xref: /linux/fs/udf/super.c (revision c7bfaff47a17ec01d9d8b648a7266103cb7a305b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * super.c
4  *
5  * PURPOSE
6  *  Super block routines for the OSTA-UDF(tm) filesystem.
7  *
8  * DESCRIPTION
9  *  OSTA-UDF(tm) = Optical Storage Technology Association
10  *  Universal Disk Format.
11  *
12  *  This code is based on version 2.00 of the UDF specification,
13  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
14  *    http://www.osta.org/
15  *    https://www.ecma.ch/
16  *    https://www.iso.org/
17  *
18  * COPYRIGHT
19  *  (C) 1998 Dave Boynton
20  *  (C) 1998-2004 Ben Fennema
21  *  (C) 2000 Stelias Computing Inc
22  *
23  * HISTORY
24  *
25  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
26  *                added some debugging.
27  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
28  *  10/16/98      attempting some multi-session support
29  *  10/17/98      added freespace count for "df"
30  *  11/11/98 gr   added novrs option
31  *  11/26/98 dgb  added fileset,anchor mount options
32  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
33  *                vol descs. rewrote option handling based on isofs
34  *  12/20/98      find the free space bitmap (if it exists)
35  */
36 
37 #include "udfdecl.h"
38 
39 #include <linux/blkdev.h>
40 #include <linux/slab.h>
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/stat.h>
44 #include <linux/cdrom.h>
45 #include <linux/nls.h>
46 #include <linux/vfs.h>
47 #include <linux/vmalloc.h>
48 #include <linux/errno.h>
49 #include <linux/seq_file.h>
50 #include <linux/bitmap.h>
51 #include <linux/crc-itu-t.h>
52 #include <linux/log2.h>
53 #include <asm/byteorder.h>
54 #include <linux/iversion.h>
55 #include <linux/fs_context.h>
56 #include <linux/fs_parser.h>
57 
58 #include "udf_sb.h"
59 #include "udf_i.h"
60 
61 #include <linux/init.h>
62 #include <linux/uaccess.h>
63 
64 enum {
65 	VDS_POS_PRIMARY_VOL_DESC,
66 	VDS_POS_UNALLOC_SPACE_DESC,
67 	VDS_POS_LOGICAL_VOL_DESC,
68 	VDS_POS_IMP_USE_VOL_DESC,
69 	VDS_POS_LENGTH
70 };
71 
72 #define VSD_FIRST_SECTOR_OFFSET		32768
73 #define VSD_MAX_SECTOR_OFFSET		0x800000
74 
75 /*
76  * Maximum number of Terminating Descriptor / Logical Volume Integrity
77  * Descriptor redirections. The chosen numbers are arbitrary - just that we
78  * hopefully don't limit any real use of rewritten inode on write-once media
79  * but avoid looping for too long on corrupted media.
80  */
81 #define UDF_MAX_TD_NESTING 64
82 #define UDF_MAX_LVID_NESTING 1000
83 
84 enum { UDF_MAX_LINKS = 0xffff };
85 /*
86  * We limit filesize to 4TB. This is arbitrary as the on-disk format supports
87  * more but because the file space is described by a linked list of extents,
88  * each of which can have at most 1GB, the creation and handling of extents
89  * gets unusably slow beyond certain point...
90  */
91 #define UDF_MAX_FILESIZE (1ULL << 42)
92 
93 /* These are the "meat" - everything else is stuffing */
94 static int udf_fill_super(struct super_block *sb, struct fs_context *fc);
95 static void udf_put_super(struct super_block *);
96 static int udf_sync_fs(struct super_block *, int);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static void udf_open_lvid(struct super_block *);
99 static void udf_close_lvid(struct super_block *);
100 static unsigned int udf_count_free(struct super_block *);
101 static int udf_statfs(struct dentry *, struct kstatfs *);
102 static int udf_show_options(struct seq_file *, struct dentry *);
103 static int udf_init_fs_context(struct fs_context *fc);
104 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param);
105 static int udf_reconfigure(struct fs_context *fc);
106 static void udf_free_fc(struct fs_context *fc);
107 static const struct fs_parameter_spec udf_param_spec[];
108 
udf_sb_lvidiu(struct super_block * sb)109 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
110 {
111 	struct logicalVolIntegrityDesc *lvid;
112 	unsigned int partnum;
113 	unsigned int offset;
114 
115 	if (!UDF_SB(sb)->s_lvid_bh)
116 		return NULL;
117 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
118 	partnum = le32_to_cpu(lvid->numOfPartitions);
119 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
120 	offset = partnum * 2 * sizeof(uint32_t);
121 	return (struct logicalVolIntegrityDescImpUse *)
122 					(((uint8_t *)(lvid + 1)) + offset);
123 }
124 
125 /* UDF filesystem type */
udf_get_tree(struct fs_context * fc)126 static int udf_get_tree(struct fs_context *fc)
127 {
128 	return get_tree_bdev(fc, udf_fill_super);
129 }
130 
131 static const struct fs_context_operations udf_context_ops = {
132 	.parse_param	= udf_parse_param,
133 	.get_tree	= udf_get_tree,
134 	.reconfigure	= udf_reconfigure,
135 	.free		= udf_free_fc,
136 };
137 
138 static struct file_system_type udf_fstype = {
139 	.owner		= THIS_MODULE,
140 	.name		= "udf",
141 	.kill_sb	= kill_block_super,
142 	.fs_flags	= FS_REQUIRES_DEV,
143 	.init_fs_context = udf_init_fs_context,
144 	.parameters	= udf_param_spec,
145 };
146 MODULE_ALIAS_FS("udf");
147 
148 static struct kmem_cache *udf_inode_cachep;
149 
udf_alloc_inode(struct super_block * sb)150 static struct inode *udf_alloc_inode(struct super_block *sb)
151 {
152 	struct udf_inode_info *ei;
153 	ei = alloc_inode_sb(sb, udf_inode_cachep, GFP_KERNEL);
154 	if (!ei)
155 		return NULL;
156 
157 	ei->i_unique = 0;
158 	ei->i_lenExtents = 0;
159 	ei->i_lenStreams = 0;
160 	ei->i_next_alloc_block = 0;
161 	ei->i_next_alloc_goal = 0;
162 	ei->i_strat4096 = 0;
163 	ei->i_streamdir = 0;
164 	ei->i_hidden = 0;
165 	init_rwsem(&ei->i_data_sem);
166 	ei->cached_extent.lstart = -1;
167 	spin_lock_init(&ei->i_extent_cache_lock);
168 	inode_set_iversion(&ei->vfs_inode, 1);
169 
170 	return &ei->vfs_inode;
171 }
172 
udf_free_in_core_inode(struct inode * inode)173 static void udf_free_in_core_inode(struct inode *inode)
174 {
175 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
176 }
177 
init_once(void * foo)178 static void init_once(void *foo)
179 {
180 	struct udf_inode_info *ei = foo;
181 
182 	ei->i_data = NULL;
183 	inode_init_once(&ei->vfs_inode);
184 }
185 
init_inodecache(void)186 static int __init init_inodecache(void)
187 {
188 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 					     sizeof(struct udf_inode_info),
190 					     0, (SLAB_RECLAIM_ACCOUNT |
191 						 SLAB_ACCOUNT),
192 					     init_once);
193 	if (!udf_inode_cachep)
194 		return -ENOMEM;
195 	return 0;
196 }
197 
destroy_inodecache(void)198 static void destroy_inodecache(void)
199 {
200 	/*
201 	 * Make sure all delayed rcu free inodes are flushed before we
202 	 * destroy cache.
203 	 */
204 	rcu_barrier();
205 	kmem_cache_destroy(udf_inode_cachep);
206 }
207 
208 /* Superblock operations */
209 static const struct super_operations udf_sb_ops = {
210 	.alloc_inode	= udf_alloc_inode,
211 	.free_inode	= udf_free_in_core_inode,
212 	.write_inode	= udf_write_inode,
213 	.evict_inode	= udf_evict_inode,
214 	.put_super	= udf_put_super,
215 	.sync_fs	= udf_sync_fs,
216 	.statfs		= udf_statfs,
217 	.show_options	= udf_show_options,
218 };
219 
220 struct udf_options {
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 /*
235  * UDF has historically preserved prior mount options across
236  * a remount, so copy those here if remounting, otherwise set
237  * initial mount defaults.
238  */
udf_init_options(struct fs_context * fc,struct udf_options * uopt)239 static void udf_init_options(struct fs_context *fc, struct udf_options *uopt)
240 {
241 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
242 		struct super_block *sb = fc->root->d_sb;
243 		struct udf_sb_info *sbi = UDF_SB(sb);
244 
245 		uopt->flags = sbi->s_flags;
246 		uopt->uid   = sbi->s_uid;
247 		uopt->gid   = sbi->s_gid;
248 		uopt->umask = sbi->s_umask;
249 		uopt->fmode = sbi->s_fmode;
250 		uopt->dmode = sbi->s_dmode;
251 		uopt->nls_map = NULL;
252 	} else {
253 		uopt->flags = (1 << UDF_FLAG_USE_AD_IN_ICB) |
254 			      (1 << UDF_FLAG_STRICT);
255 		/*
256 		 * By default we'll use overflow[ug]id when UDF
257 		 * inode [ug]id == -1
258 		 */
259 		uopt->uid = make_kuid(current_user_ns(), overflowuid);
260 		uopt->gid = make_kgid(current_user_ns(), overflowgid);
261 		uopt->umask = 0;
262 		uopt->fmode = UDF_INVALID_MODE;
263 		uopt->dmode = UDF_INVALID_MODE;
264 		uopt->nls_map = NULL;
265 		uopt->session = 0xFFFFFFFF;
266 	}
267 }
268 
udf_init_fs_context(struct fs_context * fc)269 static int udf_init_fs_context(struct fs_context *fc)
270 {
271 	struct udf_options *uopt;
272 
273 	uopt = kzalloc(sizeof(*uopt), GFP_KERNEL);
274 	if (!uopt)
275 		return -ENOMEM;
276 
277 	udf_init_options(fc, uopt);
278 
279 	fc->fs_private = uopt;
280 	fc->ops = &udf_context_ops;
281 
282 	return 0;
283 }
284 
udf_free_fc(struct fs_context * fc)285 static void udf_free_fc(struct fs_context *fc)
286 {
287 	struct udf_options *uopt = fc->fs_private;
288 
289 	unload_nls(uopt->nls_map);
290 	kfree(fc->fs_private);
291 }
292 
init_udf_fs(void)293 static int __init init_udf_fs(void)
294 {
295 	int err;
296 
297 	err = init_inodecache();
298 	if (err)
299 		goto out1;
300 	err = register_filesystem(&udf_fstype);
301 	if (err)
302 		goto out;
303 
304 	return 0;
305 
306 out:
307 	destroy_inodecache();
308 
309 out1:
310 	return err;
311 }
312 
exit_udf_fs(void)313 static void __exit exit_udf_fs(void)
314 {
315 	unregister_filesystem(&udf_fstype);
316 	destroy_inodecache();
317 }
318 
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)319 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
320 {
321 	struct udf_sb_info *sbi = UDF_SB(sb);
322 
323 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
324 	if (!sbi->s_partmaps) {
325 		sbi->s_partitions = 0;
326 		return -ENOMEM;
327 	}
328 
329 	sbi->s_partitions = count;
330 	return 0;
331 }
332 
udf_sb_free_bitmap(struct udf_bitmap * bitmap)333 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
334 {
335 	int i;
336 	int nr_groups = bitmap->s_nr_groups;
337 
338 	for (i = 0; i < nr_groups; i++)
339 		if (!IS_ERR_OR_NULL(bitmap->s_block_bitmap[i]))
340 			brelse(bitmap->s_block_bitmap[i]);
341 
342 	kvfree(bitmap);
343 }
344 
udf_free_partition(struct udf_part_map * map)345 static void udf_free_partition(struct udf_part_map *map)
346 {
347 	int i;
348 	struct udf_meta_data *mdata;
349 
350 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
351 		iput(map->s_uspace.s_table);
352 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
353 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
354 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
355 		for (i = 0; i < 4; i++)
356 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
357 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
358 		mdata = &map->s_type_specific.s_metadata;
359 		iput(mdata->s_metadata_fe);
360 		mdata->s_metadata_fe = NULL;
361 
362 		iput(mdata->s_mirror_fe);
363 		mdata->s_mirror_fe = NULL;
364 
365 		iput(mdata->s_bitmap_fe);
366 		mdata->s_bitmap_fe = NULL;
367 	}
368 }
369 
udf_sb_free_partitions(struct super_block * sb)370 static void udf_sb_free_partitions(struct super_block *sb)
371 {
372 	struct udf_sb_info *sbi = UDF_SB(sb);
373 	int i;
374 
375 	if (!sbi->s_partmaps)
376 		return;
377 	for (i = 0; i < sbi->s_partitions; i++)
378 		udf_free_partition(&sbi->s_partmaps[i]);
379 	kfree(sbi->s_partmaps);
380 	sbi->s_partmaps = NULL;
381 }
382 
udf_show_options(struct seq_file * seq,struct dentry * root)383 static int udf_show_options(struct seq_file *seq, struct dentry *root)
384 {
385 	struct super_block *sb = root->d_sb;
386 	struct udf_sb_info *sbi = UDF_SB(sb);
387 
388 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
389 		seq_puts(seq, ",nostrict");
390 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
391 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
392 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
393 		seq_puts(seq, ",unhide");
394 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
395 		seq_puts(seq, ",undelete");
396 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
397 		seq_puts(seq, ",noadinicb");
398 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
399 		seq_puts(seq, ",shortad");
400 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
401 		seq_puts(seq, ",uid=forget");
402 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
403 		seq_puts(seq, ",gid=forget");
404 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
405 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
406 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
407 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
408 	if (sbi->s_umask != 0)
409 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
410 	if (sbi->s_fmode != UDF_INVALID_MODE)
411 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
412 	if (sbi->s_dmode != UDF_INVALID_MODE)
413 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
414 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
415 		seq_printf(seq, ",session=%d", sbi->s_session);
416 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
417 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
418 	if (sbi->s_anchor != 0)
419 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
420 	if (sbi->s_nls_map)
421 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
422 	else
423 		seq_puts(seq, ",iocharset=utf8");
424 
425 	return 0;
426 }
427 
428 /*
429  * udf_parse_param
430  *
431  * PURPOSE
432  *	Parse mount options.
433  *
434  * DESCRIPTION
435  *	The following mount options are supported:
436  *
437  *	gid=		Set the default group.
438  *	umask=		Set the default umask.
439  *	mode=		Set the default file permissions.
440  *	dmode=		Set the default directory permissions.
441  *	uid=		Set the default user.
442  *	bs=		Set the block size.
443  *	unhide		Show otherwise hidden files.
444  *	undelete	Show deleted files in lists.
445  *	adinicb		Embed data in the inode (default)
446  *	noadinicb	Don't embed data in the inode
447  *	shortad		Use short ad's
448  *	longad		Use long ad's (default)
449  *	nostrict	Unset strict conformance
450  *	iocharset=	Set the NLS character set
451  *
452  *	The remaining are for debugging and disaster recovery:
453  *
454  *	novrs		Skip volume sequence recognition
455  *
456  *	The following expect a offset from 0.
457  *
458  *	session=	Set the CDROM session (default= last session)
459  *	anchor=		Override standard anchor location. (default= 256)
460  *	volume=		Override the VolumeDesc location. (unused)
461  *	partition=	Override the PartitionDesc location. (unused)
462  *	lastblock=	Set the last block of the filesystem/
463  *
464  *	The following expect a offset from the partition root.
465  *
466  *	fileset=	Override the fileset block location. (unused)
467  *	rootdir=	Override the root directory location. (unused)
468  *		WARNING: overriding the rootdir to a non-directory may
469  *		yield highly unpredictable results.
470  *
471  * PRE-CONDITIONS
472  *	fc		fs_context with pointer to mount options variable.
473  *	param		Pointer to fs_parameter being parsed.
474  *
475  * POST-CONDITIONS
476  *	<return>	0	Mount options parsed okay.
477  *	<return>	errno	Error parsing mount options.
478  *
479  * HISTORY
480  *	July 1, 1997 - Andrew E. Mileski
481  *	Written, tested, and released.
482  */
483 
484 enum {
485 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
486 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
487 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
488 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
489 	Opt_rootdir, Opt_utf8, Opt_iocharset, Opt_err, Opt_fmode, Opt_dmode
490 };
491 
492 static const struct fs_parameter_spec udf_param_spec[] = {
493 	fsparam_flag	("novrs",		Opt_novrs),
494 	fsparam_flag	("nostrict",		Opt_nostrict),
495 	fsparam_u32	("bs",			Opt_bs),
496 	fsparam_flag	("unhide",		Opt_unhide),
497 	fsparam_flag	("undelete",		Opt_undelete),
498 	fsparam_flag_no	("adinicb",		Opt_adinicb),
499 	fsparam_flag	("shortad",		Opt_shortad),
500 	fsparam_flag	("longad",		Opt_longad),
501 	fsparam_string	("gid",			Opt_gid),
502 	fsparam_string	("uid",			Opt_uid),
503 	fsparam_u32	("umask",		Opt_umask),
504 	fsparam_u32	("session",		Opt_session),
505 	fsparam_u32	("lastblock",		Opt_lastblock),
506 	fsparam_u32	("anchor",		Opt_anchor),
507 	fsparam_u32	("volume",		Opt_volume),
508 	fsparam_u32	("partition",		Opt_partition),
509 	fsparam_u32	("fileset",		Opt_fileset),
510 	fsparam_u32	("rootdir",		Opt_rootdir),
511 	fsparam_flag	("utf8",		Opt_utf8),
512 	fsparam_string	("iocharset",		Opt_iocharset),
513 	fsparam_u32	("mode",		Opt_fmode),
514 	fsparam_u32	("dmode",		Opt_dmode),
515 	{}
516  };
517 
udf_parse_param(struct fs_context * fc,struct fs_parameter * param)518 static int udf_parse_param(struct fs_context *fc, struct fs_parameter *param)
519 {
520 	unsigned int uv;
521 	unsigned int n;
522 	struct udf_options *uopt = fc->fs_private;
523 	struct fs_parse_result result;
524 	int token;
525 	bool remount = (fc->purpose & FS_CONTEXT_FOR_RECONFIGURE);
526 
527 	token = fs_parse(fc, udf_param_spec, param, &result);
528 	if (token < 0)
529 		return token;
530 
531 	switch (token) {
532 	case Opt_novrs:
533 		uopt->flags |= (1 << UDF_FLAG_NOVRS);
534 		break;
535 	case Opt_bs:
536 		n = result.uint_32;
537 		if (n != 512 && n != 1024 && n != 2048 && n != 4096)
538 			return -EINVAL;
539 		uopt->blocksize = n;
540 		uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
541 		break;
542 	case Opt_unhide:
543 		uopt->flags |= (1 << UDF_FLAG_UNHIDE);
544 		break;
545 	case Opt_undelete:
546 		uopt->flags |= (1 << UDF_FLAG_UNDELETE);
547 		break;
548 	case Opt_adinicb:
549 		if (result.negated)
550 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
551 		else
552 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
553 		break;
554 	case Opt_shortad:
555 		uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
556 		break;
557 	case Opt_longad:
558 		uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
559 		break;
560 	case Opt_gid:
561 		if (kstrtoint(param->string, 10, &uv) == 0) {
562 			kgid_t gid = make_kgid(current_user_ns(), uv);
563 			if (!gid_valid(gid))
564 				return -EINVAL;
565 			uopt->gid = gid;
566 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
567 		} else if (!strcmp(param->string, "forget")) {
568 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
569 		} else if (!strcmp(param->string, "ignore")) {
570 			/* this option is superseded by gid=<number> */
571 			;
572 		} else {
573 			return -EINVAL;
574 		}
575 		break;
576 	case Opt_uid:
577 		if (kstrtoint(param->string, 10, &uv) == 0) {
578 			kuid_t uid = make_kuid(current_user_ns(), uv);
579 			if (!uid_valid(uid))
580 				return -EINVAL;
581 			uopt->uid = uid;
582 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
583 		} else if (!strcmp(param->string, "forget")) {
584 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
585 		} else if (!strcmp(param->string, "ignore")) {
586 			/* this option is superseded by uid=<number> */
587 			;
588 		} else {
589 			return -EINVAL;
590 		}
591 		break;
592 	case Opt_umask:
593 		uopt->umask = result.uint_32;
594 		break;
595 	case Opt_nostrict:
596 		uopt->flags &= ~(1 << UDF_FLAG_STRICT);
597 		break;
598 	case Opt_session:
599 		uopt->session = result.uint_32;
600 		if (!remount)
601 			uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
602 		break;
603 	case Opt_lastblock:
604 		uopt->lastblock = result.uint_32;
605 		if (!remount)
606 			uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
607 		break;
608 	case Opt_anchor:
609 		uopt->anchor = result.uint_32;
610 		break;
611 	case Opt_volume:
612 	case Opt_partition:
613 	case Opt_fileset:
614 	case Opt_rootdir:
615 		/* Ignored (never implemented properly) */
616 		break;
617 	case Opt_utf8:
618 		if (!remount) {
619 			unload_nls(uopt->nls_map);
620 			uopt->nls_map = NULL;
621 		}
622 		break;
623 	case Opt_iocharset:
624 		if (!remount) {
625 			unload_nls(uopt->nls_map);
626 			uopt->nls_map = NULL;
627 		}
628 		/* When nls_map is not loaded then UTF-8 is used */
629 		if (!remount && strcmp(param->string, "utf8") != 0) {
630 			uopt->nls_map = load_nls(param->string);
631 			if (!uopt->nls_map) {
632 				errorf(fc, "iocharset %s not found",
633 					param->string);
634 				return -EINVAL;
635 			}
636 		}
637 		break;
638 	case Opt_fmode:
639 		uopt->fmode = result.uint_32 & 0777;
640 		break;
641 	case Opt_dmode:
642 		uopt->dmode = result.uint_32 & 0777;
643 		break;
644 	default:
645 		return -EINVAL;
646 	}
647 	return 0;
648 }
649 
udf_reconfigure(struct fs_context * fc)650 static int udf_reconfigure(struct fs_context *fc)
651 {
652 	struct udf_options *uopt = fc->fs_private;
653 	struct super_block *sb = fc->root->d_sb;
654 	struct udf_sb_info *sbi = UDF_SB(sb);
655 	int readonly = fc->sb_flags & SB_RDONLY;
656 	int error = 0;
657 
658 	if (!readonly && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
659 		return -EACCES;
660 
661 	sync_filesystem(sb);
662 
663 	write_lock(&sbi->s_cred_lock);
664 	sbi->s_flags = uopt->flags;
665 	sbi->s_uid   = uopt->uid;
666 	sbi->s_gid   = uopt->gid;
667 	sbi->s_umask = uopt->umask;
668 	sbi->s_fmode = uopt->fmode;
669 	sbi->s_dmode = uopt->dmode;
670 	write_unlock(&sbi->s_cred_lock);
671 
672 	if (readonly == sb_rdonly(sb))
673 		goto out_unlock;
674 
675 	if (readonly)
676 		udf_close_lvid(sb);
677 	else
678 		udf_open_lvid(sb);
679 
680 out_unlock:
681 	return error;
682 }
683 
684 /*
685  * Check VSD descriptor. Returns -1 in case we are at the end of volume
686  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
687  * we found one of NSR descriptors we are looking for.
688  */
identify_vsd(const struct volStructDesc * vsd)689 static int identify_vsd(const struct volStructDesc *vsd)
690 {
691 	int ret = 0;
692 
693 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
694 		switch (vsd->structType) {
695 		case 0:
696 			udf_debug("ISO9660 Boot Record found\n");
697 			break;
698 		case 1:
699 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
700 			break;
701 		case 2:
702 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
703 			break;
704 		case 3:
705 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
706 			break;
707 		case 255:
708 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
709 			break;
710 		default:
711 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
712 			break;
713 		}
714 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
715 		; /* ret = 0 */
716 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
717 		ret = 1;
718 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
719 		ret = 1;
720 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
721 		; /* ret = 0 */
722 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
723 		; /* ret = 0 */
724 	else {
725 		/* TEA01 or invalid id : end of volume recognition area */
726 		ret = -1;
727 	}
728 
729 	return ret;
730 }
731 
732 /*
733  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
734  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
735  * @return   1 if NSR02 or NSR03 found,
736  *	    -1 if first sector read error, 0 otherwise
737  */
udf_check_vsd(struct super_block * sb)738 static int udf_check_vsd(struct super_block *sb)
739 {
740 	struct volStructDesc *vsd = NULL;
741 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
742 	int sectorsize;
743 	struct buffer_head *bh = NULL;
744 	int nsr = 0;
745 	struct udf_sb_info *sbi;
746 	loff_t session_offset;
747 
748 	sbi = UDF_SB(sb);
749 	if (sb->s_blocksize < sizeof(struct volStructDesc))
750 		sectorsize = sizeof(struct volStructDesc);
751 	else
752 		sectorsize = sb->s_blocksize;
753 
754 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
755 	sector += session_offset;
756 
757 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
758 		  (unsigned int)(sector >> sb->s_blocksize_bits),
759 		  sb->s_blocksize);
760 	/* Process the sequence (if applicable). The hard limit on the sector
761 	 * offset is arbitrary, hopefully large enough so that all valid UDF
762 	 * filesystems will be recognised. There is no mention of an upper
763 	 * bound to the size of the volume recognition area in the standard.
764 	 *  The limit will prevent the code to read all the sectors of a
765 	 * specially crafted image (like a bluray disc full of CD001 sectors),
766 	 * potentially causing minutes or even hours of uninterruptible I/O
767 	 * activity. This actually happened with uninitialised SSD partitions
768 	 * (all 0xFF) before the check for the limit and all valid IDs were
769 	 * added */
770 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
771 		/* Read a block */
772 		bh = sb_bread(sb, sector >> sb->s_blocksize_bits);
773 		if (!bh)
774 			break;
775 
776 		vsd = (struct volStructDesc *)(bh->b_data +
777 					      (sector & (sb->s_blocksize - 1)));
778 		nsr = identify_vsd(vsd);
779 		/* Found NSR or end? */
780 		if (nsr) {
781 			brelse(bh);
782 			break;
783 		}
784 		/*
785 		 * Special handling for improperly formatted VRS (e.g., Win10)
786 		 * where components are separated by 2048 bytes even though
787 		 * sectors are 4K
788 		 */
789 		if (sb->s_blocksize == 4096) {
790 			nsr = identify_vsd(vsd + 1);
791 			/* Ignore unknown IDs... */
792 			if (nsr < 0)
793 				nsr = 0;
794 		}
795 		brelse(bh);
796 	}
797 
798 	if (nsr > 0)
799 		return 1;
800 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
801 		return -1;
802 	else
803 		return 0;
804 }
805 
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)806 static int udf_verify_domain_identifier(struct super_block *sb,
807 					struct regid *ident, char *dname)
808 {
809 	struct domainIdentSuffix *suffix;
810 
811 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
812 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
813 		goto force_ro;
814 	}
815 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
816 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
817 			 dname);
818 		goto force_ro;
819 	}
820 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
821 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
822 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
823 		if (!sb_rdonly(sb)) {
824 			udf_warn(sb, "Descriptor for %s marked write protected."
825 				 " Forcing read only mount.\n", dname);
826 		}
827 		goto force_ro;
828 	}
829 	return 0;
830 
831 force_ro:
832 	if (!sb_rdonly(sb))
833 		return -EACCES;
834 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
835 	return 0;
836 }
837 
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)838 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
839 			    struct kernel_lb_addr *root)
840 {
841 	int ret;
842 
843 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
844 	if (ret < 0)
845 		return ret;
846 
847 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
848 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
849 
850 	udf_debug("Rootdir at block=%u, partition=%u\n",
851 		  root->logicalBlockNum, root->partitionReferenceNum);
852 	return 0;
853 }
854 
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)855 static int udf_find_fileset(struct super_block *sb,
856 			    struct kernel_lb_addr *fileset,
857 			    struct kernel_lb_addr *root)
858 {
859 	struct buffer_head *bh;
860 	uint16_t ident;
861 	int ret;
862 
863 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
864 	    fileset->partitionReferenceNum == 0xFFFF)
865 		return -EINVAL;
866 
867 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
868 	if (!bh)
869 		return -EIO;
870 	if (ident != TAG_IDENT_FSD) {
871 		brelse(bh);
872 		return -EINVAL;
873 	}
874 
875 	udf_debug("Fileset at block=%u, partition=%u\n",
876 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
877 
878 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
879 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
880 	brelse(bh);
881 	return ret;
882 }
883 
884 /*
885  * Load primary Volume Descriptor Sequence
886  *
887  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
888  * should be tried.
889  */
udf_load_pvoldesc(struct super_block * sb,sector_t block)890 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
891 {
892 	struct primaryVolDesc *pvoldesc;
893 	uint8_t *outstr;
894 	struct buffer_head *bh;
895 	uint16_t ident;
896 	int ret;
897 	struct timestamp *ts;
898 
899 	outstr = kzalloc(128, GFP_KERNEL);
900 	if (!outstr)
901 		return -ENOMEM;
902 
903 	bh = udf_read_tagged(sb, block, block, &ident);
904 	if (!bh) {
905 		ret = -EAGAIN;
906 		goto out2;
907 	}
908 
909 	if (ident != TAG_IDENT_PVD) {
910 		ret = -EIO;
911 		goto out_bh;
912 	}
913 
914 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
915 
916 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
917 			      pvoldesc->recordingDateAndTime);
918 	ts = &pvoldesc->recordingDateAndTime;
919 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
920 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
921 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
922 
923 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
924 	if (ret < 0) {
925 		strscpy_pad(UDF_SB(sb)->s_volume_ident, "InvalidName");
926 		pr_warn("incorrect volume identification, setting to "
927 			"'InvalidName'\n");
928 	} else {
929 		strscpy_pad(UDF_SB(sb)->s_volume_ident, outstr);
930 	}
931 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
932 
933 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
934 	if (ret < 0) {
935 		ret = 0;
936 		goto out_bh;
937 	}
938 	outstr[ret] = 0;
939 	udf_debug("volSetIdent[] = '%s'\n", outstr);
940 
941 	ret = 0;
942 out_bh:
943 	brelse(bh);
944 out2:
945 	kfree(outstr);
946 	return ret;
947 }
948 
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)949 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
950 					u32 meta_file_loc, u32 partition_ref)
951 {
952 	struct kernel_lb_addr addr;
953 	struct inode *metadata_fe;
954 
955 	addr.logicalBlockNum = meta_file_loc;
956 	addr.partitionReferenceNum = partition_ref;
957 
958 	metadata_fe = udf_iget_special(sb, &addr);
959 
960 	if (IS_ERR(metadata_fe)) {
961 		udf_warn(sb, "metadata inode efe not found\n");
962 		return metadata_fe;
963 	}
964 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
965 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
966 		iput(metadata_fe);
967 		return ERR_PTR(-EIO);
968 	}
969 
970 	return metadata_fe;
971 }
972 
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)973 static int udf_load_metadata_files(struct super_block *sb, int partition,
974 				   int type1_index)
975 {
976 	struct udf_sb_info *sbi = UDF_SB(sb);
977 	struct udf_part_map *map;
978 	struct udf_meta_data *mdata;
979 	struct kernel_lb_addr addr;
980 	struct inode *fe;
981 
982 	map = &sbi->s_partmaps[partition];
983 	mdata = &map->s_type_specific.s_metadata;
984 	mdata->s_phys_partition_ref = type1_index;
985 
986 	/* metadata address */
987 	udf_debug("Metadata file location: block = %u part = %u\n",
988 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
989 
990 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
991 					 mdata->s_phys_partition_ref);
992 	if (IS_ERR(fe)) {
993 		/* mirror file entry */
994 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
995 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
996 
997 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
998 						 mdata->s_phys_partition_ref);
999 
1000 		if (IS_ERR(fe)) {
1001 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1002 			return PTR_ERR(fe);
1003 		}
1004 		mdata->s_mirror_fe = fe;
1005 	} else
1006 		mdata->s_metadata_fe = fe;
1007 
1008 
1009 	/*
1010 	 * bitmap file entry
1011 	 * Note:
1012 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1013 	*/
1014 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1015 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1016 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1017 
1018 		udf_debug("Bitmap file location: block = %u part = %u\n",
1019 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1020 
1021 		fe = udf_iget_special(sb, &addr);
1022 		if (IS_ERR(fe)) {
1023 			if (sb_rdonly(sb))
1024 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1025 			else {
1026 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1027 				return PTR_ERR(fe);
1028 			}
1029 		} else
1030 			mdata->s_bitmap_fe = fe;
1031 	}
1032 
1033 	udf_debug("udf_load_metadata_files Ok\n");
1034 	return 0;
1035 }
1036 
udf_compute_nr_groups(struct super_block * sb,u32 partition)1037 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1038 {
1039 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1040 	return DIV_ROUND_UP(map->s_partition_len +
1041 			    (sizeof(struct spaceBitmapDesc) << 3),
1042 			    sb->s_blocksize * 8);
1043 }
1044 
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1045 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1046 {
1047 	struct udf_bitmap *bitmap;
1048 	int nr_groups = udf_compute_nr_groups(sb, index);
1049 
1050 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1051 			  GFP_KERNEL);
1052 	if (!bitmap)
1053 		return NULL;
1054 
1055 	bitmap->s_nr_groups = nr_groups;
1056 	return bitmap;
1057 }
1058 
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1059 static int check_partition_desc(struct super_block *sb,
1060 				struct partitionDesc *p,
1061 				struct udf_part_map *map)
1062 {
1063 	bool umap, utable, fmap, ftable;
1064 	struct partitionHeaderDesc *phd;
1065 
1066 	switch (le32_to_cpu(p->accessType)) {
1067 	case PD_ACCESS_TYPE_READ_ONLY:
1068 	case PD_ACCESS_TYPE_WRITE_ONCE:
1069 	case PD_ACCESS_TYPE_NONE:
1070 		goto force_ro;
1071 	}
1072 
1073 	/* No Partition Header Descriptor? */
1074 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1075 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1076 		goto force_ro;
1077 
1078 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1079 	utable = phd->unallocSpaceTable.extLength;
1080 	umap = phd->unallocSpaceBitmap.extLength;
1081 	ftable = phd->freedSpaceTable.extLength;
1082 	fmap = phd->freedSpaceBitmap.extLength;
1083 
1084 	/* No allocation info? */
1085 	if (!utable && !umap && !ftable && !fmap)
1086 		goto force_ro;
1087 
1088 	/* We don't support blocks that require erasing before overwrite */
1089 	if (ftable || fmap)
1090 		goto force_ro;
1091 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1092 	if (utable && umap)
1093 		goto force_ro;
1094 
1095 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1096 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1097 	    map->s_partition_type == UDF_METADATA_MAP25)
1098 		goto force_ro;
1099 
1100 	return 0;
1101 force_ro:
1102 	if (!sb_rdonly(sb))
1103 		return -EACCES;
1104 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1105 	return 0;
1106 }
1107 
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1108 static int udf_fill_partdesc_info(struct super_block *sb,
1109 		struct partitionDesc *p, int p_index)
1110 {
1111 	struct udf_part_map *map;
1112 	struct udf_sb_info *sbi = UDF_SB(sb);
1113 	struct partitionHeaderDesc *phd;
1114 	u32 sum;
1115 	int err;
1116 
1117 	map = &sbi->s_partmaps[p_index];
1118 
1119 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1120 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1121 	if (check_add_overflow(map->s_partition_root, map->s_partition_len,
1122 			       &sum)) {
1123 		udf_err(sb, "Partition %d has invalid location %u + %u\n",
1124 			p_index, map->s_partition_root, map->s_partition_len);
1125 		return -EFSCORRUPTED;
1126 	}
1127 
1128 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1129 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1130 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1131 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1132 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1133 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1134 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1135 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1136 
1137 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1138 		  p_index, map->s_partition_type,
1139 		  map->s_partition_root, map->s_partition_len);
1140 
1141 	err = check_partition_desc(sb, p, map);
1142 	if (err)
1143 		return err;
1144 
1145 	/*
1146 	 * Skip loading allocation info it we cannot ever write to the fs.
1147 	 * This is a correctness thing as we may have decided to force ro mount
1148 	 * to avoid allocation info we don't support.
1149 	 */
1150 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1151 		return 0;
1152 
1153 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1154 	if (phd->unallocSpaceTable.extLength) {
1155 		struct kernel_lb_addr loc = {
1156 			.logicalBlockNum = le32_to_cpu(
1157 				phd->unallocSpaceTable.extPosition),
1158 			.partitionReferenceNum = p_index,
1159 		};
1160 		struct inode *inode;
1161 
1162 		inode = udf_iget_special(sb, &loc);
1163 		if (IS_ERR(inode)) {
1164 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1165 				  p_index);
1166 			return PTR_ERR(inode);
1167 		}
1168 		map->s_uspace.s_table = inode;
1169 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1170 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1171 			  p_index, map->s_uspace.s_table->i_ino);
1172 	}
1173 
1174 	if (phd->unallocSpaceBitmap.extLength) {
1175 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1176 		if (!bitmap)
1177 			return -ENOMEM;
1178 		map->s_uspace.s_bitmap = bitmap;
1179 		bitmap->s_extPosition = le32_to_cpu(
1180 				phd->unallocSpaceBitmap.extPosition);
1181 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1182 		/* Check whether math over bitmap won't overflow. */
1183 		if (check_add_overflow(map->s_partition_len,
1184 				       sizeof(struct spaceBitmapDesc) << 3,
1185 				       &sum)) {
1186 			udf_err(sb, "Partition %d is too long (%u)\n", p_index,
1187 				map->s_partition_len);
1188 			return -EFSCORRUPTED;
1189 		}
1190 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1191 			  p_index, bitmap->s_extPosition);
1192 	}
1193 
1194 	return 0;
1195 }
1196 
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1197 static void udf_find_vat_block(struct super_block *sb, int p_index,
1198 			       int type1_index, sector_t start_block)
1199 {
1200 	struct udf_sb_info *sbi = UDF_SB(sb);
1201 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1202 	sector_t vat_block;
1203 	struct kernel_lb_addr ino;
1204 	struct inode *inode;
1205 
1206 	/*
1207 	 * VAT file entry is in the last recorded block. Some broken disks have
1208 	 * it a few blocks before so try a bit harder...
1209 	 */
1210 	ino.partitionReferenceNum = type1_index;
1211 	for (vat_block = start_block;
1212 	     vat_block >= map->s_partition_root &&
1213 	     vat_block >= start_block - 3; vat_block--) {
1214 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1215 		inode = udf_iget_special(sb, &ino);
1216 		if (!IS_ERR(inode)) {
1217 			sbi->s_vat_inode = inode;
1218 			break;
1219 		}
1220 	}
1221 }
1222 
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1223 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1224 {
1225 	struct udf_sb_info *sbi = UDF_SB(sb);
1226 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1227 	struct buffer_head *bh = NULL;
1228 	struct udf_inode_info *vati;
1229 	struct virtualAllocationTable20 *vat20;
1230 	sector_t blocks = sb_bdev_nr_blocks(sb);
1231 
1232 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1233 	if (!sbi->s_vat_inode &&
1234 	    sbi->s_last_block != blocks - 1) {
1235 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1236 			  (unsigned long)sbi->s_last_block,
1237 			  (unsigned long)blocks - 1);
1238 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1239 	}
1240 	if (!sbi->s_vat_inode)
1241 		return -EIO;
1242 
1243 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1244 		map->s_type_specific.s_virtual.s_start_offset = 0;
1245 		map->s_type_specific.s_virtual.s_num_entries =
1246 			(sbi->s_vat_inode->i_size - 36) >> 2;
1247 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1248 		vati = UDF_I(sbi->s_vat_inode);
1249 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1250 			int err = 0;
1251 
1252 			bh = udf_bread(sbi->s_vat_inode, 0, 0, &err);
1253 			if (!bh) {
1254 				if (!err)
1255 					err = -EFSCORRUPTED;
1256 				return err;
1257 			}
1258 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1259 		} else {
1260 			vat20 = (struct virtualAllocationTable20 *)
1261 							vati->i_data;
1262 		}
1263 
1264 		map->s_type_specific.s_virtual.s_start_offset =
1265 			le16_to_cpu(vat20->lengthHeader);
1266 		map->s_type_specific.s_virtual.s_num_entries =
1267 			(sbi->s_vat_inode->i_size -
1268 				map->s_type_specific.s_virtual.
1269 					s_start_offset) >> 2;
1270 		brelse(bh);
1271 	}
1272 	return 0;
1273 }
1274 
1275 /*
1276  * Load partition descriptor block
1277  *
1278  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1279  * sequence.
1280  */
udf_load_partdesc(struct super_block * sb,sector_t block)1281 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1282 {
1283 	struct buffer_head *bh;
1284 	struct partitionDesc *p;
1285 	struct udf_part_map *map;
1286 	struct udf_sb_info *sbi = UDF_SB(sb);
1287 	int i, type1_idx;
1288 	uint16_t partitionNumber;
1289 	uint16_t ident;
1290 	int ret;
1291 
1292 	bh = udf_read_tagged(sb, block, block, &ident);
1293 	if (!bh)
1294 		return -EAGAIN;
1295 	if (ident != TAG_IDENT_PD) {
1296 		ret = 0;
1297 		goto out_bh;
1298 	}
1299 
1300 	p = (struct partitionDesc *)bh->b_data;
1301 	partitionNumber = le16_to_cpu(p->partitionNumber);
1302 
1303 	/* First scan for TYPE1 and SPARABLE partitions */
1304 	for (i = 0; i < sbi->s_partitions; i++) {
1305 		map = &sbi->s_partmaps[i];
1306 		udf_debug("Searching map: (%u == %u)\n",
1307 			  map->s_partition_num, partitionNumber);
1308 		if (map->s_partition_num == partitionNumber &&
1309 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1310 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1311 			break;
1312 	}
1313 
1314 	if (i >= sbi->s_partitions) {
1315 		udf_debug("Partition (%u) not found in partition map\n",
1316 			  partitionNumber);
1317 		ret = 0;
1318 		goto out_bh;
1319 	}
1320 
1321 	ret = udf_fill_partdesc_info(sb, p, i);
1322 	if (ret < 0)
1323 		goto out_bh;
1324 
1325 	/*
1326 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1327 	 * PHYSICAL partitions are already set up
1328 	 */
1329 	type1_idx = i;
1330 	map = NULL; /* supress 'maybe used uninitialized' warning */
1331 	for (i = 0; i < sbi->s_partitions; i++) {
1332 		map = &sbi->s_partmaps[i];
1333 
1334 		if (map->s_partition_num == partitionNumber &&
1335 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1336 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1337 		     map->s_partition_type == UDF_METADATA_MAP25))
1338 			break;
1339 	}
1340 
1341 	if (i >= sbi->s_partitions) {
1342 		ret = 0;
1343 		goto out_bh;
1344 	}
1345 
1346 	ret = udf_fill_partdesc_info(sb, p, i);
1347 	if (ret < 0)
1348 		goto out_bh;
1349 
1350 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1351 		ret = udf_load_metadata_files(sb, i, type1_idx);
1352 		if (ret < 0) {
1353 			udf_err(sb, "error loading MetaData partition map %d\n",
1354 				i);
1355 			goto out_bh;
1356 		}
1357 	} else {
1358 		/*
1359 		 * If we have a partition with virtual map, we don't handle
1360 		 * writing to it (we overwrite blocks instead of relocating
1361 		 * them).
1362 		 */
1363 		if (!sb_rdonly(sb)) {
1364 			ret = -EACCES;
1365 			goto out_bh;
1366 		}
1367 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1368 		ret = udf_load_vat(sb, i, type1_idx);
1369 		if (ret < 0)
1370 			goto out_bh;
1371 	}
1372 	ret = 0;
1373 out_bh:
1374 	/* In case loading failed, we handle cleanup in udf_fill_super */
1375 	brelse(bh);
1376 	return ret;
1377 }
1378 
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1379 static int udf_load_sparable_map(struct super_block *sb,
1380 				 struct udf_part_map *map,
1381 				 struct sparablePartitionMap *spm)
1382 {
1383 	uint32_t loc;
1384 	uint16_t ident;
1385 	struct sparingTable *st;
1386 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1387 	int i;
1388 	struct buffer_head *bh;
1389 
1390 	map->s_partition_type = UDF_SPARABLE_MAP15;
1391 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1392 	if (!is_power_of_2(sdata->s_packet_len)) {
1393 		udf_err(sb, "error loading logical volume descriptor: "
1394 			"Invalid packet length %u\n",
1395 			(unsigned)sdata->s_packet_len);
1396 		return -EIO;
1397 	}
1398 	if (spm->numSparingTables > 4) {
1399 		udf_err(sb, "error loading logical volume descriptor: "
1400 			"Too many sparing tables (%d)\n",
1401 			(int)spm->numSparingTables);
1402 		return -EIO;
1403 	}
1404 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1405 		udf_err(sb, "error loading logical volume descriptor: "
1406 			"Too big sparing table size (%u)\n",
1407 			le32_to_cpu(spm->sizeSparingTable));
1408 		return -EIO;
1409 	}
1410 
1411 	for (i = 0; i < spm->numSparingTables; i++) {
1412 		loc = le32_to_cpu(spm->locSparingTable[i]);
1413 		bh = udf_read_tagged(sb, loc, loc, &ident);
1414 		if (!bh)
1415 			continue;
1416 
1417 		st = (struct sparingTable *)bh->b_data;
1418 		if (ident != 0 ||
1419 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1420 			    strlen(UDF_ID_SPARING)) ||
1421 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1422 							sb->s_blocksize) {
1423 			brelse(bh);
1424 			continue;
1425 		}
1426 
1427 		sdata->s_spar_map[i] = bh;
1428 	}
1429 	map->s_partition_func = udf_get_pblock_spar15;
1430 	return 0;
1431 }
1432 
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1433 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1434 			       struct kernel_lb_addr *fileset)
1435 {
1436 	struct logicalVolDesc *lvd;
1437 	int i, offset;
1438 	uint8_t type;
1439 	struct udf_sb_info *sbi = UDF_SB(sb);
1440 	struct genericPartitionMap *gpm;
1441 	uint16_t ident;
1442 	struct buffer_head *bh;
1443 	unsigned int table_len, part_map_count;
1444 	int ret;
1445 
1446 	bh = udf_read_tagged(sb, block, block, &ident);
1447 	if (!bh)
1448 		return -EAGAIN;
1449 	BUG_ON(ident != TAG_IDENT_LVD);
1450 	lvd = (struct logicalVolDesc *)bh->b_data;
1451 	table_len = le32_to_cpu(lvd->mapTableLength);
1452 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1453 		udf_err(sb, "error loading logical volume descriptor: "
1454 			"Partition table too long (%u > %lu)\n", table_len,
1455 			sb->s_blocksize - sizeof(*lvd));
1456 		ret = -EIO;
1457 		goto out_bh;
1458 	}
1459 
1460 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1461 					   "logical volume");
1462 	if (ret)
1463 		goto out_bh;
1464 
1465 	part_map_count = le32_to_cpu(lvd->numPartitionMaps);
1466 	if (part_map_count > table_len / sizeof(struct genericPartitionMap1)) {
1467 		udf_err(sb, "error loading logical volume descriptor: "
1468 			"Too many partition maps (%u > %u)\n", part_map_count,
1469 			table_len / (unsigned)sizeof(struct genericPartitionMap1));
1470 		ret = -EIO;
1471 		goto out_bh;
1472 	}
1473 	ret = udf_sb_alloc_partition_maps(sb, part_map_count);
1474 	if (ret)
1475 		goto out_bh;
1476 
1477 	for (i = 0, offset = 0;
1478 	     i < sbi->s_partitions && offset < table_len;
1479 	     i++, offset += gpm->partitionMapLength) {
1480 		struct udf_part_map *map = &sbi->s_partmaps[i];
1481 		gpm = (struct genericPartitionMap *)
1482 				&(lvd->partitionMaps[offset]);
1483 		type = gpm->partitionMapType;
1484 		if (type == 1) {
1485 			struct genericPartitionMap1 *gpm1 =
1486 				(struct genericPartitionMap1 *)gpm;
1487 			map->s_partition_type = UDF_TYPE1_MAP15;
1488 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1489 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1490 			map->s_partition_func = NULL;
1491 		} else if (type == 2) {
1492 			struct udfPartitionMap2 *upm2 =
1493 						(struct udfPartitionMap2 *)gpm;
1494 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1495 						strlen(UDF_ID_VIRTUAL))) {
1496 				u16 suf =
1497 					le16_to_cpu(((__le16 *)upm2->partIdent.
1498 							identSuffix)[0]);
1499 				if (suf < 0x0200) {
1500 					map->s_partition_type =
1501 							UDF_VIRTUAL_MAP15;
1502 					map->s_partition_func =
1503 							udf_get_pblock_virt15;
1504 				} else {
1505 					map->s_partition_type =
1506 							UDF_VIRTUAL_MAP20;
1507 					map->s_partition_func =
1508 							udf_get_pblock_virt20;
1509 				}
1510 			} else if (!strncmp(upm2->partIdent.ident,
1511 						UDF_ID_SPARABLE,
1512 						strlen(UDF_ID_SPARABLE))) {
1513 				ret = udf_load_sparable_map(sb, map,
1514 					(struct sparablePartitionMap *)gpm);
1515 				if (ret < 0)
1516 					goto out_bh;
1517 			} else if (!strncmp(upm2->partIdent.ident,
1518 						UDF_ID_METADATA,
1519 						strlen(UDF_ID_METADATA))) {
1520 				struct udf_meta_data *mdata =
1521 					&map->s_type_specific.s_metadata;
1522 				struct metadataPartitionMap *mdm =
1523 						(struct metadataPartitionMap *)
1524 						&(lvd->partitionMaps[offset]);
1525 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1526 					  i, type, UDF_ID_METADATA);
1527 
1528 				map->s_partition_type = UDF_METADATA_MAP25;
1529 				map->s_partition_func = udf_get_pblock_meta25;
1530 
1531 				mdata->s_meta_file_loc   =
1532 					le32_to_cpu(mdm->metadataFileLoc);
1533 				mdata->s_mirror_file_loc =
1534 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1535 				mdata->s_bitmap_file_loc =
1536 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1537 				mdata->s_alloc_unit_size =
1538 					le32_to_cpu(mdm->allocUnitSize);
1539 				mdata->s_align_unit_size =
1540 					le16_to_cpu(mdm->alignUnitSize);
1541 				if (mdm->flags & 0x01)
1542 					mdata->s_flags |= MF_DUPLICATE_MD;
1543 
1544 				udf_debug("Metadata Ident suffix=0x%x\n",
1545 					  le16_to_cpu(*(__le16 *)
1546 						      mdm->partIdent.identSuffix));
1547 				udf_debug("Metadata part num=%u\n",
1548 					  le16_to_cpu(mdm->partitionNum));
1549 				udf_debug("Metadata part alloc unit size=%u\n",
1550 					  le32_to_cpu(mdm->allocUnitSize));
1551 				udf_debug("Metadata file loc=%u\n",
1552 					  le32_to_cpu(mdm->metadataFileLoc));
1553 				udf_debug("Mirror file loc=%u\n",
1554 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1555 				udf_debug("Bitmap file loc=%u\n",
1556 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1557 				udf_debug("Flags: %d %u\n",
1558 					  mdata->s_flags, mdm->flags);
1559 			} else {
1560 				udf_debug("Unknown ident: %s\n",
1561 					  upm2->partIdent.ident);
1562 				continue;
1563 			}
1564 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1565 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1566 		}
1567 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1568 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1569 	}
1570 
1571 	if (fileset) {
1572 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1573 
1574 		*fileset = lelb_to_cpu(la->extLocation);
1575 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1576 			  fileset->logicalBlockNum,
1577 			  fileset->partitionReferenceNum);
1578 	}
1579 	if (lvd->integritySeqExt.extLength)
1580 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1581 	ret = 0;
1582 
1583 	if (!sbi->s_lvid_bh) {
1584 		/* We can't generate unique IDs without a valid LVID */
1585 		if (sb_rdonly(sb)) {
1586 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1587 		} else {
1588 			udf_warn(sb, "Damaged or missing LVID, forcing "
1589 				     "readonly mount\n");
1590 			ret = -EACCES;
1591 		}
1592 	}
1593 out_bh:
1594 	brelse(bh);
1595 	return ret;
1596 }
1597 
udf_lvid_valid(struct super_block * sb,struct logicalVolIntegrityDesc * lvid)1598 static bool udf_lvid_valid(struct super_block *sb,
1599 			   struct logicalVolIntegrityDesc *lvid)
1600 {
1601 	u32 parts, impuselen;
1602 
1603 	parts = le32_to_cpu(lvid->numOfPartitions);
1604 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1605 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1606 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1607 	    2 * parts * sizeof(u32) > sb->s_blocksize)
1608 		return false;
1609 	return true;
1610 }
1611 
1612 /*
1613  * Find the prevailing Logical Volume Integrity Descriptor.
1614  */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1615 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1616 {
1617 	struct buffer_head *bh, *final_bh;
1618 	uint16_t ident;
1619 	struct udf_sb_info *sbi = UDF_SB(sb);
1620 	struct logicalVolIntegrityDesc *lvid;
1621 	int indirections = 0;
1622 
1623 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1624 		final_bh = NULL;
1625 		while (loc.extLength > 0 &&
1626 			(bh = udf_read_tagged(sb, loc.extLocation,
1627 					loc.extLocation, &ident))) {
1628 			if (ident != TAG_IDENT_LVID) {
1629 				brelse(bh);
1630 				break;
1631 			}
1632 
1633 			brelse(final_bh);
1634 			final_bh = bh;
1635 
1636 			loc.extLength -= sb->s_blocksize;
1637 			loc.extLocation++;
1638 		}
1639 
1640 		if (!final_bh)
1641 			return;
1642 
1643 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1644 		if (udf_lvid_valid(sb, lvid)) {
1645 			brelse(sbi->s_lvid_bh);
1646 			sbi->s_lvid_bh = final_bh;
1647 		} else {
1648 			udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1649 				 "ignoring.\n",
1650 				 le32_to_cpu(lvid->numOfPartitions),
1651 				 le32_to_cpu(lvid->lengthOfImpUse));
1652 		}
1653 
1654 		if (lvid->nextIntegrityExt.extLength == 0)
1655 			return;
1656 
1657 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1658 	}
1659 
1660 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1661 		UDF_MAX_LVID_NESTING);
1662 	brelse(sbi->s_lvid_bh);
1663 	sbi->s_lvid_bh = NULL;
1664 }
1665 
1666 /*
1667  * Step for reallocation of table of partition descriptor sequence numbers.
1668  * Must be power of 2.
1669  */
1670 #define PART_DESC_ALLOC_STEP 32
1671 
1672 struct part_desc_seq_scan_data {
1673 	struct udf_vds_record rec;
1674 	u32 partnum;
1675 };
1676 
1677 struct desc_seq_scan_data {
1678 	struct udf_vds_record vds[VDS_POS_LENGTH];
1679 	unsigned int size_part_descs;
1680 	unsigned int num_part_descs;
1681 	struct part_desc_seq_scan_data *part_descs_loc;
1682 };
1683 
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1684 static struct udf_vds_record *handle_partition_descriptor(
1685 				struct buffer_head *bh,
1686 				struct desc_seq_scan_data *data)
1687 {
1688 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1689 	int partnum;
1690 	int i;
1691 
1692 	partnum = le16_to_cpu(desc->partitionNumber);
1693 	for (i = 0; i < data->num_part_descs; i++)
1694 		if (partnum == data->part_descs_loc[i].partnum)
1695 			return &(data->part_descs_loc[i].rec);
1696 	if (data->num_part_descs >= data->size_part_descs) {
1697 		struct part_desc_seq_scan_data *new_loc;
1698 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1699 
1700 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1701 		if (!new_loc)
1702 			return ERR_PTR(-ENOMEM);
1703 		memcpy(new_loc, data->part_descs_loc,
1704 		       data->size_part_descs * sizeof(*new_loc));
1705 		kfree(data->part_descs_loc);
1706 		data->part_descs_loc = new_loc;
1707 		data->size_part_descs = new_size;
1708 	}
1709 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1710 }
1711 
1712 
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1713 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1714 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1715 {
1716 	switch (ident) {
1717 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1718 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1719 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1720 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1721 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1722 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1723 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1724 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1725 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1726 		return handle_partition_descriptor(bh, data);
1727 	}
1728 	return NULL;
1729 }
1730 
1731 /*
1732  * Process a main/reserve volume descriptor sequence.
1733  *   @block		First block of first extent of the sequence.
1734  *   @lastblock		Lastblock of first extent of the sequence.
1735  *   @fileset		There we store extent containing root fileset
1736  *
1737  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1738  * sequence
1739  */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1740 static noinline int udf_process_sequence(
1741 		struct super_block *sb,
1742 		sector_t block, sector_t lastblock,
1743 		struct kernel_lb_addr *fileset)
1744 {
1745 	struct buffer_head *bh = NULL;
1746 	struct udf_vds_record *curr;
1747 	struct generic_desc *gd;
1748 	struct volDescPtr *vdp;
1749 	bool done = false;
1750 	uint32_t vdsn;
1751 	uint16_t ident;
1752 	int ret;
1753 	unsigned int indirections = 0;
1754 	struct desc_seq_scan_data data;
1755 	unsigned int i;
1756 
1757 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1758 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1759 	data.num_part_descs = 0;
1760 	data.part_descs_loc = kcalloc(data.size_part_descs,
1761 				      sizeof(*data.part_descs_loc),
1762 				      GFP_KERNEL);
1763 	if (!data.part_descs_loc)
1764 		return -ENOMEM;
1765 
1766 	/*
1767 	 * Read the main descriptor sequence and find which descriptors
1768 	 * are in it.
1769 	 */
1770 	for (; (!done && block <= lastblock); block++) {
1771 		bh = udf_read_tagged(sb, block, block, &ident);
1772 		if (!bh)
1773 			break;
1774 
1775 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1776 		gd = (struct generic_desc *)bh->b_data;
1777 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1778 		switch (ident) {
1779 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1780 			if (++indirections > UDF_MAX_TD_NESTING) {
1781 				udf_err(sb, "too many Volume Descriptor "
1782 					"Pointers (max %u supported)\n",
1783 					UDF_MAX_TD_NESTING);
1784 				brelse(bh);
1785 				ret = -EIO;
1786 				goto out;
1787 			}
1788 
1789 			vdp = (struct volDescPtr *)bh->b_data;
1790 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1791 			lastblock = le32_to_cpu(
1792 				vdp->nextVolDescSeqExt.extLength) >>
1793 				sb->s_blocksize_bits;
1794 			lastblock += block - 1;
1795 			/* For loop is going to increment 'block' again */
1796 			block--;
1797 			break;
1798 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1799 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1800 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1801 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1802 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1803 			curr = get_volume_descriptor_record(ident, bh, &data);
1804 			if (IS_ERR(curr)) {
1805 				brelse(bh);
1806 				ret = PTR_ERR(curr);
1807 				goto out;
1808 			}
1809 			/* Descriptor we don't care about? */
1810 			if (!curr)
1811 				break;
1812 			if (vdsn >= curr->volDescSeqNum) {
1813 				curr->volDescSeqNum = vdsn;
1814 				curr->block = block;
1815 			}
1816 			break;
1817 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1818 			done = true;
1819 			break;
1820 		}
1821 		brelse(bh);
1822 	}
1823 	/*
1824 	 * Now read interesting descriptors again and process them
1825 	 * in a suitable order
1826 	 */
1827 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1828 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1829 		ret = -EAGAIN;
1830 		goto out;
1831 	}
1832 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1833 	if (ret < 0)
1834 		goto out;
1835 
1836 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1837 		ret = udf_load_logicalvol(sb,
1838 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1839 				fileset);
1840 		if (ret < 0)
1841 			goto out;
1842 	}
1843 
1844 	/* Now handle prevailing Partition Descriptors */
1845 	for (i = 0; i < data.num_part_descs; i++) {
1846 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1847 		if (ret < 0)
1848 			goto out;
1849 	}
1850 	ret = 0;
1851 out:
1852 	kfree(data.part_descs_loc);
1853 	return ret;
1854 }
1855 
1856 /*
1857  * Load Volume Descriptor Sequence described by anchor in bh
1858  *
1859  * Returns <0 on error, 0 on success
1860  */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1861 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1862 			     struct kernel_lb_addr *fileset)
1863 {
1864 	struct anchorVolDescPtr *anchor;
1865 	sector_t main_s, main_e, reserve_s, reserve_e;
1866 	int ret;
1867 
1868 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1869 
1870 	/* Locate the main sequence */
1871 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1872 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1873 	main_e = main_e >> sb->s_blocksize_bits;
1874 	main_e += main_s - 1;
1875 
1876 	/* Locate the reserve sequence */
1877 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1878 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1879 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1880 	reserve_e += reserve_s - 1;
1881 
1882 	/* Process the main & reserve sequences */
1883 	/* responsible for finding the PartitionDesc(s) */
1884 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1885 	if (ret != -EAGAIN)
1886 		return ret;
1887 	udf_sb_free_partitions(sb);
1888 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1889 	if (ret < 0) {
1890 		udf_sb_free_partitions(sb);
1891 		/* No sequence was OK, return -EIO */
1892 		if (ret == -EAGAIN)
1893 			ret = -EIO;
1894 	}
1895 	return ret;
1896 }
1897 
1898 /*
1899  * Check whether there is an anchor block in the given block and
1900  * load Volume Descriptor Sequence if so.
1901  *
1902  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1903  * block
1904  */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1905 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1906 				  struct kernel_lb_addr *fileset)
1907 {
1908 	struct buffer_head *bh;
1909 	uint16_t ident;
1910 	int ret;
1911 
1912 	bh = udf_read_tagged(sb, block, block, &ident);
1913 	if (!bh)
1914 		return -EAGAIN;
1915 	if (ident != TAG_IDENT_AVDP) {
1916 		brelse(bh);
1917 		return -EAGAIN;
1918 	}
1919 	ret = udf_load_sequence(sb, bh, fileset);
1920 	brelse(bh);
1921 	return ret;
1922 }
1923 
1924 /*
1925  * Search for an anchor volume descriptor pointer.
1926  *
1927  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1928  * of anchors.
1929  */
udf_scan_anchors(struct super_block * sb,udf_pblk_t * lastblock,struct kernel_lb_addr * fileset)1930 static int udf_scan_anchors(struct super_block *sb, udf_pblk_t *lastblock,
1931 			    struct kernel_lb_addr *fileset)
1932 {
1933 	udf_pblk_t last[6];
1934 	int i;
1935 	struct udf_sb_info *sbi = UDF_SB(sb);
1936 	int last_count = 0;
1937 	int ret;
1938 
1939 	/* First try user provided anchor */
1940 	if (sbi->s_anchor) {
1941 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1942 		if (ret != -EAGAIN)
1943 			return ret;
1944 	}
1945 	/*
1946 	 * according to spec, anchor is in either:
1947 	 *     block 256
1948 	 *     lastblock-256
1949 	 *     lastblock
1950 	 *  however, if the disc isn't closed, it could be 512.
1951 	 */
1952 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1953 	if (ret != -EAGAIN)
1954 		return ret;
1955 	/*
1956 	 * The trouble is which block is the last one. Drives often misreport
1957 	 * this so we try various possibilities.
1958 	 */
1959 	last[last_count++] = *lastblock;
1960 	if (*lastblock >= 1)
1961 		last[last_count++] = *lastblock - 1;
1962 	last[last_count++] = *lastblock + 1;
1963 	if (*lastblock >= 2)
1964 		last[last_count++] = *lastblock - 2;
1965 	if (*lastblock >= 150)
1966 		last[last_count++] = *lastblock - 150;
1967 	if (*lastblock >= 152)
1968 		last[last_count++] = *lastblock - 152;
1969 
1970 	for (i = 0; i < last_count; i++) {
1971 		if (last[i] >= sb_bdev_nr_blocks(sb))
1972 			continue;
1973 		ret = udf_check_anchor_block(sb, last[i], fileset);
1974 		if (ret != -EAGAIN) {
1975 			if (!ret)
1976 				*lastblock = last[i];
1977 			return ret;
1978 		}
1979 		if (last[i] < 256)
1980 			continue;
1981 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1982 		if (ret != -EAGAIN) {
1983 			if (!ret)
1984 				*lastblock = last[i];
1985 			return ret;
1986 		}
1987 	}
1988 
1989 	/* Finally try block 512 in case media is open */
1990 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1991 }
1992 
1993 /*
1994  * Check Volume Structure Descriptor, find Anchor block and load Volume
1995  * Descriptor Sequence.
1996  *
1997  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1998  * block was not found.
1999  */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)2000 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
2001 			int silent, struct kernel_lb_addr *fileset)
2002 {
2003 	struct udf_sb_info *sbi = UDF_SB(sb);
2004 	int nsr = 0;
2005 	int ret;
2006 
2007 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
2008 		if (!silent)
2009 			udf_warn(sb, "Bad block size\n");
2010 		return -EINVAL;
2011 	}
2012 	sbi->s_last_block = uopt->lastblock;
2013 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_NOVRS)) {
2014 		/* Check that it is NSR02 compliant */
2015 		nsr = udf_check_vsd(sb);
2016 		if (!nsr) {
2017 			if (!silent)
2018 				udf_warn(sb, "No VRS found\n");
2019 			return -EINVAL;
2020 		}
2021 		if (nsr == -1)
2022 			udf_debug("Failed to read sector at offset %d. "
2023 				  "Assuming open disc. Skipping validity "
2024 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
2025 		if (!sbi->s_last_block)
2026 			sbi->s_last_block = udf_get_last_block(sb);
2027 	} else {
2028 		udf_debug("Validity check skipped because of novrs option\n");
2029 	}
2030 
2031 	/* Look for anchor block and load Volume Descriptor Sequence */
2032 	sbi->s_anchor = uopt->anchor;
2033 	ret = udf_scan_anchors(sb, &sbi->s_last_block, fileset);
2034 	if (ret < 0) {
2035 		if (!silent && ret == -EAGAIN)
2036 			udf_warn(sb, "No anchor found\n");
2037 		return ret;
2038 	}
2039 	return 0;
2040 }
2041 
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2042 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2043 {
2044 	struct timespec64 ts;
2045 
2046 	ktime_get_real_ts64(&ts);
2047 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2048 	lvid->descTag.descCRC = cpu_to_le16(
2049 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2050 			le16_to_cpu(lvid->descTag.descCRCLength)));
2051 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2052 }
2053 
udf_open_lvid(struct super_block * sb)2054 static void udf_open_lvid(struct super_block *sb)
2055 {
2056 	struct udf_sb_info *sbi = UDF_SB(sb);
2057 	struct buffer_head *bh = sbi->s_lvid_bh;
2058 	struct logicalVolIntegrityDesc *lvid;
2059 	struct logicalVolIntegrityDescImpUse *lvidiu;
2060 
2061 	if (!bh)
2062 		return;
2063 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2064 	lvidiu = udf_sb_lvidiu(sb);
2065 	if (!lvidiu)
2066 		return;
2067 
2068 	mutex_lock(&sbi->s_alloc_mutex);
2069 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2070 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2071 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2072 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2073 	else
2074 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2075 
2076 	udf_finalize_lvid(lvid);
2077 	mark_buffer_dirty(bh);
2078 	sbi->s_lvid_dirty = 0;
2079 	mutex_unlock(&sbi->s_alloc_mutex);
2080 	/* Make opening of filesystem visible on the media immediately */
2081 	sync_dirty_buffer(bh);
2082 }
2083 
udf_close_lvid(struct super_block * sb)2084 static void udf_close_lvid(struct super_block *sb)
2085 {
2086 	struct udf_sb_info *sbi = UDF_SB(sb);
2087 	struct buffer_head *bh = sbi->s_lvid_bh;
2088 	struct logicalVolIntegrityDesc *lvid;
2089 	struct logicalVolIntegrityDescImpUse *lvidiu;
2090 
2091 	if (!bh)
2092 		return;
2093 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2094 	lvidiu = udf_sb_lvidiu(sb);
2095 	if (!lvidiu)
2096 		return;
2097 
2098 	mutex_lock(&sbi->s_alloc_mutex);
2099 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2100 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2101 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2102 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2103 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2104 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2105 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2106 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2107 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2108 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2109 
2110 	/*
2111 	 * We set buffer uptodate unconditionally here to avoid spurious
2112 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2113 	 * the buffer as !uptodate
2114 	 */
2115 	set_buffer_uptodate(bh);
2116 	udf_finalize_lvid(lvid);
2117 	mark_buffer_dirty(bh);
2118 	sbi->s_lvid_dirty = 0;
2119 	mutex_unlock(&sbi->s_alloc_mutex);
2120 	/* Make closing of filesystem visible on the media immediately */
2121 	sync_dirty_buffer(bh);
2122 }
2123 
lvid_get_unique_id(struct super_block * sb)2124 u64 lvid_get_unique_id(struct super_block *sb)
2125 {
2126 	struct buffer_head *bh;
2127 	struct udf_sb_info *sbi = UDF_SB(sb);
2128 	struct logicalVolIntegrityDesc *lvid;
2129 	struct logicalVolHeaderDesc *lvhd;
2130 	u64 uniqueID;
2131 	u64 ret;
2132 
2133 	bh = sbi->s_lvid_bh;
2134 	if (!bh)
2135 		return 0;
2136 
2137 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2138 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2139 
2140 	mutex_lock(&sbi->s_alloc_mutex);
2141 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2142 	if (!(++uniqueID & 0xFFFFFFFF))
2143 		uniqueID += 16;
2144 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2145 	udf_updated_lvid(sb);
2146 	mutex_unlock(&sbi->s_alloc_mutex);
2147 
2148 	return ret;
2149 }
2150 
udf_fill_super(struct super_block * sb,struct fs_context * fc)2151 static int udf_fill_super(struct super_block *sb, struct fs_context *fc)
2152 {
2153 	int ret = -EINVAL;
2154 	struct inode *inode = NULL;
2155 	struct udf_options *uopt = fc->fs_private;
2156 	struct kernel_lb_addr rootdir, fileset;
2157 	struct udf_sb_info *sbi;
2158 	bool lvid_open = false;
2159 	int silent = fc->sb_flags & SB_SILENT;
2160 
2161 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2162 	if (!sbi)
2163 		return -ENOMEM;
2164 
2165 	sb->s_fs_info = sbi;
2166 
2167 	mutex_init(&sbi->s_alloc_mutex);
2168 
2169 	fileset.logicalBlockNum = 0xFFFFFFFF;
2170 	fileset.partitionReferenceNum = 0xFFFF;
2171 
2172 	sbi->s_flags = uopt->flags;
2173 	sbi->s_uid = uopt->uid;
2174 	sbi->s_gid = uopt->gid;
2175 	sbi->s_umask = uopt->umask;
2176 	sbi->s_fmode = uopt->fmode;
2177 	sbi->s_dmode = uopt->dmode;
2178 	sbi->s_nls_map = uopt->nls_map;
2179 	uopt->nls_map = NULL;
2180 	rwlock_init(&sbi->s_cred_lock);
2181 
2182 	if (uopt->session == 0xFFFFFFFF)
2183 		sbi->s_session = udf_get_last_session(sb);
2184 	else
2185 		sbi->s_session = uopt->session;
2186 
2187 	udf_debug("Multi-session=%d\n", sbi->s_session);
2188 
2189 	/* Fill in the rest of the superblock */
2190 	sb->s_op = &udf_sb_ops;
2191 	sb->s_export_op = &udf_export_ops;
2192 
2193 	sb->s_magic = UDF_SUPER_MAGIC;
2194 	sb->s_time_gran = 1000;
2195 
2196 	if (uopt->flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2197 		ret = udf_load_vrs(sb, uopt, silent, &fileset);
2198 	} else {
2199 		uopt->blocksize = bdev_logical_block_size(sb->s_bdev);
2200 		while (uopt->blocksize <= 4096) {
2201 			ret = udf_load_vrs(sb, uopt, silent, &fileset);
2202 			if (ret < 0) {
2203 				if (!silent && ret != -EACCES) {
2204 					pr_notice("Scanning with blocksize %u failed\n",
2205 						  uopt->blocksize);
2206 				}
2207 				brelse(sbi->s_lvid_bh);
2208 				sbi->s_lvid_bh = NULL;
2209 				/*
2210 				 * EACCES is special - we want to propagate to
2211 				 * upper layers that we cannot handle RW mount.
2212 				 */
2213 				if (ret == -EACCES)
2214 					break;
2215 			} else
2216 				break;
2217 
2218 			uopt->blocksize <<= 1;
2219 		}
2220 	}
2221 	if (ret < 0) {
2222 		if (ret == -EAGAIN) {
2223 			udf_warn(sb, "No partition found (1)\n");
2224 			ret = -EINVAL;
2225 		}
2226 		goto error_out;
2227 	}
2228 
2229 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2230 
2231 	if (sbi->s_lvid_bh) {
2232 		struct logicalVolIntegrityDescImpUse *lvidiu =
2233 							udf_sb_lvidiu(sb);
2234 		uint16_t minUDFReadRev;
2235 		uint16_t minUDFWriteRev;
2236 
2237 		if (!lvidiu) {
2238 			ret = -EINVAL;
2239 			goto error_out;
2240 		}
2241 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2242 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2243 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2244 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2245 				minUDFReadRev,
2246 				UDF_MAX_READ_VERSION);
2247 			ret = -EINVAL;
2248 			goto error_out;
2249 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2250 			if (!sb_rdonly(sb)) {
2251 				ret = -EACCES;
2252 				goto error_out;
2253 			}
2254 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2255 		}
2256 
2257 		sbi->s_udfrev = minUDFWriteRev;
2258 
2259 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2260 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2261 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2262 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2263 	}
2264 
2265 	if (!sbi->s_partitions) {
2266 		udf_warn(sb, "No partition found (2)\n");
2267 		ret = -EINVAL;
2268 		goto error_out;
2269 	}
2270 
2271 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2272 			UDF_PART_FLAG_READ_ONLY) {
2273 		if (!sb_rdonly(sb)) {
2274 			ret = -EACCES;
2275 			goto error_out;
2276 		}
2277 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2278 	}
2279 
2280 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2281 	if (ret < 0) {
2282 		udf_warn(sb, "No fileset found\n");
2283 		goto error_out;
2284 	}
2285 
2286 	if (!silent) {
2287 		struct timestamp ts;
2288 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2289 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2290 			 sbi->s_volume_ident,
2291 			 le16_to_cpu(ts.year), ts.month, ts.day,
2292 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2293 	}
2294 	if (!sb_rdonly(sb)) {
2295 		udf_open_lvid(sb);
2296 		lvid_open = true;
2297 	}
2298 
2299 	/* Assign the root inode */
2300 	/* assign inodes by physical block number */
2301 	/* perhaps it's not extensible enough, but for now ... */
2302 	inode = udf_iget(sb, &rootdir);
2303 	if (IS_ERR(inode)) {
2304 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2305 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2306 		ret = PTR_ERR(inode);
2307 		goto error_out;
2308 	}
2309 
2310 	/* Allocate a dentry for the root inode */
2311 	sb->s_root = d_make_root(inode);
2312 	if (!sb->s_root) {
2313 		udf_err(sb, "Couldn't allocate root dentry\n");
2314 		ret = -ENOMEM;
2315 		goto error_out;
2316 	}
2317 	sb->s_maxbytes = UDF_MAX_FILESIZE;
2318 	sb->s_max_links = UDF_MAX_LINKS;
2319 	return 0;
2320 
2321 error_out:
2322 	iput(sbi->s_vat_inode);
2323 	unload_nls(uopt->nls_map);
2324 	if (lvid_open)
2325 		udf_close_lvid(sb);
2326 	brelse(sbi->s_lvid_bh);
2327 	udf_sb_free_partitions(sb);
2328 	kfree(sbi);
2329 	sb->s_fs_info = NULL;
2330 
2331 	return ret;
2332 }
2333 
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2334 void _udf_err(struct super_block *sb, const char *function,
2335 	      const char *fmt, ...)
2336 {
2337 	struct va_format vaf;
2338 	va_list args;
2339 
2340 	va_start(args, fmt);
2341 
2342 	vaf.fmt = fmt;
2343 	vaf.va = &args;
2344 
2345 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2346 
2347 	va_end(args);
2348 }
2349 
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2350 void _udf_warn(struct super_block *sb, const char *function,
2351 	       const char *fmt, ...)
2352 {
2353 	struct va_format vaf;
2354 	va_list args;
2355 
2356 	va_start(args, fmt);
2357 
2358 	vaf.fmt = fmt;
2359 	vaf.va = &args;
2360 
2361 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2362 
2363 	va_end(args);
2364 }
2365 
udf_put_super(struct super_block * sb)2366 static void udf_put_super(struct super_block *sb)
2367 {
2368 	struct udf_sb_info *sbi;
2369 
2370 	sbi = UDF_SB(sb);
2371 
2372 	iput(sbi->s_vat_inode);
2373 	unload_nls(sbi->s_nls_map);
2374 	if (!sb_rdonly(sb))
2375 		udf_close_lvid(sb);
2376 	brelse(sbi->s_lvid_bh);
2377 	udf_sb_free_partitions(sb);
2378 	mutex_destroy(&sbi->s_alloc_mutex);
2379 	kfree(sb->s_fs_info);
2380 	sb->s_fs_info = NULL;
2381 }
2382 
udf_sync_fs(struct super_block * sb,int wait)2383 static int udf_sync_fs(struct super_block *sb, int wait)
2384 {
2385 	struct udf_sb_info *sbi = UDF_SB(sb);
2386 
2387 	mutex_lock(&sbi->s_alloc_mutex);
2388 	if (sbi->s_lvid_dirty) {
2389 		struct buffer_head *bh = sbi->s_lvid_bh;
2390 		struct logicalVolIntegrityDesc *lvid;
2391 
2392 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2393 		udf_finalize_lvid(lvid);
2394 
2395 		/*
2396 		 * Blockdevice will be synced later so we don't have to submit
2397 		 * the buffer for IO
2398 		 */
2399 		mark_buffer_dirty(bh);
2400 		sbi->s_lvid_dirty = 0;
2401 	}
2402 	mutex_unlock(&sbi->s_alloc_mutex);
2403 
2404 	return 0;
2405 }
2406 
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2407 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2408 {
2409 	struct super_block *sb = dentry->d_sb;
2410 	struct udf_sb_info *sbi = UDF_SB(sb);
2411 	struct logicalVolIntegrityDescImpUse *lvidiu;
2412 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2413 
2414 	lvidiu = udf_sb_lvidiu(sb);
2415 	buf->f_type = UDF_SUPER_MAGIC;
2416 	buf->f_bsize = sb->s_blocksize;
2417 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2418 	buf->f_bfree = udf_count_free(sb);
2419 	buf->f_bavail = buf->f_bfree;
2420 	/*
2421 	 * Let's pretend each free block is also a free 'inode' since UDF does
2422 	 * not have separate preallocated table of inodes.
2423 	 */
2424 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2425 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2426 			+ buf->f_bfree;
2427 	buf->f_ffree = buf->f_bfree;
2428 	buf->f_namelen = UDF_NAME_LEN;
2429 	buf->f_fsid = u64_to_fsid(id);
2430 
2431 	return 0;
2432 }
2433 
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2434 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2435 					  struct udf_bitmap *bitmap)
2436 {
2437 	struct buffer_head *bh = NULL;
2438 	unsigned int accum = 0;
2439 	int index;
2440 	udf_pblk_t block = 0, newblock;
2441 	struct kernel_lb_addr loc;
2442 	uint32_t bytes;
2443 	uint8_t *ptr;
2444 	uint16_t ident;
2445 	struct spaceBitmapDesc *bm;
2446 
2447 	loc.logicalBlockNum = bitmap->s_extPosition;
2448 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2449 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2450 
2451 	if (!bh) {
2452 		udf_err(sb, "udf_count_free failed\n");
2453 		goto out;
2454 	} else if (ident != TAG_IDENT_SBD) {
2455 		brelse(bh);
2456 		udf_err(sb, "udf_count_free failed\n");
2457 		goto out;
2458 	}
2459 
2460 	bm = (struct spaceBitmapDesc *)bh->b_data;
2461 	bytes = le32_to_cpu(bm->numOfBytes);
2462 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2463 	ptr = (uint8_t *)bh->b_data;
2464 
2465 	while (bytes > 0) {
2466 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2467 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2468 					cur_bytes * 8);
2469 		bytes -= cur_bytes;
2470 		if (bytes) {
2471 			brelse(bh);
2472 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2473 			bh = sb_bread(sb, newblock);
2474 			if (!bh) {
2475 				udf_debug("read failed\n");
2476 				goto out;
2477 			}
2478 			index = 0;
2479 			ptr = (uint8_t *)bh->b_data;
2480 		}
2481 	}
2482 	brelse(bh);
2483 out:
2484 	return accum;
2485 }
2486 
udf_count_free_table(struct super_block * sb,struct inode * table)2487 static unsigned int udf_count_free_table(struct super_block *sb,
2488 					 struct inode *table)
2489 {
2490 	unsigned int accum = 0;
2491 	uint32_t elen;
2492 	struct kernel_lb_addr eloc;
2493 	struct extent_position epos;
2494 	int8_t etype;
2495 
2496 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2497 	epos.block = UDF_I(table)->i_location;
2498 	epos.offset = sizeof(struct unallocSpaceEntry);
2499 	epos.bh = NULL;
2500 
2501 	while (udf_next_aext(table, &epos, &eloc, &elen, &etype, 1) > 0)
2502 		accum += (elen >> table->i_sb->s_blocksize_bits);
2503 
2504 	brelse(epos.bh);
2505 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2506 
2507 	return accum;
2508 }
2509 
udf_count_free(struct super_block * sb)2510 static unsigned int udf_count_free(struct super_block *sb)
2511 {
2512 	unsigned int accum = 0;
2513 	struct udf_sb_info *sbi = UDF_SB(sb);
2514 	struct udf_part_map *map;
2515 	unsigned int part = sbi->s_partition;
2516 	int ptype = sbi->s_partmaps[part].s_partition_type;
2517 
2518 	if (ptype == UDF_METADATA_MAP25) {
2519 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2520 							s_phys_partition_ref;
2521 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2522 		/*
2523 		 * Filesystems with VAT are append-only and we cannot write to
2524  		 * them. Let's just report 0 here.
2525 		 */
2526 		return 0;
2527 	}
2528 
2529 	if (sbi->s_lvid_bh) {
2530 		struct logicalVolIntegrityDesc *lvid =
2531 			(struct logicalVolIntegrityDesc *)
2532 			sbi->s_lvid_bh->b_data;
2533 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2534 			accum = le32_to_cpu(
2535 					lvid->freeSpaceTable[part]);
2536 			if (accum == 0xFFFFFFFF)
2537 				accum = 0;
2538 		}
2539 	}
2540 
2541 	if (accum)
2542 		return accum;
2543 
2544 	map = &sbi->s_partmaps[part];
2545 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2546 		accum += udf_count_free_bitmap(sb,
2547 					       map->s_uspace.s_bitmap);
2548 	}
2549 	if (accum)
2550 		return accum;
2551 
2552 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2553 		accum += udf_count_free_table(sb,
2554 					      map->s_uspace.s_table);
2555 	}
2556 	return accum;
2557 }
2558 
2559 MODULE_AUTHOR("Ben Fennema");
2560 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2561 MODULE_LICENSE("GPL");
2562 module_init(init_udf_fs)
2563 module_exit(exit_udf_fs)
2564