1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5 #include <linux/entry-virt.h>
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
55 * include/uapi/linux/kvm.h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58 #define KVM_MEMSLOT_GMEM_ONLY (1UL << 17)
59
60 /*
61 * Bit 63 of the memslot generation number is an "update in-progress flag",
62 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
63 * This flag effectively creates a unique generation number that is used to
64 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
65 * i.e. may (or may not) have come from the previous memslots generation.
66 *
67 * This is necessary because the actual memslots update is not atomic with
68 * respect to the generation number update. Updating the generation number
69 * first would allow a vCPU to cache a spte from the old memslots using the
70 * new generation number, and updating the generation number after switching
71 * to the new memslots would allow cache hits using the old generation number
72 * to reference the defunct memslots.
73 *
74 * This mechanism is used to prevent getting hits in KVM's caches while a
75 * memslot update is in-progress, and to prevent cache hits *after* updating
76 * the actual generation number against accesses that were inserted into the
77 * cache *before* the memslots were updated.
78 */
79 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
80
81 /* Two fragments for cross MMIO pages. */
82 #define KVM_MAX_MMIO_FRAGMENTS 2
83
84 #ifndef KVM_MAX_NR_ADDRESS_SPACES
85 #define KVM_MAX_NR_ADDRESS_SPACES 1
86 #endif
87
88 /*
89 * For the normal pfn, the highest 12 bits should be zero,
90 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
91 * mask bit 63 to indicate the noslot pfn.
92 */
93 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
94 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
95 #define KVM_PFN_NOSLOT (0x1ULL << 63)
96
97 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
98 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
99 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
100 #define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
101 #define KVM_PFN_ERR_NEEDS_IO (KVM_PFN_ERR_MASK + 4)
102
103 /*
104 * error pfns indicate that the gfn is in slot but faild to
105 * translate it to pfn on host.
106 */
is_error_pfn(kvm_pfn_t pfn)107 static inline bool is_error_pfn(kvm_pfn_t pfn)
108 {
109 return !!(pfn & KVM_PFN_ERR_MASK);
110 }
111
112 /*
113 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
114 * by a pending signal. Note, the signal may or may not be fatal.
115 */
is_sigpending_pfn(kvm_pfn_t pfn)116 static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
117 {
118 return pfn == KVM_PFN_ERR_SIGPENDING;
119 }
120
121 /*
122 * error_noslot pfns indicate that the gfn can not be
123 * translated to pfn - it is not in slot or failed to
124 * translate it to pfn.
125 */
is_error_noslot_pfn(kvm_pfn_t pfn)126 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
127 {
128 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
129 }
130
131 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)132 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
133 {
134 return pfn == KVM_PFN_NOSLOT;
135 }
136
137 /*
138 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
139 * provide own defines and kvm_is_error_hva
140 */
141 #ifndef KVM_HVA_ERR_BAD
142
143 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
144 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
145
kvm_is_error_hva(unsigned long addr)146 static inline bool kvm_is_error_hva(unsigned long addr)
147 {
148 return addr >= PAGE_OFFSET;
149 }
150
151 #endif
152
kvm_is_error_gpa(gpa_t gpa)153 static inline bool kvm_is_error_gpa(gpa_t gpa)
154 {
155 return gpa == INVALID_GPA;
156 }
157
158 #define KVM_REQUEST_MASK GENMASK(7,0)
159 #define KVM_REQUEST_NO_WAKEUP BIT(8)
160 #define KVM_REQUEST_WAIT BIT(9)
161 #define KVM_REQUEST_NO_ACTION BIT(10)
162 /*
163 * Architecture-independent vcpu->requests bit members
164 * Bits 3-7 are reserved for more arch-independent bits.
165 */
166 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
167 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
168 #define KVM_REQ_UNBLOCK 2
169 #define KVM_REQ_DIRTY_RING_SOFT_FULL 3
170 #define KVM_REQUEST_ARCH_BASE 8
171
172 /*
173 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
174 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
175 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
176 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
177 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
178 * guarantee the vCPU received an IPI and has actually exited guest mode.
179 */
180 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
181
182 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
183 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
184 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
185 })
186 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
187
188 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
189 unsigned long *vcpu_bitmap);
190 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
191
192 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
193 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
194 #define KVM_PIT_IRQ_SOURCE_ID 2
195
196 extern struct mutex kvm_lock;
197 extern struct list_head vm_list;
198
199 struct kvm_io_range {
200 gpa_t addr;
201 int len;
202 struct kvm_io_device *dev;
203 };
204
205 #define NR_IOBUS_DEVS 1000
206
207 struct kvm_io_bus {
208 int dev_count;
209 int ioeventfd_count;
210 struct rcu_head rcu;
211 struct kvm_io_range range[];
212 };
213
214 enum kvm_bus {
215 KVM_MMIO_BUS,
216 KVM_PIO_BUS,
217 KVM_VIRTIO_CCW_NOTIFY_BUS,
218 KVM_FAST_MMIO_BUS,
219 KVM_IOCSR_BUS,
220 KVM_NR_BUSES
221 };
222
223 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
224 int len, const void *val);
225 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
226 gpa_t addr, int len, const void *val, long cookie);
227 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
228 int len, void *val);
229 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
230 int len, struct kvm_io_device *dev);
231 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
232 struct kvm_io_device *dev);
233 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 gpa_t addr);
235
236 #ifdef CONFIG_KVM_ASYNC_PF
237 struct kvm_async_pf {
238 struct work_struct work;
239 struct list_head link;
240 struct list_head queue;
241 struct kvm_vcpu *vcpu;
242 gpa_t cr2_or_gpa;
243 unsigned long addr;
244 struct kvm_arch_async_pf arch;
245 bool wakeup_all;
246 bool notpresent_injected;
247 };
248
249 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
250 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
251 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
252 unsigned long hva, struct kvm_arch_async_pf *arch);
253 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
254 #endif
255
256 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
257 union kvm_mmu_notifier_arg {
258 unsigned long attributes;
259 };
260
261 enum kvm_gfn_range_filter {
262 KVM_FILTER_SHARED = BIT(0),
263 KVM_FILTER_PRIVATE = BIT(1),
264 };
265
266 struct kvm_gfn_range {
267 struct kvm_memory_slot *slot;
268 gfn_t start;
269 gfn_t end;
270 union kvm_mmu_notifier_arg arg;
271 enum kvm_gfn_range_filter attr_filter;
272 bool may_block;
273 bool lockless;
274 };
275 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
276 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
277 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
278 #endif
279
280 enum {
281 OUTSIDE_GUEST_MODE,
282 IN_GUEST_MODE,
283 EXITING_GUEST_MODE,
284 READING_SHADOW_PAGE_TABLES,
285 };
286
287 struct kvm_host_map {
288 /*
289 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
290 * a 'struct page' for it. When using mem= kernel parameter some memory
291 * can be used as guest memory but they are not managed by host
292 * kernel).
293 */
294 struct page *pinned_page;
295 struct page *page;
296 void *hva;
297 kvm_pfn_t pfn;
298 kvm_pfn_t gfn;
299 bool writable;
300 };
301
302 /*
303 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
304 * directly to check for that.
305 */
kvm_vcpu_mapped(struct kvm_host_map * map)306 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
307 {
308 return !!map->hva;
309 }
310
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)311 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
312 {
313 return single_task_running() && !need_resched() && ktime_before(cur, stop);
314 }
315
316 /*
317 * Sometimes a large or cross-page mmio needs to be broken up into separate
318 * exits for userspace servicing.
319 */
320 struct kvm_mmio_fragment {
321 gpa_t gpa;
322 void *data;
323 unsigned len;
324 };
325
326 struct kvm_vcpu {
327 struct kvm *kvm;
328 #ifdef CONFIG_PREEMPT_NOTIFIERS
329 struct preempt_notifier preempt_notifier;
330 #endif
331 int cpu;
332 int vcpu_id; /* id given by userspace at creation */
333 int vcpu_idx; /* index into kvm->vcpu_array */
334 int ____srcu_idx; /* Don't use this directly. You've been warned. */
335 #ifdef CONFIG_PROVE_RCU
336 int srcu_depth;
337 #endif
338 int mode;
339 u64 requests;
340 unsigned long guest_debug;
341
342 struct mutex mutex;
343 struct kvm_run *run;
344
345 #ifndef __KVM_HAVE_ARCH_WQP
346 struct rcuwait wait;
347 #endif
348 struct pid *pid;
349 rwlock_t pid_lock;
350 int sigset_active;
351 sigset_t sigset;
352 unsigned int halt_poll_ns;
353 bool valid_wakeup;
354
355 #ifdef CONFIG_HAS_IOMEM
356 int mmio_needed;
357 int mmio_read_completed;
358 int mmio_is_write;
359 int mmio_cur_fragment;
360 int mmio_nr_fragments;
361 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
362 #endif
363
364 #ifdef CONFIG_KVM_ASYNC_PF
365 struct {
366 u32 queued;
367 struct list_head queue;
368 struct list_head done;
369 spinlock_t lock;
370 } async_pf;
371 #endif
372
373 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
374 /*
375 * Cpu relax intercept or pause loop exit optimization
376 * in_spin_loop: set when a vcpu does a pause loop exit
377 * or cpu relax intercepted.
378 * dy_eligible: indicates whether vcpu is eligible for directed yield.
379 */
380 struct {
381 bool in_spin_loop;
382 bool dy_eligible;
383 } spin_loop;
384 #endif
385 bool wants_to_run;
386 bool preempted;
387 bool ready;
388 bool scheduled_out;
389 struct kvm_vcpu_arch arch;
390 struct kvm_vcpu_stat stat;
391 char stats_id[KVM_STATS_NAME_SIZE];
392 struct kvm_dirty_ring dirty_ring;
393
394 /*
395 * The most recently used memslot by this vCPU and the slots generation
396 * for which it is valid.
397 * No wraparound protection is needed since generations won't overflow in
398 * thousands of years, even assuming 1M memslot operations per second.
399 */
400 struct kvm_memory_slot *last_used_slot;
401 u64 last_used_slot_gen;
402 };
403
404 /*
405 * Start accounting time towards a guest.
406 * Must be called before entering guest context.
407 */
guest_timing_enter_irqoff(void)408 static __always_inline void guest_timing_enter_irqoff(void)
409 {
410 /*
411 * This is running in ioctl context so its safe to assume that it's the
412 * stime pending cputime to flush.
413 */
414 instrumentation_begin();
415 vtime_account_guest_enter();
416 instrumentation_end();
417 }
418
419 /*
420 * Enter guest context and enter an RCU extended quiescent state.
421 *
422 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
423 * unsafe to use any code which may directly or indirectly use RCU, tracing
424 * (including IRQ flag tracing), or lockdep. All code in this period must be
425 * non-instrumentable.
426 */
guest_context_enter_irqoff(void)427 static __always_inline void guest_context_enter_irqoff(void)
428 {
429 /*
430 * KVM does not hold any references to rcu protected data when it
431 * switches CPU into a guest mode. In fact switching to a guest mode
432 * is very similar to exiting to userspace from rcu point of view. In
433 * addition CPU may stay in a guest mode for quite a long time (up to
434 * one time slice). Lets treat guest mode as quiescent state, just like
435 * we do with user-mode execution.
436 */
437 if (!context_tracking_guest_enter()) {
438 instrumentation_begin();
439 rcu_virt_note_context_switch();
440 instrumentation_end();
441 }
442 }
443
444 /*
445 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
446 * guest_state_enter_irqoff().
447 */
guest_enter_irqoff(void)448 static __always_inline void guest_enter_irqoff(void)
449 {
450 guest_timing_enter_irqoff();
451 guest_context_enter_irqoff();
452 }
453
454 /**
455 * guest_state_enter_irqoff - Fixup state when entering a guest
456 *
457 * Entry to a guest will enable interrupts, but the kernel state is interrupts
458 * disabled when this is invoked. Also tell RCU about it.
459 *
460 * 1) Trace interrupts on state
461 * 2) Invoke context tracking if enabled to adjust RCU state
462 * 3) Tell lockdep that interrupts are enabled
463 *
464 * Invoked from architecture specific code before entering a guest.
465 * Must be called with interrupts disabled and the caller must be
466 * non-instrumentable.
467 * The caller has to invoke guest_timing_enter_irqoff() before this.
468 *
469 * Note: this is analogous to exit_to_user_mode().
470 */
guest_state_enter_irqoff(void)471 static __always_inline void guest_state_enter_irqoff(void)
472 {
473 instrumentation_begin();
474 trace_hardirqs_on_prepare();
475 lockdep_hardirqs_on_prepare();
476 instrumentation_end();
477
478 guest_context_enter_irqoff();
479 lockdep_hardirqs_on(CALLER_ADDR0);
480 }
481
482 /*
483 * Exit guest context and exit an RCU extended quiescent state.
484 *
485 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
486 * unsafe to use any code which may directly or indirectly use RCU, tracing
487 * (including IRQ flag tracing), or lockdep. All code in this period must be
488 * non-instrumentable.
489 */
guest_context_exit_irqoff(void)490 static __always_inline void guest_context_exit_irqoff(void)
491 {
492 /*
493 * Guest mode is treated as a quiescent state, see
494 * guest_context_enter_irqoff() for more details.
495 */
496 if (!context_tracking_guest_exit()) {
497 instrumentation_begin();
498 rcu_virt_note_context_switch();
499 instrumentation_end();
500 }
501 }
502
503 /*
504 * Stop accounting time towards a guest.
505 * Must be called after exiting guest context.
506 */
guest_timing_exit_irqoff(void)507 static __always_inline void guest_timing_exit_irqoff(void)
508 {
509 instrumentation_begin();
510 /* Flush the guest cputime we spent on the guest */
511 vtime_account_guest_exit();
512 instrumentation_end();
513 }
514
515 /*
516 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
517 * guest_timing_exit_irqoff().
518 */
guest_exit_irqoff(void)519 static __always_inline void guest_exit_irqoff(void)
520 {
521 guest_context_exit_irqoff();
522 guest_timing_exit_irqoff();
523 }
524
guest_exit(void)525 static inline void guest_exit(void)
526 {
527 unsigned long flags;
528
529 local_irq_save(flags);
530 guest_exit_irqoff();
531 local_irq_restore(flags);
532 }
533
534 /**
535 * guest_state_exit_irqoff - Establish state when returning from guest mode
536 *
537 * Entry from a guest disables interrupts, but guest mode is traced as
538 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
539 *
540 * 1) Tell lockdep that interrupts are disabled
541 * 2) Invoke context tracking if enabled to reactivate RCU
542 * 3) Trace interrupts off state
543 *
544 * Invoked from architecture specific code after exiting a guest.
545 * Must be invoked with interrupts disabled and the caller must be
546 * non-instrumentable.
547 * The caller has to invoke guest_timing_exit_irqoff() after this.
548 *
549 * Note: this is analogous to enter_from_user_mode().
550 */
guest_state_exit_irqoff(void)551 static __always_inline void guest_state_exit_irqoff(void)
552 {
553 lockdep_hardirqs_off(CALLER_ADDR0);
554 guest_context_exit_irqoff();
555
556 instrumentation_begin();
557 trace_hardirqs_off_finish();
558 instrumentation_end();
559 }
560
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)561 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
562 {
563 /*
564 * The memory barrier ensures a previous write to vcpu->requests cannot
565 * be reordered with the read of vcpu->mode. It pairs with the general
566 * memory barrier following the write of vcpu->mode in VCPU RUN.
567 */
568 smp_mb__before_atomic();
569 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
570 }
571
572 /*
573 * Some of the bitops functions do not support too long bitmaps.
574 * This number must be determined not to exceed such limits.
575 */
576 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
577
578 /*
579 * Since at idle each memslot belongs to two memslot sets it has to contain
580 * two embedded nodes for each data structure that it forms a part of.
581 *
582 * Two memslot sets (one active and one inactive) are necessary so the VM
583 * continues to run on one memslot set while the other is being modified.
584 *
585 * These two memslot sets normally point to the same set of memslots.
586 * They can, however, be desynchronized when performing a memslot management
587 * operation by replacing the memslot to be modified by its copy.
588 * After the operation is complete, both memslot sets once again point to
589 * the same, common set of memslot data.
590 *
591 * The memslots themselves are independent of each other so they can be
592 * individually added or deleted.
593 */
594 struct kvm_memory_slot {
595 struct hlist_node id_node[2];
596 struct interval_tree_node hva_node[2];
597 struct rb_node gfn_node[2];
598 gfn_t base_gfn;
599 unsigned long npages;
600 unsigned long *dirty_bitmap;
601 struct kvm_arch_memory_slot arch;
602 unsigned long userspace_addr;
603 u32 flags;
604 short id;
605 u16 as_id;
606
607 #ifdef CONFIG_KVM_GUEST_MEMFD
608 struct {
609 /*
610 * Writes protected by kvm->slots_lock. Acquiring a
611 * reference via kvm_gmem_get_file() is protected by
612 * either kvm->slots_lock or kvm->srcu.
613 */
614 struct file *file;
615 pgoff_t pgoff;
616 } gmem;
617 #endif
618 };
619
kvm_slot_has_gmem(const struct kvm_memory_slot * slot)620 static inline bool kvm_slot_has_gmem(const struct kvm_memory_slot *slot)
621 {
622 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
623 }
624
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)625 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
626 {
627 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
628 }
629
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)630 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
631 {
632 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
633 }
634
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)635 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
636 {
637 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
638
639 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
640 }
641
642 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
643 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
644 #endif
645
646 struct kvm_s390_adapter_int {
647 u64 ind_addr;
648 u64 summary_addr;
649 u64 ind_offset;
650 u32 summary_offset;
651 u32 adapter_id;
652 };
653
654 struct kvm_hv_sint {
655 u32 vcpu;
656 u32 sint;
657 };
658
659 struct kvm_xen_evtchn {
660 u32 port;
661 u32 vcpu_id;
662 int vcpu_idx;
663 u32 priority;
664 };
665
666 struct kvm_kernel_irq_routing_entry {
667 u32 gsi;
668 u32 type;
669 int (*set)(struct kvm_kernel_irq_routing_entry *e,
670 struct kvm *kvm, int irq_source_id, int level,
671 bool line_status);
672 union {
673 struct {
674 unsigned irqchip;
675 unsigned pin;
676 } irqchip;
677 struct {
678 u32 address_lo;
679 u32 address_hi;
680 u32 data;
681 u32 flags;
682 u32 devid;
683 } msi;
684 struct kvm_s390_adapter_int adapter;
685 struct kvm_hv_sint hv_sint;
686 struct kvm_xen_evtchn xen_evtchn;
687 };
688 struct hlist_node link;
689 };
690
691 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
692 struct kvm_irq_routing_table {
693 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
694 u32 nr_rt_entries;
695 /*
696 * Array indexed by gsi. Each entry contains list of irq chips
697 * the gsi is connected to.
698 */
699 struct hlist_head map[] __counted_by(nr_rt_entries);
700 };
701 #endif
702
703 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
704
705 #ifndef KVM_INTERNAL_MEM_SLOTS
706 #define KVM_INTERNAL_MEM_SLOTS 0
707 #endif
708
709 #define KVM_MEM_SLOTS_NUM SHRT_MAX
710 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
711
712 #if KVM_MAX_NR_ADDRESS_SPACES == 1
kvm_arch_nr_memslot_as_ids(struct kvm * kvm)713 static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
714 {
715 return KVM_MAX_NR_ADDRESS_SPACES;
716 }
717
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)718 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
719 {
720 return 0;
721 }
722 #endif
723
724 #ifndef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_arch_has_private_mem(struct kvm * kvm)725 static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
726 {
727 return false;
728 }
729 #endif
730
731 #ifdef CONFIG_KVM_GUEST_MEMFD
732 bool kvm_arch_supports_gmem_init_shared(struct kvm *kvm);
733
kvm_gmem_get_supported_flags(struct kvm * kvm)734 static inline u64 kvm_gmem_get_supported_flags(struct kvm *kvm)
735 {
736 u64 flags = GUEST_MEMFD_FLAG_MMAP;
737
738 if (!kvm || kvm_arch_supports_gmem_init_shared(kvm))
739 flags |= GUEST_MEMFD_FLAG_INIT_SHARED;
740
741 return flags;
742 }
743 #endif
744
745 #ifndef kvm_arch_has_readonly_mem
kvm_arch_has_readonly_mem(struct kvm * kvm)746 static inline bool kvm_arch_has_readonly_mem(struct kvm *kvm)
747 {
748 return IS_ENABLED(CONFIG_HAVE_KVM_READONLY_MEM);
749 }
750 #endif
751
752 struct kvm_memslots {
753 u64 generation;
754 atomic_long_t last_used_slot;
755 struct rb_root_cached hva_tree;
756 struct rb_root gfn_tree;
757 /*
758 * The mapping table from slot id to memslot.
759 *
760 * 7-bit bucket count matches the size of the old id to index array for
761 * 512 slots, while giving good performance with this slot count.
762 * Higher bucket counts bring only small performance improvements but
763 * always result in higher memory usage (even for lower memslot counts).
764 */
765 DECLARE_HASHTABLE(id_hash, 7);
766 int node_idx;
767 };
768
769 struct kvm {
770 #ifdef KVM_HAVE_MMU_RWLOCK
771 rwlock_t mmu_lock;
772 #else
773 spinlock_t mmu_lock;
774 #endif /* KVM_HAVE_MMU_RWLOCK */
775
776 struct mutex slots_lock;
777
778 /*
779 * Protects the arch-specific fields of struct kvm_memory_slots in
780 * use by the VM. To be used under the slots_lock (above) or in a
781 * kvm->srcu critical section where acquiring the slots_lock would
782 * lead to deadlock with the synchronize_srcu in
783 * kvm_swap_active_memslots().
784 */
785 struct mutex slots_arch_lock;
786 struct mm_struct *mm; /* userspace tied to this vm */
787 unsigned long nr_memslot_pages;
788 /* The two memslot sets - active and inactive (per address space) */
789 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
790 /* The current active memslot set for each address space */
791 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
792 struct xarray vcpu_array;
793 /*
794 * Protected by slots_lock, but can be read outside if an
795 * incorrect answer is acceptable.
796 */
797 atomic_t nr_memslots_dirty_logging;
798
799 /* Used to wait for completion of MMU notifiers. */
800 spinlock_t mn_invalidate_lock;
801 unsigned long mn_active_invalidate_count;
802 struct rcuwait mn_memslots_update_rcuwait;
803
804 /* For management / invalidation of gfn_to_pfn_caches */
805 spinlock_t gpc_lock;
806 struct list_head gpc_list;
807
808 /*
809 * created_vcpus is protected by kvm->lock, and is incremented
810 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
811 * incremented after storing the kvm_vcpu pointer in vcpus,
812 * and is accessed atomically.
813 */
814 atomic_t online_vcpus;
815 int max_vcpus;
816 int created_vcpus;
817 int last_boosted_vcpu;
818 struct list_head vm_list;
819 struct mutex lock;
820 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
821 #ifdef CONFIG_HAVE_KVM_IRQCHIP
822 struct {
823 spinlock_t lock;
824 struct list_head items;
825 /* resampler_list update side is protected by resampler_lock. */
826 struct list_head resampler_list;
827 struct mutex resampler_lock;
828 } irqfds;
829 #endif
830 struct list_head ioeventfds;
831 struct kvm_vm_stat stat;
832 struct kvm_arch arch;
833 refcount_t users_count;
834 #ifdef CONFIG_KVM_MMIO
835 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
836 spinlock_t ring_lock;
837 struct list_head coalesced_zones;
838 #endif
839
840 struct mutex irq_lock;
841 #ifdef CONFIG_HAVE_KVM_IRQCHIP
842 /*
843 * Update side is protected by irq_lock.
844 */
845 struct kvm_irq_routing_table __rcu *irq_routing;
846
847 struct hlist_head irq_ack_notifier_list;
848 #endif
849
850 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
851 struct mmu_notifier mmu_notifier;
852 unsigned long mmu_invalidate_seq;
853 long mmu_invalidate_in_progress;
854 gfn_t mmu_invalidate_range_start;
855 gfn_t mmu_invalidate_range_end;
856 #endif
857 struct list_head devices;
858 u64 manual_dirty_log_protect;
859 struct dentry *debugfs_dentry;
860 struct kvm_stat_data **debugfs_stat_data;
861 struct srcu_struct srcu;
862 struct srcu_struct irq_srcu;
863 pid_t userspace_pid;
864 bool override_halt_poll_ns;
865 unsigned int max_halt_poll_ns;
866 u32 dirty_ring_size;
867 bool dirty_ring_with_bitmap;
868 bool vm_bugged;
869 bool vm_dead;
870
871 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
872 struct notifier_block pm_notifier;
873 #endif
874 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
875 /* Protected by slots_lock (for writes) and RCU (for reads) */
876 struct xarray mem_attr_array;
877 #endif
878 char stats_id[KVM_STATS_NAME_SIZE];
879 };
880
881 #define kvm_err(fmt, ...) \
882 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
883 #define kvm_info(fmt, ...) \
884 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
885 #define kvm_debug(fmt, ...) \
886 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
887 #define kvm_debug_ratelimited(fmt, ...) \
888 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
889 ## __VA_ARGS__)
890 #define kvm_pr_unimpl(fmt, ...) \
891 pr_err_ratelimited("kvm [%i]: " fmt, \
892 task_tgid_nr(current), ## __VA_ARGS__)
893
894 /* The guest did something we don't support. */
895 #define vcpu_unimpl(vcpu, fmt, ...) \
896 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
897 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
898
899 #define vcpu_debug(vcpu, fmt, ...) \
900 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
901 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
902 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
903 ## __VA_ARGS__)
904 #define vcpu_err(vcpu, fmt, ...) \
905 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
906
kvm_vm_dead(struct kvm * kvm)907 static inline void kvm_vm_dead(struct kvm *kvm)
908 {
909 kvm->vm_dead = true;
910 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
911 }
912
kvm_vm_bugged(struct kvm * kvm)913 static inline void kvm_vm_bugged(struct kvm *kvm)
914 {
915 kvm->vm_bugged = true;
916 kvm_vm_dead(kvm);
917 }
918
919
920 #define KVM_BUG(cond, kvm, fmt...) \
921 ({ \
922 bool __ret = !!(cond); \
923 \
924 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
925 kvm_vm_bugged(kvm); \
926 unlikely(__ret); \
927 })
928
929 #define KVM_BUG_ON(cond, kvm) \
930 ({ \
931 bool __ret = !!(cond); \
932 \
933 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
934 kvm_vm_bugged(kvm); \
935 unlikely(__ret); \
936 })
937
938 /*
939 * Note, "data corruption" refers to corruption of host kernel data structures,
940 * not guest data. Guest data corruption, suspected or confirmed, that is tied
941 * and contained to a single VM should *never* BUG() and potentially panic the
942 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
943 * is corrupted and that corruption can have a cascading effect to other parts
944 * of the hosts and/or to other VMs.
945 */
946 #define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
947 ({ \
948 bool __ret = !!(cond); \
949 \
950 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
951 BUG_ON(__ret); \
952 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
953 kvm_vm_bugged(kvm); \
954 unlikely(__ret); \
955 })
956
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)957 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
958 {
959 #ifdef CONFIG_PROVE_RCU
960 WARN_ONCE(vcpu->srcu_depth++,
961 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
962 #endif
963 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
964 }
965
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)966 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
967 {
968 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
969
970 #ifdef CONFIG_PROVE_RCU
971 WARN_ONCE(--vcpu->srcu_depth,
972 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
973 #endif
974 }
975
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)976 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
977 {
978 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
979 }
980
981 /*
982 * Get a bus reference under the update-side lock. No long-term SRCU reader
983 * references are permitted, to avoid stale reads vs concurrent IO
984 * registrations.
985 */
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)986 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
987 {
988 return rcu_dereference_protected(kvm->buses[idx],
989 lockdep_is_held(&kvm->slots_lock));
990 }
991
kvm_get_vcpu(struct kvm * kvm,int i)992 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
993 {
994 int num_vcpus = atomic_read(&kvm->online_vcpus);
995
996 /*
997 * Explicitly verify the target vCPU is online, as the anti-speculation
998 * logic only limits the CPU's ability to speculate, e.g. given a "bad"
999 * index, clamping the index to 0 would return vCPU0, not NULL.
1000 */
1001 if (i >= num_vcpus)
1002 return NULL;
1003
1004 i = array_index_nospec(i, num_vcpus);
1005
1006 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
1007 smp_rmb();
1008 return xa_load(&kvm->vcpu_array, i);
1009 }
1010
1011 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
1012 if (atomic_read(&kvm->online_vcpus)) \
1013 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
1014 (atomic_read(&kvm->online_vcpus) - 1))
1015
kvm_get_vcpu_by_id(struct kvm * kvm,int id)1016 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
1017 {
1018 struct kvm_vcpu *vcpu = NULL;
1019 unsigned long i;
1020
1021 if (id < 0)
1022 return NULL;
1023 if (id < KVM_MAX_VCPUS)
1024 vcpu = kvm_get_vcpu(kvm, id);
1025 if (vcpu && vcpu->vcpu_id == id)
1026 return vcpu;
1027 kvm_for_each_vcpu(i, vcpu, kvm)
1028 if (vcpu->vcpu_id == id)
1029 return vcpu;
1030 return NULL;
1031 }
1032
1033 void kvm_destroy_vcpus(struct kvm *kvm);
1034
1035 int kvm_trylock_all_vcpus(struct kvm *kvm);
1036 int kvm_lock_all_vcpus(struct kvm *kvm);
1037 void kvm_unlock_all_vcpus(struct kvm *kvm);
1038
1039 void vcpu_load(struct kvm_vcpu *vcpu);
1040 void vcpu_put(struct kvm_vcpu *vcpu);
1041
1042 #ifdef CONFIG_KVM_IOAPIC
1043 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
1044 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)1045 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
1046 {
1047 }
1048 #endif
1049
1050 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1051 int kvm_irqfd_init(void);
1052 void kvm_irqfd_exit(void);
1053 #else
kvm_irqfd_init(void)1054 static inline int kvm_irqfd_init(void)
1055 {
1056 return 0;
1057 }
1058
kvm_irqfd_exit(void)1059 static inline void kvm_irqfd_exit(void)
1060 {
1061 }
1062 #endif
1063 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
1064 void kvm_exit(void);
1065
1066 void kvm_get_kvm(struct kvm *kvm);
1067 bool kvm_get_kvm_safe(struct kvm *kvm);
1068 void kvm_put_kvm(struct kvm *kvm);
1069 bool file_is_kvm(struct file *file);
1070 void kvm_put_kvm_no_destroy(struct kvm *kvm);
1071
__kvm_memslots(struct kvm * kvm,int as_id)1072 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
1073 {
1074 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
1075 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
1076 lockdep_is_held(&kvm->slots_lock) ||
1077 !refcount_read(&kvm->users_count));
1078 }
1079
kvm_memslots(struct kvm * kvm)1080 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1081 {
1082 return __kvm_memslots(kvm, 0);
1083 }
1084
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)1085 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1086 {
1087 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1088
1089 return __kvm_memslots(vcpu->kvm, as_id);
1090 }
1091
kvm_memslots_empty(struct kvm_memslots * slots)1092 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1093 {
1094 return RB_EMPTY_ROOT(&slots->gfn_tree);
1095 }
1096
1097 bool kvm_are_all_memslots_empty(struct kvm *kvm);
1098
1099 #define kvm_for_each_memslot(memslot, bkt, slots) \
1100 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1101 if (WARN_ON_ONCE(!memslot->npages)) { \
1102 } else
1103
1104 static inline
id_to_memslot(struct kvm_memslots * slots,int id)1105 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
1106 {
1107 struct kvm_memory_slot *slot;
1108 int idx = slots->node_idx;
1109
1110 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
1111 if (slot->id == id)
1112 return slot;
1113 }
1114
1115 return NULL;
1116 }
1117
1118 /* Iterator used for walking memslots that overlap a gfn range. */
1119 struct kvm_memslot_iter {
1120 struct kvm_memslots *slots;
1121 struct rb_node *node;
1122 struct kvm_memory_slot *slot;
1123 };
1124
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1125 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1126 {
1127 iter->node = rb_next(iter->node);
1128 if (!iter->node)
1129 return;
1130
1131 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1132 }
1133
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1134 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1135 struct kvm_memslots *slots,
1136 gfn_t start)
1137 {
1138 int idx = slots->node_idx;
1139 struct rb_node *tmp;
1140 struct kvm_memory_slot *slot;
1141
1142 iter->slots = slots;
1143
1144 /*
1145 * Find the so called "upper bound" of a key - the first node that has
1146 * its key strictly greater than the searched one (the start gfn in our case).
1147 */
1148 iter->node = NULL;
1149 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1150 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1151 if (start < slot->base_gfn) {
1152 iter->node = tmp;
1153 tmp = tmp->rb_left;
1154 } else {
1155 tmp = tmp->rb_right;
1156 }
1157 }
1158
1159 /*
1160 * Find the slot with the lowest gfn that can possibly intersect with
1161 * the range, so we'll ideally have slot start <= range start
1162 */
1163 if (iter->node) {
1164 /*
1165 * A NULL previous node means that the very first slot
1166 * already has a higher start gfn.
1167 * In this case slot start > range start.
1168 */
1169 tmp = rb_prev(iter->node);
1170 if (tmp)
1171 iter->node = tmp;
1172 } else {
1173 /* a NULL node below means no slots */
1174 iter->node = rb_last(&slots->gfn_tree);
1175 }
1176
1177 if (iter->node) {
1178 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1179
1180 /*
1181 * It is possible in the slot start < range start case that the
1182 * found slot ends before or at range start (slot end <= range start)
1183 * and so it does not overlap the requested range.
1184 *
1185 * In such non-overlapping case the next slot (if it exists) will
1186 * already have slot start > range start, otherwise the logic above
1187 * would have found it instead of the current slot.
1188 */
1189 if (iter->slot->base_gfn + iter->slot->npages <= start)
1190 kvm_memslot_iter_next(iter);
1191 }
1192 }
1193
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1194 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1195 {
1196 if (!iter->node)
1197 return false;
1198
1199 /*
1200 * If this slot starts beyond or at the end of the range so does
1201 * every next one
1202 */
1203 return iter->slot->base_gfn < end;
1204 }
1205
1206 /* Iterate over each memslot at least partially intersecting [start, end) range */
1207 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1208 for (kvm_memslot_iter_start(iter, slots, start); \
1209 kvm_memslot_iter_is_valid(iter, end); \
1210 kvm_memslot_iter_next(iter))
1211
1212 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1213 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1214 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1215
1216 /*
1217 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1218 * - create a new memory slot
1219 * - delete an existing memory slot
1220 * - modify an existing memory slot
1221 * -- move it in the guest physical memory space
1222 * -- just change its flags
1223 *
1224 * Since flags can be changed by some of these operations, the following
1225 * differentiation is the best we can do for kvm_set_memory_region():
1226 */
1227 enum kvm_mr_change {
1228 KVM_MR_CREATE,
1229 KVM_MR_DELETE,
1230 KVM_MR_MOVE,
1231 KVM_MR_FLAGS_ONLY,
1232 };
1233
1234 int kvm_set_internal_memslot(struct kvm *kvm,
1235 const struct kvm_userspace_memory_region2 *mem);
1236 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1237 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1238 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1239 const struct kvm_memory_slot *old,
1240 struct kvm_memory_slot *new,
1241 enum kvm_mr_change change);
1242 void kvm_arch_commit_memory_region(struct kvm *kvm,
1243 struct kvm_memory_slot *old,
1244 const struct kvm_memory_slot *new,
1245 enum kvm_mr_change change);
1246 /* flush all memory translations */
1247 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1248 /* flush memory translations pointing to 'slot' */
1249 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1250 struct kvm_memory_slot *slot);
1251
1252 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
1253 struct page **pages, int nr_pages);
1254
1255 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write);
gfn_to_page(struct kvm * kvm,gfn_t gfn)1256 static inline struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1257 {
1258 return __gfn_to_page(kvm, gfn, true);
1259 }
1260
1261 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1262 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1263 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1264 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1265 bool *writable);
1266
kvm_release_page_unused(struct page * page)1267 static inline void kvm_release_page_unused(struct page *page)
1268 {
1269 if (!page)
1270 return;
1271
1272 put_page(page);
1273 }
1274
1275 void kvm_release_page_clean(struct page *page);
1276 void kvm_release_page_dirty(struct page *page);
1277
kvm_release_faultin_page(struct kvm * kvm,struct page * page,bool unused,bool dirty)1278 static inline void kvm_release_faultin_page(struct kvm *kvm, struct page *page,
1279 bool unused, bool dirty)
1280 {
1281 lockdep_assert_once(lockdep_is_held(&kvm->mmu_lock) || unused);
1282
1283 if (!page)
1284 return;
1285
1286 /*
1287 * If the page that KVM got from the *primary MMU* is writable, and KVM
1288 * installed or reused a SPTE, mark the page/folio dirty. Note, this
1289 * may mark a folio dirty even if KVM created a read-only SPTE, e.g. if
1290 * the GFN is write-protected. Folios can't be safely marked dirty
1291 * outside of mmu_lock as doing so could race with writeback on the
1292 * folio. As a result, KVM can't mark folios dirty in the fast page
1293 * fault handler, and so KVM must (somewhat) speculatively mark the
1294 * folio dirty if KVM could locklessly make the SPTE writable.
1295 */
1296 if (unused)
1297 kvm_release_page_unused(page);
1298 else if (dirty)
1299 kvm_release_page_dirty(page);
1300 else
1301 kvm_release_page_clean(page);
1302 }
1303
1304 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
1305 unsigned int foll, bool *writable,
1306 struct page **refcounted_page);
1307
kvm_faultin_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool write,bool * writable,struct page ** refcounted_page)1308 static inline kvm_pfn_t kvm_faultin_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
1309 bool write, bool *writable,
1310 struct page **refcounted_page)
1311 {
1312 return __kvm_faultin_pfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn,
1313 write ? FOLL_WRITE : 0, writable, refcounted_page);
1314 }
1315
1316 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1317 int len);
1318 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1319 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1320 void *data, unsigned long len);
1321 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1322 void *data, unsigned int offset,
1323 unsigned long len);
1324 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1325 int offset, int len);
1326 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1327 unsigned long len);
1328 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1329 void *data, unsigned long len);
1330 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1331 void *data, unsigned int offset,
1332 unsigned long len);
1333 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1334 gpa_t gpa, unsigned long len);
1335
1336 #define __kvm_get_guest(kvm, gfn, offset, v) \
1337 ({ \
1338 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1339 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1340 int __ret = -EFAULT; \
1341 \
1342 if (!kvm_is_error_hva(__addr)) \
1343 __ret = get_user(v, __uaddr); \
1344 __ret; \
1345 })
1346
1347 #define kvm_get_guest(kvm, gpa, v) \
1348 ({ \
1349 gpa_t __gpa = gpa; \
1350 struct kvm *__kvm = kvm; \
1351 \
1352 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1353 offset_in_page(__gpa), v); \
1354 })
1355
1356 #define __kvm_put_guest(kvm, gfn, offset, v) \
1357 ({ \
1358 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1359 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1360 int __ret = -EFAULT; \
1361 \
1362 if (!kvm_is_error_hva(__addr)) \
1363 __ret = put_user(v, __uaddr); \
1364 if (!__ret) \
1365 mark_page_dirty(kvm, gfn); \
1366 __ret; \
1367 })
1368
1369 #define kvm_put_guest(kvm, gpa, v) \
1370 ({ \
1371 gpa_t __gpa = gpa; \
1372 struct kvm *__kvm = kvm; \
1373 \
1374 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1375 offset_in_page(__gpa), v); \
1376 })
1377
1378 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1379 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1380 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1381 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1382 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1383 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1384
1385 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map,
1386 bool writable);
1387 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map);
1388
kvm_vcpu_map(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1389 static inline int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa,
1390 struct kvm_host_map *map)
1391 {
1392 return __kvm_vcpu_map(vcpu, gpa, map, true);
1393 }
1394
kvm_vcpu_map_readonly(struct kvm_vcpu * vcpu,gpa_t gpa,struct kvm_host_map * map)1395 static inline int kvm_vcpu_map_readonly(struct kvm_vcpu *vcpu, gpa_t gpa,
1396 struct kvm_host_map *map)
1397 {
1398 return __kvm_vcpu_map(vcpu, gpa, map, false);
1399 }
1400
1401 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1402 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1403 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1404 int len);
1405 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1406 unsigned long len);
1407 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1408 unsigned long len);
1409 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1410 int offset, int len);
1411 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1412 unsigned long len);
1413 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1414
1415 /**
1416 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1417 *
1418 * @gpc: struct gfn_to_pfn_cache object.
1419 * @kvm: pointer to kvm instance.
1420 *
1421 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1422 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1423 * the caller before init).
1424 */
1425 void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
1426
1427 /**
1428 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1429 * physical address.
1430 *
1431 * @gpc: struct gfn_to_pfn_cache object.
1432 * @gpa: guest physical address to map.
1433 * @len: sanity check; the range being access must fit a single page.
1434 *
1435 * @return: 0 for success.
1436 * -EINVAL for a mapping which would cross a page boundary.
1437 * -EFAULT for an untranslatable guest physical address.
1438 *
1439 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
1440 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1441 * to ensure that the cache is valid before accessing the target page.
1442 */
1443 int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
1444
1445 /**
1446 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1447 *
1448 * @gpc: struct gfn_to_pfn_cache object.
1449 * @hva: userspace virtual address to map.
1450 * @len: sanity check; the range being access must fit a single page.
1451 *
1452 * @return: 0 for success.
1453 * -EINVAL for a mapping which would cross a page boundary.
1454 * -EFAULT for an untranslatable guest physical address.
1455 *
1456 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1457 * merely bypasses a layer of address translation.
1458 */
1459 int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1460
1461 /**
1462 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
1463 *
1464 * @gpc: struct gfn_to_pfn_cache object.
1465 * @len: sanity check; the range being access must fit a single page.
1466 *
1467 * @return: %true if the cache is still valid and the address matches.
1468 * %false if the cache is not valid.
1469 *
1470 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1471 * while calling this function, and then continue to hold the lock until the
1472 * access is complete.
1473 *
1474 * Callers in IN_GUEST_MODE may do so without locking, although they should
1475 * still hold a read lock on kvm->scru for the memslot checks.
1476 */
1477 bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
1478
1479 /**
1480 * kvm_gpc_refresh - update a previously initialized cache.
1481 *
1482 * @gpc: struct gfn_to_pfn_cache object.
1483 * @len: sanity check; the range being access must fit a single page.
1484 *
1485 * @return: 0 for success.
1486 * -EINVAL for a mapping which would cross a page boundary.
1487 * -EFAULT for an untranslatable guest physical address.
1488 *
1489 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1490 * return from this function does not mean the page can be immediately
1491 * accessed because it may have raced with an invalidation. Callers must
1492 * still lock and check the cache status, as this function does not return
1493 * with the lock still held to permit access.
1494 */
1495 int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
1496
1497 /**
1498 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
1499 *
1500 * @gpc: struct gfn_to_pfn_cache object.
1501 *
1502 * This removes a cache from the VM's list to be processed on MMU notifier
1503 * invocation.
1504 */
1505 void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
1506
kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache * gpc)1507 static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1508 {
1509 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1510 }
1511
kvm_gpc_is_hva_active(struct gfn_to_pfn_cache * gpc)1512 static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1513 {
1514 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1515 }
1516
1517 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1518 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1519
1520 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1521 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1522 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1523 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1524 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1525
1526 #ifndef CONFIG_S390
1527 void __kvm_vcpu_kick(struct kvm_vcpu *vcpu, bool wait);
1528
kvm_vcpu_kick(struct kvm_vcpu * vcpu)1529 static inline void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1530 {
1531 __kvm_vcpu_kick(vcpu, false);
1532 }
1533 #endif
1534
1535 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1536 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
1537
1538 void kvm_flush_remote_tlbs(struct kvm *kvm);
1539 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1540 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1541 const struct kvm_memory_slot *memslot);
1542
1543 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1544 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1545 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
1546 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1547 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1548 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1549 #endif
1550
1551 void kvm_mmu_invalidate_begin(struct kvm *kvm);
1552 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1553 void kvm_mmu_invalidate_end(struct kvm *kvm);
1554 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
1555
1556 long kvm_arch_dev_ioctl(struct file *filp,
1557 unsigned int ioctl, unsigned long arg);
1558 long kvm_arch_vcpu_ioctl(struct file *filp,
1559 unsigned int ioctl, unsigned long arg);
1560 long kvm_arch_vcpu_unlocked_ioctl(struct file *filp,
1561 unsigned int ioctl, unsigned long arg);
1562 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1563
1564 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1565
1566 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1567 struct kvm_memory_slot *slot,
1568 gfn_t gfn_offset,
1569 unsigned long mask);
1570 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1571
1572 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1573 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1574 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1575 int *is_dirty, struct kvm_memory_slot **memslot);
1576 #endif
1577
1578 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1579 bool line_status);
1580 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1581 struct kvm_enable_cap *cap);
1582 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
1583 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1584 unsigned long arg);
1585
1586 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1587 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1588
1589 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1590 struct kvm_translation *tr);
1591
1592 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1593 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1594 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1595 struct kvm_sregs *sregs);
1596 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1597 struct kvm_sregs *sregs);
1598 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1599 struct kvm_mp_state *mp_state);
1600 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1601 struct kvm_mp_state *mp_state);
1602 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1603 struct kvm_guest_debug *dbg);
1604 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1605
1606 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1607 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1608 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1609 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1610 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1611 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1612
1613 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1614 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1615 #endif
1616
1617 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1618 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1619 #else
kvm_create_vcpu_debugfs(struct kvm_vcpu * vcpu)1620 static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
1621 #endif
1622
1623 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
1624 /*
1625 * kvm_arch_{enable,disable}_virtualization() are called on one CPU, under
1626 * kvm_usage_lock, immediately after/before 0=>1 and 1=>0 transitions of
1627 * kvm_usage_count, i.e. at the beginning of the generic hardware enabling
1628 * sequence, and at the end of the generic hardware disabling sequence.
1629 */
1630 void kvm_arch_enable_virtualization(void);
1631 void kvm_arch_disable_virtualization(void);
1632 /*
1633 * kvm_arch_{enable,disable}_virtualization_cpu() are called on "every" CPU to
1634 * do the actual twiddling of hardware bits. The hooks are called on all
1635 * online CPUs when KVM enables/disabled virtualization, and on a single CPU
1636 * when that CPU is onlined/offlined (including for Resume/Suspend).
1637 */
1638 int kvm_arch_enable_virtualization_cpu(void);
1639 void kvm_arch_disable_virtualization_cpu(void);
1640 #endif
1641 bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu);
1642 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1643 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1644 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1645 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1646 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1647 bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
1648 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1649 void kvm_arch_create_vm_debugfs(struct kvm *kvm);
1650
1651 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1652 /*
1653 * All architectures that want to use vzalloc currently also
1654 * need their own kvm_arch_alloc_vm implementation.
1655 */
kvm_arch_alloc_vm(void)1656 static inline struct kvm *kvm_arch_alloc_vm(void)
1657 {
1658 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
1659 }
1660 #endif
1661
__kvm_arch_free_vm(struct kvm * kvm)1662 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1663 {
1664 kvfree(kvm);
1665 }
1666
1667 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1668 static inline void kvm_arch_free_vm(struct kvm *kvm)
1669 {
1670 __kvm_arch_free_vm(kvm);
1671 }
1672 #endif
1673
1674 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
kvm_arch_flush_remote_tlbs(struct kvm * kvm)1675 static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1676 {
1677 return -ENOTSUPP;
1678 }
1679 #else
1680 int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
1681 #endif
1682
1683 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
kvm_arch_flush_remote_tlbs_range(struct kvm * kvm,gfn_t gfn,u64 nr_pages)1684 static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1685 gfn_t gfn, u64 nr_pages)
1686 {
1687 return -EOPNOTSUPP;
1688 }
1689 #else
1690 int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1691 #endif
1692
1693 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1694 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1695 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1696 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1697 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1698 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1699 {
1700 }
1701
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1702 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1703 {
1704 }
1705
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1706 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1707 {
1708 return false;
1709 }
1710 #endif
1711
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1712 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1713 {
1714 #ifdef __KVM_HAVE_ARCH_WQP
1715 return vcpu->arch.waitp;
1716 #else
1717 return &vcpu->wait;
1718 #endif
1719 }
1720
1721 /*
1722 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1723 * true if the vCPU was blocking and was awakened, false otherwise.
1724 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1725 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1726 {
1727 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1728 }
1729
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1730 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1731 {
1732 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1733 }
1734
1735 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1736 /*
1737 * returns true if the virtual interrupt controller is initialized and
1738 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1739 * controller is dynamically instantiated and this is not always true.
1740 */
1741 bool kvm_arch_intc_initialized(struct kvm *kvm);
1742 #else
kvm_arch_intc_initialized(struct kvm * kvm)1743 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1744 {
1745 return true;
1746 }
1747 #endif
1748
1749 #ifdef CONFIG_GUEST_PERF_EVENTS
1750 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1751
1752 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1753 void kvm_unregister_perf_callbacks(void);
1754 #else
kvm_register_perf_callbacks(void * ign)1755 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1756 static inline void kvm_unregister_perf_callbacks(void) {}
1757 #endif /* CONFIG_GUEST_PERF_EVENTS */
1758
1759 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1760 void kvm_arch_destroy_vm(struct kvm *kvm);
1761
1762 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1763
1764 struct kvm_irq_ack_notifier {
1765 struct hlist_node link;
1766 unsigned gsi;
1767 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1768 };
1769
1770 int kvm_irq_map_gsi(struct kvm *kvm,
1771 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1772 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1773
1774 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1775 bool line_status);
1776 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1777 int irq_source_id, int level, bool line_status);
1778 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1779 struct kvm *kvm, int irq_source_id,
1780 int level, bool line_status);
1781 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1782 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1783 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1784 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1785 struct kvm_irq_ack_notifier *kian);
1786 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1787 struct kvm_irq_ack_notifier *kian);
1788 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1789
1790 /*
1791 * Returns a pointer to the memslot if it contains gfn.
1792 * Otherwise returns NULL.
1793 */
1794 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1795 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1796 {
1797 if (!slot)
1798 return NULL;
1799
1800 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1801 return slot;
1802 else
1803 return NULL;
1804 }
1805
1806 /*
1807 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1808 *
1809 * With "approx" set returns the memslot also when the address falls
1810 * in a hole. In that case one of the memslots bordering the hole is
1811 * returned.
1812 */
1813 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1814 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1815 {
1816 struct kvm_memory_slot *slot;
1817 struct rb_node *node;
1818 int idx = slots->node_idx;
1819
1820 slot = NULL;
1821 for (node = slots->gfn_tree.rb_node; node; ) {
1822 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1823 if (gfn >= slot->base_gfn) {
1824 if (gfn < slot->base_gfn + slot->npages)
1825 return slot;
1826 node = node->rb_right;
1827 } else
1828 node = node->rb_left;
1829 }
1830
1831 return approx ? slot : NULL;
1832 }
1833
1834 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1835 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1836 {
1837 struct kvm_memory_slot *slot;
1838
1839 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1840 slot = try_get_memslot(slot, gfn);
1841 if (slot)
1842 return slot;
1843
1844 slot = search_memslots(slots, gfn, approx);
1845 if (slot) {
1846 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1847 return slot;
1848 }
1849
1850 return NULL;
1851 }
1852
1853 /*
1854 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1855 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1856 * because that would bloat other code too much.
1857 */
1858 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1859 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1860 {
1861 return ____gfn_to_memslot(slots, gfn, false);
1862 }
1863
1864 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1865 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1866 {
1867 /*
1868 * The index was checked originally in search_memslots. To avoid
1869 * that a malicious guest builds a Spectre gadget out of e.g. page
1870 * table walks, do not let the processor speculate loads outside
1871 * the guest's registered memslots.
1872 */
1873 unsigned long offset = gfn - slot->base_gfn;
1874 offset = array_index_nospec(offset, slot->npages);
1875 return slot->userspace_addr + offset * PAGE_SIZE;
1876 }
1877
memslot_id(struct kvm * kvm,gfn_t gfn)1878 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1879 {
1880 return gfn_to_memslot(kvm, gfn)->id;
1881 }
1882
1883 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1884 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1885 {
1886 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1887
1888 return slot->base_gfn + gfn_offset;
1889 }
1890
gfn_to_gpa(gfn_t gfn)1891 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1892 {
1893 return (gpa_t)gfn << PAGE_SHIFT;
1894 }
1895
gpa_to_gfn(gpa_t gpa)1896 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1897 {
1898 return (gfn_t)(gpa >> PAGE_SHIFT);
1899 }
1900
pfn_to_hpa(kvm_pfn_t pfn)1901 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1902 {
1903 return (hpa_t)pfn << PAGE_SHIFT;
1904 }
1905
kvm_is_gpa_in_memslot(struct kvm * kvm,gpa_t gpa)1906 static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
1907 {
1908 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1909
1910 return !kvm_is_error_hva(hva);
1911 }
1912
kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache * gpc)1913 static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1914 {
1915 lockdep_assert_held(&gpc->lock);
1916
1917 if (!gpc->memslot)
1918 return;
1919
1920 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
1921 }
1922
1923 enum kvm_stat_kind {
1924 KVM_STAT_VM,
1925 KVM_STAT_VCPU,
1926 };
1927
1928 struct kvm_stat_data {
1929 struct kvm *kvm;
1930 const struct _kvm_stats_desc *desc;
1931 enum kvm_stat_kind kind;
1932 };
1933
1934 struct _kvm_stats_desc {
1935 struct kvm_stats_desc desc;
1936 char name[KVM_STATS_NAME_SIZE];
1937 };
1938
1939 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1940 .flags = type | unit | base | \
1941 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1942 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1943 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1944 .exponent = exp, \
1945 .size = sz, \
1946 .bucket_size = bsz
1947
1948 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1949 { \
1950 { \
1951 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1952 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1953 }, \
1954 .name = #stat, \
1955 }
1956 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1957 { \
1958 { \
1959 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1960 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1961 }, \
1962 .name = #stat, \
1963 }
1964 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1965 { \
1966 { \
1967 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1968 .offset = offsetof(struct kvm_vm_stat, stat) \
1969 }, \
1970 .name = #stat, \
1971 }
1972 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1973 { \
1974 { \
1975 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1976 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1977 }, \
1978 .name = #stat, \
1979 }
1980 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1981 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1982 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1983
1984 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1985 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1986 unit, base, exponent, 1, 0)
1987 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1988 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1989 unit, base, exponent, 1, 0)
1990 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1991 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1992 unit, base, exponent, 1, 0)
1993 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1994 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1995 unit, base, exponent, sz, bsz)
1996 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1997 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1998 unit, base, exponent, sz, 0)
1999
2000 /* Cumulative counter, read/write */
2001 #define STATS_DESC_COUNTER(SCOPE, name) \
2002 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
2003 KVM_STATS_BASE_POW10, 0)
2004 /* Instantaneous counter, read only */
2005 #define STATS_DESC_ICOUNTER(SCOPE, name) \
2006 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
2007 KVM_STATS_BASE_POW10, 0)
2008 /* Peak counter, read/write */
2009 #define STATS_DESC_PCOUNTER(SCOPE, name) \
2010 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
2011 KVM_STATS_BASE_POW10, 0)
2012
2013 /* Instantaneous boolean value, read only */
2014 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
2015 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
2016 KVM_STATS_BASE_POW10, 0)
2017 /* Peak (sticky) boolean value, read/write */
2018 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
2019 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
2020 KVM_STATS_BASE_POW10, 0)
2021
2022 /* Cumulative time in nanosecond */
2023 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
2024 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2025 KVM_STATS_BASE_POW10, -9)
2026 /* Linear histogram for time in nanosecond */
2027 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
2028 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2029 KVM_STATS_BASE_POW10, -9, sz, bsz)
2030 /* Logarithmic histogram for time in nanosecond */
2031 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
2032 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
2033 KVM_STATS_BASE_POW10, -9, sz)
2034
2035 #define KVM_GENERIC_VM_STATS() \
2036 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
2037 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
2038
2039 #define KVM_GENERIC_VCPU_STATS() \
2040 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
2041 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
2042 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
2043 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
2044 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
2045 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
2046 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
2047 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
2048 HALT_POLL_HIST_COUNT), \
2049 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
2050 HALT_POLL_HIST_COUNT), \
2051 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
2052 HALT_POLL_HIST_COUNT), \
2053 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
2054
2055 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
2056 const struct _kvm_stats_desc *desc,
2057 void *stats, size_t size_stats,
2058 char __user *user_buffer, size_t size, loff_t *offset);
2059
2060 /**
2061 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
2062 * statistics data.
2063 *
2064 * @data: start address of the stats data
2065 * @size: the number of bucket of the stats data
2066 * @value: the new value used to update the linear histogram's bucket
2067 * @bucket_size: the size (width) of a bucket
2068 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)2069 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
2070 u64 value, size_t bucket_size)
2071 {
2072 size_t index = div64_u64(value, bucket_size);
2073
2074 index = min(index, size - 1);
2075 ++data[index];
2076 }
2077
2078 /**
2079 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
2080 * statistics data.
2081 *
2082 * @data: start address of the stats data
2083 * @size: the number of bucket of the stats data
2084 * @value: the new value used to update the logarithmic histogram's bucket
2085 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)2086 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
2087 {
2088 size_t index = fls64(value);
2089
2090 index = min(index, size - 1);
2091 ++data[index];
2092 }
2093
2094 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2095 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2096 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2097 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2098
2099
2100 extern const struct kvm_stats_header kvm_vm_stats_header;
2101 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
2102 extern const struct kvm_stats_header kvm_vcpu_stats_header;
2103 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
2104
2105 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
mmu_invalidate_retry(struct kvm * kvm,unsigned long mmu_seq)2106 static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
2107 {
2108 if (unlikely(kvm->mmu_invalidate_in_progress))
2109 return 1;
2110 /*
2111 * Ensure the read of mmu_invalidate_in_progress happens before
2112 * the read of mmu_invalidate_seq. This interacts with the
2113 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2114 * that the caller either sees the old (non-zero) value of
2115 * mmu_invalidate_in_progress or the new (incremented) value of
2116 * mmu_invalidate_seq.
2117 *
2118 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2119 * than under kvm->mmu_lock, for scalability, so can't rely on
2120 * kvm->mmu_lock to keep things ordered.
2121 */
2122 smp_rmb();
2123 if (kvm->mmu_invalidate_seq != mmu_seq)
2124 return 1;
2125 return 0;
2126 }
2127
mmu_invalidate_retry_gfn(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2128 static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
2129 unsigned long mmu_seq,
2130 gfn_t gfn)
2131 {
2132 lockdep_assert_held(&kvm->mmu_lock);
2133 /*
2134 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2135 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2136 * that might be being invalidated. Note that it may include some false
2137 * positives, due to shortcuts when handing concurrent invalidations.
2138 */
2139 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2140 /*
2141 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2142 * but before updating the range is a KVM bug.
2143 */
2144 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2145 kvm->mmu_invalidate_range_end == INVALID_GPA))
2146 return 1;
2147
2148 if (gfn >= kvm->mmu_invalidate_range_start &&
2149 gfn < kvm->mmu_invalidate_range_end)
2150 return 1;
2151 }
2152
2153 if (kvm->mmu_invalidate_seq != mmu_seq)
2154 return 1;
2155 return 0;
2156 }
2157
2158 /*
2159 * This lockless version of the range-based retry check *must* be paired with a
2160 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2161 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2162 * get false negatives and false positives.
2163 */
mmu_invalidate_retry_gfn_unsafe(struct kvm * kvm,unsigned long mmu_seq,gfn_t gfn)2164 static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2165 unsigned long mmu_seq,
2166 gfn_t gfn)
2167 {
2168 /*
2169 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2170 * are always read from memory, e.g. so that checking for retry in a
2171 * loop won't result in an infinite retry loop. Don't force loads for
2172 * start+end, as the key to avoiding infinite retry loops is observing
2173 * the 1=>0 transition of in-progress, i.e. getting false negatives
2174 * due to stale start+end values is acceptable.
2175 */
2176 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2177 gfn >= kvm->mmu_invalidate_range_start &&
2178 gfn < kvm->mmu_invalidate_range_end)
2179 return true;
2180
2181 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2182 }
2183 #endif
2184
2185 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2186
2187 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
2188
2189 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
2190 int kvm_set_irq_routing(struct kvm *kvm,
2191 const struct kvm_irq_routing_entry *entries,
2192 unsigned nr,
2193 unsigned flags);
2194 int kvm_init_irq_routing(struct kvm *kvm);
2195 int kvm_set_routing_entry(struct kvm *kvm,
2196 struct kvm_kernel_irq_routing_entry *e,
2197 const struct kvm_irq_routing_entry *ue);
2198 void kvm_free_irq_routing(struct kvm *kvm);
2199
2200 #else
2201
kvm_free_irq_routing(struct kvm * kvm)2202 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2203
kvm_init_irq_routing(struct kvm * kvm)2204 static inline int kvm_init_irq_routing(struct kvm *kvm)
2205 {
2206 return 0;
2207 }
2208
2209 #endif
2210
2211 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2212
2213 void kvm_eventfd_init(struct kvm *kvm);
2214 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2215
2216 #ifdef CONFIG_HAVE_KVM_IRQCHIP
2217 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
2218 void kvm_irqfd_release(struct kvm *kvm);
2219 bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2220 unsigned int irqchip,
2221 unsigned int pin);
2222 void kvm_irq_routing_update(struct kvm *);
2223 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2224 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2225 {
2226 return -EINVAL;
2227 }
2228
kvm_irqfd_release(struct kvm * kvm)2229 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2230
kvm_notify_irqfd_resampler(struct kvm * kvm,unsigned int irqchip,unsigned int pin)2231 static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2232 unsigned int irqchip,
2233 unsigned int pin)
2234 {
2235 return false;
2236 }
2237 #endif /* CONFIG_HAVE_KVM_IRQCHIP */
2238
2239 void kvm_arch_irq_routing_update(struct kvm *kvm);
2240
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2241 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2242 {
2243 /*
2244 * Ensure the rest of the request is published to kvm_check_request's
2245 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2246 */
2247 smp_wmb();
2248 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2249 }
2250
kvm_make_request(int req,struct kvm_vcpu * vcpu)2251 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2252 {
2253 /*
2254 * Request that don't require vCPU action should never be logged in
2255 * vcpu->requests. The vCPU won't clear the request, so it will stay
2256 * logged indefinitely and prevent the vCPU from entering the guest.
2257 */
2258 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2259 (req & KVM_REQUEST_NO_ACTION));
2260
2261 __kvm_make_request(req, vcpu);
2262 }
2263
2264 #ifndef CONFIG_S390
kvm_make_request_and_kick(int req,struct kvm_vcpu * vcpu)2265 static inline void kvm_make_request_and_kick(int req, struct kvm_vcpu *vcpu)
2266 {
2267 kvm_make_request(req, vcpu);
2268 __kvm_vcpu_kick(vcpu, req & KVM_REQUEST_WAIT);
2269 }
2270 #endif
2271
kvm_request_pending(struct kvm_vcpu * vcpu)2272 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2273 {
2274 return READ_ONCE(vcpu->requests);
2275 }
2276
kvm_test_request(int req,struct kvm_vcpu * vcpu)2277 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2278 {
2279 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2280 }
2281
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2282 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2283 {
2284 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2285 }
2286
kvm_check_request(int req,struct kvm_vcpu * vcpu)2287 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2288 {
2289 if (kvm_test_request(req, vcpu)) {
2290 kvm_clear_request(req, vcpu);
2291
2292 /*
2293 * Ensure the rest of the request is visible to kvm_check_request's
2294 * caller. Paired with the smp_wmb in kvm_make_request.
2295 */
2296 smp_mb__after_atomic();
2297 return true;
2298 } else {
2299 return false;
2300 }
2301 }
2302
2303 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2304 extern bool enable_virt_at_load;
2305 extern bool kvm_rebooting;
2306 #endif
2307
2308 extern unsigned int halt_poll_ns;
2309 extern unsigned int halt_poll_ns_grow;
2310 extern unsigned int halt_poll_ns_grow_start;
2311 extern unsigned int halt_poll_ns_shrink;
2312
2313 struct kvm_device {
2314 const struct kvm_device_ops *ops;
2315 struct kvm *kvm;
2316 void *private;
2317 struct list_head vm_node;
2318 };
2319
2320 /* create, destroy, and name are mandatory */
2321 struct kvm_device_ops {
2322 const char *name;
2323
2324 /*
2325 * create is called holding kvm->lock and any operations not suitable
2326 * to do while holding the lock should be deferred to init (see
2327 * below).
2328 */
2329 int (*create)(struct kvm_device *dev, u32 type);
2330
2331 /*
2332 * init is called after create if create is successful and is called
2333 * outside of holding kvm->lock.
2334 */
2335 void (*init)(struct kvm_device *dev);
2336
2337 /*
2338 * Destroy is responsible for freeing dev.
2339 *
2340 * Destroy may be called before or after destructors are called
2341 * on emulated I/O regions, depending on whether a reference is
2342 * held by a vcpu or other kvm component that gets destroyed
2343 * after the emulated I/O.
2344 */
2345 void (*destroy)(struct kvm_device *dev);
2346
2347 /*
2348 * Release is an alternative method to free the device. It is
2349 * called when the device file descriptor is closed. Once
2350 * release is called, the destroy method will not be called
2351 * anymore as the device is removed from the device list of
2352 * the VM. kvm->lock is held.
2353 */
2354 void (*release)(struct kvm_device *dev);
2355
2356 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2357 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2358 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2359 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2360 unsigned long arg);
2361 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2362 };
2363
2364 struct kvm_device *kvm_device_from_filp(struct file *filp);
2365 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2366 void kvm_unregister_device_ops(u32 type);
2367
2368 extern struct kvm_device_ops kvm_mpic_ops;
2369 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2370 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2371
2372 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2373
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2374 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2375 {
2376 vcpu->spin_loop.in_spin_loop = val;
2377 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2378 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2379 {
2380 vcpu->spin_loop.dy_eligible = val;
2381 }
2382
2383 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2384
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2385 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2386 {
2387 }
2388
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2389 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2390 {
2391 }
2392 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2393
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2394 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2395 {
2396 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2397 !(memslot->flags & KVM_MEMSLOT_INVALID));
2398 }
2399
2400 struct kvm_vcpu *kvm_get_running_vcpu(void);
2401 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2402
2403 #if IS_ENABLED(CONFIG_HAVE_KVM_IRQ_BYPASS)
2404 struct kvm_kernel_irqfd;
2405
2406 bool kvm_arch_has_irq_bypass(void);
2407 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2408 struct irq_bypass_producer *);
2409 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2410 struct irq_bypass_producer *);
2411 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2412 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2413 void kvm_arch_update_irqfd_routing(struct kvm_kernel_irqfd *irqfd,
2414 struct kvm_kernel_irq_routing_entry *old,
2415 struct kvm_kernel_irq_routing_entry *new);
2416 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2417
2418 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2419 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2420 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2421 {
2422 return vcpu->valid_wakeup;
2423 }
2424
2425 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2426 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2427 {
2428 return true;
2429 }
2430 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2431
2432 #ifdef CONFIG_HAVE_KVM_NO_POLL
2433 /* Callback that tells if we must not poll */
2434 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2435 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2436 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2437 {
2438 return false;
2439 }
2440 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2441
2442 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2443
2444 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2445 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2446 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2447 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2448 {
2449 return 0;
2450 }
2451 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2452
2453 #ifdef CONFIG_VIRT_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2454 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2455 {
2456 vcpu->run->exit_reason = KVM_EXIT_INTR;
2457 vcpu->stat.signal_exits++;
2458 }
2459
kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu * vcpu)2460 static inline int kvm_xfer_to_guest_mode_handle_work(struct kvm_vcpu *vcpu)
2461 {
2462 int r = xfer_to_guest_mode_handle_work();
2463
2464 if (r) {
2465 WARN_ON_ONCE(r != -EINTR);
2466 kvm_handle_signal_exit(vcpu);
2467 }
2468 return r;
2469 }
2470 #endif /* CONFIG_VIRT_XFER_TO_GUEST_WORK */
2471
2472 /*
2473 * If more than one page is being (un)accounted, @virt must be the address of
2474 * the first page of a block of pages what were allocated together (i.e
2475 * accounted together).
2476 *
2477 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2478 * is thread-safe.
2479 */
kvm_account_pgtable_pages(void * virt,int nr)2480 static inline void kvm_account_pgtable_pages(void *virt, int nr)
2481 {
2482 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2483 }
2484
2485 /*
2486 * This defines how many reserved entries we want to keep before we
2487 * kick the vcpu to the userspace to avoid dirty ring full. This
2488 * value can be tuned to higher if e.g. PML is enabled on the host.
2489 */
2490 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2491
2492 /* Max number of entries allowed for each kvm dirty ring */
2493 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2494
kvm_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,gpa_t gpa,gpa_t size,bool is_write,bool is_exec,bool is_private)2495 static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
2496 gpa_t gpa, gpa_t size,
2497 bool is_write, bool is_exec,
2498 bool is_private)
2499 {
2500 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2501 vcpu->run->memory_fault.gpa = gpa;
2502 vcpu->run->memory_fault.size = size;
2503
2504 /* RWX flags are not (yet) defined or communicated to userspace. */
2505 vcpu->run->memory_fault.flags = 0;
2506 if (is_private)
2507 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
2508 }
2509
kvm_memslot_is_gmem_only(const struct kvm_memory_slot * slot)2510 static inline bool kvm_memslot_is_gmem_only(const struct kvm_memory_slot *slot)
2511 {
2512 if (!IS_ENABLED(CONFIG_KVM_GUEST_MEMFD))
2513 return false;
2514
2515 return slot->flags & KVM_MEMSLOT_GMEM_ONLY;
2516 }
2517
2518 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
kvm_get_memory_attributes(struct kvm * kvm,gfn_t gfn)2519 static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2520 {
2521 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2522 }
2523
2524 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2525 unsigned long mask, unsigned long attrs);
2526 bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2527 struct kvm_gfn_range *range);
2528 bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2529 struct kvm_gfn_range *range);
2530
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2531 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2532 {
2533 return kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2534 }
2535 #else
kvm_mem_is_private(struct kvm * kvm,gfn_t gfn)2536 static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2537 {
2538 return false;
2539 }
2540 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2541
2542 #ifdef CONFIG_KVM_GUEST_MEMFD
2543 int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2544 gfn_t gfn, kvm_pfn_t *pfn, struct page **page,
2545 int *max_order);
2546 #else
kvm_gmem_get_pfn(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn,kvm_pfn_t * pfn,struct page ** page,int * max_order)2547 static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2548 struct kvm_memory_slot *slot, gfn_t gfn,
2549 kvm_pfn_t *pfn, struct page **page,
2550 int *max_order)
2551 {
2552 KVM_BUG_ON(1, kvm);
2553 return -EIO;
2554 }
2555 #endif /* CONFIG_KVM_GUEST_MEMFD */
2556
2557 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE
2558 int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order);
2559 #endif
2560
2561 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_POPULATE
2562 /**
2563 * kvm_gmem_populate() - Populate/prepare a GPA range with guest data
2564 *
2565 * @kvm: KVM instance
2566 * @gfn: starting GFN to be populated
2567 * @src: userspace-provided buffer containing data to copy into GFN range
2568 * (passed to @post_populate, and incremented on each iteration
2569 * if not NULL)
2570 * @npages: number of pages to copy from userspace-buffer
2571 * @post_populate: callback to issue for each gmem page that backs the GPA
2572 * range
2573 * @opaque: opaque data to pass to @post_populate callback
2574 *
2575 * This is primarily intended for cases where a gmem-backed GPA range needs
2576 * to be initialized with userspace-provided data prior to being mapped into
2577 * the guest as a private page. This should be called with the slots->lock
2578 * held so that caller-enforced invariants regarding the expected memory
2579 * attributes of the GPA range do not race with KVM_SET_MEMORY_ATTRIBUTES.
2580 *
2581 * Returns the number of pages that were populated.
2582 */
2583 typedef int (*kvm_gmem_populate_cb)(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
2584 void __user *src, int order, void *opaque);
2585
2586 long kvm_gmem_populate(struct kvm *kvm, gfn_t gfn, void __user *src, long npages,
2587 kvm_gmem_populate_cb post_populate, void *opaque);
2588 #endif
2589
2590 #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE
2591 void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end);
2592 #endif
2593
2594 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
2595 long kvm_arch_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
2596 struct kvm_pre_fault_memory *range);
2597 #endif
2598
2599 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
2600 int kvm_enable_virtualization(void);
2601 void kvm_disable_virtualization(void);
2602 #else
kvm_enable_virtualization(void)2603 static inline int kvm_enable_virtualization(void) { return 0; }
kvm_disable_virtualization(void)2604 static inline void kvm_disable_virtualization(void) { }
2605 #endif
2606
2607 #endif
2608