwagon, e.g.
1209 		 * LFENCE is serializing on most CPUs that support SSE2.  On
1210 		 * CPUs that don't support AMD's leaf, ANDing with the raw host
1211 		 * CPUID will drop the flags, and reporting support in AMD's
1212 		 * leaf can make it easier for userspace to detect the feature.
1213 		 */
1214 		SYNTHESIZED_F(LFENCE_RDTSC),
1215 		/* SmmPgCfgLock */
1216 		/* 4: Resv */
1217 		SYNTHESIZED_F(VERW_CLEAR),
1218 		F(NULL_SEL_CLR_BASE),
1219 		/* UpperAddressIgnore */
1220 		F(AUTOIBRS),
1221 		F(PREFETCHI),
1222 		EMULATED_F(NO_SMM_CTL_MSR),
1223 		/* PrefetchCtlMsr */
1224 		/* GpOnUserCpuid */
1225 		/* EPSF */
1226 		SYNTHESIZED_F(SBPB),
1227 		SYNTHESIZED_F(IBPB_BRTYPE),
1228 		SYNTHESIZED_F(SRSO_NO),
1229 		F(SRSO_USER_KERNEL_NO),
1230 	);
1231 
1232 	kvm_cpu_cap_init(CPUID_8000_0021_ECX,
1233 		SYNTHESIZED_F(TSA_SQ_NO),
1234 		SYNTHESIZED_F(TSA_L1_NO),
1235 	);
1236 
1237 	kvm_cpu_cap_init(CPUID_8000_0022_EAX,
1238 		F(PERFMON_V2),
1239 	);
1240 
1241 	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
1242 		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
1243 
1244 	kvm_cpu_cap_init(CPUID_C000_0001_EDX,
1245 		F(XSTORE),
1246 		F(XSTORE_EN),
1247 		F(XCRYPT),
1248 		F(XCRYPT_EN),
1249 		F(ACE2),
1250 		F(ACE2_EN),
1251 		F(PHE),
1252 		F(PHE_EN),
1253 		F(PMM),
1254 		F(PMM_EN),
1255 	);
1256 
1257 	/*
1258 	 * Hide RDTSCP and RDPID if either feature is reported as supported but
1259 	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
1260 	 * should never happen, but the guest will likely crash if RDTSCP or
1261 	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
1262 	 * the past.  For example, the sanity check may fire if this instance of
1263 	 * KVM is running as L1 on top of an older, broken KVM.
1264 	 */
1265 	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
1266 		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
1267 		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
1268 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
1269 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
1270 	}
1271 }
1272 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_set_cpu_caps);
1273 
1274 #undef F
1275 #undef SCATTERED_F
1276 #undef X86_64_F
1277 #undef EMULATED_F
1278 #undef SYNTHESIZED_F
1279 #undef PASSTHROUGH_F
1280 #undef ALIASED_1_EDX_F
1281 #undef VENDOR_F
1282 #undef RUNTIME_F
1283 
1284 struct kvm_cpuid_array {
1285 	struct kvm_cpuid_entry2 *entries;
1286 	int maxnent;
1287 	int nent;
1288 };
1289 
get_next_cpuid(struct kvm_cpuid_array * array)1290 static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
1291 {
1292 	if (array->nent >= array->maxnent)
1293 		return NULL;
1294 
1295 	return &array->entries[array->nent++];
1296 }
1297 
do_host_cpuid(struct kvm_cpuid_array * array,u32 function,u32 index)1298 static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
1299 					      u32 function, u32 index)
1300 {
1301 	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
1302 
1303 	if (!entry)
1304 		return NULL;
1305 
1306 	memset(entry, 0, sizeof(*entry));
1307 	entry->function = function;
1308 	entry->index = index;
1309 	switch (function & 0xC0000000) {
1310 	case 0x40000000:
1311 		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
1312 		return entry;
1313 
1314 	case 0x80000000:
1315 		/*
1316 		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
1317 		 * would result in out-of-bounds calls to do_host_cpuid.
1318 		 */
1319 		{
1320 			static int max_cpuid_80000000;
1321 			if (!READ_ONCE(max_cpuid_80000000))
1322 				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
1323 			if (function > READ_ONCE(max_cpuid_80000000))
1324 				return entry;
1325 		}
1326 		break;
1327 
1328 	default:
1329 		break;
1330 	}
1331 
1332 	cpuid_count(entry->function, entry->index,
1333 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1334 
1335 	if (cpuid_function_is_indexed(function))
1336 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1337 
1338 	return entry;
1339 }
1340 
cpuid_func_emulated(struct kvm_cpuid_entry2 * entry,u32 func,bool include_partially_emulated)1341 static int cpuid_func_emulated(struct kvm_cpuid_entry2 *entry, u32 func,
1342 			       bool include_partially_emulated)
1343 {
1344 	memset(entry, 0, sizeof(*entry));
1345 
1346 	entry->function = func;
1347 	entry->index = 0;
1348 	entry->flags = 0;
1349 
1350 	switch (func) {
1351 	case 0:
1352 		entry->eax = 7;
1353 		return 1;
1354 	case 1:
1355 		entry->ecx = feature_bit(MOVBE);
1356 		/*
1357 		 * KVM allows userspace to enumerate MONITOR+MWAIT support to
1358 		 * the guest, but the MWAIT feature flag is never advertised
1359 		 * to userspace because MONITOR+MWAIT aren't virtualized by
1360 		 * hardware, can't be faithfully emulated in software (KVM
1361 		 * emulates them as NOPs), and allowing the guest to execute
1362 		 * them natively requires enabling a per-VM capability.
1363 		 */
1364 		if (include_partially_emulated)
1365 			entry->ecx |= feature_bit(MWAIT);
1366 		return 1;
1367 	case 7:
1368 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1369 		entry->eax = 0;
1370 		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
1371 			entry->ecx = feature_bit(RDPID);
1372 		return 1;
1373 	default:
1374 		return 0;
1375 	}
1376 }
1377 
__do_cpuid_func_emulated(struct kvm_cpuid_array * array,u32 func)1378 static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
1379 {
1380 	if (array->nent >= array->maxnent)
1381 		return -E2BIG;
1382 
1383 	array->nent += cpuid_func_emulated(&array->entries[array->nent], func, false);
1384 	return 0;
1385 }
1386 
__do_cpuid_func(struct kvm_cpuid_array * array,u32 function)1387 static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
1388 {
1389 	struct kvm_cpuid_entry2 *entry;
1390 	int r, i, max_idx;
1391 
1392 	/* all calls to cpuid_count() should be made on the same cpu */
1393 	get_cpu();
1394 
1395 	r = -E2BIG;
1396 
1397 	entry = do_host_cpuid(array, function, 0);
1398 	if (!entry)
1399 		goto out;
1400 
1401 	switch (function) {
1402 	case 0:
1403 		/* Limited to the highest leaf implemented in KVM. */
1404 		entry->eax = min(entry->eax, 0x24U);
1405 		break;
1406 	case 1:
1407 		cpuid_entry_override(entry, CPUID_1_EDX);
1408 		cpuid_entry_override(entry, CPUID_1_ECX);
1409 		break;
1410 	case 2:
1411 		/*
1412 		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
1413 		 * CPUID(function=2, index=0) may return different results each
1414 		 * time, with the least-significant byte in EAX enumerating the
1415 		 * number of times software should do CPUID(2, 0).
1416 		 *
1417 		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
1418 		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
1419 		 * return 01H. Software should ignore this value and not
1420 		 * interpret it as an informational descriptor", while AMD's
1421 		 * APM states that CPUID(2) is reserved.
1422 		 *
1423 		 * WARN if a frankenstein CPU that supports virtualization and
1424 		 * a stateful CPUID.0x2 is encountered.
1425 		 */
1426 		WARN_ON_ONCE((entry->eax & 0xff) > 1);
1427 		break;
1428 	/* functions 4 and 0x8000001d have additional index. */
1429 	case 4:
1430 	case 0x8000001d:
1431 		/*
1432 		 * Read entries until the cache type in the previous entry is
1433 		 * zero, i.e. indicates an invalid entry.
1434 		 */
1435 		for (i = 1; entry->eax & 0x1f; ++i) {
1436 			entry = do_host_cpuid(array, function, i);
1437 			if (!entry)
1438 				goto out;
1439 		}
1440 		break;
1441 	case 6: /* Thermal management */
1442 		entry->eax = 0x4; /* allow ARAT */
1443 		entry->ebx = 0;
1444 		entry->ecx = 0;
1445 		entry->edx = 0;
1446 		break;
1447 	/* function 7 has additional index. */
1448 	case 7:
1449 		max_idx = entry->eax = min(entry->eax, 2u);
1450 		cpuid_entry_override(entry, CPUID_7_0_EBX);
1451 		cpuid_entry_override(entry, CPUID_7_ECX);
1452 		cpuid_entry_override(entry, CPUID_7_EDX);
1453 
1454 		/* KVM only supports up to 0x7.2, capped above via min(). */
1455 		if (max_idx >= 1) {
1456 			entry = do_host_cpuid(array, function, 1);
1457 			if (!entry)
1458 				goto out;
1459 
1460 			cpuid_entry_override(entry, CPUID_7_1_EAX);
1461 			cpuid_entry_override(entry, CPUID_7_1_ECX);
1462 			cpuid_entry_override(entry, CPUID_7_1_EDX);
1463 			entry->ebx = 0;
1464 		}
1465 		if (max_idx >= 2) {
1466 			entry = do_host_cpuid(array, function, 2);
1467 			if (!entry)
1468 				goto out;
1469 
1470 			cpuid_entry_override(entry, CPUID_7_2_EDX);
1471 			entry->ecx = 0;
1472 			entry->ebx = 0;
1473 			entry->eax = 0;
1474 		}
1475 		break;
1476 	case 0xa: { /* Architectural Performance Monitoring */
1477 		union cpuid10_eax eax = { };
1478 		union cpuid10_edx edx = { };
1479 
1480 		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
1481 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1482 			break;
1483 		}
1484 
1485 		eax.split.version_id = kvm_pmu_cap.version;
1486 		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1487 		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1488 		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1489 		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1490 		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1491 
1492 		if (kvm_pmu_cap.version)
1493 			edx.split.anythread_deprecated = 1;
1494 
1495 		entry->eax = eax.full;
1496 		entry->ebx = kvm_pmu_cap.events_mask;
1497 		entry->ecx = 0;
1498 		entry->edx = edx.full;
1499 		break;
1500 	}
1501 	case 0x1f:
1502 	case 0xb:
1503 		/*
1504 		 * No topology; a valid topology is indicated by the presence
1505 		 * of subleaf 1.
1506 		 */
1507 		entry->eax = entry->ebx = entry->ecx = 0;
1508 		break;
1509 	case 0xd: {
1510 		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1511 		u64 permitted_xss = kvm_caps.supported_xss;
1512 
1513 		entry->eax &= permitted_xcr0;
1514 		entry->ebx = xstate_required_size(permitted_xcr0, false);
1515 		entry->ecx = entry->ebx;
1516 		entry->edx &= permitted_xcr0 >> 32;
1517 		if (!permitted_xcr0)
1518 			break;
1519 
1520 		entry = do_host_cpuid(array, function, 1);
1521 		if (!entry)
1522 			goto out;
1523 
1524 		cpuid_entry_override(entry, CPUID_D_1_EAX);
1525 		if (entry->eax & (feature_bit(XSAVES) | feature_bit(XSAVEC)))
1526 			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1527 							  true);
1528 		else {
1529 			WARN_ON_ONCE(permitted_xss != 0);
1530 			entry->ebx = 0;
1531 		}
1532 		entry->ecx &= permitted_xss;
1533 		entry->edx &= permitted_xss >> 32;
1534 
1535 		for (i = 2; i < 64; ++i) {
1536 			bool s_state;
1537 			if (permitted_xcr0 & BIT_ULL(i))
1538 				s_state = false;
1539 			else if (permitted_xss & BIT_ULL(i))
1540 				s_state = true;
1541 			else
1542 				continue;
1543 
1544 			entry = do_host_cpuid(array, function, i);
1545 			if (!entry)
1546 				goto out;
1547 
1548 			/*
1549 			 * The supported check above should have filtered out
1550 			 * invalid sub-leafs.  Only valid sub-leafs should
1551 			 * reach this point, and they should have a non-zero
1552 			 * save state size.  Furthermore, check whether the
1553 			 * processor agrees with permitted_xcr0/permitted_xss
1554 			 * on whether this is an XCR0- or IA32_XSS-managed area.
1555 			 */
1556 			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1557 				--array->nent;
1558 				continue;
1559 			}
1560 
1561 			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1562 				entry->ecx &= ~BIT_ULL(2);
1563 			entry->edx = 0;
1564 		}
1565 		break;
1566 	}
1567 	case 0x12:
1568 		/* Intel SGX */
1569 		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1570 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1571 			break;
1572 		}
1573 
1574 		/*
1575 		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1576 		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1577 		 * are restricted by kernel and KVM capabilities (like most
1578 		 * feature flags), while enclave size is unrestricted.
1579 		 */
1580 		cpuid_entry_override(entry, CPUID_12_EAX);
1581 		entry->ebx &= SGX_MISC_EXINFO;
1582 
1583 		entry = do_host_cpuid(array, function, 1);
1584 		if (!entry)
1585 			goto out;
1586 
1587 		/*
1588 		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1589 		 * feature flags.  Advertise all supported flags, including
1590 		 * privileged attributes that require explicit opt-in from
1591 		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1592 		 * expected to derive it from supported XCR0.
1593 		 */
1594 		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1595 		entry->ebx &= 0;
1596 		break;
1597 	/* Intel PT */
1598 	case 0x14:
1599 		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1600 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1601 			break;
1602 		}
1603 
1604 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1605 			if (!do_host_cpuid(array, function, i))
1606 				goto out;
1607 		}
1608 		break;
1609 	/* Intel AMX TILE */
1610 	case 0x1d:
1611 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1612 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1613 			break;
1614 		}
1615 
1616 		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1617 			if (!do_host_cpuid(array, function, i))
1618 				goto out;
1619 		}
1620 		break;
1621 	case 0x1e: /* TMUL information */
1622 		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1623 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1624 			break;
1625 		}
1626 		break;
1627 	case 0x24: {
1628 		u8 avx10_version;
1629 
1630 		if (!kvm_cpu_cap_has(X86_FEATURE_AVX10)) {
1631 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1632 			break;
1633 		}
1634 
1635 		/*
1636 		 * The AVX10 version is encoded in EBX[7:0].  Note, the version
1637 		 * is guaranteed to be >=1 if AVX10 is supported.  Note #2, the
1638 		 * version needs to be captured before overriding EBX features!
1639 		 */
1640 		avx10_version = min_t(u8, entry->ebx & 0xff, 1);
1641 		cpuid_entry_override(entry, CPUID_24_0_EBX);
1642 		entry->ebx |= avx10_version;
1643 
1644 		entry->eax = 0;
1645 		entry->ecx = 0;
1646 		entry->edx = 0;
1647 		break;
1648 	}
1649 	case KVM_CPUID_SIGNATURE: {
1650 		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1651 		entry->eax = KVM_CPUID_FEATURES;
1652 		entry->ebx = sigptr[0];
1653 		entry->ecx = sigptr[1];
1654 		entry->edx = sigptr[2];
1655 		break;
1656 	}
1657 	case KVM_CPUID_FEATURES:
1658 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1659 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1660 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1661 			     (1 << KVM_FEATURE_ASYNC_PF) |
1662 			     (1 << KVM_FEATURE_PV_EOI) |
1663 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1664 			     (1 << KVM_FEATURE_PV_UNHALT) |
1665 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1666 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1667 			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1668 			     (1 << KVM_FEATURE_POLL_CONTROL) |
1669 			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1670 			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1671 
1672 		if (sched_info_on())
1673 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1674 
1675 		entry->ebx = 0;
1676 		entry->ecx = 0;
1677 		entry->edx = 0;
1678 		break;
1679 	case 0x80000000:
1680 		entry->eax = min(entry->eax, 0x80000022);
1681 		/*
1682 		 * Serializing LFENCE is reported in a multitude of ways, and
1683 		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1684 		 * userspace by providing the CPUID leaf ourselves.
1685 		 *
1686 		 * However, only do it if the host has CPUID leaf 0x8000001d.
1687 		 * QEMU thinks that it can query the host blindly for that
1688 		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1689 		 * above.  The processor merrily returns values from the
1690 		 * highest Intel leaf which QEMU tries to use as the guest's
1691 		 * 0x8000001d.  Even worse, this can result in an infinite
1692 		 * loop if said highest leaf has no subleaves indexed by ECX.
1693 		 */
1694 		if (entry->eax >= 0x8000001d &&
1695 		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1696 		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1697 			entry->eax = max(entry->eax, 0x80000021);
1698 		break;
1699 	case 0x80000001:
1700 		entry->ebx &= ~GENMASK(27, 16);
1701 		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1702 		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1703 		break;
1704 	case 0x80000005:
1705 		/*  Pass host L1 cache and TLB info. */
1706 		break;
1707 	case 0x80000006:
1708 		/* Drop reserved bits, pass host L2 cache and TLB info. */
1709 		entry->edx &= ~GENMASK(17, 16);
1710 		break;
1711 	case 0x80000007: /* Advanced power management */
1712 		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1713 
1714 		/* mask against host */
1715 		entry->edx &= boot_cpu_data.x86_power;
1716 		entry->eax = entry->ebx = entry->ecx = 0;
1717 		break;
1718 	case 0x80000008: {
1719 		/*
1720 		 * GuestPhysAddrSize (EAX[23:16]) is intended for software
1721 		 * use.
1722 		 *
1723 		 * KVM's ABI is to report the effective MAXPHYADDR for the
1724 		 * guest in PhysAddrSize (phys_as), and the maximum
1725 		 * *addressable* GPA in GuestPhysAddrSize (g_phys_as).
1726 		 *
1727 		 * GuestPhysAddrSize is valid if and only if TDP is enabled,
1728 		 * in which case the max GPA that can be addressed by KVM may
1729 		 * be less than the max GPA that can be legally generated by
1730 		 * the guest, e.g. if MAXPHYADDR>48 but the CPU doesn't
1731 		 * support 5-level TDP.
1732 		 */
1733 		unsigned int virt_as = max((entry->eax >> 8) & 0xff, 48U);
1734 		unsigned int phys_as, g_phys_as;
1735 
1736 		/*
1737 		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1738 		 * the guest operates in the same PA space as the host, i.e.
1739 		 * reductions in MAXPHYADDR for memory encryption affect shadow
1740 		 * paging, too.
1741 		 *
1742 		 * If TDP is enabled, use the raw bare metal MAXPHYADDR as
1743 		 * reductions to the HPAs do not affect GPAs.  The max
1744 		 * addressable GPA is the same as the max effective GPA, except
1745 		 * that it's capped at 48 bits if 5-level TDP isn't supported
1746 		 * (hardware processes bits 51:48 only when walking the fifth
1747 		 * level page table).
1748 		 */
1749 		if (!tdp_enabled) {
1750 			phys_as = boot_cpu_data.x86_phys_bits;
1751 			g_phys_as = 0;
1752 		} else {
1753 			phys_as = entry->eax & 0xff;
1754 			g_phys_as = phys_as;
1755 			if (kvm_mmu_get_max_tdp_level() < 5)
1756 				g_phys_as = min(g_phys_as, 48U);
1757 		}
1758 
1759 		entry->eax = phys_as | (virt_as << 8) | (g_phys_as << 16);
1760 		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1761 		entry->edx = 0;
1762 		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1763 		break;
1764 	}
1765 	case 0x8000000A:
1766 		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1767 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1768 			break;
1769 		}
1770 		entry->eax = 1; /* SVM revision 1 */
1771 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1772 				   ASID emulation to nested SVM */
1773 		entry->ecx = 0; /* Reserved */
1774 		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1775 		break;
1776 	case 0x80000019:
1777 		entry->ecx = entry->edx = 0;
1778 		break;
1779 	case 0x8000001a:
1780 		entry->eax &= GENMASK(2, 0);
1781 		entry->ebx = entry->ecx = entry->edx = 0;
1782 		break;
1783 	case 0x8000001e:
1784 		/* Do not return host topology information.  */
1785 		entry->eax = entry->ebx = entry->ecx = 0;
1786 		entry->edx = 0; /* reserved */
1787 		break;
1788 	case 0x8000001F:
1789 		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1790 			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1791 		} else {
1792 			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1793 			/* Clear NumVMPL since KVM does not support VMPL.  */
1794 			entry->ebx &= ~GENMASK(31, 12);
1795 			/*
1796 			 * Enumerate '0' for "PA bits reduction", the adjusted
1797 			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1798 			 */
1799 			entry->ebx &= ~GENMASK(11, 6);
1800 		}
1801 		break;
1802 	case 0x80000020:
1803 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1804 		break;
1805 	case 0x80000021:
1806 		entry->ebx = entry->edx = 0;
1807 		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1808 		cpuid_entry_override(entry, CPUID_8000_0021_ECX);
1809 		break;
1810 	/* AMD Extended Performance Monitoring and Debug */
1811 	case 0x80000022: {
1812 		union cpuid_0x80000022_ebx ebx = { };
1813 
1814 		entry->ecx = entry->edx = 0;
1815 		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1816 			entry->eax = entry->ebx = 0;
1817 			break;
1818 		}
1819 
1820 		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1821 
1822 		ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1823 		entry->ebx = ebx.full;
1824 		break;
1825 	}
1826 	/*Add support for Centaur's CPUID instruction*/
1827 	case 0xC0000000:
1828 		/*Just support up to 0xC0000004 now*/
1829 		entry->eax = min(entry->eax, 0xC0000004);
1830 		break;
1831 	case 0xC0000001:
1832 		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1833 		break;
1834 	case 3: /* Processor serial number */
1835 	case 5: /* MONITOR/MWAIT */
1836 	case 0xC0000002:
1837 	case 0xC0000003:
1838 	case 0xC0000004:
1839 	default:
1840 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1841 		break;
1842 	}
1843 
1844 	r = 0;
1845 
1846 out:
1847 	put_cpu();
1848 
1849 	return r;
1850 }
1851 
do_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1852 static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1853 			 unsigned int type)
1854 {
1855 	if (type == KVM_GET_EMULATED_CPUID)
1856 		return __do_cpuid_func_emulated(array, func);
1857 
1858 	return __do_cpuid_func(array, func);
1859 }
1860 
1861 #define CENTAUR_CPUID_SIGNATURE 0xC0000000
1862 
get_cpuid_func(struct kvm_cpuid_array * array,u32 func,unsigned int type)1863 static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1864 			  unsigned int type)
1865 {
1866 	u32 limit;
1867 	int r;
1868 
1869 	if (func == CENTAUR_CPUID_SIGNATURE &&
1870 	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR &&
1871 	    boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
1872 		return 0;
1873 
1874 	r = do_cpuid_func(array, func, type);
1875 	if (r)
1876 		return r;
1877 
1878 	limit = array->entries[array->nent - 1].eax;
1879 	for (func = func + 1; func <= limit; ++func) {
1880 		r = do_cpuid_func(array, func, type);
1881 		if (r)
1882 			break;
1883 	}
1884 
1885 	return r;
1886 }
1887 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)1888 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1889 				 __u32 num_entries, unsigned int ioctl_type)
1890 {
1891 	int i;
1892 	__u32 pad[3];
1893 
1894 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1895 		return false;
1896 
1897 	/*
1898 	 * We want to make sure that ->padding is being passed clean from
1899 	 * userspace in case we want to use it for something in the future.
1900 	 *
1901 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1902 	 * have to give ourselves satisfied only with the emulated side. /me
1903 	 * sheds a tear.
1904 	 */
1905 	for (i = 0; i < num_entries; i++) {
1906 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1907 			return true;
1908 
1909 		if (pad[0] || pad[1] || pad[2])
1910 			return true;
1911 	}
1912 	return false;
1913 }
1914 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)1915 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1916 			    struct kvm_cpuid_entry2 __user *entries,
1917 			    unsigned int type)
1918 {
1919 	static const u32 funcs[] = {
1920 		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1921 	};
1922 
1923 	struct kvm_cpuid_array array = {
1924 		.nent = 0,
1925 	};
1926 	int r, i;
1927 
1928 	if (cpuid->nent < 1)
1929 		return -E2BIG;
1930 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1931 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1932 
1933 	if (sanity_check_entries(entries, cpuid->nent, type))
1934 		return -EINVAL;
1935 
1936 	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1937 	if (!array.entries)
1938 		return -ENOMEM;
1939 
1940 	array.maxnent = cpuid->nent;
1941 
1942 	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1943 		r = get_cpuid_func(&array, funcs[i], type);
1944 		if (r)
1945 			goto out_free;
1946 	}
1947 	cpuid->nent = array.nent;
1948 
1949 	if (copy_to_user(entries, array.entries,
1950 			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1951 		r = -EFAULT;
1952 
1953 out_free:
1954 	kvfree(array.entries);
1955 	return r;
1956 }
1957 
1958 /*
1959  * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1960  * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1961  * returns all zeroes for any undefined leaf, whether or not the leaf is in
1962  * range.  Centaur/VIA follows Intel semantics.
1963  *
1964  * A leaf is considered out-of-range if its function is higher than the maximum
1965  * supported leaf of its associated class or if its associated class does not
1966  * exist.
1967  *
1968  * There are three primary classes to be considered, with their respective
1969  * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1970  * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1971  * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1972  *
1973  *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1974  *  - Hypervisor: 0x40000000 - 0x4fffffff
1975  *  - Extended:   0x80000000 - 0xbfffffff
1976  *  - Centaur:    0xc0000000 - 0xcfffffff
1977  *
1978  * The Hypervisor class is further subdivided into sub-classes that each act as
1979  * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1980  * is advertising support for both HyperV and KVM, the resulting Hypervisor
1981  * CPUID sub-classes are:
1982  *
1983  *  - HyperV:     0x40000000 - 0x400000ff
1984  *  - KVM:        0x40000100 - 0x400001ff
1985  */
1986 static struct kvm_cpuid_entry2 *
get_out_of_range_cpuid_entry(struct kvm_vcpu * vcpu,u32 * fn_ptr,u32 index)1987 get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1988 {
1989 	struct kvm_cpuid_entry2 *basic, *class;
1990 	u32 function = *fn_ptr;
1991 
1992 	basic = kvm_find_cpuid_entry(vcpu, 0);
1993 	if (!basic)
1994 		return NULL;
1995 
1996 	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1997 	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1998 		return NULL;
1999 
2000 	if (function >= 0x40000000 && function <= 0x4fffffff)
2001 		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
2002 	else if (function >= 0xc0000000)
2003 		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
2004 	else
2005 		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
2006 
2007 	if (class && function <= class->eax)
2008 		return NULL;
2009 
2010 	/*
2011 	 * Leaf specific adjustments are also applied when redirecting to the
2012 	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
2013 	 * entry for CPUID.0xb.index (see below), then the output value for EDX
2014 	 * needs to be pulled from CPUID.0xb.1.
2015 	 */
2016 	*fn_ptr = basic->eax;
2017 
2018 	/*
2019 	 * The class does not exist or the requested function is out of range;
2020 	 * the effective CPUID entry is the max basic leaf.  Note, the index of
2021 	 * the original requested leaf is observed!
2022 	 */
2023 	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
2024 }
2025 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)2026 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
2027 	       u32 *ecx, u32 *edx, bool exact_only)
2028 {
2029 	u32 orig_function = *eax, function = *eax, index = *ecx;
2030 	struct kvm_cpuid_entry2 *entry;
2031 	bool exact, used_max_basic = false;
2032 
2033 	if (vcpu->arch.cpuid_dynamic_bits_dirty)
2034 		kvm_update_cpuid_runtime(vcpu);
2035 
2036 	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
2037 	exact = !!entry;
2038 
2039 	if (!entry && !exact_only) {
2040 		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
2041 		used_max_basic = !!entry;
2042 	}
2043 
2044 	if (entry) {
2045 		*eax = entry->eax;
2046 		*ebx = entry->ebx;
2047 		*ecx = entry->ecx;
2048 		*edx = entry->edx;
2049 		if (function == 7 && index == 0) {
2050 			u64 data;
2051 			if ((*ebx & (feature_bit(RTM) | feature_bit(HLE))) &&
2052 			    !kvm_msr_read(vcpu, MSR_IA32_TSX_CTRL, &data) &&
2053 			    (data & TSX_CTRL_CPUID_CLEAR))
2054 				*ebx &= ~(feature_bit(RTM) | feature_bit(HLE));
2055 		} else if (function == 0x80000007) {
2056 			if (kvm_hv_invtsc_suppressed(vcpu))
2057 				*edx &= ~feature_bit(CONSTANT_TSC);
2058 		} else if (IS_ENABLED(CONFIG_KVM_XEN) &&
2059 			   kvm_xen_is_tsc_leaf(vcpu, function)) {
2060 			/*
2061 			 * Update guest TSC frequency information if necessary.
2062 			 * Ignore failures, there is no sane value that can be
2063 			 * provided if KVM can't get the TSC frequency.
2064 			 */
2065 			if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu))
2066 				kvm_guest_time_update(vcpu);
2067 
2068 			if (index == 1) {
2069 				*ecx = vcpu->arch.pvclock_tsc_mul;
2070 				*edx = vcpu->arch.pvclock_tsc_shift;
2071 			} else if (index == 2) {
2072 				*eax = vcpu->arch.hw_tsc_khz;
2073 			}
2074 		}
2075 	} else {
2076 		*eax = *ebx = *ecx = *edx = 0;
2077 		/*
2078 		 * When leaf 0BH or 1FH is defined, CL is pass-through
2079 		 * and EDX is always the x2APIC ID, even for undefined
2080 		 * subleaves. Index 1 will exist iff the leaf is
2081 		 * implemented, so we pass through CL iff leaf 1
2082 		 * exists. EDX can be copied from any existing index.
2083 		 */
2084 		if (function == 0xb || function == 0x1f) {
2085 			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2086 			if (entry) {
2087 				*ecx = index & 0xff;
2088 				*edx = entry->edx;
2089 			}
2090 		}
2091 	}
2092 	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
2093 			used_max_basic);
2094 	return exact;
2095 }
2096 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_cpuid);
2097 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)2098 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2099 {
2100 	u32 eax, ebx, ecx, edx;
2101 
2102 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
2103 		return 1;
2104 
2105 	eax = kvm_rax_read(vcpu);
2106 	ecx = kvm_rcx_read(vcpu);
2107 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
2108 	kvm_rax_write(vcpu, eax);
2109 	kvm_rbx_write(vcpu, ebx);
2110 	kvm_rcx_write(vcpu, ecx);
2111 	kvm_rdx_write(vcpu, edx);
2112 	return kvm_skip_emulated_instruction(vcpu);
2113 }
2114 EXPORT_SYMBOL_FOR_KVM_INTERNAL(kvm_emulate_cpuid);
2115