1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_extent_busy.h"
15 #include "xfs_quota.h"
16 #include "xfs_trans.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_log.h"
19 #include "xfs_log_priv.h"
20 #include "xfs_trace.h"
21 #include "xfs_error.h"
22 #include "xfs_defer.h"
23 #include "xfs_inode.h"
24 #include "xfs_dquot_item.h"
25 #include "xfs_dquot.h"
26 #include "xfs_icache.h"
27 #include "xfs_rtbitmap.h"
28 #include "xfs_rtgroup.h"
29 #include "xfs_sb.h"
30
31 struct kmem_cache *xfs_trans_cache;
32
33 #if defined(CONFIG_TRACEPOINTS)
34 static void
xfs_trans_trace_reservations(struct xfs_mount * mp)35 xfs_trans_trace_reservations(
36 struct xfs_mount *mp)
37 {
38 struct xfs_trans_res *res;
39 struct xfs_trans_res *end_res;
40 int i;
41
42 res = (struct xfs_trans_res *)M_RES(mp);
43 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
44 for (i = 0; res < end_res; i++, res++)
45 trace_xfs_trans_resv_calc(mp, i, res);
46 }
47 #else
48 # define xfs_trans_trace_reservations(mp)
49 #endif
50
51 /*
52 * Initialize the precomputed transaction reservation values
53 * in the mount structure.
54 */
55 void
xfs_trans_init(struct xfs_mount * mp)56 xfs_trans_init(
57 struct xfs_mount *mp)
58 {
59 xfs_trans_resv_calc(mp, M_RES(mp));
60 xfs_trans_trace_reservations(mp);
61 }
62
63 /*
64 * Free the transaction structure. If there is more clean up
65 * to do when the structure is freed, add it here.
66 */
67 STATIC void
xfs_trans_free(struct xfs_trans * tp)68 xfs_trans_free(
69 struct xfs_trans *tp)
70 {
71 xfs_extent_busy_sort(&tp->t_busy);
72 xfs_extent_busy_clear(&tp->t_busy, false);
73
74 trace_xfs_trans_free(tp, _RET_IP_);
75 xfs_trans_clear_context(tp);
76 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
77 sb_end_intwrite(tp->t_mountp->m_super);
78 xfs_trans_free_dqinfo(tp);
79 kmem_cache_free(xfs_trans_cache, tp);
80 }
81
82 /*
83 * This is called to create a new transaction which will share the
84 * permanent log reservation of the given transaction. The remaining
85 * unused block and rt extent reservations are also inherited. This
86 * implies that the original transaction is no longer allowed to allocate
87 * blocks. Locks and log items, however, are no inherited. They must
88 * be added to the new transaction explicitly.
89 */
90 STATIC struct xfs_trans *
xfs_trans_dup(struct xfs_trans * tp)91 xfs_trans_dup(
92 struct xfs_trans *tp)
93 {
94 struct xfs_trans *ntp;
95
96 trace_xfs_trans_dup(tp, _RET_IP_);
97
98 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
99
100 /*
101 * Initialize the new transaction structure.
102 */
103 ntp->t_mountp = tp->t_mountp;
104 INIT_LIST_HEAD(&ntp->t_items);
105 INIT_LIST_HEAD(&ntp->t_busy);
106 INIT_LIST_HEAD(&ntp->t_dfops);
107 ntp->t_highest_agno = NULLAGNUMBER;
108
109 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
110 ASSERT(tp->t_ticket != NULL);
111
112 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
113 (tp->t_flags & XFS_TRANS_RESERVE) |
114 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
115 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
116 /* We gave our writer reference to the new transaction */
117 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
118 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
119
120 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
121 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
122 tp->t_blk_res = tp->t_blk_res_used;
123
124 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
125 tp->t_rtx_res = tp->t_rtx_res_used;
126
127 xfs_trans_switch_context(tp, ntp);
128
129 /* move deferred ops over to the new tp */
130 xfs_defer_move(ntp, tp);
131
132 xfs_trans_dup_dqinfo(tp, ntp);
133 return ntp;
134 }
135
136 /*
137 * This is called to reserve free disk blocks and log space for the given
138 * transaction before allocating any resources within the transaction.
139 *
140 * This will return ENOSPC if there are not enough blocks available.
141 * It will sleep waiting for available log space.
142 *
143 * This does not do quota reservations. That typically is done by the caller
144 * afterwards.
145 */
146 static int
xfs_trans_reserve(struct xfs_trans * tp,struct xfs_trans_res * resp,uint blocks,uint rtextents)147 xfs_trans_reserve(
148 struct xfs_trans *tp,
149 struct xfs_trans_res *resp,
150 uint blocks,
151 uint rtextents)
152 {
153 struct xfs_mount *mp = tp->t_mountp;
154 int error = 0;
155 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
156
157 ASSERT(resp->tr_logres > 0);
158
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing the number
161 * needed from the number available. This will fail if the count would
162 * go below zero.
163 */
164 if (blocks > 0) {
165 error = xfs_dec_fdblocks(mp, blocks, rsvd);
166 if (error != 0)
167 return -ENOSPC;
168 tp->t_blk_res += blocks;
169 }
170
171 /*
172 * Reserve the log space needed for this transaction.
173 */
174 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES)
175 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
176 error = xfs_log_reserve(mp, resp->tr_logres, resp->tr_logcount,
177 &tp->t_ticket, (tp->t_flags & XFS_TRANS_PERM_LOG_RES));
178 if (error)
179 goto undo_blocks;
180
181 tp->t_log_res = resp->tr_logres;
182 tp->t_log_count = resp->tr_logcount;
183
184 /*
185 * Attempt to reserve the needed realtime extents by decrementing the
186 * number needed from the number available. This will fail if the
187 * count would go below zero.
188 */
189 if (rtextents > 0) {
190 error = xfs_dec_frextents(mp, rtextents);
191 if (error) {
192 error = -ENOSPC;
193 goto undo_log;
194 }
195 tp->t_rtx_res += rtextents;
196 }
197
198 return 0;
199
200 undo_log:
201 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
202 tp->t_ticket = NULL;
203 tp->t_log_res = 0;
204 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
205 undo_blocks:
206 if (blocks > 0) {
207 xfs_add_fdblocks(mp, blocks);
208 tp->t_blk_res = 0;
209 }
210 return error;
211 }
212
213 static struct xfs_trans *
__xfs_trans_alloc(struct xfs_mount * mp,uint flags)214 __xfs_trans_alloc(
215 struct xfs_mount *mp,
216 uint flags)
217 {
218 struct xfs_trans *tp;
219
220 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) || xfs_has_lazysbcount(mp));
221
222 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
223 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
224 sb_start_intwrite(mp->m_super);
225 xfs_trans_set_context(tp);
226 tp->t_flags = flags;
227 tp->t_mountp = mp;
228 INIT_LIST_HEAD(&tp->t_items);
229 INIT_LIST_HEAD(&tp->t_busy);
230 INIT_LIST_HEAD(&tp->t_dfops);
231 tp->t_highest_agno = NULLAGNUMBER;
232 return tp;
233 }
234
235 int
xfs_trans_alloc(struct xfs_mount * mp,struct xfs_trans_res * resp,uint blocks,uint rtextents,uint flags,struct xfs_trans ** tpp)236 xfs_trans_alloc(
237 struct xfs_mount *mp,
238 struct xfs_trans_res *resp,
239 uint blocks,
240 uint rtextents,
241 uint flags,
242 struct xfs_trans **tpp)
243 {
244 struct xfs_trans *tp;
245 bool want_retry = true;
246 int error;
247
248 ASSERT(resp->tr_logres > 0);
249
250 /*
251 * Allocate the handle before we do our freeze accounting and setting up
252 * GFP_NOFS allocation context so that we avoid lockdep false positives
253 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
254 */
255 retry:
256 WARN_ON(mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
257 tp = __xfs_trans_alloc(mp, flags);
258 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
259 if (error == -ENOSPC && want_retry) {
260 xfs_trans_cancel(tp);
261
262 /*
263 * We weren't able to reserve enough space for the transaction.
264 * Flush the other speculative space allocations to free space.
265 * Do not perform a synchronous scan because callers can hold
266 * other locks.
267 */
268 error = xfs_blockgc_flush_all(mp);
269 if (error)
270 return error;
271 want_retry = false;
272 goto retry;
273 }
274 if (error) {
275 xfs_trans_cancel(tp);
276 return error;
277 }
278
279 trace_xfs_trans_alloc(tp, _RET_IP_);
280
281 *tpp = tp;
282 return 0;
283 }
284
285 /*
286 * Create an empty transaction with no reservation. This is a defensive
287 * mechanism for routines that query metadata without actually modifying them --
288 * if the metadata being queried is somehow cross-linked (think a btree block
289 * pointer that points higher in the tree), we risk deadlock. However, blocks
290 * grabbed as part of a transaction can be re-grabbed. The verifiers will
291 * notice the corrupt block and the operation will fail back to userspace
292 * without deadlocking.
293 *
294 * Note the zero-length reservation; this transaction MUST be cancelled without
295 * any dirty data.
296 *
297 * Callers should obtain freeze protection to avoid a conflict with fs freezing
298 * where we can be grabbing buffers at the same time that freeze is trying to
299 * drain the buffer LRU list.
300 */
301 struct xfs_trans *
xfs_trans_alloc_empty(struct xfs_mount * mp)302 xfs_trans_alloc_empty(
303 struct xfs_mount *mp)
304 {
305 return __xfs_trans_alloc(mp, XFS_TRANS_NO_WRITECOUNT);
306 }
307
308 /*
309 * Record the indicated change to the given field for application
310 * to the file system's superblock when the transaction commits.
311 * For now, just store the change in the transaction structure.
312 *
313 * Mark the transaction structure to indicate that the superblock
314 * needs to be updated before committing.
315 *
316 * Because we may not be keeping track of allocated/free inodes and
317 * used filesystem blocks in the superblock, we do not mark the
318 * superblock dirty in this transaction if we modify these fields.
319 * We still need to update the transaction deltas so that they get
320 * applied to the incore superblock, but we don't want them to
321 * cause the superblock to get locked and logged if these are the
322 * only fields in the superblock that the transaction modifies.
323 */
324 void
xfs_trans_mod_sb(xfs_trans_t * tp,uint field,int64_t delta)325 xfs_trans_mod_sb(
326 xfs_trans_t *tp,
327 uint field,
328 int64_t delta)
329 {
330 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
331 xfs_mount_t *mp = tp->t_mountp;
332
333 switch (field) {
334 case XFS_TRANS_SB_ICOUNT:
335 tp->t_icount_delta += delta;
336 if (xfs_has_lazysbcount(mp))
337 flags &= ~XFS_TRANS_SB_DIRTY;
338 break;
339 case XFS_TRANS_SB_IFREE:
340 tp->t_ifree_delta += delta;
341 if (xfs_has_lazysbcount(mp))
342 flags &= ~XFS_TRANS_SB_DIRTY;
343 break;
344 case XFS_TRANS_SB_FDBLOCKS:
345 /*
346 * Track the number of blocks allocated in the transaction.
347 * Make sure it does not exceed the number reserved. If so,
348 * shutdown as this can lead to accounting inconsistency.
349 */
350 if (delta < 0) {
351 tp->t_blk_res_used += (uint)-delta;
352 if (tp->t_blk_res_used > tp->t_blk_res)
353 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
354 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
355 int64_t blkres_delta;
356
357 /*
358 * Return freed blocks directly to the reservation
359 * instead of the global pool, being careful not to
360 * overflow the trans counter. This is used to preserve
361 * reservation across chains of transaction rolls that
362 * repeatedly free and allocate blocks.
363 */
364 blkres_delta = min_t(int64_t, delta,
365 UINT_MAX - tp->t_blk_res);
366 tp->t_blk_res += blkres_delta;
367 delta -= blkres_delta;
368 }
369 tp->t_fdblocks_delta += delta;
370 if (xfs_has_lazysbcount(mp))
371 flags &= ~XFS_TRANS_SB_DIRTY;
372 break;
373 case XFS_TRANS_SB_RES_FDBLOCKS:
374 /*
375 * The allocation has already been applied to the
376 * in-core superblock's counter. This should only
377 * be applied to the on-disk superblock.
378 */
379 tp->t_res_fdblocks_delta += delta;
380 if (xfs_has_lazysbcount(mp))
381 flags &= ~XFS_TRANS_SB_DIRTY;
382 break;
383 case XFS_TRANS_SB_FREXTENTS:
384 /*
385 * Track the number of blocks allocated in the
386 * transaction. Make sure it does not exceed the
387 * number reserved.
388 */
389 if (delta < 0) {
390 tp->t_rtx_res_used += (uint)-delta;
391 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
392 }
393 tp->t_frextents_delta += delta;
394 if (xfs_has_rtgroups(mp))
395 flags &= ~XFS_TRANS_SB_DIRTY;
396 break;
397 case XFS_TRANS_SB_RES_FREXTENTS:
398 /*
399 * The allocation has already been applied to the
400 * in-core superblock's counter. This should only
401 * be applied to the on-disk superblock.
402 */
403 ASSERT(delta < 0);
404 tp->t_res_frextents_delta += delta;
405 if (xfs_has_rtgroups(mp))
406 flags &= ~XFS_TRANS_SB_DIRTY;
407 break;
408 case XFS_TRANS_SB_DBLOCKS:
409 tp->t_dblocks_delta += delta;
410 break;
411 case XFS_TRANS_SB_AGCOUNT:
412 ASSERT(delta > 0);
413 tp->t_agcount_delta += delta;
414 break;
415 case XFS_TRANS_SB_IMAXPCT:
416 tp->t_imaxpct_delta += delta;
417 break;
418 case XFS_TRANS_SB_REXTSIZE:
419 tp->t_rextsize_delta += delta;
420 break;
421 case XFS_TRANS_SB_RBMBLOCKS:
422 tp->t_rbmblocks_delta += delta;
423 break;
424 case XFS_TRANS_SB_RBLOCKS:
425 tp->t_rblocks_delta += delta;
426 break;
427 case XFS_TRANS_SB_REXTENTS:
428 tp->t_rextents_delta += delta;
429 break;
430 case XFS_TRANS_SB_REXTSLOG:
431 tp->t_rextslog_delta += delta;
432 break;
433 case XFS_TRANS_SB_RGCOUNT:
434 ASSERT(delta > 0);
435 tp->t_rgcount_delta += delta;
436 break;
437 default:
438 ASSERT(0);
439 return;
440 }
441
442 tp->t_flags |= flags;
443 }
444
445 /*
446 * xfs_trans_apply_sb_deltas() is called from the commit code
447 * to bring the superblock buffer into the current transaction
448 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
449 *
450 * For now we just look at each field allowed to change and change
451 * it if necessary.
452 */
453 STATIC void
xfs_trans_apply_sb_deltas(xfs_trans_t * tp)454 xfs_trans_apply_sb_deltas(
455 xfs_trans_t *tp)
456 {
457 struct xfs_dsb *sbp;
458 struct xfs_buf *bp;
459 int whole = 0;
460
461 bp = xfs_trans_getsb(tp);
462 sbp = bp->b_addr;
463
464 /*
465 * Only update the superblock counters if we are logging them
466 */
467 if (!xfs_has_lazysbcount((tp->t_mountp))) {
468 if (tp->t_icount_delta)
469 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
470 if (tp->t_ifree_delta)
471 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
472 if (tp->t_fdblocks_delta)
473 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
474 if (tp->t_res_fdblocks_delta)
475 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
476 }
477
478 /*
479 * sb_frextents was added to the lazy sb counters when the rt groups
480 * feature was introduced. This is possible because we know that all
481 * kernels supporting rtgroups will also recompute frextents from the
482 * realtime bitmap.
483 *
484 * For older file systems, updating frextents requires careful handling
485 * because we cannot rely on log recovery in older kernels to recompute
486 * the value from the rtbitmap. This means that the ondisk frextents
487 * must be consistent with the rtbitmap.
488 *
489 * Therefore, log the frextents change to the ondisk superblock and
490 * update the incore superblock so that future calls to xfs_log_sb
491 * write the correct value ondisk.
492 */
493 if ((tp->t_frextents_delta || tp->t_res_frextents_delta) &&
494 !xfs_has_rtgroups(tp->t_mountp)) {
495 struct xfs_mount *mp = tp->t_mountp;
496 int64_t rtxdelta;
497
498 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
499
500 spin_lock(&mp->m_sb_lock);
501 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
502 mp->m_sb.sb_frextents += rtxdelta;
503 spin_unlock(&mp->m_sb_lock);
504 }
505
506 if (tp->t_dblocks_delta) {
507 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
508 whole = 1;
509 }
510 if (tp->t_agcount_delta) {
511 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
512 whole = 1;
513 }
514 if (tp->t_imaxpct_delta) {
515 sbp->sb_imax_pct += tp->t_imaxpct_delta;
516 whole = 1;
517 }
518 if (tp->t_rextsize_delta) {
519 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
520
521 /*
522 * Because the ondisk sb records rtgroup size in units of rt
523 * extents, any time we update the rt extent size we have to
524 * recompute the ondisk rtgroup block log. The incore values
525 * will be recomputed in xfs_trans_unreserve_and_mod_sb.
526 */
527 if (xfs_has_rtgroups(tp->t_mountp)) {
528 sbp->sb_rgblklog = xfs_compute_rgblklog(
529 be32_to_cpu(sbp->sb_rgextents),
530 be32_to_cpu(sbp->sb_rextsize));
531 }
532 whole = 1;
533 }
534 if (tp->t_rbmblocks_delta) {
535 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
536 whole = 1;
537 }
538 if (tp->t_rblocks_delta) {
539 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
540 whole = 1;
541 }
542 if (tp->t_rextents_delta) {
543 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
544 whole = 1;
545 }
546 if (tp->t_rextslog_delta) {
547 sbp->sb_rextslog += tp->t_rextslog_delta;
548 whole = 1;
549 }
550 if (tp->t_rgcount_delta) {
551 be32_add_cpu(&sbp->sb_rgcount, tp->t_rgcount_delta);
552 whole = 1;
553 }
554
555 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
556 if (whole)
557 /*
558 * Log the whole thing, the fields are noncontiguous.
559 */
560 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
561 else
562 /*
563 * Since all the modifiable fields are contiguous, we
564 * can get away with this.
565 */
566 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
567 offsetof(struct xfs_dsb, sb_frextents) +
568 sizeof(sbp->sb_frextents) - 1);
569 }
570
571 /*
572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
573 * apply superblock counter changes to the in-core superblock. The
574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
575 * applied to the in-core superblock. The idea is that that has already been
576 * done.
577 *
578 * If we are not logging superblock counters, then the inode allocated/free and
579 * used block counts are not updated in the on disk superblock. In this case,
580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
581 * still need to update the incore superblock with the changes.
582 *
583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
584 * so we don't need to take the counter lock on every update.
585 */
586 #define XFS_ICOUNT_BATCH 128
587
588 void
xfs_trans_unreserve_and_mod_sb(struct xfs_trans * tp)589 xfs_trans_unreserve_and_mod_sb(
590 struct xfs_trans *tp)
591 {
592 struct xfs_mount *mp = tp->t_mountp;
593 int64_t blkdelta = tp->t_blk_res;
594 int64_t rtxdelta = tp->t_rtx_res;
595 int64_t idelta = 0;
596 int64_t ifreedelta = 0;
597
598 /*
599 * Calculate the deltas.
600 *
601 * t_fdblocks_delta and t_frextents_delta can be positive or negative:
602 *
603 * - positive values indicate blocks freed in the transaction.
604 * - negative values indicate blocks allocated in the transaction
605 *
606 * Negative values can only happen if the transaction has a block
607 * reservation that covers the allocated block. The end result is
608 * that the calculated delta values must always be positive and we
609 * can only put back previous allocated or reserved blocks here.
610 */
611 ASSERT(tp->t_blk_res || tp->t_fdblocks_delta >= 0);
612 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
613 blkdelta += tp->t_fdblocks_delta;
614 ASSERT(blkdelta >= 0);
615 }
616
617 ASSERT(tp->t_rtx_res || tp->t_frextents_delta >= 0);
618 if (xfs_has_rtgroups(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
619 rtxdelta += tp->t_frextents_delta;
620 ASSERT(rtxdelta >= 0);
621 }
622
623 if (xfs_has_lazysbcount(mp) || (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
624 idelta = tp->t_icount_delta;
625 ifreedelta = tp->t_ifree_delta;
626 }
627
628 /* apply the per-cpu counters */
629 if (blkdelta)
630 xfs_add_fdblocks(mp, blkdelta);
631
632 if (idelta)
633 percpu_counter_add_batch(&mp->m_icount, idelta,
634 XFS_ICOUNT_BATCH);
635
636 if (ifreedelta)
637 percpu_counter_add(&mp->m_ifree, ifreedelta);
638
639 if (rtxdelta)
640 xfs_add_frextents(mp, rtxdelta);
641
642 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
643 return;
644
645 /* apply remaining deltas */
646 spin_lock(&mp->m_sb_lock);
647 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
648 mp->m_sb.sb_icount += idelta;
649 mp->m_sb.sb_ifree += ifreedelta;
650 /*
651 * Do not touch sb_frextents here because it is handled in
652 * xfs_trans_apply_sb_deltas for file systems where it isn't a lazy
653 * counter anyway.
654 */
655 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
656 mp->m_sb.sb_agcount += tp->t_agcount_delta;
657 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
658 if (tp->t_rextsize_delta)
659 xfs_mount_sb_set_rextsize(mp, &mp->m_sb,
660 mp->m_sb.sb_rextsize + tp->t_rextsize_delta);
661 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
662 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
663 mp->m_sb.sb_rextents += tp->t_rextents_delta;
664 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
665 mp->m_sb.sb_rgcount += tp->t_rgcount_delta;
666 spin_unlock(&mp->m_sb_lock);
667
668 /*
669 * Debug checks outside of the spinlock so they don't lock up the
670 * machine if they fail.
671 */
672 ASSERT(mp->m_sb.sb_imax_pct >= 0);
673 ASSERT(mp->m_sb.sb_rextslog >= 0);
674 }
675
676 /* Add the given log item to the transaction's list of log items. */
677 void
xfs_trans_add_item(struct xfs_trans * tp,struct xfs_log_item * lip)678 xfs_trans_add_item(
679 struct xfs_trans *tp,
680 struct xfs_log_item *lip)
681 {
682 ASSERT(lip->li_log == tp->t_mountp->m_log);
683 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
684 ASSERT(list_empty(&lip->li_trans));
685 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
686
687 list_add_tail(&lip->li_trans, &tp->t_items);
688 trace_xfs_trans_add_item(tp, _RET_IP_);
689 }
690
691 /*
692 * Unlink the log item from the transaction. the log item is no longer
693 * considered dirty in this transaction, as the linked transaction has
694 * finished, either by abort or commit completion.
695 */
696 void
xfs_trans_del_item(struct xfs_log_item * lip)697 xfs_trans_del_item(
698 struct xfs_log_item *lip)
699 {
700 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
701 list_del_init(&lip->li_trans);
702 }
703
704 /* Detach and unlock all of the items in a transaction */
705 static void
xfs_trans_free_items(struct xfs_trans * tp,bool abort)706 xfs_trans_free_items(
707 struct xfs_trans *tp,
708 bool abort)
709 {
710 struct xfs_log_item *lip, *next;
711
712 trace_xfs_trans_free_items(tp, _RET_IP_);
713
714 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
715 xfs_trans_del_item(lip);
716 if (abort) {
717 trace_xfs_trans_free_abort(lip);
718 set_bit(XFS_LI_ABORTED, &lip->li_flags);
719 }
720 if (lip->li_ops->iop_release)
721 lip->li_ops->iop_release(lip);
722 }
723 }
724
725 /*
726 * Sort transaction items prior to running precommit operations. This will
727 * attempt to order the items such that they will always be locked in the same
728 * order. Items that have no sort function are moved to the end of the list
729 * and so are locked last.
730 *
731 * This may need refinement as different types of objects add sort functions.
732 *
733 * Function is more complex than it needs to be because we are comparing 64 bit
734 * values and the function only returns 32 bit values.
735 */
736 static int
xfs_trans_precommit_sort(void * unused_arg,const struct list_head * a,const struct list_head * b)737 xfs_trans_precommit_sort(
738 void *unused_arg,
739 const struct list_head *a,
740 const struct list_head *b)
741 {
742 struct xfs_log_item *lia = container_of(a,
743 struct xfs_log_item, li_trans);
744 struct xfs_log_item *lib = container_of(b,
745 struct xfs_log_item, li_trans);
746 int64_t diff;
747
748 /*
749 * If both items are non-sortable, leave them alone. If only one is
750 * sortable, move the non-sortable item towards the end of the list.
751 */
752 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
753 return 0;
754 if (!lia->li_ops->iop_sort)
755 return 1;
756 if (!lib->li_ops->iop_sort)
757 return -1;
758
759 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
760 if (diff < 0)
761 return -1;
762 if (diff > 0)
763 return 1;
764 return 0;
765 }
766
767 /*
768 * Run transaction precommit functions.
769 *
770 * If there is an error in any of the callouts, then stop immediately and
771 * trigger a shutdown to abort the transaction. There is no recovery possible
772 * from errors at this point as the transaction is dirty....
773 */
774 static int
xfs_trans_run_precommits(struct xfs_trans * tp)775 xfs_trans_run_precommits(
776 struct xfs_trans *tp)
777 {
778 struct xfs_mount *mp = tp->t_mountp;
779 struct xfs_log_item *lip, *n;
780 int error = 0;
781
782 /*
783 * Sort the item list to avoid ABBA deadlocks with other transactions
784 * running precommit operations that lock multiple shared items such as
785 * inode cluster buffers.
786 */
787 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
788
789 /*
790 * Precommit operations can remove the log item from the transaction
791 * if the log item exists purely to delay modifications until they
792 * can be ordered against other operations. Hence we have to use
793 * list_for_each_entry_safe() here.
794 */
795 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
796 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
797 continue;
798 if (lip->li_ops->iop_precommit) {
799 error = lip->li_ops->iop_precommit(tp, lip);
800 if (error)
801 break;
802 }
803 }
804 if (error)
805 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
806 return error;
807 }
808
809 /*
810 * Commit the given transaction to the log.
811 *
812 * XFS disk error handling mechanism is not based on a typical
813 * transaction abort mechanism. Logically after the filesystem
814 * gets marked 'SHUTDOWN', we can't let any new transactions
815 * be durable - ie. committed to disk - because some metadata might
816 * be inconsistent. In such cases, this returns an error, and the
817 * caller may assume that all locked objects joined to the transaction
818 * have already been unlocked as if the commit had succeeded.
819 * Do not reference the transaction structure after this call.
820 */
821 static int
__xfs_trans_commit(struct xfs_trans * tp,bool regrant)822 __xfs_trans_commit(
823 struct xfs_trans *tp,
824 bool regrant)
825 {
826 struct xfs_mount *mp = tp->t_mountp;
827 struct xlog *log = mp->m_log;
828 xfs_csn_t commit_seq = 0;
829 int error = 0;
830 int sync = tp->t_flags & XFS_TRANS_SYNC;
831
832 trace_xfs_trans_commit(tp, _RET_IP_);
833
834 /*
835 * Commit per-transaction changes that are not already tracked through
836 * log items. This can add dirty log items to the transaction.
837 */
838 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
839 xfs_trans_apply_sb_deltas(tp);
840 xfs_trans_apply_dquot_deltas(tp);
841
842 error = xfs_trans_run_precommits(tp);
843 if (error)
844 goto out_unreserve;
845
846 /*
847 * If there is nothing to be logged by the transaction,
848 * then unlock all of the items associated with the
849 * transaction and free the transaction structure.
850 * Also make sure to return any reserved blocks to
851 * the free pool.
852 */
853 if (!(tp->t_flags & XFS_TRANS_DIRTY))
854 goto out_unreserve;
855
856 /*
857 * We must check against log shutdown here because we cannot abort log
858 * items and leave them dirty, inconsistent and unpinned in memory while
859 * the log is active. This leaves them open to being written back to
860 * disk, and that will lead to on-disk corruption.
861 */
862 if (xlog_is_shutdown(log)) {
863 error = -EIO;
864 goto out_unreserve;
865 }
866
867 ASSERT(tp->t_ticket != NULL);
868
869 xlog_cil_commit(log, tp, &commit_seq, regrant);
870
871 xfs_trans_free(tp);
872
873 /*
874 * If the transaction needs to be synchronous, then force the
875 * log out now and wait for it.
876 */
877 if (sync) {
878 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
879 XFS_STATS_INC(mp, xs_trans_sync);
880 } else {
881 XFS_STATS_INC(mp, xs_trans_async);
882 }
883
884 return error;
885
886 out_unreserve:
887 xfs_trans_unreserve_and_mod_sb(tp);
888
889 /*
890 * It is indeed possible for the transaction to be not dirty but
891 * the dqinfo portion to be. All that means is that we have some
892 * (non-persistent) quota reservations that need to be unreserved.
893 */
894 xfs_trans_unreserve_and_mod_dquots(tp, true);
895 if (tp->t_ticket) {
896 if (regrant && !xlog_is_shutdown(log))
897 xfs_log_ticket_regrant(log, tp->t_ticket);
898 else
899 xfs_log_ticket_ungrant(log, tp->t_ticket);
900 tp->t_ticket = NULL;
901 }
902 xfs_trans_free_items(tp, !!error);
903 xfs_trans_free(tp);
904
905 XFS_STATS_INC(mp, xs_trans_empty);
906 return error;
907 }
908
909 int
xfs_trans_commit(struct xfs_trans * tp)910 xfs_trans_commit(
911 struct xfs_trans *tp)
912 {
913 /*
914 * Finish deferred items on final commit. Only permanent transactions
915 * should ever have deferred ops.
916 */
917 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
918 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
919 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES) {
920 int error = xfs_defer_finish_noroll(&tp);
921 if (error) {
922 xfs_trans_cancel(tp);
923 return error;
924 }
925 }
926
927 return __xfs_trans_commit(tp, false);
928 }
929
930 /*
931 * Unlock all of the transaction's items and free the transaction. If the
932 * transaction is dirty, we must shut down the filesystem because there is no
933 * way to restore them to their previous state.
934 *
935 * If the transaction has made a log reservation, make sure to release it as
936 * well.
937 *
938 * This is a high level function (equivalent to xfs_trans_commit()) and so can
939 * be called after the transaction has effectively been aborted due to the mount
940 * being shut down. However, if the mount has not been shut down and the
941 * transaction is dirty we will shut the mount down and, in doing so, that
942 * guarantees that the log is shut down, too. Hence we don't need to be as
943 * careful with shutdown state and dirty items here as we need to be in
944 * xfs_trans_commit().
945 */
946 void
xfs_trans_cancel(struct xfs_trans * tp)947 xfs_trans_cancel(
948 struct xfs_trans *tp)
949 {
950 struct xfs_mount *mp = tp->t_mountp;
951 struct xlog *log = mp->m_log;
952 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
953
954 trace_xfs_trans_cancel(tp, _RET_IP_);
955
956 /*
957 * It's never valid to cancel a transaction with deferred ops attached,
958 * because the transaction is effectively dirty. Complain about this
959 * loudly before freeing the in-memory defer items and shutting down the
960 * filesystem.
961 */
962 if (!list_empty(&tp->t_dfops)) {
963 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
964 dirty = true;
965 xfs_defer_cancel(tp);
966 }
967
968 /*
969 * See if the caller is relying on us to shut down the filesystem. We
970 * only want an error report if there isn't already a shutdown in
971 * progress, so we only need to check against the mount shutdown state
972 * here.
973 */
974 if (dirty && !xfs_is_shutdown(mp)) {
975 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
976 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
977 }
978 #ifdef DEBUG
979 /* Log items need to be consistent until the log is shut down. */
980 if (!dirty && !xlog_is_shutdown(log)) {
981 struct xfs_log_item *lip;
982
983 list_for_each_entry(lip, &tp->t_items, li_trans)
984 ASSERT(!xlog_item_is_intent_done(lip));
985 }
986 #endif
987 xfs_trans_unreserve_and_mod_sb(tp);
988 xfs_trans_unreserve_and_mod_dquots(tp, false);
989
990 if (tp->t_ticket) {
991 xfs_log_ticket_ungrant(log, tp->t_ticket);
992 tp->t_ticket = NULL;
993 }
994
995 xfs_trans_free_items(tp, dirty);
996 xfs_trans_free(tp);
997 }
998
999 /*
1000 * Roll from one trans in the sequence of PERMANENT transactions to the next:
1001 * permanent transactions are only flushed out when committed with
1002 * xfs_trans_commit(), but we still want as soon as possible to let chunks of it
1003 * go to the log. So we commit the chunk we've been working on and get a new
1004 * transaction to continue.
1005 */
1006 int
xfs_trans_roll(struct xfs_trans ** tpp)1007 xfs_trans_roll(
1008 struct xfs_trans **tpp)
1009 {
1010 struct xfs_trans *tp = *tpp;
1011 unsigned int log_res = tp->t_log_res;
1012 unsigned int log_count = tp->t_log_count;
1013 int error;
1014
1015 trace_xfs_trans_roll(tp, _RET_IP_);
1016
1017 ASSERT(log_res > 0);
1018
1019 /*
1020 * Copy the critical parameters from one trans to the next.
1021 */
1022 *tpp = xfs_trans_dup(tp);
1023
1024 /*
1025 * Commit the current transaction.
1026 *
1027 * If this commit failed, then it'd just unlock those items that are not
1028 * marked ihold. That also means that a filesystem shutdown is in
1029 * progress. The caller takes the responsibility to cancel the
1030 * duplicate transaction that gets returned.
1031 */
1032 error = __xfs_trans_commit(tp, true);
1033 if (error)
1034 return error;
1035
1036 /*
1037 * Reserve space in the log for the next transaction.
1038 *
1039 * This also pushes items in the AIL out to disk if they are taking up
1040 * space at the tail of the log that we want to use. This requires that
1041 * either nothing be locked across this call, or that anything that is
1042 * locked be logged in the prior and the next transactions.
1043 */
1044 tp = *tpp;
1045 error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
1046 if (error)
1047 return error;
1048 tp->t_log_res = log_res;
1049 tp->t_log_count = log_count;
1050 return 0;
1051 }
1052
1053 /*
1054 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1055 *
1056 * The caller must ensure that the on-disk dquots attached to this inode have
1057 * already been allocated and initialized. The caller is responsible for
1058 * releasing ILOCK_EXCL if a new transaction is returned.
1059 */
1060 int
xfs_trans_alloc_inode(struct xfs_inode * ip,struct xfs_trans_res * resv,unsigned int dblocks,unsigned int rblocks,bool force,struct xfs_trans ** tpp)1061 xfs_trans_alloc_inode(
1062 struct xfs_inode *ip,
1063 struct xfs_trans_res *resv,
1064 unsigned int dblocks,
1065 unsigned int rblocks,
1066 bool force,
1067 struct xfs_trans **tpp)
1068 {
1069 struct xfs_trans *tp;
1070 struct xfs_mount *mp = ip->i_mount;
1071 bool retried = false;
1072 int error;
1073
1074 retry:
1075 error = xfs_trans_alloc(mp, resv, dblocks,
1076 xfs_extlen_to_rtxlen(mp, rblocks),
1077 force ? XFS_TRANS_RESERVE : 0, &tp);
1078 if (error)
1079 return error;
1080
1081 xfs_ilock(ip, XFS_ILOCK_EXCL);
1082 xfs_trans_ijoin(tp, ip, 0);
1083
1084 error = xfs_qm_dqattach_locked(ip, false);
1085 if (error) {
1086 /* Caller should have allocated the dquots! */
1087 ASSERT(error != -ENOENT);
1088 goto out_cancel;
1089 }
1090
1091 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1092 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1093 xfs_trans_cancel(tp);
1094 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1095 xfs_blockgc_free_quota(ip, 0);
1096 retried = true;
1097 goto retry;
1098 }
1099 if (error)
1100 goto out_cancel;
1101
1102 *tpp = tp;
1103 return 0;
1104
1105 out_cancel:
1106 xfs_trans_cancel(tp);
1107 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1108 return error;
1109 }
1110
1111 /*
1112 * Try to reserve more blocks for a transaction.
1113 *
1114 * This is for callers that need to attach resources to a transaction, scan
1115 * those resources to determine the space reservation requirements, and then
1116 * modify the attached resources. In other words, online repair. This can
1117 * fail due to ENOSPC, so the caller must be able to cancel the transaction
1118 * without shutting down the fs.
1119 */
1120 int
xfs_trans_reserve_more(struct xfs_trans * tp,unsigned int blocks,unsigned int rtextents)1121 xfs_trans_reserve_more(
1122 struct xfs_trans *tp,
1123 unsigned int blocks,
1124 unsigned int rtextents)
1125 {
1126 bool rsvd = tp->t_flags & XFS_TRANS_RESERVE;
1127
1128 if (blocks && xfs_dec_fdblocks(tp->t_mountp, blocks, rsvd))
1129 return -ENOSPC;
1130 if (rtextents && xfs_dec_frextents(tp->t_mountp, rtextents)) {
1131 if (blocks)
1132 xfs_add_fdblocks(tp->t_mountp, blocks);
1133 return -ENOSPC;
1134 }
1135 tp->t_blk_res += blocks;
1136 tp->t_rtx_res += rtextents;
1137 return 0;
1138 }
1139
1140 /*
1141 * Try to reserve more blocks and file quota for a transaction. Same
1142 * conditions of usage as xfs_trans_reserve_more.
1143 */
1144 int
xfs_trans_reserve_more_inode(struct xfs_trans * tp,struct xfs_inode * ip,unsigned int dblocks,unsigned int rblocks,bool force_quota)1145 xfs_trans_reserve_more_inode(
1146 struct xfs_trans *tp,
1147 struct xfs_inode *ip,
1148 unsigned int dblocks,
1149 unsigned int rblocks,
1150 bool force_quota)
1151 {
1152 struct xfs_mount *mp = ip->i_mount;
1153 unsigned int rtx = xfs_extlen_to_rtxlen(mp, rblocks);
1154 int error;
1155
1156 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL);
1157
1158 error = xfs_trans_reserve_more(tp, dblocks, rtx);
1159 if (error)
1160 return error;
1161
1162 if (!XFS_IS_QUOTA_ON(mp) || xfs_is_quota_inode(&mp->m_sb, ip->i_ino))
1163 return 0;
1164
1165 if (tp->t_flags & XFS_TRANS_RESERVE)
1166 force_quota = true;
1167
1168 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks,
1169 force_quota);
1170 if (!error)
1171 return 0;
1172
1173 /* Quota failed, give back the new reservation. */
1174 xfs_add_fdblocks(mp, dblocks);
1175 tp->t_blk_res -= dblocks;
1176 xfs_add_frextents(mp, rtx);
1177 tp->t_rtx_res -= rtx;
1178 return error;
1179 }
1180
1181 /*
1182 * Allocate an transaction in preparation for inode creation by reserving quota
1183 * against the given dquots. Callers are not required to hold any inode locks.
1184 */
1185 int
xfs_trans_alloc_icreate(struct xfs_mount * mp,struct xfs_trans_res * resv,struct xfs_dquot * udqp,struct xfs_dquot * gdqp,struct xfs_dquot * pdqp,unsigned int dblocks,struct xfs_trans ** tpp)1186 xfs_trans_alloc_icreate(
1187 struct xfs_mount *mp,
1188 struct xfs_trans_res *resv,
1189 struct xfs_dquot *udqp,
1190 struct xfs_dquot *gdqp,
1191 struct xfs_dquot *pdqp,
1192 unsigned int dblocks,
1193 struct xfs_trans **tpp)
1194 {
1195 struct xfs_trans *tp;
1196 bool retried = false;
1197 int error;
1198
1199 retry:
1200 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1201 if (error)
1202 return error;
1203
1204 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1205 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1206 xfs_trans_cancel(tp);
1207 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1208 retried = true;
1209 goto retry;
1210 }
1211 if (error) {
1212 xfs_trans_cancel(tp);
1213 return error;
1214 }
1215
1216 *tpp = tp;
1217 return 0;
1218 }
1219
1220 /*
1221 * Allocate an transaction, lock and join the inode to it, and reserve quota
1222 * in preparation for inode attribute changes that include uid, gid, or prid
1223 * changes.
1224 *
1225 * The caller must ensure that the on-disk dquots attached to this inode have
1226 * already been allocated and initialized. The ILOCK will be dropped when the
1227 * transaction is committed or cancelled.
1228 */
1229 int
xfs_trans_alloc_ichange(struct xfs_inode * ip,struct xfs_dquot * new_udqp,struct xfs_dquot * new_gdqp,struct xfs_dquot * new_pdqp,bool force,struct xfs_trans ** tpp)1230 xfs_trans_alloc_ichange(
1231 struct xfs_inode *ip,
1232 struct xfs_dquot *new_udqp,
1233 struct xfs_dquot *new_gdqp,
1234 struct xfs_dquot *new_pdqp,
1235 bool force,
1236 struct xfs_trans **tpp)
1237 {
1238 struct xfs_trans *tp;
1239 struct xfs_mount *mp = ip->i_mount;
1240 struct xfs_dquot *udqp;
1241 struct xfs_dquot *gdqp;
1242 struct xfs_dquot *pdqp;
1243 bool retried = false;
1244 int error;
1245
1246 retry:
1247 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1248 if (error)
1249 return error;
1250
1251 xfs_ilock(ip, XFS_ILOCK_EXCL);
1252 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1253
1254 if (xfs_is_metadir_inode(ip))
1255 goto out;
1256
1257 error = xfs_qm_dqattach_locked(ip, false);
1258 if (error) {
1259 /* Caller should have allocated the dquots! */
1260 ASSERT(error != -ENOENT);
1261 goto out_cancel;
1262 }
1263
1264 /*
1265 * For each quota type, skip quota reservations if the inode's dquots
1266 * now match the ones that came from the caller, or the caller didn't
1267 * pass one in. The inode's dquots can change if we drop the ILOCK to
1268 * perform a blockgc scan, so we must preserve the caller's arguments.
1269 */
1270 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1271 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1272 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1273 if (udqp || gdqp || pdqp) {
1274 xfs_filblks_t dblocks, rblocks;
1275 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1276 bool isrt = XFS_IS_REALTIME_INODE(ip);
1277
1278 if (force)
1279 qflags |= XFS_QMOPT_FORCE_RES;
1280
1281 if (isrt) {
1282 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1283 if (error)
1284 goto out_cancel;
1285 }
1286
1287 xfs_inode_count_blocks(tp, ip, &dblocks, &rblocks);
1288
1289 if (isrt)
1290 rblocks += ip->i_delayed_blks;
1291 else
1292 dblocks += ip->i_delayed_blks;
1293
1294 /*
1295 * Reserve enough quota to handle blocks on disk and reserved
1296 * for a delayed allocation. We'll actually transfer the
1297 * delalloc reservation between dquots at chown time, even
1298 * though that part is only semi-transactional.
1299 */
1300 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1301 pdqp, dblocks, 1, qflags);
1302 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1303 xfs_trans_cancel(tp);
1304 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1305 retried = true;
1306 goto retry;
1307 }
1308 if (error)
1309 goto out_cancel;
1310
1311 /* Do the same for realtime. */
1312 qflags = XFS_QMOPT_RES_RTBLKS | (qflags & XFS_QMOPT_FORCE_RES);
1313 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1314 pdqp, rblocks, 0, qflags);
1315 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1316 xfs_trans_cancel(tp);
1317 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1318 retried = true;
1319 goto retry;
1320 }
1321 if (error)
1322 goto out_cancel;
1323 }
1324
1325 out:
1326 *tpp = tp;
1327 return 0;
1328
1329 out_cancel:
1330 xfs_trans_cancel(tp);
1331 return error;
1332 }
1333
1334 /*
1335 * Allocate an transaction, lock and join the directory and child inodes to it,
1336 * and reserve quota for a directory update. If there isn't sufficient space,
1337 * @dblocks will be set to zero for a reservationless directory update and
1338 * @nospace_error will be set to a negative errno describing the space
1339 * constraint we hit.
1340 *
1341 * The caller must ensure that the on-disk dquots attached to this inode have
1342 * already been allocated and initialized. The ILOCKs will be dropped when the
1343 * transaction is committed or cancelled.
1344 *
1345 * Caller is responsible for unlocking the inodes manually upon return
1346 */
1347 int
xfs_trans_alloc_dir(struct xfs_inode * dp,struct xfs_trans_res * resv,struct xfs_inode * ip,unsigned int * dblocks,struct xfs_trans ** tpp,int * nospace_error)1348 xfs_trans_alloc_dir(
1349 struct xfs_inode *dp,
1350 struct xfs_trans_res *resv,
1351 struct xfs_inode *ip,
1352 unsigned int *dblocks,
1353 struct xfs_trans **tpp,
1354 int *nospace_error)
1355 {
1356 struct xfs_trans *tp;
1357 struct xfs_mount *mp = ip->i_mount;
1358 unsigned int resblks;
1359 bool retried = false;
1360 int error;
1361
1362 retry:
1363 *nospace_error = 0;
1364 resblks = *dblocks;
1365 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1366 if (error == -ENOSPC) {
1367 *nospace_error = error;
1368 resblks = 0;
1369 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1370 }
1371 if (error)
1372 return error;
1373
1374 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1375
1376 xfs_trans_ijoin(tp, dp, 0);
1377 xfs_trans_ijoin(tp, ip, 0);
1378
1379 error = xfs_qm_dqattach_locked(dp, false);
1380 if (error) {
1381 /* Caller should have allocated the dquots! */
1382 ASSERT(error != -ENOENT);
1383 goto out_cancel;
1384 }
1385
1386 error = xfs_qm_dqattach_locked(ip, false);
1387 if (error) {
1388 /* Caller should have allocated the dquots! */
1389 ASSERT(error != -ENOENT);
1390 goto out_cancel;
1391 }
1392
1393 if (resblks == 0)
1394 goto done;
1395
1396 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1397 if (error == -EDQUOT || error == -ENOSPC) {
1398 if (!retried) {
1399 xfs_trans_cancel(tp);
1400 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1401 if (dp != ip)
1402 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1403 xfs_blockgc_free_quota(dp, 0);
1404 retried = true;
1405 goto retry;
1406 }
1407
1408 *nospace_error = error;
1409 resblks = 0;
1410 error = 0;
1411 }
1412 if (error)
1413 goto out_cancel;
1414
1415 done:
1416 *tpp = tp;
1417 *dblocks = resblks;
1418 return 0;
1419
1420 out_cancel:
1421 xfs_trans_cancel(tp);
1422 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1423 if (dp != ip)
1424 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1425 return error;
1426 }
1427