1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 5 */ 6 7 /* Does not work. Warning may block system in capture mode */ 8 /* #define USE_VAR48KRATE */ 9 10 #include <linux/io.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/slab.h> 16 #include <linux/gameport.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <sound/core.h> 20 #include <sound/info.h> 21 #include <sound/control.h> 22 #include <sound/pcm.h> 23 #include <sound/rawmidi.h> 24 #include <sound/mpu401.h> 25 #include <sound/opl3.h> 26 #include <sound/sb.h> 27 #include <sound/asoundef.h> 28 #include <sound/initval.h> 29 30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 32 MODULE_LICENSE("GPL"); 33 34 #if IS_REACHABLE(CONFIG_GAMEPORT) 35 #define SUPPORT_JOYSTICK 1 36 #endif 37 38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1}; 42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 44 #ifdef SUPPORT_JOYSTICK 45 static int joystick_port[SNDRV_CARDS]; 46 #endif 47 48 module_param_array(index, int, NULL, 0444); 49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 50 module_param_array(id, charp, NULL, 0444); 51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 52 module_param_array(enable, bool, NULL, 0444); 53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444); 55 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 56 module_param_hw_array(fm_port, long, ioport, NULL, 0444); 57 MODULE_PARM_DESC(fm_port, "FM port."); 58 module_param_array(soft_ac3, bool, NULL, 0444); 59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 60 #ifdef SUPPORT_JOYSTICK 61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444); 62 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 63 #endif 64 65 /* 66 * CM8x38 registers definition 67 */ 68 69 #define CM_REG_FUNCTRL0 0x00 70 #define CM_RST_CH1 0x00080000 71 #define CM_RST_CH0 0x00040000 72 #define CM_CHEN1 0x00020000 /* ch1: enable */ 73 #define CM_CHEN0 0x00010000 /* ch0: enable */ 74 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 75 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 76 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 77 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 78 79 #define CM_REG_FUNCTRL1 0x04 80 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 81 #define CM_DSFC_SHIFT 13 82 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 83 #define CM_ASFC_SHIFT 10 84 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 85 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 86 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 87 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 88 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 89 #define CM_BREQ 0x00000010 /* bus master enabled */ 90 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 91 #define CM_UART_EN 0x00000004 /* legacy UART */ 92 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 93 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 94 95 #define CM_REG_CHFORMAT 0x08 96 97 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 98 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 99 #define CM_CHB3D 0x20000000 /* 4 channels */ 100 101 #define CM_CHIP_MASK1 0x1f000000 102 #define CM_CHIP_037 0x01000000 103 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 104 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 105 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 106 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 107 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 108 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 109 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 110 111 #define CM_ADCBITLEN_MASK 0x0000C000 112 #define CM_ADCBITLEN_16 0x00000000 113 #define CM_ADCBITLEN_15 0x00004000 114 #define CM_ADCBITLEN_14 0x00008000 115 #define CM_ADCBITLEN_13 0x0000C000 116 117 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 118 #define CM_ADCDACLEN_060 0x00000000 119 #define CM_ADCDACLEN_066 0x00001000 120 #define CM_ADCDACLEN_130 0x00002000 121 #define CM_ADCDACLEN_280 0x00003000 122 123 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 124 #define CM_ADCDLEN_ORIGINAL 0x00000000 125 #define CM_ADCDLEN_EXTRA 0x00001000 126 #define CM_ADCDLEN_24K 0x00002000 127 #define CM_ADCDLEN_WEIGHT 0x00003000 128 129 #define CM_CH1_SRATE_176K 0x00000800 130 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 131 #define CM_CH1_SRATE_88K 0x00000400 132 #define CM_CH0_SRATE_176K 0x00000200 133 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 134 #define CM_CH0_SRATE_88K 0x00000100 135 #define CM_CH0_SRATE_128K 0x00000300 136 #define CM_CH0_SRATE_MASK 0x00000300 137 138 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 139 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 140 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 141 #define CM_SPDLOCKED 0x00000010 142 143 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 144 #define CM_CH1FMT_SHIFT 2 145 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 146 #define CM_CH0FMT_SHIFT 0 147 148 #define CM_REG_INT_HLDCLR 0x0C 149 #define CM_CHIP_MASK2 0xff000000 150 #define CM_CHIP_8768 0x20000000 151 #define CM_CHIP_055 0x08000000 152 #define CM_CHIP_039 0x04000000 153 #define CM_CHIP_039_6CH 0x01000000 154 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 155 #define CM_TDMA_INT_EN 0x00040000 156 #define CM_CH1_INT_EN 0x00020000 157 #define CM_CH0_INT_EN 0x00010000 158 159 #define CM_REG_INT_STATUS 0x10 160 #define CM_INTR 0x80000000 161 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 162 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 163 #define CM_UARTINT 0x00010000 164 #define CM_LTDMAINT 0x00008000 165 #define CM_HTDMAINT 0x00004000 166 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 167 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 168 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 169 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 170 #define CM_CH1BUSY 0x00000008 171 #define CM_CH0BUSY 0x00000004 172 #define CM_CHINT1 0x00000002 173 #define CM_CHINT0 0x00000001 174 175 #define CM_REG_LEGACY_CTRL 0x14 176 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 177 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 178 #define CM_VMPU_330 0x00000000 179 #define CM_VMPU_320 0x20000000 180 #define CM_VMPU_310 0x40000000 181 #define CM_VMPU_300 0x60000000 182 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 183 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 184 #define CM_VSBSEL_220 0x00000000 185 #define CM_VSBSEL_240 0x04000000 186 #define CM_VSBSEL_260 0x08000000 187 #define CM_VSBSEL_280 0x0C000000 188 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 189 #define CM_FMSEL_388 0x00000000 190 #define CM_FMSEL_3C8 0x01000000 191 #define CM_FMSEL_3E0 0x02000000 192 #define CM_FMSEL_3E8 0x03000000 193 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 194 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 195 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 196 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 197 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 198 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 199 #define CM_C_EECS 0x00040000 200 #define CM_C_EEDI46 0x00020000 201 #define CM_C_EECK46 0x00010000 202 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 203 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 204 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 205 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 206 207 #define CM_REG_MISC_CTRL 0x18 208 #define CM_PWD 0x80000000 /* power down */ 209 #define CM_RESET 0x40000000 210 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 211 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 212 #define CM_TXVX 0x08000000 /* model 037? */ 213 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 214 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 215 #define CM_SPDIF48K 0x01000000 /* write */ 216 #define CM_SPATUS48K 0x01000000 /* read */ 217 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 218 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 219 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 220 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 221 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 222 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 223 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 224 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 225 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 226 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 227 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 228 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 229 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 230 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 231 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 232 #define CM_ENCENTER 0x00000080 233 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 234 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 235 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 236 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 237 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 238 #define CM_UPDDMA_2048 0x00000000 239 #define CM_UPDDMA_1024 0x00000004 240 #define CM_UPDDMA_512 0x00000008 241 #define CM_UPDDMA_256 0x0000000C 242 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 243 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 244 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 245 246 #define CM_REG_TDMA_POSITION 0x1C 247 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 248 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 249 250 /* byte */ 251 #define CM_REG_MIXER0 0x20 252 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 253 #define CM_REG_DEV 0x20 /* read: hardware device version */ 254 255 #define CM_REG_MIXER21 0x21 256 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 257 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 258 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 259 #define CM_X_SB16 0x01 /* SB16 compatible */ 260 261 #define CM_REG_SB16_DATA 0x22 262 #define CM_REG_SB16_ADDR 0x23 263 264 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 265 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 266 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 267 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 268 269 #define CM_REG_MIXER1 0x24 270 #define CM_FMMUTE 0x80 /* mute FM */ 271 #define CM_FMMUTE_SHIFT 7 272 #define CM_WSMUTE 0x40 /* mute PCM */ 273 #define CM_WSMUTE_SHIFT 6 274 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 275 #define CM_REAR2LIN_SHIFT 5 276 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 277 #define CM_REAR2FRONT_SHIFT 4 278 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 279 #define CM_WAVEINL_SHIFT 3 280 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 281 #define CM_WAVEINR_SHIFT 2 282 #define CM_X3DEN 0x02 /* 3D surround enable */ 283 #define CM_X3DEN_SHIFT 1 284 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 285 #define CM_CDPLAY_SHIFT 0 286 287 #define CM_REG_MIXER2 0x25 288 #define CM_RAUXREN 0x80 /* AUX right capture */ 289 #define CM_RAUXREN_SHIFT 7 290 #define CM_RAUXLEN 0x40 /* AUX left capture */ 291 #define CM_RAUXLEN_SHIFT 6 292 #define CM_VAUXRM 0x20 /* AUX right mute */ 293 #define CM_VAUXRM_SHIFT 5 294 #define CM_VAUXLM 0x10 /* AUX left mute */ 295 #define CM_VAUXLM_SHIFT 4 296 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 297 #define CM_VADMIC_SHIFT 1 298 #define CM_MICGAINZ 0x01 /* mic boost */ 299 #define CM_MICGAINZ_SHIFT 0 300 301 #define CM_REG_AUX_VOL 0x26 302 #define CM_VAUXL_MASK 0xf0 303 #define CM_VAUXR_MASK 0x0f 304 305 #define CM_REG_MISC 0x27 306 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 307 #define CM_XGPO1 0x20 308 // #define CM_XGPBIO 0x04 309 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 310 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 311 #define CM_SPDVALID 0x02 /* spdif input valid check */ 312 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 313 314 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 315 /* 316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 317 * or identical with AC97 codec? 318 */ 319 #define CM_REG_EXTERN_CODEC CM_REG_AC97 320 321 /* 322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 323 */ 324 #define CM_REG_MPU_PCI 0x40 325 326 /* 327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 328 */ 329 #define CM_REG_FM_PCI 0x50 330 331 /* 332 * access from SB-mixer port 333 */ 334 #define CM_REG_EXTENT_IND 0xf0 335 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 336 #define CM_VPHONE_SHIFT 5 337 #define CM_VPHOM 0x10 /* Phone mute control */ 338 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 339 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 340 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 341 #define CM_VADMIC3 0x01 /* Mic record boost */ 342 343 /* 344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 346 * unit (readonly?). 347 */ 348 #define CM_REG_PLL 0xf8 349 350 /* 351 * extended registers 352 */ 353 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 354 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 355 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 356 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 357 358 #define CM_REG_EXT_MISC 0x90 359 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 360 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 361 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 362 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 363 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 364 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 365 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 366 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 367 368 /* 369 * size of i/o region 370 */ 371 #define CM_EXTENT_CODEC 0x100 372 #define CM_EXTENT_MIDI 0x2 373 #define CM_EXTENT_SYNTH 0x4 374 375 376 /* 377 * channels for playback / capture 378 */ 379 #define CM_CH_PLAY 0 380 #define CM_CH_CAPT 1 381 382 /* 383 * flags to check device open/close 384 */ 385 #define CM_OPEN_NONE 0 386 #define CM_OPEN_CH_MASK 0x01 387 #define CM_OPEN_DAC 0x10 388 #define CM_OPEN_ADC 0x20 389 #define CM_OPEN_SPDIF 0x40 390 #define CM_OPEN_MCHAN 0x80 391 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 392 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 393 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 394 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 395 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 396 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 397 398 399 #if CM_CH_PLAY == 1 400 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 401 #define CM_PLAYBACK_SPDF CM_SPDF_1 402 #define CM_CAPTURE_SPDF CM_SPDF_0 403 #else 404 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 405 #define CM_PLAYBACK_SPDF CM_SPDF_0 406 #define CM_CAPTURE_SPDF CM_SPDF_1 407 #endif 408 409 410 /* 411 * driver data 412 */ 413 414 struct cmipci_pcm { 415 struct snd_pcm_substream *substream; 416 u8 running; /* dac/adc running? */ 417 u8 fmt; /* format bits */ 418 u8 is_dac; 419 u8 needs_silencing; 420 unsigned int dma_size; /* in frames */ 421 unsigned int shift; 422 unsigned int ch; /* channel (0/1) */ 423 unsigned int offset; /* physical address of the buffer */ 424 }; 425 426 /* mixer elements toggled/resumed during ac3 playback */ 427 struct cmipci_mixer_auto_switches { 428 const char *name; /* switch to toggle */ 429 int toggle_on; /* value to change when ac3 mode */ 430 }; 431 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 432 {"PCM Playback Switch", 0}, 433 {"IEC958 Output Switch", 1}, 434 {"IEC958 Mix Analog", 0}, 435 // {"IEC958 Out To DAC", 1}, // no longer used 436 {"IEC958 Loop", 0}, 437 }; 438 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 439 440 struct cmipci { 441 struct snd_card *card; 442 443 struct pci_dev *pci; 444 unsigned int device; /* device ID */ 445 int irq; 446 447 unsigned long iobase; 448 unsigned int ctrl; /* FUNCTRL0 current value */ 449 450 struct snd_pcm *pcm; /* DAC/ADC PCM */ 451 struct snd_pcm *pcm2; /* 2nd DAC */ 452 struct snd_pcm *pcm_spdif; /* SPDIF */ 453 454 int chip_version; 455 int max_channels; 456 unsigned int can_ac3_sw: 1; 457 unsigned int can_ac3_hw: 1; 458 unsigned int can_multi_ch: 1; 459 unsigned int can_96k: 1; /* samplerate above 48k */ 460 unsigned int do_soft_ac3: 1; 461 462 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 463 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 464 int spdif_counter; /* for software AC3 */ 465 466 unsigned int dig_status; 467 unsigned int dig_pcm_status; 468 469 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 470 471 int opened[2]; /* open mode */ 472 struct mutex open_mutex; 473 474 unsigned int mixer_insensitive: 1; 475 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 476 int mixer_res_status[CM_SAVED_MIXERS]; 477 478 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 479 480 /* external MIDI */ 481 struct snd_rawmidi *rmidi; 482 483 #ifdef SUPPORT_JOYSTICK 484 struct gameport *gameport; 485 #endif 486 487 spinlock_t reg_lock; 488 489 unsigned int saved_regs[0x20]; 490 unsigned char saved_mixers[0x20]; 491 }; 492 493 494 /* read/write operations for dword register */ 495 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 496 { 497 outl(data, cm->iobase + cmd); 498 } 499 500 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 501 { 502 return inl(cm->iobase + cmd); 503 } 504 505 /* read/write operations for word register */ 506 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 507 { 508 outw(data, cm->iobase + cmd); 509 } 510 511 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 512 { 513 return inw(cm->iobase + cmd); 514 } 515 516 /* read/write operations for byte register */ 517 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 518 { 519 outb(data, cm->iobase + cmd); 520 } 521 522 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 523 { 524 return inb(cm->iobase + cmd); 525 } 526 527 /* bit operations for dword register */ 528 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 529 { 530 unsigned int val, oval; 531 val = oval = inl(cm->iobase + cmd); 532 val |= flag; 533 if (val == oval) 534 return 0; 535 outl(val, cm->iobase + cmd); 536 return 1; 537 } 538 539 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 540 { 541 unsigned int val, oval; 542 val = oval = inl(cm->iobase + cmd); 543 val &= ~flag; 544 if (val == oval) 545 return 0; 546 outl(val, cm->iobase + cmd); 547 return 1; 548 } 549 550 /* bit operations for byte register */ 551 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 552 { 553 unsigned char val, oval; 554 val = oval = inb(cm->iobase + cmd); 555 val |= flag; 556 if (val == oval) 557 return 0; 558 outb(val, cm->iobase + cmd); 559 return 1; 560 } 561 562 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 563 { 564 unsigned char val, oval; 565 val = oval = inb(cm->iobase + cmd); 566 val &= ~flag; 567 if (val == oval) 568 return 0; 569 outb(val, cm->iobase + cmd); 570 return 1; 571 } 572 573 574 /* 575 * PCM interface 576 */ 577 578 /* 579 * calculate frequency 580 */ 581 582 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 583 584 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 585 { 586 unsigned int i; 587 588 for (i = 0; i < ARRAY_SIZE(rates); i++) { 589 if (rates[i] == rate) 590 return i; 591 } 592 snd_BUG(); 593 return 0; 594 } 595 596 #ifdef USE_VAR48KRATE 597 /* 598 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 599 * does it this way .. maybe not. Never get any information from C-Media about 600 * that <werner@suse.de>. 601 */ 602 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 603 { 604 unsigned int delta, tolerance; 605 int xm, xn, xr; 606 607 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 608 rate <<= 1; 609 *n = -1; 610 if (*r > 0xff) 611 goto out; 612 tolerance = rate*CM_TOLERANCE_RATE; 613 614 for (xn = (1+2); xn < (0x1f+2); xn++) { 615 for (xm = (1+2); xm < (0xff+2); xm++) { 616 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 617 618 if (xr < rate) 619 delta = rate - xr; 620 else 621 delta = xr - rate; 622 623 /* 624 * If we found one, remember this, 625 * and try to find a closer one 626 */ 627 if (delta < tolerance) { 628 tolerance = delta; 629 *m = xm - 2; 630 *n = xn - 2; 631 } 632 } 633 } 634 out: 635 return (*n > -1); 636 } 637 638 /* 639 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 640 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 641 * at the register CM_REG_FUNCTRL1 (0x04). 642 * Problem: other ways are also possible (any information about that?) 643 */ 644 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 645 { 646 unsigned int reg = CM_REG_PLL + slot; 647 /* 648 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 649 * for DSFC/ASFC (000 up to 111). 650 */ 651 652 /* FIXME: Init (Do we've to set an other register first before programming?) */ 653 654 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 655 snd_cmipci_write_b(cm, reg, rate>>8); 656 snd_cmipci_write_b(cm, reg, rate&0xff); 657 658 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 659 } 660 #endif /* USE_VAR48KRATE */ 661 662 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 663 struct snd_pcm_hw_params *hw_params) 664 { 665 struct cmipci *cm = snd_pcm_substream_chip(substream); 666 if (params_channels(hw_params) > 2) { 667 guard(mutex)(&cm->open_mutex); 668 if (cm->opened[CM_CH_PLAY]) 669 return -EBUSY; 670 /* reserve the channel A */ 671 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 672 } 673 return 0; 674 } 675 676 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 677 { 678 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 679 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 680 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 681 udelay(10); 682 } 683 684 685 /* 686 */ 687 688 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 689 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 690 .count = 3, 691 .list = hw_channels, 692 .mask = 0, 693 }; 694 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 695 .count = 4, 696 .list = hw_channels, 697 .mask = 0, 698 }; 699 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 700 .count = 5, 701 .list = hw_channels, 702 .mask = 0, 703 }; 704 705 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 706 { 707 if (channels > 2) { 708 if (!cm->can_multi_ch || !rec->ch) 709 return -EINVAL; 710 if (rec->fmt != 0x03) /* stereo 16bit only */ 711 return -EINVAL; 712 } 713 714 if (cm->can_multi_ch) { 715 guard(spinlock_irq)(&cm->reg_lock); 716 if (channels > 2) { 717 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 718 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 719 } else { 720 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 721 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 722 } 723 if (channels == 8) 724 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 725 else 726 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 727 if (channels == 6) { 728 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 729 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 730 } else { 731 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 732 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 733 } 734 if (channels == 4) 735 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 736 else 737 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 738 } 739 return 0; 740 } 741 742 743 /* 744 * prepare playback/capture channel 745 * channel to be used must have been set in rec->ch. 746 */ 747 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 748 struct snd_pcm_substream *substream) 749 { 750 unsigned int reg, freq, freq_ext, val; 751 unsigned int period_size; 752 struct snd_pcm_runtime *runtime = substream->runtime; 753 754 rec->fmt = 0; 755 rec->shift = 0; 756 if (snd_pcm_format_width(runtime->format) >= 16) { 757 rec->fmt |= 0x02; 758 if (snd_pcm_format_width(runtime->format) > 16) 759 rec->shift++; /* 24/32bit */ 760 } 761 if (runtime->channels > 1) 762 rec->fmt |= 0x01; 763 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 764 dev_dbg(cm->card->dev, "cannot set dac channels\n"); 765 return -EINVAL; 766 } 767 768 rec->offset = runtime->dma_addr; 769 /* buffer and period sizes in frame */ 770 rec->dma_size = runtime->buffer_size << rec->shift; 771 period_size = runtime->period_size << rec->shift; 772 if (runtime->channels > 2) { 773 /* multi-channels */ 774 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 775 period_size = (period_size * runtime->channels) / 2; 776 } 777 778 guard(spinlock_irq)(&cm->reg_lock); 779 780 /* set buffer address */ 781 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 782 snd_cmipci_write(cm, reg, rec->offset); 783 /* program sample counts */ 784 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 785 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 786 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 787 788 /* set adc/dac flag */ 789 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 790 if (rec->is_dac) 791 cm->ctrl &= ~val; 792 else 793 cm->ctrl |= val; 794 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 795 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */ 796 797 /* set sample rate */ 798 freq = 0; 799 freq_ext = 0; 800 if (runtime->rate > 48000) 801 switch (runtime->rate) { 802 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 803 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 804 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 805 default: snd_BUG(); break; 806 } 807 else 808 freq = snd_cmipci_rate_freq(runtime->rate); 809 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 810 if (rec->ch) { 811 val &= ~CM_DSFC_MASK; 812 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 813 } else { 814 val &= ~CM_ASFC_MASK; 815 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 816 } 817 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 818 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val); 819 820 /* set format */ 821 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 822 if (rec->ch) { 823 val &= ~CM_CH1FMT_MASK; 824 val |= rec->fmt << CM_CH1FMT_SHIFT; 825 } else { 826 val &= ~CM_CH0FMT_MASK; 827 val |= rec->fmt << CM_CH0FMT_SHIFT; 828 } 829 if (cm->can_96k) { 830 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 831 val |= freq_ext << (rec->ch * 2); 832 } 833 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 834 dev_dbg(cm->card->dev, "chformat = %08x\n", val); 835 836 if (!rec->is_dac && cm->chip_version) { 837 if (runtime->rate > 44100) 838 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 839 else 840 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 841 } 842 843 rec->running = 0; 844 845 return 0; 846 } 847 848 /* 849 * PCM trigger/stop 850 */ 851 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 852 int cmd) 853 { 854 unsigned int inthld, chen, reset, pause; 855 856 inthld = CM_CH0_INT_EN << rec->ch; 857 chen = CM_CHEN0 << rec->ch; 858 reset = CM_RST_CH0 << rec->ch; 859 pause = CM_PAUSE0 << rec->ch; 860 861 guard(spinlock)(&cm->reg_lock); 862 switch (cmd) { 863 case SNDRV_PCM_TRIGGER_START: 864 rec->running = 1; 865 /* set interrupt */ 866 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 867 cm->ctrl |= chen; 868 /* enable channel */ 869 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 870 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); 871 break; 872 case SNDRV_PCM_TRIGGER_STOP: 873 rec->running = 0; 874 /* disable interrupt */ 875 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 876 /* reset */ 877 cm->ctrl &= ~chen; 878 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 879 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 880 rec->needs_silencing = rec->is_dac; 881 break; 882 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 883 case SNDRV_PCM_TRIGGER_SUSPEND: 884 cm->ctrl |= pause; 885 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 886 break; 887 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 888 case SNDRV_PCM_TRIGGER_RESUME: 889 cm->ctrl &= ~pause; 890 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 891 break; 892 default: 893 return -EINVAL; 894 } 895 return 0; 896 } 897 898 /* 899 * return the current pointer 900 */ 901 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 902 struct snd_pcm_substream *substream) 903 { 904 size_t ptr; 905 unsigned int reg, rem, tries; 906 907 if (!rec->running) 908 return 0; 909 #if 1 // this seems better.. 910 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 911 for (tries = 0; tries < 3; tries++) { 912 rem = snd_cmipci_read_w(cm, reg); 913 if (rem < rec->dma_size) 914 goto ok; 915 } 916 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem); 917 return SNDRV_PCM_POS_XRUN; 918 ok: 919 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 920 #else 921 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 922 ptr = snd_cmipci_read(cm, reg) - rec->offset; 923 ptr = bytes_to_frames(substream->runtime, ptr); 924 #endif 925 if (substream->runtime->channels > 2) 926 ptr = (ptr * 2) / substream->runtime->channels; 927 return ptr; 928 } 929 930 /* 931 * playback 932 */ 933 934 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 935 int cmd) 936 { 937 struct cmipci *cm = snd_pcm_substream_chip(substream); 938 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 939 } 940 941 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 942 { 943 struct cmipci *cm = snd_pcm_substream_chip(substream); 944 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 945 } 946 947 948 949 /* 950 * capture 951 */ 952 953 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 954 int cmd) 955 { 956 struct cmipci *cm = snd_pcm_substream_chip(substream); 957 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 958 } 959 960 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 961 { 962 struct cmipci *cm = snd_pcm_substream_chip(substream); 963 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 964 } 965 966 967 /* 968 * hw preparation for spdif 969 */ 970 971 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 972 struct snd_ctl_elem_info *uinfo) 973 { 974 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 975 uinfo->count = 1; 976 return 0; 977 } 978 979 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 980 struct snd_ctl_elem_value *ucontrol) 981 { 982 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 983 int i; 984 985 guard(spinlock_irq)(&chip->reg_lock); 986 for (i = 0; i < 4; i++) 987 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 988 return 0; 989 } 990 991 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 992 struct snd_ctl_elem_value *ucontrol) 993 { 994 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 995 int i, change; 996 unsigned int val; 997 998 val = 0; 999 guard(spinlock_irq)(&chip->reg_lock); 1000 for (i = 0; i < 4; i++) 1001 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1002 change = val != chip->dig_status; 1003 chip->dig_status = val; 1004 return change; 1005 } 1006 1007 static const struct snd_kcontrol_new snd_cmipci_spdif_default = 1008 { 1009 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1010 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1011 .info = snd_cmipci_spdif_default_info, 1012 .get = snd_cmipci_spdif_default_get, 1013 .put = snd_cmipci_spdif_default_put 1014 }; 1015 1016 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1017 struct snd_ctl_elem_info *uinfo) 1018 { 1019 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1020 uinfo->count = 1; 1021 return 0; 1022 } 1023 1024 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1025 struct snd_ctl_elem_value *ucontrol) 1026 { 1027 ucontrol->value.iec958.status[0] = 0xff; 1028 ucontrol->value.iec958.status[1] = 0xff; 1029 ucontrol->value.iec958.status[2] = 0xff; 1030 ucontrol->value.iec958.status[3] = 0xff; 1031 return 0; 1032 } 1033 1034 static const struct snd_kcontrol_new snd_cmipci_spdif_mask = 1035 { 1036 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1037 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1038 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1039 .info = snd_cmipci_spdif_mask_info, 1040 .get = snd_cmipci_spdif_mask_get, 1041 }; 1042 1043 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1044 struct snd_ctl_elem_info *uinfo) 1045 { 1046 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1047 uinfo->count = 1; 1048 return 0; 1049 } 1050 1051 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1052 struct snd_ctl_elem_value *ucontrol) 1053 { 1054 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1055 int i; 1056 1057 guard(spinlock_irq)(&chip->reg_lock); 1058 for (i = 0; i < 4; i++) 1059 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1060 return 0; 1061 } 1062 1063 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1064 struct snd_ctl_elem_value *ucontrol) 1065 { 1066 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1067 int i, change; 1068 unsigned int val; 1069 1070 val = 0; 1071 guard(spinlock_irq)(&chip->reg_lock); 1072 for (i = 0; i < 4; i++) 1073 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1074 change = val != chip->dig_pcm_status; 1075 chip->dig_pcm_status = val; 1076 return change; 1077 } 1078 1079 static const struct snd_kcontrol_new snd_cmipci_spdif_stream = 1080 { 1081 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1082 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1083 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1084 .info = snd_cmipci_spdif_stream_info, 1085 .get = snd_cmipci_spdif_stream_get, 1086 .put = snd_cmipci_spdif_stream_put 1087 }; 1088 1089 /* 1090 */ 1091 1092 /* save mixer setting and mute for AC3 playback */ 1093 static int save_mixer_state(struct cmipci *cm) 1094 { 1095 if (! cm->mixer_insensitive) { 1096 struct snd_ctl_elem_value *val; 1097 unsigned int i; 1098 1099 val = kmalloc(sizeof(*val), GFP_KERNEL); 1100 if (!val) 1101 return -ENOMEM; 1102 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1103 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1104 if (ctl) { 1105 int event; 1106 memset(val, 0, sizeof(*val)); 1107 ctl->get(ctl, val); 1108 cm->mixer_res_status[i] = val->value.integer.value[0]; 1109 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1110 event = SNDRV_CTL_EVENT_MASK_INFO; 1111 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1112 ctl->put(ctl, val); /* toggle */ 1113 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1114 } 1115 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1116 snd_ctl_notify(cm->card, event, &ctl->id); 1117 } 1118 } 1119 kfree(val); 1120 cm->mixer_insensitive = 1; 1121 } 1122 return 0; 1123 } 1124 1125 1126 /* restore the previously saved mixer status */ 1127 static void restore_mixer_state(struct cmipci *cm) 1128 { 1129 if (cm->mixer_insensitive) { 1130 struct snd_ctl_elem_value *val; 1131 unsigned int i; 1132 1133 val = kmalloc(sizeof(*val), GFP_KERNEL); 1134 if (!val) 1135 return; 1136 cm->mixer_insensitive = 0; /* at first clear this; 1137 otherwise the changes will be ignored */ 1138 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1139 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1140 if (ctl) { 1141 int event; 1142 1143 memset(val, 0, sizeof(*val)); 1144 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1145 ctl->get(ctl, val); 1146 event = SNDRV_CTL_EVENT_MASK_INFO; 1147 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1148 val->value.integer.value[0] = cm->mixer_res_status[i]; 1149 ctl->put(ctl, val); 1150 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1151 } 1152 snd_ctl_notify(cm->card, event, &ctl->id); 1153 } 1154 } 1155 kfree(val); 1156 } 1157 } 1158 1159 /* spinlock held! */ 1160 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1161 { 1162 if (do_ac3) { 1163 /* AC3EN for 037 */ 1164 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1165 /* AC3EN for 039 */ 1166 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1167 1168 if (cm->can_ac3_hw) { 1169 /* SPD24SEL for 037, 0x02 */ 1170 /* SPD24SEL for 039, 0x20, but cannot be set */ 1171 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1172 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1173 } else { /* can_ac3_sw */ 1174 /* SPD32SEL for 037 & 039, 0x20 */ 1175 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1176 /* set 176K sample rate to fix 033 HW bug */ 1177 if (cm->chip_version == 33) { 1178 if (rate >= 48000) { 1179 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1180 } else { 1181 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1182 } 1183 } 1184 } 1185 1186 } else { 1187 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1188 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1189 1190 if (cm->can_ac3_hw) { 1191 /* chip model >= 37 */ 1192 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1193 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1194 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1195 } else { 1196 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1197 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1198 } 1199 } else { 1200 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1201 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1202 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1203 } 1204 } 1205 } 1206 1207 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1208 { 1209 int rate, err; 1210 1211 rate = subs->runtime->rate; 1212 1213 if (up && do_ac3) { 1214 err = save_mixer_state(cm); 1215 if (err < 0) 1216 return err; 1217 } 1218 1219 guard(spinlock_irq)(&cm->reg_lock); 1220 cm->spdif_playback_avail = up; 1221 if (up) { 1222 /* they are controlled via "IEC958 Output Switch" */ 1223 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1224 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1225 if (cm->spdif_playback_enabled) 1226 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1227 setup_ac3(cm, subs, do_ac3, rate); 1228 1229 if (rate == 48000 || rate == 96000) 1230 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1231 else 1232 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1233 if (rate > 48000) 1234 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1235 else 1236 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1237 } else { 1238 /* they are controlled via "IEC958 Output Switch" */ 1239 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1240 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1241 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1242 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1243 setup_ac3(cm, subs, 0, 0); 1244 } 1245 return 0; 1246 } 1247 1248 1249 /* 1250 * preparation 1251 */ 1252 1253 /* playback - enable spdif only on the certain condition */ 1254 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1255 { 1256 struct cmipci *cm = snd_pcm_substream_chip(substream); 1257 int rate = substream->runtime->rate; 1258 int err, do_spdif, do_ac3 = 0; 1259 1260 do_spdif = (rate >= 44100 && rate <= 96000 && 1261 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1262 substream->runtime->channels == 2); 1263 if (do_spdif && cm->can_ac3_hw) 1264 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1265 err = setup_spdif_playback(cm, substream, do_spdif, do_ac3); 1266 if (err < 0) 1267 return err; 1268 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1269 } 1270 1271 /* playback (via device #2) - enable spdif always */ 1272 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1273 { 1274 struct cmipci *cm = snd_pcm_substream_chip(substream); 1275 int err, do_ac3; 1276 1277 if (cm->can_ac3_hw) 1278 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1279 else 1280 do_ac3 = 1; /* doesn't matter */ 1281 err = setup_spdif_playback(cm, substream, 1, do_ac3); 1282 if (err < 0) 1283 return err; 1284 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1285 } 1286 1287 /* 1288 * Apparently, the samples last played on channel A stay in some buffer, even 1289 * after the channel is reset, and get added to the data for the rear DACs when 1290 * playing a multichannel stream on channel B. This is likely to generate 1291 * wraparounds and thus distortions. 1292 * To avoid this, we play at least one zero sample after the actual stream has 1293 * stopped. 1294 */ 1295 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1296 { 1297 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1298 unsigned int reg, val; 1299 1300 if (rec->needs_silencing && runtime && runtime->dma_area) { 1301 /* set up a small silence buffer */ 1302 memset(runtime->dma_area, 0, PAGE_SIZE); 1303 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1304 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1305 snd_cmipci_write(cm, reg, val); 1306 1307 /* configure for 16 bits, 2 channels, 8 kHz */ 1308 if (runtime->channels > 2) 1309 set_dac_channels(cm, rec, 2); 1310 scoped_guard(spinlock_irq, &cm->reg_lock) { 1311 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1312 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1313 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1314 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1315 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1316 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1317 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1318 if (cm->can_96k) 1319 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1320 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1321 1322 /* start stream (we don't need interrupts) */ 1323 cm->ctrl |= CM_CHEN0 << rec->ch; 1324 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1325 } 1326 1327 msleep(1); 1328 1329 /* stop and reset stream */ 1330 scoped_guard(spinlock_irq, &cm->reg_lock) { 1331 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1332 val = CM_RST_CH0 << rec->ch; 1333 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1334 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1335 } 1336 1337 rec->needs_silencing = 0; 1338 } 1339 } 1340 1341 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1342 { 1343 struct cmipci *cm = snd_pcm_substream_chip(substream); 1344 setup_spdif_playback(cm, substream, 0, 0); 1345 restore_mixer_state(cm); 1346 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1347 return 0; 1348 } 1349 1350 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1351 { 1352 struct cmipci *cm = snd_pcm_substream_chip(substream); 1353 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1354 return 0; 1355 } 1356 1357 /* capture */ 1358 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1359 { 1360 struct cmipci *cm = snd_pcm_substream_chip(substream); 1361 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1362 } 1363 1364 /* capture with spdif (via device #2) */ 1365 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1366 { 1367 struct cmipci *cm = snd_pcm_substream_chip(substream); 1368 1369 scoped_guard(spinlock_irq, &cm->reg_lock) { 1370 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1371 if (cm->can_96k) { 1372 if (substream->runtime->rate > 48000) 1373 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1374 else 1375 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1376 } 1377 if (snd_pcm_format_width(substream->runtime->format) > 16) 1378 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1379 else 1380 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1381 } 1382 1383 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1384 } 1385 1386 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1387 { 1388 struct cmipci *cm = snd_pcm_substream_chip(subs); 1389 1390 guard(spinlock_irq)(&cm->reg_lock); 1391 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1392 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1393 1394 return 0; 1395 } 1396 1397 1398 /* 1399 * interrupt handler 1400 */ 1401 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1402 { 1403 struct cmipci *cm = dev_id; 1404 unsigned int status, mask = 0; 1405 1406 /* fastpath out, to ease interrupt sharing */ 1407 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1408 if (!(status & CM_INTR)) 1409 return IRQ_NONE; 1410 1411 /* acknowledge interrupt */ 1412 scoped_guard(spinlock, &cm->reg_lock) { 1413 if (status & CM_CHINT0) 1414 mask |= CM_CH0_INT_EN; 1415 if (status & CM_CHINT1) 1416 mask |= CM_CH1_INT_EN; 1417 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1418 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1419 } 1420 1421 if (cm->rmidi && (status & CM_UARTINT)) 1422 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1423 1424 if (cm->pcm) { 1425 if ((status & CM_CHINT0) && cm->channel[0].running) 1426 snd_pcm_period_elapsed(cm->channel[0].substream); 1427 if ((status & CM_CHINT1) && cm->channel[1].running) 1428 snd_pcm_period_elapsed(cm->channel[1].substream); 1429 } 1430 return IRQ_HANDLED; 1431 } 1432 1433 /* 1434 * h/w infos 1435 */ 1436 1437 /* playback on channel A */ 1438 static const struct snd_pcm_hardware snd_cmipci_playback = 1439 { 1440 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1441 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1442 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1443 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1444 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1445 .rate_min = 5512, 1446 .rate_max = 48000, 1447 .channels_min = 1, 1448 .channels_max = 2, 1449 .buffer_bytes_max = (128*1024), 1450 .period_bytes_min = 64, 1451 .period_bytes_max = (128*1024), 1452 .periods_min = 2, 1453 .periods_max = 1024, 1454 .fifo_size = 0, 1455 }; 1456 1457 /* capture on channel B */ 1458 static const struct snd_pcm_hardware snd_cmipci_capture = 1459 { 1460 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1461 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1462 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1463 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1464 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1465 .rate_min = 5512, 1466 .rate_max = 48000, 1467 .channels_min = 1, 1468 .channels_max = 2, 1469 .buffer_bytes_max = (128*1024), 1470 .period_bytes_min = 64, 1471 .period_bytes_max = (128*1024), 1472 .periods_min = 2, 1473 .periods_max = 1024, 1474 .fifo_size = 0, 1475 }; 1476 1477 /* playback on channel B - stereo 16bit only? */ 1478 static const struct snd_pcm_hardware snd_cmipci_playback2 = 1479 { 1480 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1481 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1482 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1483 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1484 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1485 .rate_min = 5512, 1486 .rate_max = 48000, 1487 .channels_min = 2, 1488 .channels_max = 2, 1489 .buffer_bytes_max = (128*1024), 1490 .period_bytes_min = 64, 1491 .period_bytes_max = (128*1024), 1492 .periods_min = 2, 1493 .periods_max = 1024, 1494 .fifo_size = 0, 1495 }; 1496 1497 /* spdif playback on channel A */ 1498 static const struct snd_pcm_hardware snd_cmipci_playback_spdif = 1499 { 1500 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1501 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1502 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1503 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1504 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1505 .rate_min = 44100, 1506 .rate_max = 48000, 1507 .channels_min = 2, 1508 .channels_max = 2, 1509 .buffer_bytes_max = (128*1024), 1510 .period_bytes_min = 64, 1511 .period_bytes_max = (128*1024), 1512 .periods_min = 2, 1513 .periods_max = 1024, 1514 .fifo_size = 0, 1515 }; 1516 1517 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1518 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1519 { 1520 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1521 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1522 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1523 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1524 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1525 .rate_min = 44100, 1526 .rate_max = 48000, 1527 .channels_min = 2, 1528 .channels_max = 2, 1529 .buffer_bytes_max = (128*1024), 1530 .period_bytes_min = 64, 1531 .period_bytes_max = (128*1024), 1532 .periods_min = 2, 1533 .periods_max = 1024, 1534 .fifo_size = 0, 1535 }; 1536 1537 /* spdif capture on channel B */ 1538 static const struct snd_pcm_hardware snd_cmipci_capture_spdif = 1539 { 1540 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1541 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1542 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1543 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1544 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1545 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1546 .rate_min = 44100, 1547 .rate_max = 48000, 1548 .channels_min = 2, 1549 .channels_max = 2, 1550 .buffer_bytes_max = (128*1024), 1551 .period_bytes_min = 64, 1552 .period_bytes_max = (128*1024), 1553 .periods_min = 2, 1554 .periods_max = 1024, 1555 .fifo_size = 0, 1556 }; 1557 1558 /* 1559 * check device open/close 1560 */ 1561 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1562 { 1563 int ch = mode & CM_OPEN_CH_MASK; 1564 1565 /* FIXME: a file should wait until the device becomes free 1566 * when it's opened on blocking mode. however, since the current 1567 * pcm framework doesn't pass file pointer before actually opened, 1568 * we can't know whether blocking mode or not in open callback.. 1569 */ 1570 guard(mutex)(&cm->open_mutex); 1571 if (cm->opened[ch]) 1572 return -EBUSY; 1573 cm->opened[ch] = mode; 1574 cm->channel[ch].substream = subs; 1575 if (! (mode & CM_OPEN_DAC)) { 1576 /* disable dual DAC mode */ 1577 cm->channel[ch].is_dac = 0; 1578 guard(spinlock_irq)(&cm->reg_lock); 1579 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1580 } 1581 return 0; 1582 } 1583 1584 static void close_device_check(struct cmipci *cm, int mode) 1585 { 1586 int ch = mode & CM_OPEN_CH_MASK; 1587 1588 guard(mutex)(&cm->open_mutex); 1589 if (cm->opened[ch] == mode) { 1590 if (cm->channel[ch].substream) { 1591 snd_cmipci_ch_reset(cm, ch); 1592 cm->channel[ch].running = 0; 1593 cm->channel[ch].substream = NULL; 1594 } 1595 cm->opened[ch] = 0; 1596 if (! cm->channel[ch].is_dac) { 1597 /* enable dual DAC mode again */ 1598 cm->channel[ch].is_dac = 1; 1599 guard(spinlock_irq)(&cm->reg_lock); 1600 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1601 } 1602 } 1603 } 1604 1605 /* 1606 */ 1607 1608 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1609 { 1610 struct cmipci *cm = snd_pcm_substream_chip(substream); 1611 struct snd_pcm_runtime *runtime = substream->runtime; 1612 int err; 1613 1614 err = open_device_check(cm, CM_OPEN_PLAYBACK, substream); 1615 if (err < 0) 1616 return err; 1617 runtime->hw = snd_cmipci_playback; 1618 if (cm->chip_version == 68) { 1619 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1620 SNDRV_PCM_RATE_96000; 1621 runtime->hw.rate_max = 96000; 1622 } else if (cm->chip_version == 55) { 1623 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1624 SNDRV_PCM_RATE_96000 | 1625 SNDRV_PCM_RATE_128000; 1626 runtime->hw.rate_max = 128000; 1627 } 1628 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1629 cm->dig_pcm_status = cm->dig_status; 1630 return 0; 1631 } 1632 1633 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1634 { 1635 struct cmipci *cm = snd_pcm_substream_chip(substream); 1636 struct snd_pcm_runtime *runtime = substream->runtime; 1637 int err; 1638 1639 err = open_device_check(cm, CM_OPEN_CAPTURE, substream); 1640 if (err < 0) 1641 return err; 1642 runtime->hw = snd_cmipci_capture; 1643 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1644 runtime->hw.rate_min = 41000; 1645 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1646 } else if (cm->chip_version == 55) { 1647 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1648 SNDRV_PCM_RATE_96000 | 1649 SNDRV_PCM_RATE_128000; 1650 runtime->hw.rate_max = 128000; 1651 } 1652 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1653 return 0; 1654 } 1655 1656 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1657 { 1658 struct cmipci *cm = snd_pcm_substream_chip(substream); 1659 struct snd_pcm_runtime *runtime = substream->runtime; 1660 int err; 1661 1662 /* use channel B */ 1663 err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream); 1664 if (err < 0) 1665 return err; 1666 runtime->hw = snd_cmipci_playback2; 1667 guard(mutex)(&cm->open_mutex); 1668 if (! cm->opened[CM_CH_PLAY]) { 1669 if (cm->can_multi_ch) { 1670 runtime->hw.channels_max = cm->max_channels; 1671 if (cm->max_channels == 4) 1672 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1673 else if (cm->max_channels == 6) 1674 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1675 else if (cm->max_channels == 8) 1676 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1677 } 1678 } 1679 if (cm->chip_version == 68) { 1680 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1681 SNDRV_PCM_RATE_96000; 1682 runtime->hw.rate_max = 96000; 1683 } else if (cm->chip_version == 55) { 1684 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1685 SNDRV_PCM_RATE_96000 | 1686 SNDRV_PCM_RATE_128000; 1687 runtime->hw.rate_max = 128000; 1688 } 1689 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1690 return 0; 1691 } 1692 1693 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1694 { 1695 struct cmipci *cm = snd_pcm_substream_chip(substream); 1696 struct snd_pcm_runtime *runtime = substream->runtime; 1697 int err; 1698 1699 /* use channel A */ 1700 err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream); 1701 if (err < 0) 1702 return err; 1703 if (cm->can_ac3_hw) { 1704 runtime->hw = snd_cmipci_playback_spdif; 1705 if (cm->chip_version >= 37) { 1706 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1707 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1708 } 1709 if (cm->can_96k) { 1710 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1711 SNDRV_PCM_RATE_96000; 1712 runtime->hw.rate_max = 96000; 1713 } 1714 } else { 1715 runtime->hw = snd_cmipci_playback_iec958_subframe; 1716 } 1717 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1718 cm->dig_pcm_status = cm->dig_status; 1719 return 0; 1720 } 1721 1722 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1723 { 1724 struct cmipci *cm = snd_pcm_substream_chip(substream); 1725 struct snd_pcm_runtime *runtime = substream->runtime; 1726 int err; 1727 1728 /* use channel B */ 1729 err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream); 1730 if (err < 0) 1731 return err; 1732 runtime->hw = snd_cmipci_capture_spdif; 1733 if (cm->can_96k && !(cm->chip_version == 68)) { 1734 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1735 SNDRV_PCM_RATE_96000; 1736 runtime->hw.rate_max = 96000; 1737 } 1738 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1739 return 0; 1740 } 1741 1742 1743 /* 1744 */ 1745 1746 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1747 { 1748 struct cmipci *cm = snd_pcm_substream_chip(substream); 1749 close_device_check(cm, CM_OPEN_PLAYBACK); 1750 return 0; 1751 } 1752 1753 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1754 { 1755 struct cmipci *cm = snd_pcm_substream_chip(substream); 1756 close_device_check(cm, CM_OPEN_CAPTURE); 1757 return 0; 1758 } 1759 1760 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1761 { 1762 struct cmipci *cm = snd_pcm_substream_chip(substream); 1763 close_device_check(cm, CM_OPEN_PLAYBACK2); 1764 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1765 return 0; 1766 } 1767 1768 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1769 { 1770 struct cmipci *cm = snd_pcm_substream_chip(substream); 1771 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1772 return 0; 1773 } 1774 1775 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1776 { 1777 struct cmipci *cm = snd_pcm_substream_chip(substream); 1778 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1779 return 0; 1780 } 1781 1782 1783 /* 1784 */ 1785 1786 static const struct snd_pcm_ops snd_cmipci_playback_ops = { 1787 .open = snd_cmipci_playback_open, 1788 .close = snd_cmipci_playback_close, 1789 .hw_free = snd_cmipci_playback_hw_free, 1790 .prepare = snd_cmipci_playback_prepare, 1791 .trigger = snd_cmipci_playback_trigger, 1792 .pointer = snd_cmipci_playback_pointer, 1793 }; 1794 1795 static const struct snd_pcm_ops snd_cmipci_capture_ops = { 1796 .open = snd_cmipci_capture_open, 1797 .close = snd_cmipci_capture_close, 1798 .prepare = snd_cmipci_capture_prepare, 1799 .trigger = snd_cmipci_capture_trigger, 1800 .pointer = snd_cmipci_capture_pointer, 1801 }; 1802 1803 static const struct snd_pcm_ops snd_cmipci_playback2_ops = { 1804 .open = snd_cmipci_playback2_open, 1805 .close = snd_cmipci_playback2_close, 1806 .hw_params = snd_cmipci_playback2_hw_params, 1807 .hw_free = snd_cmipci_playback2_hw_free, 1808 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1809 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1810 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1811 }; 1812 1813 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1814 .open = snd_cmipci_playback_spdif_open, 1815 .close = snd_cmipci_playback_spdif_close, 1816 .hw_free = snd_cmipci_playback_hw_free, 1817 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1818 .trigger = snd_cmipci_playback_trigger, 1819 .pointer = snd_cmipci_playback_pointer, 1820 }; 1821 1822 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1823 .open = snd_cmipci_capture_spdif_open, 1824 .close = snd_cmipci_capture_spdif_close, 1825 .hw_free = snd_cmipci_capture_spdif_hw_free, 1826 .prepare = snd_cmipci_capture_spdif_prepare, 1827 .trigger = snd_cmipci_capture_trigger, 1828 .pointer = snd_cmipci_capture_pointer, 1829 }; 1830 1831 1832 /* 1833 */ 1834 1835 static int snd_cmipci_pcm_new(struct cmipci *cm, int device) 1836 { 1837 struct snd_pcm *pcm; 1838 int err; 1839 1840 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1841 if (err < 0) 1842 return err; 1843 1844 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1845 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1846 1847 pcm->private_data = cm; 1848 pcm->info_flags = 0; 1849 strscpy(pcm->name, "C-Media PCI DAC/ADC"); 1850 cm->pcm = pcm; 1851 1852 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1853 &cm->pci->dev, 64*1024, 128*1024); 1854 1855 return 0; 1856 } 1857 1858 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1859 { 1860 struct snd_pcm *pcm; 1861 int err; 1862 1863 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1864 if (err < 0) 1865 return err; 1866 1867 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1868 1869 pcm->private_data = cm; 1870 pcm->info_flags = 0; 1871 strscpy(pcm->name, "C-Media PCI 2nd DAC"); 1872 cm->pcm2 = pcm; 1873 1874 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1875 &cm->pci->dev, 64*1024, 128*1024); 1876 1877 return 0; 1878 } 1879 1880 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1881 { 1882 struct snd_pcm *pcm; 1883 int err; 1884 1885 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1886 if (err < 0) 1887 return err; 1888 1889 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1890 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1891 1892 pcm->private_data = cm; 1893 pcm->info_flags = 0; 1894 strscpy(pcm->name, "C-Media PCI IEC958"); 1895 cm->pcm_spdif = pcm; 1896 1897 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1898 &cm->pci->dev, 64*1024, 128*1024); 1899 1900 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1901 snd_pcm_alt_chmaps, cm->max_channels, 0, 1902 NULL); 1903 if (err < 0) 1904 return err; 1905 1906 return 0; 1907 } 1908 1909 /* 1910 * mixer interface: 1911 * - CM8338/8738 has a compatible mixer interface with SB16, but 1912 * lack of some elements like tone control, i/o gain and AGC. 1913 * - Access to native registers: 1914 * - A 3D switch 1915 * - Output mute switches 1916 */ 1917 1918 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1919 { 1920 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1921 outb(data, s->iobase + CM_REG_SB16_DATA); 1922 } 1923 1924 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1925 { 1926 unsigned char v; 1927 1928 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1929 v = inb(s->iobase + CM_REG_SB16_DATA); 1930 return v; 1931 } 1932 1933 /* 1934 * general mixer element 1935 */ 1936 struct cmipci_sb_reg { 1937 unsigned int left_reg, right_reg; 1938 unsigned int left_shift, right_shift; 1939 unsigned int mask; 1940 unsigned int invert: 1; 1941 unsigned int stereo: 1; 1942 }; 1943 1944 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1945 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1946 1947 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1948 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 1949 .info = snd_cmipci_info_volume, \ 1950 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 1951 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 1952 } 1953 1954 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 1955 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 1956 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 1957 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 1958 1959 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 1960 { 1961 r->left_reg = val & 0xff; 1962 r->right_reg = (val >> 8) & 0xff; 1963 r->left_shift = (val >> 16) & 0x07; 1964 r->right_shift = (val >> 19) & 0x07; 1965 r->invert = (val >> 22) & 1; 1966 r->stereo = (val >> 23) & 1; 1967 r->mask = (val >> 24) & 0xff; 1968 } 1969 1970 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 1971 struct snd_ctl_elem_info *uinfo) 1972 { 1973 struct cmipci_sb_reg reg; 1974 1975 cmipci_sb_reg_decode(®, kcontrol->private_value); 1976 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 1977 uinfo->count = reg.stereo + 1; 1978 uinfo->value.integer.min = 0; 1979 uinfo->value.integer.max = reg.mask; 1980 return 0; 1981 } 1982 1983 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 1984 struct snd_ctl_elem_value *ucontrol) 1985 { 1986 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 1987 struct cmipci_sb_reg reg; 1988 int val; 1989 1990 cmipci_sb_reg_decode(®, kcontrol->private_value); 1991 guard(spinlock_irq)(&cm->reg_lock); 1992 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 1993 if (reg.invert) 1994 val = reg.mask - val; 1995 ucontrol->value.integer.value[0] = val; 1996 if (reg.stereo) { 1997 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 1998 if (reg.invert) 1999 val = reg.mask - val; 2000 ucontrol->value.integer.value[1] = val; 2001 } 2002 return 0; 2003 } 2004 2005 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2006 struct snd_ctl_elem_value *ucontrol) 2007 { 2008 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2009 struct cmipci_sb_reg reg; 2010 int change; 2011 int left, right, oleft, oright; 2012 2013 cmipci_sb_reg_decode(®, kcontrol->private_value); 2014 left = ucontrol->value.integer.value[0] & reg.mask; 2015 if (reg.invert) 2016 left = reg.mask - left; 2017 left <<= reg.left_shift; 2018 if (reg.stereo) { 2019 right = ucontrol->value.integer.value[1] & reg.mask; 2020 if (reg.invert) 2021 right = reg.mask - right; 2022 right <<= reg.right_shift; 2023 } else 2024 right = 0; 2025 guard(spinlock_irq)(&cm->reg_lock); 2026 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2027 left |= oleft & ~(reg.mask << reg.left_shift); 2028 change = left != oleft; 2029 if (reg.stereo) { 2030 if (reg.left_reg != reg.right_reg) { 2031 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2032 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2033 } else 2034 oright = left; 2035 right |= oright & ~(reg.mask << reg.right_shift); 2036 change |= right != oright; 2037 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2038 } else 2039 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2040 return change; 2041 } 2042 2043 /* 2044 * input route (left,right) -> (left,right) 2045 */ 2046 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2047 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2048 .info = snd_cmipci_info_input_sw, \ 2049 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2050 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2051 } 2052 2053 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2054 struct snd_ctl_elem_info *uinfo) 2055 { 2056 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2057 uinfo->count = 4; 2058 uinfo->value.integer.min = 0; 2059 uinfo->value.integer.max = 1; 2060 return 0; 2061 } 2062 2063 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2064 struct snd_ctl_elem_value *ucontrol) 2065 { 2066 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2067 struct cmipci_sb_reg reg; 2068 int val1, val2; 2069 2070 cmipci_sb_reg_decode(®, kcontrol->private_value); 2071 guard(spinlock_irq)(&cm->reg_lock); 2072 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2073 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2074 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2075 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2076 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2077 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2078 return 0; 2079 } 2080 2081 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2082 struct snd_ctl_elem_value *ucontrol) 2083 { 2084 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2085 struct cmipci_sb_reg reg; 2086 int change; 2087 int val1, val2, oval1, oval2; 2088 2089 cmipci_sb_reg_decode(®, kcontrol->private_value); 2090 guard(spinlock_irq)(&cm->reg_lock); 2091 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2092 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2093 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2094 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2095 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2096 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2097 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2098 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2099 change = val1 != oval1 || val2 != oval2; 2100 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2101 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2102 return change; 2103 } 2104 2105 /* 2106 * native mixer switches/volumes 2107 */ 2108 2109 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2110 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2111 .info = snd_cmipci_info_native_mixer, \ 2112 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2113 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2114 } 2115 2116 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2117 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2118 .info = snd_cmipci_info_native_mixer, \ 2119 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2120 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2121 } 2122 2123 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2124 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2125 .info = snd_cmipci_info_native_mixer, \ 2126 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2127 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2128 } 2129 2130 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2131 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2132 .info = snd_cmipci_info_native_mixer, \ 2133 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2134 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2135 } 2136 2137 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2138 struct snd_ctl_elem_info *uinfo) 2139 { 2140 struct cmipci_sb_reg reg; 2141 2142 cmipci_sb_reg_decode(®, kcontrol->private_value); 2143 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2144 uinfo->count = reg.stereo + 1; 2145 uinfo->value.integer.min = 0; 2146 uinfo->value.integer.max = reg.mask; 2147 return 0; 2148 2149 } 2150 2151 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2152 struct snd_ctl_elem_value *ucontrol) 2153 { 2154 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2155 struct cmipci_sb_reg reg; 2156 unsigned char oreg, val; 2157 2158 cmipci_sb_reg_decode(®, kcontrol->private_value); 2159 guard(spinlock_irq)(&cm->reg_lock); 2160 oreg = inb(cm->iobase + reg.left_reg); 2161 val = (oreg >> reg.left_shift) & reg.mask; 2162 if (reg.invert) 2163 val = reg.mask - val; 2164 ucontrol->value.integer.value[0] = val; 2165 if (reg.stereo) { 2166 val = (oreg >> reg.right_shift) & reg.mask; 2167 if (reg.invert) 2168 val = reg.mask - val; 2169 ucontrol->value.integer.value[1] = val; 2170 } 2171 return 0; 2172 } 2173 2174 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2175 struct snd_ctl_elem_value *ucontrol) 2176 { 2177 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2178 struct cmipci_sb_reg reg; 2179 unsigned char oreg, nreg, val; 2180 2181 cmipci_sb_reg_decode(®, kcontrol->private_value); 2182 guard(spinlock_irq)(&cm->reg_lock); 2183 oreg = inb(cm->iobase + reg.left_reg); 2184 val = ucontrol->value.integer.value[0] & reg.mask; 2185 if (reg.invert) 2186 val = reg.mask - val; 2187 nreg = oreg & ~(reg.mask << reg.left_shift); 2188 nreg |= (val << reg.left_shift); 2189 if (reg.stereo) { 2190 val = ucontrol->value.integer.value[1] & reg.mask; 2191 if (reg.invert) 2192 val = reg.mask - val; 2193 nreg &= ~(reg.mask << reg.right_shift); 2194 nreg |= (val << reg.right_shift); 2195 } 2196 outb(nreg, cm->iobase + reg.left_reg); 2197 return (nreg != oreg); 2198 } 2199 2200 /* 2201 * special case - check mixer sensitivity 2202 */ 2203 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2204 struct snd_ctl_elem_value *ucontrol) 2205 { 2206 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2207 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2208 } 2209 2210 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2211 struct snd_ctl_elem_value *ucontrol) 2212 { 2213 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2214 if (cm->mixer_insensitive) { 2215 /* ignored */ 2216 return 0; 2217 } 2218 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2219 } 2220 2221 2222 static const struct snd_kcontrol_new snd_cmipci_mixers[] = { 2223 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2224 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2225 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2226 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2227 { /* switch with sensitivity */ 2228 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2229 .name = "PCM Playback Switch", 2230 .info = snd_cmipci_info_native_mixer, 2231 .get = snd_cmipci_get_native_mixer_sensitive, 2232 .put = snd_cmipci_put_native_mixer_sensitive, 2233 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2234 }, 2235 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2236 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2237 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2238 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2239 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2240 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2241 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2242 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2243 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2244 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2245 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2246 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2247 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2248 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2249 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2250 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2251 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2252 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2253 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2254 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2255 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2256 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2257 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2258 }; 2259 2260 /* 2261 * other switches 2262 */ 2263 2264 struct cmipci_switch_args { 2265 int reg; /* register index */ 2266 unsigned int mask; /* mask bits */ 2267 unsigned int mask_on; /* mask bits to turn on */ 2268 unsigned int is_byte: 1; /* byte access? */ 2269 unsigned int ac3_sensitive: 1; /* access forbidden during 2270 * non-audio operation? 2271 */ 2272 }; 2273 2274 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2275 2276 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2277 struct snd_ctl_elem_value *ucontrol, 2278 struct cmipci_switch_args *args) 2279 { 2280 unsigned int val; 2281 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2282 2283 guard(spinlock_irq)(&cm->reg_lock); 2284 if (args->ac3_sensitive && cm->mixer_insensitive) { 2285 ucontrol->value.integer.value[0] = 0; 2286 return 0; 2287 } 2288 if (args->is_byte) 2289 val = inb(cm->iobase + args->reg); 2290 else 2291 val = snd_cmipci_read(cm, args->reg); 2292 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2293 return 0; 2294 } 2295 2296 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2297 struct snd_ctl_elem_value *ucontrol) 2298 { 2299 struct cmipci_switch_args *args; 2300 args = (struct cmipci_switch_args *)kcontrol->private_value; 2301 if (snd_BUG_ON(!args)) 2302 return -EINVAL; 2303 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2304 } 2305 2306 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2307 struct snd_ctl_elem_value *ucontrol, 2308 struct cmipci_switch_args *args) 2309 { 2310 unsigned int val; 2311 int change; 2312 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2313 2314 guard(spinlock_irq)(&cm->reg_lock); 2315 if (args->ac3_sensitive && cm->mixer_insensitive) { 2316 /* ignored */ 2317 return 0; 2318 } 2319 if (args->is_byte) 2320 val = inb(cm->iobase + args->reg); 2321 else 2322 val = snd_cmipci_read(cm, args->reg); 2323 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2324 args->mask_on : (args->mask & ~args->mask_on)); 2325 if (change) { 2326 val &= ~args->mask; 2327 if (ucontrol->value.integer.value[0]) 2328 val |= args->mask_on; 2329 else 2330 val |= (args->mask & ~args->mask_on); 2331 if (args->is_byte) 2332 outb((unsigned char)val, cm->iobase + args->reg); 2333 else 2334 snd_cmipci_write(cm, args->reg, val); 2335 } 2336 return change; 2337 } 2338 2339 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2340 struct snd_ctl_elem_value *ucontrol) 2341 { 2342 struct cmipci_switch_args *args; 2343 args = (struct cmipci_switch_args *)kcontrol->private_value; 2344 if (snd_BUG_ON(!args)) 2345 return -EINVAL; 2346 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2347 } 2348 2349 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2350 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2351 .reg = xreg, \ 2352 .mask = xmask, \ 2353 .mask_on = xmask_on, \ 2354 .is_byte = xis_byte, \ 2355 .ac3_sensitive = xac3, \ 2356 } 2357 2358 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2359 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2360 2361 #if 0 /* these will be controlled in pcm device */ 2362 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2363 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2364 #endif 2365 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2366 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2367 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2368 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2369 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2370 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2371 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2372 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2373 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2374 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2375 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2376 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2377 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2378 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2379 #if CM_CH_PLAY == 1 2380 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2381 #else 2382 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2383 #endif 2384 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2385 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2386 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2387 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2388 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2389 2390 #define DEFINE_SWITCH(sname, stype, sarg) \ 2391 { .name = sname, \ 2392 .iface = stype, \ 2393 .info = snd_cmipci_uswitch_info, \ 2394 .get = snd_cmipci_uswitch_get, \ 2395 .put = snd_cmipci_uswitch_put, \ 2396 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2397 } 2398 2399 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2400 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2401 2402 2403 /* 2404 * callbacks for spdif output switch 2405 * needs toggle two registers.. 2406 */ 2407 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2408 struct snd_ctl_elem_value *ucontrol) 2409 { 2410 int changed; 2411 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2412 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2413 return changed; 2414 } 2415 2416 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2417 struct snd_ctl_elem_value *ucontrol) 2418 { 2419 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2420 int changed; 2421 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2422 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2423 if (changed) { 2424 if (ucontrol->value.integer.value[0]) { 2425 if (chip->spdif_playback_avail) 2426 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2427 } else { 2428 if (chip->spdif_playback_avail) 2429 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2430 } 2431 } 2432 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2433 return changed; 2434 } 2435 2436 2437 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2438 struct snd_ctl_elem_info *uinfo) 2439 { 2440 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2441 static const char *const texts[3] = { 2442 "Line-In", "Rear Output", "Bass Output" 2443 }; 2444 2445 return snd_ctl_enum_info(uinfo, 1, 2446 cm->chip_version >= 39 ? 3 : 2, texts); 2447 } 2448 2449 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2450 { 2451 unsigned int val; 2452 if (cm->chip_version >= 39) { 2453 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2454 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2455 return 2; 2456 } 2457 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2458 if (val & CM_REAR2LIN) 2459 return 1; 2460 return 0; 2461 } 2462 2463 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2464 struct snd_ctl_elem_value *ucontrol) 2465 { 2466 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2467 2468 guard(spinlock_irq)(&cm->reg_lock); 2469 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2470 return 0; 2471 } 2472 2473 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2474 struct snd_ctl_elem_value *ucontrol) 2475 { 2476 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2477 int change; 2478 2479 guard(spinlock_irq)(&cm->reg_lock); 2480 if (ucontrol->value.enumerated.item[0] == 2) 2481 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2482 else 2483 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2484 if (ucontrol->value.enumerated.item[0] == 1) 2485 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2486 else 2487 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2488 return change; 2489 } 2490 2491 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2492 struct snd_ctl_elem_info *uinfo) 2493 { 2494 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2495 2496 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2497 } 2498 2499 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2500 struct snd_ctl_elem_value *ucontrol) 2501 { 2502 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2503 2504 /* same bit as spdi_phase */ 2505 guard(spinlock_irq)(&cm->reg_lock); 2506 ucontrol->value.enumerated.item[0] = 2507 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2508 return 0; 2509 } 2510 2511 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2512 struct snd_ctl_elem_value *ucontrol) 2513 { 2514 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2515 int change; 2516 2517 guard(spinlock_irq)(&cm->reg_lock); 2518 if (ucontrol->value.enumerated.item[0]) 2519 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2520 else 2521 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2522 return change; 2523 } 2524 2525 /* both for CM8338/8738 */ 2526 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = { 2527 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2528 { 2529 .name = "Line-In Mode", 2530 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2531 .info = snd_cmipci_line_in_mode_info, 2532 .get = snd_cmipci_line_in_mode_get, 2533 .put = snd_cmipci_line_in_mode_put, 2534 }, 2535 }; 2536 2537 /* for non-multichannel chips */ 2538 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch = 2539 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2540 2541 /* only for CM8738 */ 2542 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = { 2543 #if 0 /* controlled in pcm device */ 2544 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2545 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2546 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2547 #endif 2548 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2549 { .name = "IEC958 Output Switch", 2550 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2551 .info = snd_cmipci_uswitch_info, 2552 .get = snd_cmipci_spdout_enable_get, 2553 .put = snd_cmipci_spdout_enable_put, 2554 }, 2555 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2556 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2557 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2558 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2559 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2560 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2561 }; 2562 2563 /* only for model 033/037 */ 2564 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = { 2565 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2566 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2567 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2568 }; 2569 2570 /* only for model 039 or later */ 2571 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = { 2572 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2573 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2574 { 2575 .name = "Mic-In Mode", 2576 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2577 .info = snd_cmipci_mic_in_mode_info, 2578 .get = snd_cmipci_mic_in_mode_get, 2579 .put = snd_cmipci_mic_in_mode_put, 2580 } 2581 }; 2582 2583 /* card control switches */ 2584 static const struct snd_kcontrol_new snd_cmipci_modem_switch = 2585 DEFINE_CARD_SWITCH("Modem", modem); 2586 2587 2588 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2589 { 2590 struct snd_card *card; 2591 const struct snd_kcontrol_new *sw; 2592 struct snd_kcontrol *kctl; 2593 unsigned int idx; 2594 int err; 2595 2596 if (snd_BUG_ON(!cm || !cm->card)) 2597 return -EINVAL; 2598 2599 card = cm->card; 2600 2601 strscpy(card->mixername, "CMedia PCI"); 2602 2603 scoped_guard(spinlock_irq, &cm->reg_lock) { 2604 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2605 } 2606 2607 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2608 if (cm->chip_version == 68) { // 8768 has no PCM volume 2609 if (!strcmp(snd_cmipci_mixers[idx].name, 2610 "PCM Playback Volume")) 2611 continue; 2612 } 2613 err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm)); 2614 if (err < 0) 2615 return err; 2616 } 2617 2618 /* mixer switches */ 2619 sw = snd_cmipci_mixer_switches; 2620 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2621 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2622 if (err < 0) 2623 return err; 2624 } 2625 if (! cm->can_multi_ch) { 2626 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2627 if (err < 0) 2628 return err; 2629 } 2630 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2631 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2632 sw = snd_cmipci_8738_mixer_switches; 2633 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2634 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2635 if (err < 0) 2636 return err; 2637 } 2638 if (cm->can_ac3_hw) { 2639 kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm); 2640 kctl->id.device = pcm_spdif_device; 2641 err = snd_ctl_add(card, kctl); 2642 if (err < 0) 2643 return err; 2644 kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm); 2645 kctl->id.device = pcm_spdif_device; 2646 err = snd_ctl_add(card, kctl); 2647 if (err < 0) 2648 return err; 2649 kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm); 2650 kctl->id.device = pcm_spdif_device; 2651 err = snd_ctl_add(card, kctl); 2652 if (err < 0) 2653 return err; 2654 } 2655 if (cm->chip_version <= 37) { 2656 sw = snd_cmipci_old_mixer_switches; 2657 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2658 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2659 if (err < 0) 2660 return err; 2661 } 2662 } 2663 } 2664 if (cm->chip_version >= 39) { 2665 sw = snd_cmipci_extra_mixer_switches; 2666 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2667 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2668 if (err < 0) 2669 return err; 2670 } 2671 } 2672 2673 /* card switches */ 2674 /* 2675 * newer chips don't have the register bits to force modem link 2676 * detection; the bit that was FLINKON now mutes CH1 2677 */ 2678 if (cm->chip_version < 39) { 2679 err = snd_ctl_add(cm->card, 2680 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2681 if (err < 0) 2682 return err; 2683 } 2684 2685 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2686 struct snd_kcontrol *ctl; 2687 ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name); 2688 if (ctl) 2689 cm->mixer_res_ctl[idx] = ctl; 2690 } 2691 2692 return 0; 2693 } 2694 2695 2696 /* 2697 * proc interface 2698 */ 2699 2700 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2701 struct snd_info_buffer *buffer) 2702 { 2703 struct cmipci *cm = entry->private_data; 2704 int i, v; 2705 2706 snd_iprintf(buffer, "%s\n", cm->card->longname); 2707 for (i = 0; i < 0x94; i++) { 2708 if (i == 0x28) 2709 i = 0x90; 2710 v = inb(cm->iobase + i); 2711 if (i % 4 == 0) 2712 snd_iprintf(buffer, "\n%02x:", i); 2713 snd_iprintf(buffer, " %02x", v); 2714 } 2715 snd_iprintf(buffer, "\n"); 2716 } 2717 2718 static void snd_cmipci_proc_init(struct cmipci *cm) 2719 { 2720 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read); 2721 } 2722 2723 static const struct pci_device_id snd_cmipci_ids[] = { 2724 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2725 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2726 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2727 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2728 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2729 {0,}, 2730 }; 2731 2732 2733 /* 2734 * check chip version and capabilities 2735 * driver name is modified according to the chip model 2736 */ 2737 static void query_chip(struct cmipci *cm) 2738 { 2739 unsigned int detect; 2740 2741 /* check reg 0Ch, bit 24-31 */ 2742 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2743 if (! detect) { 2744 /* check reg 08h, bit 24-28 */ 2745 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2746 switch (detect) { 2747 case 0: 2748 cm->chip_version = 33; 2749 if (cm->do_soft_ac3) 2750 cm->can_ac3_sw = 1; 2751 else 2752 cm->can_ac3_hw = 1; 2753 break; 2754 case CM_CHIP_037: 2755 cm->chip_version = 37; 2756 cm->can_ac3_hw = 1; 2757 break; 2758 default: 2759 cm->chip_version = 39; 2760 cm->can_ac3_hw = 1; 2761 break; 2762 } 2763 cm->max_channels = 2; 2764 } else { 2765 if (detect & CM_CHIP_039) { 2766 cm->chip_version = 39; 2767 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2768 cm->max_channels = 6; 2769 else 2770 cm->max_channels = 4; 2771 } else if (detect & CM_CHIP_8768) { 2772 cm->chip_version = 68; 2773 cm->max_channels = 8; 2774 cm->can_96k = 1; 2775 } else { 2776 cm->chip_version = 55; 2777 cm->max_channels = 6; 2778 cm->can_96k = 1; 2779 } 2780 cm->can_ac3_hw = 1; 2781 cm->can_multi_ch = 1; 2782 } 2783 } 2784 2785 #ifdef SUPPORT_JOYSTICK 2786 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2787 { 2788 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2789 struct gameport *gp; 2790 struct resource *r = NULL; 2791 int i, io_port = 0; 2792 2793 if (joystick_port[dev] == 0) 2794 return -ENODEV; 2795 2796 if (joystick_port[dev] == 1) { /* auto-detect */ 2797 for (i = 0; ports[i]; i++) { 2798 io_port = ports[i]; 2799 r = devm_request_region(&cm->pci->dev, io_port, 1, 2800 "CMIPCI gameport"); 2801 if (r) 2802 break; 2803 } 2804 } else { 2805 io_port = joystick_port[dev]; 2806 r = devm_request_region(&cm->pci->dev, io_port, 1, 2807 "CMIPCI gameport"); 2808 } 2809 2810 if (!r) { 2811 dev_warn(cm->card->dev, "cannot reserve joystick ports\n"); 2812 return -EBUSY; 2813 } 2814 2815 cm->gameport = gp = gameport_allocate_port(); 2816 if (!gp) { 2817 dev_err(cm->card->dev, "cannot allocate memory for gameport\n"); 2818 return -ENOMEM; 2819 } 2820 gameport_set_name(gp, "C-Media Gameport"); 2821 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2822 gameport_set_dev_parent(gp, &cm->pci->dev); 2823 gp->io = io_port; 2824 2825 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2826 2827 gameport_register_port(cm->gameport); 2828 2829 return 0; 2830 } 2831 2832 static void snd_cmipci_free_gameport(struct cmipci *cm) 2833 { 2834 if (cm->gameport) { 2835 gameport_unregister_port(cm->gameport); 2836 cm->gameport = NULL; 2837 2838 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2839 } 2840 } 2841 #else 2842 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2843 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2844 #endif 2845 2846 static void snd_cmipci_free(struct snd_card *card) 2847 { 2848 struct cmipci *cm = card->private_data; 2849 2850 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2851 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2852 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2853 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2854 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2855 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2856 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2857 2858 /* reset mixer */ 2859 snd_cmipci_mixer_write(cm, 0, 0); 2860 2861 snd_cmipci_free_gameport(cm); 2862 } 2863 2864 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2865 { 2866 long iosynth; 2867 unsigned int val; 2868 struct snd_opl3 *opl3; 2869 int err; 2870 2871 if (!fm_port) 2872 goto disable_fm; 2873 2874 if (cm->chip_version >= 39) { 2875 /* first try FM regs in PCI port range */ 2876 iosynth = cm->iobase + CM_REG_FM_PCI; 2877 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2878 OPL3_HW_OPL3, 1, &opl3); 2879 } else { 2880 err = -EIO; 2881 } 2882 if (err < 0) { 2883 /* then try legacy ports */ 2884 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2885 iosynth = fm_port; 2886 switch (iosynth) { 2887 case 0x3E8: val |= CM_FMSEL_3E8; break; 2888 case 0x3E0: val |= CM_FMSEL_3E0; break; 2889 case 0x3C8: val |= CM_FMSEL_3C8; break; 2890 case 0x388: val |= CM_FMSEL_388; break; 2891 default: 2892 goto disable_fm; 2893 } 2894 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2895 /* enable FM */ 2896 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2897 2898 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2899 OPL3_HW_OPL3, 0, &opl3) < 0) { 2900 dev_err(cm->card->dev, 2901 "no OPL device at %#lx, skipping...\n", 2902 iosynth); 2903 goto disable_fm; 2904 } 2905 } 2906 err = snd_opl3_hwdep_new(opl3, 0, 1, NULL); 2907 if (err < 0) { 2908 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n"); 2909 return err; 2910 } 2911 return 0; 2912 2913 disable_fm: 2914 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2915 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2916 return 0; 2917 } 2918 2919 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2920 int dev) 2921 { 2922 struct cmipci *cm = card->private_data; 2923 int err; 2924 unsigned int val; 2925 long iomidi = 0; 2926 int integrated_midi = 0; 2927 char modelstr[16]; 2928 int pcm_index, pcm_spdif_index; 2929 static const struct pci_device_id intel_82437vx[] = { 2930 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 2931 { }, 2932 }; 2933 2934 err = pcim_enable_device(pci); 2935 if (err < 0) 2936 return err; 2937 2938 spin_lock_init(&cm->reg_lock); 2939 mutex_init(&cm->open_mutex); 2940 cm->device = pci->device; 2941 cm->card = card; 2942 cm->pci = pci; 2943 cm->irq = -1; 2944 cm->channel[0].ch = 0; 2945 cm->channel[1].ch = 1; 2946 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 2947 2948 err = pcim_request_all_regions(pci, card->driver); 2949 if (err < 0) 2950 return err; 2951 cm->iobase = pci_resource_start(pci, 0); 2952 2953 if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt, 2954 IRQF_SHARED, KBUILD_MODNAME, cm)) { 2955 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); 2956 return -EBUSY; 2957 } 2958 cm->irq = pci->irq; 2959 card->sync_irq = cm->irq; 2960 card->private_free = snd_cmipci_free; 2961 2962 pci_set_master(cm->pci); 2963 2964 /* 2965 * check chip version, max channels and capabilities 2966 */ 2967 2968 cm->chip_version = 0; 2969 cm->max_channels = 2; 2970 cm->do_soft_ac3 = soft_ac3[dev]; 2971 2972 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 2973 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 2974 query_chip(cm); 2975 /* added -MCx suffix for chip supporting multi-channels */ 2976 if (cm->can_multi_ch) { 2977 int l = strlen(cm->card->driver); 2978 scnprintf(cm->card->driver + l, sizeof(cm->card->driver) - l, 2979 "-MC%d", cm->max_channels); 2980 } else if (cm->can_ac3_sw) 2981 strlcat(cm->card->driver, "-SWIEC", sizeof(cm->card->driver)); 2982 2983 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 2984 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 2985 2986 #if CM_CH_PLAY == 1 2987 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 2988 #else 2989 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 2990 #endif 2991 2992 /* initialize codec registers */ 2993 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 2994 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 2995 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2996 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2997 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2998 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2999 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3000 3001 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3002 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3003 #if CM_CH_PLAY == 1 3004 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3005 #else 3006 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3007 #endif 3008 if (cm->chip_version) { 3009 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3010 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3011 } 3012 /* Set Bus Master Request */ 3013 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3014 3015 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3016 switch (pci->device) { 3017 case PCI_DEVICE_ID_CMEDIA_CM8738: 3018 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3019 if (!pci_dev_present(intel_82437vx)) 3020 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3021 break; 3022 default: 3023 break; 3024 } 3025 3026 if (cm->chip_version < 68) { 3027 val = pci->device < 0x110 ? 8338 : 8738; 3028 } else { 3029 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3030 case 0: 3031 val = 8769; 3032 break; 3033 case 2: 3034 val = 8762; 3035 break; 3036 default: 3037 switch ((pci->subsystem_vendor << 16) | 3038 pci->subsystem_device) { 3039 case 0x13f69761: 3040 case 0x584d3741: 3041 case 0x584d3751: 3042 case 0x584d3761: 3043 case 0x584d3771: 3044 case 0x72848384: 3045 val = 8770; 3046 break; 3047 default: 3048 val = 8768; 3049 break; 3050 } 3051 } 3052 } 3053 sprintf(card->shortname, "C-Media CMI%u", val); 3054 if (cm->chip_version < 68) 3055 scnprintf(modelstr, sizeof(modelstr), 3056 " (model %d)", cm->chip_version); 3057 else 3058 modelstr[0] = '\0'; 3059 scnprintf(card->longname, sizeof(card->longname), 3060 "%s%s at %#lx, irq %i", 3061 card->shortname, modelstr, cm->iobase, cm->irq); 3062 3063 if (cm->chip_version >= 39) { 3064 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3065 if (val != 0x00 && val != 0xff) { 3066 if (mpu_port[dev]) 3067 iomidi = cm->iobase + CM_REG_MPU_PCI; 3068 integrated_midi = 1; 3069 } 3070 } 3071 if (!integrated_midi) { 3072 val = 0; 3073 iomidi = mpu_port[dev]; 3074 switch (iomidi) { 3075 case 0x320: val = CM_VMPU_320; break; 3076 case 0x310: val = CM_VMPU_310; break; 3077 case 0x300: val = CM_VMPU_300; break; 3078 case 0x330: val = CM_VMPU_330; break; 3079 default: 3080 iomidi = 0; break; 3081 } 3082 if (iomidi > 0) { 3083 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3084 /* enable UART */ 3085 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3086 if (inb(iomidi + 1) == 0xff) { 3087 dev_err(cm->card->dev, 3088 "cannot enable MPU-401 port at %#lx\n", 3089 iomidi); 3090 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3091 CM_UART_EN); 3092 iomidi = 0; 3093 } 3094 } 3095 } 3096 3097 if (cm->chip_version < 68) { 3098 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3099 if (err < 0) 3100 return err; 3101 } 3102 3103 /* reset mixer */ 3104 snd_cmipci_mixer_write(cm, 0, 0); 3105 3106 snd_cmipci_proc_init(cm); 3107 3108 /* create pcm devices */ 3109 pcm_index = pcm_spdif_index = 0; 3110 err = snd_cmipci_pcm_new(cm, pcm_index); 3111 if (err < 0) 3112 return err; 3113 pcm_index++; 3114 err = snd_cmipci_pcm2_new(cm, pcm_index); 3115 if (err < 0) 3116 return err; 3117 pcm_index++; 3118 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3119 pcm_spdif_index = pcm_index; 3120 err = snd_cmipci_pcm_spdif_new(cm, pcm_index); 3121 if (err < 0) 3122 return err; 3123 } 3124 3125 /* create mixer interface & switches */ 3126 err = snd_cmipci_mixer_new(cm, pcm_spdif_index); 3127 if (err < 0) 3128 return err; 3129 3130 if (iomidi > 0) { 3131 err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3132 iomidi, 3133 (integrated_midi ? 3134 MPU401_INFO_INTEGRATED : 0) | 3135 MPU401_INFO_IRQ_HOOK, 3136 -1, &cm->rmidi); 3137 if (err < 0) 3138 dev_err(cm->card->dev, 3139 "no UART401 device at 0x%lx\n", iomidi); 3140 } 3141 3142 #ifdef USE_VAR48KRATE 3143 for (val = 0; val < ARRAY_SIZE(rates); val++) 3144 snd_cmipci_set_pll(cm, rates[val], val); 3145 3146 /* 3147 * (Re-)Enable external switch spdo_48k 3148 */ 3149 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3150 #endif /* USE_VAR48KRATE */ 3151 3152 if (snd_cmipci_create_gameport(cm, dev) < 0) 3153 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3154 3155 return 0; 3156 } 3157 3158 /* 3159 */ 3160 3161 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3162 3163 static int snd_cmipci_probe(struct pci_dev *pci, 3164 const struct pci_device_id *pci_id) 3165 { 3166 static int dev; 3167 struct snd_card *card; 3168 int err; 3169 3170 if (dev >= SNDRV_CARDS) 3171 return -ENODEV; 3172 if (! enable[dev]) { 3173 dev++; 3174 return -ENOENT; 3175 } 3176 3177 err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3178 sizeof(struct cmipci), &card); 3179 if (err < 0) 3180 return err; 3181 3182 switch (pci->device) { 3183 case PCI_DEVICE_ID_CMEDIA_CM8738: 3184 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3185 strscpy(card->driver, "CMI8738"); 3186 break; 3187 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3188 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3189 strscpy(card->driver, "CMI8338"); 3190 break; 3191 default: 3192 strscpy(card->driver, "CMIPCI"); 3193 break; 3194 } 3195 3196 err = snd_cmipci_create(card, pci, dev); 3197 if (err < 0) 3198 goto error; 3199 3200 err = snd_card_register(card); 3201 if (err < 0) 3202 goto error; 3203 3204 pci_set_drvdata(pci, card); 3205 dev++; 3206 return 0; 3207 3208 error: 3209 snd_card_free(card); 3210 return err; 3211 } 3212 3213 /* 3214 * power management 3215 */ 3216 static const unsigned char saved_regs[] = { 3217 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3218 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL, 3219 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3220 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3221 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3222 }; 3223 3224 static const unsigned char saved_mixers[] = { 3225 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3226 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3227 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3228 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3229 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3230 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3231 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3232 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3233 }; 3234 3235 static int snd_cmipci_suspend(struct device *dev) 3236 { 3237 struct snd_card *card = dev_get_drvdata(dev); 3238 struct cmipci *cm = card->private_data; 3239 int i; 3240 3241 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3242 3243 /* save registers */ 3244 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3245 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3246 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3247 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3248 3249 /* disable ints */ 3250 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3251 return 0; 3252 } 3253 3254 static int snd_cmipci_resume(struct device *dev) 3255 { 3256 struct snd_card *card = dev_get_drvdata(dev); 3257 struct cmipci *cm = card->private_data; 3258 int i; 3259 3260 /* reset / initialize to a sane state */ 3261 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3262 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3263 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3264 snd_cmipci_mixer_write(cm, 0, 0); 3265 3266 /* restore registers */ 3267 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3268 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3269 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3270 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3271 3272 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3273 return 0; 3274 } 3275 3276 static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume); 3277 3278 static struct pci_driver cmipci_driver = { 3279 .name = KBUILD_MODNAME, 3280 .id_table = snd_cmipci_ids, 3281 .probe = snd_cmipci_probe, 3282 .driver = { 3283 .pm = &snd_cmipci_pm, 3284 }, 3285 }; 3286 3287 module_pci_driver(cmipci_driver); 3288