1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 #include "sched.h"
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 /* More than 4 hours if BW_SHIFT equals 20. */
12 static const u64 max_rt_runtime = MAX_BW;
13
14 /*
15 * period over which we measure -rt task CPU usage in us.
16 * default: 1s
17 */
18 int sysctl_sched_rt_period = 1000000;
19
20 /*
21 * part of the period that we allow rt tasks to run in us.
22 * default: 0.95s
23 */
24 int sysctl_sched_rt_runtime = 950000;
25
26 #ifdef CONFIG_SYSCTL
27 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
28 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
29 size_t *lenp, loff_t *ppos);
30 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
31 size_t *lenp, loff_t *ppos);
32 static const struct ctl_table sched_rt_sysctls[] = {
33 {
34 .procname = "sched_rt_period_us",
35 .data = &sysctl_sched_rt_period,
36 .maxlen = sizeof(int),
37 .mode = 0644,
38 .proc_handler = sched_rt_handler,
39 .extra1 = SYSCTL_ONE,
40 .extra2 = SYSCTL_INT_MAX,
41 },
42 {
43 .procname = "sched_rt_runtime_us",
44 .data = &sysctl_sched_rt_runtime,
45 .maxlen = sizeof(int),
46 .mode = 0644,
47 .proc_handler = sched_rt_handler,
48 .extra1 = SYSCTL_NEG_ONE,
49 .extra2 = (void *)&sysctl_sched_rt_period,
50 },
51 {
52 .procname = "sched_rr_timeslice_ms",
53 .data = &sysctl_sched_rr_timeslice,
54 .maxlen = sizeof(int),
55 .mode = 0644,
56 .proc_handler = sched_rr_handler,
57 },
58 };
59
sched_rt_sysctl_init(void)60 static int __init sched_rt_sysctl_init(void)
61 {
62 register_sysctl_init("kernel", sched_rt_sysctls);
63 return 0;
64 }
65 late_initcall(sched_rt_sysctl_init);
66 #endif /* CONFIG_SYSCTL */
67
init_rt_rq(struct rt_rq * rt_rq)68 void init_rt_rq(struct rt_rq *rt_rq)
69 {
70 struct rt_prio_array *array;
71 int i;
72
73 array = &rt_rq->active;
74 for (i = 0; i < MAX_RT_PRIO; i++) {
75 INIT_LIST_HEAD(array->queue + i);
76 __clear_bit(i, array->bitmap);
77 }
78 /* delimiter for bitsearch: */
79 __set_bit(MAX_RT_PRIO, array->bitmap);
80
81 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
82 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
83 rt_rq->overloaded = 0;
84 plist_head_init(&rt_rq->pushable_tasks);
85 /* We start is dequeued state, because no RT tasks are queued */
86 rt_rq->rt_queued = 0;
87
88 #ifdef CONFIG_RT_GROUP_SCHED
89 rt_rq->rt_time = 0;
90 rt_rq->rt_throttled = 0;
91 rt_rq->rt_runtime = 0;
92 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
93 rt_rq->tg = &root_task_group;
94 #endif
95 }
96
97 #ifdef CONFIG_RT_GROUP_SCHED
98
99 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
100
sched_rt_period_timer(struct hrtimer * timer)101 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
102 {
103 struct rt_bandwidth *rt_b =
104 container_of(timer, struct rt_bandwidth, rt_period_timer);
105 int idle = 0;
106 int overrun;
107
108 raw_spin_lock(&rt_b->rt_runtime_lock);
109 for (;;) {
110 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
111 if (!overrun)
112 break;
113
114 raw_spin_unlock(&rt_b->rt_runtime_lock);
115 idle = do_sched_rt_period_timer(rt_b, overrun);
116 raw_spin_lock(&rt_b->rt_runtime_lock);
117 }
118 if (idle)
119 rt_b->rt_period_active = 0;
120 raw_spin_unlock(&rt_b->rt_runtime_lock);
121
122 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
123 }
124
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)125 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
126 {
127 rt_b->rt_period = ns_to_ktime(period);
128 rt_b->rt_runtime = runtime;
129
130 raw_spin_lock_init(&rt_b->rt_runtime_lock);
131
132 hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC,
133 HRTIMER_MODE_REL_HARD);
134 }
135
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)136 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
137 {
138 raw_spin_lock(&rt_b->rt_runtime_lock);
139 if (!rt_b->rt_period_active) {
140 rt_b->rt_period_active = 1;
141 /*
142 * SCHED_DEADLINE updates the bandwidth, as a run away
143 * RT task with a DL task could hog a CPU. But DL does
144 * not reset the period. If a deadline task was running
145 * without an RT task running, it can cause RT tasks to
146 * throttle when they start up. Kick the timer right away
147 * to update the period.
148 */
149 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
150 hrtimer_start_expires(&rt_b->rt_period_timer,
151 HRTIMER_MODE_ABS_PINNED_HARD);
152 }
153 raw_spin_unlock(&rt_b->rt_runtime_lock);
154 }
155
start_rt_bandwidth(struct rt_bandwidth * rt_b)156 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
157 {
158 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
159 return;
160
161 do_start_rt_bandwidth(rt_b);
162 }
163
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)164 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
165 {
166 hrtimer_cancel(&rt_b->rt_period_timer);
167 }
168
169 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
170
rt_task_of(struct sched_rt_entity * rt_se)171 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
172 {
173 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
174
175 return container_of(rt_se, struct task_struct, rt);
176 }
177
rq_of_rt_rq(struct rt_rq * rt_rq)178 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
179 {
180 /* Cannot fold with non-CONFIG_RT_GROUP_SCHED version, layout */
181 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
182 return rt_rq->rq;
183 }
184
rt_rq_of_se(struct sched_rt_entity * rt_se)185 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
186 {
187 WARN_ON(!rt_group_sched_enabled() && rt_se->rt_rq->tg != &root_task_group);
188 return rt_se->rt_rq;
189 }
190
rq_of_rt_se(struct sched_rt_entity * rt_se)191 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
192 {
193 struct rt_rq *rt_rq = rt_se->rt_rq;
194
195 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
196 return rt_rq->rq;
197 }
198
unregister_rt_sched_group(struct task_group * tg)199 void unregister_rt_sched_group(struct task_group *tg)
200 {
201 if (!rt_group_sched_enabled())
202 return;
203
204 if (tg->rt_se)
205 destroy_rt_bandwidth(&tg->rt_bandwidth);
206 }
207
free_rt_sched_group(struct task_group * tg)208 void free_rt_sched_group(struct task_group *tg)
209 {
210 int i;
211
212 if (!rt_group_sched_enabled())
213 return;
214
215 for_each_possible_cpu(i) {
216 if (tg->rt_rq)
217 kfree(tg->rt_rq[i]);
218 if (tg->rt_se)
219 kfree(tg->rt_se[i]);
220 }
221
222 kfree(tg->rt_rq);
223 kfree(tg->rt_se);
224 }
225
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)226 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
227 struct sched_rt_entity *rt_se, int cpu,
228 struct sched_rt_entity *parent)
229 {
230 struct rq *rq = cpu_rq(cpu);
231
232 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
233 rt_rq->rt_nr_boosted = 0;
234 rt_rq->rq = rq;
235 rt_rq->tg = tg;
236
237 tg->rt_rq[cpu] = rt_rq;
238 tg->rt_se[cpu] = rt_se;
239
240 if (!rt_se)
241 return;
242
243 if (!parent)
244 rt_se->rt_rq = &rq->rt;
245 else
246 rt_se->rt_rq = parent->my_q;
247
248 rt_se->my_q = rt_rq;
249 rt_se->parent = parent;
250 INIT_LIST_HEAD(&rt_se->run_list);
251 }
252
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)253 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
254 {
255 struct rt_rq *rt_rq;
256 struct sched_rt_entity *rt_se;
257 int i;
258
259 if (!rt_group_sched_enabled())
260 return 1;
261
262 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
263 if (!tg->rt_rq)
264 goto err;
265 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
266 if (!tg->rt_se)
267 goto err;
268
269 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
270
271 for_each_possible_cpu(i) {
272 rt_rq = kzalloc_node(sizeof(struct rt_rq),
273 GFP_KERNEL, cpu_to_node(i));
274 if (!rt_rq)
275 goto err;
276
277 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
278 GFP_KERNEL, cpu_to_node(i));
279 if (!rt_se)
280 goto err_free_rq;
281
282 init_rt_rq(rt_rq);
283 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
284 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
285 }
286
287 return 1;
288
289 err_free_rq:
290 kfree(rt_rq);
291 err:
292 return 0;
293 }
294
295 #else /* !CONFIG_RT_GROUP_SCHED: */
296
297 #define rt_entity_is_task(rt_se) (1)
298
rt_task_of(struct sched_rt_entity * rt_se)299 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
300 {
301 return container_of(rt_se, struct task_struct, rt);
302 }
303
rq_of_rt_rq(struct rt_rq * rt_rq)304 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
305 {
306 return container_of(rt_rq, struct rq, rt);
307 }
308
rq_of_rt_se(struct sched_rt_entity * rt_se)309 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
310 {
311 struct task_struct *p = rt_task_of(rt_se);
312
313 return task_rq(p);
314 }
315
rt_rq_of_se(struct sched_rt_entity * rt_se)316 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
317 {
318 struct rq *rq = rq_of_rt_se(rt_se);
319
320 return &rq->rt;
321 }
322
unregister_rt_sched_group(struct task_group * tg)323 void unregister_rt_sched_group(struct task_group *tg) { }
324
free_rt_sched_group(struct task_group * tg)325 void free_rt_sched_group(struct task_group *tg) { }
326
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)327 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
328 {
329 return 1;
330 }
331 #endif /* !CONFIG_RT_GROUP_SCHED */
332
need_pull_rt_task(struct rq * rq,struct task_struct * prev)333 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
334 {
335 /* Try to pull RT tasks here if we lower this rq's prio */
336 return rq->online && rq->rt.highest_prio.curr > prev->prio;
337 }
338
rt_overloaded(struct rq * rq)339 static inline int rt_overloaded(struct rq *rq)
340 {
341 return atomic_read(&rq->rd->rto_count);
342 }
343
rt_set_overload(struct rq * rq)344 static inline void rt_set_overload(struct rq *rq)
345 {
346 if (!rq->online)
347 return;
348
349 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
350 /*
351 * Make sure the mask is visible before we set
352 * the overload count. That is checked to determine
353 * if we should look at the mask. It would be a shame
354 * if we looked at the mask, but the mask was not
355 * updated yet.
356 *
357 * Matched by the barrier in pull_rt_task().
358 */
359 smp_wmb();
360 atomic_inc(&rq->rd->rto_count);
361 }
362
rt_clear_overload(struct rq * rq)363 static inline void rt_clear_overload(struct rq *rq)
364 {
365 if (!rq->online)
366 return;
367
368 /* the order here really doesn't matter */
369 atomic_dec(&rq->rd->rto_count);
370 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
371 }
372
has_pushable_tasks(struct rq * rq)373 static inline int has_pushable_tasks(struct rq *rq)
374 {
375 return !plist_head_empty(&rq->rt.pushable_tasks);
376 }
377
378 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
379 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
380
381 static void push_rt_tasks(struct rq *);
382 static void pull_rt_task(struct rq *);
383
rt_queue_push_tasks(struct rq * rq)384 static inline void rt_queue_push_tasks(struct rq *rq)
385 {
386 if (!has_pushable_tasks(rq))
387 return;
388
389 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
390 }
391
rt_queue_pull_task(struct rq * rq)392 static inline void rt_queue_pull_task(struct rq *rq)
393 {
394 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
395 }
396
enqueue_pushable_task(struct rq * rq,struct task_struct * p)397 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
398 {
399 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
400 plist_node_init(&p->pushable_tasks, p->prio);
401 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
402
403 /* Update the highest prio pushable task */
404 if (p->prio < rq->rt.highest_prio.next)
405 rq->rt.highest_prio.next = p->prio;
406
407 if (!rq->rt.overloaded) {
408 rt_set_overload(rq);
409 rq->rt.overloaded = 1;
410 }
411 }
412
dequeue_pushable_task(struct rq * rq,struct task_struct * p)413 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
414 {
415 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
416
417 /* Update the new highest prio pushable task */
418 if (has_pushable_tasks(rq)) {
419 p = plist_first_entry(&rq->rt.pushable_tasks,
420 struct task_struct, pushable_tasks);
421 rq->rt.highest_prio.next = p->prio;
422 } else {
423 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
424
425 if (rq->rt.overloaded) {
426 rt_clear_overload(rq);
427 rq->rt.overloaded = 0;
428 }
429 }
430 }
431
432 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
433 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
434
on_rt_rq(struct sched_rt_entity * rt_se)435 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
436 {
437 return rt_se->on_rq;
438 }
439
440 #ifdef CONFIG_UCLAMP_TASK
441 /*
442 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
443 * settings.
444 *
445 * This check is only important for heterogeneous systems where uclamp_min value
446 * is higher than the capacity of a @cpu. For non-heterogeneous system this
447 * function will always return true.
448 *
449 * The function will return true if the capacity of the @cpu is >= the
450 * uclamp_min and false otherwise.
451 *
452 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
453 * > uclamp_max.
454 */
rt_task_fits_capacity(struct task_struct * p,int cpu)455 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
456 {
457 unsigned int min_cap;
458 unsigned int max_cap;
459 unsigned int cpu_cap;
460
461 /* Only heterogeneous systems can benefit from this check */
462 if (!sched_asym_cpucap_active())
463 return true;
464
465 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
466 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
467
468 cpu_cap = arch_scale_cpu_capacity(cpu);
469
470 return cpu_cap >= min(min_cap, max_cap);
471 }
472 #else /* !CONFIG_UCLAMP_TASK: */
rt_task_fits_capacity(struct task_struct * p,int cpu)473 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
474 {
475 return true;
476 }
477 #endif /* !CONFIG_UCLAMP_TASK */
478
479 #ifdef CONFIG_RT_GROUP_SCHED
480
sched_rt_runtime(struct rt_rq * rt_rq)481 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
482 {
483 return rt_rq->rt_runtime;
484 }
485
sched_rt_period(struct rt_rq * rt_rq)486 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
487 {
488 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
489 }
490
491 typedef struct task_group *rt_rq_iter_t;
492
next_task_group(struct task_group * tg)493 static inline struct task_group *next_task_group(struct task_group *tg)
494 {
495 if (!rt_group_sched_enabled()) {
496 WARN_ON(tg != &root_task_group);
497 return NULL;
498 }
499
500 do {
501 tg = list_entry_rcu(tg->list.next,
502 typeof(struct task_group), list);
503 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
504
505 if (&tg->list == &task_groups)
506 tg = NULL;
507
508 return tg;
509 }
510
511 #define for_each_rt_rq(rt_rq, iter, rq) \
512 for (iter = &root_task_group; \
513 iter && (rt_rq = iter->rt_rq[cpu_of(rq)]); \
514 iter = next_task_group(iter))
515
516 #define for_each_sched_rt_entity(rt_se) \
517 for (; rt_se; rt_se = rt_se->parent)
518
group_rt_rq(struct sched_rt_entity * rt_se)519 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
520 {
521 return rt_se->my_q;
522 }
523
524 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526
sched_rt_rq_enqueue(struct rt_rq * rt_rq)527 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
528 {
529 struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
530 struct rq *rq = rq_of_rt_rq(rt_rq);
531 struct sched_rt_entity *rt_se;
532
533 int cpu = cpu_of(rq);
534
535 rt_se = rt_rq->tg->rt_se[cpu];
536
537 if (rt_rq->rt_nr_running) {
538 if (!rt_se)
539 enqueue_top_rt_rq(rt_rq);
540 else if (!on_rt_rq(rt_se))
541 enqueue_rt_entity(rt_se, 0);
542
543 if (rt_rq->highest_prio.curr < donor->prio)
544 resched_curr(rq);
545 }
546 }
547
sched_rt_rq_dequeue(struct rt_rq * rt_rq)548 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
549 {
550 struct sched_rt_entity *rt_se;
551 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
552
553 rt_se = rt_rq->tg->rt_se[cpu];
554
555 if (!rt_se) {
556 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
557 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
558 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
559 }
560 else if (on_rt_rq(rt_se))
561 dequeue_rt_entity(rt_se, 0);
562 }
563
rt_rq_throttled(struct rt_rq * rt_rq)564 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
565 {
566 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
567 }
568
rt_se_boosted(struct sched_rt_entity * rt_se)569 static int rt_se_boosted(struct sched_rt_entity *rt_se)
570 {
571 struct rt_rq *rt_rq = group_rt_rq(rt_se);
572 struct task_struct *p;
573
574 if (rt_rq)
575 return !!rt_rq->rt_nr_boosted;
576
577 p = rt_task_of(rt_se);
578 return p->prio != p->normal_prio;
579 }
580
sched_rt_period_mask(void)581 static inline const struct cpumask *sched_rt_period_mask(void)
582 {
583 return this_rq()->rd->span;
584 }
585
586 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)587 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
588 {
589 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
590 }
591
sched_rt_bandwidth(struct rt_rq * rt_rq)592 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
593 {
594 return &rt_rq->tg->rt_bandwidth;
595 }
596
sched_rt_bandwidth_account(struct rt_rq * rt_rq)597 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
598 {
599 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
600
601 return (hrtimer_active(&rt_b->rt_period_timer) ||
602 rt_rq->rt_time < rt_b->rt_runtime);
603 }
604
605 /*
606 * We ran out of runtime, see if we can borrow some from our neighbours.
607 */
do_balance_runtime(struct rt_rq * rt_rq)608 static void do_balance_runtime(struct rt_rq *rt_rq)
609 {
610 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
611 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
612 int i, weight;
613 u64 rt_period;
614
615 weight = cpumask_weight(rd->span);
616
617 raw_spin_lock(&rt_b->rt_runtime_lock);
618 rt_period = ktime_to_ns(rt_b->rt_period);
619 for_each_cpu(i, rd->span) {
620 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
621 s64 diff;
622
623 if (iter == rt_rq)
624 continue;
625
626 raw_spin_lock(&iter->rt_runtime_lock);
627 /*
628 * Either all rqs have inf runtime and there's nothing to steal
629 * or __disable_runtime() below sets a specific rq to inf to
630 * indicate its been disabled and disallow stealing.
631 */
632 if (iter->rt_runtime == RUNTIME_INF)
633 goto next;
634
635 /*
636 * From runqueues with spare time, take 1/n part of their
637 * spare time, but no more than our period.
638 */
639 diff = iter->rt_runtime - iter->rt_time;
640 if (diff > 0) {
641 diff = div_u64((u64)diff, weight);
642 if (rt_rq->rt_runtime + diff > rt_period)
643 diff = rt_period - rt_rq->rt_runtime;
644 iter->rt_runtime -= diff;
645 rt_rq->rt_runtime += diff;
646 if (rt_rq->rt_runtime == rt_period) {
647 raw_spin_unlock(&iter->rt_runtime_lock);
648 break;
649 }
650 }
651 next:
652 raw_spin_unlock(&iter->rt_runtime_lock);
653 }
654 raw_spin_unlock(&rt_b->rt_runtime_lock);
655 }
656
657 /*
658 * Ensure this RQ takes back all the runtime it lend to its neighbours.
659 */
__disable_runtime(struct rq * rq)660 static void __disable_runtime(struct rq *rq)
661 {
662 struct root_domain *rd = rq->rd;
663 rt_rq_iter_t iter;
664 struct rt_rq *rt_rq;
665
666 if (unlikely(!scheduler_running))
667 return;
668
669 for_each_rt_rq(rt_rq, iter, rq) {
670 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
671 s64 want;
672 int i;
673
674 raw_spin_lock(&rt_b->rt_runtime_lock);
675 raw_spin_lock(&rt_rq->rt_runtime_lock);
676 /*
677 * Either we're all inf and nobody needs to borrow, or we're
678 * already disabled and thus have nothing to do, or we have
679 * exactly the right amount of runtime to take out.
680 */
681 if (rt_rq->rt_runtime == RUNTIME_INF ||
682 rt_rq->rt_runtime == rt_b->rt_runtime)
683 goto balanced;
684 raw_spin_unlock(&rt_rq->rt_runtime_lock);
685
686 /*
687 * Calculate the difference between what we started out with
688 * and what we current have, that's the amount of runtime
689 * we lend and now have to reclaim.
690 */
691 want = rt_b->rt_runtime - rt_rq->rt_runtime;
692
693 /*
694 * Greedy reclaim, take back as much as we can.
695 */
696 for_each_cpu(i, rd->span) {
697 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
698 s64 diff;
699
700 /*
701 * Can't reclaim from ourselves or disabled runqueues.
702 */
703 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
704 continue;
705
706 raw_spin_lock(&iter->rt_runtime_lock);
707 if (want > 0) {
708 diff = min_t(s64, iter->rt_runtime, want);
709 iter->rt_runtime -= diff;
710 want -= diff;
711 } else {
712 iter->rt_runtime -= want;
713 want -= want;
714 }
715 raw_spin_unlock(&iter->rt_runtime_lock);
716
717 if (!want)
718 break;
719 }
720
721 raw_spin_lock(&rt_rq->rt_runtime_lock);
722 /*
723 * We cannot be left wanting - that would mean some runtime
724 * leaked out of the system.
725 */
726 WARN_ON_ONCE(want);
727 balanced:
728 /*
729 * Disable all the borrow logic by pretending we have inf
730 * runtime - in which case borrowing doesn't make sense.
731 */
732 rt_rq->rt_runtime = RUNTIME_INF;
733 rt_rq->rt_throttled = 0;
734 raw_spin_unlock(&rt_rq->rt_runtime_lock);
735 raw_spin_unlock(&rt_b->rt_runtime_lock);
736
737 /* Make rt_rq available for pick_next_task() */
738 sched_rt_rq_enqueue(rt_rq);
739 }
740 }
741
__enable_runtime(struct rq * rq)742 static void __enable_runtime(struct rq *rq)
743 {
744 rt_rq_iter_t iter;
745 struct rt_rq *rt_rq;
746
747 if (unlikely(!scheduler_running))
748 return;
749
750 /*
751 * Reset each runqueue's bandwidth settings
752 */
753 for_each_rt_rq(rt_rq, iter, rq) {
754 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
755
756 raw_spin_lock(&rt_b->rt_runtime_lock);
757 raw_spin_lock(&rt_rq->rt_runtime_lock);
758 rt_rq->rt_runtime = rt_b->rt_runtime;
759 rt_rq->rt_time = 0;
760 rt_rq->rt_throttled = 0;
761 raw_spin_unlock(&rt_rq->rt_runtime_lock);
762 raw_spin_unlock(&rt_b->rt_runtime_lock);
763 }
764 }
765
balance_runtime(struct rt_rq * rt_rq)766 static void balance_runtime(struct rt_rq *rt_rq)
767 {
768 if (!sched_feat(RT_RUNTIME_SHARE))
769 return;
770
771 if (rt_rq->rt_time > rt_rq->rt_runtime) {
772 raw_spin_unlock(&rt_rq->rt_runtime_lock);
773 do_balance_runtime(rt_rq);
774 raw_spin_lock(&rt_rq->rt_runtime_lock);
775 }
776 }
777
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)778 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
779 {
780 int i, idle = 1, throttled = 0;
781 const struct cpumask *span;
782
783 span = sched_rt_period_mask();
784
785 /*
786 * FIXME: isolated CPUs should really leave the root task group,
787 * whether they are isolcpus or were isolated via cpusets, lest
788 * the timer run on a CPU which does not service all runqueues,
789 * potentially leaving other CPUs indefinitely throttled. If
790 * isolation is really required, the user will turn the throttle
791 * off to kill the perturbations it causes anyway. Meanwhile,
792 * this maintains functionality for boot and/or troubleshooting.
793 */
794 if (rt_b == &root_task_group.rt_bandwidth)
795 span = cpu_online_mask;
796
797 for_each_cpu(i, span) {
798 int enqueue = 0;
799 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
800 struct rq *rq = rq_of_rt_rq(rt_rq);
801 struct rq_flags rf;
802 int skip;
803
804 /*
805 * When span == cpu_online_mask, taking each rq->lock
806 * can be time-consuming. Try to avoid it when possible.
807 */
808 raw_spin_lock(&rt_rq->rt_runtime_lock);
809 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
810 rt_rq->rt_runtime = rt_b->rt_runtime;
811 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
812 raw_spin_unlock(&rt_rq->rt_runtime_lock);
813 if (skip)
814 continue;
815
816 rq_lock(rq, &rf);
817 update_rq_clock(rq);
818
819 if (rt_rq->rt_time) {
820 u64 runtime;
821
822 raw_spin_lock(&rt_rq->rt_runtime_lock);
823 if (rt_rq->rt_throttled)
824 balance_runtime(rt_rq);
825 runtime = rt_rq->rt_runtime;
826 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
827 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
828 rt_rq->rt_throttled = 0;
829 enqueue = 1;
830
831 /*
832 * When we're idle and a woken (rt) task is
833 * throttled wakeup_preempt() will set
834 * skip_update and the time between the wakeup
835 * and this unthrottle will get accounted as
836 * 'runtime'.
837 */
838 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
839 rq_clock_cancel_skipupdate(rq);
840 }
841 if (rt_rq->rt_time || rt_rq->rt_nr_running)
842 idle = 0;
843 raw_spin_unlock(&rt_rq->rt_runtime_lock);
844 } else if (rt_rq->rt_nr_running) {
845 idle = 0;
846 if (!rt_rq_throttled(rt_rq))
847 enqueue = 1;
848 }
849 if (rt_rq->rt_throttled)
850 throttled = 1;
851
852 if (enqueue)
853 sched_rt_rq_enqueue(rt_rq);
854 rq_unlock(rq, &rf);
855 }
856
857 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
858 return 1;
859
860 return idle;
861 }
862
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)863 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
864 {
865 u64 runtime = sched_rt_runtime(rt_rq);
866
867 if (rt_rq->rt_throttled)
868 return rt_rq_throttled(rt_rq);
869
870 if (runtime >= sched_rt_period(rt_rq))
871 return 0;
872
873 balance_runtime(rt_rq);
874 runtime = sched_rt_runtime(rt_rq);
875 if (runtime == RUNTIME_INF)
876 return 0;
877
878 if (rt_rq->rt_time > runtime) {
879 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
880
881 /*
882 * Don't actually throttle groups that have no runtime assigned
883 * but accrue some time due to boosting.
884 */
885 if (likely(rt_b->rt_runtime)) {
886 rt_rq->rt_throttled = 1;
887 printk_deferred_once("sched: RT throttling activated\n");
888 } else {
889 /*
890 * In case we did anyway, make it go away,
891 * replenishment is a joke, since it will replenish us
892 * with exactly 0 ns.
893 */
894 rt_rq->rt_time = 0;
895 }
896
897 if (rt_rq_throttled(rt_rq)) {
898 sched_rt_rq_dequeue(rt_rq);
899 return 1;
900 }
901 }
902
903 return 0;
904 }
905
906 #else /* !CONFIG_RT_GROUP_SCHED: */
907
908 typedef struct rt_rq *rt_rq_iter_t;
909
910 #define for_each_rt_rq(rt_rq, iter, rq) \
911 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
912
913 #define for_each_sched_rt_entity(rt_se) \
914 for (; rt_se; rt_se = NULL)
915
group_rt_rq(struct sched_rt_entity * rt_se)916 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
917 {
918 return NULL;
919 }
920
sched_rt_rq_enqueue(struct rt_rq * rt_rq)921 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
922 {
923 struct rq *rq = rq_of_rt_rq(rt_rq);
924
925 if (!rt_rq->rt_nr_running)
926 return;
927
928 enqueue_top_rt_rq(rt_rq);
929 resched_curr(rq);
930 }
931
sched_rt_rq_dequeue(struct rt_rq * rt_rq)932 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
933 {
934 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
935 }
936
rt_rq_throttled(struct rt_rq * rt_rq)937 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
938 {
939 return false;
940 }
941
sched_rt_period_mask(void)942 static inline const struct cpumask *sched_rt_period_mask(void)
943 {
944 return cpu_online_mask;
945 }
946
947 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)948 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
949 {
950 return &cpu_rq(cpu)->rt;
951 }
952
__enable_runtime(struct rq * rq)953 static void __enable_runtime(struct rq *rq) { }
__disable_runtime(struct rq * rq)954 static void __disable_runtime(struct rq *rq) { }
955
956 #endif /* !CONFIG_RT_GROUP_SCHED */
957
rt_se_prio(struct sched_rt_entity * rt_se)958 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
959 {
960 #ifdef CONFIG_RT_GROUP_SCHED
961 struct rt_rq *rt_rq = group_rt_rq(rt_se);
962
963 if (rt_rq)
964 return rt_rq->highest_prio.curr;
965 #endif
966
967 return rt_task_of(rt_se)->prio;
968 }
969
970 /*
971 * Update the current task's runtime statistics. Skip current tasks that
972 * are not in our scheduling class.
973 */
update_curr_rt(struct rq * rq)974 static void update_curr_rt(struct rq *rq)
975 {
976 struct task_struct *donor = rq->donor;
977 s64 delta_exec;
978
979 if (donor->sched_class != &rt_sched_class)
980 return;
981
982 delta_exec = update_curr_common(rq);
983 if (unlikely(delta_exec <= 0))
984 return;
985
986 #ifdef CONFIG_RT_GROUP_SCHED
987 struct sched_rt_entity *rt_se = &donor->rt;
988
989 if (!rt_bandwidth_enabled())
990 return;
991
992 for_each_sched_rt_entity(rt_se) {
993 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
994 int exceeded;
995
996 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
997 raw_spin_lock(&rt_rq->rt_runtime_lock);
998 rt_rq->rt_time += delta_exec;
999 exceeded = sched_rt_runtime_exceeded(rt_rq);
1000 if (exceeded)
1001 resched_curr(rq);
1002 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1003 if (exceeded)
1004 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1005 }
1006 }
1007 #endif /* CONFIG_RT_GROUP_SCHED */
1008 }
1009
1010 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1011 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1012 {
1013 struct rq *rq = rq_of_rt_rq(rt_rq);
1014
1015 BUG_ON(&rq->rt != rt_rq);
1016
1017 if (!rt_rq->rt_queued)
1018 return;
1019
1020 BUG_ON(!rq->nr_running);
1021
1022 sub_nr_running(rq, count);
1023 rt_rq->rt_queued = 0;
1024
1025 }
1026
1027 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1028 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1029 {
1030 struct rq *rq = rq_of_rt_rq(rt_rq);
1031
1032 BUG_ON(&rq->rt != rt_rq);
1033
1034 if (rt_rq->rt_queued)
1035 return;
1036
1037 if (rt_rq_throttled(rt_rq))
1038 return;
1039
1040 if (rt_rq->rt_nr_running) {
1041 add_nr_running(rq, rt_rq->rt_nr_running);
1042 rt_rq->rt_queued = 1;
1043 }
1044
1045 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1046 cpufreq_update_util(rq, 0);
1047 }
1048
1049 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1050 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1051 {
1052 struct rq *rq = rq_of_rt_rq(rt_rq);
1053
1054 /*
1055 * Change rq's cpupri only if rt_rq is the top queue.
1056 */
1057 if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq)
1058 return;
1059
1060 if (rq->online && prio < prev_prio)
1061 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1062 }
1063
1064 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1065 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1066 {
1067 struct rq *rq = rq_of_rt_rq(rt_rq);
1068
1069 /*
1070 * Change rq's cpupri only if rt_rq is the top queue.
1071 */
1072 if (IS_ENABLED(CONFIG_RT_GROUP_SCHED) && &rq->rt != rt_rq)
1073 return;
1074
1075 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1076 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1077 }
1078
1079 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1080 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1081 {
1082 int prev_prio = rt_rq->highest_prio.curr;
1083
1084 if (prio < prev_prio)
1085 rt_rq->highest_prio.curr = prio;
1086
1087 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1088 }
1089
1090 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1091 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1092 {
1093 int prev_prio = rt_rq->highest_prio.curr;
1094
1095 if (rt_rq->rt_nr_running) {
1096
1097 WARN_ON(prio < prev_prio);
1098
1099 /*
1100 * This may have been our highest task, and therefore
1101 * we may have some re-computation to do
1102 */
1103 if (prio == prev_prio) {
1104 struct rt_prio_array *array = &rt_rq->active;
1105
1106 rt_rq->highest_prio.curr =
1107 sched_find_first_bit(array->bitmap);
1108 }
1109
1110 } else {
1111 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1112 }
1113
1114 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1115 }
1116
1117 #ifdef CONFIG_RT_GROUP_SCHED
1118
1119 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1120 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1121 {
1122 if (rt_se_boosted(rt_se))
1123 rt_rq->rt_nr_boosted++;
1124
1125 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1126 }
1127
1128 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1129 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1130 {
1131 if (rt_se_boosted(rt_se))
1132 rt_rq->rt_nr_boosted--;
1133
1134 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1135 }
1136
1137 #else /* !CONFIG_RT_GROUP_SCHED: */
1138
1139 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1140 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1141 {
1142 }
1143
1144 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1145 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1146
1147 #endif /* !CONFIG_RT_GROUP_SCHED */
1148
1149 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1150 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1151 {
1152 struct rt_rq *group_rq = group_rt_rq(rt_se);
1153
1154 if (group_rq)
1155 return group_rq->rt_nr_running;
1156 else
1157 return 1;
1158 }
1159
1160 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1161 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1162 {
1163 struct rt_rq *group_rq = group_rt_rq(rt_se);
1164 struct task_struct *tsk;
1165
1166 if (group_rq)
1167 return group_rq->rr_nr_running;
1168
1169 tsk = rt_task_of(rt_se);
1170
1171 return (tsk->policy == SCHED_RR) ? 1 : 0;
1172 }
1173
1174 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1175 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 {
1177 int prio = rt_se_prio(rt_se);
1178
1179 WARN_ON(!rt_prio(prio));
1180 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1181 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1182
1183 inc_rt_prio(rt_rq, prio);
1184 inc_rt_group(rt_se, rt_rq);
1185 }
1186
1187 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1188 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1189 {
1190 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1191 WARN_ON(!rt_rq->rt_nr_running);
1192 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1193 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1194
1195 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1196 dec_rt_group(rt_se, rt_rq);
1197 }
1198
1199 /*
1200 * Change rt_se->run_list location unless SAVE && !MOVE
1201 *
1202 * assumes ENQUEUE/DEQUEUE flags match
1203 */
move_entity(unsigned int flags)1204 static inline bool move_entity(unsigned int flags)
1205 {
1206 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1207 return false;
1208
1209 return true;
1210 }
1211
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1212 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1213 {
1214 list_del_init(&rt_se->run_list);
1215
1216 if (list_empty(array->queue + rt_se_prio(rt_se)))
1217 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1218
1219 rt_se->on_list = 0;
1220 }
1221
1222 static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity * rt_se)1223 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1224 {
1225 /* schedstats is not supported for rt group. */
1226 if (!rt_entity_is_task(rt_se))
1227 return NULL;
1228
1229 return &rt_task_of(rt_se)->stats;
1230 }
1231
1232 static inline void
update_stats_wait_start_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1233 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1234 {
1235 struct sched_statistics *stats;
1236 struct task_struct *p = NULL;
1237
1238 if (!schedstat_enabled())
1239 return;
1240
1241 if (rt_entity_is_task(rt_se))
1242 p = rt_task_of(rt_se);
1243
1244 stats = __schedstats_from_rt_se(rt_se);
1245 if (!stats)
1246 return;
1247
1248 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1249 }
1250
1251 static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1252 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1253 {
1254 struct sched_statistics *stats;
1255 struct task_struct *p = NULL;
1256
1257 if (!schedstat_enabled())
1258 return;
1259
1260 if (rt_entity_is_task(rt_se))
1261 p = rt_task_of(rt_se);
1262
1263 stats = __schedstats_from_rt_se(rt_se);
1264 if (!stats)
1265 return;
1266
1267 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1268 }
1269
1270 static inline void
update_stats_enqueue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1271 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1272 int flags)
1273 {
1274 if (!schedstat_enabled())
1275 return;
1276
1277 if (flags & ENQUEUE_WAKEUP)
1278 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1279 }
1280
1281 static inline void
update_stats_wait_end_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1282 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1283 {
1284 struct sched_statistics *stats;
1285 struct task_struct *p = NULL;
1286
1287 if (!schedstat_enabled())
1288 return;
1289
1290 if (rt_entity_is_task(rt_se))
1291 p = rt_task_of(rt_se);
1292
1293 stats = __schedstats_from_rt_se(rt_se);
1294 if (!stats)
1295 return;
1296
1297 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1298 }
1299
1300 static inline void
update_stats_dequeue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1301 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1302 int flags)
1303 {
1304 struct task_struct *p = NULL;
1305
1306 if (!schedstat_enabled())
1307 return;
1308
1309 if (rt_entity_is_task(rt_se))
1310 p = rt_task_of(rt_se);
1311
1312 if ((flags & DEQUEUE_SLEEP) && p) {
1313 unsigned int state;
1314
1315 state = READ_ONCE(p->__state);
1316 if (state & TASK_INTERRUPTIBLE)
1317 __schedstat_set(p->stats.sleep_start,
1318 rq_clock(rq_of_rt_rq(rt_rq)));
1319
1320 if (state & TASK_UNINTERRUPTIBLE)
1321 __schedstat_set(p->stats.block_start,
1322 rq_clock(rq_of_rt_rq(rt_rq)));
1323 }
1324 }
1325
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1326 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1327 {
1328 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1329 struct rt_prio_array *array = &rt_rq->active;
1330 struct rt_rq *group_rq = group_rt_rq(rt_se);
1331 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1332
1333 /*
1334 * Don't enqueue the group if its throttled, or when empty.
1335 * The latter is a consequence of the former when a child group
1336 * get throttled and the current group doesn't have any other
1337 * active members.
1338 */
1339 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1340 if (rt_se->on_list)
1341 __delist_rt_entity(rt_se, array);
1342 return;
1343 }
1344
1345 if (move_entity(flags)) {
1346 WARN_ON_ONCE(rt_se->on_list);
1347 if (flags & ENQUEUE_HEAD)
1348 list_add(&rt_se->run_list, queue);
1349 else
1350 list_add_tail(&rt_se->run_list, queue);
1351
1352 __set_bit(rt_se_prio(rt_se), array->bitmap);
1353 rt_se->on_list = 1;
1354 }
1355 rt_se->on_rq = 1;
1356
1357 inc_rt_tasks(rt_se, rt_rq);
1358 }
1359
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1360 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1361 {
1362 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1363 struct rt_prio_array *array = &rt_rq->active;
1364
1365 if (move_entity(flags)) {
1366 WARN_ON_ONCE(!rt_se->on_list);
1367 __delist_rt_entity(rt_se, array);
1368 }
1369 rt_se->on_rq = 0;
1370
1371 dec_rt_tasks(rt_se, rt_rq);
1372 }
1373
1374 /*
1375 * Because the prio of an upper entry depends on the lower
1376 * entries, we must remove entries top - down.
1377 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1378 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1379 {
1380 struct sched_rt_entity *back = NULL;
1381 unsigned int rt_nr_running;
1382
1383 for_each_sched_rt_entity(rt_se) {
1384 rt_se->back = back;
1385 back = rt_se;
1386 }
1387
1388 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1389
1390 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1391 if (on_rt_rq(rt_se))
1392 __dequeue_rt_entity(rt_se, flags);
1393 }
1394
1395 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1396 }
1397
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1398 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1399 {
1400 struct rq *rq = rq_of_rt_se(rt_se);
1401
1402 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1403
1404 dequeue_rt_stack(rt_se, flags);
1405 for_each_sched_rt_entity(rt_se)
1406 __enqueue_rt_entity(rt_se, flags);
1407 enqueue_top_rt_rq(&rq->rt);
1408 }
1409
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1410 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1411 {
1412 struct rq *rq = rq_of_rt_se(rt_se);
1413
1414 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1415
1416 dequeue_rt_stack(rt_se, flags);
1417
1418 for_each_sched_rt_entity(rt_se) {
1419 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1420
1421 if (rt_rq && rt_rq->rt_nr_running)
1422 __enqueue_rt_entity(rt_se, flags);
1423 }
1424 enqueue_top_rt_rq(&rq->rt);
1425 }
1426
1427 /*
1428 * Adding/removing a task to/from a priority array:
1429 */
1430 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1431 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1432 {
1433 struct sched_rt_entity *rt_se = &p->rt;
1434
1435 if (flags & ENQUEUE_WAKEUP)
1436 rt_se->timeout = 0;
1437
1438 check_schedstat_required();
1439 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1440
1441 enqueue_rt_entity(rt_se, flags);
1442
1443 if (task_is_blocked(p))
1444 return;
1445
1446 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1447 enqueue_pushable_task(rq, p);
1448 }
1449
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1450 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1451 {
1452 struct sched_rt_entity *rt_se = &p->rt;
1453
1454 update_curr_rt(rq);
1455 dequeue_rt_entity(rt_se, flags);
1456
1457 dequeue_pushable_task(rq, p);
1458
1459 return true;
1460 }
1461
1462 /*
1463 * Put task to the head or the end of the run list without the overhead of
1464 * dequeue followed by enqueue.
1465 */
1466 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1467 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1468 {
1469 if (on_rt_rq(rt_se)) {
1470 struct rt_prio_array *array = &rt_rq->active;
1471 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1472
1473 if (head)
1474 list_move(&rt_se->run_list, queue);
1475 else
1476 list_move_tail(&rt_se->run_list, queue);
1477 }
1478 }
1479
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1480 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1481 {
1482 struct sched_rt_entity *rt_se = &p->rt;
1483 struct rt_rq *rt_rq;
1484
1485 for_each_sched_rt_entity(rt_se) {
1486 rt_rq = rt_rq_of_se(rt_se);
1487 requeue_rt_entity(rt_rq, rt_se, head);
1488 }
1489 }
1490
yield_task_rt(struct rq * rq)1491 static void yield_task_rt(struct rq *rq)
1492 {
1493 requeue_task_rt(rq, rq->curr, 0);
1494 }
1495
1496 static int find_lowest_rq(struct task_struct *task);
1497
1498 static int
select_task_rq_rt(struct task_struct * p,int cpu,int flags)1499 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1500 {
1501 struct task_struct *curr, *donor;
1502 struct rq *rq;
1503 bool test;
1504
1505 /* For anything but wake ups, just return the task_cpu */
1506 if (!(flags & (WF_TTWU | WF_FORK)))
1507 goto out;
1508
1509 rq = cpu_rq(cpu);
1510
1511 rcu_read_lock();
1512 curr = READ_ONCE(rq->curr); /* unlocked access */
1513 donor = READ_ONCE(rq->donor);
1514
1515 /*
1516 * If the current task on @p's runqueue is an RT task, then
1517 * try to see if we can wake this RT task up on another
1518 * runqueue. Otherwise simply start this RT task
1519 * on its current runqueue.
1520 *
1521 * We want to avoid overloading runqueues. If the woken
1522 * task is a higher priority, then it will stay on this CPU
1523 * and the lower prio task should be moved to another CPU.
1524 * Even though this will probably make the lower prio task
1525 * lose its cache, we do not want to bounce a higher task
1526 * around just because it gave up its CPU, perhaps for a
1527 * lock?
1528 *
1529 * For equal prio tasks, we just let the scheduler sort it out.
1530 *
1531 * Otherwise, just let it ride on the affine RQ and the
1532 * post-schedule router will push the preempted task away
1533 *
1534 * This test is optimistic, if we get it wrong the load-balancer
1535 * will have to sort it out.
1536 *
1537 * We take into account the capacity of the CPU to ensure it fits the
1538 * requirement of the task - which is only important on heterogeneous
1539 * systems like big.LITTLE.
1540 */
1541 test = curr &&
1542 unlikely(rt_task(donor)) &&
1543 (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1544
1545 if (test || !rt_task_fits_capacity(p, cpu)) {
1546 int target = find_lowest_rq(p);
1547
1548 /*
1549 * Bail out if we were forcing a migration to find a better
1550 * fitting CPU but our search failed.
1551 */
1552 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1553 goto out_unlock;
1554
1555 /*
1556 * Don't bother moving it if the destination CPU is
1557 * not running a lower priority task.
1558 */
1559 if (target != -1 &&
1560 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1561 cpu = target;
1562 }
1563
1564 out_unlock:
1565 rcu_read_unlock();
1566
1567 out:
1568 return cpu;
1569 }
1570
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1571 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1572 {
1573 if (rq->curr->nr_cpus_allowed == 1 ||
1574 !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1575 return;
1576
1577 /*
1578 * p is migratable, so let's not schedule it and
1579 * see if it is pushed or pulled somewhere else.
1580 */
1581 if (p->nr_cpus_allowed != 1 &&
1582 cpupri_find(&rq->rd->cpupri, p, NULL))
1583 return;
1584
1585 /*
1586 * There appear to be other CPUs that can accept
1587 * the current task but none can run 'p', so lets reschedule
1588 * to try and push the current task away:
1589 */
1590 requeue_task_rt(rq, p, 1);
1591 resched_curr(rq);
1592 }
1593
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1594 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1595 {
1596 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1597 /*
1598 * This is OK, because current is on_cpu, which avoids it being
1599 * picked for load-balance and preemption/IRQs are still
1600 * disabled avoiding further scheduler activity on it and we've
1601 * not yet started the picking loop.
1602 */
1603 rq_unpin_lock(rq, rf);
1604 pull_rt_task(rq);
1605 rq_repin_lock(rq, rf);
1606 }
1607
1608 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1609 }
1610
1611 /*
1612 * Preempt the current task with a newly woken task if needed:
1613 */
wakeup_preempt_rt(struct rq * rq,struct task_struct * p,int flags)1614 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1615 {
1616 struct task_struct *donor = rq->donor;
1617
1618 if (p->prio < donor->prio) {
1619 resched_curr(rq);
1620 return;
1621 }
1622
1623 /*
1624 * If:
1625 *
1626 * - the newly woken task is of equal priority to the current task
1627 * - the newly woken task is non-migratable while current is migratable
1628 * - current will be preempted on the next reschedule
1629 *
1630 * we should check to see if current can readily move to a different
1631 * cpu. If so, we will reschedule to allow the push logic to try
1632 * to move current somewhere else, making room for our non-migratable
1633 * task.
1634 */
1635 if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1636 check_preempt_equal_prio(rq, p);
1637 }
1638
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1639 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1640 {
1641 struct sched_rt_entity *rt_se = &p->rt;
1642 struct rt_rq *rt_rq = &rq->rt;
1643
1644 p->se.exec_start = rq_clock_task(rq);
1645 if (on_rt_rq(&p->rt))
1646 update_stats_wait_end_rt(rt_rq, rt_se);
1647
1648 /* The running task is never eligible for pushing */
1649 dequeue_pushable_task(rq, p);
1650
1651 if (!first)
1652 return;
1653
1654 /*
1655 * If prev task was rt, put_prev_task() has already updated the
1656 * utilization. We only care of the case where we start to schedule a
1657 * rt task
1658 */
1659 if (rq->donor->sched_class != &rt_sched_class)
1660 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1661
1662 rt_queue_push_tasks(rq);
1663 }
1664
pick_next_rt_entity(struct rt_rq * rt_rq)1665 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1666 {
1667 struct rt_prio_array *array = &rt_rq->active;
1668 struct sched_rt_entity *next = NULL;
1669 struct list_head *queue;
1670 int idx;
1671
1672 idx = sched_find_first_bit(array->bitmap);
1673 BUG_ON(idx >= MAX_RT_PRIO);
1674
1675 queue = array->queue + idx;
1676 if (WARN_ON_ONCE(list_empty(queue)))
1677 return NULL;
1678 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1679
1680 return next;
1681 }
1682
_pick_next_task_rt(struct rq * rq)1683 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1684 {
1685 struct sched_rt_entity *rt_se;
1686 struct rt_rq *rt_rq = &rq->rt;
1687
1688 do {
1689 rt_se = pick_next_rt_entity(rt_rq);
1690 if (unlikely(!rt_se))
1691 return NULL;
1692 rt_rq = group_rt_rq(rt_se);
1693 } while (rt_rq);
1694
1695 return rt_task_of(rt_se);
1696 }
1697
pick_task_rt(struct rq * rq)1698 static struct task_struct *pick_task_rt(struct rq *rq)
1699 {
1700 struct task_struct *p;
1701
1702 if (!sched_rt_runnable(rq))
1703 return NULL;
1704
1705 p = _pick_next_task_rt(rq);
1706
1707 return p;
1708 }
1709
put_prev_task_rt(struct rq * rq,struct task_struct * p,struct task_struct * next)1710 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1711 {
1712 struct sched_rt_entity *rt_se = &p->rt;
1713 struct rt_rq *rt_rq = &rq->rt;
1714
1715 if (on_rt_rq(&p->rt))
1716 update_stats_wait_start_rt(rt_rq, rt_se);
1717
1718 update_curr_rt(rq);
1719
1720 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1721
1722 if (task_is_blocked(p))
1723 return;
1724 /*
1725 * The previous task needs to be made eligible for pushing
1726 * if it is still active
1727 */
1728 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1729 enqueue_pushable_task(rq, p);
1730 }
1731
1732 /* Only try algorithms three times */
1733 #define RT_MAX_TRIES 3
1734
1735 /*
1736 * Return the highest pushable rq's task, which is suitable to be executed
1737 * on the CPU, NULL otherwise
1738 */
pick_highest_pushable_task(struct rq * rq,int cpu)1739 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1740 {
1741 struct plist_head *head = &rq->rt.pushable_tasks;
1742 struct task_struct *p;
1743
1744 if (!has_pushable_tasks(rq))
1745 return NULL;
1746
1747 plist_for_each_entry(p, head, pushable_tasks) {
1748 if (task_is_pushable(rq, p, cpu))
1749 return p;
1750 }
1751
1752 return NULL;
1753 }
1754
1755 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1756
find_lowest_rq(struct task_struct * task)1757 static int find_lowest_rq(struct task_struct *task)
1758 {
1759 struct sched_domain *sd;
1760 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1761 int this_cpu = smp_processor_id();
1762 int cpu = task_cpu(task);
1763 int ret;
1764
1765 /* Make sure the mask is initialized first */
1766 if (unlikely(!lowest_mask))
1767 return -1;
1768
1769 if (task->nr_cpus_allowed == 1)
1770 return -1; /* No other targets possible */
1771
1772 /*
1773 * If we're on asym system ensure we consider the different capacities
1774 * of the CPUs when searching for the lowest_mask.
1775 */
1776 if (sched_asym_cpucap_active()) {
1777
1778 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1779 task, lowest_mask,
1780 rt_task_fits_capacity);
1781 } else {
1782
1783 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1784 task, lowest_mask);
1785 }
1786
1787 if (!ret)
1788 return -1; /* No targets found */
1789
1790 /*
1791 * At this point we have built a mask of CPUs representing the
1792 * lowest priority tasks in the system. Now we want to elect
1793 * the best one based on our affinity and topology.
1794 *
1795 * We prioritize the last CPU that the task executed on since
1796 * it is most likely cache-hot in that location.
1797 */
1798 if (cpumask_test_cpu(cpu, lowest_mask))
1799 return cpu;
1800
1801 /*
1802 * Otherwise, we consult the sched_domains span maps to figure
1803 * out which CPU is logically closest to our hot cache data.
1804 */
1805 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1806 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1807
1808 rcu_read_lock();
1809 for_each_domain(cpu, sd) {
1810 if (sd->flags & SD_WAKE_AFFINE) {
1811 int best_cpu;
1812
1813 /*
1814 * "this_cpu" is cheaper to preempt than a
1815 * remote processor.
1816 */
1817 if (this_cpu != -1 &&
1818 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1819 rcu_read_unlock();
1820 return this_cpu;
1821 }
1822
1823 best_cpu = cpumask_any_and_distribute(lowest_mask,
1824 sched_domain_span(sd));
1825 if (best_cpu < nr_cpu_ids) {
1826 rcu_read_unlock();
1827 return best_cpu;
1828 }
1829 }
1830 }
1831 rcu_read_unlock();
1832
1833 /*
1834 * And finally, if there were no matches within the domains
1835 * just give the caller *something* to work with from the compatible
1836 * locations.
1837 */
1838 if (this_cpu != -1)
1839 return this_cpu;
1840
1841 cpu = cpumask_any_distribute(lowest_mask);
1842 if (cpu < nr_cpu_ids)
1843 return cpu;
1844
1845 return -1;
1846 }
1847
pick_next_pushable_task(struct rq * rq)1848 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1849 {
1850 struct task_struct *p;
1851
1852 if (!has_pushable_tasks(rq))
1853 return NULL;
1854
1855 p = plist_first_entry(&rq->rt.pushable_tasks,
1856 struct task_struct, pushable_tasks);
1857
1858 BUG_ON(rq->cpu != task_cpu(p));
1859 BUG_ON(task_current(rq, p));
1860 BUG_ON(task_current_donor(rq, p));
1861 BUG_ON(p->nr_cpus_allowed <= 1);
1862
1863 BUG_ON(!task_on_rq_queued(p));
1864 BUG_ON(!rt_task(p));
1865
1866 return p;
1867 }
1868
1869 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1870 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1871 {
1872 struct rq *lowest_rq = NULL;
1873 int tries;
1874 int cpu;
1875
1876 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1877 cpu = find_lowest_rq(task);
1878
1879 if ((cpu == -1) || (cpu == rq->cpu))
1880 break;
1881
1882 lowest_rq = cpu_rq(cpu);
1883
1884 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1885 /*
1886 * Target rq has tasks of equal or higher priority,
1887 * retrying does not release any lock and is unlikely
1888 * to yield a different result.
1889 */
1890 lowest_rq = NULL;
1891 break;
1892 }
1893
1894 /* if the prio of this runqueue changed, try again */
1895 if (double_lock_balance(rq, lowest_rq)) {
1896 /*
1897 * We had to unlock the run queue. In
1898 * the mean time, task could have
1899 * migrated already or had its affinity changed,
1900 * therefore check if the task is still at the
1901 * head of the pushable tasks list.
1902 * It is possible the task was scheduled, set
1903 * "migrate_disabled" and then got preempted, so we must
1904 * check the task migration disable flag here too.
1905 */
1906 if (unlikely(is_migration_disabled(task) ||
1907 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1908 task != pick_next_pushable_task(rq))) {
1909
1910 double_unlock_balance(rq, lowest_rq);
1911 lowest_rq = NULL;
1912 break;
1913 }
1914 }
1915
1916 /* If this rq is still suitable use it. */
1917 if (lowest_rq->rt.highest_prio.curr > task->prio)
1918 break;
1919
1920 /* try again */
1921 double_unlock_balance(rq, lowest_rq);
1922 lowest_rq = NULL;
1923 }
1924
1925 return lowest_rq;
1926 }
1927
1928 /*
1929 * If the current CPU has more than one RT task, see if the non
1930 * running task can migrate over to a CPU that is running a task
1931 * of lesser priority.
1932 */
push_rt_task(struct rq * rq,bool pull)1933 static int push_rt_task(struct rq *rq, bool pull)
1934 {
1935 struct task_struct *next_task;
1936 struct rq *lowest_rq;
1937 int ret = 0;
1938
1939 if (!rq->rt.overloaded)
1940 return 0;
1941
1942 next_task = pick_next_pushable_task(rq);
1943 if (!next_task)
1944 return 0;
1945
1946 retry:
1947 /*
1948 * It's possible that the next_task slipped in of
1949 * higher priority than current. If that's the case
1950 * just reschedule current.
1951 */
1952 if (unlikely(next_task->prio < rq->donor->prio)) {
1953 resched_curr(rq);
1954 return 0;
1955 }
1956
1957 if (is_migration_disabled(next_task)) {
1958 struct task_struct *push_task = NULL;
1959 int cpu;
1960
1961 if (!pull || rq->push_busy)
1962 return 0;
1963
1964 /*
1965 * Invoking find_lowest_rq() on anything but an RT task doesn't
1966 * make sense. Per the above priority check, curr has to
1967 * be of higher priority than next_task, so no need to
1968 * reschedule when bailing out.
1969 *
1970 * Note that the stoppers are masqueraded as SCHED_FIFO
1971 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
1972 */
1973 if (rq->donor->sched_class != &rt_sched_class)
1974 return 0;
1975
1976 cpu = find_lowest_rq(rq->curr);
1977 if (cpu == -1 || cpu == rq->cpu)
1978 return 0;
1979
1980 /*
1981 * Given we found a CPU with lower priority than @next_task,
1982 * therefore it should be running. However we cannot migrate it
1983 * to this other CPU, instead attempt to push the current
1984 * running task on this CPU away.
1985 */
1986 push_task = get_push_task(rq);
1987 if (push_task) {
1988 preempt_disable();
1989 raw_spin_rq_unlock(rq);
1990 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
1991 push_task, &rq->push_work);
1992 preempt_enable();
1993 raw_spin_rq_lock(rq);
1994 }
1995
1996 return 0;
1997 }
1998
1999 if (WARN_ON(next_task == rq->curr))
2000 return 0;
2001
2002 /* We might release rq lock */
2003 get_task_struct(next_task);
2004
2005 /* find_lock_lowest_rq locks the rq if found */
2006 lowest_rq = find_lock_lowest_rq(next_task, rq);
2007 if (!lowest_rq) {
2008 struct task_struct *task;
2009 /*
2010 * find_lock_lowest_rq releases rq->lock
2011 * so it is possible that next_task has migrated.
2012 *
2013 * We need to make sure that the task is still on the same
2014 * run-queue and is also still the next task eligible for
2015 * pushing.
2016 */
2017 task = pick_next_pushable_task(rq);
2018 if (task == next_task) {
2019 /*
2020 * The task hasn't migrated, and is still the next
2021 * eligible task, but we failed to find a run-queue
2022 * to push it to. Do not retry in this case, since
2023 * other CPUs will pull from us when ready.
2024 */
2025 goto out;
2026 }
2027
2028 if (!task)
2029 /* No more tasks, just exit */
2030 goto out;
2031
2032 /*
2033 * Something has shifted, try again.
2034 */
2035 put_task_struct(next_task);
2036 next_task = task;
2037 goto retry;
2038 }
2039
2040 move_queued_task_locked(rq, lowest_rq, next_task);
2041 resched_curr(lowest_rq);
2042 ret = 1;
2043
2044 double_unlock_balance(rq, lowest_rq);
2045 out:
2046 put_task_struct(next_task);
2047
2048 return ret;
2049 }
2050
push_rt_tasks(struct rq * rq)2051 static void push_rt_tasks(struct rq *rq)
2052 {
2053 /* push_rt_task will return true if it moved an RT */
2054 while (push_rt_task(rq, false))
2055 ;
2056 }
2057
2058 #ifdef HAVE_RT_PUSH_IPI
2059
2060 /*
2061 * When a high priority task schedules out from a CPU and a lower priority
2062 * task is scheduled in, a check is made to see if there's any RT tasks
2063 * on other CPUs that are waiting to run because a higher priority RT task
2064 * is currently running on its CPU. In this case, the CPU with multiple RT
2065 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2066 * up that may be able to run one of its non-running queued RT tasks.
2067 *
2068 * All CPUs with overloaded RT tasks need to be notified as there is currently
2069 * no way to know which of these CPUs have the highest priority task waiting
2070 * to run. Instead of trying to take a spinlock on each of these CPUs,
2071 * which has shown to cause large latency when done on machines with many
2072 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2073 * RT tasks waiting to run.
2074 *
2075 * Just sending an IPI to each of the CPUs is also an issue, as on large
2076 * count CPU machines, this can cause an IPI storm on a CPU, especially
2077 * if its the only CPU with multiple RT tasks queued, and a large number
2078 * of CPUs scheduling a lower priority task at the same time.
2079 *
2080 * Each root domain has its own IRQ work function that can iterate over
2081 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2082 * task must be checked if there's one or many CPUs that are lowering
2083 * their priority, there's a single IRQ work iterator that will try to
2084 * push off RT tasks that are waiting to run.
2085 *
2086 * When a CPU schedules a lower priority task, it will kick off the
2087 * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2088 * As it only takes the first CPU that schedules a lower priority task
2089 * to start the process, the rto_start variable is incremented and if
2090 * the atomic result is one, then that CPU will try to take the rto_lock.
2091 * This prevents high contention on the lock as the process handles all
2092 * CPUs scheduling lower priority tasks.
2093 *
2094 * All CPUs that are scheduling a lower priority task will increment the
2095 * rt_loop_next variable. This will make sure that the IRQ work iterator
2096 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2097 * priority task, even if the iterator is in the middle of a scan. Incrementing
2098 * the rt_loop_next will cause the iterator to perform another scan.
2099 *
2100 */
rto_next_cpu(struct root_domain * rd)2101 static int rto_next_cpu(struct root_domain *rd)
2102 {
2103 int next;
2104 int cpu;
2105
2106 /*
2107 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2108 * rt_next_cpu() will simply return the first CPU found in
2109 * the rto_mask.
2110 *
2111 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2112 * will return the next CPU found in the rto_mask.
2113 *
2114 * If there are no more CPUs left in the rto_mask, then a check is made
2115 * against rto_loop and rto_loop_next. rto_loop is only updated with
2116 * the rto_lock held, but any CPU may increment the rto_loop_next
2117 * without any locking.
2118 */
2119 for (;;) {
2120
2121 /* When rto_cpu is -1 this acts like cpumask_first() */
2122 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2123
2124 rd->rto_cpu = cpu;
2125
2126 if (cpu < nr_cpu_ids)
2127 return cpu;
2128
2129 rd->rto_cpu = -1;
2130
2131 /*
2132 * ACQUIRE ensures we see the @rto_mask changes
2133 * made prior to the @next value observed.
2134 *
2135 * Matches WMB in rt_set_overload().
2136 */
2137 next = atomic_read_acquire(&rd->rto_loop_next);
2138
2139 if (rd->rto_loop == next)
2140 break;
2141
2142 rd->rto_loop = next;
2143 }
2144
2145 return -1;
2146 }
2147
rto_start_trylock(atomic_t * v)2148 static inline bool rto_start_trylock(atomic_t *v)
2149 {
2150 return !atomic_cmpxchg_acquire(v, 0, 1);
2151 }
2152
rto_start_unlock(atomic_t * v)2153 static inline void rto_start_unlock(atomic_t *v)
2154 {
2155 atomic_set_release(v, 0);
2156 }
2157
tell_cpu_to_push(struct rq * rq)2158 static void tell_cpu_to_push(struct rq *rq)
2159 {
2160 int cpu = -1;
2161
2162 /* Keep the loop going if the IPI is currently active */
2163 atomic_inc(&rq->rd->rto_loop_next);
2164
2165 /* Only one CPU can initiate a loop at a time */
2166 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2167 return;
2168
2169 raw_spin_lock(&rq->rd->rto_lock);
2170
2171 /*
2172 * The rto_cpu is updated under the lock, if it has a valid CPU
2173 * then the IPI is still running and will continue due to the
2174 * update to loop_next, and nothing needs to be done here.
2175 * Otherwise it is finishing up and an IPI needs to be sent.
2176 */
2177 if (rq->rd->rto_cpu < 0)
2178 cpu = rto_next_cpu(rq->rd);
2179
2180 raw_spin_unlock(&rq->rd->rto_lock);
2181
2182 rto_start_unlock(&rq->rd->rto_loop_start);
2183
2184 if (cpu >= 0) {
2185 /* Make sure the rd does not get freed while pushing */
2186 sched_get_rd(rq->rd);
2187 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2188 }
2189 }
2190
2191 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2192 void rto_push_irq_work_func(struct irq_work *work)
2193 {
2194 struct root_domain *rd =
2195 container_of(work, struct root_domain, rto_push_work);
2196 struct rq *rq;
2197 int cpu;
2198
2199 rq = this_rq();
2200
2201 /*
2202 * We do not need to grab the lock to check for has_pushable_tasks.
2203 * When it gets updated, a check is made if a push is possible.
2204 */
2205 if (has_pushable_tasks(rq)) {
2206 raw_spin_rq_lock(rq);
2207 while (push_rt_task(rq, true))
2208 ;
2209 raw_spin_rq_unlock(rq);
2210 }
2211
2212 raw_spin_lock(&rd->rto_lock);
2213
2214 /* Pass the IPI to the next rt overloaded queue */
2215 cpu = rto_next_cpu(rd);
2216
2217 raw_spin_unlock(&rd->rto_lock);
2218
2219 if (cpu < 0) {
2220 sched_put_rd(rd);
2221 return;
2222 }
2223
2224 /* Try the next RT overloaded CPU */
2225 irq_work_queue_on(&rd->rto_push_work, cpu);
2226 }
2227 #endif /* HAVE_RT_PUSH_IPI */
2228
pull_rt_task(struct rq * this_rq)2229 static void pull_rt_task(struct rq *this_rq)
2230 {
2231 int this_cpu = this_rq->cpu, cpu;
2232 bool resched = false;
2233 struct task_struct *p, *push_task;
2234 struct rq *src_rq;
2235 int rt_overload_count = rt_overloaded(this_rq);
2236
2237 if (likely(!rt_overload_count))
2238 return;
2239
2240 /*
2241 * Match the barrier from rt_set_overloaded; this guarantees that if we
2242 * see overloaded we must also see the rto_mask bit.
2243 */
2244 smp_rmb();
2245
2246 /* If we are the only overloaded CPU do nothing */
2247 if (rt_overload_count == 1 &&
2248 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2249 return;
2250
2251 #ifdef HAVE_RT_PUSH_IPI
2252 if (sched_feat(RT_PUSH_IPI)) {
2253 tell_cpu_to_push(this_rq);
2254 return;
2255 }
2256 #endif
2257
2258 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2259 if (this_cpu == cpu)
2260 continue;
2261
2262 src_rq = cpu_rq(cpu);
2263
2264 /*
2265 * Don't bother taking the src_rq->lock if the next highest
2266 * task is known to be lower-priority than our current task.
2267 * This may look racy, but if this value is about to go
2268 * logically higher, the src_rq will push this task away.
2269 * And if its going logically lower, we do not care
2270 */
2271 if (src_rq->rt.highest_prio.next >=
2272 this_rq->rt.highest_prio.curr)
2273 continue;
2274
2275 /*
2276 * We can potentially drop this_rq's lock in
2277 * double_lock_balance, and another CPU could
2278 * alter this_rq
2279 */
2280 push_task = NULL;
2281 double_lock_balance(this_rq, src_rq);
2282
2283 /*
2284 * We can pull only a task, which is pushable
2285 * on its rq, and no others.
2286 */
2287 p = pick_highest_pushable_task(src_rq, this_cpu);
2288
2289 /*
2290 * Do we have an RT task that preempts
2291 * the to-be-scheduled task?
2292 */
2293 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2294 WARN_ON(p == src_rq->curr);
2295 WARN_ON(!task_on_rq_queued(p));
2296
2297 /*
2298 * There's a chance that p is higher in priority
2299 * than what's currently running on its CPU.
2300 * This is just that p is waking up and hasn't
2301 * had a chance to schedule. We only pull
2302 * p if it is lower in priority than the
2303 * current task on the run queue
2304 */
2305 if (p->prio < src_rq->donor->prio)
2306 goto skip;
2307
2308 if (is_migration_disabled(p)) {
2309 push_task = get_push_task(src_rq);
2310 } else {
2311 move_queued_task_locked(src_rq, this_rq, p);
2312 resched = true;
2313 }
2314 /*
2315 * We continue with the search, just in
2316 * case there's an even higher prio task
2317 * in another runqueue. (low likelihood
2318 * but possible)
2319 */
2320 }
2321 skip:
2322 double_unlock_balance(this_rq, src_rq);
2323
2324 if (push_task) {
2325 preempt_disable();
2326 raw_spin_rq_unlock(this_rq);
2327 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2328 push_task, &src_rq->push_work);
2329 preempt_enable();
2330 raw_spin_rq_lock(this_rq);
2331 }
2332 }
2333
2334 if (resched)
2335 resched_curr(this_rq);
2336 }
2337
2338 /*
2339 * If we are not running and we are not going to reschedule soon, we should
2340 * try to push tasks away now
2341 */
task_woken_rt(struct rq * rq,struct task_struct * p)2342 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2343 {
2344 bool need_to_push = !task_on_cpu(rq, p) &&
2345 !test_tsk_need_resched(rq->curr) &&
2346 p->nr_cpus_allowed > 1 &&
2347 (dl_task(rq->donor) || rt_task(rq->donor)) &&
2348 (rq->curr->nr_cpus_allowed < 2 ||
2349 rq->donor->prio <= p->prio);
2350
2351 if (need_to_push)
2352 push_rt_tasks(rq);
2353 }
2354
2355 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2356 static void rq_online_rt(struct rq *rq)
2357 {
2358 if (rq->rt.overloaded)
2359 rt_set_overload(rq);
2360
2361 __enable_runtime(rq);
2362
2363 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2364 }
2365
2366 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2367 static void rq_offline_rt(struct rq *rq)
2368 {
2369 if (rq->rt.overloaded)
2370 rt_clear_overload(rq);
2371
2372 __disable_runtime(rq);
2373
2374 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2375 }
2376
2377 /*
2378 * When switch from the rt queue, we bring ourselves to a position
2379 * that we might want to pull RT tasks from other runqueues.
2380 */
switched_from_rt(struct rq * rq,struct task_struct * p)2381 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2382 {
2383 /*
2384 * If there are other RT tasks then we will reschedule
2385 * and the scheduling of the other RT tasks will handle
2386 * the balancing. But if we are the last RT task
2387 * we may need to handle the pulling of RT tasks
2388 * now.
2389 */
2390 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2391 return;
2392
2393 rt_queue_pull_task(rq);
2394 }
2395
init_sched_rt_class(void)2396 void __init init_sched_rt_class(void)
2397 {
2398 unsigned int i;
2399
2400 for_each_possible_cpu(i) {
2401 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2402 GFP_KERNEL, cpu_to_node(i));
2403 }
2404 }
2405
2406 /*
2407 * When switching a task to RT, we may overload the runqueue
2408 * with RT tasks. In this case we try to push them off to
2409 * other runqueues.
2410 */
switched_to_rt(struct rq * rq,struct task_struct * p)2411 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2412 {
2413 /*
2414 * If we are running, update the avg_rt tracking, as the running time
2415 * will now on be accounted into the latter.
2416 */
2417 if (task_current(rq, p)) {
2418 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2419 return;
2420 }
2421
2422 /*
2423 * If we are not running we may need to preempt the current
2424 * running task. If that current running task is also an RT task
2425 * then see if we can move to another run queue.
2426 */
2427 if (task_on_rq_queued(p)) {
2428 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2429 rt_queue_push_tasks(rq);
2430 if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2431 resched_curr(rq);
2432 }
2433 }
2434
2435 /*
2436 * Priority of the task has changed. This may cause
2437 * us to initiate a push or pull.
2438 */
2439 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2440 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2441 {
2442 if (!task_on_rq_queued(p))
2443 return;
2444
2445 if (task_current_donor(rq, p)) {
2446 /*
2447 * If our priority decreases while running, we
2448 * may need to pull tasks to this runqueue.
2449 */
2450 if (oldprio < p->prio)
2451 rt_queue_pull_task(rq);
2452
2453 /*
2454 * If there's a higher priority task waiting to run
2455 * then reschedule.
2456 */
2457 if (p->prio > rq->rt.highest_prio.curr)
2458 resched_curr(rq);
2459 } else {
2460 /*
2461 * This task is not running, but if it is
2462 * greater than the current running task
2463 * then reschedule.
2464 */
2465 if (p->prio < rq->donor->prio)
2466 resched_curr(rq);
2467 }
2468 }
2469
2470 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2471 static void watchdog(struct rq *rq, struct task_struct *p)
2472 {
2473 unsigned long soft, hard;
2474
2475 /* max may change after cur was read, this will be fixed next tick */
2476 soft = task_rlimit(p, RLIMIT_RTTIME);
2477 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2478
2479 if (soft != RLIM_INFINITY) {
2480 unsigned long next;
2481
2482 if (p->rt.watchdog_stamp != jiffies) {
2483 p->rt.timeout++;
2484 p->rt.watchdog_stamp = jiffies;
2485 }
2486
2487 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2488 if (p->rt.timeout > next) {
2489 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2490 p->se.sum_exec_runtime);
2491 }
2492 }
2493 }
2494 #else /* !CONFIG_POSIX_TIMERS: */
watchdog(struct rq * rq,struct task_struct * p)2495 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2496 #endif /* !CONFIG_POSIX_TIMERS */
2497
2498 /*
2499 * scheduler tick hitting a task of our scheduling class.
2500 *
2501 * NOTE: This function can be called remotely by the tick offload that
2502 * goes along full dynticks. Therefore no local assumption can be made
2503 * and everything must be accessed through the @rq and @curr passed in
2504 * parameters.
2505 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2506 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2507 {
2508 struct sched_rt_entity *rt_se = &p->rt;
2509
2510 update_curr_rt(rq);
2511 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2512
2513 watchdog(rq, p);
2514
2515 /*
2516 * RR tasks need a special form of time-slice management.
2517 * FIFO tasks have no timeslices.
2518 */
2519 if (p->policy != SCHED_RR)
2520 return;
2521
2522 if (--p->rt.time_slice)
2523 return;
2524
2525 p->rt.time_slice = sched_rr_timeslice;
2526
2527 /*
2528 * Requeue to the end of queue if we (and all of our ancestors) are not
2529 * the only element on the queue
2530 */
2531 for_each_sched_rt_entity(rt_se) {
2532 if (rt_se->run_list.prev != rt_se->run_list.next) {
2533 requeue_task_rt(rq, p, 0);
2534 resched_curr(rq);
2535 return;
2536 }
2537 }
2538 }
2539
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2540 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2541 {
2542 /*
2543 * Time slice is 0 for SCHED_FIFO tasks
2544 */
2545 if (task->policy == SCHED_RR)
2546 return sched_rr_timeslice;
2547 else
2548 return 0;
2549 }
2550
2551 #ifdef CONFIG_SCHED_CORE
task_is_throttled_rt(struct task_struct * p,int cpu)2552 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2553 {
2554 struct rt_rq *rt_rq;
2555
2556 #ifdef CONFIG_RT_GROUP_SCHED // XXX maybe add task_rt_rq(), see also sched_rt_period_rt_rq
2557 rt_rq = task_group(p)->rt_rq[cpu];
2558 WARN_ON(!rt_group_sched_enabled() && rt_rq->tg != &root_task_group);
2559 #else
2560 rt_rq = &cpu_rq(cpu)->rt;
2561 #endif
2562
2563 return rt_rq_throttled(rt_rq);
2564 }
2565 #endif /* CONFIG_SCHED_CORE */
2566
2567 DEFINE_SCHED_CLASS(rt) = {
2568
2569 .enqueue_task = enqueue_task_rt,
2570 .dequeue_task = dequeue_task_rt,
2571 .yield_task = yield_task_rt,
2572
2573 .wakeup_preempt = wakeup_preempt_rt,
2574
2575 .pick_task = pick_task_rt,
2576 .put_prev_task = put_prev_task_rt,
2577 .set_next_task = set_next_task_rt,
2578
2579 .balance = balance_rt,
2580 .select_task_rq = select_task_rq_rt,
2581 .set_cpus_allowed = set_cpus_allowed_common,
2582 .rq_online = rq_online_rt,
2583 .rq_offline = rq_offline_rt,
2584 .task_woken = task_woken_rt,
2585 .switched_from = switched_from_rt,
2586 .find_lock_rq = find_lock_lowest_rq,
2587
2588 .task_tick = task_tick_rt,
2589
2590 .get_rr_interval = get_rr_interval_rt,
2591
2592 .prio_changed = prio_changed_rt,
2593 .switched_to = switched_to_rt,
2594
2595 .update_curr = update_curr_rt,
2596
2597 #ifdef CONFIG_SCHED_CORE
2598 .task_is_throttled = task_is_throttled_rt,
2599 #endif
2600
2601 #ifdef CONFIG_UCLAMP_TASK
2602 .uclamp_enabled = 1,
2603 #endif
2604 };
2605
2606 #ifdef CONFIG_RT_GROUP_SCHED
2607 /*
2608 * Ensure that the real time constraints are schedulable.
2609 */
2610 static DEFINE_MUTEX(rt_constraints_mutex);
2611
tg_has_rt_tasks(struct task_group * tg)2612 static inline int tg_has_rt_tasks(struct task_group *tg)
2613 {
2614 struct task_struct *task;
2615 struct css_task_iter it;
2616 int ret = 0;
2617
2618 /*
2619 * Autogroups do not have RT tasks; see autogroup_create().
2620 */
2621 if (task_group_is_autogroup(tg))
2622 return 0;
2623
2624 css_task_iter_start(&tg->css, 0, &it);
2625 while (!ret && (task = css_task_iter_next(&it)))
2626 ret |= rt_task(task);
2627 css_task_iter_end(&it);
2628
2629 return ret;
2630 }
2631
2632 struct rt_schedulable_data {
2633 struct task_group *tg;
2634 u64 rt_period;
2635 u64 rt_runtime;
2636 };
2637
tg_rt_schedulable(struct task_group * tg,void * data)2638 static int tg_rt_schedulable(struct task_group *tg, void *data)
2639 {
2640 struct rt_schedulable_data *d = data;
2641 struct task_group *child;
2642 unsigned long total, sum = 0;
2643 u64 period, runtime;
2644
2645 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2646 runtime = tg->rt_bandwidth.rt_runtime;
2647
2648 if (tg == d->tg) {
2649 period = d->rt_period;
2650 runtime = d->rt_runtime;
2651 }
2652
2653 /*
2654 * Cannot have more runtime than the period.
2655 */
2656 if (runtime > period && runtime != RUNTIME_INF)
2657 return -EINVAL;
2658
2659 /*
2660 * Ensure we don't starve existing RT tasks if runtime turns zero.
2661 */
2662 if (rt_bandwidth_enabled() && !runtime &&
2663 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2664 return -EBUSY;
2665
2666 if (WARN_ON(!rt_group_sched_enabled() && tg != &root_task_group))
2667 return -EBUSY;
2668
2669 total = to_ratio(period, runtime);
2670
2671 /*
2672 * Nobody can have more than the global setting allows.
2673 */
2674 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2675 return -EINVAL;
2676
2677 /*
2678 * The sum of our children's runtime should not exceed our own.
2679 */
2680 list_for_each_entry_rcu(child, &tg->children, siblings) {
2681 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2682 runtime = child->rt_bandwidth.rt_runtime;
2683
2684 if (child == d->tg) {
2685 period = d->rt_period;
2686 runtime = d->rt_runtime;
2687 }
2688
2689 sum += to_ratio(period, runtime);
2690 }
2691
2692 if (sum > total)
2693 return -EINVAL;
2694
2695 return 0;
2696 }
2697
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2698 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2699 {
2700 int ret;
2701
2702 struct rt_schedulable_data data = {
2703 .tg = tg,
2704 .rt_period = period,
2705 .rt_runtime = runtime,
2706 };
2707
2708 rcu_read_lock();
2709 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2710 rcu_read_unlock();
2711
2712 return ret;
2713 }
2714
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2715 static int tg_set_rt_bandwidth(struct task_group *tg,
2716 u64 rt_period, u64 rt_runtime)
2717 {
2718 int i, err = 0;
2719
2720 /*
2721 * Disallowing the root group RT runtime is BAD, it would disallow the
2722 * kernel creating (and or operating) RT threads.
2723 */
2724 if (tg == &root_task_group && rt_runtime == 0)
2725 return -EINVAL;
2726
2727 /* No period doesn't make any sense. */
2728 if (rt_period == 0)
2729 return -EINVAL;
2730
2731 /*
2732 * Bound quota to defend quota against overflow during bandwidth shift.
2733 */
2734 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2735 return -EINVAL;
2736
2737 mutex_lock(&rt_constraints_mutex);
2738 err = __rt_schedulable(tg, rt_period, rt_runtime);
2739 if (err)
2740 goto unlock;
2741
2742 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2743 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2744 tg->rt_bandwidth.rt_runtime = rt_runtime;
2745
2746 for_each_possible_cpu(i) {
2747 struct rt_rq *rt_rq = tg->rt_rq[i];
2748
2749 raw_spin_lock(&rt_rq->rt_runtime_lock);
2750 rt_rq->rt_runtime = rt_runtime;
2751 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2752 }
2753 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2754 unlock:
2755 mutex_unlock(&rt_constraints_mutex);
2756
2757 return err;
2758 }
2759
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2760 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2761 {
2762 u64 rt_runtime, rt_period;
2763
2764 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2765 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2766 if (rt_runtime_us < 0)
2767 rt_runtime = RUNTIME_INF;
2768 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2769 return -EINVAL;
2770
2771 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2772 }
2773
sched_group_rt_runtime(struct task_group * tg)2774 long sched_group_rt_runtime(struct task_group *tg)
2775 {
2776 u64 rt_runtime_us;
2777
2778 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2779 return -1;
2780
2781 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2782 do_div(rt_runtime_us, NSEC_PER_USEC);
2783 return rt_runtime_us;
2784 }
2785
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2786 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2787 {
2788 u64 rt_runtime, rt_period;
2789
2790 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2791 return -EINVAL;
2792
2793 rt_period = rt_period_us * NSEC_PER_USEC;
2794 rt_runtime = tg->rt_bandwidth.rt_runtime;
2795
2796 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2797 }
2798
sched_group_rt_period(struct task_group * tg)2799 long sched_group_rt_period(struct task_group *tg)
2800 {
2801 u64 rt_period_us;
2802
2803 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2804 do_div(rt_period_us, NSEC_PER_USEC);
2805 return rt_period_us;
2806 }
2807
2808 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2809 static int sched_rt_global_constraints(void)
2810 {
2811 int ret = 0;
2812
2813 mutex_lock(&rt_constraints_mutex);
2814 ret = __rt_schedulable(NULL, 0, 0);
2815 mutex_unlock(&rt_constraints_mutex);
2816
2817 return ret;
2818 }
2819 #endif /* CONFIG_SYSCTL */
2820
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2821 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2822 {
2823 /* Don't accept real-time tasks when there is no way for them to run */
2824 if (rt_group_sched_enabled() && rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2825 return 0;
2826
2827 return 1;
2828 }
2829
2830 #else /* !CONFIG_RT_GROUP_SCHED: */
2831
2832 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2833 static int sched_rt_global_constraints(void)
2834 {
2835 return 0;
2836 }
2837 #endif /* CONFIG_SYSCTL */
2838 #endif /* !CONFIG_RT_GROUP_SCHED */
2839
2840 #ifdef CONFIG_SYSCTL
sched_rt_global_validate(void)2841 static int sched_rt_global_validate(void)
2842 {
2843 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2844 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2845 ((u64)sysctl_sched_rt_runtime *
2846 NSEC_PER_USEC > max_rt_runtime)))
2847 return -EINVAL;
2848
2849 return 0;
2850 }
2851
sched_rt_do_global(void)2852 static void sched_rt_do_global(void)
2853 {
2854 }
2855
sched_rt_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2856 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2857 size_t *lenp, loff_t *ppos)
2858 {
2859 int old_period, old_runtime;
2860 static DEFINE_MUTEX(mutex);
2861 int ret;
2862
2863 mutex_lock(&mutex);
2864 sched_domains_mutex_lock();
2865 old_period = sysctl_sched_rt_period;
2866 old_runtime = sysctl_sched_rt_runtime;
2867
2868 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2869
2870 if (!ret && write) {
2871 ret = sched_rt_global_validate();
2872 if (ret)
2873 goto undo;
2874
2875 ret = sched_dl_global_validate();
2876 if (ret)
2877 goto undo;
2878
2879 ret = sched_rt_global_constraints();
2880 if (ret)
2881 goto undo;
2882
2883 sched_rt_do_global();
2884 sched_dl_do_global();
2885 }
2886 if (0) {
2887 undo:
2888 sysctl_sched_rt_period = old_period;
2889 sysctl_sched_rt_runtime = old_runtime;
2890 }
2891 sched_domains_mutex_unlock();
2892 mutex_unlock(&mutex);
2893
2894 /*
2895 * After changing maximum available bandwidth for DEADLINE, we need to
2896 * recompute per root domain and per cpus variables accordingly.
2897 */
2898 rebuild_sched_domains();
2899
2900 return ret;
2901 }
2902
sched_rr_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2903 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2904 size_t *lenp, loff_t *ppos)
2905 {
2906 int ret;
2907 static DEFINE_MUTEX(mutex);
2908
2909 mutex_lock(&mutex);
2910 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2911 /*
2912 * Make sure that internally we keep jiffies.
2913 * Also, writing zero resets the time-slice to default:
2914 */
2915 if (!ret && write) {
2916 sched_rr_timeslice =
2917 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2918 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2919
2920 if (sysctl_sched_rr_timeslice <= 0)
2921 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2922 }
2923 mutex_unlock(&mutex);
2924
2925 return ret;
2926 }
2927 #endif /* CONFIG_SYSCTL */
2928
print_rt_stats(struct seq_file * m,int cpu)2929 void print_rt_stats(struct seq_file *m, int cpu)
2930 {
2931 rt_rq_iter_t iter;
2932 struct rt_rq *rt_rq;
2933
2934 rcu_read_lock();
2935 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2936 print_rt_rq(m, cpu, rt_rq);
2937 rcu_read_unlock();
2938 }
2939