xref: /linux/drivers/usb/core/usb.c (revision f5e9d31e79c1ce8ba948ecac74d75e9c8d2f0c87)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/usb/core/usb.c
4  *
5  * (C) Copyright Linus Torvalds 1999
6  * (C) Copyright Johannes Erdfelt 1999-2001
7  * (C) Copyright Andreas Gal 1999
8  * (C) Copyright Gregory P. Smith 1999
9  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10  * (C) Copyright Randy Dunlap 2000
11  * (C) Copyright David Brownell 2000-2004
12  * (C) Copyright Yggdrasil Computing, Inc. 2000
13  *     (usb_device_id matching changes by Adam J. Richter)
14  * (C) Copyright Greg Kroah-Hartman 2002-2003
15  *
16  * Released under the GPLv2 only.
17  *
18  * NOTE! This is not actually a driver at all, rather this is
19  * just a collection of helper routines that implement the
20  * generic USB things that the real drivers can use..
21  *
22  * Think of this as a "USB library" rather than anything else,
23  * with no callbacks.  Callbacks are evil.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/of.h>
29 #include <linux/string.h>
30 #include <linux/bitops.h>
31 #include <linux/slab.h>
32 #include <linux/kmod.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/errno.h>
36 #include <linux/usb.h>
37 #include <linux/usb/hcd.h>
38 #include <linux/mutex.h>
39 #include <linux/workqueue.h>
40 #include <linux/debugfs.h>
41 #include <linux/usb/of.h>
42 
43 #include <asm/io.h>
44 #include <linux/scatterlist.h>
45 #include <linux/mm.h>
46 #include <linux/dma-mapping.h>
47 
48 #include "hub.h"
49 #include "trace.h"
50 
51 const char *usbcore_name = "usbcore";
52 
53 static bool nousb;	/* Disable USB when built into kernel image */
54 
55 module_param(nousb, bool, 0444);
56 
57 /*
58  * for external read access to <nousb>
59  */
usb_disabled(void)60 int usb_disabled(void)
61 {
62 	return nousb;
63 }
64 EXPORT_SYMBOL_GPL(usb_disabled);
65 
66 #ifdef	CONFIG_PM
67 /* Default delay value, in seconds */
68 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
69 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
70 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
71 
72 #else
73 #define usb_autosuspend_delay		0
74 #endif
75 
match_endpoint(struct usb_endpoint_descriptor * epd,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)76 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
77 		struct usb_endpoint_descriptor **bulk_in,
78 		struct usb_endpoint_descriptor **bulk_out,
79 		struct usb_endpoint_descriptor **int_in,
80 		struct usb_endpoint_descriptor **int_out)
81 {
82 	switch (usb_endpoint_type(epd)) {
83 	case USB_ENDPOINT_XFER_BULK:
84 		if (usb_endpoint_dir_in(epd)) {
85 			if (bulk_in && !*bulk_in) {
86 				*bulk_in = epd;
87 				break;
88 			}
89 		} else {
90 			if (bulk_out && !*bulk_out) {
91 				*bulk_out = epd;
92 				break;
93 			}
94 		}
95 
96 		return false;
97 	case USB_ENDPOINT_XFER_INT:
98 		if (usb_endpoint_dir_in(epd)) {
99 			if (int_in && !*int_in) {
100 				*int_in = epd;
101 				break;
102 			}
103 		} else {
104 			if (int_out && !*int_out) {
105 				*int_out = epd;
106 				break;
107 			}
108 		}
109 
110 		return false;
111 	default:
112 		return false;
113 	}
114 
115 	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
116 			(!int_in || *int_in) && (!int_out || *int_out);
117 }
118 
119 /**
120  * usb_find_common_endpoints() -- look up common endpoint descriptors
121  * @alt:	alternate setting to search
122  * @bulk_in:	pointer to descriptor pointer, or NULL
123  * @bulk_out:	pointer to descriptor pointer, or NULL
124  * @int_in:	pointer to descriptor pointer, or NULL
125  * @int_out:	pointer to descriptor pointer, or NULL
126  *
127  * Search the alternate setting's endpoint descriptors for the first bulk-in,
128  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
129  * provided pointers (unless they are NULL).
130  *
131  * If a requested endpoint is not found, the corresponding pointer is set to
132  * NULL.
133  *
134  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
135  */
usb_find_common_endpoints(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)136 int usb_find_common_endpoints(struct usb_host_interface *alt,
137 		struct usb_endpoint_descriptor **bulk_in,
138 		struct usb_endpoint_descriptor **bulk_out,
139 		struct usb_endpoint_descriptor **int_in,
140 		struct usb_endpoint_descriptor **int_out)
141 {
142 	struct usb_endpoint_descriptor *epd;
143 	int i;
144 
145 	if (bulk_in)
146 		*bulk_in = NULL;
147 	if (bulk_out)
148 		*bulk_out = NULL;
149 	if (int_in)
150 		*int_in = NULL;
151 	if (int_out)
152 		*int_out = NULL;
153 
154 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
155 		epd = &alt->endpoint[i].desc;
156 
157 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
158 			return 0;
159 	}
160 
161 	return -ENXIO;
162 }
163 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
164 
165 /**
166  * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
167  * @alt:	alternate setting to search
168  * @bulk_in:	pointer to descriptor pointer, or NULL
169  * @bulk_out:	pointer to descriptor pointer, or NULL
170  * @int_in:	pointer to descriptor pointer, or NULL
171  * @int_out:	pointer to descriptor pointer, or NULL
172  *
173  * Search the alternate setting's endpoint descriptors for the last bulk-in,
174  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
175  * provided pointers (unless they are NULL).
176  *
177  * If a requested endpoint is not found, the corresponding pointer is set to
178  * NULL.
179  *
180  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
181  */
usb_find_common_endpoints_reverse(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)182 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
183 		struct usb_endpoint_descriptor **bulk_in,
184 		struct usb_endpoint_descriptor **bulk_out,
185 		struct usb_endpoint_descriptor **int_in,
186 		struct usb_endpoint_descriptor **int_out)
187 {
188 	struct usb_endpoint_descriptor *epd;
189 	int i;
190 
191 	if (bulk_in)
192 		*bulk_in = NULL;
193 	if (bulk_out)
194 		*bulk_out = NULL;
195 	if (int_in)
196 		*int_in = NULL;
197 	if (int_out)
198 		*int_out = NULL;
199 
200 	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
201 		epd = &alt->endpoint[i].desc;
202 
203 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
204 			return 0;
205 	}
206 
207 	return -ENXIO;
208 }
209 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
210 
211 /**
212  * usb_find_endpoint() - Given an endpoint address, search for the endpoint's
213  * usb_host_endpoint structure in an interface's current altsetting.
214  * @intf: the interface whose current altsetting should be searched
215  * @ep_addr: the endpoint address (number and direction) to find
216  *
217  * Search the altsetting's list of endpoints for one with the specified address.
218  *
219  * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise.
220  */
usb_find_endpoint(const struct usb_interface * intf,unsigned int ep_addr)221 static const struct usb_host_endpoint *usb_find_endpoint(
222 		const struct usb_interface *intf, unsigned int ep_addr)
223 {
224 	int n;
225 	const struct usb_host_endpoint *ep;
226 
227 	n = intf->cur_altsetting->desc.bNumEndpoints;
228 	ep = intf->cur_altsetting->endpoint;
229 	for (; n > 0; (--n, ++ep)) {
230 		if (ep->desc.bEndpointAddress == ep_addr)
231 			return ep;
232 	}
233 	return NULL;
234 }
235 
236 /**
237  * usb_check_bulk_endpoints - Check whether an interface's current altsetting
238  * contains a set of bulk endpoints with the given addresses.
239  * @intf: the interface whose current altsetting should be searched
240  * @ep_addrs: 0-terminated array of the endpoint addresses (number and
241  * direction) to look for
242  *
243  * Search for endpoints with the specified addresses and check their types.
244  *
245  * Return: %true if all the endpoints are found and are bulk, %false otherwise.
246  */
usb_check_bulk_endpoints(const struct usb_interface * intf,const u8 * ep_addrs)247 bool usb_check_bulk_endpoints(
248 		const struct usb_interface *intf, const u8 *ep_addrs)
249 {
250 	const struct usb_host_endpoint *ep;
251 
252 	for (; *ep_addrs; ++ep_addrs) {
253 		ep = usb_find_endpoint(intf, *ep_addrs);
254 		if (!ep || !usb_endpoint_xfer_bulk(&ep->desc))
255 			return false;
256 	}
257 	return true;
258 }
259 EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints);
260 
261 /**
262  * usb_check_int_endpoints - Check whether an interface's current altsetting
263  * contains a set of interrupt endpoints with the given addresses.
264  * @intf: the interface whose current altsetting should be searched
265  * @ep_addrs: 0-terminated array of the endpoint addresses (number and
266  * direction) to look for
267  *
268  * Search for endpoints with the specified addresses and check their types.
269  *
270  * Return: %true if all the endpoints are found and are interrupt,
271  * %false otherwise.
272  */
usb_check_int_endpoints(const struct usb_interface * intf,const u8 * ep_addrs)273 bool usb_check_int_endpoints(
274 		const struct usb_interface *intf, const u8 *ep_addrs)
275 {
276 	const struct usb_host_endpoint *ep;
277 
278 	for (; *ep_addrs; ++ep_addrs) {
279 		ep = usb_find_endpoint(intf, *ep_addrs);
280 		if (!ep || !usb_endpoint_xfer_int(&ep->desc))
281 			return false;
282 	}
283 	return true;
284 }
285 EXPORT_SYMBOL_GPL(usb_check_int_endpoints);
286 
287 /**
288  * usb_find_alt_setting() - Given a configuration, find the alternate setting
289  * for the given interface.
290  * @config: the configuration to search (not necessarily the current config).
291  * @iface_num: interface number to search in
292  * @alt_num: alternate interface setting number to search for.
293  *
294  * Search the configuration's interface cache for the given alt setting.
295  *
296  * Return: The alternate setting, if found. %NULL otherwise.
297  */
usb_find_alt_setting(struct usb_host_config * config,unsigned int iface_num,unsigned int alt_num)298 struct usb_host_interface *usb_find_alt_setting(
299 		struct usb_host_config *config,
300 		unsigned int iface_num,
301 		unsigned int alt_num)
302 {
303 	struct usb_interface_cache *intf_cache = NULL;
304 	int i;
305 
306 	if (!config)
307 		return NULL;
308 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
309 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
310 				== iface_num) {
311 			intf_cache = config->intf_cache[i];
312 			break;
313 		}
314 	}
315 	if (!intf_cache)
316 		return NULL;
317 	for (i = 0; i < intf_cache->num_altsetting; i++)
318 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
319 			return &intf_cache->altsetting[i];
320 
321 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
322 			"config %u\n", alt_num, iface_num,
323 			config->desc.bConfigurationValue);
324 	return NULL;
325 }
326 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
327 
328 /**
329  * usb_ifnum_to_if - get the interface object with a given interface number
330  * @dev: the device whose current configuration is considered
331  * @ifnum: the desired interface
332  *
333  * This walks the device descriptor for the currently active configuration
334  * to find the interface object with the particular interface number.
335  *
336  * Note that configuration descriptors are not required to assign interface
337  * numbers sequentially, so that it would be incorrect to assume that
338  * the first interface in that descriptor corresponds to interface zero.
339  * This routine helps device drivers avoid such mistakes.
340  * However, you should make sure that you do the right thing with any
341  * alternate settings available for this interfaces.
342  *
343  * Don't call this function unless you are bound to one of the interfaces
344  * on this device or you have locked the device!
345  *
346  * Return: A pointer to the interface that has @ifnum as interface number,
347  * if found. %NULL otherwise.
348  */
usb_ifnum_to_if(const struct usb_device * dev,unsigned ifnum)349 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
350 				      unsigned ifnum)
351 {
352 	struct usb_host_config *config = dev->actconfig;
353 	int i;
354 
355 	if (!config)
356 		return NULL;
357 	for (i = 0; i < config->desc.bNumInterfaces; i++)
358 		if (config->interface[i]->altsetting[0]
359 				.desc.bInterfaceNumber == ifnum)
360 			return config->interface[i];
361 
362 	return NULL;
363 }
364 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
365 
366 /**
367  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
368  * @intf: the interface containing the altsetting in question
369  * @altnum: the desired alternate setting number
370  *
371  * This searches the altsetting array of the specified interface for
372  * an entry with the correct bAlternateSetting value.
373  *
374  * Note that altsettings need not be stored sequentially by number, so
375  * it would be incorrect to assume that the first altsetting entry in
376  * the array corresponds to altsetting zero.  This routine helps device
377  * drivers avoid such mistakes.
378  *
379  * Don't call this function unless you are bound to the intf interface
380  * or you have locked the device!
381  *
382  * Return: A pointer to the entry of the altsetting array of @intf that
383  * has @altnum as the alternate setting number. %NULL if not found.
384  */
usb_altnum_to_altsetting(const struct usb_interface * intf,unsigned int altnum)385 struct usb_host_interface *usb_altnum_to_altsetting(
386 					const struct usb_interface *intf,
387 					unsigned int altnum)
388 {
389 	int i;
390 
391 	for (i = 0; i < intf->num_altsetting; i++) {
392 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
393 			return &intf->altsetting[i];
394 	}
395 	return NULL;
396 }
397 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
398 
399 struct find_interface_arg {
400 	int minor;
401 	struct device_driver *drv;
402 };
403 
__find_interface(struct device * dev,const void * data)404 static int __find_interface(struct device *dev, const void *data)
405 {
406 	const struct find_interface_arg *arg = data;
407 	struct usb_interface *intf;
408 
409 	if (!is_usb_interface(dev))
410 		return 0;
411 
412 	if (dev->driver != arg->drv)
413 		return 0;
414 	intf = to_usb_interface(dev);
415 	return intf->minor == arg->minor;
416 }
417 
418 /**
419  * usb_find_interface - find usb_interface pointer for driver and device
420  * @drv: the driver whose current configuration is considered
421  * @minor: the minor number of the desired device
422  *
423  * This walks the bus device list and returns a pointer to the interface
424  * with the matching minor and driver.  Note, this only works for devices
425  * that share the USB major number.
426  *
427  * Return: A pointer to the interface with the matching major and @minor.
428  */
usb_find_interface(struct usb_driver * drv,int minor)429 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
430 {
431 	struct find_interface_arg argb;
432 	struct device *dev;
433 
434 	argb.minor = minor;
435 	argb.drv = &drv->driver;
436 
437 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
438 
439 	/* Drop reference count from bus_find_device */
440 	put_device(dev);
441 
442 	return dev ? to_usb_interface(dev) : NULL;
443 }
444 EXPORT_SYMBOL_GPL(usb_find_interface);
445 
446 struct each_dev_arg {
447 	void *data;
448 	int (*fn)(struct usb_device *, void *);
449 };
450 
__each_dev(struct device * dev,void * data)451 static int __each_dev(struct device *dev, void *data)
452 {
453 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
454 
455 	/* There are struct usb_interface on the same bus, filter them out */
456 	if (!is_usb_device(dev))
457 		return 0;
458 
459 	return arg->fn(to_usb_device(dev), arg->data);
460 }
461 
462 /**
463  * usb_for_each_dev - iterate over all USB devices in the system
464  * @data: data pointer that will be handed to the callback function
465  * @fn: callback function to be called for each USB device
466  *
467  * Iterate over all USB devices and call @fn for each, passing it @data. If it
468  * returns anything other than 0, we break the iteration prematurely and return
469  * that value.
470  */
usb_for_each_dev(void * data,int (* fn)(struct usb_device *,void *))471 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
472 {
473 	struct each_dev_arg arg = {data, fn};
474 
475 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
476 }
477 EXPORT_SYMBOL_GPL(usb_for_each_dev);
478 
479 /**
480  * usb_release_dev - free a usb device structure when all users of it are finished.
481  * @dev: device that's been disconnected
482  *
483  * Will be called only by the device core when all users of this usb device are
484  * done.
485  */
usb_release_dev(struct device * dev)486 static void usb_release_dev(struct device *dev)
487 {
488 	struct usb_device *udev;
489 	struct usb_hcd *hcd;
490 
491 	udev = to_usb_device(dev);
492 	hcd = bus_to_hcd(udev->bus);
493 
494 	usb_destroy_configuration(udev);
495 	usb_release_bos_descriptor(udev);
496 	of_node_put(dev->of_node);
497 	usb_put_hcd(hcd);
498 	kfree(udev->product);
499 	kfree(udev->manufacturer);
500 	kfree(udev->serial);
501 	kfree(udev);
502 }
503 
usb_dev_uevent(const struct device * dev,struct kobj_uevent_env * env)504 static int usb_dev_uevent(const struct device *dev, struct kobj_uevent_env *env)
505 {
506 	const struct usb_device *usb_dev;
507 
508 	usb_dev = to_usb_device(dev);
509 
510 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
511 		return -ENOMEM;
512 
513 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
514 		return -ENOMEM;
515 
516 	return 0;
517 }
518 
519 #ifdef	CONFIG_PM
520 
521 /* USB device Power-Management thunks.
522  * There's no need to distinguish here between quiescing a USB device
523  * and powering it down; the generic_suspend() routine takes care of
524  * it by skipping the usb_port_suspend() call for a quiesce.  And for
525  * USB interfaces there's no difference at all.
526  */
527 
usb_dev_prepare(struct device * dev)528 static int usb_dev_prepare(struct device *dev)
529 {
530 	return 0;		/* Implement eventually? */
531 }
532 
usb_dev_complete(struct device * dev)533 static void usb_dev_complete(struct device *dev)
534 {
535 	/* Currently used only for rebinding interfaces */
536 	usb_resume_complete(dev);
537 }
538 
usb_dev_suspend(struct device * dev)539 static int usb_dev_suspend(struct device *dev)
540 {
541 	return usb_suspend(dev, PMSG_SUSPEND);
542 }
543 
usb_dev_resume(struct device * dev)544 static int usb_dev_resume(struct device *dev)
545 {
546 	return usb_resume(dev, PMSG_RESUME);
547 }
548 
usb_dev_freeze(struct device * dev)549 static int usb_dev_freeze(struct device *dev)
550 {
551 	return usb_suspend(dev, PMSG_FREEZE);
552 }
553 
usb_dev_thaw(struct device * dev)554 static int usb_dev_thaw(struct device *dev)
555 {
556 	return usb_resume(dev, PMSG_THAW);
557 }
558 
usb_dev_poweroff(struct device * dev)559 static int usb_dev_poweroff(struct device *dev)
560 {
561 	return usb_suspend(dev, PMSG_HIBERNATE);
562 }
563 
usb_dev_restore(struct device * dev)564 static int usb_dev_restore(struct device *dev)
565 {
566 	return usb_resume(dev, PMSG_RESTORE);
567 }
568 
569 static const struct dev_pm_ops usb_device_pm_ops = {
570 	.prepare =	usb_dev_prepare,
571 	.complete =	usb_dev_complete,
572 	.suspend =	usb_dev_suspend,
573 	.resume =	usb_dev_resume,
574 	.freeze =	usb_dev_freeze,
575 	.thaw =		usb_dev_thaw,
576 	.poweroff =	usb_dev_poweroff,
577 	.restore =	usb_dev_restore,
578 	.runtime_suspend =	usb_runtime_suspend,
579 	.runtime_resume =	usb_runtime_resume,
580 	.runtime_idle =		usb_runtime_idle,
581 };
582 
583 #endif	/* CONFIG_PM */
584 
585 
usb_devnode(const struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)586 static char *usb_devnode(const struct device *dev,
587 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
588 {
589 	const struct usb_device *usb_dev;
590 
591 	usb_dev = to_usb_device(dev);
592 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
593 			 usb_dev->bus->busnum, usb_dev->devnum);
594 }
595 
596 const struct device_type usb_device_type = {
597 	.name =		"usb_device",
598 	.release =	usb_release_dev,
599 	.uevent =	usb_dev_uevent,
600 	.devnode = 	usb_devnode,
601 #ifdef CONFIG_PM
602 	.pm =		&usb_device_pm_ops,
603 #endif
604 };
605 
usb_dev_authorized(struct usb_device * dev,struct usb_hcd * hcd)606 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
607 {
608 	struct usb_hub *hub;
609 
610 	if (!dev->parent)
611 		return true; /* Root hub always ok [and always wired] */
612 
613 	switch (hcd->dev_policy) {
614 	case USB_DEVICE_AUTHORIZE_NONE:
615 	default:
616 		return false;
617 
618 	case USB_DEVICE_AUTHORIZE_ALL:
619 		return true;
620 
621 	case USB_DEVICE_AUTHORIZE_INTERNAL:
622 		hub = usb_hub_to_struct_hub(dev->parent);
623 		return hub->ports[dev->portnum - 1]->connect_type ==
624 				USB_PORT_CONNECT_TYPE_HARD_WIRED;
625 	}
626 }
627 
628 /**
629  * usb_alloc_dev - usb device constructor (usbcore-internal)
630  * @parent: hub to which device is connected; null to allocate a root hub
631  * @bus: bus used to access the device
632  * @port1: one-based index of port; ignored for root hubs
633  *
634  * Context: task context, might sleep.
635  *
636  * Only hub drivers (including virtual root hub drivers for host
637  * controllers) should ever call this.
638  *
639  * This call may not be used in a non-sleeping context.
640  *
641  * Return: On success, a pointer to the allocated usb device. %NULL on
642  * failure.
643  */
usb_alloc_dev(struct usb_device * parent,struct usb_bus * bus,unsigned port1)644 struct usb_device *usb_alloc_dev(struct usb_device *parent,
645 				 struct usb_bus *bus, unsigned port1)
646 {
647 	struct usb_device *dev;
648 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
649 	unsigned raw_port = port1;
650 
651 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
652 	if (!dev)
653 		return NULL;
654 
655 	if (!usb_get_hcd(usb_hcd)) {
656 		kfree(dev);
657 		return NULL;
658 	}
659 	/* Root hubs aren't true devices, so don't allocate HCD resources */
660 	if (usb_hcd->driver->alloc_dev && parent &&
661 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
662 		usb_put_hcd(bus_to_hcd(bus));
663 		kfree(dev);
664 		return NULL;
665 	}
666 
667 	device_initialize(&dev->dev);
668 	dev->dev.bus = &usb_bus_type;
669 	dev->dev.type = &usb_device_type;
670 	dev->dev.groups = usb_device_groups;
671 	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
672 	dev->state = USB_STATE_ATTACHED;
673 	dev->lpm_disable_count = 1;
674 	dev->offload_usage = 0;
675 	atomic_set(&dev->urbnum, 0);
676 
677 	INIT_LIST_HEAD(&dev->ep0.urb_list);
678 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
679 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
680 	/* ep0 maxpacket comes later, from device descriptor */
681 	usb_enable_endpoint(dev, &dev->ep0, false);
682 	dev->can_submit = 1;
683 
684 	/* Save readable and stable topology id, distinguishing devices
685 	 * by location for diagnostics, tools, driver model, etc.  The
686 	 * string is a path along hub ports, from the root.  Each device's
687 	 * dev->devpath will be stable until USB is re-cabled, and hubs
688 	 * are often labeled with these port numbers.  The name isn't
689 	 * as stable:  bus->busnum changes easily from modprobe order,
690 	 * cardbus or pci hotplugging, and so on.
691 	 */
692 	if (unlikely(!parent)) {
693 		dev->devpath[0] = '0';
694 		dev->route = 0;
695 
696 		dev->dev.parent = bus->controller;
697 		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
698 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
699 	} else {
700 		int n;
701 
702 		/* match any labeling on the hubs; it's one-based */
703 		if (parent->devpath[0] == '0') {
704 			n = snprintf(dev->devpath, sizeof(dev->devpath), "%d", port1);
705 			/* Root ports are not counted in route string */
706 			dev->route = 0;
707 		} else {
708 			n = snprintf(dev->devpath, sizeof(dev->devpath), "%s.%d",
709 				     parent->devpath, port1);
710 			/* Route string assumes hubs have less than 16 ports */
711 			if (port1 < 15)
712 				dev->route = parent->route +
713 					(port1 << ((parent->level - 1)*4));
714 			else
715 				dev->route = parent->route +
716 					(15 << ((parent->level - 1)*4));
717 		}
718 		if (n >= sizeof(dev->devpath)) {
719 			usb_put_hcd(bus_to_hcd(bus));
720 			usb_put_dev(dev);
721 			return NULL;
722 		}
723 
724 		dev->dev.parent = &parent->dev;
725 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
726 
727 		if (!parent->parent) {
728 			/* device under root hub's port */
729 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
730 				port1);
731 		}
732 		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
733 
734 		/* hub driver sets up TT records */
735 	}
736 
737 	dev->portnum = port1;
738 	dev->bus = bus;
739 	dev->parent = parent;
740 	INIT_LIST_HEAD(&dev->filelist);
741 
742 #ifdef	CONFIG_PM
743 	pm_runtime_set_autosuspend_delay(&dev->dev,
744 			usb_autosuspend_delay * 1000);
745 	dev->connect_time = jiffies;
746 	dev->active_duration = -jiffies;
747 #endif
748 
749 	dev->authorized = usb_dev_authorized(dev, usb_hcd);
750 	trace_usb_alloc_dev(dev);
751 	return dev;
752 }
753 EXPORT_SYMBOL_GPL(usb_alloc_dev);
754 
755 /**
756  * usb_get_dev - increments the reference count of the usb device structure
757  * @dev: the device being referenced
758  *
759  * Each live reference to a device should be refcounted.
760  *
761  * Drivers for USB interfaces should normally record such references in
762  * their probe() methods, when they bind to an interface, and release
763  * them by calling usb_put_dev(), in their disconnect() methods.
764  * However, if a driver does not access the usb_device structure after
765  * its disconnect() method returns then refcounting is not necessary,
766  * because the USB core guarantees that a usb_device will not be
767  * deallocated until after all of its interface drivers have been unbound.
768  *
769  * Return: A pointer to the device with the incremented reference counter.
770  */
usb_get_dev(struct usb_device * dev)771 struct usb_device *usb_get_dev(struct usb_device *dev)
772 {
773 	if (dev)
774 		get_device(&dev->dev);
775 	return dev;
776 }
777 EXPORT_SYMBOL_GPL(usb_get_dev);
778 
779 /**
780  * usb_put_dev - release a use of the usb device structure
781  * @dev: device that's been disconnected
782  *
783  * Must be called when a user of a device is finished with it.  When the last
784  * user of the device calls this function, the memory of the device is freed.
785  */
usb_put_dev(struct usb_device * dev)786 void usb_put_dev(struct usb_device *dev)
787 {
788 	if (dev)
789 		put_device(&dev->dev);
790 }
791 EXPORT_SYMBOL_GPL(usb_put_dev);
792 
793 /**
794  * usb_get_intf - increments the reference count of the usb interface structure
795  * @intf: the interface being referenced
796  *
797  * Each live reference to a interface must be refcounted.
798  *
799  * Drivers for USB interfaces should normally record such references in
800  * their probe() methods, when they bind to an interface, and release
801  * them by calling usb_put_intf(), in their disconnect() methods.
802  * However, if a driver does not access the usb_interface structure after
803  * its disconnect() method returns then refcounting is not necessary,
804  * because the USB core guarantees that a usb_interface will not be
805  * deallocated until after its driver has been unbound.
806  *
807  * Return: A pointer to the interface with the incremented reference counter.
808  */
usb_get_intf(struct usb_interface * intf)809 struct usb_interface *usb_get_intf(struct usb_interface *intf)
810 {
811 	if (intf)
812 		get_device(&intf->dev);
813 	return intf;
814 }
815 EXPORT_SYMBOL_GPL(usb_get_intf);
816 
817 /**
818  * usb_put_intf - release a use of the usb interface structure
819  * @intf: interface that's been decremented
820  *
821  * Must be called when a user of an interface is finished with it.  When the
822  * last user of the interface calls this function, the memory of the interface
823  * is freed.
824  */
usb_put_intf(struct usb_interface * intf)825 void usb_put_intf(struct usb_interface *intf)
826 {
827 	if (intf)
828 		put_device(&intf->dev);
829 }
830 EXPORT_SYMBOL_GPL(usb_put_intf);
831 
832 /**
833  * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
834  * @intf: the usb interface
835  *
836  * While a USB device cannot perform DMA operations by itself, many USB
837  * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
838  * for the given USB interface, if any. The returned device structure must be
839  * released with put_device().
840  *
841  * See also usb_get_dma_device().
842  *
843  * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
844  *          exists.
845  */
usb_intf_get_dma_device(struct usb_interface * intf)846 struct device *usb_intf_get_dma_device(struct usb_interface *intf)
847 {
848 	struct usb_device *udev = interface_to_usbdev(intf);
849 	struct device *dmadev;
850 
851 	if (!udev->bus)
852 		return NULL;
853 
854 	dmadev = get_device(udev->bus->sysdev);
855 	if (!dmadev || !dmadev->dma_mask) {
856 		put_device(dmadev);
857 		return NULL;
858 	}
859 
860 	return dmadev;
861 }
862 EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
863 
864 /*			USB device locking
865  *
866  * USB devices and interfaces are locked using the semaphore in their
867  * embedded struct device.  The hub driver guarantees that whenever a
868  * device is connected or disconnected, drivers are called with the
869  * USB device locked as well as their particular interface.
870  *
871  * Complications arise when several devices are to be locked at the same
872  * time.  Only hub-aware drivers that are part of usbcore ever have to
873  * do this; nobody else needs to worry about it.  The rule for locking
874  * is simple:
875  *
876  *	When locking both a device and its parent, always lock the
877  *	parent first.
878  */
879 
880 /**
881  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
882  * @udev: device that's being locked
883  * @iface: interface bound to the driver making the request (optional)
884  *
885  * Attempts to acquire the device lock, but fails if the device is
886  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
887  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
888  * lock, the routine polls repeatedly.  This is to prevent deadlock with
889  * disconnect; in some drivers (such as usb-storage) the disconnect()
890  * or suspend() method will block waiting for a device reset to complete.
891  *
892  * Return: A negative error code for failure, otherwise 0.
893  */
usb_lock_device_for_reset(struct usb_device * udev,const struct usb_interface * iface)894 int usb_lock_device_for_reset(struct usb_device *udev,
895 			      const struct usb_interface *iface)
896 {
897 	unsigned long jiffies_expire = jiffies + HZ;
898 
899 	if (udev->state == USB_STATE_NOTATTACHED)
900 		return -ENODEV;
901 	if (udev->state == USB_STATE_SUSPENDED)
902 		return -EHOSTUNREACH;
903 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
904 			iface->condition == USB_INTERFACE_UNBOUND))
905 		return -EINTR;
906 
907 	while (!usb_trylock_device(udev)) {
908 
909 		/* If we can't acquire the lock after waiting one second,
910 		 * we're probably deadlocked */
911 		if (time_after(jiffies, jiffies_expire))
912 			return -EBUSY;
913 
914 		msleep(15);
915 		if (udev->state == USB_STATE_NOTATTACHED)
916 			return -ENODEV;
917 		if (udev->state == USB_STATE_SUSPENDED)
918 			return -EHOSTUNREACH;
919 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
920 				iface->condition == USB_INTERFACE_UNBOUND))
921 			return -EINTR;
922 	}
923 	return 0;
924 }
925 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
926 
927 /**
928  * usb_get_current_frame_number - return current bus frame number
929  * @dev: the device whose bus is being queried
930  *
931  * Return: The current frame number for the USB host controller used
932  * with the given USB device. This can be used when scheduling
933  * isochronous requests.
934  *
935  * Note: Different kinds of host controller have different "scheduling
936  * horizons". While one type might support scheduling only 32 frames
937  * into the future, others could support scheduling up to 1024 frames
938  * into the future.
939  *
940  */
usb_get_current_frame_number(struct usb_device * dev)941 int usb_get_current_frame_number(struct usb_device *dev)
942 {
943 	return usb_hcd_get_frame_number(dev);
944 }
945 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
946 
947 /*-------------------------------------------------------------------*/
948 /*
949  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
950  * extra field of the interface and endpoint descriptor structs.
951  */
952 
__usb_get_extra_descriptor(char * buffer,unsigned size,unsigned char type,void ** ptr,size_t minsize)953 int __usb_get_extra_descriptor(char *buffer, unsigned size,
954 			       unsigned char type, void **ptr, size_t minsize)
955 {
956 	struct usb_descriptor_header *header;
957 
958 	while (size >= sizeof(struct usb_descriptor_header)) {
959 		header = (struct usb_descriptor_header *)buffer;
960 
961 		if (header->bLength < 2 || header->bLength > size) {
962 			printk(KERN_ERR
963 				"%s: bogus descriptor, type %d length %d\n",
964 				usbcore_name,
965 				header->bDescriptorType,
966 				header->bLength);
967 			return -1;
968 		}
969 
970 		if (header->bDescriptorType == type && header->bLength >= minsize) {
971 			*ptr = header;
972 			return 0;
973 		}
974 
975 		buffer += header->bLength;
976 		size -= header->bLength;
977 	}
978 	return -1;
979 }
980 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
981 
982 /**
983  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
984  * @dev: device the buffer will be used with
985  * @size: requested buffer size
986  * @mem_flags: affect whether allocation may block
987  * @dma: used to return DMA address of buffer
988  *
989  * Return: Either null (indicating no buffer could be allocated), or the
990  * cpu-space pointer to a buffer that may be used to perform DMA to the
991  * specified device.  Such cpu-space buffers are returned along with the DMA
992  * address (through the pointer provided).
993  *
994  * Note:
995  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
996  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
997  * hardware during URB completion/resubmit.  The implementation varies between
998  * platforms, depending on details of how DMA will work to this device.
999  * Using these buffers also eliminates cacheline sharing problems on
1000  * architectures where CPU caches are not DMA-coherent.  On systems without
1001  * bus-snooping caches, these buffers are uncached.
1002  *
1003  * When the buffer is no longer used, free it with usb_free_coherent().
1004  */
usb_alloc_coherent(struct usb_device * dev,size_t size,gfp_t mem_flags,dma_addr_t * dma)1005 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
1006 			 dma_addr_t *dma)
1007 {
1008 	if (!dev || !dev->bus)
1009 		return NULL;
1010 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
1011 }
1012 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
1013 
1014 /**
1015  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
1016  * @dev: device the buffer was used with
1017  * @size: requested buffer size
1018  * @addr: CPU address of buffer
1019  * @dma: DMA address of buffer
1020  *
1021  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1022  * been allocated using usb_alloc_coherent(), and the parameters must match
1023  * those provided in that allocation request.
1024  */
usb_free_coherent(struct usb_device * dev,size_t size,void * addr,dma_addr_t dma)1025 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
1026 		       dma_addr_t dma)
1027 {
1028 	if (!dev || !dev->bus)
1029 		return;
1030 	if (!addr)
1031 		return;
1032 	hcd_buffer_free(dev->bus, size, addr, dma);
1033 }
1034 EXPORT_SYMBOL_GPL(usb_free_coherent);
1035 
1036 /**
1037  * usb_alloc_noncoherent - allocate dma-noncoherent buffer for URB_NO_xxx_DMA_MAP
1038  * @dev: device the buffer will be used with
1039  * @size: requested buffer size
1040  * @mem_flags: affect whether allocation may block
1041  * @dma: used to return DMA address of buffer
1042  * @dir: DMA transfer direction
1043  * @table: used to return sg_table of allocated memory
1044  *
1045  * To explicit manage the memory ownership for the kernel vs the device by
1046  * USB core, the user needs save sg_table to urb->sgt. Then USB core will
1047  * do DMA sync for CPU and device properly.
1048  *
1049  * When the buffer is no longer used, free it with usb_free_noncoherent().
1050  *
1051  * Return: Either null (indicating no buffer could be allocated), or the
1052  * cpu-space pointer to a buffer that may be used to perform DMA to the
1053  * specified device.  Such cpu-space buffers are returned along with the DMA
1054  * address (through the pointer provided).
1055  */
usb_alloc_noncoherent(struct usb_device * dev,size_t size,gfp_t mem_flags,dma_addr_t * dma,enum dma_data_direction dir,struct sg_table ** table)1056 void *usb_alloc_noncoherent(struct usb_device *dev, size_t size,
1057 			    gfp_t mem_flags, dma_addr_t *dma,
1058 			    enum dma_data_direction dir,
1059 			    struct sg_table **table)
1060 {
1061 	struct device *dmadev;
1062 	struct sg_table *sgt;
1063 	void *buffer;
1064 
1065 	if (!dev || !dev->bus)
1066 		return NULL;
1067 
1068 	dmadev = bus_to_hcd(dev->bus)->self.sysdev;
1069 
1070 	sgt = dma_alloc_noncontiguous(dmadev, size, dir, mem_flags, 0);
1071 	if (!sgt)
1072 		return NULL;
1073 
1074 	buffer = dma_vmap_noncontiguous(dmadev, size, sgt);
1075 	if (!buffer) {
1076 		dma_free_noncontiguous(dmadev, size, sgt, dir);
1077 		return NULL;
1078 	}
1079 
1080 	*table = sgt;
1081 	*dma = sg_dma_address(sgt->sgl);
1082 
1083 	return buffer;
1084 }
1085 EXPORT_SYMBOL_GPL(usb_alloc_noncoherent);
1086 
1087 /**
1088  * usb_free_noncoherent - free memory allocated with usb_alloc_noncoherent()
1089  * @dev: device the buffer was used with
1090  * @size: requested buffer size
1091  * @addr: CPU address of buffer
1092  * @dir: DMA transfer direction
1093  * @table: describe the allocated and DMA mapped memory,
1094  *
1095  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1096  * been allocated using usb_alloc_noncoherent(), and the parameters must match
1097  * those provided in that allocation request.
1098  */
usb_free_noncoherent(struct usb_device * dev,size_t size,void * addr,enum dma_data_direction dir,struct sg_table * table)1099 void usb_free_noncoherent(struct usb_device *dev, size_t size,
1100 			  void *addr, enum dma_data_direction dir,
1101 			  struct sg_table *table)
1102 {
1103 	struct device *dmadev;
1104 
1105 	if (!dev || !dev->bus)
1106 		return;
1107 	if (!addr)
1108 		return;
1109 
1110 	dmadev = bus_to_hcd(dev->bus)->self.sysdev;
1111 	dma_vunmap_noncontiguous(dmadev, addr);
1112 	dma_free_noncontiguous(dmadev, size, table, dir);
1113 }
1114 EXPORT_SYMBOL_GPL(usb_free_noncoherent);
1115 
1116 /**
1117  * usb_endpoint_max_periodic_payload - Get maximum payload bytes per service
1118  *				       interval
1119  * @udev: The USB device
1120  * @ep: The endpoint
1121  *
1122  * Returns: the maximum number of bytes isochronous or interrupt endpoint @ep
1123  * can transfer during a service interval, or 0 for other endpoints.
1124  */
usb_endpoint_max_periodic_payload(struct usb_device * udev,const struct usb_host_endpoint * ep)1125 u32 usb_endpoint_max_periodic_payload(struct usb_device *udev,
1126 				      const struct usb_host_endpoint *ep)
1127 {
1128 	if (!usb_endpoint_xfer_isoc(&ep->desc) &&
1129 	    !usb_endpoint_xfer_int(&ep->desc))
1130 		return 0;
1131 
1132 	switch (udev->speed) {
1133 	case USB_SPEED_SUPER_PLUS:
1134 		if (USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1135 			return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1136 		fallthrough;
1137 	case USB_SPEED_SUPER:
1138 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1139 	default:
1140 		if (usb_endpoint_is_hs_isoc_double(udev, ep))
1141 			return le32_to_cpu(ep->eusb2_isoc_ep_comp.dwBytesPerInterval);
1142 		return usb_endpoint_maxp(&ep->desc) * usb_endpoint_maxp_mult(&ep->desc);
1143 	}
1144 }
1145 EXPORT_SYMBOL_GPL(usb_endpoint_max_periodic_payload);
1146 
1147 /**
1148  * usb_endpoint_is_hs_isoc_double - Tell whether an endpoint uses USB 2
1149  *                                  Isochronous Double IN Bandwidth
1150  * @udev: The USB device
1151  * @ep: The endpoint
1152  *
1153  * Returns: true if an endpoint @ep conforms to USB 2 Isochronous Double IN
1154  * Bandwidth ECN, false otherwise.
1155  */
usb_endpoint_is_hs_isoc_double(struct usb_device * udev,const struct usb_host_endpoint * ep)1156 bool usb_endpoint_is_hs_isoc_double(struct usb_device *udev,
1157 				    const struct usb_host_endpoint *ep)
1158 {
1159 	return ep->eusb2_isoc_ep_comp.bDescriptorType &&
1160 		le16_to_cpu(udev->descriptor.bcdUSB) == 0x220 &&
1161 		usb_endpoint_is_isoc_in(&ep->desc) &&
1162 		!le16_to_cpu(ep->desc.wMaxPacketSize);
1163 }
1164 EXPORT_SYMBOL_GPL(usb_endpoint_is_hs_isoc_double);
1165 
1166 /*
1167  * Notifications of device and interface registration
1168  */
usb_bus_notify(struct notifier_block * nb,unsigned long action,void * data)1169 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1170 		void *data)
1171 {
1172 	struct device *dev = data;
1173 
1174 	switch (action) {
1175 	case BUS_NOTIFY_ADD_DEVICE:
1176 		if (dev->type == &usb_device_type)
1177 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1178 		else if (dev->type == &usb_if_device_type)
1179 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1180 		break;
1181 
1182 	case BUS_NOTIFY_DEL_DEVICE:
1183 		if (dev->type == &usb_device_type)
1184 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1185 		else if (dev->type == &usb_if_device_type)
1186 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1187 		break;
1188 	}
1189 	return 0;
1190 }
1191 
1192 static struct notifier_block usb_bus_nb = {
1193 	.notifier_call = usb_bus_notify,
1194 };
1195 
usb_debugfs_init(void)1196 static void usb_debugfs_init(void)
1197 {
1198 	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1199 			    &usbfs_devices_fops);
1200 }
1201 
usb_debugfs_cleanup(void)1202 static void usb_debugfs_cleanup(void)
1203 {
1204 	debugfs_lookup_and_remove("devices", usb_debug_root);
1205 }
1206 
1207 /*
1208  * Init
1209  */
usb_init(void)1210 static int __init usb_init(void)
1211 {
1212 	int retval;
1213 	if (usb_disabled()) {
1214 		pr_info("%s: USB support disabled\n", usbcore_name);
1215 		return 0;
1216 	}
1217 	usb_init_pool_max();
1218 
1219 	usb_debugfs_init();
1220 
1221 	usb_acpi_register();
1222 	retval = bus_register(&usb_bus_type);
1223 	if (retval)
1224 		goto bus_register_failed;
1225 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1226 	if (retval)
1227 		goto bus_notifier_failed;
1228 	retval = usb_major_init();
1229 	if (retval)
1230 		goto major_init_failed;
1231 	retval = class_register(&usbmisc_class);
1232 	if (retval)
1233 		goto class_register_failed;
1234 	retval = usb_register(&usbfs_driver);
1235 	if (retval)
1236 		goto driver_register_failed;
1237 	retval = usb_devio_init();
1238 	if (retval)
1239 		goto usb_devio_init_failed;
1240 	retval = usb_hub_init();
1241 	if (retval)
1242 		goto hub_init_failed;
1243 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1244 	if (!retval)
1245 		goto out;
1246 
1247 	usb_hub_cleanup();
1248 hub_init_failed:
1249 	usb_devio_cleanup();
1250 usb_devio_init_failed:
1251 	usb_deregister(&usbfs_driver);
1252 driver_register_failed:
1253 	class_unregister(&usbmisc_class);
1254 class_register_failed:
1255 	usb_major_cleanup();
1256 major_init_failed:
1257 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1258 bus_notifier_failed:
1259 	bus_unregister(&usb_bus_type);
1260 bus_register_failed:
1261 	usb_acpi_unregister();
1262 	usb_debugfs_cleanup();
1263 out:
1264 	return retval;
1265 }
1266 
1267 /*
1268  * Cleanup
1269  */
usb_exit(void)1270 static void __exit usb_exit(void)
1271 {
1272 	/* This will matter if shutdown/reboot does exitcalls. */
1273 	if (usb_disabled())
1274 		return;
1275 
1276 	usb_release_quirk_list();
1277 	usb_deregister_device_driver(&usb_generic_driver);
1278 	usb_major_cleanup();
1279 	usb_deregister(&usbfs_driver);
1280 	usb_devio_cleanup();
1281 	usb_hub_cleanup();
1282 	class_unregister(&usbmisc_class);
1283 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1284 	bus_unregister(&usb_bus_type);
1285 	usb_acpi_unregister();
1286 	usb_debugfs_cleanup();
1287 	idr_destroy(&usb_bus_idr);
1288 }
1289 
1290 subsys_initcall(usb_init);
1291 module_exit(usb_exit);
1292 MODULE_DESCRIPTION("USB core host-side support");
1293 MODULE_LICENSE("GPL");
1294