xref: /linux/sound/pci/cmipci.c (revision 05a54fa773284d1a7923cdfdd8f0c8dabb98bd26)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6 
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9 
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29 
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 
34 #if IS_REACHABLE(CONFIG_GAMEPORT)
35 #define SUPPORT_JOYSTICK 1
36 #endif
37 
38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44 #ifdef SUPPORT_JOYSTICK
45 static int joystick_port[SNDRV_CARDS];
46 #endif
47 
48 module_param_array(index, int, NULL, 0444);
49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50 module_param_array(id, charp, NULL, 0444);
51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52 module_param_array(enable, bool, NULL, 0444);
53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57 MODULE_PARM_DESC(fm_port, "FM port.");
58 module_param_array(soft_ac3, bool, NULL, 0444);
59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60 #ifdef SUPPORT_JOYSTICK
61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63 #endif
64 
65 /*
66  * CM8x38 registers definition
67  */
68 
69 #define CM_REG_FUNCTRL0		0x00
70 #define CM_RST_CH1		0x00080000
71 #define CM_RST_CH0		0x00040000
72 #define CM_CHEN1		0x00020000	/* ch1: enable */
73 #define CM_CHEN0		0x00010000	/* ch0: enable */
74 #define CM_PAUSE1		0x00000008	/* ch1: pause */
75 #define CM_PAUSE0		0x00000004	/* ch0: pause */
76 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
77 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
78 
79 #define CM_REG_FUNCTRL1		0x04
80 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
81 #define CM_DSFC_SHIFT		13
82 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
83 #define CM_ASFC_SHIFT		10
84 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
85 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
86 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
87 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
88 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
89 #define CM_BREQ			0x00000010	/* bus master enabled */
90 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
91 #define CM_UART_EN		0x00000004	/* legacy UART */
92 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
93 #define CM_ZVPORT		0x00000001	/* ZVPORT */
94 
95 #define CM_REG_CHFORMAT		0x08
96 
97 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
98 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
99 #define CM_CHB3D		0x20000000	/* 4 channels */
100 
101 #define CM_CHIP_MASK1		0x1f000000
102 #define CM_CHIP_037		0x01000000
103 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
104 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
105 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
106 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
107 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
108 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
109 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
110 
111 #define CM_ADCBITLEN_MASK	0x0000C000
112 #define CM_ADCBITLEN_16		0x00000000
113 #define CM_ADCBITLEN_15		0x00004000
114 #define CM_ADCBITLEN_14		0x00008000
115 #define CM_ADCBITLEN_13		0x0000C000
116 
117 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
118 #define CM_ADCDACLEN_060	0x00000000
119 #define CM_ADCDACLEN_066	0x00001000
120 #define CM_ADCDACLEN_130	0x00002000
121 #define CM_ADCDACLEN_280	0x00003000
122 
123 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
124 #define CM_ADCDLEN_ORIGINAL	0x00000000
125 #define CM_ADCDLEN_EXTRA	0x00001000
126 #define CM_ADCDLEN_24K		0x00002000
127 #define CM_ADCDLEN_WEIGHT	0x00003000
128 
129 #define CM_CH1_SRATE_176K	0x00000800
130 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
131 #define CM_CH1_SRATE_88K	0x00000400
132 #define CM_CH0_SRATE_176K	0x00000200
133 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
134 #define CM_CH0_SRATE_88K	0x00000100
135 #define CM_CH0_SRATE_128K	0x00000300
136 #define CM_CH0_SRATE_MASK	0x00000300
137 
138 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
139 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
140 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
141 #define CM_SPDLOCKED		0x00000010
142 
143 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
144 #define CM_CH1FMT_SHIFT		2
145 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
146 #define CM_CH0FMT_SHIFT		0
147 
148 #define CM_REG_INT_HLDCLR	0x0C
149 #define CM_CHIP_MASK2		0xff000000
150 #define CM_CHIP_8768		0x20000000
151 #define CM_CHIP_055		0x08000000
152 #define CM_CHIP_039		0x04000000
153 #define CM_CHIP_039_6CH		0x01000000
154 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
155 #define CM_TDMA_INT_EN		0x00040000
156 #define CM_CH1_INT_EN		0x00020000
157 #define CM_CH0_INT_EN		0x00010000
158 
159 #define CM_REG_INT_STATUS	0x10
160 #define CM_INTR			0x80000000
161 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
162 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
163 #define CM_UARTINT		0x00010000
164 #define CM_LTDMAINT		0x00008000
165 #define CM_HTDMAINT		0x00004000
166 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
167 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
168 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
169 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
170 #define CM_CH1BUSY		0x00000008
171 #define CM_CH0BUSY		0x00000004
172 #define CM_CHINT1		0x00000002
173 #define CM_CHINT0		0x00000001
174 
175 #define CM_REG_LEGACY_CTRL	0x14
176 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
177 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
178 #define CM_VMPU_330		0x00000000
179 #define CM_VMPU_320		0x20000000
180 #define CM_VMPU_310		0x40000000
181 #define CM_VMPU_300		0x60000000
182 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
183 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
184 #define CM_VSBSEL_220		0x00000000
185 #define CM_VSBSEL_240		0x04000000
186 #define CM_VSBSEL_260		0x08000000
187 #define CM_VSBSEL_280		0x0C000000
188 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
189 #define CM_FMSEL_388		0x00000000
190 #define CM_FMSEL_3C8		0x01000000
191 #define CM_FMSEL_3E0		0x02000000
192 #define CM_FMSEL_3E8		0x03000000
193 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
194 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
195 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
196 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
197 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
199 #define CM_C_EECS		0x00040000
200 #define CM_C_EEDI46		0x00020000
201 #define CM_C_EECK46		0x00010000
202 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
203 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
204 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
205 #define CM_EXBASEN		0x00001000	/* external bass input enable */
206 
207 #define CM_REG_MISC_CTRL	0x18
208 #define CM_PWD			0x80000000	/* power down */
209 #define CM_RESET		0x40000000
210 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
211 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
212 #define CM_TXVX			0x08000000	/* model 037? */
213 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
214 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
215 #define CM_SPDIF48K		0x01000000	/* write */
216 #define CM_SPATUS48K		0x01000000	/* read */
217 #define CM_ENDBDAC		0x00800000	/* enable double dac */
218 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
219 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
220 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
221 #define CM_FM_EN		0x00080000	/* enable legacy FM */
222 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
223 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
224 #define CM_VIDWPDSB		0x00010000	/* model 037? */
225 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
226 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
227 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
228 #define CM_VIDWPPRT		0x00002000	/* model 037? */
229 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
230 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
231 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
232 #define CM_ENCENTER		0x00000080
233 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
234 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
235 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
236 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
237 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
238 #define CM_UPDDMA_2048		0x00000000
239 #define CM_UPDDMA_1024		0x00000004
240 #define CM_UPDDMA_512		0x00000008
241 #define CM_UPDDMA_256		0x0000000C
242 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
243 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
245 
246 #define CM_REG_TDMA_POSITION	0x1C
247 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
248 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
249 
250 	/* byte */
251 #define CM_REG_MIXER0		0x20
252 #define CM_REG_SBVR		0x20		/* write: sb16 version */
253 #define CM_REG_DEV		0x20		/* read: hardware device version */
254 
255 #define CM_REG_MIXER21		0x21
256 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
257 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
258 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
259 #define CM_X_SB16		0x01		/* SB16 compatible */
260 
261 #define CM_REG_SB16_DATA	0x22
262 #define CM_REG_SB16_ADDR	0x23
263 
264 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
265 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
267 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
268 
269 #define CM_REG_MIXER1		0x24
270 #define CM_FMMUTE		0x80	/* mute FM */
271 #define CM_FMMUTE_SHIFT		7
272 #define CM_WSMUTE		0x40	/* mute PCM */
273 #define CM_WSMUTE_SHIFT		6
274 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
275 #define CM_REAR2LIN_SHIFT	5
276 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
277 #define CM_REAR2FRONT_SHIFT	4
278 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
279 #define CM_WAVEINL_SHIFT	3
280 #define CM_WAVEINR		0x04	/* digical wave rec. right */
281 #define CM_WAVEINR_SHIFT	2
282 #define CM_X3DEN		0x02	/* 3D surround enable */
283 #define CM_X3DEN_SHIFT		1
284 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
285 #define CM_CDPLAY_SHIFT		0
286 
287 #define CM_REG_MIXER2		0x25
288 #define CM_RAUXREN		0x80	/* AUX right capture */
289 #define CM_RAUXREN_SHIFT	7
290 #define CM_RAUXLEN		0x40	/* AUX left capture */
291 #define CM_RAUXLEN_SHIFT	6
292 #define CM_VAUXRM		0x20	/* AUX right mute */
293 #define CM_VAUXRM_SHIFT		5
294 #define CM_VAUXLM		0x10	/* AUX left mute */
295 #define CM_VAUXLM_SHIFT		4
296 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
297 #define CM_VADMIC_SHIFT		1
298 #define CM_MICGAINZ		0x01	/* mic boost */
299 #define CM_MICGAINZ_SHIFT	0
300 
301 #define CM_REG_AUX_VOL		0x26
302 #define CM_VAUXL_MASK		0xf0
303 #define CM_VAUXR_MASK		0x0f
304 
305 #define CM_REG_MISC		0x27
306 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
307 #define CM_XGPO1		0x20
308 // #define CM_XGPBIO		0x04
309 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
310 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
311 #define CM_SPDVALID		0x02	/* spdif input valid check */
312 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
313 
314 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
315 /*
316  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
317  * or identical with AC97 codec?
318  */
319 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
320 
321 /*
322  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
323  */
324 #define CM_REG_MPU_PCI		0x40
325 
326 /*
327  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
328  */
329 #define CM_REG_FM_PCI		0x50
330 
331 /*
332  * access from SB-mixer port
333  */
334 #define CM_REG_EXTENT_IND	0xf0
335 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
336 #define CM_VPHONE_SHIFT		5
337 #define CM_VPHOM		0x10	/* Phone mute control */
338 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
339 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
340 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
341 #define CM_VADMIC3		0x01	/* Mic record boost */
342 
343 /*
344  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
345  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
346  * unit (readonly?).
347  */
348 #define CM_REG_PLL		0xf8
349 
350 /*
351  * extended registers
352  */
353 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
354 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
355 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
356 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
357 
358 #define CM_REG_EXT_MISC		0x90
359 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
360 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
361 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
362 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
363 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
364 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
365 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
366 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
367 
368 /*
369  * size of i/o region
370  */
371 #define CM_EXTENT_CODEC	  0x100
372 #define CM_EXTENT_MIDI	  0x2
373 #define CM_EXTENT_SYNTH	  0x4
374 
375 
376 /*
377  * channels for playback / capture
378  */
379 #define CM_CH_PLAY	0
380 #define CM_CH_CAPT	1
381 
382 /*
383  * flags to check device open/close
384  */
385 #define CM_OPEN_NONE	0
386 #define CM_OPEN_CH_MASK	0x01
387 #define CM_OPEN_DAC	0x10
388 #define CM_OPEN_ADC	0x20
389 #define CM_OPEN_SPDIF	0x40
390 #define CM_OPEN_MCHAN	0x80
391 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
392 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
393 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
394 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
395 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
396 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
397 
398 
399 #if CM_CH_PLAY == 1
400 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
401 #define CM_PLAYBACK_SPDF	CM_SPDF_1
402 #define CM_CAPTURE_SPDF		CM_SPDF_0
403 #else
404 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
405 #define CM_PLAYBACK_SPDF	CM_SPDF_0
406 #define CM_CAPTURE_SPDF		CM_SPDF_1
407 #endif
408 
409 
410 /*
411  * driver data
412  */
413 
414 struct cmipci_pcm {
415 	struct snd_pcm_substream *substream;
416 	u8 running;		/* dac/adc running? */
417 	u8 fmt;			/* format bits */
418 	u8 is_dac;
419 	u8 needs_silencing;
420 	unsigned int dma_size;	/* in frames */
421 	unsigned int shift;
422 	unsigned int ch;	/* channel (0/1) */
423 	unsigned int offset;	/* physical address of the buffer */
424 };
425 
426 /* mixer elements toggled/resumed during ac3 playback */
427 struct cmipci_mixer_auto_switches {
428 	const char *name;	/* switch to toggle */
429 	int toggle_on;		/* value to change when ac3 mode */
430 };
431 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
432 	{"PCM Playback Switch", 0},
433 	{"IEC958 Output Switch", 1},
434 	{"IEC958 Mix Analog", 0},
435 	// {"IEC958 Out To DAC", 1}, // no longer used
436 	{"IEC958 Loop", 0},
437 };
438 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
439 
440 struct cmipci {
441 	struct snd_card *card;
442 
443 	struct pci_dev *pci;
444 	unsigned int device;	/* device ID */
445 	int irq;
446 
447 	unsigned long iobase;
448 	unsigned int ctrl;	/* FUNCTRL0 current value */
449 
450 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
451 	struct snd_pcm *pcm2;	/* 2nd DAC */
452 	struct snd_pcm *pcm_spdif;	/* SPDIF */
453 
454 	int chip_version;
455 	int max_channels;
456 	unsigned int can_ac3_sw: 1;
457 	unsigned int can_ac3_hw: 1;
458 	unsigned int can_multi_ch: 1;
459 	unsigned int can_96k: 1;	/* samplerate above 48k */
460 	unsigned int do_soft_ac3: 1;
461 
462 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
463 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
464 	int spdif_counter;	/* for software AC3 */
465 
466 	unsigned int dig_status;
467 	unsigned int dig_pcm_status;
468 
469 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
470 
471 	int opened[2];	/* open mode */
472 	struct mutex open_mutex;
473 
474 	unsigned int mixer_insensitive: 1;
475 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
476 	int mixer_res_status[CM_SAVED_MIXERS];
477 
478 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
479 
480 	/* external MIDI */
481 	struct snd_rawmidi *rmidi;
482 
483 #ifdef SUPPORT_JOYSTICK
484 	struct gameport *gameport;
485 #endif
486 
487 	spinlock_t reg_lock;
488 
489 	unsigned int saved_regs[0x20];
490 	unsigned char saved_mixers[0x20];
491 };
492 
493 
494 /* read/write operations for dword register */
495 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
496 {
497 	outl(data, cm->iobase + cmd);
498 }
499 
500 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
501 {
502 	return inl(cm->iobase + cmd);
503 }
504 
505 /* read/write operations for word register */
506 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
507 {
508 	outw(data, cm->iobase + cmd);
509 }
510 
511 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
512 {
513 	return inw(cm->iobase + cmd);
514 }
515 
516 /* read/write operations for byte register */
517 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
518 {
519 	outb(data, cm->iobase + cmd);
520 }
521 
522 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
523 {
524 	return inb(cm->iobase + cmd);
525 }
526 
527 /* bit operations for dword register */
528 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
529 {
530 	unsigned int val, oval;
531 	val = oval = inl(cm->iobase + cmd);
532 	val |= flag;
533 	if (val == oval)
534 		return 0;
535 	outl(val, cm->iobase + cmd);
536 	return 1;
537 }
538 
539 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
540 {
541 	unsigned int val, oval;
542 	val = oval = inl(cm->iobase + cmd);
543 	val &= ~flag;
544 	if (val == oval)
545 		return 0;
546 	outl(val, cm->iobase + cmd);
547 	return 1;
548 }
549 
550 /* bit operations for byte register */
551 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
552 {
553 	unsigned char val, oval;
554 	val = oval = inb(cm->iobase + cmd);
555 	val |= flag;
556 	if (val == oval)
557 		return 0;
558 	outb(val, cm->iobase + cmd);
559 	return 1;
560 }
561 
562 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
563 {
564 	unsigned char val, oval;
565 	val = oval = inb(cm->iobase + cmd);
566 	val &= ~flag;
567 	if (val == oval)
568 		return 0;
569 	outb(val, cm->iobase + cmd);
570 	return 1;
571 }
572 
573 
574 /*
575  * PCM interface
576  */
577 
578 /*
579  * calculate frequency
580  */
581 
582 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
583 
584 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
585 {
586 	unsigned int i;
587 
588 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
589 		if (rates[i] == rate)
590 			return i;
591 	}
592 	snd_BUG();
593 	return 0;
594 }
595 
596 #ifdef USE_VAR48KRATE
597 /*
598  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
599  * does it this way .. maybe not.  Never get any information from C-Media about
600  * that <werner@suse.de>.
601  */
602 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
603 {
604 	unsigned int delta, tolerance;
605 	int xm, xn, xr;
606 
607 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
608 		rate <<= 1;
609 	*n = -1;
610 	if (*r > 0xff)
611 		goto out;
612 	tolerance = rate*CM_TOLERANCE_RATE;
613 
614 	for (xn = (1+2); xn < (0x1f+2); xn++) {
615 		for (xm = (1+2); xm < (0xff+2); xm++) {
616 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
617 
618 			if (xr < rate)
619 				delta = rate - xr;
620 			else
621 				delta = xr - rate;
622 
623 			/*
624 			 * If we found one, remember this,
625 			 * and try to find a closer one
626 			 */
627 			if (delta < tolerance) {
628 				tolerance = delta;
629 				*m = xm - 2;
630 				*n = xn - 2;
631 			}
632 		}
633 	}
634 out:
635 	return (*n > -1);
636 }
637 
638 /*
639  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
640  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
641  * at the register CM_REG_FUNCTRL1 (0x04).
642  * Problem: other ways are also possible (any information about that?)
643  */
644 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
645 {
646 	unsigned int reg = CM_REG_PLL + slot;
647 	/*
648 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
649 	 * for DSFC/ASFC (000 up to 111).
650 	 */
651 
652 	/* FIXME: Init (Do we've to set an other register first before programming?) */
653 
654 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
655 	snd_cmipci_write_b(cm, reg, rate>>8);
656 	snd_cmipci_write_b(cm, reg, rate&0xff);
657 
658 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
659 }
660 #endif /* USE_VAR48KRATE */
661 
662 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
663 					  struct snd_pcm_hw_params *hw_params)
664 {
665 	struct cmipci *cm = snd_pcm_substream_chip(substream);
666 	if (params_channels(hw_params) > 2) {
667 		guard(mutex)(&cm->open_mutex);
668 		if (cm->opened[CM_CH_PLAY])
669 			return -EBUSY;
670 		/* reserve the channel A */
671 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
672 	}
673 	return 0;
674 }
675 
676 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
677 {
678 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
679 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
680 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
681 	udelay(10);
682 }
683 
684 
685 /*
686  */
687 
688 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
689 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
690 	.count = 3,
691 	.list = hw_channels,
692 	.mask = 0,
693 };
694 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
695 	.count = 4,
696 	.list = hw_channels,
697 	.mask = 0,
698 };
699 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
700 	.count = 5,
701 	.list = hw_channels,
702 	.mask = 0,
703 };
704 
705 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
706 {
707 	if (channels > 2) {
708 		if (!cm->can_multi_ch || !rec->ch)
709 			return -EINVAL;
710 		if (rec->fmt != 0x03) /* stereo 16bit only */
711 			return -EINVAL;
712 	}
713 
714 	if (cm->can_multi_ch) {
715 		guard(spinlock_irq)(&cm->reg_lock);
716 		if (channels > 2) {
717 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
718 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
719 		} else {
720 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
721 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
722 		}
723 		if (channels == 8)
724 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
725 		else
726 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
727 		if (channels == 6) {
728 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
729 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
730 		} else {
731 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
732 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
733 		}
734 		if (channels == 4)
735 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
736 		else
737 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
738 	}
739 	return 0;
740 }
741 
742 
743 /*
744  * prepare playback/capture channel
745  * channel to be used must have been set in rec->ch.
746  */
747 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
748 				 struct snd_pcm_substream *substream)
749 {
750 	unsigned int reg, freq, freq_ext, val;
751 	unsigned int period_size;
752 	struct snd_pcm_runtime *runtime = substream->runtime;
753 
754 	rec->fmt = 0;
755 	rec->shift = 0;
756 	if (snd_pcm_format_width(runtime->format) >= 16) {
757 		rec->fmt |= 0x02;
758 		if (snd_pcm_format_width(runtime->format) > 16)
759 			rec->shift++; /* 24/32bit */
760 	}
761 	if (runtime->channels > 1)
762 		rec->fmt |= 0x01;
763 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
764 		dev_dbg(cm->card->dev, "cannot set dac channels\n");
765 		return -EINVAL;
766 	}
767 
768 	rec->offset = runtime->dma_addr;
769 	/* buffer and period sizes in frame */
770 	rec->dma_size = runtime->buffer_size << rec->shift;
771 	period_size = runtime->period_size << rec->shift;
772 	if (runtime->channels > 2) {
773 		/* multi-channels */
774 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
775 		period_size = (period_size * runtime->channels) / 2;
776 	}
777 
778 	guard(spinlock_irq)(&cm->reg_lock);
779 
780 	/* set buffer address */
781 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
782 	snd_cmipci_write(cm, reg, rec->offset);
783 	/* program sample counts */
784 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
785 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
786 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
787 
788 	/* set adc/dac flag */
789 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
790 	if (rec->is_dac)
791 		cm->ctrl &= ~val;
792 	else
793 		cm->ctrl |= val;
794 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
795 	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
796 
797 	/* set sample rate */
798 	freq = 0;
799 	freq_ext = 0;
800 	if (runtime->rate > 48000)
801 		switch (runtime->rate) {
802 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
803 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
804 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
805 		default:     snd_BUG(); break;
806 		}
807 	else
808 		freq = snd_cmipci_rate_freq(runtime->rate);
809 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
810 	if (rec->ch) {
811 		val &= ~CM_DSFC_MASK;
812 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
813 	} else {
814 		val &= ~CM_ASFC_MASK;
815 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
816 	}
817 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
818 	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
819 
820 	/* set format */
821 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
822 	if (rec->ch) {
823 		val &= ~CM_CH1FMT_MASK;
824 		val |= rec->fmt << CM_CH1FMT_SHIFT;
825 	} else {
826 		val &= ~CM_CH0FMT_MASK;
827 		val |= rec->fmt << CM_CH0FMT_SHIFT;
828 	}
829 	if (cm->can_96k) {
830 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
831 		val |= freq_ext << (rec->ch * 2);
832 	}
833 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
834 	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
835 
836 	if (!rec->is_dac && cm->chip_version) {
837 		if (runtime->rate > 44100)
838 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
839 		else
840 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
841 	}
842 
843 	rec->running = 0;
844 
845 	return 0;
846 }
847 
848 /*
849  * PCM trigger/stop
850  */
851 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
852 				  int cmd)
853 {
854 	unsigned int inthld, chen, reset, pause;
855 
856 	inthld = CM_CH0_INT_EN << rec->ch;
857 	chen = CM_CHEN0 << rec->ch;
858 	reset = CM_RST_CH0 << rec->ch;
859 	pause = CM_PAUSE0 << rec->ch;
860 
861 	guard(spinlock)(&cm->reg_lock);
862 	switch (cmd) {
863 	case SNDRV_PCM_TRIGGER_START:
864 		rec->running = 1;
865 		/* set interrupt */
866 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
867 		cm->ctrl |= chen;
868 		/* enable channel */
869 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
870 		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
871 		break;
872 	case SNDRV_PCM_TRIGGER_STOP:
873 		rec->running = 0;
874 		/* disable interrupt */
875 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
876 		/* reset */
877 		cm->ctrl &= ~chen;
878 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
879 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
880 		rec->needs_silencing = rec->is_dac;
881 		break;
882 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
883 	case SNDRV_PCM_TRIGGER_SUSPEND:
884 		cm->ctrl |= pause;
885 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
886 		break;
887 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
888 	case SNDRV_PCM_TRIGGER_RESUME:
889 		cm->ctrl &= ~pause;
890 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
891 		break;
892 	default:
893 		return -EINVAL;
894 	}
895 	return 0;
896 }
897 
898 /*
899  * return the current pointer
900  */
901 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
902 						struct snd_pcm_substream *substream)
903 {
904 	size_t ptr;
905 	unsigned int reg, rem, tries;
906 
907 	if (!rec->running)
908 		return 0;
909 #if 1 // this seems better..
910 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
911 	for (tries = 0; tries < 3; tries++) {
912 		rem = snd_cmipci_read_w(cm, reg);
913 		if (rem < rec->dma_size)
914 			goto ok;
915 	}
916 	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
917 	return SNDRV_PCM_POS_XRUN;
918 ok:
919 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
920 #else
921 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
922 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
923 	ptr = bytes_to_frames(substream->runtime, ptr);
924 #endif
925 	if (substream->runtime->channels > 2)
926 		ptr = (ptr * 2) / substream->runtime->channels;
927 	return ptr;
928 }
929 
930 /*
931  * playback
932  */
933 
934 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
935 				       int cmd)
936 {
937 	struct cmipci *cm = snd_pcm_substream_chip(substream);
938 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
939 }
940 
941 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
942 {
943 	struct cmipci *cm = snd_pcm_substream_chip(substream);
944 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
945 }
946 
947 
948 
949 /*
950  * capture
951  */
952 
953 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
954 				     int cmd)
955 {
956 	struct cmipci *cm = snd_pcm_substream_chip(substream);
957 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
958 }
959 
960 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
961 {
962 	struct cmipci *cm = snd_pcm_substream_chip(substream);
963 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
964 }
965 
966 
967 /*
968  * hw preparation for spdif
969  */
970 
971 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
972 					 struct snd_ctl_elem_info *uinfo)
973 {
974 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
975 	uinfo->count = 1;
976 	return 0;
977 }
978 
979 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
980 					struct snd_ctl_elem_value *ucontrol)
981 {
982 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
983 	int i;
984 
985 	guard(spinlock_irq)(&chip->reg_lock);
986 	for (i = 0; i < 4; i++)
987 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
988 	return 0;
989 }
990 
991 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
992 					 struct snd_ctl_elem_value *ucontrol)
993 {
994 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
995 	int i, change;
996 	unsigned int val;
997 
998 	val = 0;
999 	guard(spinlock_irq)(&chip->reg_lock);
1000 	for (i = 0; i < 4; i++)
1001 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1002 	change = val != chip->dig_status;
1003 	chip->dig_status = val;
1004 	return change;
1005 }
1006 
1007 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1008 {
1009 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1010 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1011 	.info =		snd_cmipci_spdif_default_info,
1012 	.get =		snd_cmipci_spdif_default_get,
1013 	.put =		snd_cmipci_spdif_default_put
1014 };
1015 
1016 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1017 				      struct snd_ctl_elem_info *uinfo)
1018 {
1019 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1020 	uinfo->count = 1;
1021 	return 0;
1022 }
1023 
1024 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1025 				     struct snd_ctl_elem_value *ucontrol)
1026 {
1027 	ucontrol->value.iec958.status[0] = 0xff;
1028 	ucontrol->value.iec958.status[1] = 0xff;
1029 	ucontrol->value.iec958.status[2] = 0xff;
1030 	ucontrol->value.iec958.status[3] = 0xff;
1031 	return 0;
1032 }
1033 
1034 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1035 {
1036 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1037 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1038 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1039 	.info =		snd_cmipci_spdif_mask_info,
1040 	.get =		snd_cmipci_spdif_mask_get,
1041 };
1042 
1043 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1044 					struct snd_ctl_elem_info *uinfo)
1045 {
1046 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1047 	uinfo->count = 1;
1048 	return 0;
1049 }
1050 
1051 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1052 				       struct snd_ctl_elem_value *ucontrol)
1053 {
1054 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1055 	int i;
1056 
1057 	guard(spinlock_irq)(&chip->reg_lock);
1058 	for (i = 0; i < 4; i++)
1059 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1060 	return 0;
1061 }
1062 
1063 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1064 				       struct snd_ctl_elem_value *ucontrol)
1065 {
1066 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1067 	int i, change;
1068 	unsigned int val;
1069 
1070 	val = 0;
1071 	guard(spinlock_irq)(&chip->reg_lock);
1072 	for (i = 0; i < 4; i++)
1073 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1074 	change = val != chip->dig_pcm_status;
1075 	chip->dig_pcm_status = val;
1076 	return change;
1077 }
1078 
1079 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1080 {
1081 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1082 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1083 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1084 	.info =		snd_cmipci_spdif_stream_info,
1085 	.get =		snd_cmipci_spdif_stream_get,
1086 	.put =		snd_cmipci_spdif_stream_put
1087 };
1088 
1089 /*
1090  */
1091 
1092 /* save mixer setting and mute for AC3 playback */
1093 static int save_mixer_state(struct cmipci *cm)
1094 {
1095 	if (! cm->mixer_insensitive) {
1096 		struct snd_ctl_elem_value *val;
1097 		unsigned int i;
1098 
1099 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1100 		if (!val)
1101 			return -ENOMEM;
1102 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1103 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1104 			if (ctl) {
1105 				int event;
1106 				memset(val, 0, sizeof(*val));
1107 				ctl->get(ctl, val);
1108 				cm->mixer_res_status[i] = val->value.integer.value[0];
1109 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1110 				event = SNDRV_CTL_EVENT_MASK_INFO;
1111 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1112 					ctl->put(ctl, val); /* toggle */
1113 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1114 				}
1115 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1116 				snd_ctl_notify(cm->card, event, &ctl->id);
1117 			}
1118 		}
1119 		kfree(val);
1120 		cm->mixer_insensitive = 1;
1121 	}
1122 	return 0;
1123 }
1124 
1125 
1126 /* restore the previously saved mixer status */
1127 static void restore_mixer_state(struct cmipci *cm)
1128 {
1129 	if (cm->mixer_insensitive) {
1130 		struct snd_ctl_elem_value *val;
1131 		unsigned int i;
1132 
1133 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1134 		if (!val)
1135 			return;
1136 		cm->mixer_insensitive = 0; /* at first clear this;
1137 					      otherwise the changes will be ignored */
1138 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1139 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1140 			if (ctl) {
1141 				int event;
1142 
1143 				memset(val, 0, sizeof(*val));
1144 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1145 				ctl->get(ctl, val);
1146 				event = SNDRV_CTL_EVENT_MASK_INFO;
1147 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1148 					val->value.integer.value[0] = cm->mixer_res_status[i];
1149 					ctl->put(ctl, val);
1150 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1151 				}
1152 				snd_ctl_notify(cm->card, event, &ctl->id);
1153 			}
1154 		}
1155 		kfree(val);
1156 	}
1157 }
1158 
1159 /* spinlock held! */
1160 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1161 {
1162 	if (do_ac3) {
1163 		/* AC3EN for 037 */
1164 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1165 		/* AC3EN for 039 */
1166 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1167 
1168 		if (cm->can_ac3_hw) {
1169 			/* SPD24SEL for 037, 0x02 */
1170 			/* SPD24SEL for 039, 0x20, but cannot be set */
1171 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1172 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1173 		} else { /* can_ac3_sw */
1174 			/* SPD32SEL for 037 & 039, 0x20 */
1175 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1176 			/* set 176K sample rate to fix 033 HW bug */
1177 			if (cm->chip_version == 33) {
1178 				if (rate >= 48000) {
1179 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1180 				} else {
1181 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1182 				}
1183 			}
1184 		}
1185 
1186 	} else {
1187 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1188 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1189 
1190 		if (cm->can_ac3_hw) {
1191 			/* chip model >= 37 */
1192 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1193 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1194 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1195 			} else {
1196 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1197 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1198 			}
1199 		} else {
1200 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1201 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1202 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1203 		}
1204 	}
1205 }
1206 
1207 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1208 {
1209 	int rate, err;
1210 
1211 	rate = subs->runtime->rate;
1212 
1213 	if (up && do_ac3) {
1214 		err = save_mixer_state(cm);
1215 		if (err < 0)
1216 			return err;
1217 	}
1218 
1219 	guard(spinlock_irq)(&cm->reg_lock);
1220 	cm->spdif_playback_avail = up;
1221 	if (up) {
1222 		/* they are controlled via "IEC958 Output Switch" */
1223 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1224 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1225 		if (cm->spdif_playback_enabled)
1226 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1227 		setup_ac3(cm, subs, do_ac3, rate);
1228 
1229 		if (rate == 48000 || rate == 96000)
1230 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1231 		else
1232 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1233 		if (rate > 48000)
1234 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1235 		else
1236 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1237 	} else {
1238 		/* they are controlled via "IEC958 Output Switch" */
1239 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1240 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1241 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1242 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1243 		setup_ac3(cm, subs, 0, 0);
1244 	}
1245 	return 0;
1246 }
1247 
1248 
1249 /*
1250  * preparation
1251  */
1252 
1253 /* playback - enable spdif only on the certain condition */
1254 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1255 {
1256 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1257 	int rate = substream->runtime->rate;
1258 	int err, do_spdif, do_ac3 = 0;
1259 
1260 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1261 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1262 		    substream->runtime->channels == 2);
1263 	if (do_spdif && cm->can_ac3_hw)
1264 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1265 	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1266 	if (err < 0)
1267 		return err;
1268 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1269 }
1270 
1271 /* playback  (via device #2) - enable spdif always */
1272 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1273 {
1274 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1275 	int err, do_ac3;
1276 
1277 	if (cm->can_ac3_hw)
1278 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1279 	else
1280 		do_ac3 = 1; /* doesn't matter */
1281 	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1282 	if (err < 0)
1283 		return err;
1284 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1285 }
1286 
1287 /*
1288  * Apparently, the samples last played on channel A stay in some buffer, even
1289  * after the channel is reset, and get added to the data for the rear DACs when
1290  * playing a multichannel stream on channel B.  This is likely to generate
1291  * wraparounds and thus distortions.
1292  * To avoid this, we play at least one zero sample after the actual stream has
1293  * stopped.
1294  */
1295 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1296 {
1297 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1298 	unsigned int reg, val;
1299 
1300 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1301 		/* set up a small silence buffer */
1302 		memset(runtime->dma_area, 0, PAGE_SIZE);
1303 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1304 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1305 		snd_cmipci_write(cm, reg, val);
1306 
1307 		/* configure for 16 bits, 2 channels, 8 kHz */
1308 		if (runtime->channels > 2)
1309 			set_dac_channels(cm, rec, 2);
1310 		scoped_guard(spinlock_irq, &cm->reg_lock) {
1311 			val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1312 			val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1313 			val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1314 			snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1315 			val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1316 			val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1317 			val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1318 			if (cm->can_96k)
1319 				val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1320 			snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1321 
1322 			/* start stream (we don't need interrupts) */
1323 			cm->ctrl |= CM_CHEN0 << rec->ch;
1324 			snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1325 		}
1326 
1327 		msleep(1);
1328 
1329 		/* stop and reset stream */
1330 		scoped_guard(spinlock_irq, &cm->reg_lock) {
1331 			cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1332 			val = CM_RST_CH0 << rec->ch;
1333 			snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1334 			snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1335 		}
1336 
1337 		rec->needs_silencing = 0;
1338 	}
1339 }
1340 
1341 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1342 {
1343 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1344 	setup_spdif_playback(cm, substream, 0, 0);
1345 	restore_mixer_state(cm);
1346 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1347 	return 0;
1348 }
1349 
1350 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1351 {
1352 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1353 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1354 	return 0;
1355 }
1356 
1357 /* capture */
1358 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1359 {
1360 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1361 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1362 }
1363 
1364 /* capture with spdif (via device #2) */
1365 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1366 {
1367 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1368 
1369 	scoped_guard(spinlock_irq, &cm->reg_lock) {
1370 		snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1371 		if (cm->can_96k) {
1372 			if (substream->runtime->rate > 48000)
1373 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1374 			else
1375 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1376 		}
1377 		if (snd_pcm_format_width(substream->runtime->format) > 16)
1378 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1379 		else
1380 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1381 	}
1382 
1383 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1384 }
1385 
1386 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1387 {
1388 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1389 
1390 	guard(spinlock_irq)(&cm->reg_lock);
1391 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1392 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1393 
1394 	return 0;
1395 }
1396 
1397 
1398 /*
1399  * interrupt handler
1400  */
1401 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1402 {
1403 	struct cmipci *cm = dev_id;
1404 	unsigned int status, mask = 0;
1405 
1406 	/* fastpath out, to ease interrupt sharing */
1407 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1408 	if (!(status & CM_INTR))
1409 		return IRQ_NONE;
1410 
1411 	/* acknowledge interrupt */
1412 	scoped_guard(spinlock, &cm->reg_lock) {
1413 		if (status & CM_CHINT0)
1414 			mask |= CM_CH0_INT_EN;
1415 		if (status & CM_CHINT1)
1416 			mask |= CM_CH1_INT_EN;
1417 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1418 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1419 	}
1420 
1421 	if (cm->rmidi && (status & CM_UARTINT))
1422 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1423 
1424 	if (cm->pcm) {
1425 		if ((status & CM_CHINT0) && cm->channel[0].running)
1426 			snd_pcm_period_elapsed(cm->channel[0].substream);
1427 		if ((status & CM_CHINT1) && cm->channel[1].running)
1428 			snd_pcm_period_elapsed(cm->channel[1].substream);
1429 	}
1430 	return IRQ_HANDLED;
1431 }
1432 
1433 /*
1434  * h/w infos
1435  */
1436 
1437 /* playback on channel A */
1438 static const struct snd_pcm_hardware snd_cmipci_playback =
1439 {
1440 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1441 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1442 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1443 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1444 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1445 	.rate_min =		5512,
1446 	.rate_max =		48000,
1447 	.channels_min =		1,
1448 	.channels_max =		2,
1449 	.buffer_bytes_max =	(128*1024),
1450 	.period_bytes_min =	64,
1451 	.period_bytes_max =	(128*1024),
1452 	.periods_min =		2,
1453 	.periods_max =		1024,
1454 	.fifo_size =		0,
1455 };
1456 
1457 /* capture on channel B */
1458 static const struct snd_pcm_hardware snd_cmipci_capture =
1459 {
1460 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1461 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1462 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1463 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1464 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1465 	.rate_min =		5512,
1466 	.rate_max =		48000,
1467 	.channels_min =		1,
1468 	.channels_max =		2,
1469 	.buffer_bytes_max =	(128*1024),
1470 	.period_bytes_min =	64,
1471 	.period_bytes_max =	(128*1024),
1472 	.periods_min =		2,
1473 	.periods_max =		1024,
1474 	.fifo_size =		0,
1475 };
1476 
1477 /* playback on channel B - stereo 16bit only? */
1478 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1479 {
1480 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1481 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1482 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1483 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1484 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1485 	.rate_min =		5512,
1486 	.rate_max =		48000,
1487 	.channels_min =		2,
1488 	.channels_max =		2,
1489 	.buffer_bytes_max =	(128*1024),
1490 	.period_bytes_min =	64,
1491 	.period_bytes_max =	(128*1024),
1492 	.periods_min =		2,
1493 	.periods_max =		1024,
1494 	.fifo_size =		0,
1495 };
1496 
1497 /* spdif playback on channel A */
1498 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1499 {
1500 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1501 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1502 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1503 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1504 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1505 	.rate_min =		44100,
1506 	.rate_max =		48000,
1507 	.channels_min =		2,
1508 	.channels_max =		2,
1509 	.buffer_bytes_max =	(128*1024),
1510 	.period_bytes_min =	64,
1511 	.period_bytes_max =	(128*1024),
1512 	.periods_min =		2,
1513 	.periods_max =		1024,
1514 	.fifo_size =		0,
1515 };
1516 
1517 /* spdif playback on channel A (32bit, IEC958 subframes) */
1518 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1519 {
1520 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1521 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1522 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1523 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1524 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1525 	.rate_min =		44100,
1526 	.rate_max =		48000,
1527 	.channels_min =		2,
1528 	.channels_max =		2,
1529 	.buffer_bytes_max =	(128*1024),
1530 	.period_bytes_min =	64,
1531 	.period_bytes_max =	(128*1024),
1532 	.periods_min =		2,
1533 	.periods_max =		1024,
1534 	.fifo_size =		0,
1535 };
1536 
1537 /* spdif capture on channel B */
1538 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1539 {
1540 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1541 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1542 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1543 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1544 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1545 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1546 	.rate_min =		44100,
1547 	.rate_max =		48000,
1548 	.channels_min =		2,
1549 	.channels_max =		2,
1550 	.buffer_bytes_max =	(128*1024),
1551 	.period_bytes_min =	64,
1552 	.period_bytes_max =	(128*1024),
1553 	.periods_min =		2,
1554 	.periods_max =		1024,
1555 	.fifo_size =		0,
1556 };
1557 
1558 /*
1559  * check device open/close
1560  */
1561 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1562 {
1563 	int ch = mode & CM_OPEN_CH_MASK;
1564 
1565 	/* FIXME: a file should wait until the device becomes free
1566 	 * when it's opened on blocking mode.  however, since the current
1567 	 * pcm framework doesn't pass file pointer before actually opened,
1568 	 * we can't know whether blocking mode or not in open callback..
1569 	 */
1570 	guard(mutex)(&cm->open_mutex);
1571 	if (cm->opened[ch])
1572 		return -EBUSY;
1573 	cm->opened[ch] = mode;
1574 	cm->channel[ch].substream = subs;
1575 	if (! (mode & CM_OPEN_DAC)) {
1576 		/* disable dual DAC mode */
1577 		cm->channel[ch].is_dac = 0;
1578 		guard(spinlock_irq)(&cm->reg_lock);
1579 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1580 	}
1581 	return 0;
1582 }
1583 
1584 static void close_device_check(struct cmipci *cm, int mode)
1585 {
1586 	int ch = mode & CM_OPEN_CH_MASK;
1587 
1588 	guard(mutex)(&cm->open_mutex);
1589 	if (cm->opened[ch] == mode) {
1590 		if (cm->channel[ch].substream) {
1591 			snd_cmipci_ch_reset(cm, ch);
1592 			cm->channel[ch].running = 0;
1593 			cm->channel[ch].substream = NULL;
1594 		}
1595 		cm->opened[ch] = 0;
1596 		if (! cm->channel[ch].is_dac) {
1597 			/* enable dual DAC mode again */
1598 			cm->channel[ch].is_dac = 1;
1599 			guard(spinlock_irq)(&cm->reg_lock);
1600 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1601 		}
1602 	}
1603 }
1604 
1605 /*
1606  */
1607 
1608 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1609 {
1610 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1611 	struct snd_pcm_runtime *runtime = substream->runtime;
1612 	int err;
1613 
1614 	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1615 	if (err < 0)
1616 		return err;
1617 	runtime->hw = snd_cmipci_playback;
1618 	if (cm->chip_version == 68) {
1619 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1620 				     SNDRV_PCM_RATE_96000;
1621 		runtime->hw.rate_max = 96000;
1622 	} else if (cm->chip_version == 55) {
1623 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1624 				     SNDRV_PCM_RATE_96000 |
1625 				     SNDRV_PCM_RATE_128000;
1626 		runtime->hw.rate_max = 128000;
1627 	}
1628 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1629 	cm->dig_pcm_status = cm->dig_status;
1630 	return 0;
1631 }
1632 
1633 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1634 {
1635 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1636 	struct snd_pcm_runtime *runtime = substream->runtime;
1637 	int err;
1638 
1639 	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1640 	if (err < 0)
1641 		return err;
1642 	runtime->hw = snd_cmipci_capture;
1643 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1644 		runtime->hw.rate_min = 41000;
1645 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1646 	} else if (cm->chip_version == 55) {
1647 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1648 				     SNDRV_PCM_RATE_96000 |
1649 				     SNDRV_PCM_RATE_128000;
1650 		runtime->hw.rate_max = 128000;
1651 	}
1652 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1653 	return 0;
1654 }
1655 
1656 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1657 {
1658 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1659 	struct snd_pcm_runtime *runtime = substream->runtime;
1660 	int err;
1661 
1662 	/* use channel B */
1663 	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1664 	if (err < 0)
1665 		return err;
1666 	runtime->hw = snd_cmipci_playback2;
1667 	guard(mutex)(&cm->open_mutex);
1668 	if (! cm->opened[CM_CH_PLAY]) {
1669 		if (cm->can_multi_ch) {
1670 			runtime->hw.channels_max = cm->max_channels;
1671 			if (cm->max_channels == 4)
1672 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1673 			else if (cm->max_channels == 6)
1674 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1675 			else if (cm->max_channels == 8)
1676 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1677 		}
1678 	}
1679 	if (cm->chip_version == 68) {
1680 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1681 				     SNDRV_PCM_RATE_96000;
1682 		runtime->hw.rate_max = 96000;
1683 	} else if (cm->chip_version == 55) {
1684 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1685 				     SNDRV_PCM_RATE_96000 |
1686 				     SNDRV_PCM_RATE_128000;
1687 		runtime->hw.rate_max = 128000;
1688 	}
1689 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1690 	return 0;
1691 }
1692 
1693 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1694 {
1695 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1696 	struct snd_pcm_runtime *runtime = substream->runtime;
1697 	int err;
1698 
1699 	/* use channel A */
1700 	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1701 	if (err < 0)
1702 		return err;
1703 	if (cm->can_ac3_hw) {
1704 		runtime->hw = snd_cmipci_playback_spdif;
1705 		if (cm->chip_version >= 37) {
1706 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1707 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1708 		}
1709 		if (cm->can_96k) {
1710 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1711 					     SNDRV_PCM_RATE_96000;
1712 			runtime->hw.rate_max = 96000;
1713 		}
1714 	} else {
1715 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1716 	}
1717 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1718 	cm->dig_pcm_status = cm->dig_status;
1719 	return 0;
1720 }
1721 
1722 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1723 {
1724 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1725 	struct snd_pcm_runtime *runtime = substream->runtime;
1726 	int err;
1727 
1728 	/* use channel B */
1729 	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1730 	if (err < 0)
1731 		return err;
1732 	runtime->hw = snd_cmipci_capture_spdif;
1733 	if (cm->can_96k && !(cm->chip_version == 68)) {
1734 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1735 				     SNDRV_PCM_RATE_96000;
1736 		runtime->hw.rate_max = 96000;
1737 	}
1738 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1739 	return 0;
1740 }
1741 
1742 
1743 /*
1744  */
1745 
1746 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1747 {
1748 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1749 	close_device_check(cm, CM_OPEN_PLAYBACK);
1750 	return 0;
1751 }
1752 
1753 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1754 {
1755 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1756 	close_device_check(cm, CM_OPEN_CAPTURE);
1757 	return 0;
1758 }
1759 
1760 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1761 {
1762 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1763 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1764 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1765 	return 0;
1766 }
1767 
1768 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1769 {
1770 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1771 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1772 	return 0;
1773 }
1774 
1775 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1776 {
1777 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1778 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1779 	return 0;
1780 }
1781 
1782 
1783 /*
1784  */
1785 
1786 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1787 	.open =		snd_cmipci_playback_open,
1788 	.close =	snd_cmipci_playback_close,
1789 	.hw_free =	snd_cmipci_playback_hw_free,
1790 	.prepare =	snd_cmipci_playback_prepare,
1791 	.trigger =	snd_cmipci_playback_trigger,
1792 	.pointer =	snd_cmipci_playback_pointer,
1793 };
1794 
1795 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1796 	.open =		snd_cmipci_capture_open,
1797 	.close =	snd_cmipci_capture_close,
1798 	.prepare =	snd_cmipci_capture_prepare,
1799 	.trigger =	snd_cmipci_capture_trigger,
1800 	.pointer =	snd_cmipci_capture_pointer,
1801 };
1802 
1803 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1804 	.open =		snd_cmipci_playback2_open,
1805 	.close =	snd_cmipci_playback2_close,
1806 	.hw_params =	snd_cmipci_playback2_hw_params,
1807 	.hw_free =	snd_cmipci_playback2_hw_free,
1808 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1809 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1810 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1811 };
1812 
1813 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1814 	.open =		snd_cmipci_playback_spdif_open,
1815 	.close =	snd_cmipci_playback_spdif_close,
1816 	.hw_free =	snd_cmipci_playback_hw_free,
1817 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1818 	.trigger =	snd_cmipci_playback_trigger,
1819 	.pointer =	snd_cmipci_playback_pointer,
1820 };
1821 
1822 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1823 	.open =		snd_cmipci_capture_spdif_open,
1824 	.close =	snd_cmipci_capture_spdif_close,
1825 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1826 	.prepare =	snd_cmipci_capture_spdif_prepare,
1827 	.trigger =	snd_cmipci_capture_trigger,
1828 	.pointer =	snd_cmipci_capture_pointer,
1829 };
1830 
1831 
1832 /*
1833  */
1834 
1835 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1836 {
1837 	struct snd_pcm *pcm;
1838 	int err;
1839 
1840 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1841 	if (err < 0)
1842 		return err;
1843 
1844 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1845 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1846 
1847 	pcm->private_data = cm;
1848 	pcm->info_flags = 0;
1849 	strscpy(pcm->name, "C-Media PCI DAC/ADC");
1850 	cm->pcm = pcm;
1851 
1852 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1853 				       &cm->pci->dev, 64*1024, 128*1024);
1854 
1855 	return 0;
1856 }
1857 
1858 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1859 {
1860 	struct snd_pcm *pcm;
1861 	int err;
1862 
1863 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1864 	if (err < 0)
1865 		return err;
1866 
1867 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1868 
1869 	pcm->private_data = cm;
1870 	pcm->info_flags = 0;
1871 	strscpy(pcm->name, "C-Media PCI 2nd DAC");
1872 	cm->pcm2 = pcm;
1873 
1874 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1875 				       &cm->pci->dev, 64*1024, 128*1024);
1876 
1877 	return 0;
1878 }
1879 
1880 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1881 {
1882 	struct snd_pcm *pcm;
1883 	int err;
1884 
1885 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1886 	if (err < 0)
1887 		return err;
1888 
1889 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1890 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1891 
1892 	pcm->private_data = cm;
1893 	pcm->info_flags = 0;
1894 	strscpy(pcm->name, "C-Media PCI IEC958");
1895 	cm->pcm_spdif = pcm;
1896 
1897 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1898 				       &cm->pci->dev, 64*1024, 128*1024);
1899 
1900 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1901 				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1902 				     NULL);
1903 	if (err < 0)
1904 		return err;
1905 
1906 	return 0;
1907 }
1908 
1909 /*
1910  * mixer interface:
1911  * - CM8338/8738 has a compatible mixer interface with SB16, but
1912  *   lack of some elements like tone control, i/o gain and AGC.
1913  * - Access to native registers:
1914  *   - A 3D switch
1915  *   - Output mute switches
1916  */
1917 
1918 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1919 {
1920 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1921 	outb(data, s->iobase + CM_REG_SB16_DATA);
1922 }
1923 
1924 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1925 {
1926 	unsigned char v;
1927 
1928 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1929 	v = inb(s->iobase + CM_REG_SB16_DATA);
1930 	return v;
1931 }
1932 
1933 /*
1934  * general mixer element
1935  */
1936 struct cmipci_sb_reg {
1937 	unsigned int left_reg, right_reg;
1938 	unsigned int left_shift, right_shift;
1939 	unsigned int mask;
1940 	unsigned int invert: 1;
1941 	unsigned int stereo: 1;
1942 };
1943 
1944 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1945  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1946 
1947 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1948 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1949   .info = snd_cmipci_info_volume, \
1950   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1951   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1952 }
1953 
1954 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1955 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1956 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1957 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1958 
1959 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1960 {
1961 	r->left_reg = val & 0xff;
1962 	r->right_reg = (val >> 8) & 0xff;
1963 	r->left_shift = (val >> 16) & 0x07;
1964 	r->right_shift = (val >> 19) & 0x07;
1965 	r->invert = (val >> 22) & 1;
1966 	r->stereo = (val >> 23) & 1;
1967 	r->mask = (val >> 24) & 0xff;
1968 }
1969 
1970 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
1971 				  struct snd_ctl_elem_info *uinfo)
1972 {
1973 	struct cmipci_sb_reg reg;
1974 
1975 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1976 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1977 	uinfo->count = reg.stereo + 1;
1978 	uinfo->value.integer.min = 0;
1979 	uinfo->value.integer.max = reg.mask;
1980 	return 0;
1981 }
1982 
1983 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
1984 				 struct snd_ctl_elem_value *ucontrol)
1985 {
1986 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
1987 	struct cmipci_sb_reg reg;
1988 	int val;
1989 
1990 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
1991 	guard(spinlock_irq)(&cm->reg_lock);
1992 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
1993 	if (reg.invert)
1994 		val = reg.mask - val;
1995 	ucontrol->value.integer.value[0] = val;
1996 	if (reg.stereo) {
1997 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
1998 		if (reg.invert)
1999 			val = reg.mask - val;
2000 		ucontrol->value.integer.value[1] = val;
2001 	}
2002 	return 0;
2003 }
2004 
2005 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2006 				 struct snd_ctl_elem_value *ucontrol)
2007 {
2008 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2009 	struct cmipci_sb_reg reg;
2010 	int change;
2011 	int left, right, oleft, oright;
2012 
2013 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2014 	left = ucontrol->value.integer.value[0] & reg.mask;
2015 	if (reg.invert)
2016 		left = reg.mask - left;
2017 	left <<= reg.left_shift;
2018 	if (reg.stereo) {
2019 		right = ucontrol->value.integer.value[1] & reg.mask;
2020 		if (reg.invert)
2021 			right = reg.mask - right;
2022 		right <<= reg.right_shift;
2023 	} else
2024 		right = 0;
2025 	guard(spinlock_irq)(&cm->reg_lock);
2026 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2027 	left |= oleft & ~(reg.mask << reg.left_shift);
2028 	change = left != oleft;
2029 	if (reg.stereo) {
2030 		if (reg.left_reg != reg.right_reg) {
2031 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2032 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2033 		} else
2034 			oright = left;
2035 		right |= oright & ~(reg.mask << reg.right_shift);
2036 		change |= right != oright;
2037 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2038 	} else
2039 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2040 	return change;
2041 }
2042 
2043 /*
2044  * input route (left,right) -> (left,right)
2045  */
2046 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2047 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2048   .info = snd_cmipci_info_input_sw, \
2049   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2050   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2051 }
2052 
2053 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2054 				    struct snd_ctl_elem_info *uinfo)
2055 {
2056 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2057 	uinfo->count = 4;
2058 	uinfo->value.integer.min = 0;
2059 	uinfo->value.integer.max = 1;
2060 	return 0;
2061 }
2062 
2063 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2064 				   struct snd_ctl_elem_value *ucontrol)
2065 {
2066 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2067 	struct cmipci_sb_reg reg;
2068 	int val1, val2;
2069 
2070 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2071 	guard(spinlock_irq)(&cm->reg_lock);
2072 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2073 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2074 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2075 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2076 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2077 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2078 	return 0;
2079 }
2080 
2081 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2082 				   struct snd_ctl_elem_value *ucontrol)
2083 {
2084 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2085 	struct cmipci_sb_reg reg;
2086 	int change;
2087 	int val1, val2, oval1, oval2;
2088 
2089 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2090 	guard(spinlock_irq)(&cm->reg_lock);
2091 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2092 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2093 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2094 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2095 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2096 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2097 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2098 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2099 	change = val1 != oval1 || val2 != oval2;
2100 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2101 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2102 	return change;
2103 }
2104 
2105 /*
2106  * native mixer switches/volumes
2107  */
2108 
2109 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2110 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2111   .info = snd_cmipci_info_native_mixer, \
2112   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2113   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2114 }
2115 
2116 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2117 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2118   .info = snd_cmipci_info_native_mixer, \
2119   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2120   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2121 }
2122 
2123 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2124 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2125   .info = snd_cmipci_info_native_mixer, \
2126   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2127   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2128 }
2129 
2130 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2131 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2132   .info = snd_cmipci_info_native_mixer, \
2133   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2134   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2135 }
2136 
2137 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2138 					struct snd_ctl_elem_info *uinfo)
2139 {
2140 	struct cmipci_sb_reg reg;
2141 
2142 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2143 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2144 	uinfo->count = reg.stereo + 1;
2145 	uinfo->value.integer.min = 0;
2146 	uinfo->value.integer.max = reg.mask;
2147 	return 0;
2148 
2149 }
2150 
2151 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2152 				       struct snd_ctl_elem_value *ucontrol)
2153 {
2154 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2155 	struct cmipci_sb_reg reg;
2156 	unsigned char oreg, val;
2157 
2158 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2159 	guard(spinlock_irq)(&cm->reg_lock);
2160 	oreg = inb(cm->iobase + reg.left_reg);
2161 	val = (oreg >> reg.left_shift) & reg.mask;
2162 	if (reg.invert)
2163 		val = reg.mask - val;
2164 	ucontrol->value.integer.value[0] = val;
2165 	if (reg.stereo) {
2166 		val = (oreg >> reg.right_shift) & reg.mask;
2167 		if (reg.invert)
2168 			val = reg.mask - val;
2169 		ucontrol->value.integer.value[1] = val;
2170 	}
2171 	return 0;
2172 }
2173 
2174 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2175 				       struct snd_ctl_elem_value *ucontrol)
2176 {
2177 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2178 	struct cmipci_sb_reg reg;
2179 	unsigned char oreg, nreg, val;
2180 
2181 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2182 	guard(spinlock_irq)(&cm->reg_lock);
2183 	oreg = inb(cm->iobase + reg.left_reg);
2184 	val = ucontrol->value.integer.value[0] & reg.mask;
2185 	if (reg.invert)
2186 		val = reg.mask - val;
2187 	nreg = oreg & ~(reg.mask << reg.left_shift);
2188 	nreg |= (val << reg.left_shift);
2189 	if (reg.stereo) {
2190 		val = ucontrol->value.integer.value[1] & reg.mask;
2191 		if (reg.invert)
2192 			val = reg.mask - val;
2193 		nreg &= ~(reg.mask << reg.right_shift);
2194 		nreg |= (val << reg.right_shift);
2195 	}
2196 	outb(nreg, cm->iobase + reg.left_reg);
2197 	return (nreg != oreg);
2198 }
2199 
2200 /*
2201  * special case - check mixer sensitivity
2202  */
2203 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2204 						 struct snd_ctl_elem_value *ucontrol)
2205 {
2206 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2207 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2208 }
2209 
2210 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2211 						 struct snd_ctl_elem_value *ucontrol)
2212 {
2213 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2214 	if (cm->mixer_insensitive) {
2215 		/* ignored */
2216 		return 0;
2217 	}
2218 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2219 }
2220 
2221 
2222 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2223 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2224 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2225 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2226 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2227 	{ /* switch with sensitivity */
2228 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2229 		.name = "PCM Playback Switch",
2230 		.info = snd_cmipci_info_native_mixer,
2231 		.get = snd_cmipci_get_native_mixer_sensitive,
2232 		.put = snd_cmipci_put_native_mixer_sensitive,
2233 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2234 	},
2235 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2236 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2237 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2238 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2239 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2240 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2241 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2242 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2243 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2244 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2245 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2246 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2247 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2248 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2249 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2250 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2251 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2252 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2253 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2254 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2255 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2256 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2257 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2258 };
2259 
2260 /*
2261  * other switches
2262  */
2263 
2264 struct cmipci_switch_args {
2265 	int reg;		/* register index */
2266 	unsigned int mask;	/* mask bits */
2267 	unsigned int mask_on;	/* mask bits to turn on */
2268 	unsigned int is_byte: 1;		/* byte access? */
2269 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2270 					 * non-audio operation?
2271 					 */
2272 };
2273 
2274 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2275 
2276 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2277 				   struct snd_ctl_elem_value *ucontrol,
2278 				   struct cmipci_switch_args *args)
2279 {
2280 	unsigned int val;
2281 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2282 
2283 	guard(spinlock_irq)(&cm->reg_lock);
2284 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2285 		ucontrol->value.integer.value[0] = 0;
2286 		return 0;
2287 	}
2288 	if (args->is_byte)
2289 		val = inb(cm->iobase + args->reg);
2290 	else
2291 		val = snd_cmipci_read(cm, args->reg);
2292 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2293 	return 0;
2294 }
2295 
2296 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2297 				  struct snd_ctl_elem_value *ucontrol)
2298 {
2299 	struct cmipci_switch_args *args;
2300 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2301 	if (snd_BUG_ON(!args))
2302 		return -EINVAL;
2303 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2304 }
2305 
2306 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2307 				   struct snd_ctl_elem_value *ucontrol,
2308 				   struct cmipci_switch_args *args)
2309 {
2310 	unsigned int val;
2311 	int change;
2312 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2313 
2314 	guard(spinlock_irq)(&cm->reg_lock);
2315 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2316 		/* ignored */
2317 		return 0;
2318 	}
2319 	if (args->is_byte)
2320 		val = inb(cm->iobase + args->reg);
2321 	else
2322 		val = snd_cmipci_read(cm, args->reg);
2323 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2324 			args->mask_on : (args->mask & ~args->mask_on));
2325 	if (change) {
2326 		val &= ~args->mask;
2327 		if (ucontrol->value.integer.value[0])
2328 			val |= args->mask_on;
2329 		else
2330 			val |= (args->mask & ~args->mask_on);
2331 		if (args->is_byte)
2332 			outb((unsigned char)val, cm->iobase + args->reg);
2333 		else
2334 			snd_cmipci_write(cm, args->reg, val);
2335 	}
2336 	return change;
2337 }
2338 
2339 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2340 				  struct snd_ctl_elem_value *ucontrol)
2341 {
2342 	struct cmipci_switch_args *args;
2343 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2344 	if (snd_BUG_ON(!args))
2345 		return -EINVAL;
2346 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2347 }
2348 
2349 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2350 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2351   .reg = xreg, \
2352   .mask = xmask, \
2353   .mask_on = xmask_on, \
2354   .is_byte = xis_byte, \
2355   .ac3_sensitive = xac3, \
2356 }
2357 
2358 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2359 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2360 
2361 #if 0 /* these will be controlled in pcm device */
2362 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2363 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2364 #endif
2365 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2366 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2367 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2368 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2369 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2370 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2371 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2372 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2373 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2374 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2375 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2376 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2377 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2378 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2379 #if CM_CH_PLAY == 1
2380 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2381 #else
2382 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2383 #endif
2384 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2385 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2386 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2387 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2388 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2389 
2390 #define DEFINE_SWITCH(sname, stype, sarg) \
2391 { .name = sname, \
2392   .iface = stype, \
2393   .info = snd_cmipci_uswitch_info, \
2394   .get = snd_cmipci_uswitch_get, \
2395   .put = snd_cmipci_uswitch_put, \
2396   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2397 }
2398 
2399 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2400 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2401 
2402 
2403 /*
2404  * callbacks for spdif output switch
2405  * needs toggle two registers..
2406  */
2407 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2408 					struct snd_ctl_elem_value *ucontrol)
2409 {
2410 	int changed;
2411 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2412 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2413 	return changed;
2414 }
2415 
2416 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2417 					struct snd_ctl_elem_value *ucontrol)
2418 {
2419 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2420 	int changed;
2421 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2422 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2423 	if (changed) {
2424 		if (ucontrol->value.integer.value[0]) {
2425 			if (chip->spdif_playback_avail)
2426 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2427 		} else {
2428 			if (chip->spdif_playback_avail)
2429 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2430 		}
2431 	}
2432 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2433 	return changed;
2434 }
2435 
2436 
2437 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2438 					struct snd_ctl_elem_info *uinfo)
2439 {
2440 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2441 	static const char *const texts[3] = {
2442 		"Line-In", "Rear Output", "Bass Output"
2443 	};
2444 
2445 	return snd_ctl_enum_info(uinfo, 1,
2446 				 cm->chip_version >= 39 ? 3 : 2, texts);
2447 }
2448 
2449 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2450 {
2451 	unsigned int val;
2452 	if (cm->chip_version >= 39) {
2453 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2454 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2455 			return 2;
2456 	}
2457 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2458 	if (val & CM_REAR2LIN)
2459 		return 1;
2460 	return 0;
2461 }
2462 
2463 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2464 				       struct snd_ctl_elem_value *ucontrol)
2465 {
2466 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2467 
2468 	guard(spinlock_irq)(&cm->reg_lock);
2469 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2470 	return 0;
2471 }
2472 
2473 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2474 				       struct snd_ctl_elem_value *ucontrol)
2475 {
2476 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2477 	int change;
2478 
2479 	guard(spinlock_irq)(&cm->reg_lock);
2480 	if (ucontrol->value.enumerated.item[0] == 2)
2481 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2482 	else
2483 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2484 	if (ucontrol->value.enumerated.item[0] == 1)
2485 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2486 	else
2487 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2488 	return change;
2489 }
2490 
2491 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2492 				       struct snd_ctl_elem_info *uinfo)
2493 {
2494 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2495 
2496 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2497 }
2498 
2499 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2500 				      struct snd_ctl_elem_value *ucontrol)
2501 {
2502 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2503 
2504 	/* same bit as spdi_phase */
2505 	guard(spinlock_irq)(&cm->reg_lock);
2506 	ucontrol->value.enumerated.item[0] =
2507 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2508 	return 0;
2509 }
2510 
2511 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2512 				      struct snd_ctl_elem_value *ucontrol)
2513 {
2514 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2515 	int change;
2516 
2517 	guard(spinlock_irq)(&cm->reg_lock);
2518 	if (ucontrol->value.enumerated.item[0])
2519 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2520 	else
2521 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2522 	return change;
2523 }
2524 
2525 /* both for CM8338/8738 */
2526 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2527 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2528 	{
2529 		.name = "Line-In Mode",
2530 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2531 		.info = snd_cmipci_line_in_mode_info,
2532 		.get = snd_cmipci_line_in_mode_get,
2533 		.put = snd_cmipci_line_in_mode_put,
2534 	},
2535 };
2536 
2537 /* for non-multichannel chips */
2538 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2539 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2540 
2541 /* only for CM8738 */
2542 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2543 #if 0 /* controlled in pcm device */
2544 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2545 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2546 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2547 #endif
2548 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2549 	{ .name = "IEC958 Output Switch",
2550 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2551 	  .info = snd_cmipci_uswitch_info,
2552 	  .get = snd_cmipci_spdout_enable_get,
2553 	  .put = snd_cmipci_spdout_enable_put,
2554 	},
2555 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2556 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2557 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2558 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2559 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2560 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2561 };
2562 
2563 /* only for model 033/037 */
2564 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2565 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2566 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2567 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2568 };
2569 
2570 /* only for model 039 or later */
2571 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2572 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2573 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2574 	{
2575 		.name = "Mic-In Mode",
2576 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2577 		.info = snd_cmipci_mic_in_mode_info,
2578 		.get = snd_cmipci_mic_in_mode_get,
2579 		.put = snd_cmipci_mic_in_mode_put,
2580 	}
2581 };
2582 
2583 /* card control switches */
2584 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2585 DEFINE_CARD_SWITCH("Modem", modem);
2586 
2587 
2588 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2589 {
2590 	struct snd_card *card;
2591 	const struct snd_kcontrol_new *sw;
2592 	struct snd_kcontrol *kctl;
2593 	unsigned int idx;
2594 	int err;
2595 
2596 	if (snd_BUG_ON(!cm || !cm->card))
2597 		return -EINVAL;
2598 
2599 	card = cm->card;
2600 
2601 	strscpy(card->mixername, "CMedia PCI");
2602 
2603 	scoped_guard(spinlock_irq, &cm->reg_lock) {
2604 		snd_cmipci_mixer_write(cm, 0x00, 0x00);	/* mixer reset */
2605 	}
2606 
2607 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2608 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2609 			if (!strcmp(snd_cmipci_mixers[idx].name,
2610 				"PCM Playback Volume"))
2611 				continue;
2612 		}
2613 		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2614 		if (err < 0)
2615 			return err;
2616 	}
2617 
2618 	/* mixer switches */
2619 	sw = snd_cmipci_mixer_switches;
2620 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2621 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2622 		if (err < 0)
2623 			return err;
2624 	}
2625 	if (! cm->can_multi_ch) {
2626 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2627 		if (err < 0)
2628 			return err;
2629 	}
2630 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2631 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2632 		sw = snd_cmipci_8738_mixer_switches;
2633 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2634 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2635 			if (err < 0)
2636 				return err;
2637 		}
2638 		if (cm->can_ac3_hw) {
2639 			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2640 			kctl->id.device = pcm_spdif_device;
2641 			err = snd_ctl_add(card, kctl);
2642 			if (err < 0)
2643 				return err;
2644 			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2645 			kctl->id.device = pcm_spdif_device;
2646 			err = snd_ctl_add(card, kctl);
2647 			if (err < 0)
2648 				return err;
2649 			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2650 			kctl->id.device = pcm_spdif_device;
2651 			err = snd_ctl_add(card, kctl);
2652 			if (err < 0)
2653 				return err;
2654 		}
2655 		if (cm->chip_version <= 37) {
2656 			sw = snd_cmipci_old_mixer_switches;
2657 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2658 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2659 				if (err < 0)
2660 					return err;
2661 			}
2662 		}
2663 	}
2664 	if (cm->chip_version >= 39) {
2665 		sw = snd_cmipci_extra_mixer_switches;
2666 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2667 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2668 			if (err < 0)
2669 				return err;
2670 		}
2671 	}
2672 
2673 	/* card switches */
2674 	/*
2675 	 * newer chips don't have the register bits to force modem link
2676 	 * detection; the bit that was FLINKON now mutes CH1
2677 	 */
2678 	if (cm->chip_version < 39) {
2679 		err = snd_ctl_add(cm->card,
2680 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2681 		if (err < 0)
2682 			return err;
2683 	}
2684 
2685 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2686 		struct snd_kcontrol *ctl;
2687 		ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
2688 		if (ctl)
2689 			cm->mixer_res_ctl[idx] = ctl;
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 
2696 /*
2697  * proc interface
2698  */
2699 
2700 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2701 				 struct snd_info_buffer *buffer)
2702 {
2703 	struct cmipci *cm = entry->private_data;
2704 	int i, v;
2705 
2706 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2707 	for (i = 0; i < 0x94; i++) {
2708 		if (i == 0x28)
2709 			i = 0x90;
2710 		v = inb(cm->iobase + i);
2711 		if (i % 4 == 0)
2712 			snd_iprintf(buffer, "\n%02x:", i);
2713 		snd_iprintf(buffer, " %02x", v);
2714 	}
2715 	snd_iprintf(buffer, "\n");
2716 }
2717 
2718 static void snd_cmipci_proc_init(struct cmipci *cm)
2719 {
2720 	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2721 }
2722 
2723 static const struct pci_device_id snd_cmipci_ids[] = {
2724 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2725 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2726 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2727 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2728 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2729 	{0,},
2730 };
2731 
2732 
2733 /*
2734  * check chip version and capabilities
2735  * driver name is modified according to the chip model
2736  */
2737 static void query_chip(struct cmipci *cm)
2738 {
2739 	unsigned int detect;
2740 
2741 	/* check reg 0Ch, bit 24-31 */
2742 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2743 	if (! detect) {
2744 		/* check reg 08h, bit 24-28 */
2745 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2746 		switch (detect) {
2747 		case 0:
2748 			cm->chip_version = 33;
2749 			if (cm->do_soft_ac3)
2750 				cm->can_ac3_sw = 1;
2751 			else
2752 				cm->can_ac3_hw = 1;
2753 			break;
2754 		case CM_CHIP_037:
2755 			cm->chip_version = 37;
2756 			cm->can_ac3_hw = 1;
2757 			break;
2758 		default:
2759 			cm->chip_version = 39;
2760 			cm->can_ac3_hw = 1;
2761 			break;
2762 		}
2763 		cm->max_channels = 2;
2764 	} else {
2765 		if (detect & CM_CHIP_039) {
2766 			cm->chip_version = 39;
2767 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2768 				cm->max_channels = 6;
2769 			else
2770 				cm->max_channels = 4;
2771 		} else if (detect & CM_CHIP_8768) {
2772 			cm->chip_version = 68;
2773 			cm->max_channels = 8;
2774 			cm->can_96k = 1;
2775 		} else {
2776 			cm->chip_version = 55;
2777 			cm->max_channels = 6;
2778 			cm->can_96k = 1;
2779 		}
2780 		cm->can_ac3_hw = 1;
2781 		cm->can_multi_ch = 1;
2782 	}
2783 }
2784 
2785 #ifdef SUPPORT_JOYSTICK
2786 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2787 {
2788 	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2789 	struct gameport *gp;
2790 	struct resource *r = NULL;
2791 	int i, io_port = 0;
2792 
2793 	if (joystick_port[dev] == 0)
2794 		return -ENODEV;
2795 
2796 	if (joystick_port[dev] == 1) { /* auto-detect */
2797 		for (i = 0; ports[i]; i++) {
2798 			io_port = ports[i];
2799 			r = devm_request_region(&cm->pci->dev, io_port, 1,
2800 						"CMIPCI gameport");
2801 			if (r)
2802 				break;
2803 		}
2804 	} else {
2805 		io_port = joystick_port[dev];
2806 		r = devm_request_region(&cm->pci->dev, io_port, 1,
2807 					"CMIPCI gameport");
2808 	}
2809 
2810 	if (!r) {
2811 		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2812 		return -EBUSY;
2813 	}
2814 
2815 	cm->gameport = gp = gameport_allocate_port();
2816 	if (!gp) {
2817 		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2818 		return -ENOMEM;
2819 	}
2820 	gameport_set_name(gp, "C-Media Gameport");
2821 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2822 	gameport_set_dev_parent(gp, &cm->pci->dev);
2823 	gp->io = io_port;
2824 
2825 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2826 
2827 	gameport_register_port(cm->gameport);
2828 
2829 	return 0;
2830 }
2831 
2832 static void snd_cmipci_free_gameport(struct cmipci *cm)
2833 {
2834 	if (cm->gameport) {
2835 		gameport_unregister_port(cm->gameport);
2836 		cm->gameport = NULL;
2837 
2838 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2839 	}
2840 }
2841 #else
2842 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2843 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2844 #endif
2845 
2846 static void snd_cmipci_free(struct snd_card *card)
2847 {
2848 	struct cmipci *cm = card->private_data;
2849 
2850 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2851 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2852 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2853 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2854 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2855 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2856 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2857 
2858 	/* reset mixer */
2859 	snd_cmipci_mixer_write(cm, 0, 0);
2860 
2861 	snd_cmipci_free_gameport(cm);
2862 }
2863 
2864 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2865 {
2866 	long iosynth;
2867 	unsigned int val;
2868 	struct snd_opl3 *opl3;
2869 	int err;
2870 
2871 	if (!fm_port)
2872 		goto disable_fm;
2873 
2874 	if (cm->chip_version >= 39) {
2875 		/* first try FM regs in PCI port range */
2876 		iosynth = cm->iobase + CM_REG_FM_PCI;
2877 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2878 				      OPL3_HW_OPL3, 1, &opl3);
2879 	} else {
2880 		err = -EIO;
2881 	}
2882 	if (err < 0) {
2883 		/* then try legacy ports */
2884 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2885 		iosynth = fm_port;
2886 		switch (iosynth) {
2887 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2888 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2889 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2890 		case 0x388: val |= CM_FMSEL_388; break;
2891 		default:
2892 			goto disable_fm;
2893 		}
2894 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2895 		/* enable FM */
2896 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2897 
2898 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2899 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2900 			dev_err(cm->card->dev,
2901 				"no OPL device at %#lx, skipping...\n",
2902 				iosynth);
2903 			goto disable_fm;
2904 		}
2905 	}
2906 	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2907 	if (err < 0) {
2908 		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2909 		return err;
2910 	}
2911 	return 0;
2912 
2913  disable_fm:
2914 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2915 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2916 	return 0;
2917 }
2918 
2919 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2920 			     int dev)
2921 {
2922 	struct cmipci *cm = card->private_data;
2923 	int err;
2924 	unsigned int val;
2925 	long iomidi = 0;
2926 	int integrated_midi = 0;
2927 	char modelstr[16];
2928 	int pcm_index, pcm_spdif_index;
2929 	static const struct pci_device_id intel_82437vx[] = {
2930 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2931 		{ },
2932 	};
2933 
2934 	err = pcim_enable_device(pci);
2935 	if (err < 0)
2936 		return err;
2937 
2938 	spin_lock_init(&cm->reg_lock);
2939 	mutex_init(&cm->open_mutex);
2940 	cm->device = pci->device;
2941 	cm->card = card;
2942 	cm->pci = pci;
2943 	cm->irq = -1;
2944 	cm->channel[0].ch = 0;
2945 	cm->channel[1].ch = 1;
2946 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2947 
2948 	err = pcim_request_all_regions(pci, card->driver);
2949 	if (err < 0)
2950 		return err;
2951 	cm->iobase = pci_resource_start(pci, 0);
2952 
2953 	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
2954 			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
2955 		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
2956 		return -EBUSY;
2957 	}
2958 	cm->irq = pci->irq;
2959 	card->sync_irq = cm->irq;
2960 	card->private_free = snd_cmipci_free;
2961 
2962 	pci_set_master(cm->pci);
2963 
2964 	/*
2965 	 * check chip version, max channels and capabilities
2966 	 */
2967 
2968 	cm->chip_version = 0;
2969 	cm->max_channels = 2;
2970 	cm->do_soft_ac3 = soft_ac3[dev];
2971 
2972 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
2973 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
2974 		query_chip(cm);
2975 	/* added -MCx suffix for chip supporting multi-channels */
2976 	if (cm->can_multi_ch) {
2977 		int l = strlen(cm->card->driver);
2978 		scnprintf(cm->card->driver + l, sizeof(cm->card->driver) - l,
2979 			  "-MC%d", cm->max_channels);
2980 	} else if (cm->can_ac3_sw)
2981 		strlcat(cm->card->driver, "-SWIEC", sizeof(cm->card->driver));
2982 
2983 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2984 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
2985 
2986 #if CM_CH_PLAY == 1
2987 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
2988 #else
2989 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
2990 #endif
2991 
2992 	/* initialize codec registers */
2993 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
2994 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
2995 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
2996 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2997 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2998 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
2999 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3000 
3001 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3002 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3003 #if CM_CH_PLAY == 1
3004 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3005 #else
3006 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3007 #endif
3008 	if (cm->chip_version) {
3009 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3010 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3011 	}
3012 	/* Set Bus Master Request */
3013 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3014 
3015 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3016 	switch (pci->device) {
3017 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3018 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3019 		if (!pci_dev_present(intel_82437vx))
3020 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3021 		break;
3022 	default:
3023 		break;
3024 	}
3025 
3026 	if (cm->chip_version < 68) {
3027 		val = pci->device < 0x110 ? 8338 : 8738;
3028 	} else {
3029 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3030 		case 0:
3031 			val = 8769;
3032 			break;
3033 		case 2:
3034 			val = 8762;
3035 			break;
3036 		default:
3037 			switch ((pci->subsystem_vendor << 16) |
3038 				pci->subsystem_device) {
3039 			case 0x13f69761:
3040 			case 0x584d3741:
3041 			case 0x584d3751:
3042 			case 0x584d3761:
3043 			case 0x584d3771:
3044 			case 0x72848384:
3045 				val = 8770;
3046 				break;
3047 			default:
3048 				val = 8768;
3049 				break;
3050 			}
3051 		}
3052 	}
3053 	sprintf(card->shortname, "C-Media CMI%u", val);
3054 	if (cm->chip_version < 68)
3055 		scnprintf(modelstr, sizeof(modelstr),
3056 			  " (model %d)", cm->chip_version);
3057 	else
3058 		modelstr[0] = '\0';
3059 	scnprintf(card->longname, sizeof(card->longname),
3060 		  "%s%s at %#lx, irq %i",
3061 		  card->shortname, modelstr, cm->iobase, cm->irq);
3062 
3063 	if (cm->chip_version >= 39) {
3064 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3065 		if (val != 0x00 && val != 0xff) {
3066 			if (mpu_port[dev])
3067 				iomidi = cm->iobase + CM_REG_MPU_PCI;
3068 			integrated_midi = 1;
3069 		}
3070 	}
3071 	if (!integrated_midi) {
3072 		val = 0;
3073 		iomidi = mpu_port[dev];
3074 		switch (iomidi) {
3075 		case 0x320: val = CM_VMPU_320; break;
3076 		case 0x310: val = CM_VMPU_310; break;
3077 		case 0x300: val = CM_VMPU_300; break;
3078 		case 0x330: val = CM_VMPU_330; break;
3079 		default:
3080 			    iomidi = 0; break;
3081 		}
3082 		if (iomidi > 0) {
3083 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3084 			/* enable UART */
3085 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3086 			if (inb(iomidi + 1) == 0xff) {
3087 				dev_err(cm->card->dev,
3088 					"cannot enable MPU-401 port at %#lx\n",
3089 					iomidi);
3090 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3091 						     CM_UART_EN);
3092 				iomidi = 0;
3093 			}
3094 		}
3095 	}
3096 
3097 	if (cm->chip_version < 68) {
3098 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3099 		if (err < 0)
3100 			return err;
3101 	}
3102 
3103 	/* reset mixer */
3104 	snd_cmipci_mixer_write(cm, 0, 0);
3105 
3106 	snd_cmipci_proc_init(cm);
3107 
3108 	/* create pcm devices */
3109 	pcm_index = pcm_spdif_index = 0;
3110 	err = snd_cmipci_pcm_new(cm, pcm_index);
3111 	if (err < 0)
3112 		return err;
3113 	pcm_index++;
3114 	err = snd_cmipci_pcm2_new(cm, pcm_index);
3115 	if (err < 0)
3116 		return err;
3117 	pcm_index++;
3118 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3119 		pcm_spdif_index = pcm_index;
3120 		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3121 		if (err < 0)
3122 			return err;
3123 	}
3124 
3125 	/* create mixer interface & switches */
3126 	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3127 	if (err < 0)
3128 		return err;
3129 
3130 	if (iomidi > 0) {
3131 		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3132 					  iomidi,
3133 					  (integrated_midi ?
3134 					   MPU401_INFO_INTEGRATED : 0) |
3135 					  MPU401_INFO_IRQ_HOOK,
3136 					  -1, &cm->rmidi);
3137 		if (err < 0)
3138 			dev_err(cm->card->dev,
3139 				"no UART401 device at 0x%lx\n", iomidi);
3140 	}
3141 
3142 #ifdef USE_VAR48KRATE
3143 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3144 		snd_cmipci_set_pll(cm, rates[val], val);
3145 
3146 	/*
3147 	 * (Re-)Enable external switch spdo_48k
3148 	 */
3149 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3150 #endif /* USE_VAR48KRATE */
3151 
3152 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3153 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3154 
3155 	return 0;
3156 }
3157 
3158 /*
3159  */
3160 
3161 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3162 
3163 static int snd_cmipci_probe(struct pci_dev *pci,
3164 			    const struct pci_device_id *pci_id)
3165 {
3166 	static int dev;
3167 	struct snd_card *card;
3168 	int err;
3169 
3170 	if (dev >= SNDRV_CARDS)
3171 		return -ENODEV;
3172 	if (! enable[dev]) {
3173 		dev++;
3174 		return -ENOENT;
3175 	}
3176 
3177 	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3178 				sizeof(struct cmipci), &card);
3179 	if (err < 0)
3180 		return err;
3181 
3182 	switch (pci->device) {
3183 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3184 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3185 		strscpy(card->driver, "CMI8738");
3186 		break;
3187 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3188 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3189 		strscpy(card->driver, "CMI8338");
3190 		break;
3191 	default:
3192 		strscpy(card->driver, "CMIPCI");
3193 		break;
3194 	}
3195 
3196 	err = snd_cmipci_create(card, pci, dev);
3197 	if (err < 0)
3198 		goto error;
3199 
3200 	err = snd_card_register(card);
3201 	if (err < 0)
3202 		goto error;
3203 
3204 	pci_set_drvdata(pci, card);
3205 	dev++;
3206 	return 0;
3207 
3208  error:
3209 	snd_card_free(card);
3210 	return err;
3211 }
3212 
3213 /*
3214  * power management
3215  */
3216 static const unsigned char saved_regs[] = {
3217 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3218 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3219 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3220 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3221 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3222 };
3223 
3224 static const unsigned char saved_mixers[] = {
3225 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3226 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3227 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3228 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3229 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3230 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3231 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3232 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3233 };
3234 
3235 static int snd_cmipci_suspend(struct device *dev)
3236 {
3237 	struct snd_card *card = dev_get_drvdata(dev);
3238 	struct cmipci *cm = card->private_data;
3239 	int i;
3240 
3241 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3242 
3243 	/* save registers */
3244 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3245 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3246 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3247 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3248 
3249 	/* disable ints */
3250 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3251 	return 0;
3252 }
3253 
3254 static int snd_cmipci_resume(struct device *dev)
3255 {
3256 	struct snd_card *card = dev_get_drvdata(dev);
3257 	struct cmipci *cm = card->private_data;
3258 	int i;
3259 
3260 	/* reset / initialize to a sane state */
3261 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3262 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3263 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3264 	snd_cmipci_mixer_write(cm, 0, 0);
3265 
3266 	/* restore registers */
3267 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3268 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3269 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3270 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3271 
3272 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3273 	return 0;
3274 }
3275 
3276 static DEFINE_SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3277 
3278 static struct pci_driver cmipci_driver = {
3279 	.name = KBUILD_MODNAME,
3280 	.id_table = snd_cmipci_ids,
3281 	.probe = snd_cmipci_probe,
3282 	.driver = {
3283 		.pm = &snd_cmipci_pm,
3284 	},
3285 };
3286 
3287 module_pci_driver(cmipci_driver);
3288