1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2017 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap_btree.h"
17 #include "xfs_trace.h"
18 #include "xfs_rmap.h"
19 #include "xfs_alloc.h"
20 #include "xfs_bit.h"
21 #include <linux/fsmap.h>
22 #include "xfs_fsmap.h"
23 #include "xfs_refcount.h"
24 #include "xfs_refcount_btree.h"
25 #include "xfs_alloc_btree.h"
26 #include "xfs_rtbitmap.h"
27 #include "xfs_ag.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_rtrmap_btree.h"
30 #include "xfs_rtrefcount_btree.h"
31
32 /* Convert an xfs_fsmap to an fsmap. */
33 static void
xfs_fsmap_from_internal(struct fsmap * dest,struct xfs_fsmap * src)34 xfs_fsmap_from_internal(
35 struct fsmap *dest,
36 struct xfs_fsmap *src)
37 {
38 dest->fmr_device = src->fmr_device;
39 dest->fmr_flags = src->fmr_flags;
40 dest->fmr_physical = BBTOB(src->fmr_physical);
41 dest->fmr_owner = src->fmr_owner;
42 dest->fmr_offset = BBTOB(src->fmr_offset);
43 dest->fmr_length = BBTOB(src->fmr_length);
44 dest->fmr_reserved[0] = 0;
45 dest->fmr_reserved[1] = 0;
46 dest->fmr_reserved[2] = 0;
47 }
48
49 /* Convert an fsmap to an xfs_fsmap. */
50 static void
xfs_fsmap_to_internal(struct xfs_fsmap * dest,struct fsmap * src)51 xfs_fsmap_to_internal(
52 struct xfs_fsmap *dest,
53 struct fsmap *src)
54 {
55 dest->fmr_device = src->fmr_device;
56 dest->fmr_flags = src->fmr_flags;
57 dest->fmr_physical = BTOBBT(src->fmr_physical);
58 dest->fmr_owner = src->fmr_owner;
59 dest->fmr_offset = BTOBBT(src->fmr_offset);
60 dest->fmr_length = BTOBBT(src->fmr_length);
61 }
62
63 /* Convert an fsmap owner into an rmapbt owner. */
64 static int
xfs_fsmap_owner_to_rmap(struct xfs_rmap_irec * dest,const struct xfs_fsmap * src)65 xfs_fsmap_owner_to_rmap(
66 struct xfs_rmap_irec *dest,
67 const struct xfs_fsmap *src)
68 {
69 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
70 dest->rm_owner = src->fmr_owner;
71 return 0;
72 }
73
74 switch (src->fmr_owner) {
75 case 0: /* "lowest owner id possible" */
76 case -1ULL: /* "highest owner id possible" */
77 dest->rm_owner = src->fmr_owner;
78 break;
79 case XFS_FMR_OWN_FREE:
80 dest->rm_owner = XFS_RMAP_OWN_NULL;
81 break;
82 case XFS_FMR_OWN_UNKNOWN:
83 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
84 break;
85 case XFS_FMR_OWN_FS:
86 dest->rm_owner = XFS_RMAP_OWN_FS;
87 break;
88 case XFS_FMR_OWN_LOG:
89 dest->rm_owner = XFS_RMAP_OWN_LOG;
90 break;
91 case XFS_FMR_OWN_AG:
92 dest->rm_owner = XFS_RMAP_OWN_AG;
93 break;
94 case XFS_FMR_OWN_INOBT:
95 dest->rm_owner = XFS_RMAP_OWN_INOBT;
96 break;
97 case XFS_FMR_OWN_INODES:
98 dest->rm_owner = XFS_RMAP_OWN_INODES;
99 break;
100 case XFS_FMR_OWN_REFC:
101 dest->rm_owner = XFS_RMAP_OWN_REFC;
102 break;
103 case XFS_FMR_OWN_COW:
104 dest->rm_owner = XFS_RMAP_OWN_COW;
105 break;
106 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
107 /* fall through */
108 default:
109 return -EINVAL;
110 }
111 return 0;
112 }
113
114 /* Convert an rmapbt owner into an fsmap owner. */
115 static int
xfs_fsmap_owner_from_frec(struct xfs_fsmap * dest,const struct xfs_fsmap_irec * frec)116 xfs_fsmap_owner_from_frec(
117 struct xfs_fsmap *dest,
118 const struct xfs_fsmap_irec *frec)
119 {
120 dest->fmr_flags = 0;
121 if (!XFS_RMAP_NON_INODE_OWNER(frec->owner)) {
122 dest->fmr_owner = frec->owner;
123 return 0;
124 }
125 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
126
127 switch (frec->owner) {
128 case XFS_RMAP_OWN_FS:
129 dest->fmr_owner = XFS_FMR_OWN_FS;
130 break;
131 case XFS_RMAP_OWN_LOG:
132 dest->fmr_owner = XFS_FMR_OWN_LOG;
133 break;
134 case XFS_RMAP_OWN_AG:
135 dest->fmr_owner = XFS_FMR_OWN_AG;
136 break;
137 case XFS_RMAP_OWN_INOBT:
138 dest->fmr_owner = XFS_FMR_OWN_INOBT;
139 break;
140 case XFS_RMAP_OWN_INODES:
141 dest->fmr_owner = XFS_FMR_OWN_INODES;
142 break;
143 case XFS_RMAP_OWN_REFC:
144 dest->fmr_owner = XFS_FMR_OWN_REFC;
145 break;
146 case XFS_RMAP_OWN_COW:
147 dest->fmr_owner = XFS_FMR_OWN_COW;
148 break;
149 case XFS_RMAP_OWN_NULL: /* "free" */
150 dest->fmr_owner = XFS_FMR_OWN_FREE;
151 break;
152 default:
153 ASSERT(0);
154 return -EFSCORRUPTED;
155 }
156 return 0;
157 }
158
159 /* getfsmap query state */
160 struct xfs_getfsmap_info {
161 struct xfs_fsmap_head *head;
162 struct fsmap *fsmap_recs; /* mapping records */
163 struct xfs_buf *agf_bp; /* AGF, for refcount queries */
164 struct xfs_group *group; /* group info, if applicable */
165 xfs_daddr_t next_daddr; /* next daddr we expect */
166 /* daddr of low fsmap key when we're using the rtbitmap */
167 xfs_daddr_t low_daddr;
168 /* daddr of high fsmap key, or the last daddr on the device */
169 xfs_daddr_t end_daddr;
170 u64 missing_owner; /* owner of holes */
171 u32 dev; /* device id */
172 /*
173 * Low rmap key for the query. If low.rm_blockcount is nonzero, this
174 * is the second (or later) call to retrieve the recordset in pieces.
175 * xfs_getfsmap_rec_before_start will compare all records retrieved
176 * by the rmapbt query to filter out any records that start before
177 * the last record.
178 */
179 struct xfs_rmap_irec low;
180 struct xfs_rmap_irec high; /* high rmap key */
181 bool last; /* last extent? */
182 };
183
184 /* Associate a device with a getfsmap handler. */
185 struct xfs_getfsmap_dev {
186 u32 dev;
187 int (*fn)(struct xfs_trans *tp,
188 const struct xfs_fsmap *keys,
189 struct xfs_getfsmap_info *info);
190 sector_t nr_sectors;
191 };
192
193 /* Compare two getfsmap device handlers. */
194 static int
xfs_getfsmap_dev_compare(const void * p1,const void * p2)195 xfs_getfsmap_dev_compare(
196 const void *p1,
197 const void *p2)
198 {
199 const struct xfs_getfsmap_dev *d1 = p1;
200 const struct xfs_getfsmap_dev *d2 = p2;
201
202 return d1->dev - d2->dev;
203 }
204
205 /* Decide if this mapping is shared. */
206 STATIC int
xfs_getfsmap_is_shared(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_fsmap_irec * frec,bool * stat)207 xfs_getfsmap_is_shared(
208 struct xfs_trans *tp,
209 struct xfs_getfsmap_info *info,
210 const struct xfs_fsmap_irec *frec,
211 bool *stat)
212 {
213 struct xfs_mount *mp = tp->t_mountp;
214 struct xfs_btree_cur *cur;
215 xfs_agblock_t fbno;
216 xfs_extlen_t flen = 0;
217 int error;
218
219 *stat = false;
220 if (!xfs_has_reflink(mp) || !info->group)
221 return 0;
222
223 if (info->group->xg_type == XG_TYPE_RTG)
224 cur = xfs_rtrefcountbt_init_cursor(tp, to_rtg(info->group));
225 else
226 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp,
227 to_perag(info->group));
228
229 /* Are there any shared blocks here? */
230 error = xfs_refcount_find_shared(cur, frec->rec_key,
231 XFS_BB_TO_FSBT(mp, frec->len_daddr), &fbno, &flen,
232 false);
233
234 xfs_btree_del_cursor(cur, error);
235 if (error)
236 return error;
237
238 *stat = flen > 0;
239 return 0;
240 }
241
242 static inline void
xfs_getfsmap_format(struct xfs_mount * mp,struct xfs_fsmap * xfm,struct xfs_getfsmap_info * info)243 xfs_getfsmap_format(
244 struct xfs_mount *mp,
245 struct xfs_fsmap *xfm,
246 struct xfs_getfsmap_info *info)
247 {
248 struct fsmap *rec;
249
250 trace_xfs_getfsmap_mapping(mp, xfm);
251
252 rec = &info->fsmap_recs[info->head->fmh_entries++];
253 xfs_fsmap_from_internal(rec, xfm);
254 }
255
256 static inline bool
xfs_getfsmap_frec_before_start(struct xfs_getfsmap_info * info,const struct xfs_fsmap_irec * frec)257 xfs_getfsmap_frec_before_start(
258 struct xfs_getfsmap_info *info,
259 const struct xfs_fsmap_irec *frec)
260 {
261 if (info->low_daddr != XFS_BUF_DADDR_NULL)
262 return frec->start_daddr < info->low_daddr;
263 if (info->low.rm_blockcount) {
264 struct xfs_rmap_irec rec = {
265 .rm_startblock = frec->rec_key,
266 .rm_owner = frec->owner,
267 .rm_flags = frec->rm_flags,
268 };
269
270 return xfs_rmap_compare(&rec, &info->low) < 0;
271 }
272
273 return false;
274 }
275
276 /*
277 * Format a reverse mapping for getfsmap, having translated rm_startblock
278 * into the appropriate daddr units. Pass in a nonzero @len_daddr if the
279 * length could be larger than rm_blockcount in struct xfs_rmap_irec.
280 */
281 STATIC int
xfs_getfsmap_helper(struct xfs_trans * tp,struct xfs_getfsmap_info * info,const struct xfs_fsmap_irec * frec)282 xfs_getfsmap_helper(
283 struct xfs_trans *tp,
284 struct xfs_getfsmap_info *info,
285 const struct xfs_fsmap_irec *frec)
286 {
287 struct xfs_fsmap fmr;
288 struct xfs_mount *mp = tp->t_mountp;
289 bool shared;
290 int error = 0;
291
292 if (fatal_signal_pending(current))
293 return -EINTR;
294
295 /*
296 * Filter out records that start before our startpoint, if the
297 * caller requested that.
298 */
299 if (xfs_getfsmap_frec_before_start(info, frec))
300 goto out;
301
302 /* Are we just counting mappings? */
303 if (info->head->fmh_count == 0) {
304 if (info->head->fmh_entries == UINT_MAX)
305 return -ECANCELED;
306
307 if (frec->start_daddr > info->next_daddr)
308 info->head->fmh_entries++;
309
310 if (info->last)
311 return 0;
312
313 info->head->fmh_entries++;
314 goto out;
315 }
316
317 /*
318 * If the record starts past the last physical block we saw,
319 * then we've found a gap. Report the gap as being owned by
320 * whatever the caller specified is the missing owner.
321 */
322 if (frec->start_daddr > info->next_daddr) {
323 if (info->head->fmh_entries >= info->head->fmh_count)
324 return -ECANCELED;
325
326 fmr.fmr_device = info->dev;
327 fmr.fmr_physical = info->next_daddr;
328 fmr.fmr_owner = info->missing_owner;
329 fmr.fmr_offset = 0;
330 fmr.fmr_length = frec->start_daddr - info->next_daddr;
331 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
332 xfs_getfsmap_format(mp, &fmr, info);
333 }
334
335 if (info->last)
336 goto out;
337
338 /* Fill out the extent we found */
339 if (info->head->fmh_entries >= info->head->fmh_count)
340 return -ECANCELED;
341
342 trace_xfs_fsmap_mapping(mp, info->dev,
343 info->group ? info->group->xg_gno : NULLAGNUMBER,
344 frec);
345
346 fmr.fmr_device = info->dev;
347 fmr.fmr_physical = frec->start_daddr;
348 error = xfs_fsmap_owner_from_frec(&fmr, frec);
349 if (error)
350 return error;
351 fmr.fmr_offset = XFS_FSB_TO_BB(mp, frec->offset);
352 fmr.fmr_length = frec->len_daddr;
353 if (frec->rm_flags & XFS_RMAP_UNWRITTEN)
354 fmr.fmr_flags |= FMR_OF_PREALLOC;
355 if (frec->rm_flags & XFS_RMAP_ATTR_FORK)
356 fmr.fmr_flags |= FMR_OF_ATTR_FORK;
357 if (frec->rm_flags & XFS_RMAP_BMBT_BLOCK)
358 fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
359 if (fmr.fmr_flags == 0) {
360 error = xfs_getfsmap_is_shared(tp, info, frec, &shared);
361 if (error)
362 return error;
363 if (shared)
364 fmr.fmr_flags |= FMR_OF_SHARED;
365 }
366
367 xfs_getfsmap_format(mp, &fmr, info);
368 out:
369 info->next_daddr = max(info->next_daddr,
370 frec->start_daddr + frec->len_daddr);
371 return 0;
372 }
373
374 static inline int
xfs_getfsmap_group_helper(struct xfs_getfsmap_info * info,struct xfs_trans * tp,struct xfs_group * xg,xfs_agblock_t startblock,xfs_extlen_t blockcount,struct xfs_fsmap_irec * frec)375 xfs_getfsmap_group_helper(
376 struct xfs_getfsmap_info *info,
377 struct xfs_trans *tp,
378 struct xfs_group *xg,
379 xfs_agblock_t startblock,
380 xfs_extlen_t blockcount,
381 struct xfs_fsmap_irec *frec)
382 {
383 /*
384 * For an info->last query, we're looking for a gap between the last
385 * mapping emitted and the high key specified by userspace. If the
386 * user's query spans less than 1 fsblock, then info->high and
387 * info->low will have the same rm_startblock, which causes rec_daddr
388 * and next_daddr to be the same. Therefore, use the end_daddr that
389 * we calculated from userspace's high key to synthesize the record.
390 * Note that if the btree query found a mapping, there won't be a gap.
391 */
392 if (info->last)
393 frec->start_daddr = info->end_daddr + 1;
394 else
395 frec->start_daddr = xfs_gbno_to_daddr(xg, startblock);
396
397 frec->len_daddr = XFS_FSB_TO_BB(xg->xg_mount, blockcount);
398 return xfs_getfsmap_helper(tp, info, frec);
399 }
400
401 /* Transform a rmapbt irec into a fsmap */
402 STATIC int
xfs_getfsmap_rmapbt_helper(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)403 xfs_getfsmap_rmapbt_helper(
404 struct xfs_btree_cur *cur,
405 const struct xfs_rmap_irec *rec,
406 void *priv)
407 {
408 struct xfs_fsmap_irec frec = {
409 .owner = rec->rm_owner,
410 .offset = rec->rm_offset,
411 .rm_flags = rec->rm_flags,
412 .rec_key = rec->rm_startblock,
413 };
414 struct xfs_getfsmap_info *info = priv;
415
416 return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
417 rec->rm_startblock, rec->rm_blockcount, &frec);
418 }
419
420 /* Transform a bnobt irec into a fsmap */
421 STATIC int
xfs_getfsmap_datadev_bnobt_helper(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * rec,void * priv)422 xfs_getfsmap_datadev_bnobt_helper(
423 struct xfs_btree_cur *cur,
424 const struct xfs_alloc_rec_incore *rec,
425 void *priv)
426 {
427 struct xfs_fsmap_irec frec = {
428 .owner = XFS_RMAP_OWN_NULL, /* "free" */
429 .rec_key = rec->ar_startblock,
430 };
431 struct xfs_getfsmap_info *info = priv;
432
433 return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
434 rec->ar_startblock, rec->ar_blockcount, &frec);
435 }
436
437 /* Set rmap flags based on the getfsmap flags */
438 static void
xfs_getfsmap_set_irec_flags(struct xfs_rmap_irec * irec,const struct xfs_fsmap * fmr)439 xfs_getfsmap_set_irec_flags(
440 struct xfs_rmap_irec *irec,
441 const struct xfs_fsmap *fmr)
442 {
443 irec->rm_flags = 0;
444 if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
445 irec->rm_flags |= XFS_RMAP_ATTR_FORK;
446 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
447 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
448 if (fmr->fmr_flags & FMR_OF_PREALLOC)
449 irec->rm_flags |= XFS_RMAP_UNWRITTEN;
450 }
451
452 static inline bool
rmap_not_shareable(struct xfs_mount * mp,const struct xfs_rmap_irec * r)453 rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r)
454 {
455 if (!xfs_has_reflink(mp))
456 return true;
457 if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner))
458 return true;
459 if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK |
460 XFS_RMAP_UNWRITTEN))
461 return true;
462 return false;
463 }
464
465 /* Execute a getfsmap query against the regular data device. */
466 STATIC int
__xfs_getfsmap_datadev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info,int (* query_fn)(struct xfs_trans *,struct xfs_getfsmap_info *,struct xfs_btree_cur **,void *),void * priv)467 __xfs_getfsmap_datadev(
468 struct xfs_trans *tp,
469 const struct xfs_fsmap *keys,
470 struct xfs_getfsmap_info *info,
471 int (*query_fn)(struct xfs_trans *,
472 struct xfs_getfsmap_info *,
473 struct xfs_btree_cur **,
474 void *),
475 void *priv)
476 {
477 struct xfs_mount *mp = tp->t_mountp;
478 struct xfs_perag *pag = NULL;
479 struct xfs_btree_cur *bt_cur = NULL;
480 xfs_fsblock_t start_fsb;
481 xfs_fsblock_t end_fsb;
482 xfs_agnumber_t start_ag, end_ag;
483 uint64_t eofs;
484 int error = 0;
485
486 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
487 if (keys[0].fmr_physical >= eofs)
488 return 0;
489 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
490 end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
491
492 /*
493 * Convert the fsmap low/high keys to AG based keys. Initialize
494 * low to the fsmap low key and max out the high key to the end
495 * of the AG.
496 */
497 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
498 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
499 if (error)
500 return error;
501 info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length);
502 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
503
504 /* Adjust the low key if we are continuing from where we left off. */
505 if (info->low.rm_blockcount == 0) {
506 /* No previous record from which to continue */
507 } else if (rmap_not_shareable(mp, &info->low)) {
508 /* Last record seen was an unshareable extent */
509 info->low.rm_owner = 0;
510 info->low.rm_offset = 0;
511
512 start_fsb += info->low.rm_blockcount;
513 if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs)
514 return 0;
515 } else {
516 /* Last record seen was a shareable file data extent */
517 info->low.rm_offset += info->low.rm_blockcount;
518 }
519 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
520
521 info->high.rm_startblock = -1U;
522 info->high.rm_owner = ULLONG_MAX;
523 info->high.rm_offset = ULLONG_MAX;
524 info->high.rm_blockcount = 0;
525 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
526
527 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
528 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
529
530 while ((pag = xfs_perag_next_range(mp, pag, start_ag, end_ag))) {
531 /*
532 * Set the AG high key from the fsmap high key if this
533 * is the last AG that we're querying.
534 */
535 info->group = pag_group(pag);
536 if (pag_agno(pag) == end_ag) {
537 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
538 end_fsb);
539 info->high.rm_offset = XFS_BB_TO_FSBT(mp,
540 keys[1].fmr_offset);
541 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
542 if (error)
543 break;
544 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
545 }
546
547 if (bt_cur) {
548 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
549 bt_cur = NULL;
550 xfs_trans_brelse(tp, info->agf_bp);
551 info->agf_bp = NULL;
552 }
553
554 error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp);
555 if (error)
556 break;
557
558 trace_xfs_fsmap_low_group_key(mp, info->dev, pag_agno(pag),
559 &info->low);
560 trace_xfs_fsmap_high_group_key(mp, info->dev, pag_agno(pag),
561 &info->high);
562
563 error = query_fn(tp, info, &bt_cur, priv);
564 if (error)
565 break;
566
567 /*
568 * Set the AG low key to the start of the AG prior to
569 * moving on to the next AG.
570 */
571 if (pag_agno(pag) == start_ag)
572 memset(&info->low, 0, sizeof(info->low));
573
574 /*
575 * If this is the last AG, report any gap at the end of it
576 * before we drop the reference to the perag when the loop
577 * terminates.
578 */
579 if (pag_agno(pag) == end_ag) {
580 info->last = true;
581 error = query_fn(tp, info, &bt_cur, priv);
582 if (error)
583 break;
584 }
585 info->group = NULL;
586 }
587
588 if (bt_cur)
589 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
590 XFS_BTREE_NOERROR);
591 if (info->agf_bp) {
592 xfs_trans_brelse(tp, info->agf_bp);
593 info->agf_bp = NULL;
594 }
595 if (info->group) {
596 xfs_perag_rele(pag);
597 info->group = NULL;
598 } else if (pag) {
599 /* loop termination case */
600 xfs_perag_rele(pag);
601 }
602
603 return error;
604 }
605
606 /* Actually query the rmap btree. */
607 STATIC int
xfs_getfsmap_datadev_rmapbt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)608 xfs_getfsmap_datadev_rmapbt_query(
609 struct xfs_trans *tp,
610 struct xfs_getfsmap_info *info,
611 struct xfs_btree_cur **curpp,
612 void *priv)
613 {
614 /* Report any gap at the end of the last AG. */
615 if (info->last)
616 return xfs_getfsmap_rmapbt_helper(*curpp, &info->high, info);
617
618 /* Allocate cursor for this AG and query_range it. */
619 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
620 to_perag(info->group));
621 return xfs_rmap_query_range(*curpp, &info->low, &info->high,
622 xfs_getfsmap_rmapbt_helper, info);
623 }
624
625 /* Execute a getfsmap query against the regular data device rmapbt. */
626 STATIC int
xfs_getfsmap_datadev_rmapbt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)627 xfs_getfsmap_datadev_rmapbt(
628 struct xfs_trans *tp,
629 const struct xfs_fsmap *keys,
630 struct xfs_getfsmap_info *info)
631 {
632 info->missing_owner = XFS_FMR_OWN_FREE;
633 return __xfs_getfsmap_datadev(tp, keys, info,
634 xfs_getfsmap_datadev_rmapbt_query, NULL);
635 }
636
637 /* Actually query the bno btree. */
638 STATIC int
xfs_getfsmap_datadev_bnobt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp,void * priv)639 xfs_getfsmap_datadev_bnobt_query(
640 struct xfs_trans *tp,
641 struct xfs_getfsmap_info *info,
642 struct xfs_btree_cur **curpp,
643 void *priv)
644 {
645 struct xfs_alloc_rec_incore *key = priv;
646
647 /* Report any gap at the end of the last AG. */
648 if (info->last)
649 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
650
651 /* Allocate cursor for this AG and query_range it. */
652 *curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp,
653 to_perag(info->group));
654 key->ar_startblock = info->low.rm_startblock;
655 key[1].ar_startblock = info->high.rm_startblock;
656 return xfs_alloc_query_range(*curpp, key, &key[1],
657 xfs_getfsmap_datadev_bnobt_helper, info);
658 }
659
660 /* Execute a getfsmap query against the regular data device's bnobt. */
661 STATIC int
xfs_getfsmap_datadev_bnobt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)662 xfs_getfsmap_datadev_bnobt(
663 struct xfs_trans *tp,
664 const struct xfs_fsmap *keys,
665 struct xfs_getfsmap_info *info)
666 {
667 struct xfs_alloc_rec_incore akeys[2];
668
669 memset(akeys, 0, sizeof(akeys));
670 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
671 return __xfs_getfsmap_datadev(tp, keys, info,
672 xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
673 }
674
675 /* Execute a getfsmap query against the log device. */
676 STATIC int
xfs_getfsmap_logdev(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)677 xfs_getfsmap_logdev(
678 struct xfs_trans *tp,
679 const struct xfs_fsmap *keys,
680 struct xfs_getfsmap_info *info)
681 {
682 struct xfs_fsmap_irec frec = {
683 .start_daddr = 0,
684 .rec_key = 0,
685 .owner = XFS_RMAP_OWN_LOG,
686 };
687 struct xfs_mount *mp = tp->t_mountp;
688 xfs_fsblock_t start_fsb, end_fsb;
689 uint64_t eofs;
690
691 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
692 if (keys[0].fmr_physical >= eofs)
693 return 0;
694 start_fsb = XFS_BB_TO_FSBT(mp,
695 keys[0].fmr_physical + keys[0].fmr_length);
696 end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical));
697
698 /* Adjust the low key if we are continuing from where we left off. */
699 if (keys[0].fmr_length > 0)
700 info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb);
701
702 trace_xfs_fsmap_low_linear_key(mp, info->dev, start_fsb);
703 trace_xfs_fsmap_high_linear_key(mp, info->dev, end_fsb);
704
705 if (start_fsb > 0)
706 return 0;
707
708 /* Fabricate an rmap entry for the external log device. */
709 frec.len_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
710 return xfs_getfsmap_helper(tp, info, &frec);
711 }
712
713 #ifdef CONFIG_XFS_RT
714 /* Transform a rtbitmap "record" into a fsmap */
715 STATIC int
xfs_getfsmap_rtdev_rtbitmap_helper(struct xfs_rtgroup * rtg,struct xfs_trans * tp,const struct xfs_rtalloc_rec * rec,void * priv)716 xfs_getfsmap_rtdev_rtbitmap_helper(
717 struct xfs_rtgroup *rtg,
718 struct xfs_trans *tp,
719 const struct xfs_rtalloc_rec *rec,
720 void *priv)
721 {
722 struct xfs_fsmap_irec frec = {
723 .owner = XFS_RMAP_OWN_NULL, /* "free" */
724 };
725 struct xfs_mount *mp = rtg_mount(rtg);
726 struct xfs_getfsmap_info *info = priv;
727 xfs_rtblock_t start_rtb =
728 xfs_rtx_to_rtb(rtg, rec->ar_startext);
729 uint64_t rtbcount =
730 xfs_rtbxlen_to_blen(mp, rec->ar_extcount);
731
732 /*
733 * For an info->last query, we're looking for a gap between the last
734 * mapping emitted and the high key specified by userspace. If the
735 * user's query spans less than 1 fsblock, then info->high and
736 * info->low will have the same rm_startblock, which causes rec_daddr
737 * and next_daddr to be the same. Therefore, use the end_daddr that
738 * we calculated from userspace's high key to synthesize the record.
739 * Note that if the btree query found a mapping, there won't be a gap.
740 */
741 if (info->last)
742 frec.start_daddr = info->end_daddr + 1;
743 else
744 frec.start_daddr = xfs_rtb_to_daddr(mp, start_rtb);
745
746 frec.len_daddr = XFS_FSB_TO_BB(mp, rtbcount);
747 return xfs_getfsmap_helper(tp, info, &frec);
748 }
749
750 /* Execute a getfsmap query against the realtime device rtbitmap. */
751 STATIC int
xfs_getfsmap_rtdev_rtbitmap(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)752 xfs_getfsmap_rtdev_rtbitmap(
753 struct xfs_trans *tp,
754 const struct xfs_fsmap *keys,
755 struct xfs_getfsmap_info *info)
756 {
757 struct xfs_mount *mp = tp->t_mountp;
758 xfs_rtblock_t start_rtbno, end_rtbno;
759 xfs_rtxnum_t start_rtx, end_rtx;
760 xfs_rgnumber_t start_rgno, end_rgno;
761 struct xfs_rtgroup *rtg = NULL;
762 uint64_t eofs;
763 int error;
764
765 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
766 if (keys[0].fmr_physical >= eofs)
767 return 0;
768
769 info->missing_owner = XFS_FMR_OWN_UNKNOWN;
770
771 /* Adjust the low key if we are continuing from where we left off. */
772 start_rtbno = xfs_daddr_to_rtb(mp,
773 keys[0].fmr_physical + keys[0].fmr_length);
774 if (keys[0].fmr_length > 0) {
775 info->low_daddr = xfs_rtb_to_daddr(mp, start_rtbno);
776 if (info->low_daddr >= eofs)
777 return 0;
778 }
779 start_rtx = xfs_rtb_to_rtx(mp, start_rtbno);
780 start_rgno = xfs_rtb_to_rgno(mp, start_rtbno);
781
782 end_rtbno = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
783 end_rgno = xfs_rtb_to_rgno(mp, end_rtbno);
784
785 trace_xfs_fsmap_low_linear_key(mp, info->dev, start_rtbno);
786 trace_xfs_fsmap_high_linear_key(mp, info->dev, end_rtbno);
787
788 end_rtx = -1ULL;
789
790 while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rgno, end_rgno))) {
791 if (rtg_rgno(rtg) == end_rgno)
792 end_rtx = xfs_rtb_to_rtx(mp,
793 end_rtbno + mp->m_sb.sb_rextsize - 1);
794
795 info->group = rtg_group(rtg);
796 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
797 error = xfs_rtalloc_query_range(rtg, tp, start_rtx, end_rtx,
798 xfs_getfsmap_rtdev_rtbitmap_helper, info);
799 if (error)
800 break;
801
802 /*
803 * Report any gaps at the end of the rtbitmap by simulating a
804 * zero-length free extent starting at the rtx after the end
805 * of the query range.
806 */
807 if (rtg_rgno(rtg) == end_rgno) {
808 struct xfs_rtalloc_rec ahigh = {
809 .ar_startext = min(end_rtx + 1,
810 rtg->rtg_extents),
811 };
812
813 info->last = true;
814 error = xfs_getfsmap_rtdev_rtbitmap_helper(rtg, tp,
815 &ahigh, info);
816 if (error)
817 break;
818 }
819
820 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
821 info->group = NULL;
822 start_rtx = 0;
823 }
824
825 /* loop termination case */
826 if (rtg) {
827 if (info->group) {
828 xfs_rtgroup_unlock(rtg, XFS_RTGLOCK_BITMAP_SHARED);
829 info->group = NULL;
830 }
831 xfs_rtgroup_rele(rtg);
832 }
833
834 return error;
835 }
836
837 /* Transform a realtime rmapbt record into a fsmap */
838 STATIC int
xfs_getfsmap_rtdev_rmapbt_helper(struct xfs_btree_cur * cur,const struct xfs_rmap_irec * rec,void * priv)839 xfs_getfsmap_rtdev_rmapbt_helper(
840 struct xfs_btree_cur *cur,
841 const struct xfs_rmap_irec *rec,
842 void *priv)
843 {
844 struct xfs_fsmap_irec frec = {
845 .owner = rec->rm_owner,
846 .offset = rec->rm_offset,
847 .rm_flags = rec->rm_flags,
848 .rec_key = rec->rm_startblock,
849 };
850 struct xfs_getfsmap_info *info = priv;
851
852 return xfs_getfsmap_group_helper(info, cur->bc_tp, cur->bc_group,
853 rec->rm_startblock, rec->rm_blockcount, &frec);
854 }
855
856 /* Actually query the rtrmap btree. */
857 STATIC int
xfs_getfsmap_rtdev_rmapbt_query(struct xfs_trans * tp,struct xfs_getfsmap_info * info,struct xfs_btree_cur ** curpp)858 xfs_getfsmap_rtdev_rmapbt_query(
859 struct xfs_trans *tp,
860 struct xfs_getfsmap_info *info,
861 struct xfs_btree_cur **curpp)
862 {
863 struct xfs_rtgroup *rtg = to_rtg(info->group);
864
865 /* Query the rtrmapbt */
866 xfs_rtgroup_lock(rtg, XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT);
867 *curpp = xfs_rtrmapbt_init_cursor(tp, rtg);
868 return xfs_rmap_query_range(*curpp, &info->low, &info->high,
869 xfs_getfsmap_rtdev_rmapbt_helper, info);
870 }
871
872 /* Execute a getfsmap query against the realtime device rmapbt. */
873 STATIC int
xfs_getfsmap_rtdev_rmapbt(struct xfs_trans * tp,const struct xfs_fsmap * keys,struct xfs_getfsmap_info * info)874 xfs_getfsmap_rtdev_rmapbt(
875 struct xfs_trans *tp,
876 const struct xfs_fsmap *keys,
877 struct xfs_getfsmap_info *info)
878 {
879 struct xfs_fsmap key0 = *keys; /* struct copy */
880 struct xfs_mount *mp = tp->t_mountp;
881 struct xfs_rtgroup *rtg = NULL;
882 struct xfs_btree_cur *bt_cur = NULL;
883 xfs_daddr_t rtstart_daddr;
884 xfs_rtblock_t start_rtb;
885 xfs_rtblock_t end_rtb;
886 xfs_rgnumber_t start_rg, end_rg;
887 uint64_t eofs;
888 int error = 0;
889
890 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart + mp->m_sb.sb_rblocks);
891 if (key0.fmr_physical >= eofs)
892 return 0;
893
894 /*
895 * On zoned filesystems with an internal rt volume, the volume comes
896 * immediately after the end of the data volume. However, the
897 * xfs_rtblock_t address space is relative to the start of the data
898 * device, which means that the first @rtstart fsblocks do not actually
899 * point anywhere. If a fsmap query comes in with the low key starting
900 * below @rtstart, report it as "owned by filesystem".
901 */
902 rtstart_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rtstart);
903 if (xfs_has_zoned(mp) && key0.fmr_physical < rtstart_daddr) {
904 struct xfs_fsmap_irec frec = {
905 .owner = XFS_RMAP_OWN_FS,
906 .len_daddr = rtstart_daddr,
907 };
908
909 /*
910 * Adjust the start of the query range if we're picking up from
911 * a previous round, and only emit the record if we haven't
912 * already gone past.
913 */
914 key0.fmr_physical += key0.fmr_length;
915 if (key0.fmr_physical < rtstart_daddr) {
916 error = xfs_getfsmap_helper(tp, info, &frec);
917 if (error)
918 return error;
919
920 key0.fmr_physical = rtstart_daddr;
921 }
922
923 /* Zero the other fields to avoid further adjustments. */
924 key0.fmr_owner = 0;
925 key0.fmr_offset = 0;
926 key0.fmr_length = 0;
927 }
928
929 start_rtb = xfs_daddr_to_rtb(mp, key0.fmr_physical);
930 end_rtb = xfs_daddr_to_rtb(mp, min(eofs - 1, keys[1].fmr_physical));
931 info->missing_owner = XFS_FMR_OWN_FREE;
932
933 /*
934 * Convert the fsmap low/high keys to rtgroup based keys. Initialize
935 * low to the fsmap low key and max out the high key to the end
936 * of the rtgroup.
937 */
938 info->low.rm_offset = XFS_BB_TO_FSBT(mp, key0.fmr_offset);
939 error = xfs_fsmap_owner_to_rmap(&info->low, &key0);
940 if (error)
941 return error;
942 info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, key0.fmr_length);
943 xfs_getfsmap_set_irec_flags(&info->low, &key0);
944
945 /* Adjust the low key if we are continuing from where we left off. */
946 if (info->low.rm_blockcount == 0) {
947 /* No previous record from which to continue */
948 } else if (rmap_not_shareable(mp, &info->low)) {
949 /* Last record seen was an unshareable extent */
950 info->low.rm_owner = 0;
951 info->low.rm_offset = 0;
952
953 start_rtb += info->low.rm_blockcount;
954 if (xfs_rtb_to_daddr(mp, start_rtb) >= eofs)
955 return 0;
956 } else {
957 /* Last record seen was a shareable file data extent */
958 info->low.rm_offset += info->low.rm_blockcount;
959 }
960 info->low.rm_startblock = xfs_rtb_to_rgbno(mp, start_rtb);
961
962 info->high.rm_startblock = -1U;
963 info->high.rm_owner = ULLONG_MAX;
964 info->high.rm_offset = ULLONG_MAX;
965 info->high.rm_blockcount = 0;
966 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
967
968 start_rg = xfs_rtb_to_rgno(mp, start_rtb);
969 end_rg = xfs_rtb_to_rgno(mp, end_rtb);
970
971 while ((rtg = xfs_rtgroup_next_range(mp, rtg, start_rg, end_rg))) {
972 /*
973 * Set the rtgroup high key from the fsmap high key if this
974 * is the last rtgroup that we're querying.
975 */
976 info->group = rtg_group(rtg);
977 if (rtg_rgno(rtg) == end_rg) {
978 info->high.rm_startblock =
979 xfs_rtb_to_rgbno(mp, end_rtb);
980 info->high.rm_offset =
981 XFS_BB_TO_FSBT(mp, keys[1].fmr_offset);
982 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
983 if (error)
984 break;
985 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
986 }
987
988 if (bt_cur) {
989 xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group),
990 XFS_RTGLOCK_RMAP |
991 XFS_RTGLOCK_REFCOUNT);
992 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
993 bt_cur = NULL;
994 }
995
996 trace_xfs_fsmap_low_group_key(mp, info->dev, rtg_rgno(rtg),
997 &info->low);
998 trace_xfs_fsmap_high_group_key(mp, info->dev, rtg_rgno(rtg),
999 &info->high);
1000
1001 error = xfs_getfsmap_rtdev_rmapbt_query(tp, info, &bt_cur);
1002 if (error)
1003 break;
1004
1005 /*
1006 * Set the rtgroup low key to the start of the rtgroup prior to
1007 * moving on to the next rtgroup.
1008 */
1009 if (rtg_rgno(rtg) == start_rg)
1010 memset(&info->low, 0, sizeof(info->low));
1011
1012 /*
1013 * If this is the last rtgroup, report any gap at the end of it
1014 * before we drop the reference to the perag when the loop
1015 * terminates.
1016 */
1017 if (rtg_rgno(rtg) == end_rg) {
1018 info->last = true;
1019 error = xfs_getfsmap_rtdev_rmapbt_helper(bt_cur,
1020 &info->high, info);
1021 if (error)
1022 break;
1023 }
1024 info->group = NULL;
1025 }
1026
1027 if (bt_cur) {
1028 xfs_rtgroup_unlock(to_rtg(bt_cur->bc_group),
1029 XFS_RTGLOCK_RMAP | XFS_RTGLOCK_REFCOUNT);
1030 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
1031 XFS_BTREE_NOERROR);
1032 }
1033
1034 /* loop termination case */
1035 if (rtg) {
1036 info->group = NULL;
1037 xfs_rtgroup_rele(rtg);
1038 }
1039
1040 return error;
1041 }
1042 #endif /* CONFIG_XFS_RT */
1043
1044 static uint32_t
xfs_getfsmap_device(struct xfs_mount * mp,enum xfs_device dev)1045 xfs_getfsmap_device(
1046 struct xfs_mount *mp,
1047 enum xfs_device dev)
1048 {
1049 if (mp->m_sb.sb_rtstart)
1050 return dev;
1051
1052 switch (dev) {
1053 case XFS_DEV_DATA:
1054 return new_encode_dev(mp->m_ddev_targp->bt_dev);
1055 case XFS_DEV_LOG:
1056 return new_encode_dev(mp->m_logdev_targp->bt_dev);
1057 case XFS_DEV_RT:
1058 if (!mp->m_rtdev_targp)
1059 break;
1060 return new_encode_dev(mp->m_rtdev_targp->bt_dev);
1061 }
1062
1063 return -1;
1064 }
1065
1066 /* Do we recognize the device? */
1067 STATIC bool
xfs_getfsmap_is_valid_device(struct xfs_mount * mp,struct xfs_fsmap * fm)1068 xfs_getfsmap_is_valid_device(
1069 struct xfs_mount *mp,
1070 struct xfs_fsmap *fm)
1071 {
1072 return fm->fmr_device == 0 ||
1073 fm->fmr_device == UINT_MAX ||
1074 fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_DATA) ||
1075 fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_LOG) ||
1076 (mp->m_rtdev_targp &&
1077 fm->fmr_device == xfs_getfsmap_device(mp, XFS_DEV_RT));
1078 }
1079
1080 /* Ensure that the low key is less than the high key. */
1081 STATIC bool
xfs_getfsmap_check_keys(struct xfs_fsmap * low_key,struct xfs_fsmap * high_key)1082 xfs_getfsmap_check_keys(
1083 struct xfs_fsmap *low_key,
1084 struct xfs_fsmap *high_key)
1085 {
1086 if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
1087 if (low_key->fmr_offset)
1088 return false;
1089 }
1090 if (high_key->fmr_flags != -1U &&
1091 (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER |
1092 FMR_OF_EXTENT_MAP))) {
1093 if (high_key->fmr_offset && high_key->fmr_offset != -1ULL)
1094 return false;
1095 }
1096 if (high_key->fmr_length && high_key->fmr_length != -1ULL)
1097 return false;
1098
1099 if (low_key->fmr_device > high_key->fmr_device)
1100 return false;
1101 if (low_key->fmr_device < high_key->fmr_device)
1102 return true;
1103
1104 if (low_key->fmr_physical > high_key->fmr_physical)
1105 return false;
1106 if (low_key->fmr_physical < high_key->fmr_physical)
1107 return true;
1108
1109 if (low_key->fmr_owner > high_key->fmr_owner)
1110 return false;
1111 if (low_key->fmr_owner < high_key->fmr_owner)
1112 return true;
1113
1114 if (low_key->fmr_offset > high_key->fmr_offset)
1115 return false;
1116 if (low_key->fmr_offset < high_key->fmr_offset)
1117 return true;
1118
1119 return false;
1120 }
1121
1122 /*
1123 * There are only two devices if we didn't configure RT devices at build time.
1124 */
1125 #ifdef CONFIG_XFS_RT
1126 #define XFS_GETFSMAP_DEVS 3
1127 #else
1128 #define XFS_GETFSMAP_DEVS 2
1129 #endif /* CONFIG_XFS_RT */
1130
1131 /*
1132 * Get filesystem's extents as described in head, and format for output. Fills
1133 * in the supplied records array until there are no more reverse mappings to
1134 * return or head.fmh_entries == head.fmh_count. In the second case, this
1135 * function returns -ECANCELED to indicate that more records would have been
1136 * returned.
1137 *
1138 * Key to Confusion
1139 * ----------------
1140 * There are multiple levels of keys and counters at work here:
1141 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
1142 * these reflect fs-wide sector addrs.
1143 * dkeys -- fmh_keys used to query each device;
1144 * these are fmh_keys but w/ the low key
1145 * bumped up by fmr_length.
1146 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
1147 * is how we detect gaps in the fsmap
1148 records and report them.
1149 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
1150 * dkeys; used to query the metadata.
1151 */
1152 STATIC int
xfs_getfsmap(struct xfs_mount * mp,struct xfs_fsmap_head * head,struct fsmap * fsmap_recs)1153 xfs_getfsmap(
1154 struct xfs_mount *mp,
1155 struct xfs_fsmap_head *head,
1156 struct fsmap *fsmap_recs)
1157 {
1158 struct xfs_trans *tp = NULL;
1159 struct xfs_fsmap dkeys[2]; /* per-dev keys */
1160 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
1161 struct xfs_getfsmap_info info = {
1162 .fsmap_recs = fsmap_recs,
1163 .head = head,
1164 };
1165 bool use_rmap;
1166 int i;
1167 int error = 0;
1168
1169 if (head->fmh_iflags & ~FMH_IF_VALID)
1170 return -EINVAL;
1171 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
1172 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
1173 return -EINVAL;
1174 if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1]))
1175 return -EINVAL;
1176
1177 use_rmap = xfs_has_rmapbt(mp) &&
1178 has_capability_noaudit(current, CAP_SYS_ADMIN);
1179 head->fmh_entries = 0;
1180
1181 /* Set up our device handlers. */
1182 memset(handlers, 0, sizeof(handlers));
1183 handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1184 handlers[0].dev = xfs_getfsmap_device(mp, XFS_DEV_DATA);
1185 if (use_rmap)
1186 handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
1187 else
1188 handlers[0].fn = xfs_getfsmap_datadev_bnobt;
1189 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1190 handlers[1].nr_sectors = XFS_FSB_TO_BB(mp,
1191 mp->m_sb.sb_logblocks);
1192 handlers[1].dev = xfs_getfsmap_device(mp, XFS_DEV_LOG);
1193 handlers[1].fn = xfs_getfsmap_logdev;
1194 }
1195 #ifdef CONFIG_XFS_RT
1196 /*
1197 * For zoned file systems there is no rtbitmap, so only support fsmap
1198 * if the callers is privileged enough to use the full rmap version.
1199 */
1200 if (mp->m_rtdev_targp && (use_rmap || !xfs_has_zoned(mp))) {
1201 handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
1202 handlers[2].dev = xfs_getfsmap_device(mp, XFS_DEV_RT);
1203 if (use_rmap)
1204 handlers[2].fn = xfs_getfsmap_rtdev_rmapbt;
1205 else
1206 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
1207 }
1208 #endif /* CONFIG_XFS_RT */
1209
1210 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
1211 xfs_getfsmap_dev_compare);
1212
1213 /*
1214 * To continue where we left off, we allow userspace to use the
1215 * last mapping from a previous call as the low key of the next.
1216 * This is identified by a non-zero length in the low key. We
1217 * have to increment the low key in this scenario to ensure we
1218 * don't return the same mapping again, and instead return the
1219 * very next mapping.
1220 *
1221 * If the low key mapping refers to file data, the same physical
1222 * blocks could be mapped to several other files/offsets.
1223 * According to rmapbt record ordering, the minimal next
1224 * possible record for the block range is the next starting
1225 * offset in the same inode. Therefore, each fsmap backend bumps
1226 * the file offset to continue the search appropriately. For
1227 * all other low key mapping types (attr blocks, metadata), each
1228 * fsmap backend bumps the physical offset as there can be no
1229 * other mapping for the same physical block range.
1230 */
1231 dkeys[0] = head->fmh_keys[0];
1232 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
1233
1234 info.next_daddr = head->fmh_keys[0].fmr_physical +
1235 head->fmh_keys[0].fmr_length;
1236
1237 /* For each device we support... */
1238 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
1239 /* Is this device within the range the user asked for? */
1240 if (!handlers[i].fn)
1241 continue;
1242 if (head->fmh_keys[0].fmr_device > handlers[i].dev)
1243 continue;
1244 if (head->fmh_keys[1].fmr_device < handlers[i].dev)
1245 break;
1246
1247 /*
1248 * If this device number matches the high key, we have to pass
1249 * the high key to the handler to limit the query results, and
1250 * set the end_daddr so that we can synthesize records at the
1251 * end of the query range or device.
1252 */
1253 if (handlers[i].dev == head->fmh_keys[1].fmr_device) {
1254 dkeys[1] = head->fmh_keys[1];
1255 info.end_daddr = min(handlers[i].nr_sectors - 1,
1256 dkeys[1].fmr_physical);
1257 } else {
1258 info.end_daddr = handlers[i].nr_sectors - 1;
1259 }
1260
1261 /*
1262 * If the device number exceeds the low key, zero out the low
1263 * key so that we get everything from the beginning.
1264 */
1265 if (handlers[i].dev > head->fmh_keys[0].fmr_device)
1266 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
1267
1268 /*
1269 * Grab an empty transaction so that we can use its recursive
1270 * buffer locking abilities to detect cycles in the rmapbt
1271 * without deadlocking.
1272 */
1273 error = xfs_trans_alloc_empty(mp, &tp);
1274 if (error)
1275 break;
1276
1277 info.dev = handlers[i].dev;
1278 info.last = false;
1279 info.group = NULL;
1280 info.low_daddr = XFS_BUF_DADDR_NULL;
1281 info.low.rm_blockcount = 0;
1282 error = handlers[i].fn(tp, dkeys, &info);
1283 if (error)
1284 break;
1285 xfs_trans_cancel(tp);
1286 tp = NULL;
1287 info.next_daddr = 0;
1288 }
1289
1290 if (tp)
1291 xfs_trans_cancel(tp);
1292
1293 /*
1294 * For internal RT device we need to report different synthetic devices
1295 * for a single physical device, and thus can't report the actual dev_t.
1296 */
1297 if (!mp->m_sb.sb_rtstart)
1298 head->fmh_oflags = FMH_OF_DEV_T;
1299 return error;
1300 }
1301
1302 int
xfs_ioc_getfsmap(struct xfs_inode * ip,struct fsmap_head __user * arg)1303 xfs_ioc_getfsmap(
1304 struct xfs_inode *ip,
1305 struct fsmap_head __user *arg)
1306 {
1307 struct xfs_fsmap_head xhead = {0};
1308 struct fsmap_head head;
1309 struct fsmap *recs;
1310 unsigned int count;
1311 __u32 last_flags = 0;
1312 bool done = false;
1313 int error;
1314
1315 if (copy_from_user(&head, arg, sizeof(struct fsmap_head)))
1316 return -EFAULT;
1317 if (memchr_inv(head.fmh_reserved, 0, sizeof(head.fmh_reserved)) ||
1318 memchr_inv(head.fmh_keys[0].fmr_reserved, 0,
1319 sizeof(head.fmh_keys[0].fmr_reserved)) ||
1320 memchr_inv(head.fmh_keys[1].fmr_reserved, 0,
1321 sizeof(head.fmh_keys[1].fmr_reserved)))
1322 return -EINVAL;
1323
1324 /*
1325 * Use an internal memory buffer so that we don't have to copy fsmap
1326 * data to userspace while holding locks. Start by trying to allocate
1327 * up to 128k for the buffer, but fall back to a single page if needed.
1328 */
1329 count = min_t(unsigned int, head.fmh_count,
1330 131072 / sizeof(struct fsmap));
1331 recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1332 if (!recs) {
1333 count = min_t(unsigned int, head.fmh_count,
1334 PAGE_SIZE / sizeof(struct fsmap));
1335 recs = kvcalloc(count, sizeof(struct fsmap), GFP_KERNEL);
1336 if (!recs)
1337 return -ENOMEM;
1338 }
1339
1340 xhead.fmh_iflags = head.fmh_iflags;
1341 xfs_fsmap_to_internal(&xhead.fmh_keys[0], &head.fmh_keys[0]);
1342 xfs_fsmap_to_internal(&xhead.fmh_keys[1], &head.fmh_keys[1]);
1343
1344 trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1345 trace_xfs_getfsmap_high_key(ip->i_mount, &xhead.fmh_keys[1]);
1346
1347 head.fmh_entries = 0;
1348 do {
1349 struct fsmap __user *user_recs;
1350 struct fsmap *last_rec;
1351
1352 user_recs = &arg->fmh_recs[head.fmh_entries];
1353 xhead.fmh_entries = 0;
1354 xhead.fmh_count = min_t(unsigned int, count,
1355 head.fmh_count - head.fmh_entries);
1356
1357 /* Run query, record how many entries we got. */
1358 error = xfs_getfsmap(ip->i_mount, &xhead, recs);
1359 switch (error) {
1360 case 0:
1361 /*
1362 * There are no more records in the result set. Copy
1363 * whatever we got to userspace and break out.
1364 */
1365 done = true;
1366 break;
1367 case -ECANCELED:
1368 /*
1369 * The internal memory buffer is full. Copy whatever
1370 * records we got to userspace and go again if we have
1371 * not yet filled the userspace buffer.
1372 */
1373 error = 0;
1374 break;
1375 default:
1376 goto out_free;
1377 }
1378 head.fmh_entries += xhead.fmh_entries;
1379 head.fmh_oflags = xhead.fmh_oflags;
1380
1381 /*
1382 * If the caller wanted a record count or there aren't any
1383 * new records to return, we're done.
1384 */
1385 if (head.fmh_count == 0 || xhead.fmh_entries == 0)
1386 break;
1387
1388 /* Copy all the records we got out to userspace. */
1389 if (copy_to_user(user_recs, recs,
1390 xhead.fmh_entries * sizeof(struct fsmap))) {
1391 error = -EFAULT;
1392 goto out_free;
1393 }
1394
1395 /* Remember the last record flags we copied to userspace. */
1396 last_rec = &recs[xhead.fmh_entries - 1];
1397 last_flags = last_rec->fmr_flags;
1398
1399 /* Set up the low key for the next iteration. */
1400 xfs_fsmap_to_internal(&xhead.fmh_keys[0], last_rec);
1401 trace_xfs_getfsmap_low_key(ip->i_mount, &xhead.fmh_keys[0]);
1402 } while (!done && head.fmh_entries < head.fmh_count);
1403
1404 /*
1405 * If there are no more records in the query result set and we're not
1406 * in counting mode, mark the last record returned with the LAST flag.
1407 */
1408 if (done && head.fmh_count > 0 && head.fmh_entries > 0) {
1409 struct fsmap __user *user_rec;
1410
1411 last_flags |= FMR_OF_LAST;
1412 user_rec = &arg->fmh_recs[head.fmh_entries - 1];
1413
1414 if (copy_to_user(&user_rec->fmr_flags, &last_flags,
1415 sizeof(last_flags))) {
1416 error = -EFAULT;
1417 goto out_free;
1418 }
1419 }
1420
1421 /* copy back header */
1422 if (copy_to_user(arg, &head, sizeof(struct fsmap_head))) {
1423 error = -EFAULT;
1424 goto out_free;
1425 }
1426
1427 out_free:
1428 kvfree(recs);
1429 return error;
1430 }
1431