1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24
25 /*
26 * Default limits for DL period; on the top end we guard against small util
27 * tasks still getting ridiculously long effective runtimes, on the bottom end we
28 * guard against timer DoS.
29 */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 {
35 .procname = "sched_deadline_period_max_us",
36 .data = &sysctl_sched_dl_period_max,
37 .maxlen = sizeof(unsigned int),
38 .mode = 0644,
39 .proc_handler = proc_douintvec_minmax,
40 .extra1 = (void *)&sysctl_sched_dl_period_min,
41 },
42 {
43 .procname = "sched_deadline_period_min_us",
44 .data = &sysctl_sched_dl_period_min,
45 .maxlen = sizeof(unsigned int),
46 .mode = 0644,
47 .proc_handler = proc_douintvec_minmax,
48 .extra2 = (void *)&sysctl_sched_dl_period_max,
49 },
50 };
51
sched_dl_sysctl_init(void)52 static int __init sched_dl_sysctl_init(void)
53 {
54 register_sysctl_init("kernel", sched_dl_sysctls);
55 return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59
dl_server(struct sched_dl_entity * dl_se)60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 return dl_se->dl_server;
63 }
64
dl_task_of(struct sched_dl_entity * dl_se)65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 BUG_ON(dl_server(dl_se));
68 return container_of(dl_se, struct task_struct, dl);
69 }
70
rq_of_dl_rq(struct dl_rq * dl_rq)71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 return container_of(dl_rq, struct rq, dl);
74 }
75
rq_of_dl_se(struct sched_dl_entity * dl_se)76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 struct rq *rq = dl_se->rq;
79
80 if (!dl_server(dl_se))
81 rq = task_rq(dl_task_of(dl_se));
82
83 return rq;
84 }
85
dl_rq_of_se(struct sched_dl_entity * dl_se)86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 return &rq_of_dl_se(dl_se)->dl;
89 }
90
on_dl_rq(struct sched_dl_entity * dl_se)91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95
96 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 return dl_se->pi_se;
100 }
101
is_dl_boosted(struct sched_dl_entity * dl_se)102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
pi_of(struct sched_dl_entity * dl_se)107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 return dl_se;
110 }
111
is_dl_boosted(struct sched_dl_entity * dl_se)112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117
dl_bw_of(int i)118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 "sched RCU must be held");
122 return &cpu_rq(i)->rd->dl_bw;
123 }
124
dl_bw_cpus(int i)125 static inline int dl_bw_cpus(int i)
126 {
127 struct root_domain *rd = cpu_rq(i)->rd;
128 int cpus;
129
130 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
131 "sched RCU must be held");
132
133 if (cpumask_subset(rd->span, cpu_active_mask))
134 return cpumask_weight(rd->span);
135
136 cpus = 0;
137
138 for_each_cpu_and(i, rd->span, cpu_active_mask)
139 cpus++;
140
141 return cpus;
142 }
143
__dl_bw_capacity(const struct cpumask * mask)144 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
145 {
146 unsigned long cap = 0;
147 int i;
148
149 for_each_cpu_and(i, mask, cpu_active_mask)
150 cap += arch_scale_cpu_capacity(i);
151
152 return cap;
153 }
154
155 /*
156 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
157 * of the CPU the task is running on rather rd's \Sum CPU capacity.
158 */
dl_bw_capacity(int i)159 static inline unsigned long dl_bw_capacity(int i)
160 {
161 if (!sched_asym_cpucap_active() &&
162 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
163 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
164 } else {
165 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
166 "sched RCU must be held");
167
168 return __dl_bw_capacity(cpu_rq(i)->rd->span);
169 }
170 }
171
dl_bw_visited(int cpu,u64 cookie)172 bool dl_bw_visited(int cpu, u64 cookie)
173 {
174 struct root_domain *rd = cpu_rq(cpu)->rd;
175
176 if (rd->visit_cookie == cookie)
177 return true;
178
179 rd->visit_cookie = cookie;
180 return false;
181 }
182
183 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)184 void __dl_update(struct dl_bw *dl_b, s64 bw)
185 {
186 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
187 int i;
188
189 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
190 "sched RCU must be held");
191 for_each_cpu_and(i, rd->span, cpu_active_mask) {
192 struct rq *rq = cpu_rq(i);
193
194 rq->dl.extra_bw += bw;
195 }
196 }
197
198 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)199 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
200 {
201 dl_b->total_bw -= tsk_bw;
202 __dl_update(dl_b, (s32)tsk_bw / cpus);
203 }
204
205 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)206 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
207 {
208 dl_b->total_bw += tsk_bw;
209 __dl_update(dl_b, -((s32)tsk_bw / cpus));
210 }
211
212 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)213 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
214 {
215 return dl_b->bw != -1 &&
216 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
217 }
218
219 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)220 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
221 {
222 u64 old = dl_rq->running_bw;
223
224 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
225 dl_rq->running_bw += dl_bw;
226 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
227 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
228 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
229 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
230 }
231
232 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)233 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
234 {
235 u64 old = dl_rq->running_bw;
236
237 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
238 dl_rq->running_bw -= dl_bw;
239 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
240 if (dl_rq->running_bw > old)
241 dl_rq->running_bw = 0;
242 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
243 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
244 }
245
246 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)247 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
248 {
249 u64 old = dl_rq->this_bw;
250
251 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
252 dl_rq->this_bw += dl_bw;
253 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
254 }
255
256 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)257 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
258 {
259 u64 old = dl_rq->this_bw;
260
261 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
262 dl_rq->this_bw -= dl_bw;
263 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
264 if (dl_rq->this_bw > old)
265 dl_rq->this_bw = 0;
266 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
267 }
268
269 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)270 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
271 {
272 if (!dl_entity_is_special(dl_se))
273 __add_rq_bw(dl_se->dl_bw, dl_rq);
274 }
275
276 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)277 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
278 {
279 if (!dl_entity_is_special(dl_se))
280 __sub_rq_bw(dl_se->dl_bw, dl_rq);
281 }
282
283 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)284 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
285 {
286 if (!dl_entity_is_special(dl_se))
287 __add_running_bw(dl_se->dl_bw, dl_rq);
288 }
289
290 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)291 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
292 {
293 if (!dl_entity_is_special(dl_se))
294 __sub_running_bw(dl_se->dl_bw, dl_rq);
295 }
296
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)297 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
298 {
299 if (dl_se->dl_non_contending) {
300 sub_running_bw(dl_se, &rq->dl);
301 dl_se->dl_non_contending = 0;
302
303 /*
304 * If the timer handler is currently running and the
305 * timer cannot be canceled, inactive_task_timer()
306 * will see that dl_not_contending is not set, and
307 * will not touch the rq's active utilization,
308 * so we are still safe.
309 */
310 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
311 if (!dl_server(dl_se))
312 put_task_struct(dl_task_of(dl_se));
313 }
314 }
315 __sub_rq_bw(dl_se->dl_bw, &rq->dl);
316 __add_rq_bw(new_bw, &rq->dl);
317 }
318
319 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)320 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
321 {
322 /*
323 * If the timer callback was running (hrtimer_try_to_cancel == -1),
324 * it will eventually call put_task_struct().
325 */
326 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
327 put_task_struct(dl_task_of(dl_se));
328 }
329
330 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)331 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
332 {
333 cancel_dl_timer(dl_se, &dl_se->dl_timer);
334 }
335
336 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)337 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
338 {
339 cancel_dl_timer(dl_se, &dl_se->inactive_timer);
340 }
341
dl_change_utilization(struct task_struct * p,u64 new_bw)342 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
343 {
344 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
345
346 if (task_on_rq_queued(p))
347 return;
348
349 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
350 }
351
352 static void __dl_clear_params(struct sched_dl_entity *dl_se);
353
354 /*
355 * The utilization of a task cannot be immediately removed from
356 * the rq active utilization (running_bw) when the task blocks.
357 * Instead, we have to wait for the so called "0-lag time".
358 *
359 * If a task blocks before the "0-lag time", a timer (the inactive
360 * timer) is armed, and running_bw is decreased when the timer
361 * fires.
362 *
363 * If the task wakes up again before the inactive timer fires,
364 * the timer is canceled, whereas if the task wakes up after the
365 * inactive timer fired (and running_bw has been decreased) the
366 * task's utilization has to be added to running_bw again.
367 * A flag in the deadline scheduling entity (dl_non_contending)
368 * is used to avoid race conditions between the inactive timer handler
369 * and task wakeups.
370 *
371 * The following diagram shows how running_bw is updated. A task is
372 * "ACTIVE" when its utilization contributes to running_bw; an
373 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
374 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
375 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
376 * time already passed, which does not contribute to running_bw anymore.
377 * +------------------+
378 * wakeup | ACTIVE |
379 * +------------------>+ contending |
380 * | add_running_bw | |
381 * | +----+------+------+
382 * | | ^
383 * | dequeue | |
384 * +--------+-------+ | |
385 * | | t >= 0-lag | | wakeup
386 * | INACTIVE |<---------------+ |
387 * | | sub_running_bw | |
388 * +--------+-------+ | |
389 * ^ | |
390 * | t < 0-lag | |
391 * | | |
392 * | V |
393 * | +----+------+------+
394 * | sub_running_bw | ACTIVE |
395 * +-------------------+ |
396 * inactive timer | non contending |
397 * fired +------------------+
398 *
399 * The task_non_contending() function is invoked when a task
400 * blocks, and checks if the 0-lag time already passed or
401 * not (in the first case, it directly updates running_bw;
402 * in the second case, it arms the inactive timer).
403 *
404 * The task_contending() function is invoked when a task wakes
405 * up, and checks if the task is still in the "ACTIVE non contending"
406 * state or not (in the second case, it updates running_bw).
407 */
task_non_contending(struct sched_dl_entity * dl_se)408 static void task_non_contending(struct sched_dl_entity *dl_se)
409 {
410 struct hrtimer *timer = &dl_se->inactive_timer;
411 struct rq *rq = rq_of_dl_se(dl_se);
412 struct dl_rq *dl_rq = &rq->dl;
413 s64 zerolag_time;
414
415 /*
416 * If this is a non-deadline task that has been boosted,
417 * do nothing
418 */
419 if (dl_se->dl_runtime == 0)
420 return;
421
422 if (dl_entity_is_special(dl_se))
423 return;
424
425 WARN_ON(dl_se->dl_non_contending);
426
427 zerolag_time = dl_se->deadline -
428 div64_long((dl_se->runtime * dl_se->dl_period),
429 dl_se->dl_runtime);
430
431 /*
432 * Using relative times instead of the absolute "0-lag time"
433 * allows to simplify the code
434 */
435 zerolag_time -= rq_clock(rq);
436
437 /*
438 * If the "0-lag time" already passed, decrease the active
439 * utilization now, instead of starting a timer
440 */
441 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
442 if (dl_server(dl_se)) {
443 sub_running_bw(dl_se, dl_rq);
444 } else {
445 struct task_struct *p = dl_task_of(dl_se);
446
447 if (dl_task(p))
448 sub_running_bw(dl_se, dl_rq);
449
450 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
451 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
452
453 if (READ_ONCE(p->__state) == TASK_DEAD)
454 sub_rq_bw(dl_se, &rq->dl);
455 raw_spin_lock(&dl_b->lock);
456 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
457 raw_spin_unlock(&dl_b->lock);
458 __dl_clear_params(dl_se);
459 }
460 }
461
462 return;
463 }
464
465 dl_se->dl_non_contending = 1;
466 if (!dl_server(dl_se))
467 get_task_struct(dl_task_of(dl_se));
468
469 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
470 }
471
task_contending(struct sched_dl_entity * dl_se,int flags)472 static void task_contending(struct sched_dl_entity *dl_se, int flags)
473 {
474 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
475
476 /*
477 * If this is a non-deadline task that has been boosted,
478 * do nothing
479 */
480 if (dl_se->dl_runtime == 0)
481 return;
482
483 if (flags & ENQUEUE_MIGRATED)
484 add_rq_bw(dl_se, dl_rq);
485
486 if (dl_se->dl_non_contending) {
487 dl_se->dl_non_contending = 0;
488 /*
489 * If the timer handler is currently running and the
490 * timer cannot be canceled, inactive_task_timer()
491 * will see that dl_not_contending is not set, and
492 * will not touch the rq's active utilization,
493 * so we are still safe.
494 */
495 cancel_inactive_timer(dl_se);
496 } else {
497 /*
498 * Since "dl_non_contending" is not set, the
499 * task's utilization has already been removed from
500 * active utilization (either when the task blocked,
501 * when the "inactive timer" fired).
502 * So, add it back.
503 */
504 add_running_bw(dl_se, dl_rq);
505 }
506 }
507
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)508 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
509 {
510 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
511 }
512
513 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
514
init_dl_bw(struct dl_bw * dl_b)515 void init_dl_bw(struct dl_bw *dl_b)
516 {
517 raw_spin_lock_init(&dl_b->lock);
518 if (global_rt_runtime() == RUNTIME_INF)
519 dl_b->bw = -1;
520 else
521 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
522 dl_b->total_bw = 0;
523 }
524
init_dl_rq(struct dl_rq * dl_rq)525 void init_dl_rq(struct dl_rq *dl_rq)
526 {
527 dl_rq->root = RB_ROOT_CACHED;
528
529 /* zero means no -deadline tasks */
530 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
531
532 dl_rq->overloaded = 0;
533 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
534
535 dl_rq->running_bw = 0;
536 dl_rq->this_bw = 0;
537 init_dl_rq_bw_ratio(dl_rq);
538 }
539
dl_overloaded(struct rq * rq)540 static inline int dl_overloaded(struct rq *rq)
541 {
542 return atomic_read(&rq->rd->dlo_count);
543 }
544
dl_set_overload(struct rq * rq)545 static inline void dl_set_overload(struct rq *rq)
546 {
547 if (!rq->online)
548 return;
549
550 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
551 /*
552 * Must be visible before the overload count is
553 * set (as in sched_rt.c).
554 *
555 * Matched by the barrier in pull_dl_task().
556 */
557 smp_wmb();
558 atomic_inc(&rq->rd->dlo_count);
559 }
560
dl_clear_overload(struct rq * rq)561 static inline void dl_clear_overload(struct rq *rq)
562 {
563 if (!rq->online)
564 return;
565
566 atomic_dec(&rq->rd->dlo_count);
567 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
568 }
569
570 #define __node_2_pdl(node) \
571 rb_entry((node), struct task_struct, pushable_dl_tasks)
572
__pushable_less(struct rb_node * a,const struct rb_node * b)573 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
574 {
575 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
576 }
577
has_pushable_dl_tasks(struct rq * rq)578 static inline int has_pushable_dl_tasks(struct rq *rq)
579 {
580 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
581 }
582
583 /*
584 * The list of pushable -deadline task is not a plist, like in
585 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
586 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)587 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
588 {
589 struct rb_node *leftmost;
590
591 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
592
593 leftmost = rb_add_cached(&p->pushable_dl_tasks,
594 &rq->dl.pushable_dl_tasks_root,
595 __pushable_less);
596 if (leftmost)
597 rq->dl.earliest_dl.next = p->dl.deadline;
598
599 if (!rq->dl.overloaded) {
600 dl_set_overload(rq);
601 rq->dl.overloaded = 1;
602 }
603 }
604
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)605 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
606 {
607 struct dl_rq *dl_rq = &rq->dl;
608 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
609 struct rb_node *leftmost;
610
611 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
612 return;
613
614 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
615 if (leftmost)
616 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
617
618 RB_CLEAR_NODE(&p->pushable_dl_tasks);
619
620 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
621 dl_clear_overload(rq);
622 rq->dl.overloaded = 0;
623 }
624 }
625
626 static int push_dl_task(struct rq *rq);
627
need_pull_dl_task(struct rq * rq,struct task_struct * prev)628 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
629 {
630 return rq->online && dl_task(prev);
631 }
632
633 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
634 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
635
636 static void push_dl_tasks(struct rq *);
637 static void pull_dl_task(struct rq *);
638
deadline_queue_push_tasks(struct rq * rq)639 static inline void deadline_queue_push_tasks(struct rq *rq)
640 {
641 if (!has_pushable_dl_tasks(rq))
642 return;
643
644 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
645 }
646
deadline_queue_pull_task(struct rq * rq)647 static inline void deadline_queue_pull_task(struct rq *rq)
648 {
649 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
650 }
651
652 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
653
dl_task_offline_migration(struct rq * rq,struct task_struct * p)654 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
655 {
656 struct rq *later_rq = NULL;
657 struct dl_bw *dl_b;
658
659 later_rq = find_lock_later_rq(p, rq);
660 if (!later_rq) {
661 int cpu;
662
663 /*
664 * If we cannot preempt any rq, fall back to pick any
665 * online CPU:
666 */
667 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
668 if (cpu >= nr_cpu_ids) {
669 /*
670 * Failed to find any suitable CPU.
671 * The task will never come back!
672 */
673 WARN_ON_ONCE(dl_bandwidth_enabled());
674
675 /*
676 * If admission control is disabled we
677 * try a little harder to let the task
678 * run.
679 */
680 cpu = cpumask_any(cpu_active_mask);
681 }
682 later_rq = cpu_rq(cpu);
683 double_lock_balance(rq, later_rq);
684 }
685
686 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
687 /*
688 * Inactive timer is armed (or callback is running, but
689 * waiting for us to release rq locks). In any case, when it
690 * will fire (or continue), it will see running_bw of this
691 * task migrated to later_rq (and correctly handle it).
692 */
693 sub_running_bw(&p->dl, &rq->dl);
694 sub_rq_bw(&p->dl, &rq->dl);
695
696 add_rq_bw(&p->dl, &later_rq->dl);
697 add_running_bw(&p->dl, &later_rq->dl);
698 } else {
699 sub_rq_bw(&p->dl, &rq->dl);
700 add_rq_bw(&p->dl, &later_rq->dl);
701 }
702
703 /*
704 * And we finally need to fix up root_domain(s) bandwidth accounting,
705 * since p is still hanging out in the old (now moved to default) root
706 * domain.
707 */
708 dl_b = &rq->rd->dl_bw;
709 raw_spin_lock(&dl_b->lock);
710 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
711 raw_spin_unlock(&dl_b->lock);
712
713 dl_b = &later_rq->rd->dl_bw;
714 raw_spin_lock(&dl_b->lock);
715 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
716 raw_spin_unlock(&dl_b->lock);
717
718 set_task_cpu(p, later_rq->cpu);
719 double_unlock_balance(later_rq, rq);
720
721 return later_rq;
722 }
723
724 static void
725 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
726 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
727 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
728 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
729
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)730 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
731 struct rq *rq)
732 {
733 /* for non-boosted task, pi_of(dl_se) == dl_se */
734 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
735 dl_se->runtime = pi_of(dl_se)->dl_runtime;
736
737 /*
738 * If it is a deferred reservation, and the server
739 * is not handling an starvation case, defer it.
740 */
741 if (dl_se->dl_defer && !dl_se->dl_defer_running) {
742 dl_se->dl_throttled = 1;
743 dl_se->dl_defer_armed = 1;
744 }
745 }
746
747 /*
748 * We are being explicitly informed that a new instance is starting,
749 * and this means that:
750 * - the absolute deadline of the entity has to be placed at
751 * current time + relative deadline;
752 * - the runtime of the entity has to be set to the maximum value.
753 *
754 * The capability of specifying such event is useful whenever a -deadline
755 * entity wants to (try to!) synchronize its behaviour with the scheduler's
756 * one, and to (try to!) reconcile itself with its own scheduling
757 * parameters.
758 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)759 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
760 {
761 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
762 struct rq *rq = rq_of_dl_rq(dl_rq);
763
764 update_rq_clock(rq);
765
766 WARN_ON(is_dl_boosted(dl_se));
767 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
768
769 /*
770 * We are racing with the deadline timer. So, do nothing because
771 * the deadline timer handler will take care of properly recharging
772 * the runtime and postponing the deadline
773 */
774 if (dl_se->dl_throttled)
775 return;
776
777 /*
778 * We use the regular wall clock time to set deadlines in the
779 * future; in fact, we must consider execution overheads (time
780 * spent on hardirq context, etc.).
781 */
782 replenish_dl_new_period(dl_se, rq);
783 }
784
785 static int start_dl_timer(struct sched_dl_entity *dl_se);
786 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
787
788 /*
789 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
790 * possibility of a entity lasting more than what it declared, and thus
791 * exhausting its runtime.
792 *
793 * Here we are interested in making runtime overrun possible, but we do
794 * not want a entity which is misbehaving to affect the scheduling of all
795 * other entities.
796 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
797 * is used, in order to confine each entity within its own bandwidth.
798 *
799 * This function deals exactly with that, and ensures that when the runtime
800 * of a entity is replenished, its deadline is also postponed. That ensures
801 * the overrunning entity can't interfere with other entity in the system and
802 * can't make them miss their deadlines. Reasons why this kind of overruns
803 * could happen are, typically, a entity voluntarily trying to overcome its
804 * runtime, or it just underestimated it during sched_setattr().
805 */
replenish_dl_entity(struct sched_dl_entity * dl_se)806 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
807 {
808 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
809 struct rq *rq = rq_of_dl_rq(dl_rq);
810
811 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
812
813 /*
814 * This could be the case for a !-dl task that is boosted.
815 * Just go with full inherited parameters.
816 *
817 * Or, it could be the case of a deferred reservation that
818 * was not able to consume its runtime in background and
819 * reached this point with current u > U.
820 *
821 * In both cases, set a new period.
822 */
823 if (dl_se->dl_deadline == 0 ||
824 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
825 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
826 dl_se->runtime = pi_of(dl_se)->dl_runtime;
827 }
828
829 if (dl_se->dl_yielded && dl_se->runtime > 0)
830 dl_se->runtime = 0;
831
832 /*
833 * We keep moving the deadline away until we get some
834 * available runtime for the entity. This ensures correct
835 * handling of situations where the runtime overrun is
836 * arbitrary large.
837 */
838 while (dl_se->runtime <= 0) {
839 dl_se->deadline += pi_of(dl_se)->dl_period;
840 dl_se->runtime += pi_of(dl_se)->dl_runtime;
841 }
842
843 /*
844 * At this point, the deadline really should be "in
845 * the future" with respect to rq->clock. If it's
846 * not, we are, for some reason, lagging too much!
847 * Anyway, after having warn userspace abut that,
848 * we still try to keep the things running by
849 * resetting the deadline and the budget of the
850 * entity.
851 */
852 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
853 printk_deferred_once("sched: DL replenish lagged too much\n");
854 replenish_dl_new_period(dl_se, rq);
855 }
856
857 if (dl_se->dl_yielded)
858 dl_se->dl_yielded = 0;
859 if (dl_se->dl_throttled)
860 dl_se->dl_throttled = 0;
861
862 /*
863 * If this is the replenishment of a deferred reservation,
864 * clear the flag and return.
865 */
866 if (dl_se->dl_defer_armed) {
867 dl_se->dl_defer_armed = 0;
868 return;
869 }
870
871 /*
872 * A this point, if the deferred server is not armed, and the deadline
873 * is in the future, if it is not running already, throttle the server
874 * and arm the defer timer.
875 */
876 if (dl_se->dl_defer && !dl_se->dl_defer_running &&
877 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
878 if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
879
880 /*
881 * Set dl_se->dl_defer_armed and dl_throttled variables to
882 * inform the start_dl_timer() that this is a deferred
883 * activation.
884 */
885 dl_se->dl_defer_armed = 1;
886 dl_se->dl_throttled = 1;
887 if (!start_dl_timer(dl_se)) {
888 /*
889 * If for whatever reason (delays), a previous timer was
890 * queued but not serviced, cancel it and clean the
891 * deferrable server variables intended for start_dl_timer().
892 */
893 hrtimer_try_to_cancel(&dl_se->dl_timer);
894 dl_se->dl_defer_armed = 0;
895 dl_se->dl_throttled = 0;
896 }
897 }
898 }
899 }
900
901 /*
902 * Here we check if --at time t-- an entity (which is probably being
903 * [re]activated or, in general, enqueued) can use its remaining runtime
904 * and its current deadline _without_ exceeding the bandwidth it is
905 * assigned (function returns true if it can't). We are in fact applying
906 * one of the CBS rules: when a task wakes up, if the residual runtime
907 * over residual deadline fits within the allocated bandwidth, then we
908 * can keep the current (absolute) deadline and residual budget without
909 * disrupting the schedulability of the system. Otherwise, we should
910 * refill the runtime and set the deadline a period in the future,
911 * because keeping the current (absolute) deadline of the task would
912 * result in breaking guarantees promised to other tasks (refer to
913 * Documentation/scheduler/sched-deadline.rst for more information).
914 *
915 * This function returns true if:
916 *
917 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
918 *
919 * IOW we can't recycle current parameters.
920 *
921 * Notice that the bandwidth check is done against the deadline. For
922 * task with deadline equal to period this is the same of using
923 * dl_period instead of dl_deadline in the equation above.
924 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)925 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
926 {
927 u64 left, right;
928
929 /*
930 * left and right are the two sides of the equation above,
931 * after a bit of shuffling to use multiplications instead
932 * of divisions.
933 *
934 * Note that none of the time values involved in the two
935 * multiplications are absolute: dl_deadline and dl_runtime
936 * are the relative deadline and the maximum runtime of each
937 * instance, runtime is the runtime left for the last instance
938 * and (deadline - t), since t is rq->clock, is the time left
939 * to the (absolute) deadline. Even if overflowing the u64 type
940 * is very unlikely to occur in both cases, here we scale down
941 * as we want to avoid that risk at all. Scaling down by 10
942 * means that we reduce granularity to 1us. We are fine with it,
943 * since this is only a true/false check and, anyway, thinking
944 * of anything below microseconds resolution is actually fiction
945 * (but still we want to give the user that illusion >;).
946 */
947 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
948 right = ((dl_se->deadline - t) >> DL_SCALE) *
949 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
950
951 return dl_time_before(right, left);
952 }
953
954 /*
955 * Revised wakeup rule [1]: For self-suspending tasks, rather then
956 * re-initializing task's runtime and deadline, the revised wakeup
957 * rule adjusts the task's runtime to avoid the task to overrun its
958 * density.
959 *
960 * Reasoning: a task may overrun the density if:
961 * runtime / (deadline - t) > dl_runtime / dl_deadline
962 *
963 * Therefore, runtime can be adjusted to:
964 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
965 *
966 * In such way that runtime will be equal to the maximum density
967 * the task can use without breaking any rule.
968 *
969 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
970 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
971 */
972 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)973 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
974 {
975 u64 laxity = dl_se->deadline - rq_clock(rq);
976
977 /*
978 * If the task has deadline < period, and the deadline is in the past,
979 * it should already be throttled before this check.
980 *
981 * See update_dl_entity() comments for further details.
982 */
983 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
984
985 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
986 }
987
988 /*
989 * Regarding the deadline, a task with implicit deadline has a relative
990 * deadline == relative period. A task with constrained deadline has a
991 * relative deadline <= relative period.
992 *
993 * We support constrained deadline tasks. However, there are some restrictions
994 * applied only for tasks which do not have an implicit deadline. See
995 * update_dl_entity() to know more about such restrictions.
996 *
997 * The dl_is_implicit() returns true if the task has an implicit deadline.
998 */
dl_is_implicit(struct sched_dl_entity * dl_se)999 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1000 {
1001 return dl_se->dl_deadline == dl_se->dl_period;
1002 }
1003
1004 /*
1005 * When a deadline entity is placed in the runqueue, its runtime and deadline
1006 * might need to be updated. This is done by a CBS wake up rule. There are two
1007 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1008 *
1009 * When the task is starting a new period, the Original CBS is used. In this
1010 * case, the runtime is replenished and a new absolute deadline is set.
1011 *
1012 * When a task is queued before the begin of the next period, using the
1013 * remaining runtime and deadline could make the entity to overflow, see
1014 * dl_entity_overflow() to find more about runtime overflow. When such case
1015 * is detected, the runtime and deadline need to be updated.
1016 *
1017 * If the task has an implicit deadline, i.e., deadline == period, the Original
1018 * CBS is applied. The runtime is replenished and a new absolute deadline is
1019 * set, as in the previous cases.
1020 *
1021 * However, the Original CBS does not work properly for tasks with
1022 * deadline < period, which are said to have a constrained deadline. By
1023 * applying the Original CBS, a constrained deadline task would be able to run
1024 * runtime/deadline in a period. With deadline < period, the task would
1025 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1026 *
1027 * In order to prevent this misbehave, the Revisited CBS is used for
1028 * constrained deadline tasks when a runtime overflow is detected. In the
1029 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1030 * the remaining runtime of the task is reduced to avoid runtime overflow.
1031 * Please refer to the comments update_dl_revised_wakeup() function to find
1032 * more about the Revised CBS rule.
1033 */
update_dl_entity(struct sched_dl_entity * dl_se)1034 static void update_dl_entity(struct sched_dl_entity *dl_se)
1035 {
1036 struct rq *rq = rq_of_dl_se(dl_se);
1037
1038 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1039 dl_entity_overflow(dl_se, rq_clock(rq))) {
1040
1041 if (unlikely(!dl_is_implicit(dl_se) &&
1042 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1043 !is_dl_boosted(dl_se))) {
1044 update_dl_revised_wakeup(dl_se, rq);
1045 return;
1046 }
1047
1048 replenish_dl_new_period(dl_se, rq);
1049 } else if (dl_server(dl_se) && dl_se->dl_defer) {
1050 /*
1051 * The server can still use its previous deadline, so check if
1052 * it left the dl_defer_running state.
1053 */
1054 if (!dl_se->dl_defer_running) {
1055 dl_se->dl_defer_armed = 1;
1056 dl_se->dl_throttled = 1;
1057 }
1058 }
1059 }
1060
dl_next_period(struct sched_dl_entity * dl_se)1061 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1062 {
1063 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1064 }
1065
1066 /*
1067 * If the entity depleted all its runtime, and if we want it to sleep
1068 * while waiting for some new execution time to become available, we
1069 * set the bandwidth replenishment timer to the replenishment instant
1070 * and try to activate it.
1071 *
1072 * Notice that it is important for the caller to know if the timer
1073 * actually started or not (i.e., the replenishment instant is in
1074 * the future or in the past).
1075 */
start_dl_timer(struct sched_dl_entity * dl_se)1076 static int start_dl_timer(struct sched_dl_entity *dl_se)
1077 {
1078 struct hrtimer *timer = &dl_se->dl_timer;
1079 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1080 struct rq *rq = rq_of_dl_rq(dl_rq);
1081 ktime_t now, act;
1082 s64 delta;
1083
1084 lockdep_assert_rq_held(rq);
1085
1086 /*
1087 * We want the timer to fire at the deadline, but considering
1088 * that it is actually coming from rq->clock and not from
1089 * hrtimer's time base reading.
1090 *
1091 * The deferred reservation will have its timer set to
1092 * (deadline - runtime). At that point, the CBS rule will decide
1093 * if the current deadline can be used, or if a replenishment is
1094 * required to avoid add too much pressure on the system
1095 * (current u > U).
1096 */
1097 if (dl_se->dl_defer_armed) {
1098 WARN_ON_ONCE(!dl_se->dl_throttled);
1099 act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1100 } else {
1101 /* act = deadline - rel-deadline + period */
1102 act = ns_to_ktime(dl_next_period(dl_se));
1103 }
1104
1105 now = hrtimer_cb_get_time(timer);
1106 delta = ktime_to_ns(now) - rq_clock(rq);
1107 act = ktime_add_ns(act, delta);
1108
1109 /*
1110 * If the expiry time already passed, e.g., because the value
1111 * chosen as the deadline is too small, don't even try to
1112 * start the timer in the past!
1113 */
1114 if (ktime_us_delta(act, now) < 0)
1115 return 0;
1116
1117 /*
1118 * !enqueued will guarantee another callback; even if one is already in
1119 * progress. This ensures a balanced {get,put}_task_struct().
1120 *
1121 * The race against __run_timer() clearing the enqueued state is
1122 * harmless because we're holding task_rq()->lock, therefore the timer
1123 * expiring after we've done the check will wait on its task_rq_lock()
1124 * and observe our state.
1125 */
1126 if (!hrtimer_is_queued(timer)) {
1127 if (!dl_server(dl_se))
1128 get_task_struct(dl_task_of(dl_se));
1129 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1130 }
1131
1132 return 1;
1133 }
1134
__push_dl_task(struct rq * rq,struct rq_flags * rf)1135 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1136 {
1137 /*
1138 * Queueing this task back might have overloaded rq, check if we need
1139 * to kick someone away.
1140 */
1141 if (has_pushable_dl_tasks(rq)) {
1142 /*
1143 * Nothing relies on rq->lock after this, so its safe to drop
1144 * rq->lock.
1145 */
1146 rq_unpin_lock(rq, rf);
1147 push_dl_task(rq);
1148 rq_repin_lock(rq, rf);
1149 }
1150 }
1151
1152 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1153 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1154
1155 static bool dl_server_stopped(struct sched_dl_entity *dl_se);
1156
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1157 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1158 {
1159 struct rq *rq = rq_of_dl_se(dl_se);
1160 u64 fw;
1161
1162 scoped_guard (rq_lock, rq) {
1163 struct rq_flags *rf = &scope.rf;
1164
1165 if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1166 return HRTIMER_NORESTART;
1167
1168 sched_clock_tick();
1169 update_rq_clock(rq);
1170
1171 if (!dl_se->dl_runtime)
1172 return HRTIMER_NORESTART;
1173
1174 if (!dl_se->server_has_tasks(dl_se)) {
1175 replenish_dl_entity(dl_se);
1176 dl_server_stopped(dl_se);
1177 return HRTIMER_NORESTART;
1178 }
1179
1180 if (dl_se->dl_defer_armed) {
1181 /*
1182 * First check if the server could consume runtime in background.
1183 * If so, it is possible to push the defer timer for this amount
1184 * of time. The dl_server_min_res serves as a limit to avoid
1185 * forwarding the timer for a too small amount of time.
1186 */
1187 if (dl_time_before(rq_clock(dl_se->rq),
1188 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1189
1190 /* reset the defer timer */
1191 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1192
1193 hrtimer_forward_now(timer, ns_to_ktime(fw));
1194 return HRTIMER_RESTART;
1195 }
1196
1197 dl_se->dl_defer_running = 1;
1198 }
1199
1200 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1201
1202 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1203 resched_curr(rq);
1204
1205 __push_dl_task(rq, rf);
1206 }
1207
1208 return HRTIMER_NORESTART;
1209 }
1210
1211 /*
1212 * This is the bandwidth enforcement timer callback. If here, we know
1213 * a task is not on its dl_rq, since the fact that the timer was running
1214 * means the task is throttled and needs a runtime replenishment.
1215 *
1216 * However, what we actually do depends on the fact the task is active,
1217 * (it is on its rq) or has been removed from there by a call to
1218 * dequeue_task_dl(). In the former case we must issue the runtime
1219 * replenishment and add the task back to the dl_rq; in the latter, we just
1220 * do nothing but clearing dl_throttled, so that runtime and deadline
1221 * updating (and the queueing back to dl_rq) will be done by the
1222 * next call to enqueue_task_dl().
1223 */
dl_task_timer(struct hrtimer * timer)1224 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1225 {
1226 struct sched_dl_entity *dl_se = container_of(timer,
1227 struct sched_dl_entity,
1228 dl_timer);
1229 struct task_struct *p;
1230 struct rq_flags rf;
1231 struct rq *rq;
1232
1233 if (dl_server(dl_se))
1234 return dl_server_timer(timer, dl_se);
1235
1236 p = dl_task_of(dl_se);
1237 rq = task_rq_lock(p, &rf);
1238
1239 /*
1240 * The task might have changed its scheduling policy to something
1241 * different than SCHED_DEADLINE (through switched_from_dl()).
1242 */
1243 if (!dl_task(p))
1244 goto unlock;
1245
1246 /*
1247 * The task might have been boosted by someone else and might be in the
1248 * boosting/deboosting path, its not throttled.
1249 */
1250 if (is_dl_boosted(dl_se))
1251 goto unlock;
1252
1253 /*
1254 * Spurious timer due to start_dl_timer() race; or we already received
1255 * a replenishment from rt_mutex_setprio().
1256 */
1257 if (!dl_se->dl_throttled)
1258 goto unlock;
1259
1260 sched_clock_tick();
1261 update_rq_clock(rq);
1262
1263 /*
1264 * If the throttle happened during sched-out; like:
1265 *
1266 * schedule()
1267 * deactivate_task()
1268 * dequeue_task_dl()
1269 * update_curr_dl()
1270 * start_dl_timer()
1271 * __dequeue_task_dl()
1272 * prev->on_rq = 0;
1273 *
1274 * We can be both throttled and !queued. Replenish the counter
1275 * but do not enqueue -- wait for our wakeup to do that.
1276 */
1277 if (!task_on_rq_queued(p)) {
1278 replenish_dl_entity(dl_se);
1279 goto unlock;
1280 }
1281
1282 if (unlikely(!rq->online)) {
1283 /*
1284 * If the runqueue is no longer available, migrate the
1285 * task elsewhere. This necessarily changes rq.
1286 */
1287 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1288 rq = dl_task_offline_migration(rq, p);
1289 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1290 update_rq_clock(rq);
1291
1292 /*
1293 * Now that the task has been migrated to the new RQ and we
1294 * have that locked, proceed as normal and enqueue the task
1295 * there.
1296 */
1297 }
1298
1299 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1300 if (dl_task(rq->donor))
1301 wakeup_preempt_dl(rq, p, 0);
1302 else
1303 resched_curr(rq);
1304
1305 __push_dl_task(rq, &rf);
1306
1307 unlock:
1308 task_rq_unlock(rq, p, &rf);
1309
1310 /*
1311 * This can free the task_struct, including this hrtimer, do not touch
1312 * anything related to that after this.
1313 */
1314 put_task_struct(p);
1315
1316 return HRTIMER_NORESTART;
1317 }
1318
init_dl_task_timer(struct sched_dl_entity * dl_se)1319 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1320 {
1321 struct hrtimer *timer = &dl_se->dl_timer;
1322
1323 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1324 }
1325
1326 /*
1327 * During the activation, CBS checks if it can reuse the current task's
1328 * runtime and period. If the deadline of the task is in the past, CBS
1329 * cannot use the runtime, and so it replenishes the task. This rule
1330 * works fine for implicit deadline tasks (deadline == period), and the
1331 * CBS was designed for implicit deadline tasks. However, a task with
1332 * constrained deadline (deadline < period) might be awakened after the
1333 * deadline, but before the next period. In this case, replenishing the
1334 * task would allow it to run for runtime / deadline. As in this case
1335 * deadline < period, CBS enables a task to run for more than the
1336 * runtime / period. In a very loaded system, this can cause a domino
1337 * effect, making other tasks miss their deadlines.
1338 *
1339 * To avoid this problem, in the activation of a constrained deadline
1340 * task after the deadline but before the next period, throttle the
1341 * task and set the replenishing timer to the begin of the next period,
1342 * unless it is boosted.
1343 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1344 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1345 {
1346 struct rq *rq = rq_of_dl_se(dl_se);
1347
1348 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1349 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1350 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1351 return;
1352 dl_se->dl_throttled = 1;
1353 if (dl_se->runtime > 0)
1354 dl_se->runtime = 0;
1355 }
1356 }
1357
1358 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1359 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1360 {
1361 return (dl_se->runtime <= 0);
1362 }
1363
1364 /*
1365 * This function implements the GRUB accounting rule. According to the
1366 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1367 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1368 * where u is the utilization of the task, Umax is the maximum reclaimable
1369 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1370 * as the difference between the "total runqueue utilization" and the
1371 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1372 * reclaimable utilization.
1373 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1374 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1375 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1376 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1377 * Since delta is a 64 bit variable, to have an overflow its value should be
1378 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1379 * not an issue here.
1380 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1381 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1382 {
1383 u64 u_act;
1384 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1385
1386 /*
1387 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1388 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1389 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1390 * negative leading to wrong results.
1391 */
1392 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1393 u_act = dl_se->dl_bw;
1394 else
1395 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1396
1397 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1398 return (delta * u_act) >> BW_SHIFT;
1399 }
1400
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1401 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1402 {
1403 s64 scaled_delta_exec;
1404
1405 /*
1406 * For tasks that participate in GRUB, we implement GRUB-PA: the
1407 * spare reclaimed bandwidth is used to clock down frequency.
1408 *
1409 * For the others, we still need to scale reservation parameters
1410 * according to current frequency and CPU maximum capacity.
1411 */
1412 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1413 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1414 } else {
1415 int cpu = cpu_of(rq);
1416 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1417 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1418
1419 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1420 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1421 }
1422
1423 return scaled_delta_exec;
1424 }
1425
1426 static inline void
1427 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1428 int flags);
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1429 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1430 {
1431 s64 scaled_delta_exec;
1432
1433 if (unlikely(delta_exec <= 0)) {
1434 if (unlikely(dl_se->dl_yielded))
1435 goto throttle;
1436 return;
1437 }
1438
1439 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1440 return;
1441
1442 if (dl_entity_is_special(dl_se))
1443 return;
1444
1445 scaled_delta_exec = delta_exec;
1446 if (!dl_server(dl_se))
1447 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1448
1449 dl_se->runtime -= scaled_delta_exec;
1450
1451 /*
1452 * The fair server can consume its runtime while throttled (not queued/
1453 * running as regular CFS).
1454 *
1455 * If the server consumes its entire runtime in this state. The server
1456 * is not required for the current period. Thus, reset the server by
1457 * starting a new period, pushing the activation.
1458 */
1459 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1460 /*
1461 * If the server was previously activated - the starving condition
1462 * took place, it this point it went away because the fair scheduler
1463 * was able to get runtime in background. So return to the initial
1464 * state.
1465 */
1466 dl_se->dl_defer_running = 0;
1467
1468 hrtimer_try_to_cancel(&dl_se->dl_timer);
1469
1470 replenish_dl_new_period(dl_se, dl_se->rq);
1471
1472 /*
1473 * Not being able to start the timer seems problematic. If it could not
1474 * be started for whatever reason, we need to "unthrottle" the DL server
1475 * and queue right away. Otherwise nothing might queue it. That's similar
1476 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1477 */
1478 WARN_ON_ONCE(!start_dl_timer(dl_se));
1479
1480 return;
1481 }
1482
1483 throttle:
1484 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1485 dl_se->dl_throttled = 1;
1486
1487 /* If requested, inform the user about runtime overruns. */
1488 if (dl_runtime_exceeded(dl_se) &&
1489 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1490 dl_se->dl_overrun = 1;
1491
1492 dequeue_dl_entity(dl_se, 0);
1493 if (!dl_server(dl_se)) {
1494 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1495 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1496 }
1497
1498 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1499 if (dl_server(dl_se))
1500 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1501 else
1502 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1503 }
1504
1505 if (!is_leftmost(dl_se, &rq->dl))
1506 resched_curr(rq);
1507 }
1508
1509 /*
1510 * The fair server (sole dl_server) does not account for real-time
1511 * workload because it is running fair work.
1512 */
1513 if (dl_se == &rq->fair_server)
1514 return;
1515
1516 #ifdef CONFIG_RT_GROUP_SCHED
1517 /*
1518 * Because -- for now -- we share the rt bandwidth, we need to
1519 * account our runtime there too, otherwise actual rt tasks
1520 * would be able to exceed the shared quota.
1521 *
1522 * Account to the root rt group for now.
1523 *
1524 * The solution we're working towards is having the RT groups scheduled
1525 * using deadline servers -- however there's a few nasties to figure
1526 * out before that can happen.
1527 */
1528 if (rt_bandwidth_enabled()) {
1529 struct rt_rq *rt_rq = &rq->rt;
1530
1531 raw_spin_lock(&rt_rq->rt_runtime_lock);
1532 /*
1533 * We'll let actual RT tasks worry about the overflow here, we
1534 * have our own CBS to keep us inline; only account when RT
1535 * bandwidth is relevant.
1536 */
1537 if (sched_rt_bandwidth_account(rt_rq))
1538 rt_rq->rt_time += delta_exec;
1539 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1540 }
1541 #endif /* CONFIG_RT_GROUP_SCHED */
1542 }
1543
1544 /*
1545 * In the non-defer mode, the idle time is not accounted, as the
1546 * server provides a guarantee.
1547 *
1548 * If the dl_server is in defer mode, the idle time is also considered
1549 * as time available for the fair server, avoiding a penalty for the
1550 * rt scheduler that did not consumed that time.
1551 */
dl_server_update_idle_time(struct rq * rq,struct task_struct * p)1552 void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1553 {
1554 s64 delta_exec;
1555
1556 if (!rq->fair_server.dl_defer)
1557 return;
1558
1559 /* no need to discount more */
1560 if (rq->fair_server.runtime < 0)
1561 return;
1562
1563 delta_exec = rq_clock_task(rq) - p->se.exec_start;
1564 if (delta_exec < 0)
1565 return;
1566
1567 rq->fair_server.runtime -= delta_exec;
1568
1569 if (rq->fair_server.runtime < 0) {
1570 rq->fair_server.dl_defer_running = 0;
1571 rq->fair_server.runtime = 0;
1572 }
1573
1574 p->se.exec_start = rq_clock_task(rq);
1575 }
1576
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1577 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1578 {
1579 /* 0 runtime = fair server disabled */
1580 if (dl_se->dl_runtime) {
1581 dl_se->dl_server_idle = 0;
1582 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1583 }
1584 }
1585
dl_server_start(struct sched_dl_entity * dl_se)1586 void dl_server_start(struct sched_dl_entity *dl_se)
1587 {
1588 struct rq *rq = dl_se->rq;
1589
1590 if (!dl_server(dl_se) || dl_se->dl_server_active)
1591 return;
1592
1593 dl_se->dl_server_active = 1;
1594 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1595 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1596 resched_curr(dl_se->rq);
1597 }
1598
dl_server_stop(struct sched_dl_entity * dl_se)1599 void dl_server_stop(struct sched_dl_entity *dl_se)
1600 {
1601 if (!dl_server(dl_se) || !dl_server_active(dl_se))
1602 return;
1603
1604 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1605 hrtimer_try_to_cancel(&dl_se->dl_timer);
1606 dl_se->dl_defer_armed = 0;
1607 dl_se->dl_throttled = 0;
1608 dl_se->dl_server_active = 0;
1609 }
1610
dl_server_stopped(struct sched_dl_entity * dl_se)1611 static bool dl_server_stopped(struct sched_dl_entity *dl_se)
1612 {
1613 if (!dl_se->dl_server_active)
1614 return false;
1615
1616 if (dl_se->dl_server_idle) {
1617 dl_server_stop(dl_se);
1618 return true;
1619 }
1620
1621 dl_se->dl_server_idle = 1;
1622 return false;
1623 }
1624
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_has_tasks_f has_tasks,dl_server_pick_f pick_task)1625 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1626 dl_server_has_tasks_f has_tasks,
1627 dl_server_pick_f pick_task)
1628 {
1629 dl_se->rq = rq;
1630 dl_se->server_has_tasks = has_tasks;
1631 dl_se->server_pick_task = pick_task;
1632 }
1633
sched_init_dl_servers(void)1634 void sched_init_dl_servers(void)
1635 {
1636 int cpu;
1637 struct rq *rq;
1638 struct sched_dl_entity *dl_se;
1639
1640 for_each_online_cpu(cpu) {
1641 u64 runtime = 50 * NSEC_PER_MSEC;
1642 u64 period = 1000 * NSEC_PER_MSEC;
1643
1644 rq = cpu_rq(cpu);
1645
1646 guard(rq_lock_irq)(rq);
1647
1648 dl_se = &rq->fair_server;
1649
1650 WARN_ON(dl_server(dl_se));
1651
1652 dl_server_apply_params(dl_se, runtime, period, 1);
1653
1654 dl_se->dl_server = 1;
1655 dl_se->dl_defer = 1;
1656 setup_new_dl_entity(dl_se);
1657 }
1658 }
1659
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1660 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1661 {
1662 u64 new_bw = dl_se->dl_bw;
1663 int cpu = cpu_of(rq);
1664 struct dl_bw *dl_b;
1665
1666 dl_b = dl_bw_of(cpu_of(rq));
1667 guard(raw_spinlock)(&dl_b->lock);
1668
1669 if (!dl_bw_cpus(cpu))
1670 return;
1671
1672 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1673 }
1674
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1675 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1676 {
1677 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1678 u64 new_bw = to_ratio(period, runtime);
1679 struct rq *rq = dl_se->rq;
1680 int cpu = cpu_of(rq);
1681 struct dl_bw *dl_b;
1682 unsigned long cap;
1683 int retval = 0;
1684 int cpus;
1685
1686 dl_b = dl_bw_of(cpu);
1687 guard(raw_spinlock)(&dl_b->lock);
1688
1689 cpus = dl_bw_cpus(cpu);
1690 cap = dl_bw_capacity(cpu);
1691
1692 if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1693 return -EBUSY;
1694
1695 if (init) {
1696 __add_rq_bw(new_bw, &rq->dl);
1697 __dl_add(dl_b, new_bw, cpus);
1698 } else {
1699 __dl_sub(dl_b, dl_se->dl_bw, cpus);
1700 __dl_add(dl_b, new_bw, cpus);
1701
1702 dl_rq_change_utilization(rq, dl_se, new_bw);
1703 }
1704
1705 dl_se->dl_runtime = runtime;
1706 dl_se->dl_deadline = period;
1707 dl_se->dl_period = period;
1708
1709 dl_se->runtime = 0;
1710 dl_se->deadline = 0;
1711
1712 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1713 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1714
1715 return retval;
1716 }
1717
1718 /*
1719 * Update the current task's runtime statistics (provided it is still
1720 * a -deadline task and has not been removed from the dl_rq).
1721 */
update_curr_dl(struct rq * rq)1722 static void update_curr_dl(struct rq *rq)
1723 {
1724 struct task_struct *donor = rq->donor;
1725 struct sched_dl_entity *dl_se = &donor->dl;
1726 s64 delta_exec;
1727
1728 if (!dl_task(donor) || !on_dl_rq(dl_se))
1729 return;
1730
1731 /*
1732 * Consumed budget is computed considering the time as
1733 * observed by schedulable tasks (excluding time spent
1734 * in hardirq context, etc.). Deadlines are instead
1735 * computed using hard walltime. This seems to be the more
1736 * natural solution, but the full ramifications of this
1737 * approach need further study.
1738 */
1739 delta_exec = update_curr_common(rq);
1740 update_curr_dl_se(rq, dl_se, delta_exec);
1741 }
1742
inactive_task_timer(struct hrtimer * timer)1743 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1744 {
1745 struct sched_dl_entity *dl_se = container_of(timer,
1746 struct sched_dl_entity,
1747 inactive_timer);
1748 struct task_struct *p = NULL;
1749 struct rq_flags rf;
1750 struct rq *rq;
1751
1752 if (!dl_server(dl_se)) {
1753 p = dl_task_of(dl_se);
1754 rq = task_rq_lock(p, &rf);
1755 } else {
1756 rq = dl_se->rq;
1757 rq_lock(rq, &rf);
1758 }
1759
1760 sched_clock_tick();
1761 update_rq_clock(rq);
1762
1763 if (dl_server(dl_se))
1764 goto no_task;
1765
1766 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1767 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1768
1769 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1770 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1771 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1772 dl_se->dl_non_contending = 0;
1773 }
1774
1775 raw_spin_lock(&dl_b->lock);
1776 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1777 raw_spin_unlock(&dl_b->lock);
1778 __dl_clear_params(dl_se);
1779
1780 goto unlock;
1781 }
1782
1783 no_task:
1784 if (dl_se->dl_non_contending == 0)
1785 goto unlock;
1786
1787 sub_running_bw(dl_se, &rq->dl);
1788 dl_se->dl_non_contending = 0;
1789 unlock:
1790
1791 if (!dl_server(dl_se)) {
1792 task_rq_unlock(rq, p, &rf);
1793 put_task_struct(p);
1794 } else {
1795 rq_unlock(rq, &rf);
1796 }
1797
1798 return HRTIMER_NORESTART;
1799 }
1800
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1801 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1802 {
1803 struct hrtimer *timer = &dl_se->inactive_timer;
1804
1805 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1806 }
1807
1808 #define __node_2_dle(node) \
1809 rb_entry((node), struct sched_dl_entity, rb_node)
1810
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1811 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1812 {
1813 struct rq *rq = rq_of_dl_rq(dl_rq);
1814
1815 if (dl_rq->earliest_dl.curr == 0 ||
1816 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1817 if (dl_rq->earliest_dl.curr == 0)
1818 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1819 dl_rq->earliest_dl.curr = deadline;
1820 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1821 }
1822 }
1823
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)1824 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1825 {
1826 struct rq *rq = rq_of_dl_rq(dl_rq);
1827
1828 /*
1829 * Since we may have removed our earliest (and/or next earliest)
1830 * task we must recompute them.
1831 */
1832 if (!dl_rq->dl_nr_running) {
1833 dl_rq->earliest_dl.curr = 0;
1834 dl_rq->earliest_dl.next = 0;
1835 cpudl_clear(&rq->rd->cpudl, rq->cpu);
1836 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1837 } else {
1838 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1839 struct sched_dl_entity *entry = __node_2_dle(leftmost);
1840
1841 dl_rq->earliest_dl.curr = entry->deadline;
1842 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1843 }
1844 }
1845
1846 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1847 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1848 {
1849 u64 deadline = dl_se->deadline;
1850
1851 dl_rq->dl_nr_running++;
1852 add_nr_running(rq_of_dl_rq(dl_rq), 1);
1853
1854 inc_dl_deadline(dl_rq, deadline);
1855 }
1856
1857 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)1858 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1859 {
1860 WARN_ON(!dl_rq->dl_nr_running);
1861 dl_rq->dl_nr_running--;
1862 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1863
1864 dec_dl_deadline(dl_rq, dl_se->deadline);
1865 }
1866
__dl_less(struct rb_node * a,const struct rb_node * b)1867 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1868 {
1869 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1870 }
1871
1872 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)1873 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1874 {
1875 if (!schedstat_enabled())
1876 return NULL;
1877
1878 if (dl_server(dl_se))
1879 return NULL;
1880
1881 return &dl_task_of(dl_se)->stats;
1882 }
1883
1884 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1885 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1886 {
1887 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1888 if (stats)
1889 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1890 }
1891
1892 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1893 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1894 {
1895 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1896 if (stats)
1897 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1898 }
1899
1900 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)1901 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1902 {
1903 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1904 if (stats)
1905 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1906 }
1907
1908 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1909 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1910 int flags)
1911 {
1912 if (!schedstat_enabled())
1913 return;
1914
1915 if (flags & ENQUEUE_WAKEUP)
1916 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1917 }
1918
1919 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)1920 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1921 int flags)
1922 {
1923 struct task_struct *p = dl_task_of(dl_se);
1924
1925 if (!schedstat_enabled())
1926 return;
1927
1928 if ((flags & DEQUEUE_SLEEP)) {
1929 unsigned int state;
1930
1931 state = READ_ONCE(p->__state);
1932 if (state & TASK_INTERRUPTIBLE)
1933 __schedstat_set(p->stats.sleep_start,
1934 rq_clock(rq_of_dl_rq(dl_rq)));
1935
1936 if (state & TASK_UNINTERRUPTIBLE)
1937 __schedstat_set(p->stats.block_start,
1938 rq_clock(rq_of_dl_rq(dl_rq)));
1939 }
1940 }
1941
__enqueue_dl_entity(struct sched_dl_entity * dl_se)1942 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1943 {
1944 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1945
1946 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1947
1948 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1949
1950 inc_dl_tasks(dl_se, dl_rq);
1951 }
1952
__dequeue_dl_entity(struct sched_dl_entity * dl_se)1953 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1954 {
1955 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1956
1957 if (RB_EMPTY_NODE(&dl_se->rb_node))
1958 return;
1959
1960 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1961
1962 RB_CLEAR_NODE(&dl_se->rb_node);
1963
1964 dec_dl_tasks(dl_se, dl_rq);
1965 }
1966
1967 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)1968 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
1969 {
1970 WARN_ON_ONCE(on_dl_rq(dl_se));
1971
1972 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
1973
1974 /*
1975 * Check if a constrained deadline task was activated
1976 * after the deadline but before the next period.
1977 * If that is the case, the task will be throttled and
1978 * the replenishment timer will be set to the next period.
1979 */
1980 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
1981 dl_check_constrained_dl(dl_se);
1982
1983 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
1984 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1985
1986 add_rq_bw(dl_se, dl_rq);
1987 add_running_bw(dl_se, dl_rq);
1988 }
1989
1990 /*
1991 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1992 * its budget it needs a replenishment and, since it now is on
1993 * its rq, the bandwidth timer callback (which clearly has not
1994 * run yet) will take care of this.
1995 * However, the active utilization does not depend on the fact
1996 * that the task is on the runqueue or not (but depends on the
1997 * task's state - in GRUB parlance, "inactive" vs "active contending").
1998 * In other words, even if a task is throttled its utilization must
1999 * be counted in the active utilization; hence, we need to call
2000 * add_running_bw().
2001 */
2002 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2003 if (flags & ENQUEUE_WAKEUP)
2004 task_contending(dl_se, flags);
2005
2006 return;
2007 }
2008
2009 /*
2010 * If this is a wakeup or a new instance, the scheduling
2011 * parameters of the task might need updating. Otherwise,
2012 * we want a replenishment of its runtime.
2013 */
2014 if (flags & ENQUEUE_WAKEUP) {
2015 task_contending(dl_se, flags);
2016 update_dl_entity(dl_se);
2017 } else if (flags & ENQUEUE_REPLENISH) {
2018 replenish_dl_entity(dl_se);
2019 } else if ((flags & ENQUEUE_RESTORE) &&
2020 !is_dl_boosted(dl_se) &&
2021 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2022 setup_new_dl_entity(dl_se);
2023 }
2024
2025 /*
2026 * If the reservation is still throttled, e.g., it got replenished but is a
2027 * deferred task and still got to wait, don't enqueue.
2028 */
2029 if (dl_se->dl_throttled && start_dl_timer(dl_se))
2030 return;
2031
2032 /*
2033 * We're about to enqueue, make sure we're not ->dl_throttled!
2034 * In case the timer was not started, say because the defer time
2035 * has passed, mark as not throttled and mark unarmed.
2036 * Also cancel earlier timers, since letting those run is pointless.
2037 */
2038 if (dl_se->dl_throttled) {
2039 hrtimer_try_to_cancel(&dl_se->dl_timer);
2040 dl_se->dl_defer_armed = 0;
2041 dl_se->dl_throttled = 0;
2042 }
2043
2044 __enqueue_dl_entity(dl_se);
2045 }
2046
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2047 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2048 {
2049 __dequeue_dl_entity(dl_se);
2050
2051 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2052 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2053
2054 sub_running_bw(dl_se, dl_rq);
2055 sub_rq_bw(dl_se, dl_rq);
2056 }
2057
2058 /*
2059 * This check allows to start the inactive timer (or to immediately
2060 * decrease the active utilization, if needed) in two cases:
2061 * when the task blocks and when it is terminating
2062 * (p->state == TASK_DEAD). We can handle the two cases in the same
2063 * way, because from GRUB's point of view the same thing is happening
2064 * (the task moves from "active contending" to "active non contending"
2065 * or "inactive")
2066 */
2067 if (flags & DEQUEUE_SLEEP)
2068 task_non_contending(dl_se);
2069 }
2070
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2071 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2072 {
2073 if (is_dl_boosted(&p->dl)) {
2074 /*
2075 * Because of delays in the detection of the overrun of a
2076 * thread's runtime, it might be the case that a thread
2077 * goes to sleep in a rt mutex with negative runtime. As
2078 * a consequence, the thread will be throttled.
2079 *
2080 * While waiting for the mutex, this thread can also be
2081 * boosted via PI, resulting in a thread that is throttled
2082 * and boosted at the same time.
2083 *
2084 * In this case, the boost overrides the throttle.
2085 */
2086 if (p->dl.dl_throttled) {
2087 /*
2088 * The replenish timer needs to be canceled. No
2089 * problem if it fires concurrently: boosted threads
2090 * are ignored in dl_task_timer().
2091 */
2092 cancel_replenish_timer(&p->dl);
2093 p->dl.dl_throttled = 0;
2094 }
2095 } else if (!dl_prio(p->normal_prio)) {
2096 /*
2097 * Special case in which we have a !SCHED_DEADLINE task that is going
2098 * to be deboosted, but exceeds its runtime while doing so. No point in
2099 * replenishing it, as it's going to return back to its original
2100 * scheduling class after this. If it has been throttled, we need to
2101 * clear the flag, otherwise the task may wake up as throttled after
2102 * being boosted again with no means to replenish the runtime and clear
2103 * the throttle.
2104 */
2105 p->dl.dl_throttled = 0;
2106 if (!(flags & ENQUEUE_REPLENISH))
2107 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2108 task_pid_nr(p));
2109
2110 return;
2111 }
2112
2113 check_schedstat_required();
2114 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2115
2116 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2117 flags |= ENQUEUE_MIGRATING;
2118
2119 enqueue_dl_entity(&p->dl, flags);
2120
2121 if (dl_server(&p->dl))
2122 return;
2123
2124 if (task_is_blocked(p))
2125 return;
2126
2127 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2128 enqueue_pushable_dl_task(rq, p);
2129 }
2130
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2131 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2132 {
2133 update_curr_dl(rq);
2134
2135 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2136 flags |= DEQUEUE_MIGRATING;
2137
2138 dequeue_dl_entity(&p->dl, flags);
2139 if (!p->dl.dl_throttled && !dl_server(&p->dl))
2140 dequeue_pushable_dl_task(rq, p);
2141
2142 return true;
2143 }
2144
2145 /*
2146 * Yield task semantic for -deadline tasks is:
2147 *
2148 * get off from the CPU until our next instance, with
2149 * a new runtime. This is of little use now, since we
2150 * don't have a bandwidth reclaiming mechanism. Anyway,
2151 * bandwidth reclaiming is planned for the future, and
2152 * yield_task_dl will indicate that some spare budget
2153 * is available for other task instances to use it.
2154 */
yield_task_dl(struct rq * rq)2155 static void yield_task_dl(struct rq *rq)
2156 {
2157 /*
2158 * We make the task go to sleep until its current deadline by
2159 * forcing its runtime to zero. This way, update_curr_dl() stops
2160 * it and the bandwidth timer will wake it up and will give it
2161 * new scheduling parameters (thanks to dl_yielded=1).
2162 */
2163 rq->curr->dl.dl_yielded = 1;
2164
2165 update_rq_clock(rq);
2166 update_curr_dl(rq);
2167 /*
2168 * Tell update_rq_clock() that we've just updated,
2169 * so we don't do microscopic update in schedule()
2170 * and double the fastpath cost.
2171 */
2172 rq_clock_skip_update(rq);
2173 }
2174
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2175 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2176 struct rq *rq)
2177 {
2178 return (!rq->dl.dl_nr_running ||
2179 dl_time_before(p->dl.deadline,
2180 rq->dl.earliest_dl.curr));
2181 }
2182
2183 static int find_later_rq(struct task_struct *task);
2184
2185 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2186 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2187 {
2188 struct task_struct *curr, *donor;
2189 bool select_rq;
2190 struct rq *rq;
2191
2192 if (!(flags & WF_TTWU))
2193 goto out;
2194
2195 rq = cpu_rq(cpu);
2196
2197 rcu_read_lock();
2198 curr = READ_ONCE(rq->curr); /* unlocked access */
2199 donor = READ_ONCE(rq->donor);
2200
2201 /*
2202 * If we are dealing with a -deadline task, we must
2203 * decide where to wake it up.
2204 * If it has a later deadline and the current task
2205 * on this rq can't move (provided the waking task
2206 * can!) we prefer to send it somewhere else. On the
2207 * other hand, if it has a shorter deadline, we
2208 * try to make it stay here, it might be important.
2209 */
2210 select_rq = unlikely(dl_task(donor)) &&
2211 (curr->nr_cpus_allowed < 2 ||
2212 !dl_entity_preempt(&p->dl, &donor->dl)) &&
2213 p->nr_cpus_allowed > 1;
2214
2215 /*
2216 * Take the capacity of the CPU into account to
2217 * ensure it fits the requirement of the task.
2218 */
2219 if (sched_asym_cpucap_active())
2220 select_rq |= !dl_task_fits_capacity(p, cpu);
2221
2222 if (select_rq) {
2223 int target = find_later_rq(p);
2224
2225 if (target != -1 &&
2226 dl_task_is_earliest_deadline(p, cpu_rq(target)))
2227 cpu = target;
2228 }
2229 rcu_read_unlock();
2230
2231 out:
2232 return cpu;
2233 }
2234
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2235 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2236 {
2237 struct rq_flags rf;
2238 struct rq *rq;
2239
2240 if (READ_ONCE(p->__state) != TASK_WAKING)
2241 return;
2242
2243 rq = task_rq(p);
2244 /*
2245 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2246 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2247 * rq->lock is not... So, lock it
2248 */
2249 rq_lock(rq, &rf);
2250 if (p->dl.dl_non_contending) {
2251 update_rq_clock(rq);
2252 sub_running_bw(&p->dl, &rq->dl);
2253 p->dl.dl_non_contending = 0;
2254 /*
2255 * If the timer handler is currently running and the
2256 * timer cannot be canceled, inactive_task_timer()
2257 * will see that dl_not_contending is not set, and
2258 * will not touch the rq's active utilization,
2259 * so we are still safe.
2260 */
2261 cancel_inactive_timer(&p->dl);
2262 }
2263 sub_rq_bw(&p->dl, &rq->dl);
2264 rq_unlock(rq, &rf);
2265 }
2266
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2267 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2268 {
2269 /*
2270 * Current can't be migrated, useless to reschedule,
2271 * let's hope p can move out.
2272 */
2273 if (rq->curr->nr_cpus_allowed == 1 ||
2274 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2275 return;
2276
2277 /*
2278 * p is migratable, so let's not schedule it and
2279 * see if it is pushed or pulled somewhere else.
2280 */
2281 if (p->nr_cpus_allowed != 1 &&
2282 cpudl_find(&rq->rd->cpudl, p, NULL))
2283 return;
2284
2285 resched_curr(rq);
2286 }
2287
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2288 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2289 {
2290 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2291 /*
2292 * This is OK, because current is on_cpu, which avoids it being
2293 * picked for load-balance and preemption/IRQs are still
2294 * disabled avoiding further scheduler activity on it and we've
2295 * not yet started the picking loop.
2296 */
2297 rq_unpin_lock(rq, rf);
2298 pull_dl_task(rq);
2299 rq_repin_lock(rq, rf);
2300 }
2301
2302 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2303 }
2304
2305 /*
2306 * Only called when both the current and waking task are -deadline
2307 * tasks.
2308 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2309 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2310 int flags)
2311 {
2312 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2313 resched_curr(rq);
2314 return;
2315 }
2316
2317 /*
2318 * In the unlikely case current and p have the same deadline
2319 * let us try to decide what's the best thing to do...
2320 */
2321 if ((p->dl.deadline == rq->donor->dl.deadline) &&
2322 !test_tsk_need_resched(rq->curr))
2323 check_preempt_equal_dl(rq, p);
2324 }
2325
2326 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2327 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2328 {
2329 hrtick_start(rq, dl_se->runtime);
2330 }
2331 #else /* !CONFIG_SCHED_HRTICK: */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2332 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2333 {
2334 }
2335 #endif /* !CONFIG_SCHED_HRTICK */
2336
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2337 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2338 {
2339 struct sched_dl_entity *dl_se = &p->dl;
2340 struct dl_rq *dl_rq = &rq->dl;
2341
2342 p->se.exec_start = rq_clock_task(rq);
2343 if (on_dl_rq(&p->dl))
2344 update_stats_wait_end_dl(dl_rq, dl_se);
2345
2346 /* You can't push away the running task */
2347 dequeue_pushable_dl_task(rq, p);
2348
2349 if (!first)
2350 return;
2351
2352 if (rq->donor->sched_class != &dl_sched_class)
2353 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2354
2355 deadline_queue_push_tasks(rq);
2356
2357 if (hrtick_enabled_dl(rq))
2358 start_hrtick_dl(rq, &p->dl);
2359 }
2360
pick_next_dl_entity(struct dl_rq * dl_rq)2361 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2362 {
2363 struct rb_node *left = rb_first_cached(&dl_rq->root);
2364
2365 if (!left)
2366 return NULL;
2367
2368 return __node_2_dle(left);
2369 }
2370
2371 /*
2372 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2373 * @rq: The runqueue to pick the next task from.
2374 */
__pick_task_dl(struct rq * rq)2375 static struct task_struct *__pick_task_dl(struct rq *rq)
2376 {
2377 struct sched_dl_entity *dl_se;
2378 struct dl_rq *dl_rq = &rq->dl;
2379 struct task_struct *p;
2380
2381 again:
2382 if (!sched_dl_runnable(rq))
2383 return NULL;
2384
2385 dl_se = pick_next_dl_entity(dl_rq);
2386 WARN_ON_ONCE(!dl_se);
2387
2388 if (dl_server(dl_se)) {
2389 p = dl_se->server_pick_task(dl_se);
2390 if (!p) {
2391 if (!dl_server_stopped(dl_se)) {
2392 dl_se->dl_yielded = 1;
2393 update_curr_dl_se(rq, dl_se, 0);
2394 }
2395 goto again;
2396 }
2397 rq->dl_server = dl_se;
2398 } else {
2399 p = dl_task_of(dl_se);
2400 }
2401
2402 return p;
2403 }
2404
pick_task_dl(struct rq * rq)2405 static struct task_struct *pick_task_dl(struct rq *rq)
2406 {
2407 return __pick_task_dl(rq);
2408 }
2409
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2410 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2411 {
2412 struct sched_dl_entity *dl_se = &p->dl;
2413 struct dl_rq *dl_rq = &rq->dl;
2414
2415 if (on_dl_rq(&p->dl))
2416 update_stats_wait_start_dl(dl_rq, dl_se);
2417
2418 update_curr_dl(rq);
2419
2420 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2421
2422 if (task_is_blocked(p))
2423 return;
2424
2425 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2426 enqueue_pushable_dl_task(rq, p);
2427 }
2428
2429 /*
2430 * scheduler tick hitting a task of our scheduling class.
2431 *
2432 * NOTE: This function can be called remotely by the tick offload that
2433 * goes along full dynticks. Therefore no local assumption can be made
2434 * and everything must be accessed through the @rq and @curr passed in
2435 * parameters.
2436 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2437 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2438 {
2439 update_curr_dl(rq);
2440
2441 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2442 /*
2443 * Even when we have runtime, update_curr_dl() might have resulted in us
2444 * not being the leftmost task anymore. In that case NEED_RESCHED will
2445 * be set and schedule() will start a new hrtick for the next task.
2446 */
2447 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2448 is_leftmost(&p->dl, &rq->dl))
2449 start_hrtick_dl(rq, &p->dl);
2450 }
2451
task_fork_dl(struct task_struct * p)2452 static void task_fork_dl(struct task_struct *p)
2453 {
2454 /*
2455 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2456 * sched_fork()
2457 */
2458 }
2459
2460 /* Only try algorithms three times */
2461 #define DL_MAX_TRIES 3
2462
2463 /*
2464 * Return the earliest pushable rq's task, which is suitable to be executed
2465 * on the CPU, NULL otherwise:
2466 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2467 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2468 {
2469 struct task_struct *p = NULL;
2470 struct rb_node *next_node;
2471
2472 if (!has_pushable_dl_tasks(rq))
2473 return NULL;
2474
2475 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2476 while (next_node) {
2477 p = __node_2_pdl(next_node);
2478
2479 if (task_is_pushable(rq, p, cpu))
2480 return p;
2481
2482 next_node = rb_next(next_node);
2483 }
2484
2485 return NULL;
2486 }
2487
2488 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2489
find_later_rq(struct task_struct * task)2490 static int find_later_rq(struct task_struct *task)
2491 {
2492 struct sched_domain *sd;
2493 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2494 int this_cpu = smp_processor_id();
2495 int cpu = task_cpu(task);
2496
2497 /* Make sure the mask is initialized first */
2498 if (unlikely(!later_mask))
2499 return -1;
2500
2501 if (task->nr_cpus_allowed == 1)
2502 return -1;
2503
2504 /*
2505 * We have to consider system topology and task affinity
2506 * first, then we can look for a suitable CPU.
2507 */
2508 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2509 return -1;
2510
2511 /*
2512 * If we are here, some targets have been found, including
2513 * the most suitable which is, among the runqueues where the
2514 * current tasks have later deadlines than the task's one, the
2515 * rq with the latest possible one.
2516 *
2517 * Now we check how well this matches with task's
2518 * affinity and system topology.
2519 *
2520 * The last CPU where the task run is our first
2521 * guess, since it is most likely cache-hot there.
2522 */
2523 if (cpumask_test_cpu(cpu, later_mask))
2524 return cpu;
2525 /*
2526 * Check if this_cpu is to be skipped (i.e., it is
2527 * not in the mask) or not.
2528 */
2529 if (!cpumask_test_cpu(this_cpu, later_mask))
2530 this_cpu = -1;
2531
2532 rcu_read_lock();
2533 for_each_domain(cpu, sd) {
2534 if (sd->flags & SD_WAKE_AFFINE) {
2535 int best_cpu;
2536
2537 /*
2538 * If possible, preempting this_cpu is
2539 * cheaper than migrating.
2540 */
2541 if (this_cpu != -1 &&
2542 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2543 rcu_read_unlock();
2544 return this_cpu;
2545 }
2546
2547 best_cpu = cpumask_any_and_distribute(later_mask,
2548 sched_domain_span(sd));
2549 /*
2550 * Last chance: if a CPU being in both later_mask
2551 * and current sd span is valid, that becomes our
2552 * choice. Of course, the latest possible CPU is
2553 * already under consideration through later_mask.
2554 */
2555 if (best_cpu < nr_cpu_ids) {
2556 rcu_read_unlock();
2557 return best_cpu;
2558 }
2559 }
2560 }
2561 rcu_read_unlock();
2562
2563 /*
2564 * At this point, all our guesses failed, we just return
2565 * 'something', and let the caller sort the things out.
2566 */
2567 if (this_cpu != -1)
2568 return this_cpu;
2569
2570 cpu = cpumask_any_distribute(later_mask);
2571 if (cpu < nr_cpu_ids)
2572 return cpu;
2573
2574 return -1;
2575 }
2576
2577 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2578 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2579 {
2580 struct rq *later_rq = NULL;
2581 int tries;
2582 int cpu;
2583
2584 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2585 cpu = find_later_rq(task);
2586
2587 if ((cpu == -1) || (cpu == rq->cpu))
2588 break;
2589
2590 later_rq = cpu_rq(cpu);
2591
2592 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2593 /*
2594 * Target rq has tasks of equal or earlier deadline,
2595 * retrying does not release any lock and is unlikely
2596 * to yield a different result.
2597 */
2598 later_rq = NULL;
2599 break;
2600 }
2601
2602 /* Retry if something changed. */
2603 if (double_lock_balance(rq, later_rq)) {
2604 if (unlikely(task_rq(task) != rq ||
2605 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2606 task_on_cpu(rq, task) ||
2607 !dl_task(task) ||
2608 is_migration_disabled(task) ||
2609 !task_on_rq_queued(task))) {
2610 double_unlock_balance(rq, later_rq);
2611 later_rq = NULL;
2612 break;
2613 }
2614 }
2615
2616 /*
2617 * If the rq we found has no -deadline task, or
2618 * its earliest one has a later deadline than our
2619 * task, the rq is a good one.
2620 */
2621 if (dl_task_is_earliest_deadline(task, later_rq))
2622 break;
2623
2624 /* Otherwise we try again. */
2625 double_unlock_balance(rq, later_rq);
2626 later_rq = NULL;
2627 }
2628
2629 return later_rq;
2630 }
2631
pick_next_pushable_dl_task(struct rq * rq)2632 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2633 {
2634 struct task_struct *p;
2635
2636 if (!has_pushable_dl_tasks(rq))
2637 return NULL;
2638
2639 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2640
2641 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2642 WARN_ON_ONCE(task_current(rq, p));
2643 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2644
2645 WARN_ON_ONCE(!task_on_rq_queued(p));
2646 WARN_ON_ONCE(!dl_task(p));
2647
2648 return p;
2649 }
2650
2651 /*
2652 * See if the non running -deadline tasks on this rq
2653 * can be sent to some other CPU where they can preempt
2654 * and start executing.
2655 */
push_dl_task(struct rq * rq)2656 static int push_dl_task(struct rq *rq)
2657 {
2658 struct task_struct *next_task;
2659 struct rq *later_rq;
2660 int ret = 0;
2661
2662 next_task = pick_next_pushable_dl_task(rq);
2663 if (!next_task)
2664 return 0;
2665
2666 retry:
2667 /*
2668 * If next_task preempts rq->curr, and rq->curr
2669 * can move away, it makes sense to just reschedule
2670 * without going further in pushing next_task.
2671 */
2672 if (dl_task(rq->donor) &&
2673 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2674 rq->curr->nr_cpus_allowed > 1) {
2675 resched_curr(rq);
2676 return 0;
2677 }
2678
2679 if (is_migration_disabled(next_task))
2680 return 0;
2681
2682 if (WARN_ON(next_task == rq->curr))
2683 return 0;
2684
2685 /* We might release rq lock */
2686 get_task_struct(next_task);
2687
2688 /* Will lock the rq it'll find */
2689 later_rq = find_lock_later_rq(next_task, rq);
2690 if (!later_rq) {
2691 struct task_struct *task;
2692
2693 /*
2694 * We must check all this again, since
2695 * find_lock_later_rq releases rq->lock and it is
2696 * then possible that next_task has migrated.
2697 */
2698 task = pick_next_pushable_dl_task(rq);
2699 if (task == next_task) {
2700 /*
2701 * The task is still there. We don't try
2702 * again, some other CPU will pull it when ready.
2703 */
2704 goto out;
2705 }
2706
2707 if (!task)
2708 /* No more tasks */
2709 goto out;
2710
2711 put_task_struct(next_task);
2712 next_task = task;
2713 goto retry;
2714 }
2715
2716 move_queued_task_locked(rq, later_rq, next_task);
2717 ret = 1;
2718
2719 resched_curr(later_rq);
2720
2721 double_unlock_balance(rq, later_rq);
2722
2723 out:
2724 put_task_struct(next_task);
2725
2726 return ret;
2727 }
2728
push_dl_tasks(struct rq * rq)2729 static void push_dl_tasks(struct rq *rq)
2730 {
2731 /* push_dl_task() will return true if it moved a -deadline task */
2732 while (push_dl_task(rq))
2733 ;
2734 }
2735
pull_dl_task(struct rq * this_rq)2736 static void pull_dl_task(struct rq *this_rq)
2737 {
2738 int this_cpu = this_rq->cpu, cpu;
2739 struct task_struct *p, *push_task;
2740 bool resched = false;
2741 struct rq *src_rq;
2742 u64 dmin = LONG_MAX;
2743
2744 if (likely(!dl_overloaded(this_rq)))
2745 return;
2746
2747 /*
2748 * Match the barrier from dl_set_overloaded; this guarantees that if we
2749 * see overloaded we must also see the dlo_mask bit.
2750 */
2751 smp_rmb();
2752
2753 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2754 if (this_cpu == cpu)
2755 continue;
2756
2757 src_rq = cpu_rq(cpu);
2758
2759 /*
2760 * It looks racy, and it is! However, as in sched_rt.c,
2761 * we are fine with this.
2762 */
2763 if (this_rq->dl.dl_nr_running &&
2764 dl_time_before(this_rq->dl.earliest_dl.curr,
2765 src_rq->dl.earliest_dl.next))
2766 continue;
2767
2768 /* Might drop this_rq->lock */
2769 push_task = NULL;
2770 double_lock_balance(this_rq, src_rq);
2771
2772 /*
2773 * If there are no more pullable tasks on the
2774 * rq, we're done with it.
2775 */
2776 if (src_rq->dl.dl_nr_running <= 1)
2777 goto skip;
2778
2779 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2780
2781 /*
2782 * We found a task to be pulled if:
2783 * - it preempts our current (if there's one),
2784 * - it will preempt the last one we pulled (if any).
2785 */
2786 if (p && dl_time_before(p->dl.deadline, dmin) &&
2787 dl_task_is_earliest_deadline(p, this_rq)) {
2788 WARN_ON(p == src_rq->curr);
2789 WARN_ON(!task_on_rq_queued(p));
2790
2791 /*
2792 * Then we pull iff p has actually an earlier
2793 * deadline than the current task of its runqueue.
2794 */
2795 if (dl_time_before(p->dl.deadline,
2796 src_rq->donor->dl.deadline))
2797 goto skip;
2798
2799 if (is_migration_disabled(p)) {
2800 push_task = get_push_task(src_rq);
2801 } else {
2802 move_queued_task_locked(src_rq, this_rq, p);
2803 dmin = p->dl.deadline;
2804 resched = true;
2805 }
2806
2807 /* Is there any other task even earlier? */
2808 }
2809 skip:
2810 double_unlock_balance(this_rq, src_rq);
2811
2812 if (push_task) {
2813 preempt_disable();
2814 raw_spin_rq_unlock(this_rq);
2815 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2816 push_task, &src_rq->push_work);
2817 preempt_enable();
2818 raw_spin_rq_lock(this_rq);
2819 }
2820 }
2821
2822 if (resched)
2823 resched_curr(this_rq);
2824 }
2825
2826 /*
2827 * Since the task is not running and a reschedule is not going to happen
2828 * anytime soon on its runqueue, we try pushing it away now.
2829 */
task_woken_dl(struct rq * rq,struct task_struct * p)2830 static void task_woken_dl(struct rq *rq, struct task_struct *p)
2831 {
2832 if (!task_on_cpu(rq, p) &&
2833 !test_tsk_need_resched(rq->curr) &&
2834 p->nr_cpus_allowed > 1 &&
2835 dl_task(rq->donor) &&
2836 (rq->curr->nr_cpus_allowed < 2 ||
2837 !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2838 push_dl_tasks(rq);
2839 }
2840 }
2841
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)2842 static void set_cpus_allowed_dl(struct task_struct *p,
2843 struct affinity_context *ctx)
2844 {
2845 struct root_domain *src_rd;
2846 struct rq *rq;
2847
2848 WARN_ON_ONCE(!dl_task(p));
2849
2850 rq = task_rq(p);
2851 src_rd = rq->rd;
2852 /*
2853 * Migrating a SCHED_DEADLINE task between exclusive
2854 * cpusets (different root_domains) entails a bandwidth
2855 * update. We already made space for us in the destination
2856 * domain (see cpuset_can_attach()).
2857 */
2858 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2859 struct dl_bw *src_dl_b;
2860
2861 src_dl_b = dl_bw_of(cpu_of(rq));
2862 /*
2863 * We now free resources of the root_domain we are migrating
2864 * off. In the worst case, sched_setattr() may temporary fail
2865 * until we complete the update.
2866 */
2867 raw_spin_lock(&src_dl_b->lock);
2868 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2869 raw_spin_unlock(&src_dl_b->lock);
2870 }
2871
2872 set_cpus_allowed_common(p, ctx);
2873 }
2874
2875 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)2876 static void rq_online_dl(struct rq *rq)
2877 {
2878 if (rq->dl.overloaded)
2879 dl_set_overload(rq);
2880
2881 cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2882 if (rq->dl.dl_nr_running > 0)
2883 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2884 }
2885
2886 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)2887 static void rq_offline_dl(struct rq *rq)
2888 {
2889 if (rq->dl.overloaded)
2890 dl_clear_overload(rq);
2891
2892 cpudl_clear(&rq->rd->cpudl, rq->cpu);
2893 cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2894 }
2895
init_sched_dl_class(void)2896 void __init init_sched_dl_class(void)
2897 {
2898 unsigned int i;
2899
2900 for_each_possible_cpu(i)
2901 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2902 GFP_KERNEL, cpu_to_node(i));
2903 }
2904
dl_add_task_root_domain(struct task_struct * p)2905 void dl_add_task_root_domain(struct task_struct *p)
2906 {
2907 struct rq_flags rf;
2908 struct rq *rq;
2909 struct dl_bw *dl_b;
2910
2911 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2912 if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
2913 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2914 return;
2915 }
2916
2917 rq = __task_rq_lock(p, &rf);
2918
2919 dl_b = &rq->rd->dl_bw;
2920 raw_spin_lock(&dl_b->lock);
2921
2922 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2923
2924 raw_spin_unlock(&dl_b->lock);
2925
2926 task_rq_unlock(rq, p, &rf);
2927 }
2928
dl_clear_root_domain(struct root_domain * rd)2929 void dl_clear_root_domain(struct root_domain *rd)
2930 {
2931 int i;
2932
2933 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
2934
2935 /*
2936 * Reset total_bw to zero and extra_bw to max_bw so that next
2937 * loop will add dl-servers contributions back properly,
2938 */
2939 rd->dl_bw.total_bw = 0;
2940 for_each_cpu(i, rd->span)
2941 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
2942
2943 /*
2944 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
2945 * them, we need to account for them here explicitly.
2946 */
2947 for_each_cpu(i, rd->span) {
2948 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
2949
2950 if (dl_server(dl_se) && cpu_active(i))
2951 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
2952 }
2953 }
2954
dl_clear_root_domain_cpu(int cpu)2955 void dl_clear_root_domain_cpu(int cpu)
2956 {
2957 dl_clear_root_domain(cpu_rq(cpu)->rd);
2958 }
2959
switched_from_dl(struct rq * rq,struct task_struct * p)2960 static void switched_from_dl(struct rq *rq, struct task_struct *p)
2961 {
2962 /*
2963 * task_non_contending() can start the "inactive timer" (if the 0-lag
2964 * time is in the future). If the task switches back to dl before
2965 * the "inactive timer" fires, it can continue to consume its current
2966 * runtime using its current deadline. If it stays outside of
2967 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2968 * will reset the task parameters.
2969 */
2970 if (task_on_rq_queued(p) && p->dl.dl_runtime)
2971 task_non_contending(&p->dl);
2972
2973 /*
2974 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2975 * keep track of that on its cpuset (for correct bandwidth tracking).
2976 */
2977 dec_dl_tasks_cs(p);
2978
2979 if (!task_on_rq_queued(p)) {
2980 /*
2981 * Inactive timer is armed. However, p is leaving DEADLINE and
2982 * might migrate away from this rq while continuing to run on
2983 * some other class. We need to remove its contribution from
2984 * this rq running_bw now, or sub_rq_bw (below) will complain.
2985 */
2986 if (p->dl.dl_non_contending)
2987 sub_running_bw(&p->dl, &rq->dl);
2988 sub_rq_bw(&p->dl, &rq->dl);
2989 }
2990
2991 /*
2992 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2993 * at the 0-lag time, because the task could have been migrated
2994 * while SCHED_OTHER in the meanwhile.
2995 */
2996 if (p->dl.dl_non_contending)
2997 p->dl.dl_non_contending = 0;
2998
2999 /*
3000 * Since this might be the only -deadline task on the rq,
3001 * this is the right place to try to pull some other one
3002 * from an overloaded CPU, if any.
3003 */
3004 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3005 return;
3006
3007 deadline_queue_pull_task(rq);
3008 }
3009
3010 /*
3011 * When switching to -deadline, we may overload the rq, then
3012 * we try to push someone off, if possible.
3013 */
switched_to_dl(struct rq * rq,struct task_struct * p)3014 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3015 {
3016 cancel_inactive_timer(&p->dl);
3017
3018 /*
3019 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3020 * track of that on its cpuset (for correct bandwidth tracking).
3021 */
3022 inc_dl_tasks_cs(p);
3023
3024 /* If p is not queued we will update its parameters at next wakeup. */
3025 if (!task_on_rq_queued(p)) {
3026 add_rq_bw(&p->dl, &rq->dl);
3027
3028 return;
3029 }
3030
3031 if (rq->donor != p) {
3032 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3033 deadline_queue_push_tasks(rq);
3034 if (dl_task(rq->donor))
3035 wakeup_preempt_dl(rq, p, 0);
3036 else
3037 resched_curr(rq);
3038 } else {
3039 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3040 }
3041 }
3042
3043 /*
3044 * If the scheduling parameters of a -deadline task changed,
3045 * a push or pull operation might be needed.
3046 */
prio_changed_dl(struct rq * rq,struct task_struct * p,int oldprio)3047 static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3048 int oldprio)
3049 {
3050 if (!task_on_rq_queued(p))
3051 return;
3052
3053 /*
3054 * This might be too much, but unfortunately
3055 * we don't have the old deadline value, and
3056 * we can't argue if the task is increasing
3057 * or lowering its prio, so...
3058 */
3059 if (!rq->dl.overloaded)
3060 deadline_queue_pull_task(rq);
3061
3062 if (task_current_donor(rq, p)) {
3063 /*
3064 * If we now have a earlier deadline task than p,
3065 * then reschedule, provided p is still on this
3066 * runqueue.
3067 */
3068 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3069 resched_curr(rq);
3070 } else {
3071 /*
3072 * Current may not be deadline in case p was throttled but we
3073 * have just replenished it (e.g. rt_mutex_setprio()).
3074 *
3075 * Otherwise, if p was given an earlier deadline, reschedule.
3076 */
3077 if (!dl_task(rq->curr) ||
3078 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3079 resched_curr(rq);
3080 }
3081 }
3082
3083 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3084 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3085 {
3086 return p->dl.dl_throttled;
3087 }
3088 #endif
3089
3090 DEFINE_SCHED_CLASS(dl) = {
3091
3092 .enqueue_task = enqueue_task_dl,
3093 .dequeue_task = dequeue_task_dl,
3094 .yield_task = yield_task_dl,
3095
3096 .wakeup_preempt = wakeup_preempt_dl,
3097
3098 .pick_task = pick_task_dl,
3099 .put_prev_task = put_prev_task_dl,
3100 .set_next_task = set_next_task_dl,
3101
3102 .balance = balance_dl,
3103 .select_task_rq = select_task_rq_dl,
3104 .migrate_task_rq = migrate_task_rq_dl,
3105 .set_cpus_allowed = set_cpus_allowed_dl,
3106 .rq_online = rq_online_dl,
3107 .rq_offline = rq_offline_dl,
3108 .task_woken = task_woken_dl,
3109 .find_lock_rq = find_lock_later_rq,
3110
3111 .task_tick = task_tick_dl,
3112 .task_fork = task_fork_dl,
3113
3114 .prio_changed = prio_changed_dl,
3115 .switched_from = switched_from_dl,
3116 .switched_to = switched_to_dl,
3117
3118 .update_curr = update_curr_dl,
3119 #ifdef CONFIG_SCHED_CORE
3120 .task_is_throttled = task_is_throttled_dl,
3121 #endif
3122 };
3123
3124 /*
3125 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3126 * sched_domains_mutex.
3127 */
3128 u64 dl_cookie;
3129
sched_dl_global_validate(void)3130 int sched_dl_global_validate(void)
3131 {
3132 u64 runtime = global_rt_runtime();
3133 u64 period = global_rt_period();
3134 u64 new_bw = to_ratio(period, runtime);
3135 u64 cookie = ++dl_cookie;
3136 struct dl_bw *dl_b;
3137 int cpu, cpus, ret = 0;
3138 unsigned long flags;
3139
3140 /*
3141 * Here we want to check the bandwidth not being set to some
3142 * value smaller than the currently allocated bandwidth in
3143 * any of the root_domains.
3144 */
3145 for_each_online_cpu(cpu) {
3146 rcu_read_lock_sched();
3147
3148 if (dl_bw_visited(cpu, cookie))
3149 goto next;
3150
3151 dl_b = dl_bw_of(cpu);
3152 cpus = dl_bw_cpus(cpu);
3153
3154 raw_spin_lock_irqsave(&dl_b->lock, flags);
3155 if (new_bw * cpus < dl_b->total_bw)
3156 ret = -EBUSY;
3157 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3158
3159 next:
3160 rcu_read_unlock_sched();
3161
3162 if (ret)
3163 break;
3164 }
3165
3166 return ret;
3167 }
3168
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3169 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3170 {
3171 if (global_rt_runtime() == RUNTIME_INF) {
3172 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3173 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3174 } else {
3175 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3176 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3177 dl_rq->max_bw = dl_rq->extra_bw =
3178 to_ratio(global_rt_period(), global_rt_runtime());
3179 }
3180 }
3181
sched_dl_do_global(void)3182 void sched_dl_do_global(void)
3183 {
3184 u64 new_bw = -1;
3185 u64 cookie = ++dl_cookie;
3186 struct dl_bw *dl_b;
3187 int cpu;
3188 unsigned long flags;
3189
3190 if (global_rt_runtime() != RUNTIME_INF)
3191 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3192
3193 for_each_possible_cpu(cpu)
3194 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3195
3196 for_each_possible_cpu(cpu) {
3197 rcu_read_lock_sched();
3198
3199 if (dl_bw_visited(cpu, cookie)) {
3200 rcu_read_unlock_sched();
3201 continue;
3202 }
3203
3204 dl_b = dl_bw_of(cpu);
3205
3206 raw_spin_lock_irqsave(&dl_b->lock, flags);
3207 dl_b->bw = new_bw;
3208 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3209
3210 rcu_read_unlock_sched();
3211 }
3212 }
3213
3214 /*
3215 * We must be sure that accepting a new task (or allowing changing the
3216 * parameters of an existing one) is consistent with the bandwidth
3217 * constraints. If yes, this function also accordingly updates the currently
3218 * allocated bandwidth to reflect the new situation.
3219 *
3220 * This function is called while holding p's rq->lock.
3221 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3222 int sched_dl_overflow(struct task_struct *p, int policy,
3223 const struct sched_attr *attr)
3224 {
3225 u64 period = attr->sched_period ?: attr->sched_deadline;
3226 u64 runtime = attr->sched_runtime;
3227 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3228 int cpus, err = -1, cpu = task_cpu(p);
3229 struct dl_bw *dl_b = dl_bw_of(cpu);
3230 unsigned long cap;
3231
3232 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3233 return 0;
3234
3235 /* !deadline task may carry old deadline bandwidth */
3236 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3237 return 0;
3238
3239 /*
3240 * Either if a task, enters, leave, or stays -deadline but changes
3241 * its parameters, we may need to update accordingly the total
3242 * allocated bandwidth of the container.
3243 */
3244 raw_spin_lock(&dl_b->lock);
3245 cpus = dl_bw_cpus(cpu);
3246 cap = dl_bw_capacity(cpu);
3247
3248 if (dl_policy(policy) && !task_has_dl_policy(p) &&
3249 !__dl_overflow(dl_b, cap, 0, new_bw)) {
3250 if (hrtimer_active(&p->dl.inactive_timer))
3251 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3252 __dl_add(dl_b, new_bw, cpus);
3253 err = 0;
3254 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
3255 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3256 /*
3257 * XXX this is slightly incorrect: when the task
3258 * utilization decreases, we should delay the total
3259 * utilization change until the task's 0-lag point.
3260 * But this would require to set the task's "inactive
3261 * timer" when the task is not inactive.
3262 */
3263 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3264 __dl_add(dl_b, new_bw, cpus);
3265 dl_change_utilization(p, new_bw);
3266 err = 0;
3267 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3268 /*
3269 * Do not decrease the total deadline utilization here,
3270 * switched_from_dl() will take care to do it at the correct
3271 * (0-lag) time.
3272 */
3273 err = 0;
3274 }
3275 raw_spin_unlock(&dl_b->lock);
3276
3277 return err;
3278 }
3279
3280 /*
3281 * This function initializes the sched_dl_entity of a newly becoming
3282 * SCHED_DEADLINE task.
3283 *
3284 * Only the static values are considered here, the actual runtime and the
3285 * absolute deadline will be properly calculated when the task is enqueued
3286 * for the first time with its new policy.
3287 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3288 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3289 {
3290 struct sched_dl_entity *dl_se = &p->dl;
3291
3292 dl_se->dl_runtime = attr->sched_runtime;
3293 dl_se->dl_deadline = attr->sched_deadline;
3294 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3295 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3296 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3297 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3298 }
3299
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3300 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3301 {
3302 struct sched_dl_entity *dl_se = &p->dl;
3303
3304 attr->sched_priority = p->rt_priority;
3305 attr->sched_runtime = dl_se->dl_runtime;
3306 attr->sched_deadline = dl_se->dl_deadline;
3307 attr->sched_period = dl_se->dl_period;
3308 attr->sched_flags &= ~SCHED_DL_FLAGS;
3309 attr->sched_flags |= dl_se->flags;
3310 }
3311
3312 /*
3313 * This function validates the new parameters of a -deadline task.
3314 * We ask for the deadline not being zero, and greater or equal
3315 * than the runtime, as well as the period of being zero or
3316 * greater than deadline. Furthermore, we have to be sure that
3317 * user parameters are above the internal resolution of 1us (we
3318 * check sched_runtime only since it is always the smaller one) and
3319 * below 2^63 ns (we have to check both sched_deadline and
3320 * sched_period, as the latter can be zero).
3321 */
__checkparam_dl(const struct sched_attr * attr)3322 bool __checkparam_dl(const struct sched_attr *attr)
3323 {
3324 u64 period, max, min;
3325
3326 /* special dl tasks don't actually use any parameter */
3327 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3328 return true;
3329
3330 /* deadline != 0 */
3331 if (attr->sched_deadline == 0)
3332 return false;
3333
3334 /*
3335 * Since we truncate DL_SCALE bits, make sure we're at least
3336 * that big.
3337 */
3338 if (attr->sched_runtime < (1ULL << DL_SCALE))
3339 return false;
3340
3341 /*
3342 * Since we use the MSB for wrap-around and sign issues, make
3343 * sure it's not set (mind that period can be equal to zero).
3344 */
3345 if (attr->sched_deadline & (1ULL << 63) ||
3346 attr->sched_period & (1ULL << 63))
3347 return false;
3348
3349 period = attr->sched_period;
3350 if (!period)
3351 period = attr->sched_deadline;
3352
3353 /* runtime <= deadline <= period (if period != 0) */
3354 if (period < attr->sched_deadline ||
3355 attr->sched_deadline < attr->sched_runtime)
3356 return false;
3357
3358 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3359 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3360
3361 if (period < min || period > max)
3362 return false;
3363
3364 return true;
3365 }
3366
3367 /*
3368 * This function clears the sched_dl_entity static params.
3369 */
__dl_clear_params(struct sched_dl_entity * dl_se)3370 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3371 {
3372 dl_se->dl_runtime = 0;
3373 dl_se->dl_deadline = 0;
3374 dl_se->dl_period = 0;
3375 dl_se->flags = 0;
3376 dl_se->dl_bw = 0;
3377 dl_se->dl_density = 0;
3378
3379 dl_se->dl_throttled = 0;
3380 dl_se->dl_yielded = 0;
3381 dl_se->dl_non_contending = 0;
3382 dl_se->dl_overrun = 0;
3383 dl_se->dl_server = 0;
3384
3385 #ifdef CONFIG_RT_MUTEXES
3386 dl_se->pi_se = dl_se;
3387 #endif
3388 }
3389
init_dl_entity(struct sched_dl_entity * dl_se)3390 void init_dl_entity(struct sched_dl_entity *dl_se)
3391 {
3392 RB_CLEAR_NODE(&dl_se->rb_node);
3393 init_dl_task_timer(dl_se);
3394 init_dl_inactive_task_timer(dl_se);
3395 __dl_clear_params(dl_se);
3396 }
3397
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3398 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3399 {
3400 struct sched_dl_entity *dl_se = &p->dl;
3401
3402 if (dl_se->dl_runtime != attr->sched_runtime ||
3403 dl_se->dl_deadline != attr->sched_deadline ||
3404 dl_se->dl_period != attr->sched_period ||
3405 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3406 return true;
3407
3408 return false;
3409 }
3410
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3411 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3412 const struct cpumask *trial)
3413 {
3414 unsigned long flags, cap;
3415 struct dl_bw *cur_dl_b;
3416 int ret = 1;
3417
3418 rcu_read_lock_sched();
3419 cur_dl_b = dl_bw_of(cpumask_any(cur));
3420 cap = __dl_bw_capacity(trial);
3421 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3422 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3423 ret = 0;
3424 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3425 rcu_read_unlock_sched();
3426
3427 return ret;
3428 }
3429
3430 enum dl_bw_request {
3431 dl_bw_req_deactivate = 0,
3432 dl_bw_req_alloc,
3433 dl_bw_req_free
3434 };
3435
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3436 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3437 {
3438 unsigned long flags, cap;
3439 struct dl_bw *dl_b;
3440 bool overflow = 0;
3441 u64 fair_server_bw = 0;
3442
3443 rcu_read_lock_sched();
3444 dl_b = dl_bw_of(cpu);
3445 raw_spin_lock_irqsave(&dl_b->lock, flags);
3446
3447 cap = dl_bw_capacity(cpu);
3448 switch (req) {
3449 case dl_bw_req_free:
3450 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3451 break;
3452 case dl_bw_req_alloc:
3453 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3454
3455 if (!overflow) {
3456 /*
3457 * We reserve space in the destination
3458 * root_domain, as we can't fail after this point.
3459 * We will free resources in the source root_domain
3460 * later on (see set_cpus_allowed_dl()).
3461 */
3462 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3463 }
3464 break;
3465 case dl_bw_req_deactivate:
3466 /*
3467 * cpu is not off yet, but we need to do the math by
3468 * considering it off already (i.e., what would happen if we
3469 * turn cpu off?).
3470 */
3471 cap -= arch_scale_cpu_capacity(cpu);
3472
3473 /*
3474 * cpu is going offline and NORMAL tasks will be moved away
3475 * from it. We can thus discount dl_server bandwidth
3476 * contribution as it won't need to be servicing tasks after
3477 * the cpu is off.
3478 */
3479 if (cpu_rq(cpu)->fair_server.dl_server)
3480 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3481
3482 /*
3483 * Not much to check if no DEADLINE bandwidth is present.
3484 * dl_servers we can discount, as tasks will be moved out the
3485 * offlined CPUs anyway.
3486 */
3487 if (dl_b->total_bw - fair_server_bw > 0) {
3488 /*
3489 * Leaving at least one CPU for DEADLINE tasks seems a
3490 * wise thing to do. As said above, cpu is not offline
3491 * yet, so account for that.
3492 */
3493 if (dl_bw_cpus(cpu) - 1)
3494 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3495 else
3496 overflow = 1;
3497 }
3498
3499 break;
3500 }
3501
3502 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3503 rcu_read_unlock_sched();
3504
3505 return overflow ? -EBUSY : 0;
3506 }
3507
dl_bw_deactivate(int cpu)3508 int dl_bw_deactivate(int cpu)
3509 {
3510 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3511 }
3512
dl_bw_alloc(int cpu,u64 dl_bw)3513 int dl_bw_alloc(int cpu, u64 dl_bw)
3514 {
3515 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3516 }
3517
dl_bw_free(int cpu,u64 dl_bw)3518 void dl_bw_free(int cpu, u64 dl_bw)
3519 {
3520 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3521 }
3522
print_dl_stats(struct seq_file * m,int cpu)3523 void print_dl_stats(struct seq_file *m, int cpu)
3524 {
3525 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3526 }
3527