1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_PAGEMAP_H 3 #define _LINUX_PAGEMAP_H 4 5 /* 6 * Copyright 1995 Linus Torvalds 7 */ 8 #include <linux/mm.h> 9 #include <linux/fs.h> 10 #include <linux/list.h> 11 #include <linux/highmem.h> 12 #include <linux/compiler.h> 13 #include <linux/uaccess.h> 14 #include <linux/gfp.h> 15 #include <linux/bitops.h> 16 #include <linux/hardirq.h> /* for in_interrupt() */ 17 #include <linux/hugetlb_inline.h> 18 19 struct folio_batch; 20 21 unsigned long invalidate_mapping_pages(struct address_space *mapping, 22 pgoff_t start, pgoff_t end); 23 24 static inline void invalidate_remote_inode(struct inode *inode) 25 { 26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 27 S_ISLNK(inode->i_mode)) 28 invalidate_mapping_pages(inode->i_mapping, 0, -1); 29 } 30 int invalidate_inode_pages2(struct address_space *mapping); 31 int invalidate_inode_pages2_range(struct address_space *mapping, 32 pgoff_t start, pgoff_t end); 33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count); 34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count); 35 int filemap_invalidate_pages(struct address_space *mapping, 36 loff_t pos, loff_t end, bool nowait); 37 38 int write_inode_now(struct inode *, int sync); 39 int filemap_fdatawrite(struct address_space *); 40 int filemap_flush(struct address_space *); 41 int filemap_fdatawait_keep_errors(struct address_space *mapping); 42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend); 43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 44 loff_t start_byte, loff_t end_byte); 45 int filemap_invalidate_inode(struct inode *inode, bool flush, 46 loff_t start, loff_t end); 47 48 static inline int filemap_fdatawait(struct address_space *mapping) 49 { 50 return filemap_fdatawait_range(mapping, 0, LLONG_MAX); 51 } 52 53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend); 54 int filemap_write_and_wait_range(struct address_space *mapping, 55 loff_t lstart, loff_t lend); 56 int __filemap_fdatawrite_range(struct address_space *mapping, 57 loff_t start, loff_t end, int sync_mode); 58 int filemap_fdatawrite_range(struct address_space *mapping, 59 loff_t start, loff_t end); 60 int filemap_check_errors(struct address_space *mapping); 61 void __filemap_set_wb_err(struct address_space *mapping, int err); 62 int filemap_fdatawrite_wbc(struct address_space *mapping, 63 struct writeback_control *wbc); 64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count); 65 66 static inline int filemap_write_and_wait(struct address_space *mapping) 67 { 68 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX); 69 } 70 71 /** 72 * filemap_set_wb_err - set a writeback error on an address_space 73 * @mapping: mapping in which to set writeback error 74 * @err: error to be set in mapping 75 * 76 * When writeback fails in some way, we must record that error so that 77 * userspace can be informed when fsync and the like are called. We endeavor 78 * to report errors on any file that was open at the time of the error. Some 79 * internal callers also need to know when writeback errors have occurred. 80 * 81 * When a writeback error occurs, most filesystems will want to call 82 * filemap_set_wb_err to record the error in the mapping so that it will be 83 * automatically reported whenever fsync is called on the file. 84 */ 85 static inline void filemap_set_wb_err(struct address_space *mapping, int err) 86 { 87 /* Fastpath for common case of no error */ 88 if (unlikely(err)) 89 __filemap_set_wb_err(mapping, err); 90 } 91 92 /** 93 * filemap_check_wb_err - has an error occurred since the mark was sampled? 94 * @mapping: mapping to check for writeback errors 95 * @since: previously-sampled errseq_t 96 * 97 * Grab the errseq_t value from the mapping, and see if it has changed "since" 98 * the given value was sampled. 99 * 100 * If it has then report the latest error set, otherwise return 0. 101 */ 102 static inline int filemap_check_wb_err(struct address_space *mapping, 103 errseq_t since) 104 { 105 return errseq_check(&mapping->wb_err, since); 106 } 107 108 /** 109 * filemap_sample_wb_err - sample the current errseq_t to test for later errors 110 * @mapping: mapping to be sampled 111 * 112 * Writeback errors are always reported relative to a particular sample point 113 * in the past. This function provides those sample points. 114 */ 115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping) 116 { 117 return errseq_sample(&mapping->wb_err); 118 } 119 120 /** 121 * file_sample_sb_err - sample the current errseq_t to test for later errors 122 * @file: file pointer to be sampled 123 * 124 * Grab the most current superblock-level errseq_t value for the given 125 * struct file. 126 */ 127 static inline errseq_t file_sample_sb_err(struct file *file) 128 { 129 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err); 130 } 131 132 /* 133 * Flush file data before changing attributes. Caller must hold any locks 134 * required to prevent further writes to this file until we're done setting 135 * flags. 136 */ 137 static inline int inode_drain_writes(struct inode *inode) 138 { 139 inode_dio_wait(inode); 140 return filemap_write_and_wait(inode->i_mapping); 141 } 142 143 static inline bool mapping_empty(struct address_space *mapping) 144 { 145 return xa_empty(&mapping->i_pages); 146 } 147 148 /* 149 * mapping_shrinkable - test if page cache state allows inode reclaim 150 * @mapping: the page cache mapping 151 * 152 * This checks the mapping's cache state for the pupose of inode 153 * reclaim and LRU management. 154 * 155 * The caller is expected to hold the i_lock, but is not required to 156 * hold the i_pages lock, which usually protects cache state. That's 157 * because the i_lock and the list_lru lock that protect the inode and 158 * its LRU state don't nest inside the irq-safe i_pages lock. 159 * 160 * Cache deletions are performed under the i_lock, which ensures that 161 * when an inode goes empty, it will reliably get queued on the LRU. 162 * 163 * Cache additions do not acquire the i_lock and may race with this 164 * check, in which case we'll report the inode as shrinkable when it 165 * has cache pages. This is okay: the shrinker also checks the 166 * refcount and the referenced bit, which will be elevated or set in 167 * the process of adding new cache pages to an inode. 168 */ 169 static inline bool mapping_shrinkable(struct address_space *mapping) 170 { 171 void *head; 172 173 /* 174 * On highmem systems, there could be lowmem pressure from the 175 * inodes before there is highmem pressure from the page 176 * cache. Make inodes shrinkable regardless of cache state. 177 */ 178 if (IS_ENABLED(CONFIG_HIGHMEM)) 179 return true; 180 181 /* Cache completely empty? Shrink away. */ 182 head = rcu_access_pointer(mapping->i_pages.xa_head); 183 if (!head) 184 return true; 185 186 /* 187 * The xarray stores single offset-0 entries directly in the 188 * head pointer, which allows non-resident page cache entries 189 * to escape the shadow shrinker's list of xarray nodes. The 190 * inode shrinker needs to pick them up under memory pressure. 191 */ 192 if (!xa_is_node(head) && xa_is_value(head)) 193 return true; 194 195 return false; 196 } 197 198 /* 199 * Bits in mapping->flags. 200 */ 201 enum mapping_flags { 202 AS_EIO = 0, /* IO error on async write */ 203 AS_ENOSPC = 1, /* ENOSPC on async write */ 204 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 205 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 206 AS_EXITING = 4, /* final truncate in progress */ 207 /* writeback related tags are not used */ 208 AS_NO_WRITEBACK_TAGS = 5, 209 AS_RELEASE_ALWAYS = 6, /* Call ->release_folio(), even if no private data */ 210 AS_STABLE_WRITES = 7, /* must wait for writeback before modifying 211 folio contents */ 212 AS_INACCESSIBLE = 8, /* Do not attempt direct R/W access to the mapping */ 213 AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM = 9, 214 /* Bits 16-25 are used for FOLIO_ORDER */ 215 AS_FOLIO_ORDER_BITS = 5, 216 AS_FOLIO_ORDER_MIN = 16, 217 AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS, 218 }; 219 220 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1) 221 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN) 222 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX) 223 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK) 224 225 /** 226 * mapping_set_error - record a writeback error in the address_space 227 * @mapping: the mapping in which an error should be set 228 * @error: the error to set in the mapping 229 * 230 * When writeback fails in some way, we must record that error so that 231 * userspace can be informed when fsync and the like are called. We endeavor 232 * to report errors on any file that was open at the time of the error. Some 233 * internal callers also need to know when writeback errors have occurred. 234 * 235 * When a writeback error occurs, most filesystems will want to call 236 * mapping_set_error to record the error in the mapping so that it can be 237 * reported when the application calls fsync(2). 238 */ 239 static inline void mapping_set_error(struct address_space *mapping, int error) 240 { 241 if (likely(!error)) 242 return; 243 244 /* Record in wb_err for checkers using errseq_t based tracking */ 245 __filemap_set_wb_err(mapping, error); 246 247 /* Record it in superblock */ 248 if (mapping->host) 249 errseq_set(&mapping->host->i_sb->s_wb_err, error); 250 251 /* Record it in flags for now, for legacy callers */ 252 if (error == -ENOSPC) 253 set_bit(AS_ENOSPC, &mapping->flags); 254 else 255 set_bit(AS_EIO, &mapping->flags); 256 } 257 258 static inline void mapping_set_unevictable(struct address_space *mapping) 259 { 260 set_bit(AS_UNEVICTABLE, &mapping->flags); 261 } 262 263 static inline void mapping_clear_unevictable(struct address_space *mapping) 264 { 265 clear_bit(AS_UNEVICTABLE, &mapping->flags); 266 } 267 268 static inline bool mapping_unevictable(struct address_space *mapping) 269 { 270 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 271 } 272 273 static inline void mapping_set_exiting(struct address_space *mapping) 274 { 275 set_bit(AS_EXITING, &mapping->flags); 276 } 277 278 static inline int mapping_exiting(struct address_space *mapping) 279 { 280 return test_bit(AS_EXITING, &mapping->flags); 281 } 282 283 static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 284 { 285 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 286 } 287 288 static inline int mapping_use_writeback_tags(struct address_space *mapping) 289 { 290 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 291 } 292 293 static inline bool mapping_release_always(const struct address_space *mapping) 294 { 295 return test_bit(AS_RELEASE_ALWAYS, &mapping->flags); 296 } 297 298 static inline void mapping_set_release_always(struct address_space *mapping) 299 { 300 set_bit(AS_RELEASE_ALWAYS, &mapping->flags); 301 } 302 303 static inline void mapping_clear_release_always(struct address_space *mapping) 304 { 305 clear_bit(AS_RELEASE_ALWAYS, &mapping->flags); 306 } 307 308 static inline bool mapping_stable_writes(const struct address_space *mapping) 309 { 310 return test_bit(AS_STABLE_WRITES, &mapping->flags); 311 } 312 313 static inline void mapping_set_stable_writes(struct address_space *mapping) 314 { 315 set_bit(AS_STABLE_WRITES, &mapping->flags); 316 } 317 318 static inline void mapping_clear_stable_writes(struct address_space *mapping) 319 { 320 clear_bit(AS_STABLE_WRITES, &mapping->flags); 321 } 322 323 static inline void mapping_set_inaccessible(struct address_space *mapping) 324 { 325 /* 326 * It's expected inaccessible mappings are also unevictable. Compaction 327 * migrate scanner (isolate_migratepages_block()) relies on this to 328 * reduce page locking. 329 */ 330 set_bit(AS_UNEVICTABLE, &mapping->flags); 331 set_bit(AS_INACCESSIBLE, &mapping->flags); 332 } 333 334 static inline bool mapping_inaccessible(struct address_space *mapping) 335 { 336 return test_bit(AS_INACCESSIBLE, &mapping->flags); 337 } 338 339 static inline void mapping_set_writeback_may_deadlock_on_reclaim(struct address_space *mapping) 340 { 341 set_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags); 342 } 343 344 static inline bool mapping_writeback_may_deadlock_on_reclaim(struct address_space *mapping) 345 { 346 return test_bit(AS_WRITEBACK_MAY_DEADLOCK_ON_RECLAIM, &mapping->flags); 347 } 348 349 static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 350 { 351 return mapping->gfp_mask; 352 } 353 354 /* Restricts the given gfp_mask to what the mapping allows. */ 355 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 356 gfp_t gfp_mask) 357 { 358 return mapping_gfp_mask(mapping) & gfp_mask; 359 } 360 361 /* 362 * This is non-atomic. Only to be used before the mapping is activated. 363 * Probably needs a barrier... 364 */ 365 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 366 { 367 m->gfp_mask = mask; 368 } 369 370 /* 371 * There are some parts of the kernel which assume that PMD entries 372 * are exactly HPAGE_PMD_ORDER. Those should be fixed, but until then, 373 * limit the maximum allocation order to PMD size. I'm not aware of any 374 * assumptions about maximum order if THP are disabled, but 8 seems like 375 * a good order (that's 1MB if you're using 4kB pages) 376 */ 377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 378 #define PREFERRED_MAX_PAGECACHE_ORDER HPAGE_PMD_ORDER 379 #else 380 #define PREFERRED_MAX_PAGECACHE_ORDER 8 381 #endif 382 383 /* 384 * xas_split_alloc() does not support arbitrary orders. This implies no 385 * 512MB THP on ARM64 with 64KB base page size. 386 */ 387 #define MAX_XAS_ORDER (XA_CHUNK_SHIFT * 2 - 1) 388 #define MAX_PAGECACHE_ORDER min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER) 389 390 /* 391 * mapping_max_folio_size_supported() - Check the max folio size supported 392 * 393 * The filesystem should call this function at mount time if there is a 394 * requirement on the folio mapping size in the page cache. 395 */ 396 static inline size_t mapping_max_folio_size_supported(void) 397 { 398 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 399 return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER); 400 return PAGE_SIZE; 401 } 402 403 /* 404 * mapping_set_folio_order_range() - Set the orders supported by a file. 405 * @mapping: The address space of the file. 406 * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive). 407 * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive). 408 * 409 * The filesystem should call this function in its inode constructor to 410 * indicate which base size (min) and maximum size (max) of folio the VFS 411 * can use to cache the contents of the file. This should only be used 412 * if the filesystem needs special handling of folio sizes (ie there is 413 * something the core cannot know). 414 * Do not tune it based on, eg, i_size. 415 * 416 * Context: This should not be called while the inode is active as it 417 * is non-atomic. 418 */ 419 static inline void mapping_set_folio_order_range(struct address_space *mapping, 420 unsigned int min, 421 unsigned int max) 422 { 423 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 424 return; 425 426 if (min > MAX_PAGECACHE_ORDER) 427 min = MAX_PAGECACHE_ORDER; 428 429 if (max > MAX_PAGECACHE_ORDER) 430 max = MAX_PAGECACHE_ORDER; 431 432 if (max < min) 433 max = min; 434 435 mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) | 436 (min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX); 437 } 438 439 static inline void mapping_set_folio_min_order(struct address_space *mapping, 440 unsigned int min) 441 { 442 mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER); 443 } 444 445 /** 446 * mapping_set_large_folios() - Indicate the file supports large folios. 447 * @mapping: The address space of the file. 448 * 449 * The filesystem should call this function in its inode constructor to 450 * indicate that the VFS can use large folios to cache the contents of 451 * the file. 452 * 453 * Context: This should not be called while the inode is active as it 454 * is non-atomic. 455 */ 456 static inline void mapping_set_large_folios(struct address_space *mapping) 457 { 458 mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER); 459 } 460 461 static inline unsigned int 462 mapping_max_folio_order(const struct address_space *mapping) 463 { 464 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 465 return 0; 466 return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX; 467 } 468 469 static inline unsigned int 470 mapping_min_folio_order(const struct address_space *mapping) 471 { 472 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 473 return 0; 474 return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN; 475 } 476 477 static inline unsigned long 478 mapping_min_folio_nrpages(struct address_space *mapping) 479 { 480 return 1UL << mapping_min_folio_order(mapping); 481 } 482 483 /** 484 * mapping_align_index() - Align index for this mapping. 485 * @mapping: The address_space. 486 * @index: The page index. 487 * 488 * The index of a folio must be naturally aligned. If you are adding a 489 * new folio to the page cache and need to know what index to give it, 490 * call this function. 491 */ 492 static inline pgoff_t mapping_align_index(struct address_space *mapping, 493 pgoff_t index) 494 { 495 return round_down(index, mapping_min_folio_nrpages(mapping)); 496 } 497 498 /* 499 * Large folio support currently depends on THP. These dependencies are 500 * being worked on but are not yet fixed. 501 */ 502 static inline bool mapping_large_folio_support(struct address_space *mapping) 503 { 504 /* AS_FOLIO_ORDER is only reasonable for pagecache folios */ 505 VM_WARN_ONCE((unsigned long)mapping & FOLIO_MAPPING_ANON, 506 "Anonymous mapping always supports large folio"); 507 508 return mapping_max_folio_order(mapping) > 0; 509 } 510 511 /* Return the maximum folio size for this pagecache mapping, in bytes. */ 512 static inline size_t mapping_max_folio_size(const struct address_space *mapping) 513 { 514 return PAGE_SIZE << mapping_max_folio_order(mapping); 515 } 516 517 static inline int filemap_nr_thps(struct address_space *mapping) 518 { 519 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 520 return atomic_read(&mapping->nr_thps); 521 #else 522 return 0; 523 #endif 524 } 525 526 static inline void filemap_nr_thps_inc(struct address_space *mapping) 527 { 528 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 529 if (!mapping_large_folio_support(mapping)) 530 atomic_inc(&mapping->nr_thps); 531 #else 532 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 533 #endif 534 } 535 536 static inline void filemap_nr_thps_dec(struct address_space *mapping) 537 { 538 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 539 if (!mapping_large_folio_support(mapping)) 540 atomic_dec(&mapping->nr_thps); 541 #else 542 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0); 543 #endif 544 } 545 546 struct address_space *folio_mapping(struct folio *); 547 548 /** 549 * folio_flush_mapping - Find the file mapping this folio belongs to. 550 * @folio: The folio. 551 * 552 * For folios which are in the page cache, return the mapping that this 553 * page belongs to. Anonymous folios return NULL, even if they're in 554 * the swap cache. Other kinds of folio also return NULL. 555 * 556 * This is ONLY used by architecture cache flushing code. If you aren't 557 * writing cache flushing code, you want either folio_mapping() or 558 * folio_file_mapping(). 559 */ 560 static inline struct address_space *folio_flush_mapping(struct folio *folio) 561 { 562 if (unlikely(folio_test_swapcache(folio))) 563 return NULL; 564 565 return folio_mapping(folio); 566 } 567 568 /** 569 * folio_inode - Get the host inode for this folio. 570 * @folio: The folio. 571 * 572 * For folios which are in the page cache, return the inode that this folio 573 * belongs to. 574 * 575 * Do not call this for folios which aren't in the page cache. 576 */ 577 static inline struct inode *folio_inode(struct folio *folio) 578 { 579 return folio->mapping->host; 580 } 581 582 /** 583 * folio_attach_private - Attach private data to a folio. 584 * @folio: Folio to attach data to. 585 * @data: Data to attach to folio. 586 * 587 * Attaching private data to a folio increments the page's reference count. 588 * The data must be detached before the folio will be freed. 589 */ 590 static inline void folio_attach_private(struct folio *folio, void *data) 591 { 592 folio_get(folio); 593 folio->private = data; 594 folio_set_private(folio); 595 } 596 597 /** 598 * folio_change_private - Change private data on a folio. 599 * @folio: Folio to change the data on. 600 * @data: Data to set on the folio. 601 * 602 * Change the private data attached to a folio and return the old 603 * data. The page must previously have had data attached and the data 604 * must be detached before the folio will be freed. 605 * 606 * Return: Data that was previously attached to the folio. 607 */ 608 static inline void *folio_change_private(struct folio *folio, void *data) 609 { 610 void *old = folio_get_private(folio); 611 612 folio->private = data; 613 return old; 614 } 615 616 /** 617 * folio_detach_private - Detach private data from a folio. 618 * @folio: Folio to detach data from. 619 * 620 * Removes the data that was previously attached to the folio and decrements 621 * the refcount on the page. 622 * 623 * Return: Data that was attached to the folio. 624 */ 625 static inline void *folio_detach_private(struct folio *folio) 626 { 627 void *data = folio_get_private(folio); 628 629 if (!folio_test_private(folio)) 630 return NULL; 631 folio_clear_private(folio); 632 folio->private = NULL; 633 folio_put(folio); 634 635 return data; 636 } 637 638 static inline void attach_page_private(struct page *page, void *data) 639 { 640 folio_attach_private(page_folio(page), data); 641 } 642 643 static inline void *detach_page_private(struct page *page) 644 { 645 return folio_detach_private(page_folio(page)); 646 } 647 648 #ifdef CONFIG_NUMA 649 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order); 650 #else 651 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 652 { 653 return folio_alloc_noprof(gfp, order); 654 } 655 #endif 656 657 #define filemap_alloc_folio(...) \ 658 alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__)) 659 660 static inline struct page *__page_cache_alloc(gfp_t gfp) 661 { 662 return &filemap_alloc_folio(gfp, 0)->page; 663 } 664 665 static inline gfp_t readahead_gfp_mask(struct address_space *x) 666 { 667 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 668 } 669 670 typedef int filler_t(struct file *, struct folio *); 671 672 pgoff_t page_cache_next_miss(struct address_space *mapping, 673 pgoff_t index, unsigned long max_scan); 674 pgoff_t page_cache_prev_miss(struct address_space *mapping, 675 pgoff_t index, unsigned long max_scan); 676 677 /** 678 * typedef fgf_t - Flags for getting folios from the page cache. 679 * 680 * Most users of the page cache will not need to use these flags; 681 * there are convenience functions such as filemap_get_folio() and 682 * filemap_lock_folio(). For users which need more control over exactly 683 * what is done with the folios, these flags to __filemap_get_folio() 684 * are available. 685 * 686 * * %FGP_ACCESSED - The folio will be marked accessed. 687 * * %FGP_LOCK - The folio is returned locked. 688 * * %FGP_CREAT - If no folio is present then a new folio is allocated, 689 * added to the page cache and the VM's LRU list. The folio is 690 * returned locked. 691 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 692 * folio is already in cache. If the folio was allocated, unlock it 693 * before returning so the caller can do the same dance. 694 * * %FGP_WRITE - The folio will be written to by the caller. 695 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 696 * * %FGP_NOWAIT - Don't block on the folio lock. 697 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 698 * * %FGP_DONTCACHE - Uncached buffered IO 699 * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin() 700 * implementation. 701 */ 702 typedef unsigned int __bitwise fgf_t; 703 704 #define FGP_ACCESSED ((__force fgf_t)0x00000001) 705 #define FGP_LOCK ((__force fgf_t)0x00000002) 706 #define FGP_CREAT ((__force fgf_t)0x00000004) 707 #define FGP_WRITE ((__force fgf_t)0x00000008) 708 #define FGP_NOFS ((__force fgf_t)0x00000010) 709 #define FGP_NOWAIT ((__force fgf_t)0x00000020) 710 #define FGP_FOR_MMAP ((__force fgf_t)0x00000040) 711 #define FGP_STABLE ((__force fgf_t)0x00000080) 712 #define FGP_DONTCACHE ((__force fgf_t)0x00000100) 713 #define FGF_GET_ORDER(fgf) (((__force unsigned)fgf) >> 26) /* top 6 bits */ 714 715 #define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE) 716 717 static inline unsigned int filemap_get_order(size_t size) 718 { 719 unsigned int shift = ilog2(size); 720 721 if (shift <= PAGE_SHIFT) 722 return 0; 723 724 return shift - PAGE_SHIFT; 725 } 726 727 /** 728 * fgf_set_order - Encode a length in the fgf_t flags. 729 * @size: The suggested size of the folio to create. 730 * 731 * The caller of __filemap_get_folio() can use this to suggest a preferred 732 * size for the folio that is created. If there is already a folio at 733 * the index, it will be returned, no matter what its size. If a folio 734 * is freshly created, it may be of a different size than requested 735 * due to alignment constraints, memory pressure, or the presence of 736 * other folios at nearby indices. 737 */ 738 static inline fgf_t fgf_set_order(size_t size) 739 { 740 unsigned int order = filemap_get_order(size); 741 742 if (!order) 743 return 0; 744 return (__force fgf_t)(order << 26); 745 } 746 747 void *filemap_get_entry(struct address_space *mapping, pgoff_t index); 748 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 749 fgf_t fgp_flags, gfp_t gfp); 750 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index, 751 fgf_t fgp_flags, gfp_t gfp); 752 753 /** 754 * write_begin_get_folio - Get folio for write_begin with flags. 755 * @iocb: The kiocb passed from write_begin (may be NULL). 756 * @mapping: The address space to search. 757 * @index: The page cache index. 758 * @len: Length of data being written. 759 * 760 * This is a helper for filesystem write_begin() implementations. 761 * It wraps __filemap_get_folio(), setting appropriate flags in 762 * the write begin context. 763 * 764 * Return: A folio or an ERR_PTR. 765 */ 766 static inline struct folio *write_begin_get_folio(const struct kiocb *iocb, 767 struct address_space *mapping, pgoff_t index, size_t len) 768 { 769 fgf_t fgp_flags = FGP_WRITEBEGIN; 770 771 fgp_flags |= fgf_set_order(len); 772 773 if (iocb && iocb->ki_flags & IOCB_DONTCACHE) 774 fgp_flags |= FGP_DONTCACHE; 775 776 return __filemap_get_folio(mapping, index, fgp_flags, 777 mapping_gfp_mask(mapping)); 778 } 779 780 /** 781 * filemap_get_folio - Find and get a folio. 782 * @mapping: The address_space to search. 783 * @index: The page index. 784 * 785 * Looks up the page cache entry at @mapping & @index. If a folio is 786 * present, it is returned with an increased refcount. 787 * 788 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 789 * this index. Will not return a shadow, swap or DAX entry. 790 */ 791 static inline struct folio *filemap_get_folio(struct address_space *mapping, 792 pgoff_t index) 793 { 794 return __filemap_get_folio(mapping, index, 0, 0); 795 } 796 797 /** 798 * filemap_lock_folio - Find and lock a folio. 799 * @mapping: The address_space to search. 800 * @index: The page index. 801 * 802 * Looks up the page cache entry at @mapping & @index. If a folio is 803 * present, it is returned locked with an increased refcount. 804 * 805 * Context: May sleep. 806 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for 807 * this index. Will not return a shadow, swap or DAX entry. 808 */ 809 static inline struct folio *filemap_lock_folio(struct address_space *mapping, 810 pgoff_t index) 811 { 812 return __filemap_get_folio(mapping, index, FGP_LOCK, 0); 813 } 814 815 /** 816 * filemap_grab_folio - grab a folio from the page cache 817 * @mapping: The address space to search 818 * @index: The page index 819 * 820 * Looks up the page cache entry at @mapping & @index. If no folio is found, 821 * a new folio is created. The folio is locked, marked as accessed, and 822 * returned. 823 * 824 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found 825 * and failed to create a folio. 826 */ 827 static inline struct folio *filemap_grab_folio(struct address_space *mapping, 828 pgoff_t index) 829 { 830 return __filemap_get_folio(mapping, index, 831 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 832 mapping_gfp_mask(mapping)); 833 } 834 835 /** 836 * find_get_page - find and get a page reference 837 * @mapping: the address_space to search 838 * @offset: the page index 839 * 840 * Looks up the page cache slot at @mapping & @offset. If there is a 841 * page cache page, it is returned with an increased refcount. 842 * 843 * Otherwise, %NULL is returned. 844 */ 845 static inline struct page *find_get_page(struct address_space *mapping, 846 pgoff_t offset) 847 { 848 return pagecache_get_page(mapping, offset, 0, 0); 849 } 850 851 static inline struct page *find_get_page_flags(struct address_space *mapping, 852 pgoff_t offset, fgf_t fgp_flags) 853 { 854 return pagecache_get_page(mapping, offset, fgp_flags, 0); 855 } 856 857 /** 858 * find_lock_page - locate, pin and lock a pagecache page 859 * @mapping: the address_space to search 860 * @index: the page index 861 * 862 * Looks up the page cache entry at @mapping & @index. If there is a 863 * page cache page, it is returned locked and with an increased 864 * refcount. 865 * 866 * Context: May sleep. 867 * Return: A struct page or %NULL if there is no page in the cache for this 868 * index. 869 */ 870 static inline struct page *find_lock_page(struct address_space *mapping, 871 pgoff_t index) 872 { 873 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 874 } 875 876 /** 877 * find_or_create_page - locate or add a pagecache page 878 * @mapping: the page's address_space 879 * @index: the page's index into the mapping 880 * @gfp_mask: page allocation mode 881 * 882 * Looks up the page cache slot at @mapping & @offset. If there is a 883 * page cache page, it is returned locked and with an increased 884 * refcount. 885 * 886 * If the page is not present, a new page is allocated using @gfp_mask 887 * and added to the page cache and the VM's LRU list. The page is 888 * returned locked and with an increased refcount. 889 * 890 * On memory exhaustion, %NULL is returned. 891 * 892 * find_or_create_page() may sleep, even if @gfp_flags specifies an 893 * atomic allocation! 894 */ 895 static inline struct page *find_or_create_page(struct address_space *mapping, 896 pgoff_t index, gfp_t gfp_mask) 897 { 898 return pagecache_get_page(mapping, index, 899 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 900 gfp_mask); 901 } 902 903 /** 904 * grab_cache_page_nowait - returns locked page at given index in given cache 905 * @mapping: target address_space 906 * @index: the page index 907 * 908 * Returns locked page at given index in given cache, creating it if 909 * needed, but do not wait if the page is locked or to reclaim memory. 910 * This is intended for speculative data generators, where the data can 911 * be regenerated if the page couldn't be grabbed. This routine should 912 * be safe to call while holding the lock for another page. 913 * 914 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 915 * and deadlock against the caller's locked page. 916 */ 917 static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 918 pgoff_t index) 919 { 920 return pagecache_get_page(mapping, index, 921 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 922 mapping_gfp_mask(mapping)); 923 } 924 925 /** 926 * folio_next_index - Get the index of the next folio. 927 * @folio: The current folio. 928 * 929 * Return: The index of the folio which follows this folio in the file. 930 */ 931 static inline pgoff_t folio_next_index(struct folio *folio) 932 { 933 return folio->index + folio_nr_pages(folio); 934 } 935 936 /** 937 * folio_file_page - The page for a particular index. 938 * @folio: The folio which contains this index. 939 * @index: The index we want to look up. 940 * 941 * Sometimes after looking up a folio in the page cache, we need to 942 * obtain the specific page for an index (eg a page fault). 943 * 944 * Return: The page containing the file data for this index. 945 */ 946 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index) 947 { 948 return folio_page(folio, index & (folio_nr_pages(folio) - 1)); 949 } 950 951 /** 952 * folio_contains - Does this folio contain this index? 953 * @folio: The folio. 954 * @index: The page index within the file. 955 * 956 * Context: The caller should have the folio locked and ensure 957 * e.g., shmem did not move this folio to the swap cache. 958 * Return: true or false. 959 */ 960 static inline bool folio_contains(struct folio *folio, pgoff_t index) 961 { 962 VM_WARN_ON_ONCE_FOLIO(folio_test_swapcache(folio), folio); 963 return index - folio->index < folio_nr_pages(folio); 964 } 965 966 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 967 pgoff_t end, struct folio_batch *fbatch); 968 unsigned filemap_get_folios_contig(struct address_space *mapping, 969 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch); 970 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 971 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch); 972 973 struct folio *read_cache_folio(struct address_space *, pgoff_t index, 974 filler_t *filler, struct file *file); 975 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index, 976 gfp_t flags); 977 struct page *read_cache_page(struct address_space *, pgoff_t index, 978 filler_t *filler, struct file *file); 979 extern struct page * read_cache_page_gfp(struct address_space *mapping, 980 pgoff_t index, gfp_t gfp_mask); 981 982 static inline struct page *read_mapping_page(struct address_space *mapping, 983 pgoff_t index, struct file *file) 984 { 985 return read_cache_page(mapping, index, NULL, file); 986 } 987 988 static inline struct folio *read_mapping_folio(struct address_space *mapping, 989 pgoff_t index, struct file *file) 990 { 991 return read_cache_folio(mapping, index, NULL, file); 992 } 993 994 /** 995 * page_pgoff - Calculate the logical page offset of this page. 996 * @folio: The folio containing this page. 997 * @page: The page which we need the offset of. 998 * 999 * For file pages, this is the offset from the beginning of the file 1000 * in units of PAGE_SIZE. For anonymous pages, this is the offset from 1001 * the beginning of the anon_vma in units of PAGE_SIZE. This will 1002 * return nonsense for KSM pages. 1003 * 1004 * Context: Caller must have a reference on the folio or otherwise 1005 * prevent it from being split or freed. 1006 * 1007 * Return: The offset in units of PAGE_SIZE. 1008 */ 1009 static inline pgoff_t page_pgoff(const struct folio *folio, 1010 const struct page *page) 1011 { 1012 return folio->index + folio_page_idx(folio, page); 1013 } 1014 1015 /** 1016 * folio_pos - Returns the byte position of this folio in its file. 1017 * @folio: The folio. 1018 */ 1019 static inline loff_t folio_pos(const struct folio *folio) 1020 { 1021 return ((loff_t)folio->index) * PAGE_SIZE; 1022 } 1023 1024 /* 1025 * Return byte-offset into filesystem object for page. 1026 */ 1027 static inline loff_t page_offset(struct page *page) 1028 { 1029 struct folio *folio = page_folio(page); 1030 1031 return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE; 1032 } 1033 1034 /* 1035 * Get the offset in PAGE_SIZE (even for hugetlb folios). 1036 */ 1037 static inline pgoff_t folio_pgoff(struct folio *folio) 1038 { 1039 return folio->index; 1040 } 1041 1042 static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 1043 unsigned long address) 1044 { 1045 pgoff_t pgoff; 1046 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 1047 pgoff += vma->vm_pgoff; 1048 return pgoff; 1049 } 1050 1051 struct wait_page_key { 1052 struct folio *folio; 1053 int bit_nr; 1054 int page_match; 1055 }; 1056 1057 struct wait_page_queue { 1058 struct folio *folio; 1059 int bit_nr; 1060 wait_queue_entry_t wait; 1061 }; 1062 1063 static inline bool wake_page_match(struct wait_page_queue *wait_page, 1064 struct wait_page_key *key) 1065 { 1066 if (wait_page->folio != key->folio) 1067 return false; 1068 key->page_match = 1; 1069 1070 if (wait_page->bit_nr != key->bit_nr) 1071 return false; 1072 1073 return true; 1074 } 1075 1076 void __folio_lock(struct folio *folio); 1077 int __folio_lock_killable(struct folio *folio); 1078 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf); 1079 void unlock_page(struct page *page); 1080 void folio_unlock(struct folio *folio); 1081 1082 /** 1083 * folio_trylock() - Attempt to lock a folio. 1084 * @folio: The folio to attempt to lock. 1085 * 1086 * Sometimes it is undesirable to wait for a folio to be unlocked (eg 1087 * when the locks are being taken in the wrong order, or if making 1088 * progress through a batch of folios is more important than processing 1089 * them in order). Usually folio_lock() is the correct function to call. 1090 * 1091 * Context: Any context. 1092 * Return: Whether the lock was successfully acquired. 1093 */ 1094 static inline bool folio_trylock(struct folio *folio) 1095 { 1096 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0))); 1097 } 1098 1099 /* 1100 * Return true if the page was successfully locked 1101 */ 1102 static inline bool trylock_page(struct page *page) 1103 { 1104 return folio_trylock(page_folio(page)); 1105 } 1106 1107 /** 1108 * folio_lock() - Lock this folio. 1109 * @folio: The folio to lock. 1110 * 1111 * The folio lock protects against many things, probably more than it 1112 * should. It is primarily held while a folio is being brought uptodate, 1113 * either from its backing file or from swap. It is also held while a 1114 * folio is being truncated from its address_space, so holding the lock 1115 * is sufficient to keep folio->mapping stable. 1116 * 1117 * The folio lock is also held while write() is modifying the page to 1118 * provide POSIX atomicity guarantees (as long as the write does not 1119 * cross a page boundary). Other modifications to the data in the folio 1120 * do not hold the folio lock and can race with writes, eg DMA and stores 1121 * to mapped pages. 1122 * 1123 * Context: May sleep. If you need to acquire the locks of two or 1124 * more folios, they must be in order of ascending index, if they are 1125 * in the same address_space. If they are in different address_spaces, 1126 * acquire the lock of the folio which belongs to the address_space which 1127 * has the lowest address in memory first. 1128 */ 1129 static inline void folio_lock(struct folio *folio) 1130 { 1131 might_sleep(); 1132 if (!folio_trylock(folio)) 1133 __folio_lock(folio); 1134 } 1135 1136 /** 1137 * lock_page() - Lock the folio containing this page. 1138 * @page: The page to lock. 1139 * 1140 * See folio_lock() for a description of what the lock protects. 1141 * This is a legacy function and new code should probably use folio_lock() 1142 * instead. 1143 * 1144 * Context: May sleep. Pages in the same folio share a lock, so do not 1145 * attempt to lock two pages which share a folio. 1146 */ 1147 static inline void lock_page(struct page *page) 1148 { 1149 struct folio *folio; 1150 might_sleep(); 1151 1152 folio = page_folio(page); 1153 if (!folio_trylock(folio)) 1154 __folio_lock(folio); 1155 } 1156 1157 /** 1158 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal. 1159 * @folio: The folio to lock. 1160 * 1161 * Attempts to lock the folio, like folio_lock(), except that the sleep 1162 * to acquire the lock is interruptible by a fatal signal. 1163 * 1164 * Context: May sleep; see folio_lock(). 1165 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received. 1166 */ 1167 static inline int folio_lock_killable(struct folio *folio) 1168 { 1169 might_sleep(); 1170 if (!folio_trylock(folio)) 1171 return __folio_lock_killable(folio); 1172 return 0; 1173 } 1174 1175 /* 1176 * folio_lock_or_retry - Lock the folio, unless this would block and the 1177 * caller indicated that it can handle a retry. 1178 * 1179 * Return value and mmap_lock implications depend on flags; see 1180 * __folio_lock_or_retry(). 1181 */ 1182 static inline vm_fault_t folio_lock_or_retry(struct folio *folio, 1183 struct vm_fault *vmf) 1184 { 1185 might_sleep(); 1186 if (!folio_trylock(folio)) 1187 return __folio_lock_or_retry(folio, vmf); 1188 return 0; 1189 } 1190 1191 /* 1192 * This is exported only for folio_wait_locked/folio_wait_writeback, etc., 1193 * and should not be used directly. 1194 */ 1195 void folio_wait_bit(struct folio *folio, int bit_nr); 1196 int folio_wait_bit_killable(struct folio *folio, int bit_nr); 1197 1198 /* 1199 * Wait for a folio to be unlocked. 1200 * 1201 * This must be called with the caller "holding" the folio, 1202 * ie with increased folio reference count so that the folio won't 1203 * go away during the wait. 1204 */ 1205 static inline void folio_wait_locked(struct folio *folio) 1206 { 1207 if (folio_test_locked(folio)) 1208 folio_wait_bit(folio, PG_locked); 1209 } 1210 1211 static inline int folio_wait_locked_killable(struct folio *folio) 1212 { 1213 if (!folio_test_locked(folio)) 1214 return 0; 1215 return folio_wait_bit_killable(folio, PG_locked); 1216 } 1217 1218 void folio_end_read(struct folio *folio, bool success); 1219 void wait_on_page_writeback(struct page *page); 1220 void folio_wait_writeback(struct folio *folio); 1221 int folio_wait_writeback_killable(struct folio *folio); 1222 void end_page_writeback(struct page *page); 1223 void folio_end_writeback(struct folio *folio); 1224 void folio_wait_stable(struct folio *folio); 1225 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn); 1226 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb); 1227 void __folio_cancel_dirty(struct folio *folio); 1228 static inline void folio_cancel_dirty(struct folio *folio) 1229 { 1230 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1231 if (folio_test_dirty(folio)) 1232 __folio_cancel_dirty(folio); 1233 } 1234 bool folio_clear_dirty_for_io(struct folio *folio); 1235 bool clear_page_dirty_for_io(struct page *page); 1236 void folio_invalidate(struct folio *folio, size_t offset, size_t length); 1237 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio); 1238 1239 #ifdef CONFIG_MIGRATION 1240 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst, 1241 struct folio *src, enum migrate_mode mode); 1242 #else 1243 #define filemap_migrate_folio NULL 1244 #endif 1245 void folio_end_private_2(struct folio *folio); 1246 void folio_wait_private_2(struct folio *folio); 1247 int folio_wait_private_2_killable(struct folio *folio); 1248 1249 /* 1250 * Fault in userspace address range. 1251 */ 1252 size_t fault_in_writeable(char __user *uaddr, size_t size); 1253 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size); 1254 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size); 1255 size_t fault_in_readable(const char __user *uaddr, size_t size); 1256 1257 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 1258 pgoff_t index, gfp_t gfp); 1259 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 1260 pgoff_t index, gfp_t gfp); 1261 void filemap_remove_folio(struct folio *folio); 1262 void __filemap_remove_folio(struct folio *folio, void *shadow); 1263 void replace_page_cache_folio(struct folio *old, struct folio *new); 1264 void delete_from_page_cache_batch(struct address_space *mapping, 1265 struct folio_batch *fbatch); 1266 bool filemap_release_folio(struct folio *folio, gfp_t gfp); 1267 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 1268 int whence); 1269 1270 /* Must be non-static for BPF error injection */ 1271 int __filemap_add_folio(struct address_space *mapping, struct folio *folio, 1272 pgoff_t index, gfp_t gfp, void **shadowp); 1273 1274 bool filemap_range_has_writeback(struct address_space *mapping, 1275 loff_t start_byte, loff_t end_byte); 1276 1277 /** 1278 * filemap_range_needs_writeback - check if range potentially needs writeback 1279 * @mapping: address space within which to check 1280 * @start_byte: offset in bytes where the range starts 1281 * @end_byte: offset in bytes where the range ends (inclusive) 1282 * 1283 * Find at least one page in the range supplied, usually used to check if 1284 * direct writing in this range will trigger a writeback. Used by O_DIRECT 1285 * read/write with IOCB_NOWAIT, to see if the caller needs to do 1286 * filemap_write_and_wait_range() before proceeding. 1287 * 1288 * Return: %true if the caller should do filemap_write_and_wait_range() before 1289 * doing O_DIRECT to a page in this range, %false otherwise. 1290 */ 1291 static inline bool filemap_range_needs_writeback(struct address_space *mapping, 1292 loff_t start_byte, 1293 loff_t end_byte) 1294 { 1295 if (!mapping->nrpages) 1296 return false; 1297 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 1298 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 1299 return false; 1300 return filemap_range_has_writeback(mapping, start_byte, end_byte); 1301 } 1302 1303 /** 1304 * struct readahead_control - Describes a readahead request. 1305 * 1306 * A readahead request is for consecutive pages. Filesystems which 1307 * implement the ->readahead method should call readahead_folio() or 1308 * __readahead_batch() in a loop and attempt to start reads into each 1309 * folio in the request. 1310 * 1311 * Most of the fields in this struct are private and should be accessed 1312 * by the functions below. 1313 * 1314 * @file: The file, used primarily by network filesystems for authentication. 1315 * May be NULL if invoked internally by the filesystem. 1316 * @mapping: Readahead this filesystem object. 1317 * @ra: File readahead state. May be NULL. 1318 */ 1319 struct readahead_control { 1320 struct file *file; 1321 struct address_space *mapping; 1322 struct file_ra_state *ra; 1323 /* private: use the readahead_* accessors instead */ 1324 pgoff_t _index; 1325 unsigned int _nr_pages; 1326 unsigned int _batch_count; 1327 bool dropbehind; 1328 bool _workingset; 1329 unsigned long _pflags; 1330 }; 1331 1332 #define DEFINE_READAHEAD(ractl, f, r, m, i) \ 1333 struct readahead_control ractl = { \ 1334 .file = f, \ 1335 .mapping = m, \ 1336 .ra = r, \ 1337 ._index = i, \ 1338 } 1339 1340 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 1341 1342 void page_cache_ra_unbounded(struct readahead_control *, 1343 unsigned long nr_to_read, unsigned long lookahead_count); 1344 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 1345 void page_cache_async_ra(struct readahead_control *, struct folio *, 1346 unsigned long req_count); 1347 void readahead_expand(struct readahead_control *ractl, 1348 loff_t new_start, size_t new_len); 1349 1350 /** 1351 * page_cache_sync_readahead - generic file readahead 1352 * @mapping: address_space which holds the pagecache and I/O vectors 1353 * @ra: file_ra_state which holds the readahead state 1354 * @file: Used by the filesystem for authentication. 1355 * @index: Index of first page to be read. 1356 * @req_count: Total number of pages being read by the caller. 1357 * 1358 * page_cache_sync_readahead() should be called when a cache miss happened: 1359 * it will submit the read. The readahead logic may decide to piggyback more 1360 * pages onto the read request if access patterns suggest it will improve 1361 * performance. 1362 */ 1363 static inline 1364 void page_cache_sync_readahead(struct address_space *mapping, 1365 struct file_ra_state *ra, struct file *file, pgoff_t index, 1366 unsigned long req_count) 1367 { 1368 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 1369 page_cache_sync_ra(&ractl, req_count); 1370 } 1371 1372 /** 1373 * page_cache_async_readahead - file readahead for marked pages 1374 * @mapping: address_space which holds the pagecache and I/O vectors 1375 * @ra: file_ra_state which holds the readahead state 1376 * @file: Used by the filesystem for authentication. 1377 * @folio: The folio which triggered the readahead call. 1378 * @req_count: Total number of pages being read by the caller. 1379 * 1380 * page_cache_async_readahead() should be called when a page is used which 1381 * is marked as PageReadahead; this is a marker to suggest that the application 1382 * has used up enough of the readahead window that we should start pulling in 1383 * more pages. 1384 */ 1385 static inline 1386 void page_cache_async_readahead(struct address_space *mapping, 1387 struct file_ra_state *ra, struct file *file, 1388 struct folio *folio, unsigned long req_count) 1389 { 1390 DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index); 1391 page_cache_async_ra(&ractl, folio, req_count); 1392 } 1393 1394 static inline struct folio *__readahead_folio(struct readahead_control *ractl) 1395 { 1396 struct folio *folio; 1397 1398 BUG_ON(ractl->_batch_count > ractl->_nr_pages); 1399 ractl->_nr_pages -= ractl->_batch_count; 1400 ractl->_index += ractl->_batch_count; 1401 1402 if (!ractl->_nr_pages) { 1403 ractl->_batch_count = 0; 1404 return NULL; 1405 } 1406 1407 folio = xa_load(&ractl->mapping->i_pages, ractl->_index); 1408 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1409 ractl->_batch_count = folio_nr_pages(folio); 1410 1411 return folio; 1412 } 1413 1414 /** 1415 * readahead_folio - Get the next folio to read. 1416 * @ractl: The current readahead request. 1417 * 1418 * Context: The folio is locked. The caller should unlock the folio once 1419 * all I/O to that folio has completed. 1420 * Return: A pointer to the next folio, or %NULL if we are done. 1421 */ 1422 static inline struct folio *readahead_folio(struct readahead_control *ractl) 1423 { 1424 struct folio *folio = __readahead_folio(ractl); 1425 1426 if (folio) 1427 folio_put(folio); 1428 return folio; 1429 } 1430 1431 static inline unsigned int __readahead_batch(struct readahead_control *rac, 1432 struct page **array, unsigned int array_sz) 1433 { 1434 unsigned int i = 0; 1435 XA_STATE(xas, &rac->mapping->i_pages, 0); 1436 struct folio *folio; 1437 1438 BUG_ON(rac->_batch_count > rac->_nr_pages); 1439 rac->_nr_pages -= rac->_batch_count; 1440 rac->_index += rac->_batch_count; 1441 rac->_batch_count = 0; 1442 1443 xas_set(&xas, rac->_index); 1444 rcu_read_lock(); 1445 xas_for_each(&xas, folio, rac->_index + rac->_nr_pages - 1) { 1446 if (xas_retry(&xas, folio)) 1447 continue; 1448 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1449 array[i++] = folio_page(folio, 0); 1450 rac->_batch_count += folio_nr_pages(folio); 1451 if (i == array_sz) 1452 break; 1453 } 1454 rcu_read_unlock(); 1455 1456 return i; 1457 } 1458 1459 /** 1460 * readahead_pos - The byte offset into the file of this readahead request. 1461 * @rac: The readahead request. 1462 */ 1463 static inline loff_t readahead_pos(struct readahead_control *rac) 1464 { 1465 return (loff_t)rac->_index * PAGE_SIZE; 1466 } 1467 1468 /** 1469 * readahead_length - The number of bytes in this readahead request. 1470 * @rac: The readahead request. 1471 */ 1472 static inline size_t readahead_length(struct readahead_control *rac) 1473 { 1474 return rac->_nr_pages * PAGE_SIZE; 1475 } 1476 1477 /** 1478 * readahead_index - The index of the first page in this readahead request. 1479 * @rac: The readahead request. 1480 */ 1481 static inline pgoff_t readahead_index(struct readahead_control *rac) 1482 { 1483 return rac->_index; 1484 } 1485 1486 /** 1487 * readahead_count - The number of pages in this readahead request. 1488 * @rac: The readahead request. 1489 */ 1490 static inline unsigned int readahead_count(struct readahead_control *rac) 1491 { 1492 return rac->_nr_pages; 1493 } 1494 1495 /** 1496 * readahead_batch_length - The number of bytes in the current batch. 1497 * @rac: The readahead request. 1498 */ 1499 static inline size_t readahead_batch_length(struct readahead_control *rac) 1500 { 1501 return rac->_batch_count * PAGE_SIZE; 1502 } 1503 1504 static inline unsigned long dir_pages(struct inode *inode) 1505 { 1506 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1507 PAGE_SHIFT; 1508 } 1509 1510 /** 1511 * folio_mkwrite_check_truncate - check if folio was truncated 1512 * @folio: the folio to check 1513 * @inode: the inode to check the folio against 1514 * 1515 * Return: the number of bytes in the folio up to EOF, 1516 * or -EFAULT if the folio was truncated. 1517 */ 1518 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio, 1519 struct inode *inode) 1520 { 1521 loff_t size = i_size_read(inode); 1522 pgoff_t index = size >> PAGE_SHIFT; 1523 size_t offset = offset_in_folio(folio, size); 1524 1525 if (!folio->mapping) 1526 return -EFAULT; 1527 1528 /* folio is wholly inside EOF */ 1529 if (folio_next_index(folio) - 1 < index) 1530 return folio_size(folio); 1531 /* folio is wholly past EOF */ 1532 if (folio->index > index || !offset) 1533 return -EFAULT; 1534 /* folio is partially inside EOF */ 1535 return offset; 1536 } 1537 1538 /** 1539 * i_blocks_per_folio - How many blocks fit in this folio. 1540 * @inode: The inode which contains the blocks. 1541 * @folio: The folio. 1542 * 1543 * If the block size is larger than the size of this folio, return zero. 1544 * 1545 * Context: The caller should hold a refcount on the folio to prevent it 1546 * from being split. 1547 * Return: The number of filesystem blocks covered by this folio. 1548 */ 1549 static inline 1550 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio) 1551 { 1552 return folio_size(folio) >> inode->i_blkbits; 1553 } 1554 #endif /* _LINUX_PAGEMAP_H */ 1555