1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * super.c
4 *
5 * PURPOSE
6 * Super block routines for the OSTA-UDF(tm) filesystem.
7 *
8 * DESCRIPTION
9 * OSTA-UDF(tm) = Optical Storage Technology Association
10 * Universal Disk Format.
11 *
12 * This code is based on version 2.00 of the UDF specification,
13 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14 * http://www.osta.org/
15 * https://www.ecma.ch/
16 * https://www.iso.org/
17 *
18 * COPYRIGHT
19 * (C) 1998 Dave Boynton
20 * (C) 1998-2004 Ben Fennema
21 * (C) 2000 Stelias Computing Inc
22 *
23 * HISTORY
24 *
25 * 09/24/98 dgb changed to allow compiling outside of kernel, and
26 * added some debugging.
27 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
28 * 10/16/98 attempting some multi-session support
29 * 10/17/98 added freespace count for "df"
30 * 11/11/98 gr added novrs option
31 * 11/26/98 dgb added fileset,anchor mount options
32 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
33 * vol descs. rewrote option handling based on isofs
34 * 12/20/98 find the free space bitmap (if it exists)
35 */
36
37 #include "udfdecl.h"
38
39 #include <linux/blkdev.h>
40 #include <linux/slab.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/stat.h>
44 #include <linux/cdrom.h>
45 #include <linux/nls.h>
46 #include <linux/vfs.h>
47 #include <linux/vmalloc.h>
48 #include <linux/errno.h>
49 #include <linux/seq_file.h>
50 #include <linux/bitmap.h>
51 #include <linux/crc-itu-t.h>
52 #include <linux/log2.h>
53 #include <asm/byteorder.h>
54 #include <linux/iversion.h>
55 #include <linux/fs_context.h>
56 #include <linux/fs_parser.h>
57
58 #include "udf_sb.h"
59 #include "udf_i.h"
60
61 #include <linux/init.h>
62 #include <linux/uaccess.h>
63
64 enum {
65 VDS_POS_PRIMARY_VOL_DESC,
66 VDS_POS_UNALLOC_SPACE_DESC,
67 VDS_POS_LOGICAL_VOL_DESC,
68 VDS_POS_IMP_USE_VOL_DESC,
69 VDS_POS_LENGTH
70 };
71
72 #define VSD_FIRST_SECTOR_OFFSET 32768
73 #define VSD_MAX_SECTOR_OFFSET 0x800000
74
75 /*
76 * Maximum number of Terminating Descriptor / Logical Volume Integrity
77 * Descriptor redirections. The chosen numbers are arbitrary - just that we
78 * hopefully don't limit any real use of rewritten inode on write-once media
79 * but avoid looping for too long on corrupted media.
80 */
81 #define UDF_MAX_TD_NESTING 64
82 #define UDF_MAX_LVID_NESTING 1000
83
84 enum { UDF_MAX_LINKS = 0xffff };
85 /*
86 * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87 * more but because the file space is described by a linked list of extents,
88 * each of which can have at most 1GB, the creation and handling of extents
89 * gets unusably slow beyond certain point...
90 */
91 #define UDF_MAX_FILESIZE (1ULL << 42)
92
93 /* These are the "meat" - everything else is stuffing */
94 static int udf_fill_super(struct super_block *sb, struct fs_context *fc);
95 static void udf_put_super(struct super_block *);
96 static int udf_sync_fs(struct super_block *, int);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static void udf_open_lvid(struct super_block *);
99 static void udf_close_lvid(struct super_block *);
100 static unsigned int udf_count_free(struct super_block *);
101 static int udf_statfs(struct dentry *, struct kstatfs *);
102 static int udf_show_options(struct seq_file *, struct dentry *);
103 static int udf_init_fs_context(struct fs_context *fc);
104 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param);
105 static int udf_reconfigure(struct fs_context *fc);
106 static void udf_free_fc(struct fs_context *fc);
107 static const struct fs_parameter_spec udf_param_spec[];
108
udf_sb_lvidiu(struct super_block * sb)109 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110 {
111 struct logicalVolIntegrityDesc *lvid;
112 unsigned int partnum;
113 unsigned int offset;
114
115 if (!UDF_SB(sb)->s_lvid_bh)
116 return NULL;
117 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 partnum = le32_to_cpu(lvid->numOfPartitions);
119 /* The offset is to skip freeSpaceTable and sizeTable arrays */
120 offset = partnum * 2 * sizeof(uint32_t);
121 return (struct logicalVolIntegrityDescImpUse *)
122 (((uint8_t *)(lvid + 1)) + offset);
123 }
124
125 /* UDF filesystem type */
udf_get_tree(struct fs_context * fc)126 static int udf_get_tree(struct fs_context *fc)
127 {
128 return get_tree_bdev(fc, udf_fill_super);
129 }
130
131 static const struct fs_context_operations udf_context_ops = {
132 .parse_param = udf_parse_param,
133 .get_tree = udf_get_tree,
134 .reconfigure = udf_reconfigure,
135 .free = udf_free_fc,
136 };
137
138 static struct file_system_type udf_fstype = {
139 .owner = THIS_MODULE,
140 .name = "udf",
141 .kill_sb = kill_block_super,
142 .fs_flags = FS_REQUIRES_DEV,
143 .init_fs_context = udf_init_fs_context,
144 .parameters = udf_param_spec,
145 };
146 MODULE_ALIAS_FS("udf");
147
148 static struct kmem_cache *udf_inode_cachep;
149
udf_alloc_inode(struct super_block * sb)150 static struct inode *udf_alloc_inode(struct super_block *sb)
151 {
152 struct udf_inode_info *ei;
153 ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
154 if (!ei)
155 return NULL;
156
157 ei->i_unique = 0;
158 ei->i_lenExtents = 0;
159 ei->i_lenStreams = 0;
160 ei->i_next_alloc_block = 0;
161 ei->i_next_alloc_goal = 0;
162 ei->i_strat4096 = 0;
163 ei->i_streamdir = 0;
164 ei->i_hidden = 0;
165 init_rwsem(&ei->i_data_sem);
166 ei->cached_extent.lstart = -1;
167 spin_lock_init(&ei->i_extent_cache_lock);
168 inode_set_iversion(&ei->vfs_inode, 1);
169
170 return &ei->vfs_inode;
171 }
172
udf_free_in_core_inode(struct inode * inode)173 static void udf_free_in_core_inode(struct inode *inode)
174 {
175 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
176 }
177
init_once(void * foo)178 static void init_once(void *foo)
179 {
180 struct udf_inode_info *ei = foo;
181
182 ei->i_data = NULL;
183 inode_init_once(&ei->vfs_inode);
184 }
185
init_inodecache(void)186 static int __init init_inodecache(void)
187 {
188 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 sizeof(struct udf_inode_info),
190 0, (SLAB_RECLAIM_ACCOUNT |
191 SLAB_ACCOUNT),
192 init_once);
193 if (!udf_inode_cachep)
194 return -ENOMEM;
195 return 0;
196 }
197
destroy_inodecache(void)198 static void destroy_inodecache(void)
199 {
200 /*
201 * Make sure all delayed rcu free inodes are flushed before we
202 * destroy cache.
203 */
204 rcu_barrier();
205 kmem_cache_destroy(udf_inode_cachep);
206 }
207
208 /* Superblock operations */
209 static const struct super_operations udf_sb_ops = {
210 .alloc_inode = udf_alloc_inode,
211 .free_inode = udf_free_in_core_inode,
212 .write_inode = udf_write_inode,
213 .evict_inode = udf_evict_inode,
214 .put_super = udf_put_super,
215 .sync_fs = udf_sync_fs,
216 .statfs = udf_statfs,
217 .show_options = udf_show_options,
218 };
219
220 struct udf_options {
221 unsigned int blocksize;
222 unsigned int session;
223 unsigned int lastblock;
224 unsigned int anchor;
225 unsigned int flags;
226 umode_t umask;
227 kgid_t gid;
228 kuid_t uid;
229 umode_t fmode;
230 umode_t dmode;
231 struct nls_table *nls_map;
232 };
233
234 /*
235 * UDF has historically preserved prior mount options across
236 * a remount, so copy those here if remounting, otherwise set
237 * initial mount defaults.
238 */
udf_init_options(struct fs_context * fc,struct udf_options * uopt)239 static void udf_init_options(struct fs_context *fc, struct udf_options *uopt)
240 {
241 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
242 struct super_block *sb = fc->root->d_sb;
243 struct udf_sb_info *sbi = UDF_SB(sb);
244
245 uopt->flags = sbi->s_flags;
246 uopt->uid = sbi->s_uid;
247 uopt->gid = sbi->s_gid;
248 uopt->umask = sbi->s_umask;
249 uopt->fmode = sbi->s_fmode;
250 uopt->dmode = sbi->s_dmode;
251 uopt->nls_map = NULL;
252 } else {
253 uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) |
254 (1 << UDF_FLAG_STRICT);
255 /*
256 * By default we'll use overflow[ug]id when UDF
257 * inode [ug]id == -1
258 */
259 uopt->uid = make_kuid(current_user_ns(), overflowuid);
260 uopt->gid = make_kgid(current_user_ns(), overflowgid);
261 uopt->umask = 0;
262 uopt->fmode = UDF_INVALID_MODE;
263 uopt->dmode = UDF_INVALID_MODE;
264 uopt->nls_map = NULL;
265 uopt->session = 0xFFFFFFFF;
266 }
267 }
268
udf_init_fs_context(struct fs_context * fc)269 static int udf_init_fs_context(struct fs_context *fc)
270 {
271 struct udf_options *uopt;
272
273 uopt = kzalloc(sizeof(*uopt), GFP_KERNEL);
274 if (!uopt)
275 return -ENOMEM;
276
277 udf_init_options(fc, uopt);
278
279 fc->fs_private = uopt;
280 fc->ops = &udf_context_ops;
281
282 return 0;
283 }
284
udf_free_fc(struct fs_context * fc)285 static void udf_free_fc(struct fs_context *fc)
286 {
287 struct udf_options *uopt = fc->fs_private;
288
289 unload_nls(uopt->nls_map);
290 kfree(fc->fs_private);
291 }
292
init_udf_fs(void)293 static int __init init_udf_fs(void)
294 {
295 int err;
296
297 err = init_inodecache();
298 if (err)
299 goto out1;
300 err = register_filesystem(&udf_fstype);
301 if (err)
302 goto out;
303
304 return 0;
305
306 out:
307 destroy_inodecache();
308
309 out1:
310 return err;
311 }
312
exit_udf_fs(void)313 static void __exit exit_udf_fs(void)
314 {
315 unregister_filesystem(&udf_fstype);
316 destroy_inodecache();
317 }
318
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)319 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
320 {
321 struct udf_sb_info *sbi = UDF_SB(sb);
322
323 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
324 if (!sbi->s_partmaps) {
325 sbi->s_partitions = 0;
326 return -ENOMEM;
327 }
328
329 sbi->s_partitions = count;
330 return 0;
331 }
332
udf_sb_free_bitmap(struct udf_bitmap * bitmap)333 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
334 {
335 int i;
336 int nr_groups = bitmap->s_nr_groups;
337
338 for (i = 0; i < nr_groups; i++)
339 if (!IS_ERR_OR_NULL(bitmap->s_block_bitmap[i]))
340 brelse(bitmap->s_block_bitmap[i]);
341
342 kvfree(bitmap);
343 }
344
udf_free_partition(struct udf_part_map * map)345 static void udf_free_partition(struct udf_part_map *map)
346 {
347 int i;
348 struct udf_meta_data *mdata;
349
350 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
351 iput(map->s_uspace.s_table);
352 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
353 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
354 if (map->s_partition_type == UDF_SPARABLE_MAP15)
355 for (i = 0; i < 4; i++)
356 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
357 else if (map->s_partition_type == UDF_METADATA_MAP25) {
358 mdata = &map->s_type_specific.s_metadata;
359 iput(mdata->s_metadata_fe);
360 mdata->s_metadata_fe = NULL;
361
362 iput(mdata->s_mirror_fe);
363 mdata->s_mirror_fe = NULL;
364
365 iput(mdata->s_bitmap_fe);
366 mdata->s_bitmap_fe = NULL;
367 }
368 }
369
udf_sb_free_partitions(struct super_block * sb)370 static void udf_sb_free_partitions(struct super_block *sb)
371 {
372 struct udf_sb_info *sbi = UDF_SB(sb);
373 int i;
374
375 if (!sbi->s_partmaps)
376 return;
377 for (i = 0; i < sbi->s_partitions; i++)
378 udf_free_partition(&sbi->s_partmaps[i]);
379 kfree(sbi->s_partmaps);
380 sbi->s_partmaps = NULL;
381 }
382
udf_show_options(struct seq_file * seq,struct dentry * root)383 static int udf_show_options(struct seq_file *seq, struct dentry *root)
384 {
385 struct super_block *sb = root->d_sb;
386 struct udf_sb_info *sbi = UDF_SB(sb);
387
388 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
389 seq_puts(seq, ",nostrict");
390 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
391 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
392 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
393 seq_puts(seq, ",unhide");
394 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
395 seq_puts(seq, ",undelete");
396 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
397 seq_puts(seq, ",noadinicb");
398 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
399 seq_puts(seq, ",shortad");
400 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
401 seq_puts(seq, ",uid=forget");
402 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
403 seq_puts(seq, ",gid=forget");
404 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
405 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
406 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
407 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
408 if (sbi->s_umask != 0)
409 seq_printf(seq, ",umask=%ho", sbi->s_umask);
410 if (sbi->s_fmode != UDF_INVALID_MODE)
411 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
412 if (sbi->s_dmode != UDF_INVALID_MODE)
413 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
414 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
415 seq_printf(seq, ",session=%d", sbi->s_session);
416 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
417 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
418 if (sbi->s_anchor != 0)
419 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
420 if (sbi->s_nls_map)
421 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
422 else
423 seq_puts(seq, ",iocharset=utf8");
424
425 return 0;
426 }
427
428 /*
429 * udf_parse_param
430 *
431 * PURPOSE
432 * Parse mount options.
433 *
434 * DESCRIPTION
435 * The following mount options are supported:
436 *
437 * gid= Set the default group.
438 * umask= Set the default umask.
439 * mode= Set the default file permissions.
440 * dmode= Set the default directory permissions.
441 * uid= Set the default user.
442 * bs= Set the block size.
443 * unhide Show otherwise hidden files.
444 * undelete Show deleted files in lists.
445 * adinicb Embed data in the inode (default)
446 * noadinicb Don't embed data in the inode
447 * shortad Use short ad's
448 * longad Use long ad's (default)
449 * nostrict Unset strict conformance
450 * iocharset= Set the NLS character set
451 *
452 * The remaining are for debugging and disaster recovery:
453 *
454 * novrs Skip volume sequence recognition
455 *
456 * The following expect a offset from 0.
457 *
458 * session= Set the CDROM session (default= last session)
459 * anchor= Override standard anchor location. (default= 256)
460 * volume= Override the VolumeDesc location. (unused)
461 * partition= Override the PartitionDesc location. (unused)
462 * lastblock= Set the last block of the filesystem/
463 *
464 * The following expect a offset from the partition root.
465 *
466 * fileset= Override the fileset block location. (unused)
467 * rootdir= Override the root directory location. (unused)
468 * WARNING: overriding the rootdir to a non-directory may
469 * yield highly unpredictable results.
470 *
471 * PRE-CONDITIONS
472 * fc fs_context with pointer to mount options variable.
473 * param Pointer to fs_parameter being parsed.
474 *
475 * POST-CONDITIONS
476 * <return> 0 Mount options parsed okay.
477 * <return> errno Error parsing mount options.
478 *
479 * HISTORY
480 * July 1, 1997 - Andrew E. Mileski
481 * Written, tested, and released.
482 */
483
484 enum {
485 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
486 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
487 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
488 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
489 Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode
490 };
491
492 static const struct fs_parameter_spec udf_param_spec[] = {
493 fsparam_flag ("novrs", Opt_novrs),
494 fsparam_flag ("nostrict", Opt_nostrict),
495 fsparam_u32 ("bs", Opt_bs),
496 fsparam_flag ("unhide", Opt_unhide),
497 fsparam_flag ("undelete", Opt_undelete),
498 fsparam_flag_no ("adinicb", Opt_adinicb),
499 fsparam_flag ("shortad", Opt_shortad),
500 fsparam_flag ("longad", Opt_longad),
501 fsparam_string ("gid", Opt_gid),
502 fsparam_string ("uid", Opt_uid),
503 fsparam_u32 ("umask", Opt_umask),
504 fsparam_u32 ("session", Opt_session),
505 fsparam_u32 ("lastblock", Opt_lastblock),
506 fsparam_u32 ("anchor", Opt_anchor),
507 fsparam_u32 ("volume", Opt_volume),
508 fsparam_u32 ("partition", Opt_partition),
509 fsparam_u32 ("fileset", Opt_fileset),
510 fsparam_u32 ("rootdir", Opt_rootdir),
511 fsparam_flag ("utf8", Opt_utf8),
512 fsparam_string ("iocharset", Opt_iocharset),
513 fsparam_u32 ("mode", Opt_fmode),
514 fsparam_u32 ("dmode", Opt_dmode),
515 {}
516 };
517
udf_parse_param(struct fs_context * fc,struct fs_parameter * param)518 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param)
519 {
520 unsigned int uv;
521 unsigned int n;
522 struct udf_options *uopt = fc->fs_private;
523 struct fs_parse_result result;
524 int token;
525 bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
526
527 token = fs_parse(fc, udf_param_spec, param, &result);
528 if (token < 0)
529 return token;
530
531 switch (token) {
532 case Opt_novrs:
533 uopt->flags |= (1 << UDF_FLAG_NOVRS);
534 break;
535 case Opt_bs:
536 n = result.uint_32;
537 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
538 return -EINVAL;
539 uopt->blocksize = n;
540 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
541 break;
542 case Opt_unhide:
543 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
544 break;
545 case Opt_undelete:
546 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
547 break;
548 case Opt_adinicb:
549 if (result.negated)
550 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
551 else
552 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
553 break;
554 case Opt_shortad:
555 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
556 break;
557 case Opt_longad:
558 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
559 break;
560 case Opt_gid:
561 if (kstrtoint(param->string, 10, &uv) == 0) {
562 kgid_t gid = make_kgid(current_user_ns(), uv);
563 if (!gid_valid(gid))
564 return -EINVAL;
565 uopt->gid = gid;
566 uopt->flags |= (1 << UDF_FLAG_GID_SET);
567 } else if (!strcmp(param->string, "forget")) {
568 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
569 } else if (!strcmp(param->string, "ignore")) {
570 /* this option is superseded by gid=<number> */
571 ;
572 } else {
573 return -EINVAL;
574 }
575 break;
576 case Opt_uid:
577 if (kstrtoint(param->string, 10, &uv) == 0) {
578 kuid_t uid = make_kuid(current_user_ns(), uv);
579 if (!uid_valid(uid))
580 return -EINVAL;
581 uopt->uid = uid;
582 uopt->flags |= (1 << UDF_FLAG_UID_SET);
583 } else if (!strcmp(param->string, "forget")) {
584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 } else if (!strcmp(param->string, "ignore")) {
586 /* this option is superseded by uid=<number> */
587 ;
588 } else {
589 return -EINVAL;
590 }
591 break;
592 case Opt_umask:
593 uopt->umask = result.uint_32;
594 break;
595 case Opt_nostrict:
596 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
597 break;
598 case Opt_session:
599 uopt->session = result.uint_32;
600 if (!remount)
601 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
602 break;
603 case Opt_lastblock:
604 uopt->lastblock = result.uint_32;
605 if (!remount)
606 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
607 break;
608 case Opt_anchor:
609 uopt->anchor = result.uint_32;
610 break;
611 case Opt_volume:
612 case Opt_partition:
613 case Opt_fileset:
614 case Opt_rootdir:
615 /* Ignored (never implemented properly) */
616 break;
617 case Opt_utf8:
618 if (!remount) {
619 unload_nls(uopt->nls_map);
620 uopt->nls_map = NULL;
621 }
622 break;
623 case Opt_iocharset:
624 if (!remount) {
625 unload_nls(uopt->nls_map);
626 uopt->nls_map = NULL;
627 }
628 /* When nls_map is not loaded then UTF-8 is used */
629 if (!remount && strcmp(param->string, "utf8") != 0) {
630 uopt->nls_map = load_nls(param->string);
631 if (!uopt->nls_map) {
632 errorf(fc, "iocharset %s not found",
633 param->string);
634 return -EINVAL;
635 }
636 }
637 break;
638 case Opt_fmode:
639 uopt->fmode = result.uint_32 & 0777;
640 break;
641 case Opt_dmode:
642 uopt->dmode = result.uint_32 & 0777;
643 break;
644 default:
645 return -EINVAL;
646 }
647 return 0;
648 }
649
udf_reconfigure(struct fs_context * fc)650 static int udf_reconfigure(struct fs_context *fc)
651 {
652 struct udf_options *uopt = fc->fs_private;
653 struct super_block *sb = fc->root->d_sb;
654 struct udf_sb_info *sbi = UDF_SB(sb);
655 int readonly = fc->sb_flags & SB_RDONLY;
656 int error = 0;
657
658 if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
659 return -EACCES;
660
661 sync_filesystem(sb);
662
663 write_lock(&sbi->s_cred_lock);
664 sbi->s_flags = uopt->flags;
665 sbi->s_uid = uopt->uid;
666 sbi->s_gid = uopt->gid;
667 sbi->s_umask = uopt->umask;
668 sbi->s_fmode = uopt->fmode;
669 sbi->s_dmode = uopt->dmode;
670 write_unlock(&sbi->s_cred_lock);
671
672 if (readonly == sb_rdonly(sb))
673 goto out_unlock;
674
675 if (readonly)
676 udf_close_lvid(sb);
677 else
678 udf_open_lvid(sb);
679
680 out_unlock:
681 return error;
682 }
683
684 /*
685 * Check VSD descriptor. Returns -1 in case we are at the end of volume
686 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
687 * we found one of NSR descriptors we are looking for.
688 */
identify_vsd(const struct volStructDesc * vsd)689 static int identify_vsd(const struct volStructDesc *vsd)
690 {
691 int ret = 0;
692
693 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
694 switch (vsd->structType) {
695 case 0:
696 udf_debug("ISO9660 Boot Record found\n");
697 break;
698 case 1:
699 udf_debug("ISO9660 Primary Volume Descriptor found\n");
700 break;
701 case 2:
702 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
703 break;
704 case 3:
705 udf_debug("ISO9660 Volume Partition Descriptor found\n");
706 break;
707 case 255:
708 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
709 break;
710 default:
711 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
712 break;
713 }
714 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
715 ; /* ret = 0 */
716 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
717 ret = 1;
718 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
719 ret = 1;
720 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
721 ; /* ret = 0 */
722 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
723 ; /* ret = 0 */
724 else {
725 /* TEA01 or invalid id : end of volume recognition area */
726 ret = -1;
727 }
728
729 return ret;
730 }
731
732 /*
733 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
734 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
735 * @return 1 if NSR02 or NSR03 found,
736 * -1 if first sector read error, 0 otherwise
737 */
udf_check_vsd(struct super_block * sb)738 static int udf_check_vsd(struct super_block *sb)
739 {
740 struct volStructDesc *vsd = NULL;
741 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
742 int sectorsize;
743 struct buffer_head *bh = NULL;
744 int nsr = 0;
745 struct udf_sb_info *sbi;
746 loff_t session_offset;
747
748 sbi = UDF_SB(sb);
749 if (sb->s_blocksize < sizeof(struct volStructDesc))
750 sectorsize = sizeof(struct volStructDesc);
751 else
752 sectorsize = sb->s_blocksize;
753
754 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
755 sector += session_offset;
756
757 udf_debug("Starting at sector %u (%lu byte sectors)\n",
758 (unsigned int)(sector >> sb->s_blocksize_bits),
759 sb->s_blocksize);
760 /* Process the sequence (if applicable). The hard limit on the sector
761 * offset is arbitrary, hopefully large enough so that all valid UDF
762 * filesystems will be recognised. There is no mention of an upper
763 * bound to the size of the volume recognition area in the standard.
764 * The limit will prevent the code to read all the sectors of a
765 * specially crafted image (like a bluray disc full of CD001 sectors),
766 * potentially causing minutes or even hours of uninterruptible I/O
767 * activity. This actually happened with uninitialised SSD partitions
768 * (all 0xFF) before the check for the limit and all valid IDs were
769 * added */
770 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
771 /* Read a block */
772 bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
773 if (!bh)
774 break;
775
776 vsd = (struct volStructDesc *)(bh->b_data +
777 (sector & (sb->s_blocksize - 1)));
778 nsr = identify_vsd(vsd);
779 /* Found NSR or end? */
780 if (nsr) {
781 brelse(bh);
782 break;
783 }
784 /*
785 * Special handling for improperly formatted VRS (e.g., Win10)
786 * where components are separated by 2048 bytes even though
787 * sectors are 4K
788 */
789 if (sb->s_blocksize == 4096) {
790 nsr = identify_vsd(vsd + 1);
791 /* Ignore unknown IDs... */
792 if (nsr < 0)
793 nsr = 0;
794 }
795 brelse(bh);
796 }
797
798 if (nsr > 0)
799 return 1;
800 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
801 return -1;
802 else
803 return 0;
804 }
805
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)806 static int udf_verify_domain_identifier(struct super_block *sb,
807 struct regid *ident, char *dname)
808 {
809 struct domainIdentSuffix *suffix;
810
811 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
812 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
813 goto force_ro;
814 }
815 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
816 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
817 dname);
818 goto force_ro;
819 }
820 suffix = (struct domainIdentSuffix *)ident->identSuffix;
821 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
822 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
823 if (!sb_rdonly(sb)) {
824 udf_warn(sb, "Descriptor for %s marked write protected."
825 " Forcing read only mount.\n", dname);
826 }
827 goto force_ro;
828 }
829 return 0;
830
831 force_ro:
832 if (!sb_rdonly(sb))
833 return -EACCES;
834 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
835 return 0;
836 }
837
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)838 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
839 struct kernel_lb_addr *root)
840 {
841 int ret;
842
843 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
844 if (ret < 0)
845 return ret;
846
847 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
848 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
849
850 udf_debug("Rootdir at block=%u, partition=%u\n",
851 root->logicalBlockNum, root->partitionReferenceNum);
852 return 0;
853 }
854
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)855 static int udf_find_fileset(struct super_block *sb,
856 struct kernel_lb_addr *fileset,
857 struct kernel_lb_addr *root)
858 {
859 struct buffer_head *bh;
860 uint16_t ident;
861 int ret;
862
863 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
864 fileset->partitionReferenceNum == 0xFFFF)
865 return -EINVAL;
866
867 bh = udf_read_ptagged(sb, fileset, 0, &ident);
868 if (!bh)
869 return -EIO;
870 if (ident != TAG_IDENT_FSD) {
871 brelse(bh);
872 return -EINVAL;
873 }
874
875 udf_debug("Fileset at block=%u, partition=%u\n",
876 fileset->logicalBlockNum, fileset->partitionReferenceNum);
877
878 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
879 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
880 brelse(bh);
881 return ret;
882 }
883
884 /*
885 * Load primary Volume Descriptor Sequence
886 *
887 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
888 * should be tried.
889 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)890 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
891 {
892 struct primaryVolDesc *pvoldesc;
893 uint8_t *outstr;
894 struct buffer_head *bh;
895 uint16_t ident;
896 int ret;
897 struct timestamp *ts;
898
899 outstr = kzalloc(128, GFP_KERNEL);
900 if (!outstr)
901 return -ENOMEM;
902
903 bh = udf_read_tagged(sb, block, block, &ident);
904 if (!bh) {
905 ret = -EAGAIN;
906 goto out2;
907 }
908
909 if (ident != TAG_IDENT_PVD) {
910 ret = -EIO;
911 goto out_bh;
912 }
913
914 pvoldesc = (struct primaryVolDesc *)bh->b_data;
915
916 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 pvoldesc->recordingDateAndTime);
918 ts = &pvoldesc->recordingDateAndTime;
919 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
920 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
921 ts->minute, le16_to_cpu(ts->typeAndTimezone));
922
923 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
924 if (ret < 0) {
925 strscpy_pad(UDF_SB(sb)->s_volume_ident, "InvalidName");
926 pr_warn("incorrect volume identification, setting to "
927 "'InvalidName'\n");
928 } else {
929 strscpy_pad(UDF_SB(sb)->s_volume_ident, outstr);
930 }
931 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
932
933 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
934 if (ret < 0) {
935 ret = 0;
936 goto out_bh;
937 }
938 outstr[ret] = 0;
939 udf_debug("volSetIdent[] = '%s'\n", outstr);
940
941 ret = 0;
942 out_bh:
943 brelse(bh);
944 out2:
945 kfree(outstr);
946 return ret;
947 }
948
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)949 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
950 u32 meta_file_loc, u32 partition_ref)
951 {
952 struct kernel_lb_addr addr;
953 struct inode *metadata_fe;
954
955 addr.logicalBlockNum = meta_file_loc;
956 addr.partitionReferenceNum = partition_ref;
957
958 metadata_fe = udf_iget_special(sb, &addr);
959
960 if (IS_ERR(metadata_fe)) {
961 udf_warn(sb, "metadata inode efe not found\n");
962 return metadata_fe;
963 }
964 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
965 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
966 iput(metadata_fe);
967 return ERR_PTR(-EIO);
968 }
969
970 return metadata_fe;
971 }
972
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)973 static int udf_load_metadata_files(struct super_block *sb, int partition,
974 int type1_index)
975 {
976 struct udf_sb_info *sbi = UDF_SB(sb);
977 struct udf_part_map *map;
978 struct udf_meta_data *mdata;
979 struct kernel_lb_addr addr;
980 struct inode *fe;
981
982 map = &sbi->s_partmaps[partition];
983 mdata = &map->s_type_specific.s_metadata;
984 mdata->s_phys_partition_ref = type1_index;
985
986 /* metadata address */
987 udf_debug("Metadata file location: block = %u part = %u\n",
988 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
989
990 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
991 mdata->s_phys_partition_ref);
992 if (IS_ERR(fe)) {
993 /* mirror file entry */
994 udf_debug("Mirror metadata file location: block = %u part = %u\n",
995 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
996
997 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
998 mdata->s_phys_partition_ref);
999
1000 if (IS_ERR(fe)) {
1001 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002 return PTR_ERR(fe);
1003 }
1004 mdata->s_mirror_fe = fe;
1005 } else
1006 mdata->s_metadata_fe = fe;
1007
1008
1009 /*
1010 * bitmap file entry
1011 * Note:
1012 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1013 */
1014 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1015 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1016 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1017
1018 udf_debug("Bitmap file location: block = %u part = %u\n",
1019 addr.logicalBlockNum, addr.partitionReferenceNum);
1020
1021 fe = udf_iget_special(sb, &addr);
1022 if (IS_ERR(fe)) {
1023 if (sb_rdonly(sb))
1024 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1025 else {
1026 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1027 return PTR_ERR(fe);
1028 }
1029 } else
1030 mdata->s_bitmap_fe = fe;
1031 }
1032
1033 udf_debug("udf_load_metadata_files Ok\n");
1034 return 0;
1035 }
1036
udf_compute_nr_groups(struct super_block * sb,u32 partition)1037 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1038 {
1039 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1040 return DIV_ROUND_UP(map->s_partition_len +
1041 (sizeof(struct spaceBitmapDesc) << 3),
1042 sb->s_blocksize * 8);
1043 }
1044
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1045 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1046 {
1047 struct udf_bitmap *bitmap;
1048 int nr_groups = udf_compute_nr_groups(sb, index);
1049
1050 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1051 GFP_KERNEL);
1052 if (!bitmap)
1053 return NULL;
1054
1055 bitmap->s_nr_groups = nr_groups;
1056 return bitmap;
1057 }
1058
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1059 static int check_partition_desc(struct super_block *sb,
1060 struct partitionDesc *p,
1061 struct udf_part_map *map)
1062 {
1063 bool umap, utable, fmap, ftable;
1064 struct partitionHeaderDesc *phd;
1065
1066 switch (le32_to_cpu(p->accessType)) {
1067 case PD_ACCESS_TYPE_READ_ONLY:
1068 case PD_ACCESS_TYPE_WRITE_ONCE:
1069 case PD_ACCESS_TYPE_NONE:
1070 goto force_ro;
1071 }
1072
1073 /* No Partition Header Descriptor? */
1074 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1075 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1076 goto force_ro;
1077
1078 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1079 utable = phd->unallocSpaceTable.extLength;
1080 umap = phd->unallocSpaceBitmap.extLength;
1081 ftable = phd->freedSpaceTable.extLength;
1082 fmap = phd->freedSpaceBitmap.extLength;
1083
1084 /* No allocation info? */
1085 if (!utable && !umap && !ftable && !fmap)
1086 goto force_ro;
1087
1088 /* We don't support blocks that require erasing before overwrite */
1089 if (ftable || fmap)
1090 goto force_ro;
1091 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1092 if (utable && umap)
1093 goto force_ro;
1094
1095 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1096 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1097 map->s_partition_type == UDF_METADATA_MAP25)
1098 goto force_ro;
1099
1100 return 0;
1101 force_ro:
1102 if (!sb_rdonly(sb))
1103 return -EACCES;
1104 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1105 return 0;
1106 }
1107
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1108 static int udf_fill_partdesc_info(struct super_block *sb,
1109 struct partitionDesc *p, int p_index)
1110 {
1111 struct udf_part_map *map;
1112 struct udf_sb_info *sbi = UDF_SB(sb);
1113 struct partitionHeaderDesc *phd;
1114 u32 sum;
1115 int err;
1116
1117 map = &sbi->s_partmaps[p_index];
1118
1119 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1120 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1121 if (check_add_overflow(map->s_partition_root, map->s_partition_len,
1122 &sum)) {
1123 udf_err(sb, "Partition %d has invalid location %u + %u\n",
1124 p_index, map->s_partition_root, map->s_partition_len);
1125 return -EFSCORRUPTED;
1126 }
1127
1128 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1129 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1130 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1131 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1132 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1133 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1134 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1135 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1136
1137 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1138 p_index, map->s_partition_type,
1139 map->s_partition_root, map->s_partition_len);
1140
1141 err = check_partition_desc(sb, p, map);
1142 if (err)
1143 return err;
1144
1145 /*
1146 * Skip loading allocation info it we cannot ever write to the fs.
1147 * This is a correctness thing as we may have decided to force ro mount
1148 * to avoid allocation info we don't support.
1149 */
1150 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1151 return 0;
1152
1153 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1154 if (phd->unallocSpaceTable.extLength) {
1155 struct kernel_lb_addr loc = {
1156 .logicalBlockNum = le32_to_cpu(
1157 phd->unallocSpaceTable.extPosition),
1158 .partitionReferenceNum = p_index,
1159 };
1160 struct inode *inode;
1161
1162 inode = udf_iget_special(sb, &loc);
1163 if (IS_ERR(inode)) {
1164 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1165 p_index);
1166 return PTR_ERR(inode);
1167 }
1168 map->s_uspace.s_table = inode;
1169 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1170 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1171 p_index, map->s_uspace.s_table->i_ino);
1172 }
1173
1174 if (phd->unallocSpaceBitmap.extLength) {
1175 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1176 if (!bitmap)
1177 return -ENOMEM;
1178 map->s_uspace.s_bitmap = bitmap;
1179 bitmap->s_extPosition = le32_to_cpu(
1180 phd->unallocSpaceBitmap.extPosition);
1181 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1182 /* Check whether math over bitmap won't overflow. */
1183 if (check_add_overflow(map->s_partition_len,
1184 sizeof(struct spaceBitmapDesc) << 3,
1185 &sum)) {
1186 udf_err(sb, "Partition %d is too long (%u)\n", p_index,
1187 map->s_partition_len);
1188 return -EFSCORRUPTED;
1189 }
1190 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1191 p_index, bitmap->s_extPosition);
1192 }
1193
1194 return 0;
1195 }
1196
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1197 static void udf_find_vat_block(struct super_block *sb, int p_index,
1198 int type1_index, sector_t start_block)
1199 {
1200 struct udf_sb_info *sbi = UDF_SB(sb);
1201 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1202 sector_t vat_block;
1203 struct kernel_lb_addr ino;
1204 struct inode *inode;
1205
1206 /*
1207 * VAT file entry is in the last recorded block. Some broken disks have
1208 * it a few blocks before so try a bit harder...
1209 */
1210 ino.partitionReferenceNum = type1_index;
1211 for (vat_block = start_block;
1212 vat_block >= map->s_partition_root &&
1213 vat_block >= start_block - 3; vat_block--) {
1214 ino.logicalBlockNum = vat_block - map->s_partition_root;
1215 inode = udf_iget_special(sb, &ino);
1216 if (!IS_ERR(inode)) {
1217 sbi->s_vat_inode = inode;
1218 break;
1219 }
1220 }
1221 }
1222
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1223 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1224 {
1225 struct udf_sb_info *sbi = UDF_SB(sb);
1226 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1227 struct buffer_head *bh = NULL;
1228 struct udf_inode_info *vati;
1229 struct virtualAllocationTable20 *vat20;
1230 sector_t blocks = sb_bdev_nr_blocks(sb);
1231
1232 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1233 if (!sbi->s_vat_inode &&
1234 sbi->s_last_block != blocks - 1) {
1235 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1236 (unsigned long)sbi->s_last_block,
1237 (unsigned long)blocks - 1);
1238 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1239 }
1240 if (!sbi->s_vat_inode)
1241 return -EIO;
1242
1243 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1244 map->s_type_specific.s_virtual.s_start_offset = 0;
1245 map->s_type_specific.s_virtual.s_num_entries =
1246 (sbi->s_vat_inode->i_size - 36) >> 2;
1247 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1248 vati = UDF_I(sbi->s_vat_inode);
1249 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1250 int err = 0;
1251
1252 bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1253 if (!bh) {
1254 if (!err)
1255 err = -EFSCORRUPTED;
1256 return err;
1257 }
1258 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1259 } else {
1260 vat20 = (struct virtualAllocationTable20 *)
1261 vati->i_data;
1262 }
1263
1264 map->s_type_specific.s_virtual.s_start_offset =
1265 le16_to_cpu(vat20->lengthHeader);
1266 map->s_type_specific.s_virtual.s_num_entries =
1267 (sbi->s_vat_inode->i_size -
1268 map->s_type_specific.s_virtual.
1269 s_start_offset) >> 2;
1270 brelse(bh);
1271 }
1272 return 0;
1273 }
1274
1275 /*
1276 * Load partition descriptor block
1277 *
1278 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1279 * sequence.
1280 */
udf_load_partdesc(struct super_block * sb,sector_t block)1281 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1282 {
1283 struct buffer_head *bh;
1284 struct partitionDesc *p;
1285 struct udf_part_map *map;
1286 struct udf_sb_info *sbi = UDF_SB(sb);
1287 int i, type1_idx;
1288 uint16_t partitionNumber;
1289 uint16_t ident;
1290 int ret;
1291
1292 bh = udf_read_tagged(sb, block, block, &ident);
1293 if (!bh)
1294 return -EAGAIN;
1295 if (ident != TAG_IDENT_PD) {
1296 ret = 0;
1297 goto out_bh;
1298 }
1299
1300 p = (struct partitionDesc *)bh->b_data;
1301 partitionNumber = le16_to_cpu(p->partitionNumber);
1302
1303 /* First scan for TYPE1 and SPARABLE partitions */
1304 for (i = 0; i < sbi->s_partitions; i++) {
1305 map = &sbi->s_partmaps[i];
1306 udf_debug("Searching map: (%u == %u)\n",
1307 map->s_partition_num, partitionNumber);
1308 if (map->s_partition_num == partitionNumber &&
1309 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1310 map->s_partition_type == UDF_SPARABLE_MAP15))
1311 break;
1312 }
1313
1314 if (i >= sbi->s_partitions) {
1315 udf_debug("Partition (%u) not found in partition map\n",
1316 partitionNumber);
1317 ret = 0;
1318 goto out_bh;
1319 }
1320
1321 ret = udf_fill_partdesc_info(sb, p, i);
1322 if (ret < 0)
1323 goto out_bh;
1324
1325 /*
1326 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1327 * PHYSICAL partitions are already set up
1328 */
1329 type1_idx = i;
1330 map = NULL; /* supress 'maybe used uninitialized' warning */
1331 for (i = 0; i < sbi->s_partitions; i++) {
1332 map = &sbi->s_partmaps[i];
1333
1334 if (map->s_partition_num == partitionNumber &&
1335 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1336 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1337 map->s_partition_type == UDF_METADATA_MAP25))
1338 break;
1339 }
1340
1341 if (i >= sbi->s_partitions) {
1342 ret = 0;
1343 goto out_bh;
1344 }
1345
1346 ret = udf_fill_partdesc_info(sb, p, i);
1347 if (ret < 0)
1348 goto out_bh;
1349
1350 if (map->s_partition_type == UDF_METADATA_MAP25) {
1351 ret = udf_load_metadata_files(sb, i, type1_idx);
1352 if (ret < 0) {
1353 udf_err(sb, "error loading MetaData partition map %d\n",
1354 i);
1355 goto out_bh;
1356 }
1357 } else {
1358 /*
1359 * If we have a partition with virtual map, we don't handle
1360 * writing to it (we overwrite blocks instead of relocating
1361 * them).
1362 */
1363 if (!sb_rdonly(sb)) {
1364 ret = -EACCES;
1365 goto out_bh;
1366 }
1367 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1368 ret = udf_load_vat(sb, i, type1_idx);
1369 if (ret < 0)
1370 goto out_bh;
1371 }
1372 ret = 0;
1373 out_bh:
1374 /* In case loading failed, we handle cleanup in udf_fill_super */
1375 brelse(bh);
1376 return ret;
1377 }
1378
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1379 static int udf_load_sparable_map(struct super_block *sb,
1380 struct udf_part_map *map,
1381 struct sparablePartitionMap *spm)
1382 {
1383 uint32_t loc;
1384 uint16_t ident;
1385 struct sparingTable *st;
1386 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1387 int i;
1388 struct buffer_head *bh;
1389
1390 map->s_partition_type = UDF_SPARABLE_MAP15;
1391 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1392 if (!is_power_of_2(sdata->s_packet_len)) {
1393 udf_err(sb, "error loading logical volume descriptor: "
1394 "Invalid packet length %u\n",
1395 (unsigned)sdata->s_packet_len);
1396 return -EIO;
1397 }
1398 if (spm->numSparingTables > 4) {
1399 udf_err(sb, "error loading logical volume descriptor: "
1400 "Too many sparing tables (%d)\n",
1401 (int)spm->numSparingTables);
1402 return -EIO;
1403 }
1404 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1405 udf_err(sb, "error loading logical volume descriptor: "
1406 "Too big sparing table size (%u)\n",
1407 le32_to_cpu(spm->sizeSparingTable));
1408 return -EIO;
1409 }
1410
1411 for (i = 0; i < spm->numSparingTables; i++) {
1412 loc = le32_to_cpu(spm->locSparingTable[i]);
1413 bh = udf_read_tagged(sb, loc, loc, &ident);
1414 if (!bh)
1415 continue;
1416
1417 st = (struct sparingTable *)bh->b_data;
1418 if (ident != 0 ||
1419 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1420 strlen(UDF_ID_SPARING)) ||
1421 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1422 sb->s_blocksize) {
1423 brelse(bh);
1424 continue;
1425 }
1426
1427 sdata->s_spar_map[i] = bh;
1428 }
1429 map->s_partition_func = udf_get_pblock_spar15;
1430 return 0;
1431 }
1432
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1433 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1434 struct kernel_lb_addr *fileset)
1435 {
1436 struct logicalVolDesc *lvd;
1437 int i, offset;
1438 uint8_t type;
1439 struct udf_sb_info *sbi = UDF_SB(sb);
1440 struct genericPartitionMap *gpm;
1441 uint16_t ident;
1442 struct buffer_head *bh;
1443 unsigned int table_len, part_map_count;
1444 int ret;
1445
1446 bh = udf_read_tagged(sb, block, block, &ident);
1447 if (!bh)
1448 return -EAGAIN;
1449 BUG_ON(ident != TAG_IDENT_LVD);
1450 lvd = (struct logicalVolDesc *)bh->b_data;
1451 table_len = le32_to_cpu(lvd->mapTableLength);
1452 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1453 udf_err(sb, "error loading logical volume descriptor: "
1454 "Partition table too long (%u > %lu)\n", table_len,
1455 sb->s_blocksize - sizeof(*lvd));
1456 ret = -EIO;
1457 goto out_bh;
1458 }
1459
1460 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1461 "logical volume");
1462 if (ret)
1463 goto out_bh;
1464
1465 part_map_count = le32_to_cpu(lvd->numPartitionMaps);
1466 if (part_map_count > table_len / sizeof(struct genericPartitionMap1)) {
1467 udf_err(sb, "error loading logical volume descriptor: "
1468 "Too many partition maps (%u > %u)\n", part_map_count,
1469 table_len / (unsigned)sizeof(struct genericPartitionMap1));
1470 ret = -EIO;
1471 goto out_bh;
1472 }
1473 ret = udf_sb_alloc_partition_maps(sb, part_map_count);
1474 if (ret)
1475 goto out_bh;
1476
1477 for (i = 0, offset = 0;
1478 i < sbi->s_partitions && offset < table_len;
1479 i++, offset += gpm->partitionMapLength) {
1480 struct udf_part_map *map = &sbi->s_partmaps[i];
1481 gpm = (struct genericPartitionMap *)
1482 &(lvd->partitionMaps[offset]);
1483 type = gpm->partitionMapType;
1484 if (type == 1) {
1485 struct genericPartitionMap1 *gpm1 =
1486 (struct genericPartitionMap1 *)gpm;
1487 map->s_partition_type = UDF_TYPE1_MAP15;
1488 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1489 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1490 map->s_partition_func = NULL;
1491 } else if (type == 2) {
1492 struct udfPartitionMap2 *upm2 =
1493 (struct udfPartitionMap2 *)gpm;
1494 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1495 strlen(UDF_ID_VIRTUAL))) {
1496 u16 suf =
1497 le16_to_cpu(((__le16 *)upm2->partIdent.
1498 identSuffix)[0]);
1499 if (suf < 0x0200) {
1500 map->s_partition_type =
1501 UDF_VIRTUAL_MAP15;
1502 map->s_partition_func =
1503 udf_get_pblock_virt15;
1504 } else {
1505 map->s_partition_type =
1506 UDF_VIRTUAL_MAP20;
1507 map->s_partition_func =
1508 udf_get_pblock_virt20;
1509 }
1510 } else if (!strncmp(upm2->partIdent.ident,
1511 UDF_ID_SPARABLE,
1512 strlen(UDF_ID_SPARABLE))) {
1513 ret = udf_load_sparable_map(sb, map,
1514 (struct sparablePartitionMap *)gpm);
1515 if (ret < 0)
1516 goto out_bh;
1517 } else if (!strncmp(upm2->partIdent.ident,
1518 UDF_ID_METADATA,
1519 strlen(UDF_ID_METADATA))) {
1520 struct udf_meta_data *mdata =
1521 &map->s_type_specific.s_metadata;
1522 struct metadataPartitionMap *mdm =
1523 (struct metadataPartitionMap *)
1524 &(lvd->partitionMaps[offset]);
1525 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1526 i, type, UDF_ID_METADATA);
1527
1528 map->s_partition_type = UDF_METADATA_MAP25;
1529 map->s_partition_func = udf_get_pblock_meta25;
1530
1531 mdata->s_meta_file_loc =
1532 le32_to_cpu(mdm->metadataFileLoc);
1533 mdata->s_mirror_file_loc =
1534 le32_to_cpu(mdm->metadataMirrorFileLoc);
1535 mdata->s_bitmap_file_loc =
1536 le32_to_cpu(mdm->metadataBitmapFileLoc);
1537 mdata->s_alloc_unit_size =
1538 le32_to_cpu(mdm->allocUnitSize);
1539 mdata->s_align_unit_size =
1540 le16_to_cpu(mdm->alignUnitSize);
1541 if (mdm->flags & 0x01)
1542 mdata->s_flags |= MF_DUPLICATE_MD;
1543
1544 udf_debug("Metadata Ident suffix=0x%x\n",
1545 le16_to_cpu(*(__le16 *)
1546 mdm->partIdent.identSuffix));
1547 udf_debug("Metadata part num=%u\n",
1548 le16_to_cpu(mdm->partitionNum));
1549 udf_debug("Metadata part alloc unit size=%u\n",
1550 le32_to_cpu(mdm->allocUnitSize));
1551 udf_debug("Metadata file loc=%u\n",
1552 le32_to_cpu(mdm->metadataFileLoc));
1553 udf_debug("Mirror file loc=%u\n",
1554 le32_to_cpu(mdm->metadataMirrorFileLoc));
1555 udf_debug("Bitmap file loc=%u\n",
1556 le32_to_cpu(mdm->metadataBitmapFileLoc));
1557 udf_debug("Flags: %d %u\n",
1558 mdata->s_flags, mdm->flags);
1559 } else {
1560 udf_debug("Unknown ident: %s\n",
1561 upm2->partIdent.ident);
1562 continue;
1563 }
1564 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1565 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1566 }
1567 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1568 i, map->s_partition_num, type, map->s_volumeseqnum);
1569 }
1570
1571 if (fileset) {
1572 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1573
1574 *fileset = lelb_to_cpu(la->extLocation);
1575 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1576 fileset->logicalBlockNum,
1577 fileset->partitionReferenceNum);
1578 }
1579 if (lvd->integritySeqExt.extLength)
1580 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1581 ret = 0;
1582
1583 if (!sbi->s_lvid_bh) {
1584 /* We can't generate unique IDs without a valid LVID */
1585 if (sb_rdonly(sb)) {
1586 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1587 } else {
1588 udf_warn(sb, "Damaged or missing LVID, forcing "
1589 "readonly mount\n");
1590 ret = -EACCES;
1591 }
1592 }
1593 out_bh:
1594 brelse(bh);
1595 return ret;
1596 }
1597
udf_lvid_valid(struct super_block * sb,struct logicalVolIntegrityDesc * lvid)1598 static bool udf_lvid_valid(struct super_block *sb,
1599 struct logicalVolIntegrityDesc *lvid)
1600 {
1601 u32 parts, impuselen;
1602
1603 parts = le32_to_cpu(lvid->numOfPartitions);
1604 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1605 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1606 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1607 2 * parts * sizeof(u32) > sb->s_blocksize)
1608 return false;
1609 return true;
1610 }
1611
1612 /*
1613 * Find the prevailing Logical Volume Integrity Descriptor.
1614 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1615 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1616 {
1617 struct buffer_head *bh, *final_bh;
1618 uint16_t ident;
1619 struct udf_sb_info *sbi = UDF_SB(sb);
1620 struct logicalVolIntegrityDesc *lvid;
1621 int indirections = 0;
1622
1623 while (++indirections <= UDF_MAX_LVID_NESTING) {
1624 final_bh = NULL;
1625 while (loc.extLength > 0 &&
1626 (bh = udf_read_tagged(sb, loc.extLocation,
1627 loc.extLocation, &ident))) {
1628 if (ident != TAG_IDENT_LVID) {
1629 brelse(bh);
1630 break;
1631 }
1632
1633 brelse(final_bh);
1634 final_bh = bh;
1635
1636 loc.extLength -= sb->s_blocksize;
1637 loc.extLocation++;
1638 }
1639
1640 if (!final_bh)
1641 return;
1642
1643 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1644 if (udf_lvid_valid(sb, lvid)) {
1645 brelse(sbi->s_lvid_bh);
1646 sbi->s_lvid_bh = final_bh;
1647 } else {
1648 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1649 "ignoring.\n",
1650 le32_to_cpu(lvid->numOfPartitions),
1651 le32_to_cpu(lvid->lengthOfImpUse));
1652 }
1653
1654 if (lvid->nextIntegrityExt.extLength == 0)
1655 return;
1656
1657 loc = leea_to_cpu(lvid->nextIntegrityExt);
1658 }
1659
1660 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1661 UDF_MAX_LVID_NESTING);
1662 brelse(sbi->s_lvid_bh);
1663 sbi->s_lvid_bh = NULL;
1664 }
1665
1666 /*
1667 * Step for reallocation of table of partition descriptor sequence numbers.
1668 * Must be power of 2.
1669 */
1670 #define PART_DESC_ALLOC_STEP 32
1671
1672 struct part_desc_seq_scan_data {
1673 struct udf_vds_record rec;
1674 u32 partnum;
1675 };
1676
1677 struct desc_seq_scan_data {
1678 struct udf_vds_record vds[VDS_POS_LENGTH];
1679 unsigned int size_part_descs;
1680 unsigned int num_part_descs;
1681 struct part_desc_seq_scan_data *part_descs_loc;
1682 };
1683
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1684 static struct udf_vds_record *handle_partition_descriptor(
1685 struct buffer_head *bh,
1686 struct desc_seq_scan_data *data)
1687 {
1688 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1689 int partnum;
1690 int i;
1691
1692 partnum = le16_to_cpu(desc->partitionNumber);
1693 for (i = 0; i < data->num_part_descs; i++)
1694 if (partnum == data->part_descs_loc[i].partnum)
1695 return &(data->part_descs_loc[i].rec);
1696 if (data->num_part_descs >= data->size_part_descs) {
1697 struct part_desc_seq_scan_data *new_loc;
1698 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1699
1700 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1701 if (!new_loc)
1702 return ERR_PTR(-ENOMEM);
1703 memcpy(new_loc, data->part_descs_loc,
1704 data->size_part_descs * sizeof(*new_loc));
1705 kfree(data->part_descs_loc);
1706 data->part_descs_loc = new_loc;
1707 data->size_part_descs = new_size;
1708 }
1709 return &(data->part_descs_loc[data->num_part_descs++].rec);
1710 }
1711
1712
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1713 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1714 struct buffer_head *bh, struct desc_seq_scan_data *data)
1715 {
1716 switch (ident) {
1717 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1718 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1719 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1720 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1721 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1722 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1723 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1724 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1725 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1726 return handle_partition_descriptor(bh, data);
1727 }
1728 return NULL;
1729 }
1730
1731 /*
1732 * Process a main/reserve volume descriptor sequence.
1733 * @block First block of first extent of the sequence.
1734 * @lastblock Lastblock of first extent of the sequence.
1735 * @fileset There we store extent containing root fileset
1736 *
1737 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1738 * sequence
1739 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1740 static noinline int udf_process_sequence(
1741 struct super_block *sb,
1742 sector_t block, sector_t lastblock,
1743 struct kernel_lb_addr *fileset)
1744 {
1745 struct buffer_head *bh = NULL;
1746 struct udf_vds_record *curr;
1747 struct generic_desc *gd;
1748 struct volDescPtr *vdp;
1749 bool done = false;
1750 uint32_t vdsn;
1751 uint16_t ident;
1752 int ret;
1753 unsigned int indirections = 0;
1754 struct desc_seq_scan_data data;
1755 unsigned int i;
1756
1757 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1758 data.size_part_descs = PART_DESC_ALLOC_STEP;
1759 data.num_part_descs = 0;
1760 data.part_descs_loc = kcalloc(data.size_part_descs,
1761 sizeof(*data.part_descs_loc),
1762 GFP_KERNEL);
1763 if (!data.part_descs_loc)
1764 return -ENOMEM;
1765
1766 /*
1767 * Read the main descriptor sequence and find which descriptors
1768 * are in it.
1769 */
1770 for (; (!done && block <= lastblock); block++) {
1771 bh = udf_read_tagged(sb, block, block, &ident);
1772 if (!bh)
1773 break;
1774
1775 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1776 gd = (struct generic_desc *)bh->b_data;
1777 vdsn = le32_to_cpu(gd->volDescSeqNum);
1778 switch (ident) {
1779 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1780 if (++indirections > UDF_MAX_TD_NESTING) {
1781 udf_err(sb, "too many Volume Descriptor "
1782 "Pointers (max %u supported)\n",
1783 UDF_MAX_TD_NESTING);
1784 brelse(bh);
1785 ret = -EIO;
1786 goto out;
1787 }
1788
1789 vdp = (struct volDescPtr *)bh->b_data;
1790 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1791 lastblock = le32_to_cpu(
1792 vdp->nextVolDescSeqExt.extLength) >>
1793 sb->s_blocksize_bits;
1794 lastblock += block - 1;
1795 /* For loop is going to increment 'block' again */
1796 block--;
1797 break;
1798 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1799 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1800 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1801 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1802 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1803 curr = get_volume_descriptor_record(ident, bh, &data);
1804 if (IS_ERR(curr)) {
1805 brelse(bh);
1806 ret = PTR_ERR(curr);
1807 goto out;
1808 }
1809 /* Descriptor we don't care about? */
1810 if (!curr)
1811 break;
1812 if (vdsn >= curr->volDescSeqNum) {
1813 curr->volDescSeqNum = vdsn;
1814 curr->block = block;
1815 }
1816 break;
1817 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1818 done = true;
1819 break;
1820 }
1821 brelse(bh);
1822 }
1823 /*
1824 * Now read interesting descriptors again and process them
1825 * in a suitable order
1826 */
1827 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1828 udf_err(sb, "Primary Volume Descriptor not found!\n");
1829 ret = -EAGAIN;
1830 goto out;
1831 }
1832 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1833 if (ret < 0)
1834 goto out;
1835
1836 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1837 ret = udf_load_logicalvol(sb,
1838 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1839 fileset);
1840 if (ret < 0)
1841 goto out;
1842 }
1843
1844 /* Now handle prevailing Partition Descriptors */
1845 for (i = 0; i < data.num_part_descs; i++) {
1846 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1847 if (ret < 0)
1848 goto out;
1849 }
1850 ret = 0;
1851 out:
1852 kfree(data.part_descs_loc);
1853 return ret;
1854 }
1855
1856 /*
1857 * Load Volume Descriptor Sequence described by anchor in bh
1858 *
1859 * Returns <0 on error, 0 on success
1860 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1861 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1862 struct kernel_lb_addr *fileset)
1863 {
1864 struct anchorVolDescPtr *anchor;
1865 sector_t main_s, main_e, reserve_s, reserve_e;
1866 int ret;
1867
1868 anchor = (struct anchorVolDescPtr *)bh->b_data;
1869
1870 /* Locate the main sequence */
1871 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1872 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1873 main_e = main_e >> sb->s_blocksize_bits;
1874 main_e += main_s - 1;
1875
1876 /* Locate the reserve sequence */
1877 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1878 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1879 reserve_e = reserve_e >> sb->s_blocksize_bits;
1880 reserve_e += reserve_s - 1;
1881
1882 /* Process the main & reserve sequences */
1883 /* responsible for finding the PartitionDesc(s) */
1884 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1885 if (ret != -EAGAIN)
1886 return ret;
1887 udf_sb_free_partitions(sb);
1888 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1889 if (ret < 0) {
1890 udf_sb_free_partitions(sb);
1891 /* No sequence was OK, return -EIO */
1892 if (ret == -EAGAIN)
1893 ret = -EIO;
1894 }
1895 return ret;
1896 }
1897
1898 /*
1899 * Check whether there is an anchor block in the given block and
1900 * load Volume Descriptor Sequence if so.
1901 *
1902 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1903 * block
1904 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1905 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1906 struct kernel_lb_addr *fileset)
1907 {
1908 struct buffer_head *bh;
1909 uint16_t ident;
1910 int ret;
1911
1912 bh = udf_read_tagged(sb, block, block, &ident);
1913 if (!bh)
1914 return -EAGAIN;
1915 if (ident != TAG_IDENT_AVDP) {
1916 brelse(bh);
1917 return -EAGAIN;
1918 }
1919 ret = udf_load_sequence(sb, bh, fileset);
1920 brelse(bh);
1921 return ret;
1922 }
1923
1924 /*
1925 * Search for an anchor volume descriptor pointer.
1926 *
1927 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1928 * of anchors.
1929 */
udf_scan_anchors(struct super_block * sb,udf_pblk_t * lastblock,struct kernel_lb_addr * fileset)1930 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1931 struct kernel_lb_addr *fileset)
1932 {
1933 udf_pblk_t last[6];
1934 int i;
1935 struct udf_sb_info *sbi = UDF_SB(sb);
1936 int last_count = 0;
1937 int ret;
1938
1939 /* First try user provided anchor */
1940 if (sbi->s_anchor) {
1941 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1942 if (ret != -EAGAIN)
1943 return ret;
1944 }
1945 /*
1946 * according to spec, anchor is in either:
1947 * block 256
1948 * lastblock-256
1949 * lastblock
1950 * however, if the disc isn't closed, it could be 512.
1951 */
1952 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1953 if (ret != -EAGAIN)
1954 return ret;
1955 /*
1956 * The trouble is which block is the last one. Drives often misreport
1957 * this so we try various possibilities.
1958 */
1959 last[last_count++] = *lastblock;
1960 if (*lastblock >= 1)
1961 last[last_count++] = *lastblock - 1;
1962 last[last_count++] = *lastblock + 1;
1963 if (*lastblock >= 2)
1964 last[last_count++] = *lastblock - 2;
1965 if (*lastblock >= 150)
1966 last[last_count++] = *lastblock - 150;
1967 if (*lastblock >= 152)
1968 last[last_count++] = *lastblock - 152;
1969
1970 for (i = 0; i < last_count; i++) {
1971 if (last[i] >= sb_bdev_nr_blocks(sb))
1972 continue;
1973 ret = udf_check_anchor_block(sb, last[i], fileset);
1974 if (ret != -EAGAIN) {
1975 if (!ret)
1976 *lastblock = last[i];
1977 return ret;
1978 }
1979 if (last[i] < 256)
1980 continue;
1981 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1982 if (ret != -EAGAIN) {
1983 if (!ret)
1984 *lastblock = last[i];
1985 return ret;
1986 }
1987 }
1988
1989 /* Finally try block 512 in case media is open */
1990 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1991 }
1992
1993 /*
1994 * Check Volume Structure Descriptor, find Anchor block and load Volume
1995 * Descriptor Sequence.
1996 *
1997 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1998 * block was not found.
1999 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)2000 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
2001 int silent, struct kernel_lb_addr *fileset)
2002 {
2003 struct udf_sb_info *sbi = UDF_SB(sb);
2004 int nsr = 0;
2005 int ret;
2006
2007 if (!sb_set_blocksize(sb, uopt->blocksize)) {
2008 if (!silent)
2009 udf_warn(sb, "Bad block size\n");
2010 return -EINVAL;
2011 }
2012 sbi->s_last_block = uopt->lastblock;
2013 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) {
2014 /* Check that it is NSR02 compliant */
2015 nsr = udf_check_vsd(sb);
2016 if (!nsr) {
2017 if (!silent)
2018 udf_warn(sb, "No VRS found\n");
2019 return -EINVAL;
2020 }
2021 if (nsr == -1)
2022 udf_debug("Failed to read sector at offset %d. "
2023 "Assuming open disc. Skipping validity "
2024 "check\n", VSD_FIRST_SECTOR_OFFSET);
2025 if (!sbi->s_last_block)
2026 sbi->s_last_block = udf_get_last_block(sb);
2027 } else {
2028 udf_debug("Validity check skipped because of novrs option\n");
2029 }
2030
2031 /* Look for anchor block and load Volume Descriptor Sequence */
2032 sbi->s_anchor = uopt->anchor;
2033 ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
2034 if (ret < 0) {
2035 if (!silent && ret == -EAGAIN)
2036 udf_warn(sb, "No anchor found\n");
2037 return ret;
2038 }
2039 return 0;
2040 }
2041
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2042 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2043 {
2044 struct timespec64 ts;
2045
2046 ktime_get_real_ts64(&ts);
2047 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2048 lvid->descTag.descCRC = cpu_to_le16(
2049 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2050 le16_to_cpu(lvid->descTag.descCRCLength)));
2051 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2052 }
2053
udf_open_lvid(struct super_block * sb)2054 static void udf_open_lvid(struct super_block *sb)
2055 {
2056 struct udf_sb_info *sbi = UDF_SB(sb);
2057 struct buffer_head *bh = sbi->s_lvid_bh;
2058 struct logicalVolIntegrityDesc *lvid;
2059 struct logicalVolIntegrityDescImpUse *lvidiu;
2060
2061 if (!bh)
2062 return;
2063 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2064 lvidiu = udf_sb_lvidiu(sb);
2065 if (!lvidiu)
2066 return;
2067
2068 mutex_lock(&sbi->s_alloc_mutex);
2069 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2070 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2071 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2072 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2073 else
2074 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2075
2076 udf_finalize_lvid(lvid);
2077 mark_buffer_dirty(bh);
2078 sbi->s_lvid_dirty = 0;
2079 mutex_unlock(&sbi->s_alloc_mutex);
2080 /* Make opening of filesystem visible on the media immediately */
2081 sync_dirty_buffer(bh);
2082 }
2083
udf_close_lvid(struct super_block * sb)2084 static void udf_close_lvid(struct super_block *sb)
2085 {
2086 struct udf_sb_info *sbi = UDF_SB(sb);
2087 struct buffer_head *bh = sbi->s_lvid_bh;
2088 struct logicalVolIntegrityDesc *lvid;
2089 struct logicalVolIntegrityDescImpUse *lvidiu;
2090
2091 if (!bh)
2092 return;
2093 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2094 lvidiu = udf_sb_lvidiu(sb);
2095 if (!lvidiu)
2096 return;
2097
2098 mutex_lock(&sbi->s_alloc_mutex);
2099 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2100 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2101 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2102 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2103 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2104 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2105 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2106 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2107 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2108 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2109
2110 /*
2111 * We set buffer uptodate unconditionally here to avoid spurious
2112 * warnings from mark_buffer_dirty() when previous EIO has marked
2113 * the buffer as !uptodate
2114 */
2115 set_buffer_uptodate(bh);
2116 udf_finalize_lvid(lvid);
2117 mark_buffer_dirty(bh);
2118 sbi->s_lvid_dirty = 0;
2119 mutex_unlock(&sbi->s_alloc_mutex);
2120 /* Make closing of filesystem visible on the media immediately */
2121 sync_dirty_buffer(bh);
2122 }
2123
lvid_get_unique_id(struct super_block * sb)2124 u64 lvid_get_unique_id(struct super_block *sb)
2125 {
2126 struct buffer_head *bh;
2127 struct udf_sb_info *sbi = UDF_SB(sb);
2128 struct logicalVolIntegrityDesc *lvid;
2129 struct logicalVolHeaderDesc *lvhd;
2130 u64 uniqueID;
2131 u64 ret;
2132
2133 bh = sbi->s_lvid_bh;
2134 if (!bh)
2135 return 0;
2136
2137 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2138 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2139
2140 mutex_lock(&sbi->s_alloc_mutex);
2141 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2142 if (!(++uniqueID & 0xFFFFFFFF))
2143 uniqueID += 16;
2144 lvhd->uniqueID = cpu_to_le64(uniqueID);
2145 udf_updated_lvid(sb);
2146 mutex_unlock(&sbi->s_alloc_mutex);
2147
2148 return ret;
2149 }
2150
udf_fill_super(struct super_block * sb,struct fs_context * fc)2151 static int udf_fill_super(struct super_block *sb, struct fs_context *fc)
2152 {
2153 int ret = -EINVAL;
2154 struct inode *inode = NULL;
2155 struct udf_options *uopt = fc->fs_private;
2156 struct kernel_lb_addr rootdir, fileset;
2157 struct udf_sb_info *sbi;
2158 bool lvid_open = false;
2159 int silent = fc->sb_flags & SB_SILENT;
2160
2161 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2162 if (!sbi)
2163 return -ENOMEM;
2164
2165 sb->s_fs_info = sbi;
2166
2167 mutex_init(&sbi->s_alloc_mutex);
2168
2169 fileset.logicalBlockNum = 0xFFFFFFFF;
2170 fileset.partitionReferenceNum = 0xFFFF;
2171
2172 sbi->s_flags = uopt->flags;
2173 sbi->s_uid = uopt->uid;
2174 sbi->s_gid = uopt->gid;
2175 sbi->s_umask = uopt->umask;
2176 sbi->s_fmode = uopt->fmode;
2177 sbi->s_dmode = uopt->dmode;
2178 sbi->s_nls_map = uopt->nls_map;
2179 uopt->nls_map = NULL;
2180 rwlock_init(&sbi->s_cred_lock);
2181
2182 if (uopt->session == 0xFFFFFFFF)
2183 sbi->s_session = udf_get_last_session(sb);
2184 else
2185 sbi->s_session = uopt->session;
2186
2187 udf_debug("Multi-session=%d\n", sbi->s_session);
2188
2189 /* Fill in the rest of the superblock */
2190 sb->s_op = &udf_sb_ops;
2191 sb->s_export_op = &udf_export_ops;
2192
2193 sb->s_magic = UDF_SUPER_MAGIC;
2194 sb->s_time_gran = 1000;
2195
2196 if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2197 ret = udf_load_vrs(sb, uopt, silent, &fileset);
2198 } else {
2199 uopt->blocksize = bdev_logical_block_size(sb->s_bdev);
2200 while (uopt->blocksize <= 4096) {
2201 ret = udf_load_vrs(sb, uopt, silent, &fileset);
2202 if (ret < 0) {
2203 if (!silent && ret != -EACCES) {
2204 pr_notice("Scanning with blocksize %u failed\n",
2205 uopt->blocksize);
2206 }
2207 brelse(sbi->s_lvid_bh);
2208 sbi->s_lvid_bh = NULL;
2209 /*
2210 * EACCES is special - we want to propagate to
2211 * upper layers that we cannot handle RW mount.
2212 */
2213 if (ret == -EACCES)
2214 break;
2215 } else
2216 break;
2217
2218 uopt->blocksize <<= 1;
2219 }
2220 }
2221 if (ret < 0) {
2222 if (ret == -EAGAIN) {
2223 udf_warn(sb, "No partition found (1)\n");
2224 ret = -EINVAL;
2225 }
2226 goto error_out;
2227 }
2228
2229 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2230
2231 if (sbi->s_lvid_bh) {
2232 struct logicalVolIntegrityDescImpUse *lvidiu =
2233 udf_sb_lvidiu(sb);
2234 uint16_t minUDFReadRev;
2235 uint16_t minUDFWriteRev;
2236
2237 if (!lvidiu) {
2238 ret = -EINVAL;
2239 goto error_out;
2240 }
2241 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2242 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2243 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2244 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2245 minUDFReadRev,
2246 UDF_MAX_READ_VERSION);
2247 ret = -EINVAL;
2248 goto error_out;
2249 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2250 if (!sb_rdonly(sb)) {
2251 ret = -EACCES;
2252 goto error_out;
2253 }
2254 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2255 }
2256
2257 sbi->s_udfrev = minUDFWriteRev;
2258
2259 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2260 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2261 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2262 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2263 }
2264
2265 if (!sbi->s_partitions) {
2266 udf_warn(sb, "No partition found (2)\n");
2267 ret = -EINVAL;
2268 goto error_out;
2269 }
2270
2271 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2272 UDF_PART_FLAG_READ_ONLY) {
2273 if (!sb_rdonly(sb)) {
2274 ret = -EACCES;
2275 goto error_out;
2276 }
2277 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2278 }
2279
2280 ret = udf_find_fileset(sb, &fileset, &rootdir);
2281 if (ret < 0) {
2282 udf_warn(sb, "No fileset found\n");
2283 goto error_out;
2284 }
2285
2286 if (!silent) {
2287 struct timestamp ts;
2288 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2289 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2290 sbi->s_volume_ident,
2291 le16_to_cpu(ts.year), ts.month, ts.day,
2292 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2293 }
2294 if (!sb_rdonly(sb)) {
2295 udf_open_lvid(sb);
2296 lvid_open = true;
2297 }
2298
2299 /* Assign the root inode */
2300 /* assign inodes by physical block number */
2301 /* perhaps it's not extensible enough, but for now ... */
2302 inode = udf_iget(sb, &rootdir);
2303 if (IS_ERR(inode)) {
2304 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2305 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2306 ret = PTR_ERR(inode);
2307 goto error_out;
2308 }
2309
2310 /* Allocate a dentry for the root inode */
2311 sb->s_root = d_make_root(inode);
2312 if (!sb->s_root) {
2313 udf_err(sb, "Couldn't allocate root dentry\n");
2314 ret = -ENOMEM;
2315 goto error_out;
2316 }
2317 sb->s_maxbytes = UDF_MAX_FILESIZE;
2318 sb->s_max_links = UDF_MAX_LINKS;
2319 return 0;
2320
2321 error_out:
2322 iput(sbi->s_vat_inode);
2323 unload_nls(uopt->nls_map);
2324 if (lvid_open)
2325 udf_close_lvid(sb);
2326 brelse(sbi->s_lvid_bh);
2327 udf_sb_free_partitions(sb);
2328 kfree(sbi);
2329 sb->s_fs_info = NULL;
2330
2331 return ret;
2332 }
2333
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2334 void _udf_err(struct super_block *sb, const char *function,
2335 const char *fmt, ...)
2336 {
2337 struct va_format vaf;
2338 va_list args;
2339
2340 va_start(args, fmt);
2341
2342 vaf.fmt = fmt;
2343 vaf.va = &args;
2344
2345 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2346
2347 va_end(args);
2348 }
2349
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2350 void _udf_warn(struct super_block *sb, const char *function,
2351 const char *fmt, ...)
2352 {
2353 struct va_format vaf;
2354 va_list args;
2355
2356 va_start(args, fmt);
2357
2358 vaf.fmt = fmt;
2359 vaf.va = &args;
2360
2361 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2362
2363 va_end(args);
2364 }
2365
udf_put_super(struct super_block * sb)2366 static void udf_put_super(struct super_block *sb)
2367 {
2368 struct udf_sb_info *sbi;
2369
2370 sbi = UDF_SB(sb);
2371
2372 iput(sbi->s_vat_inode);
2373 unload_nls(sbi->s_nls_map);
2374 if (!sb_rdonly(sb))
2375 udf_close_lvid(sb);
2376 brelse(sbi->s_lvid_bh);
2377 udf_sb_free_partitions(sb);
2378 mutex_destroy(&sbi->s_alloc_mutex);
2379 kfree(sb->s_fs_info);
2380 sb->s_fs_info = NULL;
2381 }
2382
udf_sync_fs(struct super_block * sb,int wait)2383 static int udf_sync_fs(struct super_block *sb, int wait)
2384 {
2385 struct udf_sb_info *sbi = UDF_SB(sb);
2386
2387 mutex_lock(&sbi->s_alloc_mutex);
2388 if (sbi->s_lvid_dirty) {
2389 struct buffer_head *bh = sbi->s_lvid_bh;
2390 struct logicalVolIntegrityDesc *lvid;
2391
2392 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2393 udf_finalize_lvid(lvid);
2394
2395 /*
2396 * Blockdevice will be synced later so we don't have to submit
2397 * the buffer for IO
2398 */
2399 mark_buffer_dirty(bh);
2400 sbi->s_lvid_dirty = 0;
2401 }
2402 mutex_unlock(&sbi->s_alloc_mutex);
2403
2404 return 0;
2405 }
2406
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2407 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2408 {
2409 struct super_block *sb = dentry->d_sb;
2410 struct udf_sb_info *sbi = UDF_SB(sb);
2411 struct logicalVolIntegrityDescImpUse *lvidiu;
2412 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2413
2414 lvidiu = udf_sb_lvidiu(sb);
2415 buf->f_type = UDF_SUPER_MAGIC;
2416 buf->f_bsize = sb->s_blocksize;
2417 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2418 buf->f_bfree = udf_count_free(sb);
2419 buf->f_bavail = buf->f_bfree;
2420 /*
2421 * Let's pretend each free block is also a free 'inode' since UDF does
2422 * not have separate preallocated table of inodes.
2423 */
2424 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2425 le32_to_cpu(lvidiu->numDirs)) : 0)
2426 + buf->f_bfree;
2427 buf->f_ffree = buf->f_bfree;
2428 buf->f_namelen = UDF_NAME_LEN;
2429 buf->f_fsid = u64_to_fsid(id);
2430
2431 return 0;
2432 }
2433
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2434 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2435 struct udf_bitmap *bitmap)
2436 {
2437 struct buffer_head *bh = NULL;
2438 unsigned int accum = 0;
2439 int index;
2440 udf_pblk_t block = 0, newblock;
2441 struct kernel_lb_addr loc;
2442 uint32_t bytes;
2443 uint8_t *ptr;
2444 uint16_t ident;
2445 struct spaceBitmapDesc *bm;
2446
2447 loc.logicalBlockNum = bitmap->s_extPosition;
2448 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2449 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2450
2451 if (!bh) {
2452 udf_err(sb, "udf_count_free failed\n");
2453 goto out;
2454 } else if (ident != TAG_IDENT_SBD) {
2455 brelse(bh);
2456 udf_err(sb, "udf_count_free failed\n");
2457 goto out;
2458 }
2459
2460 bm = (struct spaceBitmapDesc *)bh->b_data;
2461 bytes = le32_to_cpu(bm->numOfBytes);
2462 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2463 ptr = (uint8_t *)bh->b_data;
2464
2465 while (bytes > 0) {
2466 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2467 accum += bitmap_weight((const unsigned long *)(ptr + index),
2468 cur_bytes * 8);
2469 bytes -= cur_bytes;
2470 if (bytes) {
2471 brelse(bh);
2472 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2473 bh = sb_bread(sb, newblock);
2474 if (!bh) {
2475 udf_debug("read failed\n");
2476 goto out;
2477 }
2478 index = 0;
2479 ptr = (uint8_t *)bh->b_data;
2480 }
2481 }
2482 brelse(bh);
2483 out:
2484 return accum;
2485 }
2486
udf_count_free_table(struct super_block * sb,struct inode * table)2487 static unsigned int udf_count_free_table(struct super_block *sb,
2488 struct inode *table)
2489 {
2490 unsigned int accum = 0;
2491 uint32_t elen;
2492 struct kernel_lb_addr eloc;
2493 struct extent_position epos;
2494 int8_t etype;
2495
2496 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2497 epos.block = UDF_I(table)->i_location;
2498 epos.offset = sizeof(struct unallocSpaceEntry);
2499 epos.bh = NULL;
2500
2501 while (udf_next_aext(table, &epos, &eloc, &elen, &etype, 1) > 0)
2502 accum += (elen >> table->i_sb->s_blocksize_bits);
2503
2504 brelse(epos.bh);
2505 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2506
2507 return accum;
2508 }
2509
udf_count_free(struct super_block * sb)2510 static unsigned int udf_count_free(struct super_block *sb)
2511 {
2512 unsigned int accum = 0;
2513 struct udf_sb_info *sbi = UDF_SB(sb);
2514 struct udf_part_map *map;
2515 unsigned int part = sbi->s_partition;
2516 int ptype = sbi->s_partmaps[part].s_partition_type;
2517
2518 if (ptype == UDF_METADATA_MAP25) {
2519 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2520 s_phys_partition_ref;
2521 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2522 /*
2523 * Filesystems with VAT are append-only and we cannot write to
2524 * them. Let's just report 0 here.
2525 */
2526 return 0;
2527 }
2528
2529 if (sbi->s_lvid_bh) {
2530 struct logicalVolIntegrityDesc *lvid =
2531 (struct logicalVolIntegrityDesc *)
2532 sbi->s_lvid_bh->b_data;
2533 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2534 accum = le32_to_cpu(
2535 lvid->freeSpaceTable[part]);
2536 if (accum == 0xFFFFFFFF)
2537 accum = 0;
2538 }
2539 }
2540
2541 if (accum)
2542 return accum;
2543
2544 map = &sbi->s_partmaps[part];
2545 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2546 accum += udf_count_free_bitmap(sb,
2547 map->s_uspace.s_bitmap);
2548 }
2549 if (accum)
2550 return accum;
2551
2552 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2553 accum += udf_count_free_table(sb,
2554 map->s_uspace.s_table);
2555 }
2556 return accum;
2557 }
2558
2559 MODULE_AUTHOR("Ben Fennema");
2560 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2561 MODULE_LICENSE("GPL");
2562 module_init(init_udf_fs)
2563 module_exit(exit_udf_fs)
2564