xref: /linux/kernel/module/main.c (revision 8877fcb70fd7ae0a4d5ac73d250dc255f7ff5a2c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 static int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 static const struct ctl_table module_sysctl_table[] = {
133 	{
134 		.procname	= "modprobe",
135 		.data		= &modprobe_path,
136 		.maxlen		= KMOD_PATH_LEN,
137 		.mode		= 0644,
138 		.proc_handler	= proc_dostring,
139 	},
140 	{
141 		.procname	= "modules_disabled",
142 		.data		= &modules_disabled,
143 		.maxlen		= sizeof(int),
144 		.mode		= 0644,
145 		/* only handle a transition from default "0" to "1" */
146 		.proc_handler	= proc_dointvec_minmax,
147 		.extra1		= SYSCTL_ONE,
148 		.extra2		= SYSCTL_ONE,
149 	},
150 };
151 
init_module_sysctl(void)152 static int __init init_module_sysctl(void)
153 {
154 	register_sysctl_init("kernel", module_sysctl_table);
155 	return 0;
156 }
157 
158 subsys_initcall(init_module_sysctl);
159 
160 /* Waiting for a module to finish initializing? */
161 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
162 
163 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
164 
register_module_notifier(struct notifier_block * nb)165 int register_module_notifier(struct notifier_block *nb)
166 {
167 	return blocking_notifier_chain_register(&module_notify_list, nb);
168 }
169 EXPORT_SYMBOL(register_module_notifier);
170 
unregister_module_notifier(struct notifier_block * nb)171 int unregister_module_notifier(struct notifier_block *nb)
172 {
173 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
174 }
175 EXPORT_SYMBOL(unregister_module_notifier);
176 
177 /*
178  * We require a truly strong try_module_get(): 0 means success.
179  * Otherwise an error is returned due to ongoing or failed
180  * initialization etc.
181  */
strong_try_module_get(struct module * mod)182 static inline int strong_try_module_get(struct module *mod)
183 {
184 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
185 	if (mod && mod->state == MODULE_STATE_COMING)
186 		return -EBUSY;
187 	if (try_module_get(mod))
188 		return 0;
189 	else
190 		return -ENOENT;
191 }
192 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)193 static inline void add_taint_module(struct module *mod, unsigned flag,
194 				    enum lockdep_ok lockdep_ok)
195 {
196 	add_taint(flag, lockdep_ok);
197 	set_bit(flag, &mod->taints);
198 }
199 
200 /*
201  * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
202  */
mod_strncmp(const char * str_a,const char * str_b,size_t n)203 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
204 {
205 	for (int i = 0; i < n; i++) {
206 		char a = str_a[i];
207 		char b = str_b[i];
208 		int d;
209 
210 		if (a == '-') a = '_';
211 		if (b == '-') b = '_';
212 
213 		d = a - b;
214 		if (d)
215 			return d;
216 
217 		if (!a)
218 			break;
219 	}
220 
221 	return 0;
222 }
223 
224 /*
225  * A thread that wants to hold a reference to a module only while it
226  * is running can call this to safely exit.
227  */
__module_put_and_kthread_exit(struct module * mod,long code)228 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
229 {
230 	module_put(mod);
231 	kthread_exit(code);
232 }
233 EXPORT_SYMBOL(__module_put_and_kthread_exit);
234 
235 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)236 static unsigned int find_sec(const struct load_info *info, const char *name)
237 {
238 	unsigned int i;
239 
240 	for (i = 1; i < info->hdr->e_shnum; i++) {
241 		Elf_Shdr *shdr = &info->sechdrs[i];
242 		/* Alloc bit cleared means "ignore it." */
243 		if ((shdr->sh_flags & SHF_ALLOC)
244 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
245 			return i;
246 	}
247 	return 0;
248 }
249 
250 /**
251  * find_any_unique_sec() - Find a unique section index by name
252  * @info: Load info for the module to scan
253  * @name: Name of the section we're looking for
254  *
255  * Locates a unique section by name. Ignores SHF_ALLOC.
256  *
257  * Return: Section index if found uniquely, zero if absent, negative count
258  *         of total instances if multiple were found.
259  */
find_any_unique_sec(const struct load_info * info,const char * name)260 static int find_any_unique_sec(const struct load_info *info, const char *name)
261 {
262 	unsigned int idx;
263 	unsigned int count = 0;
264 	int i;
265 
266 	for (i = 1; i < info->hdr->e_shnum; i++) {
267 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
268 			   name) == 0) {
269 			count++;
270 			idx = i;
271 		}
272 	}
273 	if (count == 1) {
274 		return idx;
275 	} else if (count == 0) {
276 		return 0;
277 	} else {
278 		return -count;
279 	}
280 }
281 
282 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)283 static void *section_addr(const struct load_info *info, const char *name)
284 {
285 	/* Section 0 has sh_addr 0. */
286 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
287 }
288 
289 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)290 static void *section_objs(const struct load_info *info,
291 			  const char *name,
292 			  size_t object_size,
293 			  unsigned int *num)
294 {
295 	unsigned int sec = find_sec(info, name);
296 
297 	/* Section 0 has sh_addr 0 and sh_size 0. */
298 	*num = info->sechdrs[sec].sh_size / object_size;
299 	return (void *)info->sechdrs[sec].sh_addr;
300 }
301 
302 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)303 static unsigned int find_any_sec(const struct load_info *info, const char *name)
304 {
305 	unsigned int i;
306 
307 	for (i = 1; i < info->hdr->e_shnum; i++) {
308 		Elf_Shdr *shdr = &info->sechdrs[i];
309 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
310 			return i;
311 	}
312 	return 0;
313 }
314 
315 /*
316  * Find a module section, or NULL. Fill in number of "objects" in section.
317  * Ignores SHF_ALLOC flag.
318  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)319 static __maybe_unused void *any_section_objs(const struct load_info *info,
320 					     const char *name,
321 					     size_t object_size,
322 					     unsigned int *num)
323 {
324 	unsigned int sec = find_any_sec(info, name);
325 
326 	/* Section 0 has sh_addr 0 and sh_size 0. */
327 	*num = info->sechdrs[sec].sh_size / object_size;
328 	return (void *)info->sechdrs[sec].sh_addr;
329 }
330 
331 #ifndef CONFIG_MODVERSIONS
332 #define symversion(base, idx) NULL
333 #else
334 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
335 #endif
336 
kernel_symbol_name(const struct kernel_symbol * sym)337 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
338 {
339 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
340 	return offset_to_ptr(&sym->name_offset);
341 #else
342 	return sym->name;
343 #endif
344 }
345 
kernel_symbol_namespace(const struct kernel_symbol * sym)346 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
347 {
348 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
349 	if (!sym->namespace_offset)
350 		return NULL;
351 	return offset_to_ptr(&sym->namespace_offset);
352 #else
353 	return sym->namespace;
354 #endif
355 }
356 
cmp_name(const void * name,const void * sym)357 int cmp_name(const void *name, const void *sym)
358 {
359 	return strcmp(name, kernel_symbol_name(sym));
360 }
361 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)362 static bool find_exported_symbol_in_section(const struct symsearch *syms,
363 					    struct module *owner,
364 					    struct find_symbol_arg *fsa)
365 {
366 	struct kernel_symbol *sym;
367 
368 	if (!fsa->gplok && syms->license == GPL_ONLY)
369 		return false;
370 
371 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
372 			sizeof(struct kernel_symbol), cmp_name);
373 	if (!sym)
374 		return false;
375 
376 	fsa->owner = owner;
377 	fsa->crc = symversion(syms->crcs, sym - syms->start);
378 	fsa->sym = sym;
379 	fsa->license = syms->license;
380 
381 	return true;
382 }
383 
384 /*
385  * Find an exported symbol and return it, along with, (optional) crc and
386  * (optional) module which owns it. Needs RCU or module_mutex.
387  */
find_symbol(struct find_symbol_arg * fsa)388 bool find_symbol(struct find_symbol_arg *fsa)
389 {
390 	static const struct symsearch arr[] = {
391 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
392 		  NOT_GPL_ONLY },
393 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
394 		  __start___kcrctab_gpl,
395 		  GPL_ONLY },
396 	};
397 	struct module *mod;
398 	unsigned int i;
399 
400 	for (i = 0; i < ARRAY_SIZE(arr); i++)
401 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
402 			return true;
403 
404 	list_for_each_entry_rcu(mod, &modules, list,
405 				lockdep_is_held(&module_mutex)) {
406 		struct symsearch arr[] = {
407 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
408 			  NOT_GPL_ONLY },
409 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
410 			  mod->gpl_crcs,
411 			  GPL_ONLY },
412 		};
413 
414 		if (mod->state == MODULE_STATE_UNFORMED)
415 			continue;
416 
417 		for (i = 0; i < ARRAY_SIZE(arr); i++)
418 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
419 				return true;
420 	}
421 
422 	pr_debug("Failed to find symbol %s\n", fsa->name);
423 	return false;
424 }
425 
426 /*
427  * Search for module by name: must hold module_mutex (or RCU for read-only
428  * access).
429  */
find_module_all(const char * name,size_t len,bool even_unformed)430 struct module *find_module_all(const char *name, size_t len,
431 			       bool even_unformed)
432 {
433 	struct module *mod;
434 
435 	list_for_each_entry_rcu(mod, &modules, list,
436 				lockdep_is_held(&module_mutex)) {
437 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
438 			continue;
439 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
440 			return mod;
441 	}
442 	return NULL;
443 }
444 
find_module(const char * name)445 struct module *find_module(const char *name)
446 {
447 	return find_module_all(name, strlen(name), false);
448 }
449 
450 #ifdef CONFIG_SMP
451 
mod_percpu(struct module * mod)452 static inline void __percpu *mod_percpu(struct module *mod)
453 {
454 	return mod->percpu;
455 }
456 
percpu_modalloc(struct module * mod,struct load_info * info)457 static int percpu_modalloc(struct module *mod, struct load_info *info)
458 {
459 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
460 	unsigned long align = pcpusec->sh_addralign;
461 
462 	if (!pcpusec->sh_size)
463 		return 0;
464 
465 	if (align > PAGE_SIZE) {
466 		pr_warn("%s: per-cpu alignment %li > %li\n",
467 			mod->name, align, PAGE_SIZE);
468 		align = PAGE_SIZE;
469 	}
470 
471 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
472 	if (!mod->percpu) {
473 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
474 			mod->name, (unsigned long)pcpusec->sh_size);
475 		return -ENOMEM;
476 	}
477 	mod->percpu_size = pcpusec->sh_size;
478 	return 0;
479 }
480 
percpu_modfree(struct module * mod)481 static void percpu_modfree(struct module *mod)
482 {
483 	free_percpu(mod->percpu);
484 }
485 
find_pcpusec(struct load_info * info)486 static unsigned int find_pcpusec(struct load_info *info)
487 {
488 	return find_sec(info, ".data..percpu");
489 }
490 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)491 static void percpu_modcopy(struct module *mod,
492 			   const void *from, unsigned long size)
493 {
494 	int cpu;
495 
496 	for_each_possible_cpu(cpu)
497 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
498 }
499 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)500 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
501 {
502 	struct module *mod;
503 	unsigned int cpu;
504 
505 	guard(rcu)();
506 	list_for_each_entry_rcu(mod, &modules, list) {
507 		if (mod->state == MODULE_STATE_UNFORMED)
508 			continue;
509 		if (!mod->percpu_size)
510 			continue;
511 		for_each_possible_cpu(cpu) {
512 			void *start = per_cpu_ptr(mod->percpu, cpu);
513 			void *va = (void *)addr;
514 
515 			if (va >= start && va < start + mod->percpu_size) {
516 				if (can_addr) {
517 					*can_addr = (unsigned long) (va - start);
518 					*can_addr += (unsigned long)
519 						per_cpu_ptr(mod->percpu,
520 							    get_boot_cpu_id());
521 				}
522 				return true;
523 			}
524 		}
525 	}
526 	return false;
527 }
528 
529 /**
530  * is_module_percpu_address() - test whether address is from module static percpu
531  * @addr: address to test
532  *
533  * Test whether @addr belongs to module static percpu area.
534  *
535  * Return: %true if @addr is from module static percpu area
536  */
is_module_percpu_address(unsigned long addr)537 bool is_module_percpu_address(unsigned long addr)
538 {
539 	return __is_module_percpu_address(addr, NULL);
540 }
541 
542 #else /* ... !CONFIG_SMP */
543 
mod_percpu(struct module * mod)544 static inline void __percpu *mod_percpu(struct module *mod)
545 {
546 	return NULL;
547 }
percpu_modalloc(struct module * mod,struct load_info * info)548 static int percpu_modalloc(struct module *mod, struct load_info *info)
549 {
550 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
551 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
552 		return -ENOMEM;
553 	return 0;
554 }
percpu_modfree(struct module * mod)555 static inline void percpu_modfree(struct module *mod)
556 {
557 }
find_pcpusec(struct load_info * info)558 static unsigned int find_pcpusec(struct load_info *info)
559 {
560 	return 0;
561 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)562 static inline void percpu_modcopy(struct module *mod,
563 				  const void *from, unsigned long size)
564 {
565 	/* pcpusec should be 0, and size of that section should be 0. */
566 	BUG_ON(size != 0);
567 }
is_module_percpu_address(unsigned long addr)568 bool is_module_percpu_address(unsigned long addr)
569 {
570 	return false;
571 }
572 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)573 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
574 {
575 	return false;
576 }
577 
578 #endif /* CONFIG_SMP */
579 
580 #define MODINFO_ATTR(field)	\
581 static void setup_modinfo_##field(struct module *mod, const char *s)  \
582 {                                                                     \
583 	mod->field = kstrdup(s, GFP_KERNEL);                          \
584 }                                                                     \
585 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
586 			struct module_kobject *mk, char *buffer)      \
587 {                                                                     \
588 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
589 }                                                                     \
590 static int modinfo_##field##_exists(struct module *mod)               \
591 {                                                                     \
592 	return mod->field != NULL;                                    \
593 }                                                                     \
594 static void free_modinfo_##field(struct module *mod)                  \
595 {                                                                     \
596 	kfree(mod->field);                                            \
597 	mod->field = NULL;                                            \
598 }                                                                     \
599 static const struct module_attribute modinfo_##field = {              \
600 	.attr = { .name = __stringify(field), .mode = 0444 },         \
601 	.show = show_modinfo_##field,                                 \
602 	.setup = setup_modinfo_##field,                               \
603 	.test = modinfo_##field##_exists,                             \
604 	.free = free_modinfo_##field,                                 \
605 };
606 
607 MODINFO_ATTR(version);
608 MODINFO_ATTR(srcversion);
609 
610 static struct {
611 	char name[MODULE_NAME_LEN];
612 	char taints[MODULE_FLAGS_BUF_SIZE];
613 } last_unloaded_module;
614 
615 #ifdef CONFIG_MODULE_UNLOAD
616 
617 EXPORT_TRACEPOINT_SYMBOL(module_get);
618 
619 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
620 #define MODULE_REF_BASE	1
621 
622 /* Init the unload section of the module. */
module_unload_init(struct module * mod)623 static int module_unload_init(struct module *mod)
624 {
625 	/*
626 	 * Initialize reference counter to MODULE_REF_BASE.
627 	 * refcnt == 0 means module is going.
628 	 */
629 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
630 
631 	INIT_LIST_HEAD(&mod->source_list);
632 	INIT_LIST_HEAD(&mod->target_list);
633 
634 	/* Hold reference count during initialization. */
635 	atomic_inc(&mod->refcnt);
636 
637 	return 0;
638 }
639 
640 /* Does a already use b? */
already_uses(struct module * a,struct module * b)641 static int already_uses(struct module *a, struct module *b)
642 {
643 	struct module_use *use;
644 
645 	list_for_each_entry(use, &b->source_list, source_list) {
646 		if (use->source == a)
647 			return 1;
648 	}
649 	pr_debug("%s does not use %s!\n", a->name, b->name);
650 	return 0;
651 }
652 
653 /*
654  * Module a uses b
655  *  - we add 'a' as a "source", 'b' as a "target" of module use
656  *  - the module_use is added to the list of 'b' sources (so
657  *    'b' can walk the list to see who sourced them), and of 'a'
658  *    targets (so 'a' can see what modules it targets).
659  */
add_module_usage(struct module * a,struct module * b)660 static int add_module_usage(struct module *a, struct module *b)
661 {
662 	struct module_use *use;
663 
664 	pr_debug("Allocating new usage for %s.\n", a->name);
665 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
666 	if (!use)
667 		return -ENOMEM;
668 
669 	use->source = a;
670 	use->target = b;
671 	list_add(&use->source_list, &b->source_list);
672 	list_add(&use->target_list, &a->target_list);
673 	return 0;
674 }
675 
676 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)677 static int ref_module(struct module *a, struct module *b)
678 {
679 	int err;
680 
681 	if (b == NULL || already_uses(a, b))
682 		return 0;
683 
684 	/* If module isn't available, we fail. */
685 	err = strong_try_module_get(b);
686 	if (err)
687 		return err;
688 
689 	err = add_module_usage(a, b);
690 	if (err) {
691 		module_put(b);
692 		return err;
693 	}
694 	return 0;
695 }
696 
697 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)698 static void module_unload_free(struct module *mod)
699 {
700 	struct module_use *use, *tmp;
701 
702 	mutex_lock(&module_mutex);
703 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
704 		struct module *i = use->target;
705 		pr_debug("%s unusing %s\n", mod->name, i->name);
706 		module_put(i);
707 		list_del(&use->source_list);
708 		list_del(&use->target_list);
709 		kfree(use);
710 	}
711 	mutex_unlock(&module_mutex);
712 }
713 
714 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)715 static inline int try_force_unload(unsigned int flags)
716 {
717 	int ret = (flags & O_TRUNC);
718 	if (ret)
719 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
720 	return ret;
721 }
722 #else
try_force_unload(unsigned int flags)723 static inline int try_force_unload(unsigned int flags)
724 {
725 	return 0;
726 }
727 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
728 
729 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)730 static int try_release_module_ref(struct module *mod)
731 {
732 	int ret;
733 
734 	/* Try to decrement refcnt which we set at loading */
735 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
736 	BUG_ON(ret < 0);
737 	if (ret)
738 		/* Someone can put this right now, recover with checking */
739 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
740 
741 	return ret;
742 }
743 
try_stop_module(struct module * mod,int flags,int * forced)744 static int try_stop_module(struct module *mod, int flags, int *forced)
745 {
746 	/* If it's not unused, quit unless we're forcing. */
747 	if (try_release_module_ref(mod) != 0) {
748 		*forced = try_force_unload(flags);
749 		if (!(*forced))
750 			return -EWOULDBLOCK;
751 	}
752 
753 	/* Mark it as dying. */
754 	mod->state = MODULE_STATE_GOING;
755 
756 	return 0;
757 }
758 
759 /**
760  * module_refcount() - return the refcount or -1 if unloading
761  * @mod:	the module we're checking
762  *
763  * Return:
764  *	-1 if the module is in the process of unloading
765  *	otherwise the number of references in the kernel to the module
766  */
module_refcount(struct module * mod)767 int module_refcount(struct module *mod)
768 {
769 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
770 }
771 EXPORT_SYMBOL(module_refcount);
772 
773 /* This exists whether we can unload or not */
774 static void free_module(struct module *mod);
775 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)776 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
777 		unsigned int, flags)
778 {
779 	struct module *mod;
780 	char name[MODULE_NAME_LEN];
781 	char buf[MODULE_FLAGS_BUF_SIZE];
782 	int ret, len, forced = 0;
783 
784 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
785 		return -EPERM;
786 
787 	len = strncpy_from_user(name, name_user, MODULE_NAME_LEN);
788 	if (len == 0 || len == MODULE_NAME_LEN)
789 		return -ENOENT;
790 	if (len < 0)
791 		return len;
792 
793 	audit_log_kern_module(name);
794 
795 	if (mutex_lock_interruptible(&module_mutex) != 0)
796 		return -EINTR;
797 
798 	mod = find_module(name);
799 	if (!mod) {
800 		ret = -ENOENT;
801 		goto out;
802 	}
803 
804 	if (!list_empty(&mod->source_list)) {
805 		/* Other modules depend on us: get rid of them first. */
806 		ret = -EWOULDBLOCK;
807 		goto out;
808 	}
809 
810 	/* Doing init or already dying? */
811 	if (mod->state != MODULE_STATE_LIVE) {
812 		/* FIXME: if (force), slam module count damn the torpedoes */
813 		pr_debug("%s already dying\n", mod->name);
814 		ret = -EBUSY;
815 		goto out;
816 	}
817 
818 	/* If it has an init func, it must have an exit func to unload */
819 	if (mod->init && !mod->exit) {
820 		forced = try_force_unload(flags);
821 		if (!forced) {
822 			/* This module can't be removed */
823 			ret = -EBUSY;
824 			goto out;
825 		}
826 	}
827 
828 	ret = try_stop_module(mod, flags, &forced);
829 	if (ret != 0)
830 		goto out;
831 
832 	mutex_unlock(&module_mutex);
833 	/* Final destruction now no one is using it. */
834 	if (mod->exit != NULL)
835 		mod->exit();
836 	blocking_notifier_call_chain(&module_notify_list,
837 				     MODULE_STATE_GOING, mod);
838 	klp_module_going(mod);
839 	ftrace_release_mod(mod);
840 
841 	async_synchronize_full();
842 
843 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
844 	strscpy(last_unloaded_module.name, mod->name);
845 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
846 
847 	free_module(mod);
848 	/* someone could wait for the module in add_unformed_module() */
849 	wake_up_all(&module_wq);
850 	return 0;
851 out:
852 	mutex_unlock(&module_mutex);
853 	return ret;
854 }
855 
__symbol_put(const char * symbol)856 void __symbol_put(const char *symbol)
857 {
858 	struct find_symbol_arg fsa = {
859 		.name	= symbol,
860 		.gplok	= true,
861 	};
862 
863 	guard(rcu)();
864 	BUG_ON(!find_symbol(&fsa));
865 	module_put(fsa.owner);
866 }
867 EXPORT_SYMBOL(__symbol_put);
868 
869 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)870 void symbol_put_addr(void *addr)
871 {
872 	struct module *modaddr;
873 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
874 
875 	if (core_kernel_text(a))
876 		return;
877 
878 	/*
879 	 * Even though we hold a reference on the module; we still need to
880 	 * RCU read section in order to safely traverse the data structure.
881 	 */
882 	guard(rcu)();
883 	modaddr = __module_text_address(a);
884 	BUG_ON(!modaddr);
885 	module_put(modaddr);
886 }
887 EXPORT_SYMBOL_GPL(symbol_put_addr);
888 
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)889 static ssize_t show_refcnt(const struct module_attribute *mattr,
890 			   struct module_kobject *mk, char *buffer)
891 {
892 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
893 }
894 
895 static const struct module_attribute modinfo_refcnt =
896 	__ATTR(refcnt, 0444, show_refcnt, NULL);
897 
__module_get(struct module * module)898 void __module_get(struct module *module)
899 {
900 	if (module) {
901 		atomic_inc(&module->refcnt);
902 		trace_module_get(module, _RET_IP_);
903 	}
904 }
905 EXPORT_SYMBOL(__module_get);
906 
try_module_get(struct module * module)907 bool try_module_get(struct module *module)
908 {
909 	bool ret = true;
910 
911 	if (module) {
912 		/* Note: here, we can fail to get a reference */
913 		if (likely(module_is_live(module) &&
914 			   atomic_inc_not_zero(&module->refcnt) != 0))
915 			trace_module_get(module, _RET_IP_);
916 		else
917 			ret = false;
918 	}
919 	return ret;
920 }
921 EXPORT_SYMBOL(try_module_get);
922 
module_put(struct module * module)923 void module_put(struct module *module)
924 {
925 	int ret;
926 
927 	if (module) {
928 		ret = atomic_dec_if_positive(&module->refcnt);
929 		WARN_ON(ret < 0);	/* Failed to put refcount */
930 		trace_module_put(module, _RET_IP_);
931 	}
932 }
933 EXPORT_SYMBOL(module_put);
934 
935 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)936 static inline void module_unload_free(struct module *mod)
937 {
938 }
939 
ref_module(struct module * a,struct module * b)940 static int ref_module(struct module *a, struct module *b)
941 {
942 	return strong_try_module_get(b);
943 }
944 
module_unload_init(struct module * mod)945 static inline int module_unload_init(struct module *mod)
946 {
947 	return 0;
948 }
949 #endif /* CONFIG_MODULE_UNLOAD */
950 
module_flags_taint(unsigned long taints,char * buf)951 size_t module_flags_taint(unsigned long taints, char *buf)
952 {
953 	size_t l = 0;
954 	int i;
955 
956 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
957 		if (taint_flags[i].module && test_bit(i, &taints))
958 			buf[l++] = taint_flags[i].c_true;
959 	}
960 
961 	return l;
962 }
963 
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)964 static ssize_t show_initstate(const struct module_attribute *mattr,
965 			      struct module_kobject *mk, char *buffer)
966 {
967 	const char *state = "unknown";
968 
969 	switch (mk->mod->state) {
970 	case MODULE_STATE_LIVE:
971 		state = "live";
972 		break;
973 	case MODULE_STATE_COMING:
974 		state = "coming";
975 		break;
976 	case MODULE_STATE_GOING:
977 		state = "going";
978 		break;
979 	default:
980 		BUG();
981 	}
982 	return sprintf(buffer, "%s\n", state);
983 }
984 
985 static const struct module_attribute modinfo_initstate =
986 	__ATTR(initstate, 0444, show_initstate, NULL);
987 
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)988 static ssize_t store_uevent(const struct module_attribute *mattr,
989 			    struct module_kobject *mk,
990 			    const char *buffer, size_t count)
991 {
992 	int rc;
993 
994 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
995 	return rc ? rc : count;
996 }
997 
998 const struct module_attribute module_uevent =
999 	__ATTR(uevent, 0200, NULL, store_uevent);
1000 
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1001 static ssize_t show_coresize(const struct module_attribute *mattr,
1002 			     struct module_kobject *mk, char *buffer)
1003 {
1004 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
1005 
1006 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
1007 		for_class_mod_mem_type(type, core_data)
1008 			size += mk->mod->mem[type].size;
1009 	}
1010 	return sprintf(buffer, "%u\n", size);
1011 }
1012 
1013 static const struct module_attribute modinfo_coresize =
1014 	__ATTR(coresize, 0444, show_coresize, NULL);
1015 
1016 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1017 static ssize_t show_datasize(const struct module_attribute *mattr,
1018 			     struct module_kobject *mk, char *buffer)
1019 {
1020 	unsigned int size = 0;
1021 
1022 	for_class_mod_mem_type(type, core_data)
1023 		size += mk->mod->mem[type].size;
1024 	return sprintf(buffer, "%u\n", size);
1025 }
1026 
1027 static const struct module_attribute modinfo_datasize =
1028 	__ATTR(datasize, 0444, show_datasize, NULL);
1029 #endif
1030 
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1031 static ssize_t show_initsize(const struct module_attribute *mattr,
1032 			     struct module_kobject *mk, char *buffer)
1033 {
1034 	unsigned int size = 0;
1035 
1036 	for_class_mod_mem_type(type, init)
1037 		size += mk->mod->mem[type].size;
1038 	return sprintf(buffer, "%u\n", size);
1039 }
1040 
1041 static const struct module_attribute modinfo_initsize =
1042 	__ATTR(initsize, 0444, show_initsize, NULL);
1043 
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1044 static ssize_t show_taint(const struct module_attribute *mattr,
1045 			  struct module_kobject *mk, char *buffer)
1046 {
1047 	size_t l;
1048 
1049 	l = module_flags_taint(mk->mod->taints, buffer);
1050 	buffer[l++] = '\n';
1051 	return l;
1052 }
1053 
1054 static const struct module_attribute modinfo_taint =
1055 	__ATTR(taint, 0444, show_taint, NULL);
1056 
1057 const struct module_attribute *const modinfo_attrs[] = {
1058 	&module_uevent,
1059 	&modinfo_version,
1060 	&modinfo_srcversion,
1061 	&modinfo_initstate,
1062 	&modinfo_coresize,
1063 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1064 	&modinfo_datasize,
1065 #endif
1066 	&modinfo_initsize,
1067 	&modinfo_taint,
1068 #ifdef CONFIG_MODULE_UNLOAD
1069 	&modinfo_refcnt,
1070 #endif
1071 	NULL,
1072 };
1073 
1074 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1075 
1076 static const char vermagic[] = VERMAGIC_STRING;
1077 
try_to_force_load(struct module * mod,const char * reason)1078 int try_to_force_load(struct module *mod, const char *reason)
1079 {
1080 #ifdef CONFIG_MODULE_FORCE_LOAD
1081 	if (!test_taint(TAINT_FORCED_MODULE))
1082 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1083 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1084 	return 0;
1085 #else
1086 	return -ENOEXEC;
1087 #endif
1088 }
1089 
1090 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1091 char *module_next_tag_pair(char *string, unsigned long *secsize)
1092 {
1093 	/* Skip non-zero chars */
1094 	while (string[0]) {
1095 		string++;
1096 		if ((*secsize)-- <= 1)
1097 			return NULL;
1098 	}
1099 
1100 	/* Skip any zero padding. */
1101 	while (!string[0]) {
1102 		string++;
1103 		if ((*secsize)-- <= 1)
1104 			return NULL;
1105 	}
1106 	return string;
1107 }
1108 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1109 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1110 			      char *prev)
1111 {
1112 	char *p;
1113 	unsigned int taglen = strlen(tag);
1114 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1115 	unsigned long size = infosec->sh_size;
1116 
1117 	/*
1118 	 * get_modinfo() calls made before rewrite_section_headers()
1119 	 * must use sh_offset, as sh_addr isn't set!
1120 	 */
1121 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1122 
1123 	if (prev) {
1124 		size -= prev - modinfo;
1125 		modinfo = module_next_tag_pair(prev, &size);
1126 	}
1127 
1128 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1129 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1130 			return p + taglen + 1;
1131 	}
1132 	return NULL;
1133 }
1134 
get_modinfo(const struct load_info * info,const char * tag)1135 static char *get_modinfo(const struct load_info *info, const char *tag)
1136 {
1137 	return get_next_modinfo(info, tag, NULL);
1138 }
1139 
1140 /**
1141  * verify_module_namespace() - does @modname have access to this symbol's @namespace
1142  * @namespace: export symbol namespace
1143  * @modname: module name
1144  *
1145  * If @namespace is prefixed with "module:" to indicate it is a module namespace
1146  * then test if @modname matches any of the comma separated patterns.
1147  *
1148  * The patterns only support tail-glob.
1149  */
verify_module_namespace(const char * namespace,const char * modname)1150 static bool verify_module_namespace(const char *namespace, const char *modname)
1151 {
1152 	size_t len, modlen = strlen(modname);
1153 	const char *prefix = "module:";
1154 	const char *sep;
1155 	bool glob;
1156 
1157 	if (!strstarts(namespace, prefix))
1158 		return false;
1159 
1160 	for (namespace += strlen(prefix); *namespace; namespace = sep) {
1161 		sep = strchrnul(namespace, ',');
1162 		len = sep - namespace;
1163 
1164 		glob = false;
1165 		if (sep[-1] == '*') {
1166 			len--;
1167 			glob = true;
1168 		}
1169 
1170 		if (*sep)
1171 			sep++;
1172 
1173 		if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1174 			return true;
1175 	}
1176 
1177 	return false;
1178 }
1179 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1180 static int verify_namespace_is_imported(const struct load_info *info,
1181 					const struct kernel_symbol *sym,
1182 					struct module *mod)
1183 {
1184 	const char *namespace;
1185 	char *imported_namespace;
1186 
1187 	namespace = kernel_symbol_namespace(sym);
1188 	if (namespace && namespace[0]) {
1189 
1190 		if (verify_module_namespace(namespace, mod->name))
1191 			return 0;
1192 
1193 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1194 			if (strcmp(namespace, imported_namespace) == 0)
1195 				return 0;
1196 		}
1197 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1198 		pr_warn(
1199 #else
1200 		pr_err(
1201 #endif
1202 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1203 			mod->name, kernel_symbol_name(sym), namespace);
1204 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1205 		return -EINVAL;
1206 #endif
1207 	}
1208 	return 0;
1209 }
1210 
inherit_taint(struct module * mod,struct module * owner,const char * name)1211 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1212 {
1213 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1214 		return true;
1215 
1216 	if (mod->using_gplonly_symbols) {
1217 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1218 			mod->name, name, owner->name);
1219 		return false;
1220 	}
1221 
1222 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1223 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1224 			mod->name, name, owner->name);
1225 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1226 	}
1227 	return true;
1228 }
1229 
1230 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1231 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1232 						  const struct load_info *info,
1233 						  const char *name,
1234 						  char ownername[])
1235 {
1236 	struct find_symbol_arg fsa = {
1237 		.name	= name,
1238 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1239 		.warn	= true,
1240 	};
1241 	int err;
1242 
1243 	/*
1244 	 * The module_mutex should not be a heavily contended lock;
1245 	 * if we get the occasional sleep here, we'll go an extra iteration
1246 	 * in the wait_event_interruptible(), which is harmless.
1247 	 */
1248 	sched_annotate_sleep();
1249 	mutex_lock(&module_mutex);
1250 	if (!find_symbol(&fsa))
1251 		goto unlock;
1252 
1253 	if (fsa.license == GPL_ONLY)
1254 		mod->using_gplonly_symbols = true;
1255 
1256 	if (!inherit_taint(mod, fsa.owner, name)) {
1257 		fsa.sym = NULL;
1258 		goto getname;
1259 	}
1260 
1261 	if (!check_version(info, name, mod, fsa.crc)) {
1262 		fsa.sym = ERR_PTR(-EINVAL);
1263 		goto getname;
1264 	}
1265 
1266 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1267 	if (err) {
1268 		fsa.sym = ERR_PTR(err);
1269 		goto getname;
1270 	}
1271 
1272 	err = ref_module(mod, fsa.owner);
1273 	if (err) {
1274 		fsa.sym = ERR_PTR(err);
1275 		goto getname;
1276 	}
1277 
1278 getname:
1279 	/* We must make copy under the lock if we failed to get ref. */
1280 	strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1281 unlock:
1282 	mutex_unlock(&module_mutex);
1283 	return fsa.sym;
1284 }
1285 
1286 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1287 resolve_symbol_wait(struct module *mod,
1288 		    const struct load_info *info,
1289 		    const char *name)
1290 {
1291 	const struct kernel_symbol *ksym;
1292 	char owner[MODULE_NAME_LEN];
1293 
1294 	if (wait_event_interruptible_timeout(module_wq,
1295 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1296 			|| PTR_ERR(ksym) != -EBUSY,
1297 					     30 * HZ) <= 0) {
1298 		pr_warn("%s: gave up waiting for init of module %s.\n",
1299 			mod->name, owner);
1300 	}
1301 	return ksym;
1302 }
1303 
module_arch_cleanup(struct module * mod)1304 void __weak module_arch_cleanup(struct module *mod)
1305 {
1306 }
1307 
module_arch_freeing_init(struct module * mod)1308 void __weak module_arch_freeing_init(struct module *mod)
1309 {
1310 }
1311 
module_memory_alloc(struct module * mod,enum mod_mem_type type)1312 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1313 {
1314 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1315 	enum execmem_type execmem_type;
1316 	void *ptr;
1317 
1318 	mod->mem[type].size = size;
1319 
1320 	if (mod_mem_type_is_data(type))
1321 		execmem_type = EXECMEM_MODULE_DATA;
1322 	else
1323 		execmem_type = EXECMEM_MODULE_TEXT;
1324 
1325 	ptr = execmem_alloc(execmem_type, size);
1326 	if (!ptr)
1327 		return -ENOMEM;
1328 
1329 	if (execmem_is_rox(execmem_type)) {
1330 		int err = execmem_make_temp_rw(ptr, size);
1331 
1332 		if (err) {
1333 			execmem_free(ptr);
1334 			return -ENOMEM;
1335 		}
1336 
1337 		mod->mem[type].is_rox = true;
1338 	}
1339 
1340 	/*
1341 	 * The pointer to these blocks of memory are stored on the module
1342 	 * structure and we keep that around so long as the module is
1343 	 * around. We only free that memory when we unload the module.
1344 	 * Just mark them as not being a leak then. The .init* ELF
1345 	 * sections *do* get freed after boot so we *could* treat them
1346 	 * slightly differently with kmemleak_ignore() and only grey
1347 	 * them out as they work as typical memory allocations which
1348 	 * *do* eventually get freed, but let's just keep things simple
1349 	 * and avoid *any* false positives.
1350 	 */
1351 	if (!mod->mem[type].is_rox)
1352 		kmemleak_not_leak(ptr);
1353 
1354 	memset(ptr, 0, size);
1355 	mod->mem[type].base = ptr;
1356 
1357 	return 0;
1358 }
1359 
module_memory_restore_rox(struct module * mod)1360 static void module_memory_restore_rox(struct module *mod)
1361 {
1362 	for_class_mod_mem_type(type, text) {
1363 		struct module_memory *mem = &mod->mem[type];
1364 
1365 		if (mem->is_rox)
1366 			execmem_restore_rox(mem->base, mem->size);
1367 	}
1368 }
1369 
module_memory_free(struct module * mod,enum mod_mem_type type)1370 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1371 {
1372 	struct module_memory *mem = &mod->mem[type];
1373 
1374 	execmem_free(mem->base);
1375 }
1376 
free_mod_mem(struct module * mod)1377 static void free_mod_mem(struct module *mod)
1378 {
1379 	for_each_mod_mem_type(type) {
1380 		struct module_memory *mod_mem = &mod->mem[type];
1381 
1382 		if (type == MOD_DATA)
1383 			continue;
1384 
1385 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1386 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1387 		if (mod_mem->size)
1388 			module_memory_free(mod, type);
1389 	}
1390 
1391 	/* MOD_DATA hosts mod, so free it at last */
1392 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1393 	module_memory_free(mod, MOD_DATA);
1394 }
1395 
1396 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1397 static void free_module(struct module *mod)
1398 {
1399 	trace_module_free(mod);
1400 
1401 	codetag_unload_module(mod);
1402 
1403 	mod_sysfs_teardown(mod);
1404 
1405 	/*
1406 	 * We leave it in list to prevent duplicate loads, but make sure
1407 	 * that noone uses it while it's being deconstructed.
1408 	 */
1409 	mutex_lock(&module_mutex);
1410 	mod->state = MODULE_STATE_UNFORMED;
1411 	mutex_unlock(&module_mutex);
1412 
1413 	/* Arch-specific cleanup. */
1414 	module_arch_cleanup(mod);
1415 
1416 	/* Module unload stuff */
1417 	module_unload_free(mod);
1418 
1419 	/* Free any allocated parameters. */
1420 	destroy_params(mod->kp, mod->num_kp);
1421 
1422 	if (is_livepatch_module(mod))
1423 		free_module_elf(mod);
1424 
1425 	/* Now we can delete it from the lists */
1426 	mutex_lock(&module_mutex);
1427 	/* Unlink carefully: kallsyms could be walking list. */
1428 	list_del_rcu(&mod->list);
1429 	mod_tree_remove(mod);
1430 	/* Remove this module from bug list, this uses list_del_rcu */
1431 	module_bug_cleanup(mod);
1432 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1433 	synchronize_rcu();
1434 	if (try_add_tainted_module(mod))
1435 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1436 		       mod->name);
1437 	mutex_unlock(&module_mutex);
1438 
1439 	/* This may be empty, but that's OK */
1440 	module_arch_freeing_init(mod);
1441 	kfree(mod->args);
1442 	percpu_modfree(mod);
1443 
1444 	free_mod_mem(mod);
1445 }
1446 
__symbol_get(const char * symbol)1447 void *__symbol_get(const char *symbol)
1448 {
1449 	struct find_symbol_arg fsa = {
1450 		.name	= symbol,
1451 		.gplok	= true,
1452 		.warn	= true,
1453 	};
1454 
1455 	scoped_guard(rcu) {
1456 		if (!find_symbol(&fsa))
1457 			return NULL;
1458 		if (fsa.license != GPL_ONLY) {
1459 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1460 				symbol);
1461 			return NULL;
1462 		}
1463 		if (strong_try_module_get(fsa.owner))
1464 			return NULL;
1465 	}
1466 	return (void *)kernel_symbol_value(fsa.sym);
1467 }
1468 EXPORT_SYMBOL_GPL(__symbol_get);
1469 
1470 /*
1471  * Ensure that an exported symbol [global namespace] does not already exist
1472  * in the kernel or in some other module's exported symbol table.
1473  *
1474  * You must hold the module_mutex.
1475  */
verify_exported_symbols(struct module * mod)1476 static int verify_exported_symbols(struct module *mod)
1477 {
1478 	unsigned int i;
1479 	const struct kernel_symbol *s;
1480 	struct {
1481 		const struct kernel_symbol *sym;
1482 		unsigned int num;
1483 	} arr[] = {
1484 		{ mod->syms, mod->num_syms },
1485 		{ mod->gpl_syms, mod->num_gpl_syms },
1486 	};
1487 
1488 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1489 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1490 			struct find_symbol_arg fsa = {
1491 				.name	= kernel_symbol_name(s),
1492 				.gplok	= true,
1493 			};
1494 			if (find_symbol(&fsa)) {
1495 				pr_err("%s: exports duplicate symbol %s"
1496 				       " (owned by %s)\n",
1497 				       mod->name, kernel_symbol_name(s),
1498 				       module_name(fsa.owner));
1499 				return -ENOEXEC;
1500 			}
1501 		}
1502 	}
1503 	return 0;
1504 }
1505 
ignore_undef_symbol(Elf_Half emachine,const char * name)1506 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1507 {
1508 	/*
1509 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1510 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1511 	 * i386 has a similar problem but may not deserve a fix.
1512 	 *
1513 	 * If we ever have to ignore many symbols, consider refactoring the code to
1514 	 * only warn if referenced by a relocation.
1515 	 */
1516 	if (emachine == EM_386 || emachine == EM_X86_64)
1517 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1518 	return false;
1519 }
1520 
1521 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1522 static int simplify_symbols(struct module *mod, const struct load_info *info)
1523 {
1524 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1525 	Elf_Sym *sym = (void *)symsec->sh_addr;
1526 	unsigned long secbase;
1527 	unsigned int i;
1528 	int ret = 0;
1529 	const struct kernel_symbol *ksym;
1530 
1531 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1532 		const char *name = info->strtab + sym[i].st_name;
1533 
1534 		switch (sym[i].st_shndx) {
1535 		case SHN_COMMON:
1536 			/* Ignore common symbols */
1537 			if (!strncmp(name, "__gnu_lto", 9))
1538 				break;
1539 
1540 			/*
1541 			 * We compiled with -fno-common.  These are not
1542 			 * supposed to happen.
1543 			 */
1544 			pr_debug("Common symbol: %s\n", name);
1545 			pr_warn("%s: please compile with -fno-common\n",
1546 			       mod->name);
1547 			ret = -ENOEXEC;
1548 			break;
1549 
1550 		case SHN_ABS:
1551 			/* Don't need to do anything */
1552 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1553 				 (long)sym[i].st_value, name);
1554 			break;
1555 
1556 		case SHN_LIVEPATCH:
1557 			/* Livepatch symbols are resolved by livepatch */
1558 			break;
1559 
1560 		case SHN_UNDEF:
1561 			ksym = resolve_symbol_wait(mod, info, name);
1562 			/* Ok if resolved.  */
1563 			if (ksym && !IS_ERR(ksym)) {
1564 				sym[i].st_value = kernel_symbol_value(ksym);
1565 				break;
1566 			}
1567 
1568 			/* Ok if weak or ignored.  */
1569 			if (!ksym &&
1570 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1571 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1572 				break;
1573 
1574 			ret = PTR_ERR(ksym) ?: -ENOENT;
1575 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1576 				mod->name, name, ret);
1577 			break;
1578 
1579 		default:
1580 			/* Divert to percpu allocation if a percpu var. */
1581 			if (sym[i].st_shndx == info->index.pcpu)
1582 				secbase = (unsigned long)mod_percpu(mod);
1583 			else
1584 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1585 			sym[i].st_value += secbase;
1586 			break;
1587 		}
1588 	}
1589 
1590 	return ret;
1591 }
1592 
apply_relocations(struct module * mod,const struct load_info * info)1593 static int apply_relocations(struct module *mod, const struct load_info *info)
1594 {
1595 	unsigned int i;
1596 	int err = 0;
1597 
1598 	/* Now do relocations. */
1599 	for (i = 1; i < info->hdr->e_shnum; i++) {
1600 		unsigned int infosec = info->sechdrs[i].sh_info;
1601 
1602 		/* Not a valid relocation section? */
1603 		if (infosec >= info->hdr->e_shnum)
1604 			continue;
1605 
1606 		/*
1607 		 * Don't bother with non-allocated sections.
1608 		 * An exception is the percpu section, which has separate allocations
1609 		 * for individual CPUs. We relocate the percpu section in the initial
1610 		 * ELF template and subsequently copy it to the per-CPU destinations.
1611 		 */
1612 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1613 		    (!infosec || infosec != info->index.pcpu))
1614 			continue;
1615 
1616 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1617 			err = klp_apply_section_relocs(mod, info->sechdrs,
1618 						       info->secstrings,
1619 						       info->strtab,
1620 						       info->index.sym, i,
1621 						       NULL);
1622 		else if (info->sechdrs[i].sh_type == SHT_REL)
1623 			err = apply_relocate(info->sechdrs, info->strtab,
1624 					     info->index.sym, i, mod);
1625 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1626 			err = apply_relocate_add(info->sechdrs, info->strtab,
1627 						 info->index.sym, i, mod);
1628 		if (err < 0)
1629 			break;
1630 	}
1631 	return err;
1632 }
1633 
1634 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1635 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1636 					     unsigned int section)
1637 {
1638 	/* default implementation just returns zero */
1639 	return 0;
1640 }
1641 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1642 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1643 				Elf_Shdr *sechdr, unsigned int section)
1644 {
1645 	long offset;
1646 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1647 
1648 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1649 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1650 	mod->mem[type].size = offset + sechdr->sh_size;
1651 
1652 	WARN_ON_ONCE(offset & mask);
1653 	return offset | mask;
1654 }
1655 
module_init_layout_section(const char * sname)1656 bool module_init_layout_section(const char *sname)
1657 {
1658 #ifndef CONFIG_MODULE_UNLOAD
1659 	if (module_exit_section(sname))
1660 		return true;
1661 #endif
1662 	return module_init_section(sname);
1663 }
1664 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1665 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1666 {
1667 	unsigned int m, i;
1668 
1669 	/*
1670 	 * { Mask of required section header flags,
1671 	 *   Mask of excluded section header flags }
1672 	 */
1673 	static const unsigned long masks[][2] = {
1674 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1675 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1676 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1677 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1678 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1679 	};
1680 	static const int core_m_to_mem_type[] = {
1681 		MOD_TEXT,
1682 		MOD_RODATA,
1683 		MOD_RO_AFTER_INIT,
1684 		MOD_DATA,
1685 		MOD_DATA,
1686 	};
1687 	static const int init_m_to_mem_type[] = {
1688 		MOD_INIT_TEXT,
1689 		MOD_INIT_RODATA,
1690 		MOD_INVALID,
1691 		MOD_INIT_DATA,
1692 		MOD_INIT_DATA,
1693 	};
1694 
1695 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1696 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1697 
1698 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1699 			Elf_Shdr *s = &info->sechdrs[i];
1700 			const char *sname = info->secstrings + s->sh_name;
1701 
1702 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1703 			    || (s->sh_flags & masks[m][1])
1704 			    || s->sh_entsize != ~0UL
1705 			    || is_init != module_init_layout_section(sname))
1706 				continue;
1707 
1708 			if (WARN_ON_ONCE(type == MOD_INVALID))
1709 				continue;
1710 
1711 			/*
1712 			 * Do not allocate codetag memory as we load it into
1713 			 * preallocated contiguous memory.
1714 			 */
1715 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1716 				/*
1717 				 * s->sh_entsize won't be used but populate the
1718 				 * type field to avoid confusion.
1719 				 */
1720 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1721 						<< SH_ENTSIZE_TYPE_SHIFT;
1722 				continue;
1723 			}
1724 
1725 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1726 			pr_debug("\t%s\n", sname);
1727 		}
1728 	}
1729 }
1730 
1731 /*
1732  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1733  * might -- code, read-only data, read-write data, small data.  Tally
1734  * sizes, and place the offsets into sh_entsize fields: high bit means it
1735  * belongs in init.
1736  */
layout_sections(struct module * mod,struct load_info * info)1737 static void layout_sections(struct module *mod, struct load_info *info)
1738 {
1739 	unsigned int i;
1740 
1741 	for (i = 0; i < info->hdr->e_shnum; i++)
1742 		info->sechdrs[i].sh_entsize = ~0UL;
1743 
1744 	pr_debug("Core section allocation order for %s:\n", mod->name);
1745 	__layout_sections(mod, info, false);
1746 
1747 	pr_debug("Init section allocation order for %s:\n", mod->name);
1748 	__layout_sections(mod, info, true);
1749 }
1750 
module_license_taint_check(struct module * mod,const char * license)1751 static void module_license_taint_check(struct module *mod, const char *license)
1752 {
1753 	if (!license)
1754 		license = "unspecified";
1755 
1756 	if (!license_is_gpl_compatible(license)) {
1757 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1758 			pr_warn("%s: module license '%s' taints kernel.\n",
1759 				mod->name, license);
1760 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1761 				 LOCKDEP_NOW_UNRELIABLE);
1762 	}
1763 }
1764 
setup_modinfo(struct module * mod,struct load_info * info)1765 static int setup_modinfo(struct module *mod, struct load_info *info)
1766 {
1767 	const struct module_attribute *attr;
1768 	char *imported_namespace;
1769 	int i;
1770 
1771 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1772 		if (attr->setup)
1773 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1774 	}
1775 
1776 	for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1777 		/*
1778 		 * 'module:' prefixed namespaces are implicit, disallow
1779 		 * explicit imports.
1780 		 */
1781 		if (strstarts(imported_namespace, "module:")) {
1782 			pr_err("%s: module tries to import module namespace: %s\n",
1783 			       mod->name, imported_namespace);
1784 			return -EPERM;
1785 		}
1786 	}
1787 
1788 	return 0;
1789 }
1790 
free_modinfo(struct module * mod)1791 static void free_modinfo(struct module *mod)
1792 {
1793 	const struct module_attribute *attr;
1794 	int i;
1795 
1796 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1797 		if (attr->free)
1798 			attr->free(mod);
1799 	}
1800 }
1801 
module_init_section(const char * name)1802 bool __weak module_init_section(const char *name)
1803 {
1804 	return strstarts(name, ".init");
1805 }
1806 
module_exit_section(const char * name)1807 bool __weak module_exit_section(const char *name)
1808 {
1809 	return strstarts(name, ".exit");
1810 }
1811 
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1812 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1813 {
1814 #if defined(CONFIG_64BIT)
1815 	unsigned long long secend;
1816 #else
1817 	unsigned long secend;
1818 #endif
1819 
1820 	/*
1821 	 * Check for both overflow and offset/size being
1822 	 * too large.
1823 	 */
1824 	secend = shdr->sh_offset + shdr->sh_size;
1825 	if (secend < shdr->sh_offset || secend > info->len)
1826 		return -ENOEXEC;
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * elf_validity_ehdr() - Checks an ELF header for module validity
1833  * @info: Load info containing the ELF header to check
1834  *
1835  * Checks whether an ELF header could belong to a valid module. Checks:
1836  *
1837  * * ELF header is within the data the user provided
1838  * * ELF magic is present
1839  * * It is relocatable (not final linked, not core file, etc.)
1840  * * The header's machine type matches what the architecture expects.
1841  * * Optional arch-specific hook for other properties
1842  *   - module_elf_check_arch() is currently only used by PPC to check
1843  *   ELF ABI version, but may be used by others in the future.
1844  *
1845  * Return: %0 if valid, %-ENOEXEC on failure.
1846  */
elf_validity_ehdr(const struct load_info * info)1847 static int elf_validity_ehdr(const struct load_info *info)
1848 {
1849 	if (info->len < sizeof(*(info->hdr))) {
1850 		pr_err("Invalid ELF header len %lu\n", info->len);
1851 		return -ENOEXEC;
1852 	}
1853 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1854 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1855 		return -ENOEXEC;
1856 	}
1857 	if (info->hdr->e_type != ET_REL) {
1858 		pr_err("Invalid ELF header type: %u != %u\n",
1859 		       info->hdr->e_type, ET_REL);
1860 		return -ENOEXEC;
1861 	}
1862 	if (!elf_check_arch(info->hdr)) {
1863 		pr_err("Invalid architecture in ELF header: %u\n",
1864 		       info->hdr->e_machine);
1865 		return -ENOEXEC;
1866 	}
1867 	if (!module_elf_check_arch(info->hdr)) {
1868 		pr_err("Invalid module architecture in ELF header: %u\n",
1869 		       info->hdr->e_machine);
1870 		return -ENOEXEC;
1871 	}
1872 	return 0;
1873 }
1874 
1875 /**
1876  * elf_validity_cache_sechdrs() - Cache section headers if valid
1877  * @info: Load info to compute section headers from
1878  *
1879  * Checks:
1880  *
1881  * * ELF header is valid (see elf_validity_ehdr())
1882  * * Section headers are the size we expect
1883  * * Section array fits in the user provided data
1884  * * Section index 0 is NULL
1885  * * Section contents are inbounds
1886  *
1887  * Then updates @info with a &load_info->sechdrs pointer if valid.
1888  *
1889  * Return: %0 if valid, negative error code if validation failed.
1890  */
elf_validity_cache_sechdrs(struct load_info * info)1891 static int elf_validity_cache_sechdrs(struct load_info *info)
1892 {
1893 	Elf_Shdr *sechdrs;
1894 	Elf_Shdr *shdr;
1895 	int i;
1896 	int err;
1897 
1898 	err = elf_validity_ehdr(info);
1899 	if (err < 0)
1900 		return err;
1901 
1902 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1903 		pr_err("Invalid ELF section header size\n");
1904 		return -ENOEXEC;
1905 	}
1906 
1907 	/*
1908 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1909 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1910 	 * will not overflow unsigned long on any platform.
1911 	 */
1912 	if (info->hdr->e_shoff >= info->len
1913 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1914 		info->len - info->hdr->e_shoff)) {
1915 		pr_err("Invalid ELF section header overflow\n");
1916 		return -ENOEXEC;
1917 	}
1918 
1919 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1920 
1921 	/*
1922 	 * The code assumes that section 0 has a length of zero and
1923 	 * an addr of zero, so check for it.
1924 	 */
1925 	if (sechdrs[0].sh_type != SHT_NULL
1926 	    || sechdrs[0].sh_size != 0
1927 	    || sechdrs[0].sh_addr != 0) {
1928 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1929 		       sechdrs[0].sh_type);
1930 		return -ENOEXEC;
1931 	}
1932 
1933 	/* Validate contents are inbounds */
1934 	for (i = 1; i < info->hdr->e_shnum; i++) {
1935 		shdr = &sechdrs[i];
1936 		switch (shdr->sh_type) {
1937 		case SHT_NULL:
1938 		case SHT_NOBITS:
1939 			/* No contents, offset/size don't mean anything */
1940 			continue;
1941 		default:
1942 			err = validate_section_offset(info, shdr);
1943 			if (err < 0) {
1944 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1945 				       i, shdr->sh_type);
1946 				return err;
1947 			}
1948 		}
1949 	}
1950 
1951 	info->sechdrs = sechdrs;
1952 
1953 	return 0;
1954 }
1955 
1956 /**
1957  * elf_validity_cache_secstrings() - Caches section names if valid
1958  * @info: Load info to cache section names from. Must have valid sechdrs.
1959  *
1960  * Specifically checks:
1961  *
1962  * * Section name table index is inbounds of section headers
1963  * * Section name table is not empty
1964  * * Section name table is NUL terminated
1965  * * All section name offsets are inbounds of the section
1966  *
1967  * Then updates @info with a &load_info->secstrings pointer if valid.
1968  *
1969  * Return: %0 if valid, negative error code if validation failed.
1970  */
elf_validity_cache_secstrings(struct load_info * info)1971 static int elf_validity_cache_secstrings(struct load_info *info)
1972 {
1973 	Elf_Shdr *strhdr, *shdr;
1974 	char *secstrings;
1975 	int i;
1976 
1977 	/*
1978 	 * Verify if the section name table index is valid.
1979 	 */
1980 	if (info->hdr->e_shstrndx == SHN_UNDEF
1981 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1982 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1983 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1984 		       info->hdr->e_shnum);
1985 		return -ENOEXEC;
1986 	}
1987 
1988 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1989 
1990 	/*
1991 	 * The section name table must be NUL-terminated, as required
1992 	 * by the spec. This makes strcmp and pr_* calls that access
1993 	 * strings in the section safe.
1994 	 */
1995 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1996 	if (strhdr->sh_size == 0) {
1997 		pr_err("empty section name table\n");
1998 		return -ENOEXEC;
1999 	}
2000 	if (secstrings[strhdr->sh_size - 1] != '\0') {
2001 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
2002 		return -ENOEXEC;
2003 	}
2004 
2005 	for (i = 0; i < info->hdr->e_shnum; i++) {
2006 		shdr = &info->sechdrs[i];
2007 		/* SHT_NULL means sh_name has an undefined value */
2008 		if (shdr->sh_type == SHT_NULL)
2009 			continue;
2010 		if (shdr->sh_name >= strhdr->sh_size) {
2011 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
2012 			       i, shdr->sh_type);
2013 			return -ENOEXEC;
2014 		}
2015 	}
2016 
2017 	info->secstrings = secstrings;
2018 	return 0;
2019 }
2020 
2021 /**
2022  * elf_validity_cache_index_info() - Validate and cache modinfo section
2023  * @info: Load info to populate the modinfo index on.
2024  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2025  *
2026  * Checks that if there is a .modinfo section, it is unique.
2027  * Then, it caches its index in &load_info->index.info.
2028  * Finally, it tries to populate the name to improve error messages.
2029  *
2030  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2031  */
elf_validity_cache_index_info(struct load_info * info)2032 static int elf_validity_cache_index_info(struct load_info *info)
2033 {
2034 	int info_idx;
2035 
2036 	info_idx = find_any_unique_sec(info, ".modinfo");
2037 
2038 	if (info_idx == 0)
2039 		/* Early return, no .modinfo */
2040 		return 0;
2041 
2042 	if (info_idx < 0) {
2043 		pr_err("Only one .modinfo section must exist.\n");
2044 		return -ENOEXEC;
2045 	}
2046 
2047 	info->index.info = info_idx;
2048 	/* Try to find a name early so we can log errors with a module name */
2049 	info->name = get_modinfo(info, "name");
2050 
2051 	return 0;
2052 }
2053 
2054 /**
2055  * elf_validity_cache_index_mod() - Validates and caches this_module section
2056  * @info: Load info to cache this_module on.
2057  *        Must have &load_info->sechdrs and &load_info->secstrings populated
2058  *
2059  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2060  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2061  * to &__this_module properly. The kernel's modpost declares it on each
2062  * modules's *.mod.c file. If the struct module of the kernel changes a full
2063  * kernel rebuild is required.
2064  *
2065  * We have a few expectations for this special section, this function
2066  * validates all this for us:
2067  *
2068  * * The section has contents
2069  * * The section is unique
2070  * * We expect the kernel to always have to allocate it: SHF_ALLOC
2071  * * The section size must match the kernel's run time's struct module
2072  *   size
2073  *
2074  * If all checks pass, the index will be cached in &load_info->index.mod
2075  *
2076  * Return: %0 on validation success, %-ENOEXEC on failure
2077  */
elf_validity_cache_index_mod(struct load_info * info)2078 static int elf_validity_cache_index_mod(struct load_info *info)
2079 {
2080 	Elf_Shdr *shdr;
2081 	int mod_idx;
2082 
2083 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2084 	if (mod_idx <= 0) {
2085 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2086 		       info->name ?: "(missing .modinfo section or name field)");
2087 		return -ENOEXEC;
2088 	}
2089 
2090 	shdr = &info->sechdrs[mod_idx];
2091 
2092 	if (shdr->sh_type == SHT_NOBITS) {
2093 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2094 		       info->name ?: "(missing .modinfo section or name field)");
2095 		return -ENOEXEC;
2096 	}
2097 
2098 	if (!(shdr->sh_flags & SHF_ALLOC)) {
2099 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2100 		       info->name ?: "(missing .modinfo section or name field)");
2101 		return -ENOEXEC;
2102 	}
2103 
2104 	if (shdr->sh_size != sizeof(struct module)) {
2105 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2106 		       info->name ?: "(missing .modinfo section or name field)");
2107 		return -ENOEXEC;
2108 	}
2109 
2110 	info->index.mod = mod_idx;
2111 
2112 	return 0;
2113 }
2114 
2115 /**
2116  * elf_validity_cache_index_sym() - Validate and cache symtab index
2117  * @info: Load info to cache symtab index in.
2118  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2119  *
2120  * Checks that there is exactly one symbol table, then caches its index in
2121  * &load_info->index.sym.
2122  *
2123  * Return: %0 if valid, %-ENOEXEC on failure.
2124  */
elf_validity_cache_index_sym(struct load_info * info)2125 static int elf_validity_cache_index_sym(struct load_info *info)
2126 {
2127 	unsigned int sym_idx;
2128 	unsigned int num_sym_secs = 0;
2129 	int i;
2130 
2131 	for (i = 1; i < info->hdr->e_shnum; i++) {
2132 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2133 			num_sym_secs++;
2134 			sym_idx = i;
2135 		}
2136 	}
2137 
2138 	if (num_sym_secs != 1) {
2139 		pr_warn("%s: module has no symbols (stripped?)\n",
2140 			info->name ?: "(missing .modinfo section or name field)");
2141 		return -ENOEXEC;
2142 	}
2143 
2144 	info->index.sym = sym_idx;
2145 
2146 	return 0;
2147 }
2148 
2149 /**
2150  * elf_validity_cache_index_str() - Validate and cache strtab index
2151  * @info: Load info to cache strtab index in.
2152  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2153  *        Must have &load_info->index.sym populated.
2154  *
2155  * Looks at the symbol table's associated string table, makes sure it is
2156  * in-bounds, and caches it.
2157  *
2158  * Return: %0 if valid, %-ENOEXEC on failure.
2159  */
elf_validity_cache_index_str(struct load_info * info)2160 static int elf_validity_cache_index_str(struct load_info *info)
2161 {
2162 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2163 
2164 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2165 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2166 		       str_idx, str_idx, info->hdr->e_shnum);
2167 		return -ENOEXEC;
2168 	}
2169 
2170 	info->index.str = str_idx;
2171 	return 0;
2172 }
2173 
2174 /**
2175  * elf_validity_cache_index_versions() - Validate and cache version indices
2176  * @info:  Load info to cache version indices in.
2177  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2178  * @flags: Load flags, relevant to suppress version loading, see
2179  *         uapi/linux/module.h
2180  *
2181  * If we're ignoring modversions based on @flags, zero all version indices
2182  * and return validity. Othewrise check:
2183  *
2184  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2185  * * There is a name present for every crc
2186  *
2187  * Then populate:
2188  *
2189  * * &load_info->index.vers
2190  * * &load_info->index.vers_ext_crc
2191  * * &load_info->index.vers_ext_names
2192  *
2193  * if present.
2194  *
2195  * Return: %0 if valid, %-ENOEXEC on failure.
2196  */
elf_validity_cache_index_versions(struct load_info * info,int flags)2197 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2198 {
2199 	unsigned int vers_ext_crc;
2200 	unsigned int vers_ext_name;
2201 	size_t crc_count;
2202 	size_t remaining_len;
2203 	size_t name_size;
2204 	char *name;
2205 
2206 	/* If modversions were suppressed, pretend we didn't find any */
2207 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2208 		info->index.vers = 0;
2209 		info->index.vers_ext_crc = 0;
2210 		info->index.vers_ext_name = 0;
2211 		return 0;
2212 	}
2213 
2214 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2215 	vers_ext_name = find_sec(info, "__version_ext_names");
2216 
2217 	/* If we have one field, we must have the other */
2218 	if (!!vers_ext_crc != !!vers_ext_name) {
2219 		pr_err("extended version crc+name presence does not match");
2220 		return -ENOEXEC;
2221 	}
2222 
2223 	/*
2224 	 * If we have extended version information, we should have the same
2225 	 * number of entries in every section.
2226 	 */
2227 	if (vers_ext_crc) {
2228 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2229 		name = (void *)info->hdr +
2230 			info->sechdrs[vers_ext_name].sh_offset;
2231 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2232 
2233 		while (crc_count--) {
2234 			name_size = strnlen(name, remaining_len) + 1;
2235 			if (name_size > remaining_len) {
2236 				pr_err("more extended version crcs than names");
2237 				return -ENOEXEC;
2238 			}
2239 			remaining_len -= name_size;
2240 			name += name_size;
2241 		}
2242 	}
2243 
2244 	info->index.vers = find_sec(info, "__versions");
2245 	info->index.vers_ext_crc = vers_ext_crc;
2246 	info->index.vers_ext_name = vers_ext_name;
2247 	return 0;
2248 }
2249 
2250 /**
2251  * elf_validity_cache_index() - Resolve, validate, cache section indices
2252  * @info:  Load info to read from and update.
2253  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2254  * @flags: Load flags, relevant to suppress version loading, see
2255  *         uapi/linux/module.h
2256  *
2257  * Populates &load_info->index, validating as it goes.
2258  * See child functions for per-field validation:
2259  *
2260  * * elf_validity_cache_index_info()
2261  * * elf_validity_cache_index_mod()
2262  * * elf_validity_cache_index_sym()
2263  * * elf_validity_cache_index_str()
2264  * * elf_validity_cache_index_versions()
2265  *
2266  * If CONFIG_SMP is enabled, load the percpu section by name with no
2267  * validation.
2268  *
2269  * Return: 0 on success, negative error code if an index failed validation.
2270  */
elf_validity_cache_index(struct load_info * info,int flags)2271 static int elf_validity_cache_index(struct load_info *info, int flags)
2272 {
2273 	int err;
2274 
2275 	err = elf_validity_cache_index_info(info);
2276 	if (err < 0)
2277 		return err;
2278 	err = elf_validity_cache_index_mod(info);
2279 	if (err < 0)
2280 		return err;
2281 	err = elf_validity_cache_index_sym(info);
2282 	if (err < 0)
2283 		return err;
2284 	err = elf_validity_cache_index_str(info);
2285 	if (err < 0)
2286 		return err;
2287 	err = elf_validity_cache_index_versions(info, flags);
2288 	if (err < 0)
2289 		return err;
2290 
2291 	info->index.pcpu = find_pcpusec(info);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  * elf_validity_cache_strtab() - Validate and cache symbol string table
2298  * @info: Load info to read from and update.
2299  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2300  *        Must have &load_info->index populated.
2301  *
2302  * Checks:
2303  *
2304  * * The string table is not empty.
2305  * * The string table starts and ends with NUL (required by ELF spec).
2306  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2307  *   string table.
2308  *
2309  * And caches the pointer as &load_info->strtab in @info.
2310  *
2311  * Return: 0 on success, negative error code if a check failed.
2312  */
elf_validity_cache_strtab(struct load_info * info)2313 static int elf_validity_cache_strtab(struct load_info *info)
2314 {
2315 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2316 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2317 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2318 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2319 	int i;
2320 
2321 	if (str_shdr->sh_size == 0) {
2322 		pr_err("empty symbol string table\n");
2323 		return -ENOEXEC;
2324 	}
2325 	if (strtab[0] != '\0') {
2326 		pr_err("symbol string table missing leading NUL\n");
2327 		return -ENOEXEC;
2328 	}
2329 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2330 		pr_err("symbol string table isn't NUL terminated\n");
2331 		return -ENOEXEC;
2332 	}
2333 
2334 	/*
2335 	 * Now that we know strtab is correctly structured, check symbol
2336 	 * starts are inbounds before they're used later.
2337 	 */
2338 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2339 		if (syms[i].st_name >= str_shdr->sh_size) {
2340 			pr_err("symbol name out of bounds in string table");
2341 			return -ENOEXEC;
2342 		}
2343 	}
2344 
2345 	info->strtab = strtab;
2346 	return 0;
2347 }
2348 
2349 /*
2350  * Check userspace passed ELF module against our expectations, and cache
2351  * useful variables for further processing as we go.
2352  *
2353  * This does basic validity checks against section offsets and sizes, the
2354  * section name string table, and the indices used for it (sh_name).
2355  *
2356  * As a last step, since we're already checking the ELF sections we cache
2357  * useful variables which will be used later for our convenience:
2358  *
2359  * 	o pointers to section headers
2360  * 	o cache the modinfo symbol section
2361  * 	o cache the string symbol section
2362  * 	o cache the module section
2363  *
2364  * As a last step we set info->mod to the temporary copy of the module in
2365  * info->hdr. The final one will be allocated in move_module(). Any
2366  * modifications we make to our copy of the module will be carried over
2367  * to the final minted module.
2368  */
elf_validity_cache_copy(struct load_info * info,int flags)2369 static int elf_validity_cache_copy(struct load_info *info, int flags)
2370 {
2371 	int err;
2372 
2373 	err = elf_validity_cache_sechdrs(info);
2374 	if (err < 0)
2375 		return err;
2376 	err = elf_validity_cache_secstrings(info);
2377 	if (err < 0)
2378 		return err;
2379 	err = elf_validity_cache_index(info, flags);
2380 	if (err < 0)
2381 		return err;
2382 	err = elf_validity_cache_strtab(info);
2383 	if (err < 0)
2384 		return err;
2385 
2386 	/* This is temporary: point mod into copy of data. */
2387 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2388 
2389 	/*
2390 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2391 	 * on-disk struct mod 'name' field.
2392 	 */
2393 	if (!info->name)
2394 		info->name = info->mod->name;
2395 
2396 	return 0;
2397 }
2398 
2399 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2400 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2401 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2402 {
2403 	do {
2404 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2405 
2406 		if (copy_from_user(dst, usrc, n) != 0)
2407 			return -EFAULT;
2408 		cond_resched();
2409 		dst += n;
2410 		usrc += n;
2411 		len -= n;
2412 	} while (len);
2413 	return 0;
2414 }
2415 
check_modinfo_livepatch(struct module * mod,struct load_info * info)2416 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2417 {
2418 	if (!get_modinfo(info, "livepatch"))
2419 		/* Nothing more to do */
2420 		return 0;
2421 
2422 	if (set_livepatch_module(mod))
2423 		return 0;
2424 
2425 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2426 	       mod->name);
2427 	return -ENOEXEC;
2428 }
2429 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2430 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2431 {
2432 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2433 		return;
2434 
2435 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2436 		mod->name);
2437 }
2438 
2439 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2440 static int copy_module_from_user(const void __user *umod, unsigned long len,
2441 				  struct load_info *info)
2442 {
2443 	int err;
2444 
2445 	info->len = len;
2446 	if (info->len < sizeof(*(info->hdr)))
2447 		return -ENOEXEC;
2448 
2449 	err = security_kernel_load_data(LOADING_MODULE, true);
2450 	if (err)
2451 		return err;
2452 
2453 	/* Suck in entire file: we'll want most of it. */
2454 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2455 	if (!info->hdr)
2456 		return -ENOMEM;
2457 
2458 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2459 		err = -EFAULT;
2460 		goto out;
2461 	}
2462 
2463 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2464 					     LOADING_MODULE, "init_module");
2465 out:
2466 	if (err)
2467 		vfree(info->hdr);
2468 
2469 	return err;
2470 }
2471 
free_copy(struct load_info * info,int flags)2472 static void free_copy(struct load_info *info, int flags)
2473 {
2474 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2475 		module_decompress_cleanup(info);
2476 	else
2477 		vfree(info->hdr);
2478 }
2479 
rewrite_section_headers(struct load_info * info,int flags)2480 static int rewrite_section_headers(struct load_info *info, int flags)
2481 {
2482 	unsigned int i;
2483 
2484 	/* This should always be true, but let's be sure. */
2485 	info->sechdrs[0].sh_addr = 0;
2486 
2487 	for (i = 1; i < info->hdr->e_shnum; i++) {
2488 		Elf_Shdr *shdr = &info->sechdrs[i];
2489 
2490 		/*
2491 		 * Mark all sections sh_addr with their address in the
2492 		 * temporary image.
2493 		 */
2494 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2495 
2496 	}
2497 
2498 	/* Track but don't keep modinfo and version sections. */
2499 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2500 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2501 		~(unsigned long)SHF_ALLOC;
2502 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2503 		~(unsigned long)SHF_ALLOC;
2504 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2505 
2506 	return 0;
2507 }
2508 
2509 static const char *const module_license_offenders[] = {
2510 	/* driverloader was caught wrongly pretending to be under GPL */
2511 	"driverloader",
2512 
2513 	/* lve claims to be GPL but upstream won't provide source */
2514 	"lve",
2515 };
2516 
2517 /*
2518  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2519 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2520 {
2521 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2522 	size_t i;
2523 
2524 	if (!get_modinfo(info, "intree")) {
2525 		if (!test_taint(TAINT_OOT_MODULE))
2526 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2527 				mod->name);
2528 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2529 	}
2530 
2531 	check_modinfo_retpoline(mod, info);
2532 
2533 	if (get_modinfo(info, "staging")) {
2534 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2535 		pr_warn("%s: module is from the staging directory, the quality "
2536 			"is unknown, you have been warned.\n", mod->name);
2537 	}
2538 
2539 	if (is_livepatch_module(mod)) {
2540 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2541 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2542 				mod->name);
2543 	}
2544 
2545 	module_license_taint_check(mod, get_modinfo(info, "license"));
2546 
2547 	if (get_modinfo(info, "test")) {
2548 		if (!test_taint(TAINT_TEST))
2549 			pr_warn("%s: loading test module taints kernel.\n",
2550 				mod->name);
2551 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2552 	}
2553 #ifdef CONFIG_MODULE_SIG
2554 	mod->sig_ok = info->sig_ok;
2555 	if (!mod->sig_ok) {
2556 		pr_notice_once("%s: module verification failed: signature "
2557 			       "and/or required key missing - tainting "
2558 			       "kernel\n", mod->name);
2559 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2560 	}
2561 #endif
2562 
2563 	/*
2564 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2565 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2566 	 * using GPL-only symbols it needs.
2567 	 */
2568 	if (strcmp(mod->name, "ndiswrapper") == 0)
2569 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2570 
2571 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2572 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2573 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2574 					 LOCKDEP_NOW_UNRELIABLE);
2575 	}
2576 
2577 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2578 		pr_warn("%s: module license taints kernel.\n", mod->name);
2579 
2580 }
2581 
check_modinfo(struct module * mod,struct load_info * info,int flags)2582 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2583 {
2584 	const char *modmagic = get_modinfo(info, "vermagic");
2585 	int err;
2586 
2587 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2588 		modmagic = NULL;
2589 
2590 	/* This is allowed: modprobe --force will invalidate it. */
2591 	if (!modmagic) {
2592 		err = try_to_force_load(mod, "bad vermagic");
2593 		if (err)
2594 			return err;
2595 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2596 		pr_err("%s: version magic '%s' should be '%s'\n",
2597 		       info->name, modmagic, vermagic);
2598 		return -ENOEXEC;
2599 	}
2600 
2601 	err = check_modinfo_livepatch(mod, info);
2602 	if (err)
2603 		return err;
2604 
2605 	return 0;
2606 }
2607 
find_module_sections(struct module * mod,struct load_info * info)2608 static int find_module_sections(struct module *mod, struct load_info *info)
2609 {
2610 	mod->kp = section_objs(info, "__param",
2611 			       sizeof(*mod->kp), &mod->num_kp);
2612 	mod->syms = section_objs(info, "__ksymtab",
2613 				 sizeof(*mod->syms), &mod->num_syms);
2614 	mod->crcs = section_addr(info, "__kcrctab");
2615 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2616 				     sizeof(*mod->gpl_syms),
2617 				     &mod->num_gpl_syms);
2618 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2619 
2620 #ifdef CONFIG_CONSTRUCTORS
2621 	mod->ctors = section_objs(info, ".ctors",
2622 				  sizeof(*mod->ctors), &mod->num_ctors);
2623 	if (!mod->ctors)
2624 		mod->ctors = section_objs(info, ".init_array",
2625 				sizeof(*mod->ctors), &mod->num_ctors);
2626 	else if (find_sec(info, ".init_array")) {
2627 		/*
2628 		 * This shouldn't happen with same compiler and binutils
2629 		 * building all parts of the module.
2630 		 */
2631 		pr_warn("%s: has both .ctors and .init_array.\n",
2632 		       mod->name);
2633 		return -EINVAL;
2634 	}
2635 #endif
2636 
2637 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2638 						&mod->noinstr_text_size);
2639 
2640 #ifdef CONFIG_TRACEPOINTS
2641 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2642 					     sizeof(*mod->tracepoints_ptrs),
2643 					     &mod->num_tracepoints);
2644 #endif
2645 #ifdef CONFIG_TREE_SRCU
2646 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2647 					     sizeof(*mod->srcu_struct_ptrs),
2648 					     &mod->num_srcu_structs);
2649 #endif
2650 #ifdef CONFIG_BPF_EVENTS
2651 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2652 					   sizeof(*mod->bpf_raw_events),
2653 					   &mod->num_bpf_raw_events);
2654 #endif
2655 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2656 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2657 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2658 					      &mod->btf_base_data_size);
2659 #endif
2660 #ifdef CONFIG_JUMP_LABEL
2661 	mod->jump_entries = section_objs(info, "__jump_table",
2662 					sizeof(*mod->jump_entries),
2663 					&mod->num_jump_entries);
2664 #endif
2665 #ifdef CONFIG_EVENT_TRACING
2666 	mod->trace_events = section_objs(info, "_ftrace_events",
2667 					 sizeof(*mod->trace_events),
2668 					 &mod->num_trace_events);
2669 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2670 					sizeof(*mod->trace_evals),
2671 					&mod->num_trace_evals);
2672 #endif
2673 #ifdef CONFIG_TRACING
2674 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2675 					 sizeof(*mod->trace_bprintk_fmt_start),
2676 					 &mod->num_trace_bprintk_fmt);
2677 #endif
2678 #ifdef CONFIG_DYNAMIC_FTRACE
2679 	/* sechdrs[0].sh_size is always zero */
2680 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2681 					     sizeof(*mod->ftrace_callsites),
2682 					     &mod->num_ftrace_callsites);
2683 #endif
2684 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2685 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2686 					    sizeof(*mod->ei_funcs),
2687 					    &mod->num_ei_funcs);
2688 #endif
2689 #ifdef CONFIG_KPROBES
2690 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2691 						&mod->kprobes_text_size);
2692 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2693 						sizeof(unsigned long),
2694 						&mod->num_kprobe_blacklist);
2695 #endif
2696 #ifdef CONFIG_PRINTK_INDEX
2697 	mod->printk_index_start = section_objs(info, ".printk_index",
2698 					       sizeof(*mod->printk_index_start),
2699 					       &mod->printk_index_size);
2700 #endif
2701 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2702 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2703 					      sizeof(*mod->static_call_sites),
2704 					      &mod->num_static_call_sites);
2705 #endif
2706 #if IS_ENABLED(CONFIG_KUNIT)
2707 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2708 					      sizeof(*mod->kunit_suites),
2709 					      &mod->num_kunit_suites);
2710 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2711 					      sizeof(*mod->kunit_init_suites),
2712 					      &mod->num_kunit_init_suites);
2713 #endif
2714 
2715 	mod->extable = section_objs(info, "__ex_table",
2716 				    sizeof(*mod->extable), &mod->num_exentries);
2717 
2718 	if (section_addr(info, "__obsparm"))
2719 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2720 
2721 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2722 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2723 					      sizeof(*mod->dyndbg_info.descs),
2724 					      &mod->dyndbg_info.num_descs);
2725 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2726 						sizeof(*mod->dyndbg_info.classes),
2727 						&mod->dyndbg_info.num_classes);
2728 #endif
2729 
2730 	return 0;
2731 }
2732 
move_module(struct module * mod,struct load_info * info)2733 static int move_module(struct module *mod, struct load_info *info)
2734 {
2735 	int i, ret;
2736 	enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2737 	bool codetag_section_found = false;
2738 
2739 	for_each_mod_mem_type(type) {
2740 		if (!mod->mem[type].size) {
2741 			mod->mem[type].base = NULL;
2742 			continue;
2743 		}
2744 
2745 		ret = module_memory_alloc(mod, type);
2746 		if (ret) {
2747 			t = type;
2748 			goto out_err;
2749 		}
2750 	}
2751 
2752 	/* Transfer each section which specifies SHF_ALLOC */
2753 	pr_debug("Final section addresses for %s:\n", mod->name);
2754 	for (i = 0; i < info->hdr->e_shnum; i++) {
2755 		void *dest;
2756 		Elf_Shdr *shdr = &info->sechdrs[i];
2757 		const char *sname;
2758 
2759 		if (!(shdr->sh_flags & SHF_ALLOC))
2760 			continue;
2761 
2762 		sname = info->secstrings + shdr->sh_name;
2763 		/*
2764 		 * Load codetag sections separately as they might still be used
2765 		 * after module unload.
2766 		 */
2767 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2768 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2769 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2770 			if (WARN_ON(!dest)) {
2771 				ret = -EINVAL;
2772 				goto out_err;
2773 			}
2774 			if (IS_ERR(dest)) {
2775 				ret = PTR_ERR(dest);
2776 				goto out_err;
2777 			}
2778 			codetag_section_found = true;
2779 		} else {
2780 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2781 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2782 
2783 			dest = mod->mem[type].base + offset;
2784 		}
2785 
2786 		if (shdr->sh_type != SHT_NOBITS) {
2787 			/*
2788 			 * Our ELF checker already validated this, but let's
2789 			 * be pedantic and make the goal clearer. We actually
2790 			 * end up copying over all modifications made to the
2791 			 * userspace copy of the entire struct module.
2792 			 */
2793 			if (i == info->index.mod &&
2794 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2795 				ret = -ENOEXEC;
2796 				goto out_err;
2797 			}
2798 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2799 		}
2800 		/*
2801 		 * Update the userspace copy's ELF section address to point to
2802 		 * our newly allocated memory as a pure convenience so that
2803 		 * users of info can keep taking advantage and using the newly
2804 		 * minted official memory area.
2805 		 */
2806 		shdr->sh_addr = (unsigned long)dest;
2807 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2808 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2809 	}
2810 
2811 	return 0;
2812 out_err:
2813 	module_memory_restore_rox(mod);
2814 	while (t--)
2815 		module_memory_free(mod, t);
2816 	if (codetag_section_found)
2817 		codetag_free_module_sections(mod);
2818 
2819 	return ret;
2820 }
2821 
check_export_symbol_versions(struct module * mod)2822 static int check_export_symbol_versions(struct module *mod)
2823 {
2824 #ifdef CONFIG_MODVERSIONS
2825 	if ((mod->num_syms && !mod->crcs) ||
2826 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2827 		return try_to_force_load(mod,
2828 					 "no versions for exported symbols");
2829 	}
2830 #endif
2831 	return 0;
2832 }
2833 
flush_module_icache(const struct module * mod)2834 static void flush_module_icache(const struct module *mod)
2835 {
2836 	/*
2837 	 * Flush the instruction cache, since we've played with text.
2838 	 * Do it before processing of module parameters, so the module
2839 	 * can provide parameter accessor functions of its own.
2840 	 */
2841 	for_each_mod_mem_type(type) {
2842 		const struct module_memory *mod_mem = &mod->mem[type];
2843 
2844 		if (mod_mem->size) {
2845 			flush_icache_range((unsigned long)mod_mem->base,
2846 					   (unsigned long)mod_mem->base + mod_mem->size);
2847 		}
2848 	}
2849 }
2850 
module_elf_check_arch(Elf_Ehdr * hdr)2851 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2852 {
2853 	return true;
2854 }
2855 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2856 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2857 				     Elf_Shdr *sechdrs,
2858 				     char *secstrings,
2859 				     struct module *mod)
2860 {
2861 	return 0;
2862 }
2863 
2864 /* module_blacklist is a comma-separated list of module names */
2865 static char *module_blacklist;
blacklisted(const char * module_name)2866 static bool blacklisted(const char *module_name)
2867 {
2868 	const char *p;
2869 	size_t len;
2870 
2871 	if (!module_blacklist)
2872 		return false;
2873 
2874 	for (p = module_blacklist; *p; p += len) {
2875 		len = strcspn(p, ",");
2876 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2877 			return true;
2878 		if (p[len] == ',')
2879 			len++;
2880 	}
2881 	return false;
2882 }
2883 core_param(module_blacklist, module_blacklist, charp, 0400);
2884 
layout_and_allocate(struct load_info * info,int flags)2885 static struct module *layout_and_allocate(struct load_info *info, int flags)
2886 {
2887 	struct module *mod;
2888 	int err;
2889 
2890 	/* Allow arches to frob section contents and sizes.  */
2891 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2892 					info->secstrings, info->mod);
2893 	if (err < 0)
2894 		return ERR_PTR(err);
2895 
2896 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2897 					  info->secstrings, info->mod);
2898 	if (err < 0)
2899 		return ERR_PTR(err);
2900 
2901 	/* We will do a special allocation for per-cpu sections later. */
2902 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2903 
2904 	/*
2905 	 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2906 	 * put them in the right place.
2907 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2908 	 */
2909 	module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2910 
2911 	/*
2912 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2913 	 * this is done generically; there doesn't appear to be any
2914 	 * special cases for the architectures.
2915 	 */
2916 	layout_sections(info->mod, info);
2917 	layout_symtab(info->mod, info);
2918 
2919 	/* Allocate and move to the final place */
2920 	err = move_module(info->mod, info);
2921 	if (err)
2922 		return ERR_PTR(err);
2923 
2924 	/* Module has been copied to its final place now: return it. */
2925 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2926 	kmemleak_load_module(mod, info);
2927 	codetag_module_replaced(info->mod, mod);
2928 
2929 	return mod;
2930 }
2931 
2932 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2933 static void module_deallocate(struct module *mod, struct load_info *info)
2934 {
2935 	percpu_modfree(mod);
2936 	module_arch_freeing_init(mod);
2937 	codetag_free_module_sections(mod);
2938 
2939 	free_mod_mem(mod);
2940 }
2941 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2942 int __weak module_finalize(const Elf_Ehdr *hdr,
2943 			   const Elf_Shdr *sechdrs,
2944 			   struct module *me)
2945 {
2946 	return 0;
2947 }
2948 
post_relocation(struct module * mod,const struct load_info * info)2949 static int post_relocation(struct module *mod, const struct load_info *info)
2950 {
2951 	/* Sort exception table now relocations are done. */
2952 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2953 
2954 	/* Copy relocated percpu area over. */
2955 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2956 		       info->sechdrs[info->index.pcpu].sh_size);
2957 
2958 	/* Setup kallsyms-specific fields. */
2959 	add_kallsyms(mod, info);
2960 
2961 	/* Arch-specific module finalizing. */
2962 	return module_finalize(info->hdr, info->sechdrs, mod);
2963 }
2964 
2965 /* Call module constructors. */
do_mod_ctors(struct module * mod)2966 static void do_mod_ctors(struct module *mod)
2967 {
2968 #ifdef CONFIG_CONSTRUCTORS
2969 	unsigned long i;
2970 
2971 	for (i = 0; i < mod->num_ctors; i++)
2972 		mod->ctors[i]();
2973 #endif
2974 }
2975 
2976 /* For freeing module_init on success, in case kallsyms traversing */
2977 struct mod_initfree {
2978 	struct llist_node node;
2979 	void *init_text;
2980 	void *init_data;
2981 	void *init_rodata;
2982 };
2983 
do_free_init(struct work_struct * w)2984 static void do_free_init(struct work_struct *w)
2985 {
2986 	struct llist_node *pos, *n, *list;
2987 	struct mod_initfree *initfree;
2988 
2989 	list = llist_del_all(&init_free_list);
2990 
2991 	synchronize_rcu();
2992 
2993 	llist_for_each_safe(pos, n, list) {
2994 		initfree = container_of(pos, struct mod_initfree, node);
2995 		execmem_free(initfree->init_text);
2996 		execmem_free(initfree->init_data);
2997 		execmem_free(initfree->init_rodata);
2998 		kfree(initfree);
2999 	}
3000 }
3001 
flush_module_init_free_work(void)3002 void flush_module_init_free_work(void)
3003 {
3004 	flush_work(&init_free_wq);
3005 }
3006 
3007 #undef MODULE_PARAM_PREFIX
3008 #define MODULE_PARAM_PREFIX "module."
3009 /* Default value for module->async_probe_requested */
3010 static bool async_probe;
3011 module_param(async_probe, bool, 0644);
3012 
3013 /*
3014  * This is where the real work happens.
3015  *
3016  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3017  * helper command 'lx-symbols'.
3018  */
do_init_module(struct module * mod)3019 static noinline int do_init_module(struct module *mod)
3020 {
3021 	int ret = 0;
3022 	struct mod_initfree *freeinit;
3023 #if defined(CONFIG_MODULE_STATS)
3024 	unsigned int text_size = 0, total_size = 0;
3025 
3026 	for_each_mod_mem_type(type) {
3027 		const struct module_memory *mod_mem = &mod->mem[type];
3028 		if (mod_mem->size) {
3029 			total_size += mod_mem->size;
3030 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3031 				text_size += mod_mem->size;
3032 		}
3033 	}
3034 #endif
3035 
3036 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3037 	if (!freeinit) {
3038 		ret = -ENOMEM;
3039 		goto fail;
3040 	}
3041 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3042 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3043 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3044 
3045 	do_mod_ctors(mod);
3046 	/* Start the module */
3047 	if (mod->init != NULL)
3048 		ret = do_one_initcall(mod->init);
3049 	if (ret < 0) {
3050 		goto fail_free_freeinit;
3051 	}
3052 	if (ret > 0) {
3053 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3054 			"follow 0/-E convention\n"
3055 			"%s: loading module anyway...\n",
3056 			__func__, mod->name, ret, __func__);
3057 		dump_stack();
3058 	}
3059 
3060 	/* Now it's a first class citizen! */
3061 	mod->state = MODULE_STATE_LIVE;
3062 	blocking_notifier_call_chain(&module_notify_list,
3063 				     MODULE_STATE_LIVE, mod);
3064 
3065 	/* Delay uevent until module has finished its init routine */
3066 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3067 
3068 	/*
3069 	 * We need to finish all async code before the module init sequence
3070 	 * is done. This has potential to deadlock if synchronous module
3071 	 * loading is requested from async (which is not allowed!).
3072 	 *
3073 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3074 	 * request_module() from async workers") for more details.
3075 	 */
3076 	if (!mod->async_probe_requested)
3077 		async_synchronize_full();
3078 
3079 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3080 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3081 	mutex_lock(&module_mutex);
3082 	/* Drop initial reference. */
3083 	module_put(mod);
3084 	trim_init_extable(mod);
3085 #ifdef CONFIG_KALLSYMS
3086 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3087 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3088 #endif
3089 	ret = module_enable_rodata_ro_after_init(mod);
3090 	if (ret)
3091 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3092 			"ro_after_init data might still be writable\n",
3093 			mod->name, ret);
3094 
3095 	mod_tree_remove_init(mod);
3096 	module_arch_freeing_init(mod);
3097 	for_class_mod_mem_type(type, init) {
3098 		mod->mem[type].base = NULL;
3099 		mod->mem[type].size = 0;
3100 	}
3101 
3102 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3103 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3104 	mod->btf_data = NULL;
3105 	mod->btf_base_data = NULL;
3106 #endif
3107 	/*
3108 	 * We want to free module_init, but be aware that kallsyms may be
3109 	 * walking this within an RCU read section. In all the failure paths, we
3110 	 * call synchronize_rcu(), but we don't want to slow down the success
3111 	 * path. execmem_free() cannot be called in an interrupt, so do the
3112 	 * work and call synchronize_rcu() in a work queue.
3113 	 *
3114 	 * Note that execmem_alloc() on most architectures creates W+X page
3115 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3116 	 * code such as mark_rodata_ro() which depends on those mappings to
3117 	 * be cleaned up needs to sync with the queued work by invoking
3118 	 * flush_module_init_free_work().
3119 	 */
3120 	if (llist_add(&freeinit->node, &init_free_list))
3121 		schedule_work(&init_free_wq);
3122 
3123 	mutex_unlock(&module_mutex);
3124 	wake_up_all(&module_wq);
3125 
3126 	mod_stat_add_long(text_size, &total_text_size);
3127 	mod_stat_add_long(total_size, &total_mod_size);
3128 
3129 	mod_stat_inc(&modcount);
3130 
3131 	return 0;
3132 
3133 fail_free_freeinit:
3134 	kfree(freeinit);
3135 fail:
3136 	/* Try to protect us from buggy refcounters. */
3137 	mod->state = MODULE_STATE_GOING;
3138 	synchronize_rcu();
3139 	module_put(mod);
3140 	blocking_notifier_call_chain(&module_notify_list,
3141 				     MODULE_STATE_GOING, mod);
3142 	klp_module_going(mod);
3143 	ftrace_release_mod(mod);
3144 	free_module(mod);
3145 	wake_up_all(&module_wq);
3146 
3147 	return ret;
3148 }
3149 
may_init_module(void)3150 static int may_init_module(void)
3151 {
3152 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3153 		return -EPERM;
3154 
3155 	return 0;
3156 }
3157 
3158 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3159 static bool finished_loading(const char *name)
3160 {
3161 	struct module *mod;
3162 	bool ret;
3163 
3164 	/*
3165 	 * The module_mutex should not be a heavily contended lock;
3166 	 * if we get the occasional sleep here, we'll go an extra iteration
3167 	 * in the wait_event_interruptible(), which is harmless.
3168 	 */
3169 	sched_annotate_sleep();
3170 	mutex_lock(&module_mutex);
3171 	mod = find_module_all(name, strlen(name), true);
3172 	ret = !mod || mod->state == MODULE_STATE_LIVE
3173 		|| mod->state == MODULE_STATE_GOING;
3174 	mutex_unlock(&module_mutex);
3175 
3176 	return ret;
3177 }
3178 
3179 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3180 static int module_patient_check_exists(const char *name,
3181 				       enum fail_dup_mod_reason reason)
3182 {
3183 	struct module *old;
3184 	int err = 0;
3185 
3186 	old = find_module_all(name, strlen(name), true);
3187 	if (old == NULL)
3188 		return 0;
3189 
3190 	if (old->state == MODULE_STATE_COMING ||
3191 	    old->state == MODULE_STATE_UNFORMED) {
3192 		/* Wait in case it fails to load. */
3193 		mutex_unlock(&module_mutex);
3194 		err = wait_event_interruptible(module_wq,
3195 				       finished_loading(name));
3196 		mutex_lock(&module_mutex);
3197 		if (err)
3198 			return err;
3199 
3200 		/* The module might have gone in the meantime. */
3201 		old = find_module_all(name, strlen(name), true);
3202 	}
3203 
3204 	if (try_add_failed_module(name, reason))
3205 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3206 
3207 	/*
3208 	 * We are here only when the same module was being loaded. Do
3209 	 * not try to load it again right now. It prevents long delays
3210 	 * caused by serialized module load failures. It might happen
3211 	 * when more devices of the same type trigger load of
3212 	 * a particular module.
3213 	 */
3214 	if (old && old->state == MODULE_STATE_LIVE)
3215 		return -EEXIST;
3216 	return -EBUSY;
3217 }
3218 
3219 /*
3220  * We try to place it in the list now to make sure it's unique before
3221  * we dedicate too many resources.  In particular, temporary percpu
3222  * memory exhaustion.
3223  */
add_unformed_module(struct module * mod)3224 static int add_unformed_module(struct module *mod)
3225 {
3226 	int err;
3227 
3228 	mod->state = MODULE_STATE_UNFORMED;
3229 
3230 	mutex_lock(&module_mutex);
3231 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3232 	if (err)
3233 		goto out;
3234 
3235 	mod_update_bounds(mod);
3236 	list_add_rcu(&mod->list, &modules);
3237 	mod_tree_insert(mod);
3238 	err = 0;
3239 
3240 out:
3241 	mutex_unlock(&module_mutex);
3242 	return err;
3243 }
3244 
complete_formation(struct module * mod,struct load_info * info)3245 static int complete_formation(struct module *mod, struct load_info *info)
3246 {
3247 	int err;
3248 
3249 	mutex_lock(&module_mutex);
3250 
3251 	/* Find duplicate symbols (must be called under lock). */
3252 	err = verify_exported_symbols(mod);
3253 	if (err < 0)
3254 		goto out;
3255 
3256 	/* These rely on module_mutex for list integrity. */
3257 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3258 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3259 
3260 	err = module_enable_rodata_ro(mod);
3261 	if (err)
3262 		goto out_strict_rwx;
3263 	err = module_enable_data_nx(mod);
3264 	if (err)
3265 		goto out_strict_rwx;
3266 	err = module_enable_text_rox(mod);
3267 	if (err)
3268 		goto out_strict_rwx;
3269 
3270 	/*
3271 	 * Mark state as coming so strong_try_module_get() ignores us,
3272 	 * but kallsyms etc. can see us.
3273 	 */
3274 	mod->state = MODULE_STATE_COMING;
3275 	mutex_unlock(&module_mutex);
3276 
3277 	return 0;
3278 
3279 out_strict_rwx:
3280 	module_bug_cleanup(mod);
3281 out:
3282 	mutex_unlock(&module_mutex);
3283 	return err;
3284 }
3285 
prepare_coming_module(struct module * mod)3286 static int prepare_coming_module(struct module *mod)
3287 {
3288 	int err;
3289 
3290 	ftrace_module_enable(mod);
3291 	err = klp_module_coming(mod);
3292 	if (err)
3293 		return err;
3294 
3295 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3296 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3297 	err = notifier_to_errno(err);
3298 	if (err)
3299 		klp_module_going(mod);
3300 
3301 	return err;
3302 }
3303 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3304 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3305 				   void *arg)
3306 {
3307 	struct module *mod = arg;
3308 	int ret;
3309 
3310 	if (strcmp(param, "async_probe") == 0) {
3311 		if (kstrtobool(val, &mod->async_probe_requested))
3312 			mod->async_probe_requested = true;
3313 		return 0;
3314 	}
3315 
3316 	/* Check for magic 'dyndbg' arg */
3317 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3318 	if (ret != 0)
3319 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3320 	return 0;
3321 }
3322 
3323 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)3324 static int early_mod_check(struct load_info *info, int flags)
3325 {
3326 	int err;
3327 
3328 	/*
3329 	 * Now that we know we have the correct module name, check
3330 	 * if it's blacklisted.
3331 	 */
3332 	if (blacklisted(info->name)) {
3333 		pr_err("Module %s is blacklisted\n", info->name);
3334 		return -EPERM;
3335 	}
3336 
3337 	err = rewrite_section_headers(info, flags);
3338 	if (err)
3339 		return err;
3340 
3341 	/* Check module struct version now, before we try to use module. */
3342 	if (!check_modstruct_version(info, info->mod))
3343 		return -ENOEXEC;
3344 
3345 	err = check_modinfo(info->mod, info, flags);
3346 	if (err)
3347 		return err;
3348 
3349 	mutex_lock(&module_mutex);
3350 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3351 	mutex_unlock(&module_mutex);
3352 
3353 	return err;
3354 }
3355 
3356 /*
3357  * Allocate and load the module: note that size of section 0 is always
3358  * zero, and we rely on this for optional sections.
3359  */
load_module(struct load_info * info,const char __user * uargs,int flags)3360 static int load_module(struct load_info *info, const char __user *uargs,
3361 		       int flags)
3362 {
3363 	struct module *mod;
3364 	bool module_allocated = false;
3365 	long err = 0;
3366 	char *after_dashes;
3367 
3368 	/*
3369 	 * Do the signature check (if any) first. All that
3370 	 * the signature check needs is info->len, it does
3371 	 * not need any of the section info. That can be
3372 	 * set up later. This will minimize the chances
3373 	 * of a corrupt module causing problems before
3374 	 * we even get to the signature check.
3375 	 *
3376 	 * The check will also adjust info->len by stripping
3377 	 * off the sig length at the end of the module, making
3378 	 * checks against info->len more correct.
3379 	 */
3380 	err = module_sig_check(info, flags);
3381 	if (err)
3382 		goto free_copy;
3383 
3384 	/*
3385 	 * Do basic sanity checks against the ELF header and
3386 	 * sections. Cache useful sections and set the
3387 	 * info->mod to the userspace passed struct module.
3388 	 */
3389 	err = elf_validity_cache_copy(info, flags);
3390 	if (err)
3391 		goto free_copy;
3392 
3393 	err = early_mod_check(info, flags);
3394 	if (err)
3395 		goto free_copy;
3396 
3397 	/* Figure out module layout, and allocate all the memory. */
3398 	mod = layout_and_allocate(info, flags);
3399 	if (IS_ERR(mod)) {
3400 		err = PTR_ERR(mod);
3401 		goto free_copy;
3402 	}
3403 
3404 	module_allocated = true;
3405 
3406 	audit_log_kern_module(info->name);
3407 
3408 	/* Reserve our place in the list. */
3409 	err = add_unformed_module(mod);
3410 	if (err)
3411 		goto free_module;
3412 
3413 	/*
3414 	 * We are tainting your kernel if your module gets into
3415 	 * the modules linked list somehow.
3416 	 */
3417 	module_augment_kernel_taints(mod, info);
3418 
3419 	/* To avoid stressing percpu allocator, do this once we're unique. */
3420 	err = percpu_modalloc(mod, info);
3421 	if (err)
3422 		goto unlink_mod;
3423 
3424 	/* Now module is in final location, initialize linked lists, etc. */
3425 	err = module_unload_init(mod);
3426 	if (err)
3427 		goto unlink_mod;
3428 
3429 	init_param_lock(mod);
3430 
3431 	/*
3432 	 * Now we've got everything in the final locations, we can
3433 	 * find optional sections.
3434 	 */
3435 	err = find_module_sections(mod, info);
3436 	if (err)
3437 		goto free_unload;
3438 
3439 	err = check_export_symbol_versions(mod);
3440 	if (err)
3441 		goto free_unload;
3442 
3443 	/* Set up MODINFO_ATTR fields */
3444 	err = setup_modinfo(mod, info);
3445 	if (err)
3446 		goto free_modinfo;
3447 
3448 	/* Fix up syms, so that st_value is a pointer to location. */
3449 	err = simplify_symbols(mod, info);
3450 	if (err < 0)
3451 		goto free_modinfo;
3452 
3453 	err = apply_relocations(mod, info);
3454 	if (err < 0)
3455 		goto free_modinfo;
3456 
3457 	err = post_relocation(mod, info);
3458 	if (err < 0)
3459 		goto free_modinfo;
3460 
3461 	flush_module_icache(mod);
3462 
3463 	/* Now copy in args */
3464 	mod->args = strndup_user(uargs, ~0UL >> 1);
3465 	if (IS_ERR(mod->args)) {
3466 		err = PTR_ERR(mod->args);
3467 		goto free_arch_cleanup;
3468 	}
3469 
3470 	init_build_id(mod, info);
3471 
3472 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3473 	ftrace_module_init(mod);
3474 
3475 	/* Finally it's fully formed, ready to start executing. */
3476 	err = complete_formation(mod, info);
3477 	if (err)
3478 		goto ddebug_cleanup;
3479 
3480 	err = prepare_coming_module(mod);
3481 	if (err)
3482 		goto bug_cleanup;
3483 
3484 	mod->async_probe_requested = async_probe;
3485 
3486 	/* Module is ready to execute: parsing args may do that. */
3487 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3488 				  -32768, 32767, mod,
3489 				  unknown_module_param_cb);
3490 	if (IS_ERR(after_dashes)) {
3491 		err = PTR_ERR(after_dashes);
3492 		goto coming_cleanup;
3493 	} else if (after_dashes) {
3494 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3495 		       mod->name, after_dashes);
3496 	}
3497 
3498 	/* Link in to sysfs. */
3499 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3500 	if (err < 0)
3501 		goto coming_cleanup;
3502 
3503 	if (is_livepatch_module(mod)) {
3504 		err = copy_module_elf(mod, info);
3505 		if (err < 0)
3506 			goto sysfs_cleanup;
3507 	}
3508 
3509 	if (codetag_load_module(mod))
3510 		goto sysfs_cleanup;
3511 
3512 	/* Get rid of temporary copy. */
3513 	free_copy(info, flags);
3514 
3515 	/* Done! */
3516 	trace_module_load(mod);
3517 
3518 	return do_init_module(mod);
3519 
3520  sysfs_cleanup:
3521 	mod_sysfs_teardown(mod);
3522  coming_cleanup:
3523 	mod->state = MODULE_STATE_GOING;
3524 	destroy_params(mod->kp, mod->num_kp);
3525 	blocking_notifier_call_chain(&module_notify_list,
3526 				     MODULE_STATE_GOING, mod);
3527 	klp_module_going(mod);
3528  bug_cleanup:
3529 	mod->state = MODULE_STATE_GOING;
3530 	/* module_bug_cleanup needs module_mutex protection */
3531 	mutex_lock(&module_mutex);
3532 	module_bug_cleanup(mod);
3533 	mutex_unlock(&module_mutex);
3534 
3535  ddebug_cleanup:
3536 	ftrace_release_mod(mod);
3537 	synchronize_rcu();
3538 	kfree(mod->args);
3539  free_arch_cleanup:
3540 	module_arch_cleanup(mod);
3541  free_modinfo:
3542 	free_modinfo(mod);
3543  free_unload:
3544 	module_unload_free(mod);
3545  unlink_mod:
3546 	mutex_lock(&module_mutex);
3547 	/* Unlink carefully: kallsyms could be walking list. */
3548 	list_del_rcu(&mod->list);
3549 	mod_tree_remove(mod);
3550 	wake_up_all(&module_wq);
3551 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3552 	synchronize_rcu();
3553 	mutex_unlock(&module_mutex);
3554  free_module:
3555 	mod_stat_bump_invalid(info, flags);
3556 	/* Free lock-classes; relies on the preceding sync_rcu() */
3557 	for_class_mod_mem_type(type, core_data) {
3558 		lockdep_free_key_range(mod->mem[type].base,
3559 				       mod->mem[type].size);
3560 	}
3561 
3562 	module_memory_restore_rox(mod);
3563 	module_deallocate(mod, info);
3564  free_copy:
3565 	/*
3566 	 * The info->len is always set. We distinguish between
3567 	 * failures once the proper module was allocated and
3568 	 * before that.
3569 	 */
3570 	if (!module_allocated) {
3571 		audit_log_kern_module(info->name ? info->name : "?");
3572 		mod_stat_bump_becoming(info, flags);
3573 	}
3574 	free_copy(info, flags);
3575 	return err;
3576 }
3577 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3578 SYSCALL_DEFINE3(init_module, void __user *, umod,
3579 		unsigned long, len, const char __user *, uargs)
3580 {
3581 	int err;
3582 	struct load_info info = { };
3583 
3584 	err = may_init_module();
3585 	if (err)
3586 		return err;
3587 
3588 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3589 	       umod, len, uargs);
3590 
3591 	err = copy_module_from_user(umod, len, &info);
3592 	if (err) {
3593 		mod_stat_inc(&failed_kreads);
3594 		mod_stat_add_long(len, &invalid_kread_bytes);
3595 		return err;
3596 	}
3597 
3598 	return load_module(&info, uargs, 0);
3599 }
3600 
3601 struct idempotent {
3602 	const void *cookie;
3603 	struct hlist_node entry;
3604 	struct completion complete;
3605 	int ret;
3606 };
3607 
3608 #define IDEM_HASH_BITS 8
3609 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3610 static DEFINE_SPINLOCK(idem_lock);
3611 
idempotent(struct idempotent * u,const void * cookie)3612 static bool idempotent(struct idempotent *u, const void *cookie)
3613 {
3614 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3615 	struct hlist_head *head = idem_hash + hash;
3616 	struct idempotent *existing;
3617 	bool first;
3618 
3619 	u->ret = -EINTR;
3620 	u->cookie = cookie;
3621 	init_completion(&u->complete);
3622 
3623 	spin_lock(&idem_lock);
3624 	first = true;
3625 	hlist_for_each_entry(existing, head, entry) {
3626 		if (existing->cookie != cookie)
3627 			continue;
3628 		first = false;
3629 		break;
3630 	}
3631 	hlist_add_head(&u->entry, idem_hash + hash);
3632 	spin_unlock(&idem_lock);
3633 
3634 	return !first;
3635 }
3636 
3637 /*
3638  * We were the first one with 'cookie' on the list, and we ended
3639  * up completing the operation. We now need to walk the list,
3640  * remove everybody - which includes ourselves - fill in the return
3641  * value, and then complete the operation.
3642  */
idempotent_complete(struct idempotent * u,int ret)3643 static int idempotent_complete(struct idempotent *u, int ret)
3644 {
3645 	const void *cookie = u->cookie;
3646 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3647 	struct hlist_head *head = idem_hash + hash;
3648 	struct hlist_node *next;
3649 	struct idempotent *pos;
3650 
3651 	spin_lock(&idem_lock);
3652 	hlist_for_each_entry_safe(pos, next, head, entry) {
3653 		if (pos->cookie != cookie)
3654 			continue;
3655 		hlist_del_init(&pos->entry);
3656 		pos->ret = ret;
3657 		complete(&pos->complete);
3658 	}
3659 	spin_unlock(&idem_lock);
3660 	return ret;
3661 }
3662 
3663 /*
3664  * Wait for the idempotent worker.
3665  *
3666  * If we get interrupted, we need to remove ourselves from the
3667  * the idempotent list, and the completion may still come in.
3668  *
3669  * The 'idem_lock' protects against the race, and 'idem.ret' was
3670  * initialized to -EINTR and is thus always the right return
3671  * value even if the idempotent work then completes between
3672  * the wait_for_completion and the cleanup.
3673  */
idempotent_wait_for_completion(struct idempotent * u)3674 static int idempotent_wait_for_completion(struct idempotent *u)
3675 {
3676 	if (wait_for_completion_interruptible(&u->complete)) {
3677 		spin_lock(&idem_lock);
3678 		if (!hlist_unhashed(&u->entry))
3679 			hlist_del(&u->entry);
3680 		spin_unlock(&idem_lock);
3681 	}
3682 	return u->ret;
3683 }
3684 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3685 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3686 {
3687 	struct load_info info = { };
3688 	void *buf = NULL;
3689 	int len;
3690 
3691 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3692 	if (len < 0) {
3693 		mod_stat_inc(&failed_kreads);
3694 		return len;
3695 	}
3696 
3697 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3698 		int err = module_decompress(&info, buf, len);
3699 		vfree(buf); /* compressed data is no longer needed */
3700 		if (err) {
3701 			mod_stat_inc(&failed_decompress);
3702 			mod_stat_add_long(len, &invalid_decompress_bytes);
3703 			return err;
3704 		}
3705 	} else {
3706 		info.hdr = buf;
3707 		info.len = len;
3708 	}
3709 
3710 	return load_module(&info, uargs, flags);
3711 }
3712 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3713 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3714 {
3715 	struct idempotent idem;
3716 
3717 	if (!(f->f_mode & FMODE_READ))
3718 		return -EBADF;
3719 
3720 	/* Are we the winners of the race and get to do this? */
3721 	if (!idempotent(&idem, file_inode(f))) {
3722 		int ret = init_module_from_file(f, uargs, flags);
3723 		return idempotent_complete(&idem, ret);
3724 	}
3725 
3726 	/*
3727 	 * Somebody else won the race and is loading the module.
3728 	 */
3729 	return idempotent_wait_for_completion(&idem);
3730 }
3731 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3732 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3733 {
3734 	int err = may_init_module();
3735 	if (err)
3736 		return err;
3737 
3738 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3739 
3740 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3741 		      |MODULE_INIT_IGNORE_VERMAGIC
3742 		      |MODULE_INIT_COMPRESSED_FILE))
3743 		return -EINVAL;
3744 
3745 	CLASS(fd, f)(fd);
3746 	if (fd_empty(f))
3747 		return -EBADF;
3748 	return idempotent_init_module(fd_file(f), uargs, flags);
3749 }
3750 
3751 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3752 char *module_flags(struct module *mod, char *buf, bool show_state)
3753 {
3754 	int bx = 0;
3755 
3756 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3757 	if (!mod->taints && !show_state)
3758 		goto out;
3759 	if (mod->taints ||
3760 	    mod->state == MODULE_STATE_GOING ||
3761 	    mod->state == MODULE_STATE_COMING) {
3762 		buf[bx++] = '(';
3763 		bx += module_flags_taint(mod->taints, buf + bx);
3764 		/* Show a - for module-is-being-unloaded */
3765 		if (mod->state == MODULE_STATE_GOING && show_state)
3766 			buf[bx++] = '-';
3767 		/* Show a + for module-is-being-loaded */
3768 		if (mod->state == MODULE_STATE_COMING && show_state)
3769 			buf[bx++] = '+';
3770 		buf[bx++] = ')';
3771 	}
3772 out:
3773 	buf[bx] = '\0';
3774 
3775 	return buf;
3776 }
3777 
3778 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3779 const struct exception_table_entry *search_module_extables(unsigned long addr)
3780 {
3781 	struct module *mod;
3782 
3783 	guard(rcu)();
3784 	mod = __module_address(addr);
3785 	if (!mod)
3786 		return NULL;
3787 
3788 	if (!mod->num_exentries)
3789 		return NULL;
3790 	/*
3791 	 * The address passed here belongs to a module that is currently
3792 	 * invoked (we are running inside it). Therefore its module::refcnt
3793 	 * needs already be >0 to ensure that it is not removed at this stage.
3794 	 * All other user need to invoke this function within a RCU read
3795 	 * section.
3796 	 */
3797 	return search_extable(mod->extable, mod->num_exentries, addr);
3798 }
3799 
3800 /**
3801  * is_module_address() - is this address inside a module?
3802  * @addr: the address to check.
3803  *
3804  * See is_module_text_address() if you simply want to see if the address
3805  * is code (not data).
3806  */
is_module_address(unsigned long addr)3807 bool is_module_address(unsigned long addr)
3808 {
3809 	guard(rcu)();
3810 	return __module_address(addr) != NULL;
3811 }
3812 
3813 /**
3814  * __module_address() - get the module which contains an address.
3815  * @addr: the address.
3816  *
3817  * Must be called within RCU read section or module mutex held so that
3818  * module doesn't get freed during this.
3819  */
__module_address(unsigned long addr)3820 struct module *__module_address(unsigned long addr)
3821 {
3822 	struct module *mod;
3823 
3824 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3825 		goto lookup;
3826 
3827 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3828 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3829 		goto lookup;
3830 #endif
3831 
3832 	return NULL;
3833 
3834 lookup:
3835 	mod = mod_find(addr, &mod_tree);
3836 	if (mod) {
3837 		BUG_ON(!within_module(addr, mod));
3838 		if (mod->state == MODULE_STATE_UNFORMED)
3839 			mod = NULL;
3840 	}
3841 	return mod;
3842 }
3843 
3844 /**
3845  * is_module_text_address() - is this address inside module code?
3846  * @addr: the address to check.
3847  *
3848  * See is_module_address() if you simply want to see if the address is
3849  * anywhere in a module.  See kernel_text_address() for testing if an
3850  * address corresponds to kernel or module code.
3851  */
is_module_text_address(unsigned long addr)3852 bool is_module_text_address(unsigned long addr)
3853 {
3854 	guard(rcu)();
3855 	return __module_text_address(addr) != NULL;
3856 }
3857 
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3858 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3859 {
3860 	struct module *mod;
3861 
3862 	guard(rcu)();
3863 	list_for_each_entry_rcu(mod, &modules, list) {
3864 		if (mod->state == MODULE_STATE_UNFORMED)
3865 			continue;
3866 		if (func(mod, data))
3867 			break;
3868 	}
3869 }
3870 
3871 /**
3872  * __module_text_address() - get the module whose code contains an address.
3873  * @addr: the address.
3874  *
3875  * Must be called within RCU read section or module mutex held so that
3876  * module doesn't get freed during this.
3877  */
__module_text_address(unsigned long addr)3878 struct module *__module_text_address(unsigned long addr)
3879 {
3880 	struct module *mod = __module_address(addr);
3881 	if (mod) {
3882 		/* Make sure it's within the text section. */
3883 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3884 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3885 			mod = NULL;
3886 	}
3887 	return mod;
3888 }
3889 
3890 /* Don't grab lock, we're oopsing. */
print_modules(void)3891 void print_modules(void)
3892 {
3893 	struct module *mod;
3894 	char buf[MODULE_FLAGS_BUF_SIZE];
3895 
3896 	printk(KERN_DEFAULT "Modules linked in:");
3897 	/* Most callers should already have preempt disabled, but make sure */
3898 	guard(rcu)();
3899 	list_for_each_entry_rcu(mod, &modules, list) {
3900 		if (mod->state == MODULE_STATE_UNFORMED)
3901 			continue;
3902 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3903 	}
3904 
3905 	print_unloaded_tainted_modules();
3906 	if (last_unloaded_module.name[0])
3907 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3908 			last_unloaded_module.taints);
3909 	pr_cont("\n");
3910 }
3911 
3912 #ifdef CONFIG_MODULE_DEBUGFS
3913 struct dentry *mod_debugfs_root;
3914 
module_debugfs_init(void)3915 static int module_debugfs_init(void)
3916 {
3917 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3918 	return 0;
3919 }
3920 module_init(module_debugfs_init);
3921 #endif
3922