xref: /linux/drivers/ptp/ptp_ocp.c (revision c1ead4b4dfe0f643cfc66571ca7d2fa332eddd35)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2020 Facebook */
3 
4 #include <linux/bits.h>
5 #include <linux/err.h>
6 #include <linux/kernel.h>
7 #include <linux/module.h>
8 #include <linux/debugfs.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/serial_8250.h>
12 #include <linux/clkdev.h>
13 #include <linux/clk-provider.h>
14 #include <linux/platform_device.h>
15 #include <linux/platform_data/i2c-xiic.h>
16 #include <linux/platform_data/i2c-ocores.h>
17 #include <linux/ptp_clock_kernel.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/xilinx_spi.h>
20 #include <linux/spi/altera.h>
21 #include <net/devlink.h>
22 #include <linux/i2c.h>
23 #include <linux/mtd/mtd.h>
24 #include <linux/nvmem-consumer.h>
25 #include <linux/crc16.h>
26 #include <linux/dpll.h>
27 
28 #define PCI_VENDOR_ID_FACEBOOK			0x1d9b
29 #define PCI_DEVICE_ID_FACEBOOK_TIMECARD		0x0400
30 
31 #define PCI_VENDOR_ID_CELESTICA			0x18d4
32 #define PCI_DEVICE_ID_CELESTICA_TIMECARD	0x1008
33 
34 #define PCI_VENDOR_ID_OROLIA			0x1ad7
35 #define PCI_DEVICE_ID_OROLIA_ARTCARD		0xa000
36 
37 #define PCI_VENDOR_ID_ADVA			0xad5a
38 #define PCI_DEVICE_ID_ADVA_TIMECARD		0x0400
39 
40 static struct class timecard_class = {
41 	.name		= "timecard",
42 };
43 
44 struct ocp_reg {
45 	u32	ctrl;
46 	u32	status;
47 	u32	select;
48 	u32	version;
49 	u32	time_ns;
50 	u32	time_sec;
51 	u32	__pad0[2];
52 	u32	adjust_ns;
53 	u32	adjust_sec;
54 	u32	__pad1[2];
55 	u32	offset_ns;
56 	u32	offset_window_ns;
57 	u32	__pad2[2];
58 	u32	drift_ns;
59 	u32	drift_window_ns;
60 	u32	__pad3[6];
61 	u32	servo_offset_p;
62 	u32	servo_offset_i;
63 	u32	servo_drift_p;
64 	u32	servo_drift_i;
65 	u32	status_offset;
66 	u32	status_drift;
67 };
68 
69 struct ptp_ocp_servo_conf {
70 	u32	servo_offset_p;
71 	u32	servo_offset_i;
72 	u32	servo_drift_p;
73 	u32	servo_drift_i;
74 };
75 
76 #define OCP_CTRL_ENABLE		BIT(0)
77 #define OCP_CTRL_ADJUST_TIME	BIT(1)
78 #define OCP_CTRL_ADJUST_OFFSET	BIT(2)
79 #define OCP_CTRL_ADJUST_DRIFT	BIT(3)
80 #define OCP_CTRL_ADJUST_SERVO	BIT(8)
81 #define OCP_CTRL_READ_TIME_REQ	BIT(30)
82 #define OCP_CTRL_READ_TIME_DONE	BIT(31)
83 
84 #define OCP_STATUS_IN_SYNC	BIT(0)
85 #define OCP_STATUS_IN_HOLDOVER	BIT(1)
86 
87 #define OCP_SELECT_CLK_NONE	0
88 #define OCP_SELECT_CLK_REG	0xfe
89 
90 struct tod_reg {
91 	u32	ctrl;
92 	u32	status;
93 	u32	uart_polarity;
94 	u32	version;
95 	u32	adj_sec;
96 	u32	__pad0[3];
97 	u32	uart_baud;
98 	u32	__pad1[3];
99 	u32	utc_status;
100 	u32	leap;
101 };
102 
103 #define TOD_CTRL_PROTOCOL	BIT(28)
104 #define TOD_CTRL_DISABLE_FMT_A	BIT(17)
105 #define TOD_CTRL_DISABLE_FMT_B	BIT(16)
106 #define TOD_CTRL_ENABLE		BIT(0)
107 #define TOD_CTRL_GNSS_MASK	GENMASK(3, 0)
108 #define TOD_CTRL_GNSS_SHIFT	24
109 
110 #define TOD_STATUS_UTC_MASK		GENMASK(7, 0)
111 #define TOD_STATUS_UTC_VALID		BIT(8)
112 #define TOD_STATUS_LEAP_ANNOUNCE	BIT(12)
113 #define TOD_STATUS_LEAP_VALID		BIT(16)
114 
115 struct ts_reg {
116 	u32	enable;
117 	u32	error;
118 	u32	polarity;
119 	u32	version;
120 	u32	__pad0[4];
121 	u32	cable_delay;
122 	u32	__pad1[3];
123 	u32	intr;
124 	u32	intr_mask;
125 	u32	event_count;
126 	u32	__pad2[1];
127 	u32	ts_count;
128 	u32	time_ns;
129 	u32	time_sec;
130 	u32	data_width;
131 	u32	data;
132 };
133 
134 struct pps_reg {
135 	u32	ctrl;
136 	u32	status;
137 	u32	__pad0[6];
138 	u32	cable_delay;
139 };
140 
141 #define PPS_STATUS_FILTER_ERR	BIT(0)
142 #define PPS_STATUS_SUPERV_ERR	BIT(1)
143 
144 struct img_reg {
145 	u32	version;
146 };
147 
148 struct gpio_reg {
149 	u32	gpio1;
150 	u32	__pad0;
151 	u32	gpio2;
152 	u32	__pad1;
153 };
154 
155 struct irig_master_reg {
156 	u32	ctrl;
157 	u32	status;
158 	u32	__pad0;
159 	u32	version;
160 	u32	adj_sec;
161 	u32	mode_ctrl;
162 };
163 
164 #define IRIG_M_CTRL_ENABLE	BIT(0)
165 
166 struct irig_slave_reg {
167 	u32	ctrl;
168 	u32	status;
169 	u32	__pad0;
170 	u32	version;
171 	u32	adj_sec;
172 	u32	mode_ctrl;
173 };
174 
175 #define IRIG_S_CTRL_ENABLE	BIT(0)
176 
177 struct dcf_master_reg {
178 	u32	ctrl;
179 	u32	status;
180 	u32	__pad0;
181 	u32	version;
182 	u32	adj_sec;
183 };
184 
185 #define DCF_M_CTRL_ENABLE	BIT(0)
186 
187 struct dcf_slave_reg {
188 	u32	ctrl;
189 	u32	status;
190 	u32	__pad0;
191 	u32	version;
192 	u32	adj_sec;
193 };
194 
195 #define DCF_S_CTRL_ENABLE	BIT(0)
196 
197 struct signal_reg {
198 	u32	enable;
199 	u32	status;
200 	u32	polarity;
201 	u32	version;
202 	u32	__pad0[4];
203 	u32	cable_delay;
204 	u32	__pad1[3];
205 	u32	intr;
206 	u32	intr_mask;
207 	u32	__pad2[2];
208 	u32	start_ns;
209 	u32	start_sec;
210 	u32	pulse_ns;
211 	u32	pulse_sec;
212 	u32	period_ns;
213 	u32	period_sec;
214 	u32	repeat_count;
215 };
216 
217 struct frequency_reg {
218 	u32	ctrl;
219 	u32	status;
220 };
221 
222 struct board_config_reg {
223 	u32 mro50_serial_activate;
224 };
225 
226 #define FREQ_STATUS_VALID	BIT(31)
227 #define FREQ_STATUS_ERROR	BIT(30)
228 #define FREQ_STATUS_OVERRUN	BIT(29)
229 #define FREQ_STATUS_MASK	GENMASK(23, 0)
230 
231 struct ptp_ocp_flash_info {
232 	const char *name;
233 	int pci_offset;
234 	int data_size;
235 	void *data;
236 };
237 
238 struct ptp_ocp_firmware_header {
239 	char magic[4];
240 	__be16 pci_vendor_id;
241 	__be16 pci_device_id;
242 	__be32 image_size;
243 	__be16 hw_revision;
244 	__be16 crc;
245 };
246 
247 #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
248 
249 struct ptp_ocp_i2c_info {
250 	const char *name;
251 	unsigned long fixed_rate;
252 	size_t data_size;
253 	void *data;
254 };
255 
256 struct ptp_ocp_ext_info {
257 	int index;
258 	irqreturn_t (*irq_fcn)(int irq, void *priv);
259 	int (*enable)(void *priv, u32 req, bool enable);
260 };
261 
262 struct ptp_ocp_ext_src {
263 	void __iomem		*mem;
264 	struct ptp_ocp		*bp;
265 	struct ptp_ocp_ext_info	*info;
266 	int			irq_vec;
267 };
268 
269 enum ptp_ocp_sma_mode {
270 	SMA_MODE_IN,
271 	SMA_MODE_OUT,
272 };
273 
274 static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
275 	DPLL_PIN_FREQUENCY_1PPS,
276 	DPLL_PIN_FREQUENCY_10MHZ,
277 	DPLL_PIN_FREQUENCY_IRIG_B,
278 	DPLL_PIN_FREQUENCY_DCF77,
279 };
280 
281 struct ptp_ocp_sma_connector {
282 	enum	ptp_ocp_sma_mode mode;
283 	bool	fixed_fcn;
284 	bool	fixed_dir;
285 	bool	disabled;
286 	u8	default_fcn;
287 	struct dpll_pin		   *dpll_pin;
288 	struct dpll_pin_properties dpll_prop;
289 };
290 
291 struct ocp_attr_group {
292 	u64 cap;
293 	const struct attribute_group *group;
294 };
295 
296 #define OCP_CAP_BASIC	BIT(0)
297 #define OCP_CAP_SIGNAL	BIT(1)
298 #define OCP_CAP_FREQ	BIT(2)
299 
300 struct ptp_ocp_signal {
301 	ktime_t		period;
302 	ktime_t		pulse;
303 	ktime_t		phase;
304 	ktime_t		start;
305 	int		duty;
306 	bool		polarity;
307 	bool		running;
308 };
309 
310 struct ptp_ocp_serial_port {
311 	int line;
312 	int baud;
313 };
314 
315 #define OCP_BOARD_ID_LEN		13
316 #define OCP_SERIAL_LEN			6
317 #define OCP_SMA_NUM			4
318 #define OCP_SIGNAL_NUM			4
319 #define OCP_FREQ_NUM			4
320 
321 enum {
322 	PORT_GNSS,
323 	PORT_GNSS2,
324 	PORT_MAC, /* miniature atomic clock */
325 	PORT_NMEA,
326 
327 	__PORT_COUNT,
328 };
329 
330 struct ptp_ocp {
331 	struct pci_dev		*pdev;
332 	struct device		dev;
333 	spinlock_t		lock;
334 	struct ocp_reg __iomem	*reg;
335 	struct tod_reg __iomem	*tod;
336 	struct pps_reg __iomem	*pps_to_ext;
337 	struct pps_reg __iomem	*pps_to_clk;
338 	struct board_config_reg __iomem	*board_config;
339 	struct gpio_reg __iomem	*pps_select;
340 	struct gpio_reg __iomem	*sma_map1;
341 	struct gpio_reg __iomem	*sma_map2;
342 	struct irig_master_reg	__iomem *irig_out;
343 	struct irig_slave_reg	__iomem *irig_in;
344 	struct dcf_master_reg	__iomem *dcf_out;
345 	struct dcf_slave_reg	__iomem *dcf_in;
346 	struct tod_reg		__iomem *nmea_out;
347 	struct frequency_reg	__iomem *freq_in[OCP_FREQ_NUM];
348 	struct ptp_ocp_ext_src	*signal_out[OCP_SIGNAL_NUM];
349 	struct ptp_ocp_ext_src	*pps;
350 	struct ptp_ocp_ext_src	*ts0;
351 	struct ptp_ocp_ext_src	*ts1;
352 	struct ptp_ocp_ext_src	*ts2;
353 	struct ptp_ocp_ext_src	*ts3;
354 	struct ptp_ocp_ext_src	*ts4;
355 	struct ocp_art_gpio_reg __iomem *art_sma;
356 	struct img_reg __iomem	*image;
357 	struct ptp_clock	*ptp;
358 	struct ptp_clock_info	ptp_info;
359 	struct platform_device	*i2c_ctrl;
360 	struct platform_device	*spi_flash;
361 	struct clk_hw		*i2c_clk;
362 	struct timer_list	watchdog;
363 	const struct attribute_group **attr_group;
364 	const struct ptp_ocp_eeprom_map *eeprom_map;
365 	struct dentry		*debug_root;
366 	bool			sync;
367 	time64_t		gnss_lost;
368 	struct delayed_work	sync_work;
369 	int			id;
370 	int			n_irqs;
371 	struct ptp_ocp_serial_port	port[__PORT_COUNT];
372 	bool			fw_loader;
373 	u8			fw_tag;
374 	u16			fw_version;
375 	u8			board_id[OCP_BOARD_ID_LEN];
376 	u8			serial[OCP_SERIAL_LEN];
377 	bool			has_eeprom_data;
378 	u32			pps_req_map;
379 	int			flash_start;
380 	u32			utc_tai_offset;
381 	u32			ts_window_adjust;
382 	u64			fw_cap;
383 	struct ptp_ocp_signal	signal[OCP_SIGNAL_NUM];
384 	struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
385 	const struct ocp_sma_op *sma_op;
386 	struct dpll_device *dpll;
387 	int signals_nr;
388 	int freq_in_nr;
389 };
390 
391 #define OCP_REQ_TIMESTAMP	BIT(0)
392 #define OCP_REQ_PPS		BIT(1)
393 
394 struct ocp_resource {
395 	unsigned long offset;
396 	int size;
397 	int irq_vec;
398 	int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
399 	void *extra;
400 	unsigned long bp_offset;
401 	const char * const name;
402 };
403 
404 static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
405 static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
406 static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
407 static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
408 static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
409 static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
410 static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
411 static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
412 static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
413 static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
414 				      struct ptp_perout_request *req);
415 static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
416 static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
417 
418 static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
419 
420 static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
421 
422 static const struct ocp_attr_group fb_timecard_groups[];
423 
424 static const struct ocp_attr_group art_timecard_groups[];
425 
426 static const struct ocp_attr_group adva_timecard_groups[];
427 
428 struct ptp_ocp_eeprom_map {
429 	u16	off;
430 	u16	len;
431 	u32	bp_offset;
432 	const void * const tag;
433 };
434 
435 #define EEPROM_ENTRY(addr, member)				\
436 	.off = addr,						\
437 	.len = sizeof_field(struct ptp_ocp, member),		\
438 	.bp_offset = offsetof(struct ptp_ocp, member)
439 
440 #define BP_MAP_ENTRY_ADDR(bp, map) ({				\
441 	(void *)((uintptr_t)(bp) + (map)->bp_offset);		\
442 })
443 
444 static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
445 	{ EEPROM_ENTRY(0x43, board_id) },
446 	{ EEPROM_ENTRY(0x00, serial), .tag = "mac" },
447 	{ }
448 };
449 
450 static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
451 	{ EEPROM_ENTRY(0x200 + 0x43, board_id) },
452 	{ EEPROM_ENTRY(0x200 + 0x63, serial) },
453 	{ }
454 };
455 
456 #define bp_assign_entry(bp, res, val) ({				\
457 	uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset;		\
458 	*(typeof(val) *)addr = val;					\
459 })
460 
461 #define OCP_RES_LOCATION(member) \
462 	.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
463 
464 #define OCP_MEM_RESOURCE(member) \
465 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
466 
467 #define OCP_SERIAL_RESOURCE(member) \
468 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
469 
470 #define OCP_I2C_RESOURCE(member) \
471 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
472 
473 #define OCP_SPI_RESOURCE(member) \
474 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
475 
476 #define OCP_EXT_RESOURCE(member) \
477 	OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
478 
479 /* This is the MSI vector mapping used.
480  * 0: PPS (TS5)
481  * 1: TS0
482  * 2: TS1
483  * 3: GNSS1
484  * 4: GNSS2
485  * 5: MAC
486  * 6: TS2
487  * 7: I2C controller
488  * 8: HWICAP (notused)
489  * 9: SPI Flash
490  * 10: NMEA
491  * 11: Signal Generator 1
492  * 12: Signal Generator 2
493  * 13: Signal Generator 3
494  * 14: Signal Generator 4
495  * 15: TS3
496  * 16: TS4
497  --
498  * 8: Orolia TS1
499  * 10: Orolia TS2
500  * 11: Orolia TS0 (GNSS)
501  * 12: Orolia PPS
502  * 14: Orolia TS3
503  * 15: Orolia TS4
504  */
505 
506 static struct ocp_resource ocp_fb_resource[] = {
507 	{
508 		OCP_MEM_RESOURCE(reg),
509 		.offset = 0x01000000, .size = 0x10000,
510 	},
511 	{
512 		OCP_EXT_RESOURCE(ts0),
513 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
514 		.extra = &(struct ptp_ocp_ext_info) {
515 			.index = 0,
516 			.irq_fcn = ptp_ocp_ts_irq,
517 			.enable = ptp_ocp_ts_enable,
518 		},
519 	},
520 	{
521 		OCP_EXT_RESOURCE(ts1),
522 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
523 		.extra = &(struct ptp_ocp_ext_info) {
524 			.index = 1,
525 			.irq_fcn = ptp_ocp_ts_irq,
526 			.enable = ptp_ocp_ts_enable,
527 		},
528 	},
529 	{
530 		OCP_EXT_RESOURCE(ts2),
531 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
532 		.extra = &(struct ptp_ocp_ext_info) {
533 			.index = 2,
534 			.irq_fcn = ptp_ocp_ts_irq,
535 			.enable = ptp_ocp_ts_enable,
536 		},
537 	},
538 	{
539 		OCP_EXT_RESOURCE(ts3),
540 		.offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
541 		.extra = &(struct ptp_ocp_ext_info) {
542 			.index = 3,
543 			.irq_fcn = ptp_ocp_ts_irq,
544 			.enable = ptp_ocp_ts_enable,
545 		},
546 	},
547 	{
548 		OCP_EXT_RESOURCE(ts4),
549 		.offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
550 		.extra = &(struct ptp_ocp_ext_info) {
551 			.index = 4,
552 			.irq_fcn = ptp_ocp_ts_irq,
553 			.enable = ptp_ocp_ts_enable,
554 		},
555 	},
556 	/* Timestamp for PHC and/or PPS generator */
557 	{
558 		OCP_EXT_RESOURCE(pps),
559 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
560 		.extra = &(struct ptp_ocp_ext_info) {
561 			.index = 5,
562 			.irq_fcn = ptp_ocp_ts_irq,
563 			.enable = ptp_ocp_ts_enable,
564 		},
565 	},
566 	{
567 		OCP_EXT_RESOURCE(signal_out[0]),
568 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
569 		.extra = &(struct ptp_ocp_ext_info) {
570 			.index = 1,
571 			.irq_fcn = ptp_ocp_signal_irq,
572 			.enable = ptp_ocp_signal_enable,
573 		},
574 	},
575 	{
576 		OCP_EXT_RESOURCE(signal_out[1]),
577 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
578 		.extra = &(struct ptp_ocp_ext_info) {
579 			.index = 2,
580 			.irq_fcn = ptp_ocp_signal_irq,
581 			.enable = ptp_ocp_signal_enable,
582 		},
583 	},
584 	{
585 		OCP_EXT_RESOURCE(signal_out[2]),
586 		.offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
587 		.extra = &(struct ptp_ocp_ext_info) {
588 			.index = 3,
589 			.irq_fcn = ptp_ocp_signal_irq,
590 			.enable = ptp_ocp_signal_enable,
591 		},
592 	},
593 	{
594 		OCP_EXT_RESOURCE(signal_out[3]),
595 		.offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
596 		.extra = &(struct ptp_ocp_ext_info) {
597 			.index = 4,
598 			.irq_fcn = ptp_ocp_signal_irq,
599 			.enable = ptp_ocp_signal_enable,
600 		},
601 	},
602 	{
603 		OCP_MEM_RESOURCE(pps_to_ext),
604 		.offset = 0x01030000, .size = 0x10000,
605 	},
606 	{
607 		OCP_MEM_RESOURCE(pps_to_clk),
608 		.offset = 0x01040000, .size = 0x10000,
609 	},
610 	{
611 		OCP_MEM_RESOURCE(tod),
612 		.offset = 0x01050000, .size = 0x10000,
613 	},
614 	{
615 		OCP_MEM_RESOURCE(irig_in),
616 		.offset = 0x01070000, .size = 0x10000,
617 	},
618 	{
619 		OCP_MEM_RESOURCE(irig_out),
620 		.offset = 0x01080000, .size = 0x10000,
621 	},
622 	{
623 		OCP_MEM_RESOURCE(dcf_in),
624 		.offset = 0x01090000, .size = 0x10000,
625 	},
626 	{
627 		OCP_MEM_RESOURCE(dcf_out),
628 		.offset = 0x010A0000, .size = 0x10000,
629 	},
630 	{
631 		OCP_MEM_RESOURCE(nmea_out),
632 		.offset = 0x010B0000, .size = 0x10000,
633 	},
634 	{
635 		OCP_MEM_RESOURCE(image),
636 		.offset = 0x00020000, .size = 0x1000,
637 	},
638 	{
639 		OCP_MEM_RESOURCE(pps_select),
640 		.offset = 0x00130000, .size = 0x1000,
641 	},
642 	{
643 		OCP_MEM_RESOURCE(sma_map1),
644 		.offset = 0x00140000, .size = 0x1000,
645 	},
646 	{
647 		OCP_MEM_RESOURCE(sma_map2),
648 		.offset = 0x00220000, .size = 0x1000,
649 	},
650 	{
651 		OCP_I2C_RESOURCE(i2c_ctrl),
652 		.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
653 		.extra = &(struct ptp_ocp_i2c_info) {
654 			.name = "xiic-i2c",
655 			.fixed_rate = 50000000,
656 			.data_size = sizeof(struct xiic_i2c_platform_data),
657 			.data = &(struct xiic_i2c_platform_data) {
658 				.num_devices = 2,
659 				.devices = (struct i2c_board_info[]) {
660 					{ I2C_BOARD_INFO("24c02", 0x50) },
661 					{ I2C_BOARD_INFO("24mac402", 0x58),
662 					  .platform_data = "mac" },
663 				},
664 			},
665 		},
666 	},
667 	{
668 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
669 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
670 		.extra = &(struct ptp_ocp_serial_port) {
671 			.baud = 115200,
672 		},
673 	},
674 	{
675 		OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
676 		.offset = 0x00170000 + 0x1000, .irq_vec = 4,
677 		.extra = &(struct ptp_ocp_serial_port) {
678 			.baud = 115200,
679 		},
680 	},
681 	{
682 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
683 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
684 		.extra = &(struct ptp_ocp_serial_port) {
685 			.baud = 57600,
686 		},
687 	},
688 	{
689 		OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
690 		.offset = 0x00190000 + 0x1000, .irq_vec = 10,
691 	},
692 	{
693 		OCP_SPI_RESOURCE(spi_flash),
694 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
695 		.extra = &(struct ptp_ocp_flash_info) {
696 			.name = "xilinx_spi", .pci_offset = 0,
697 			.data_size = sizeof(struct xspi_platform_data),
698 			.data = &(struct xspi_platform_data) {
699 				.num_chipselect = 1,
700 				.bits_per_word = 8,
701 				.num_devices = 1,
702 				.force_irq = true,
703 				.devices = &(struct spi_board_info) {
704 					.modalias = "spi-nor",
705 				},
706 			},
707 		},
708 	},
709 	{
710 		OCP_MEM_RESOURCE(freq_in[0]),
711 		.offset = 0x01200000, .size = 0x10000,
712 	},
713 	{
714 		OCP_MEM_RESOURCE(freq_in[1]),
715 		.offset = 0x01210000, .size = 0x10000,
716 	},
717 	{
718 		OCP_MEM_RESOURCE(freq_in[2]),
719 		.offset = 0x01220000, .size = 0x10000,
720 	},
721 	{
722 		OCP_MEM_RESOURCE(freq_in[3]),
723 		.offset = 0x01230000, .size = 0x10000,
724 	},
725 	{
726 		.setup = ptp_ocp_fb_board_init,
727 		.extra = &(struct ptp_ocp_servo_conf) {
728 			.servo_offset_p = 0x2000,
729 			.servo_offset_i = 0x1000,
730 			.servo_drift_p = 0,
731 			.servo_drift_i = 0,
732 		},
733 	},
734 	{ }
735 };
736 
737 #define OCP_ART_CONFIG_SIZE		144
738 #define OCP_ART_TEMP_TABLE_SIZE		368
739 
740 struct ocp_art_gpio_reg {
741 	struct {
742 		u32	gpio;
743 		u32	__pad[3];
744 	} map[4];
745 };
746 
747 static struct ocp_resource ocp_art_resource[] = {
748 	{
749 		OCP_MEM_RESOURCE(reg),
750 		.offset = 0x01000000, .size = 0x10000,
751 	},
752 	{
753 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
754 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
755 		.extra = &(struct ptp_ocp_serial_port) {
756 			.baud = 115200,
757 		},
758 	},
759 	{
760 		OCP_MEM_RESOURCE(art_sma),
761 		.offset = 0x003C0000, .size = 0x1000,
762 	},
763 	/* Timestamp associated with GNSS1 receiver PPS */
764 	{
765 		OCP_EXT_RESOURCE(ts0),
766 		.offset = 0x360000, .size = 0x20, .irq_vec = 12,
767 		.extra = &(struct ptp_ocp_ext_info) {
768 			.index = 0,
769 			.irq_fcn = ptp_ocp_ts_irq,
770 			.enable = ptp_ocp_ts_enable,
771 		},
772 	},
773 	{
774 		OCP_EXT_RESOURCE(ts1),
775 		.offset = 0x380000, .size = 0x20, .irq_vec = 8,
776 		.extra = &(struct ptp_ocp_ext_info) {
777 			.index = 1,
778 			.irq_fcn = ptp_ocp_ts_irq,
779 			.enable = ptp_ocp_ts_enable,
780 		},
781 	},
782 	{
783 		OCP_EXT_RESOURCE(ts2),
784 		.offset = 0x390000, .size = 0x20, .irq_vec = 10,
785 		.extra = &(struct ptp_ocp_ext_info) {
786 			.index = 2,
787 			.irq_fcn = ptp_ocp_ts_irq,
788 			.enable = ptp_ocp_ts_enable,
789 		},
790 	},
791 	{
792 		OCP_EXT_RESOURCE(ts3),
793 		.offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
794 		.extra = &(struct ptp_ocp_ext_info) {
795 			.index = 3,
796 			.irq_fcn = ptp_ocp_ts_irq,
797 			.enable = ptp_ocp_ts_enable,
798 		},
799 	},
800 	{
801 		OCP_EXT_RESOURCE(ts4),
802 		.offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
803 		.extra = &(struct ptp_ocp_ext_info) {
804 			.index = 4,
805 			.irq_fcn = ptp_ocp_ts_irq,
806 			.enable = ptp_ocp_ts_enable,
807 		},
808 	},
809 	/* Timestamp associated with Internal PPS of the card */
810 	{
811 		OCP_EXT_RESOURCE(pps),
812 		.offset = 0x00330000, .size = 0x20, .irq_vec = 11,
813 		.extra = &(struct ptp_ocp_ext_info) {
814 			.index = 5,
815 			.irq_fcn = ptp_ocp_ts_irq,
816 			.enable = ptp_ocp_ts_enable,
817 		},
818 	},
819 	{
820 		OCP_SPI_RESOURCE(spi_flash),
821 		.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
822 		.extra = &(struct ptp_ocp_flash_info) {
823 			.name = "spi_altera", .pci_offset = 0,
824 			.data_size = sizeof(struct altera_spi_platform_data),
825 			.data = &(struct altera_spi_platform_data) {
826 				.num_chipselect = 1,
827 				.num_devices = 1,
828 				.devices = &(struct spi_board_info) {
829 					.modalias = "spi-nor",
830 				},
831 			},
832 		},
833 	},
834 	{
835 		OCP_I2C_RESOURCE(i2c_ctrl),
836 		.offset = 0x350000, .size = 0x100, .irq_vec = 4,
837 		.extra = &(struct ptp_ocp_i2c_info) {
838 			.name = "ocores-i2c",
839 			.fixed_rate = 400000,
840 			.data_size = sizeof(struct ocores_i2c_platform_data),
841 			.data = &(struct ocores_i2c_platform_data) {
842 				.clock_khz = 125000,
843 				.bus_khz = 400,
844 				.num_devices = 1,
845 				.devices = &(struct i2c_board_info) {
846 					I2C_BOARD_INFO("24c08", 0x50),
847 				},
848 			},
849 		},
850 	},
851 	{
852 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
853 		.offset = 0x00190000, .irq_vec = 7,
854 		.extra = &(struct ptp_ocp_serial_port) {
855 			.baud = 9600,
856 		},
857 	},
858 	{
859 		OCP_MEM_RESOURCE(board_config),
860 		.offset = 0x210000, .size = 0x1000,
861 	},
862 	{
863 		.setup = ptp_ocp_art_board_init,
864 		.extra = &(struct ptp_ocp_servo_conf) {
865 			.servo_offset_p = 0x2000,
866 			.servo_offset_i = 0x1000,
867 			.servo_drift_p = 0,
868 			.servo_drift_i = 0,
869 		},
870 	},
871 	{ }
872 };
873 
874 static struct ocp_resource ocp_adva_resource[] = {
875 	{
876 		OCP_MEM_RESOURCE(reg),
877 		.offset = 0x01000000, .size = 0x10000,
878 	},
879 	{
880 		OCP_EXT_RESOURCE(ts0),
881 		.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
882 		.extra = &(struct ptp_ocp_ext_info) {
883 			.index = 0,
884 			.irq_fcn = ptp_ocp_ts_irq,
885 			.enable = ptp_ocp_ts_enable,
886 		},
887 	},
888 	{
889 		OCP_EXT_RESOURCE(ts1),
890 		.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
891 		.extra = &(struct ptp_ocp_ext_info) {
892 			.index = 1,
893 			.irq_fcn = ptp_ocp_ts_irq,
894 			.enable = ptp_ocp_ts_enable,
895 		},
896 	},
897 	{
898 		OCP_EXT_RESOURCE(ts2),
899 		.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
900 		.extra = &(struct ptp_ocp_ext_info) {
901 			.index = 2,
902 			.irq_fcn = ptp_ocp_ts_irq,
903 			.enable = ptp_ocp_ts_enable,
904 		},
905 	},
906 	/* Timestamp for PHC and/or PPS generator */
907 	{
908 		OCP_EXT_RESOURCE(pps),
909 		.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
910 		.extra = &(struct ptp_ocp_ext_info) {
911 			.index = 5,
912 			.irq_fcn = ptp_ocp_ts_irq,
913 			.enable = ptp_ocp_ts_enable,
914 		},
915 	},
916 	{
917 		OCP_EXT_RESOURCE(signal_out[0]),
918 		.offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
919 		.extra = &(struct ptp_ocp_ext_info) {
920 			.index = 1,
921 			.irq_fcn = ptp_ocp_signal_irq,
922 			.enable = ptp_ocp_signal_enable,
923 		},
924 	},
925 	{
926 		OCP_EXT_RESOURCE(signal_out[1]),
927 		.offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
928 		.extra = &(struct ptp_ocp_ext_info) {
929 			.index = 2,
930 			.irq_fcn = ptp_ocp_signal_irq,
931 			.enable = ptp_ocp_signal_enable,
932 		},
933 	},
934 	{
935 		OCP_MEM_RESOURCE(pps_to_ext),
936 		.offset = 0x01030000, .size = 0x10000,
937 	},
938 	{
939 		OCP_MEM_RESOURCE(pps_to_clk),
940 		.offset = 0x01040000, .size = 0x10000,
941 	},
942 	{
943 		OCP_MEM_RESOURCE(tod),
944 		.offset = 0x01050000, .size = 0x10000,
945 	},
946 	{
947 		OCP_MEM_RESOURCE(image),
948 		.offset = 0x00020000, .size = 0x1000,
949 	},
950 	{
951 		OCP_MEM_RESOURCE(pps_select),
952 		.offset = 0x00130000, .size = 0x1000,
953 	},
954 	{
955 		OCP_MEM_RESOURCE(sma_map1),
956 		.offset = 0x00140000, .size = 0x1000,
957 	},
958 	{
959 		OCP_MEM_RESOURCE(sma_map2),
960 		.offset = 0x00220000, .size = 0x1000,
961 	},
962 	{
963 		OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
964 		.offset = 0x00160000 + 0x1000, .irq_vec = 3,
965 		.extra = &(struct ptp_ocp_serial_port) {
966 			.baud = 9600,
967 		},
968 	},
969 	{
970 		OCP_SERIAL_RESOURCE(port[PORT_MAC]),
971 		.offset = 0x00180000 + 0x1000, .irq_vec = 5,
972 		.extra = &(struct ptp_ocp_serial_port) {
973 			.baud = 115200,
974 		},
975 	},
976 	{
977 		OCP_MEM_RESOURCE(freq_in[0]),
978 		.offset = 0x01200000, .size = 0x10000,
979 	},
980 	{
981 		OCP_MEM_RESOURCE(freq_in[1]),
982 		.offset = 0x01210000, .size = 0x10000,
983 	},
984 	{
985 		OCP_SPI_RESOURCE(spi_flash),
986 		.offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
987 		.extra = &(struct ptp_ocp_flash_info) {
988 			.name = "spi_altera", .pci_offset = 0,
989 			.data_size = sizeof(struct altera_spi_platform_data),
990 			.data = &(struct altera_spi_platform_data) {
991 				.num_chipselect = 1,
992 				.num_devices = 1,
993 				.devices = &(struct spi_board_info) {
994 					.modalias = "spi-nor",
995 				},
996 			},
997 		},
998 	},
999 	{
1000 		OCP_I2C_RESOURCE(i2c_ctrl),
1001 		.offset = 0x150000, .size = 0x100, .irq_vec = 7,
1002 		.extra = &(struct ptp_ocp_i2c_info) {
1003 			.name = "ocores-i2c",
1004 			.fixed_rate = 50000000,
1005 			.data_size = sizeof(struct ocores_i2c_platform_data),
1006 			.data = &(struct ocores_i2c_platform_data) {
1007 				.clock_khz = 50000,
1008 				.bus_khz = 100,
1009 				.reg_io_width = 4, // 32-bit/4-byte
1010 				.reg_shift = 2, // 32-bit addressing
1011 				.num_devices = 2,
1012 				.devices = (struct i2c_board_info[]) {
1013 					{ I2C_BOARD_INFO("24c02", 0x50) },
1014 					{ I2C_BOARD_INFO("24mac402", 0x58),
1015 					 .platform_data = "mac" },
1016 				},
1017 			},
1018 		},
1019 	},
1020 	{
1021 		.setup = ptp_ocp_adva_board_init,
1022 		.extra = &(struct ptp_ocp_servo_conf) {
1023 			.servo_offset_p = 0xc000,
1024 			.servo_offset_i = 0x1000,
1025 			.servo_drift_p = 0,
1026 			.servo_drift_i = 0,
1027 		},
1028 	},
1029 	{ }
1030 };
1031 
1032 static const struct pci_device_id ptp_ocp_pcidev_id[] = {
1033 	{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
1034 	{ PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
1035 	{ PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
1036 	{ PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
1037 	{ }
1038 };
1039 MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
1040 
1041 static DEFINE_MUTEX(ptp_ocp_lock);
1042 static DEFINE_IDR(ptp_ocp_idr);
1043 
1044 struct ocp_selector {
1045 	const char *name;
1046 	int value;
1047 	u64 frequency;
1048 };
1049 
1050 static const struct ocp_selector ptp_ocp_clock[] = {
1051 	{ .name = "NONE",	.value = 0 },
1052 	{ .name = "TOD",	.value = 1 },
1053 	{ .name = "IRIG",	.value = 2 },
1054 	{ .name = "PPS",	.value = 3 },
1055 	{ .name = "PTP",	.value = 4 },
1056 	{ .name = "RTC",	.value = 5 },
1057 	{ .name = "DCF",	.value = 6 },
1058 	{ .name = "REGS",	.value = 0xfe },
1059 	{ .name = "EXT",	.value = 0xff },
1060 	{ }
1061 };
1062 
1063 #define SMA_DISABLE		BIT(16)
1064 #define SMA_ENABLE		BIT(15)
1065 #define SMA_SELECT_MASK		GENMASK(14, 0)
1066 
1067 static const struct ocp_selector ptp_ocp_sma_in[] = {
1068 	{ .name = "10Mhz",  .value = 0x0000,      .frequency = 10000000 },
1069 	{ .name = "PPS1",   .value = 0x0001,      .frequency = 1 },
1070 	{ .name = "PPS2",   .value = 0x0002,      .frequency = 1 },
1071 	{ .name = "TS1",    .value = 0x0004,      .frequency = 0 },
1072 	{ .name = "TS2",    .value = 0x0008,      .frequency = 0 },
1073 	{ .name = "IRIG",   .value = 0x0010,      .frequency = 10000 },
1074 	{ .name = "DCF",    .value = 0x0020,      .frequency = 77500 },
1075 	{ .name = "TS3",    .value = 0x0040,      .frequency = 0 },
1076 	{ .name = "TS4",    .value = 0x0080,      .frequency = 0 },
1077 	{ .name = "FREQ1",  .value = 0x0100,      .frequency = 0 },
1078 	{ .name = "FREQ2",  .value = 0x0200,      .frequency = 0 },
1079 	{ .name = "FREQ3",  .value = 0x0400,      .frequency = 0 },
1080 	{ .name = "FREQ4",  .value = 0x0800,      .frequency = 0 },
1081 	{ .name = "None",   .value = SMA_DISABLE, .frequency = 0 },
1082 	{ }
1083 };
1084 
1085 static const struct ocp_selector ptp_ocp_sma_out[] = {
1086 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000 },
1087 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1088 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1089 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1090 	{ .name = "GNSS2",	.value = 0x0008,  .frequency = 1 },
1091 	{ .name = "IRIG",	.value = 0x0010,  .frequency = 10000 },
1092 	{ .name = "DCF",	.value = 0x0020,  .frequency = 77000 },
1093 	{ .name = "GEN1",	.value = 0x0040 },
1094 	{ .name = "GEN2",	.value = 0x0080 },
1095 	{ .name = "GEN3",	.value = 0x0100 },
1096 	{ .name = "GEN4",	.value = 0x0200 },
1097 	{ .name = "GND",	.value = 0x2000 },
1098 	{ .name = "VCC",	.value = 0x4000 },
1099 	{ }
1100 };
1101 
1102 static const struct ocp_selector ptp_ocp_art_sma_in[] = {
1103 	{ .name = "PPS1",	.value = 0x0001,  .frequency = 1 },
1104 	{ .name = "10Mhz",	.value = 0x0008,  .frequency = 1000000 },
1105 	{ }
1106 };
1107 
1108 static const struct ocp_selector ptp_ocp_art_sma_out[] = {
1109 	{ .name = "PHC",	.value = 0x0002,  .frequency = 1 },
1110 	{ .name = "GNSS",	.value = 0x0004,  .frequency = 1 },
1111 	{ .name = "10Mhz",	.value = 0x0010,  .frequency = 10000000 },
1112 	{ }
1113 };
1114 
1115 static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
1116 	{ .name = "10Mhz",	.value = 0x0000,      .frequency = 10000000},
1117 	{ .name = "PPS1",	.value = 0x0001,      .frequency = 1 },
1118 	{ .name = "PPS2",	.value = 0x0002,      .frequency = 1 },
1119 	{ .name = "TS1",	.value = 0x0004,      .frequency = 0 },
1120 	{ .name = "TS2",	.value = 0x0008,      .frequency = 0 },
1121 	{ .name = "FREQ1",	.value = 0x0100,      .frequency = 0 },
1122 	{ .name = "FREQ2",	.value = 0x0200,      .frequency = 0 },
1123 	{ .name = "None",	.value = SMA_DISABLE, .frequency = 0 },
1124 	{ }
1125 };
1126 
1127 static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
1128 	{ .name = "10Mhz",	.value = 0x0000,  .frequency = 10000000},
1129 	{ .name = "PHC",	.value = 0x0001,  .frequency = 1 },
1130 	{ .name = "MAC",	.value = 0x0002,  .frequency = 1 },
1131 	{ .name = "GNSS1",	.value = 0x0004,  .frequency = 1 },
1132 	{ .name = "GEN1",	.value = 0x0040 },
1133 	{ .name = "GEN2",	.value = 0x0080 },
1134 	{ .name = "GND",	.value = 0x2000 },
1135 	{ .name = "VCC",	.value = 0x4000 },
1136 	{ }
1137 };
1138 
1139 struct ocp_sma_op {
1140 	const struct ocp_selector *tbl[2];
1141 	void (*init)(struct ptp_ocp *bp);
1142 	u32 (*get)(struct ptp_ocp *bp, int sma_nr);
1143 	int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
1144 	int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
1145 };
1146 
1147 static void
ptp_ocp_sma_init(struct ptp_ocp * bp)1148 ptp_ocp_sma_init(struct ptp_ocp *bp)
1149 {
1150 	return bp->sma_op->init(bp);
1151 }
1152 
1153 static u32
ptp_ocp_sma_get(struct ptp_ocp * bp,int sma_nr)1154 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
1155 {
1156 	return bp->sma_op->get(bp, sma_nr);
1157 }
1158 
1159 static int
ptp_ocp_sma_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)1160 ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
1161 {
1162 	return bp->sma_op->set_inputs(bp, sma_nr, val);
1163 }
1164 
1165 static int
ptp_ocp_sma_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)1166 ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
1167 {
1168 	return bp->sma_op->set_output(bp, sma_nr, val);
1169 }
1170 
1171 static const char *
ptp_ocp_select_name_from_val(const struct ocp_selector * tbl,int val)1172 ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
1173 {
1174 	int i;
1175 
1176 	for (i = 0; tbl[i].name; i++)
1177 		if (tbl[i].value == val)
1178 			return tbl[i].name;
1179 	return NULL;
1180 }
1181 
1182 static int
ptp_ocp_select_val_from_name(const struct ocp_selector * tbl,const char * name)1183 ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
1184 {
1185 	const char *select;
1186 	int i;
1187 
1188 	for (i = 0; tbl[i].name; i++) {
1189 		select = tbl[i].name;
1190 		if (!strncasecmp(name, select, strlen(select)))
1191 			return tbl[i].value;
1192 	}
1193 	return -EINVAL;
1194 }
1195 
1196 static ssize_t
ptp_ocp_select_table_show(const struct ocp_selector * tbl,char * buf)1197 ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
1198 {
1199 	ssize_t count;
1200 	int i;
1201 
1202 	count = 0;
1203 	for (i = 0; tbl[i].name; i++)
1204 		count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
1205 	if (count)
1206 		count--;
1207 	count += sysfs_emit_at(buf, count, "\n");
1208 	return count;
1209 }
1210 
1211 static int
__ptp_ocp_gettime_locked(struct ptp_ocp * bp,struct timespec64 * ts,struct ptp_system_timestamp * sts)1212 __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
1213 			 struct ptp_system_timestamp *sts)
1214 {
1215 	u32 ctrl, time_sec, time_ns;
1216 	int i;
1217 
1218 	ptp_read_system_prets(sts);
1219 
1220 	ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1221 	iowrite32(ctrl, &bp->reg->ctrl);
1222 
1223 	for (i = 0; i < 100; i++) {
1224 		ctrl = ioread32(&bp->reg->ctrl);
1225 		if (ctrl & OCP_CTRL_READ_TIME_DONE)
1226 			break;
1227 	}
1228 	ptp_read_system_postts(sts);
1229 
1230 	if (sts && bp->ts_window_adjust) {
1231 		s64 ns = timespec64_to_ns(&sts->post_ts);
1232 
1233 		sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
1234 	}
1235 
1236 	time_ns = ioread32(&bp->reg->time_ns);
1237 	time_sec = ioread32(&bp->reg->time_sec);
1238 
1239 	ts->tv_sec = time_sec;
1240 	ts->tv_nsec = time_ns;
1241 
1242 	return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
1243 }
1244 
1245 static int
ptp_ocp_gettimex(struct ptp_clock_info * ptp_info,struct timespec64 * ts,struct ptp_system_timestamp * sts)1246 ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
1247 		 struct ptp_system_timestamp *sts)
1248 {
1249 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1250 	unsigned long flags;
1251 	int err;
1252 
1253 	spin_lock_irqsave(&bp->lock, flags);
1254 	err = __ptp_ocp_gettime_locked(bp, ts, sts);
1255 	spin_unlock_irqrestore(&bp->lock, flags);
1256 
1257 	return err;
1258 }
1259 
1260 static void
__ptp_ocp_settime_locked(struct ptp_ocp * bp,const struct timespec64 * ts)1261 __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
1262 {
1263 	u32 ctrl, time_sec, time_ns;
1264 	u32 select;
1265 
1266 	time_ns = ts->tv_nsec;
1267 	time_sec = ts->tv_sec;
1268 
1269 	select = ioread32(&bp->reg->select);
1270 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1271 
1272 	iowrite32(time_ns, &bp->reg->adjust_ns);
1273 	iowrite32(time_sec, &bp->reg->adjust_sec);
1274 
1275 	ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
1276 	iowrite32(ctrl, &bp->reg->ctrl);
1277 
1278 	/* restore clock selection */
1279 	iowrite32(select >> 16, &bp->reg->select);
1280 }
1281 
1282 static int
ptp_ocp_settime(struct ptp_clock_info * ptp_info,const struct timespec64 * ts)1283 ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
1284 {
1285 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1286 	unsigned long flags;
1287 
1288 	spin_lock_irqsave(&bp->lock, flags);
1289 	__ptp_ocp_settime_locked(bp, ts);
1290 	spin_unlock_irqrestore(&bp->lock, flags);
1291 
1292 	return 0;
1293 }
1294 
1295 static void
__ptp_ocp_adjtime_locked(struct ptp_ocp * bp,u32 adj_val)1296 __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
1297 {
1298 	u32 select, ctrl;
1299 
1300 	select = ioread32(&bp->reg->select);
1301 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1302 
1303 	iowrite32(adj_val, &bp->reg->offset_ns);
1304 	iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
1305 
1306 	ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
1307 	iowrite32(ctrl, &bp->reg->ctrl);
1308 
1309 	/* restore clock selection */
1310 	iowrite32(select >> 16, &bp->reg->select);
1311 }
1312 
1313 static void
ptp_ocp_adjtime_coarse(struct ptp_ocp * bp,s64 delta_ns)1314 ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
1315 {
1316 	struct timespec64 ts;
1317 	unsigned long flags;
1318 	int err;
1319 
1320 	spin_lock_irqsave(&bp->lock, flags);
1321 	err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
1322 	if (likely(!err)) {
1323 		set_normalized_timespec64(&ts, ts.tv_sec,
1324 					  ts.tv_nsec + delta_ns);
1325 		__ptp_ocp_settime_locked(bp, &ts);
1326 	}
1327 	spin_unlock_irqrestore(&bp->lock, flags);
1328 }
1329 
1330 static int
ptp_ocp_adjtime(struct ptp_clock_info * ptp_info,s64 delta_ns)1331 ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
1332 {
1333 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1334 	unsigned long flags;
1335 	u32 adj_ns, sign;
1336 
1337 	if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
1338 		ptp_ocp_adjtime_coarse(bp, delta_ns);
1339 		return 0;
1340 	}
1341 
1342 	sign = delta_ns < 0 ? BIT(31) : 0;
1343 	adj_ns = sign ? -delta_ns : delta_ns;
1344 
1345 	spin_lock_irqsave(&bp->lock, flags);
1346 	__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
1347 	spin_unlock_irqrestore(&bp->lock, flags);
1348 
1349 	return 0;
1350 }
1351 
1352 static int
ptp_ocp_null_adjfine(struct ptp_clock_info * ptp_info,long scaled_ppm)1353 ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
1354 {
1355 	if (scaled_ppm == 0)
1356 		return 0;
1357 
1358 	return -EOPNOTSUPP;
1359 }
1360 
1361 static s32
ptp_ocp_null_getmaxphase(struct ptp_clock_info * ptp_info)1362 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
1363 {
1364 	return 0;
1365 }
1366 
1367 static int
ptp_ocp_null_adjphase(struct ptp_clock_info * ptp_info,s32 phase_ns)1368 ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
1369 {
1370 	return -EOPNOTSUPP;
1371 }
1372 
1373 static int
ptp_ocp_enable(struct ptp_clock_info * ptp_info,struct ptp_clock_request * rq,int on)1374 ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
1375 	       int on)
1376 {
1377 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1378 	struct ptp_ocp_ext_src *ext = NULL;
1379 	u32 req;
1380 	int err;
1381 
1382 	switch (rq->type) {
1383 	case PTP_CLK_REQ_EXTTS:
1384 		req = OCP_REQ_TIMESTAMP;
1385 		switch (rq->extts.index) {
1386 		case 0:
1387 			ext = bp->ts0;
1388 			break;
1389 		case 1:
1390 			ext = bp->ts1;
1391 			break;
1392 		case 2:
1393 			ext = bp->ts2;
1394 			break;
1395 		case 3:
1396 			ext = bp->ts3;
1397 			break;
1398 		case 4:
1399 			ext = bp->ts4;
1400 			break;
1401 		case 5:
1402 			ext = bp->pps;
1403 			break;
1404 		}
1405 		break;
1406 	case PTP_CLK_REQ_PPS:
1407 		req = OCP_REQ_PPS;
1408 		ext = bp->pps;
1409 		break;
1410 	case PTP_CLK_REQ_PEROUT:
1411 		switch (rq->perout.index) {
1412 		case 0:
1413 			/* This is a request for 1PPS on an output SMA.
1414 			 * Allow, but assume manual configuration.
1415 			 */
1416 			if (on && (rq->perout.period.sec != 1 ||
1417 				   rq->perout.period.nsec != 0))
1418 				return -EINVAL;
1419 			return 0;
1420 		case 1:
1421 		case 2:
1422 		case 3:
1423 		case 4:
1424 			req = rq->perout.index - 1;
1425 			ext = bp->signal_out[req];
1426 			err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
1427 			if (err)
1428 				return err;
1429 			break;
1430 		}
1431 		break;
1432 	default:
1433 		return -EOPNOTSUPP;
1434 	}
1435 
1436 	err = -ENXIO;
1437 	if (ext)
1438 		err = ext->info->enable(ext, req, on);
1439 
1440 	return err;
1441 }
1442 
1443 static int
ptp_ocp_verify(struct ptp_clock_info * ptp_info,unsigned pin,enum ptp_pin_function func,unsigned chan)1444 ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
1445 	       enum ptp_pin_function func, unsigned chan)
1446 {
1447 	struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
1448 	char buf[16];
1449 
1450 	switch (func) {
1451 	case PTP_PF_NONE:
1452 		snprintf(buf, sizeof(buf), "IN: None");
1453 		break;
1454 	case PTP_PF_EXTTS:
1455 		/* Allow timestamps, but require sysfs configuration. */
1456 		return 0;
1457 	case PTP_PF_PEROUT:
1458 		/* channel 0 is 1PPS from PHC.
1459 		 * channels 1..4 are the frequency generators.
1460 		 */
1461 		if (chan)
1462 			snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
1463 		else
1464 			snprintf(buf, sizeof(buf), "OUT: PHC");
1465 		break;
1466 	default:
1467 		return -EOPNOTSUPP;
1468 	}
1469 
1470 	return ptp_ocp_sma_store(bp, buf, pin + 1);
1471 }
1472 
1473 static const struct ptp_clock_info ptp_ocp_clock_info = {
1474 	.owner		= THIS_MODULE,
1475 	.name		= KBUILD_MODNAME,
1476 	.max_adj	= 100000000,
1477 	.gettimex64	= ptp_ocp_gettimex,
1478 	.settime64	= ptp_ocp_settime,
1479 	.adjtime	= ptp_ocp_adjtime,
1480 	.adjfine	= ptp_ocp_null_adjfine,
1481 	.adjphase	= ptp_ocp_null_adjphase,
1482 	.getmaxphase	= ptp_ocp_null_getmaxphase,
1483 	.enable		= ptp_ocp_enable,
1484 	.verify		= ptp_ocp_verify,
1485 	.pps		= true,
1486 	.n_ext_ts	= 6,
1487 	.n_per_out	= 5,
1488 	.supported_extts_flags = PTP_STRICT_FLAGS | PTP_RISING_EDGE,
1489 	.supported_perout_flags = PTP_PEROUT_DUTY_CYCLE | PTP_PEROUT_PHASE,
1490 };
1491 
1492 static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp * bp)1493 __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
1494 {
1495 	u32 ctrl, select;
1496 
1497 	select = ioread32(&bp->reg->select);
1498 	iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
1499 
1500 	iowrite32(0, &bp->reg->drift_ns);
1501 
1502 	ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
1503 	iowrite32(ctrl, &bp->reg->ctrl);
1504 
1505 	/* restore clock selection */
1506 	iowrite32(select >> 16, &bp->reg->select);
1507 }
1508 
1509 static void
ptp_ocp_utc_distribute(struct ptp_ocp * bp,u32 val)1510 ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
1511 {
1512 	unsigned long flags;
1513 
1514 	spin_lock_irqsave(&bp->lock, flags);
1515 
1516 	bp->utc_tai_offset = val;
1517 
1518 	if (bp->irig_out)
1519 		iowrite32(val, &bp->irig_out->adj_sec);
1520 	if (bp->dcf_out)
1521 		iowrite32(val, &bp->dcf_out->adj_sec);
1522 	if (bp->nmea_out)
1523 		iowrite32(val, &bp->nmea_out->adj_sec);
1524 
1525 	spin_unlock_irqrestore(&bp->lock, flags);
1526 }
1527 
1528 static void
ptp_ocp_watchdog(struct timer_list * t)1529 ptp_ocp_watchdog(struct timer_list *t)
1530 {
1531 	struct ptp_ocp *bp = timer_container_of(bp, t, watchdog);
1532 	unsigned long flags;
1533 	u32 status, utc_offset;
1534 
1535 	status = ioread32(&bp->pps_to_clk->status);
1536 
1537 	if (status & PPS_STATUS_SUPERV_ERR) {
1538 		iowrite32(status, &bp->pps_to_clk->status);
1539 		if (!bp->gnss_lost) {
1540 			spin_lock_irqsave(&bp->lock, flags);
1541 			__ptp_ocp_clear_drift_locked(bp);
1542 			spin_unlock_irqrestore(&bp->lock, flags);
1543 			bp->gnss_lost = ktime_get_real_seconds();
1544 		}
1545 
1546 	} else if (bp->gnss_lost) {
1547 		bp->gnss_lost = 0;
1548 	}
1549 
1550 	/* if GNSS provides correct data we can rely on
1551 	 * it to get leap second information
1552 	 */
1553 	if (bp->tod) {
1554 		status = ioread32(&bp->tod->utc_status);
1555 		utc_offset = status & TOD_STATUS_UTC_MASK;
1556 		if (status & TOD_STATUS_UTC_VALID &&
1557 		    utc_offset != bp->utc_tai_offset)
1558 			ptp_ocp_utc_distribute(bp, utc_offset);
1559 	}
1560 
1561 	mod_timer(&bp->watchdog, jiffies + HZ);
1562 }
1563 
1564 static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp * bp)1565 ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
1566 {
1567 	ktime_t start, end, delay = U64_MAX;
1568 	u32 ctrl;
1569 	int i;
1570 
1571 	for (i = 0; i < 3; i++) {
1572 		ctrl = ioread32(&bp->reg->ctrl);
1573 		ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
1574 
1575 		iowrite32(ctrl, &bp->reg->ctrl);
1576 
1577 		start = ktime_get_raw_ns();
1578 
1579 		ctrl = ioread32(&bp->reg->ctrl);
1580 
1581 		end = ktime_get_raw_ns();
1582 
1583 		delay = min(delay, end - start);
1584 	}
1585 	bp->ts_window_adjust = (delay >> 5) * 3;
1586 }
1587 
1588 static int
ptp_ocp_init_clock(struct ptp_ocp * bp,struct ptp_ocp_servo_conf * servo_conf)1589 ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
1590 {
1591 	struct timespec64 ts;
1592 	u32 ctrl;
1593 
1594 	ctrl = OCP_CTRL_ENABLE;
1595 	iowrite32(ctrl, &bp->reg->ctrl);
1596 
1597 	/* servo configuration */
1598 	iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
1599 	iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
1600 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
1601 	iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
1602 
1603 	/* latch servo values */
1604 	ctrl |= OCP_CTRL_ADJUST_SERVO;
1605 	iowrite32(ctrl, &bp->reg->ctrl);
1606 
1607 	if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
1608 		dev_err(&bp->pdev->dev, "clock not enabled\n");
1609 		return -ENODEV;
1610 	}
1611 
1612 	ptp_ocp_estimate_pci_timing(bp);
1613 
1614 	bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
1615 	if (!bp->sync) {
1616 		ktime_get_clocktai_ts64(&ts);
1617 		ptp_ocp_settime(&bp->ptp_info, &ts);
1618 	}
1619 
1620 	/* If there is a clock supervisor, then enable the watchdog */
1621 	if (bp->pps_to_clk) {
1622 		timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
1623 		mod_timer(&bp->watchdog, jiffies + HZ);
1624 	}
1625 
1626 	return 0;
1627 }
1628 
1629 static void
ptp_ocp_tod_init(struct ptp_ocp * bp)1630 ptp_ocp_tod_init(struct ptp_ocp *bp)
1631 {
1632 	u32 ctrl, reg;
1633 
1634 	ctrl = ioread32(&bp->tod->ctrl);
1635 	ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
1636 	ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
1637 	iowrite32(ctrl, &bp->tod->ctrl);
1638 
1639 	reg = ioread32(&bp->tod->utc_status);
1640 	if (reg & TOD_STATUS_UTC_VALID)
1641 		ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
1642 }
1643 
1644 static const char *
ptp_ocp_tod_proto_name(const int idx)1645 ptp_ocp_tod_proto_name(const int idx)
1646 {
1647 	static const char * const proto_name[] = {
1648 		"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
1649 		"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
1650 	};
1651 	return proto_name[idx];
1652 }
1653 
1654 static const char *
ptp_ocp_tod_gnss_name(int idx)1655 ptp_ocp_tod_gnss_name(int idx)
1656 {
1657 	static const char * const gnss_name[] = {
1658 		"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
1659 		"Unknown"
1660 	};
1661 	if (idx >= ARRAY_SIZE(gnss_name))
1662 		idx = ARRAY_SIZE(gnss_name) - 1;
1663 	return gnss_name[idx];
1664 }
1665 
1666 static const char *
ptp_ocp_tty_port_name(int idx)1667 ptp_ocp_tty_port_name(int idx)
1668 {
1669 	static const char * const tty_name[] = {
1670 		"GNSS", "GNSS2", "MAC", "NMEA"
1671 	};
1672 	return tty_name[idx];
1673 }
1674 
1675 struct ptp_ocp_nvmem_match_info {
1676 	struct ptp_ocp *bp;
1677 	const void * const tag;
1678 };
1679 
1680 static int
ptp_ocp_nvmem_match(struct device * dev,const void * data)1681 ptp_ocp_nvmem_match(struct device *dev, const void *data)
1682 {
1683 	const struct ptp_ocp_nvmem_match_info *info = data;
1684 
1685 	dev = dev->parent;
1686 	if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
1687 		return 0;
1688 
1689 	while ((dev = dev->parent))
1690 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
1691 			return info->bp == dev_get_drvdata(dev);
1692 	return 0;
1693 }
1694 
1695 static inline struct nvmem_device *
ptp_ocp_nvmem_device_get(struct ptp_ocp * bp,const void * const tag)1696 ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
1697 {
1698 	struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
1699 
1700 	return nvmem_device_find(&info, ptp_ocp_nvmem_match);
1701 }
1702 
1703 static inline void
ptp_ocp_nvmem_device_put(struct nvmem_device ** nvmemp)1704 ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
1705 {
1706 	if (!IS_ERR_OR_NULL(*nvmemp))
1707 		nvmem_device_put(*nvmemp);
1708 	*nvmemp = NULL;
1709 }
1710 
1711 static void
ptp_ocp_read_eeprom(struct ptp_ocp * bp)1712 ptp_ocp_read_eeprom(struct ptp_ocp *bp)
1713 {
1714 	const struct ptp_ocp_eeprom_map *map;
1715 	struct nvmem_device *nvmem;
1716 	const void *tag;
1717 	int ret;
1718 
1719 	if (!bp->i2c_ctrl)
1720 		return;
1721 
1722 	tag = NULL;
1723 	nvmem = NULL;
1724 
1725 	for (map = bp->eeprom_map; map->len; map++) {
1726 		if (map->tag != tag) {
1727 			tag = map->tag;
1728 			ptp_ocp_nvmem_device_put(&nvmem);
1729 		}
1730 		if (!nvmem) {
1731 			nvmem = ptp_ocp_nvmem_device_get(bp, tag);
1732 			if (IS_ERR(nvmem)) {
1733 				ret = PTR_ERR(nvmem);
1734 				goto fail;
1735 			}
1736 		}
1737 		ret = nvmem_device_read(nvmem, map->off, map->len,
1738 					BP_MAP_ENTRY_ADDR(bp, map));
1739 		if (ret != map->len)
1740 			goto fail;
1741 	}
1742 
1743 	bp->has_eeprom_data = true;
1744 
1745 out:
1746 	ptp_ocp_nvmem_device_put(&nvmem);
1747 	return;
1748 
1749 fail:
1750 	dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
1751 	goto out;
1752 }
1753 
1754 static struct device *
ptp_ocp_find_flash(struct ptp_ocp * bp)1755 ptp_ocp_find_flash(struct ptp_ocp *bp)
1756 {
1757 	struct device *dev, *last;
1758 
1759 	last = NULL;
1760 	dev = &bp->spi_flash->dev;
1761 
1762 	while ((dev = device_find_any_child(dev))) {
1763 		if (!strcmp("mtd", dev_bus_name(dev)))
1764 			break;
1765 		put_device(last);
1766 		last = dev;
1767 	}
1768 	put_device(last);
1769 
1770 	return dev;
1771 }
1772 
1773 static int
ptp_ocp_devlink_fw_image(struct devlink * devlink,const struct firmware * fw,const u8 ** data,size_t * size)1774 ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
1775 			 const u8 **data, size_t *size)
1776 {
1777 	struct ptp_ocp *bp = devlink_priv(devlink);
1778 	const struct ptp_ocp_firmware_header *hdr;
1779 	size_t offset, length;
1780 	u16 crc;
1781 
1782 	hdr = (const struct ptp_ocp_firmware_header *)fw->data;
1783 	if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
1784 		devlink_flash_update_status_notify(devlink,
1785 			"No firmware header found, cancel firmware upgrade",
1786 			NULL, 0, 0);
1787 		return -EINVAL;
1788 	}
1789 
1790 	if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
1791 	    be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
1792 		devlink_flash_update_status_notify(devlink,
1793 			"Firmware image compatibility check failed",
1794 			NULL, 0, 0);
1795 		return -EINVAL;
1796 	}
1797 
1798 	offset = sizeof(*hdr);
1799 	length = be32_to_cpu(hdr->image_size);
1800 	if (length != (fw->size - offset)) {
1801 		devlink_flash_update_status_notify(devlink,
1802 			"Firmware image size check failed",
1803 			NULL, 0, 0);
1804 		return -EINVAL;
1805 	}
1806 
1807 	crc = crc16(0xffff, &fw->data[offset], length);
1808 	if (be16_to_cpu(hdr->crc) != crc) {
1809 		devlink_flash_update_status_notify(devlink,
1810 			"Firmware image CRC check failed",
1811 			NULL, 0, 0);
1812 		return -EINVAL;
1813 	}
1814 
1815 	*data = &fw->data[offset];
1816 	*size = length;
1817 
1818 	return 0;
1819 }
1820 
1821 static int
ptp_ocp_devlink_flash(struct devlink * devlink,struct device * dev,const struct firmware * fw)1822 ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
1823 		      const struct firmware *fw)
1824 {
1825 	struct mtd_info *mtd = dev_get_drvdata(dev);
1826 	struct ptp_ocp *bp = devlink_priv(devlink);
1827 	size_t off, len, size, resid, wrote;
1828 	struct erase_info erase;
1829 	size_t base, blksz;
1830 	const u8 *data;
1831 	int err;
1832 
1833 	err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
1834 	if (err)
1835 		goto out;
1836 
1837 	off = 0;
1838 	base = bp->flash_start;
1839 	blksz = 4096;
1840 	resid = size;
1841 
1842 	while (resid) {
1843 		devlink_flash_update_status_notify(devlink, "Flashing",
1844 						   NULL, off, size);
1845 
1846 		len = min_t(size_t, resid, blksz);
1847 		erase.addr = base + off;
1848 		erase.len = blksz;
1849 
1850 		err = mtd_erase(mtd, &erase);
1851 		if (err)
1852 			goto out;
1853 
1854 		err = mtd_write(mtd, base + off, len, &wrote, data + off);
1855 		if (err)
1856 			goto out;
1857 
1858 		off += blksz;
1859 		resid -= len;
1860 	}
1861 out:
1862 	return err;
1863 }
1864 
1865 static int
ptp_ocp_devlink_flash_update(struct devlink * devlink,struct devlink_flash_update_params * params,struct netlink_ext_ack * extack)1866 ptp_ocp_devlink_flash_update(struct devlink *devlink,
1867 			     struct devlink_flash_update_params *params,
1868 			     struct netlink_ext_ack *extack)
1869 {
1870 	struct ptp_ocp *bp = devlink_priv(devlink);
1871 	struct device *dev;
1872 	const char *msg;
1873 	int err;
1874 
1875 	dev = ptp_ocp_find_flash(bp);
1876 	if (!dev) {
1877 		dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
1878 		return -ENODEV;
1879 	}
1880 
1881 	devlink_flash_update_status_notify(devlink, "Preparing to flash",
1882 					   NULL, 0, 0);
1883 
1884 	err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
1885 
1886 	msg = err ? "Flash error" : "Flash complete";
1887 	devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
1888 
1889 	put_device(dev);
1890 	return err;
1891 }
1892 
1893 static int
ptp_ocp_devlink_info_get(struct devlink * devlink,struct devlink_info_req * req,struct netlink_ext_ack * extack)1894 ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
1895 			 struct netlink_ext_ack *extack)
1896 {
1897 	struct ptp_ocp *bp = devlink_priv(devlink);
1898 	const char *fw_image;
1899 	char buf[32];
1900 	int err;
1901 
1902 	fw_image = bp->fw_loader ? "loader" : "fw";
1903 	sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
1904 	err = devlink_info_version_running_put(req, fw_image, buf);
1905 	if (err)
1906 		return err;
1907 
1908 	if (!bp->has_eeprom_data) {
1909 		ptp_ocp_read_eeprom(bp);
1910 		if (!bp->has_eeprom_data)
1911 			return 0;
1912 	}
1913 
1914 	sprintf(buf, "%pM", bp->serial);
1915 	err = devlink_info_serial_number_put(req, buf);
1916 	if (err)
1917 		return err;
1918 
1919 	err = devlink_info_version_fixed_put(req,
1920 			DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
1921 			bp->board_id);
1922 	if (err)
1923 		return err;
1924 
1925 	return 0;
1926 }
1927 
1928 static const struct devlink_ops ptp_ocp_devlink_ops = {
1929 	.flash_update = ptp_ocp_devlink_flash_update,
1930 	.info_get = ptp_ocp_devlink_info_get,
1931 };
1932 
1933 static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp * bp,resource_size_t start,int size)1934 __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
1935 {
1936 	struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
1937 
1938 	return devm_ioremap_resource(&bp->pdev->dev, &res);
1939 }
1940 
1941 static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp * bp,struct ocp_resource * r)1942 ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
1943 {
1944 	resource_size_t start;
1945 
1946 	start = pci_resource_start(bp->pdev, 0) + r->offset;
1947 	return __ptp_ocp_get_mem(bp, start, r->size);
1948 }
1949 
1950 static int
ptp_ocp_register_spi(struct ptp_ocp * bp,struct ocp_resource * r)1951 ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
1952 {
1953 	struct ptp_ocp_flash_info *info;
1954 	struct pci_dev *pdev = bp->pdev;
1955 	struct platform_device *p;
1956 	struct resource res[2];
1957 	resource_size_t start;
1958 	int id;
1959 
1960 	start = pci_resource_start(pdev, 0) + r->offset;
1961 	res[0] = DEFINE_RES_MEM(start, r->size);
1962 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1963 
1964 	info = r->extra;
1965 	id = pci_dev_id(pdev) << 1;
1966 	id += info->pci_offset;
1967 
1968 	p = platform_device_register_resndata(&pdev->dev, info->name, id,
1969 					      res, ARRAY_SIZE(res), info->data,
1970 					      info->data_size);
1971 	if (IS_ERR(p))
1972 		return PTR_ERR(p);
1973 
1974 	bp_assign_entry(bp, r, p);
1975 
1976 	return 0;
1977 }
1978 
1979 static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev * pdev,struct ocp_resource * r,int id)1980 ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
1981 {
1982 	struct ptp_ocp_i2c_info *info;
1983 	struct resource res[2];
1984 	resource_size_t start;
1985 
1986 	info = r->extra;
1987 	start = pci_resource_start(pdev, 0) + r->offset;
1988 	res[0] = DEFINE_RES_MEM(start, r->size);
1989 	res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
1990 
1991 	return platform_device_register_resndata(&pdev->dev, info->name,
1992 						 id, res, ARRAY_SIZE(res),
1993 						 info->data, info->data_size);
1994 }
1995 
1996 static int
ptp_ocp_register_i2c(struct ptp_ocp * bp,struct ocp_resource * r)1997 ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
1998 {
1999 	struct pci_dev *pdev = bp->pdev;
2000 	struct ptp_ocp_i2c_info *info;
2001 	struct platform_device *p;
2002 	struct clk_hw *clk;
2003 	char buf[32];
2004 	int id;
2005 
2006 	info = r->extra;
2007 	id = pci_dev_id(bp->pdev);
2008 
2009 	sprintf(buf, "AXI.%d", id);
2010 	clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
2011 					 info->fixed_rate);
2012 	if (IS_ERR(clk))
2013 		return PTR_ERR(clk);
2014 	bp->i2c_clk = clk;
2015 
2016 	sprintf(buf, "%s.%d", info->name, id);
2017 	devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
2018 	p = ptp_ocp_i2c_bus(bp->pdev, r, id);
2019 	if (IS_ERR(p))
2020 		return PTR_ERR(p);
2021 
2022 	bp_assign_entry(bp, r, p);
2023 
2024 	return 0;
2025 }
2026 
2027 /* The expectation is that this is triggered only on error. */
2028 static irqreturn_t
ptp_ocp_signal_irq(int irq,void * priv)2029 ptp_ocp_signal_irq(int irq, void *priv)
2030 {
2031 	struct ptp_ocp_ext_src *ext = priv;
2032 	struct signal_reg __iomem *reg = ext->mem;
2033 	struct ptp_ocp *bp = ext->bp;
2034 	u32 enable, status;
2035 	int gen;
2036 
2037 	gen = ext->info->index - 1;
2038 
2039 	enable = ioread32(&reg->enable);
2040 	status = ioread32(&reg->status);
2041 
2042 	/* disable generator on error */
2043 	if (status || !enable) {
2044 		iowrite32(0, &reg->intr_mask);
2045 		iowrite32(0, &reg->enable);
2046 		bp->signal[gen].running = false;
2047 	}
2048 
2049 	iowrite32(0, &reg->intr);	/* ack interrupt */
2050 
2051 	return IRQ_HANDLED;
2052 }
2053 
2054 static int
ptp_ocp_signal_set(struct ptp_ocp * bp,int gen,struct ptp_ocp_signal * s)2055 ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
2056 {
2057 	struct ptp_system_timestamp sts;
2058 	struct timespec64 ts;
2059 	ktime_t start_ns;
2060 	int err;
2061 
2062 	if (!s->period)
2063 		return 0;
2064 
2065 	if (!s->pulse)
2066 		s->pulse = ktime_divns(s->period * s->duty, 100);
2067 
2068 	err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
2069 	if (err)
2070 		return err;
2071 
2072 	start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
2073 	if (!s->start) {
2074 		/* roundup() does not work on 32-bit systems */
2075 		s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
2076 		s->start *= s->period;
2077 		s->start = ktime_add(s->start, s->phase);
2078 	}
2079 
2080 	if (s->duty < 1 || s->duty > 99)
2081 		return -EINVAL;
2082 
2083 	if (s->pulse < 1 || s->pulse > s->period)
2084 		return -EINVAL;
2085 
2086 	if (s->start < start_ns)
2087 		return -EINVAL;
2088 
2089 	bp->signal[gen] = *s;
2090 
2091 	return 0;
2092 }
2093 
2094 static int
ptp_ocp_signal_from_perout(struct ptp_ocp * bp,int gen,struct ptp_perout_request * req)2095 ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
2096 			   struct ptp_perout_request *req)
2097 {
2098 	struct ptp_ocp_signal s = { };
2099 
2100 	s.polarity = bp->signal[gen].polarity;
2101 	s.period = ktime_set(req->period.sec, req->period.nsec);
2102 	if (!s.period)
2103 		return 0;
2104 
2105 	if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
2106 		s.pulse = ktime_set(req->on.sec, req->on.nsec);
2107 		s.duty = ktime_divns(s.pulse * 100, s.period);
2108 	}
2109 
2110 	if (req->flags & PTP_PEROUT_PHASE)
2111 		s.phase = ktime_set(req->phase.sec, req->phase.nsec);
2112 	else
2113 		s.start = ktime_set(req->start.sec, req->start.nsec);
2114 
2115 	return ptp_ocp_signal_set(bp, gen, &s);
2116 }
2117 
2118 static int
ptp_ocp_signal_enable(void * priv,u32 req,bool enable)2119 ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
2120 {
2121 	struct ptp_ocp_ext_src *ext = priv;
2122 	struct signal_reg __iomem *reg = ext->mem;
2123 	struct ptp_ocp *bp = ext->bp;
2124 	struct timespec64 ts;
2125 	int gen;
2126 
2127 	gen = ext->info->index - 1;
2128 
2129 	iowrite32(0, &reg->intr_mask);
2130 	iowrite32(0, &reg->enable);
2131 	bp->signal[gen].running = false;
2132 	if (!enable)
2133 		return 0;
2134 
2135 	ts = ktime_to_timespec64(bp->signal[gen].start);
2136 	iowrite32(ts.tv_sec, &reg->start_sec);
2137 	iowrite32(ts.tv_nsec, &reg->start_ns);
2138 
2139 	ts = ktime_to_timespec64(bp->signal[gen].period);
2140 	iowrite32(ts.tv_sec, &reg->period_sec);
2141 	iowrite32(ts.tv_nsec, &reg->period_ns);
2142 
2143 	ts = ktime_to_timespec64(bp->signal[gen].pulse);
2144 	iowrite32(ts.tv_sec, &reg->pulse_sec);
2145 	iowrite32(ts.tv_nsec, &reg->pulse_ns);
2146 
2147 	iowrite32(bp->signal[gen].polarity, &reg->polarity);
2148 	iowrite32(0, &reg->repeat_count);
2149 
2150 	iowrite32(0, &reg->intr);		/* clear interrupt state */
2151 	iowrite32(1, &reg->intr_mask);		/* enable interrupt */
2152 	iowrite32(3, &reg->enable);		/* valid & enable */
2153 
2154 	bp->signal[gen].running = true;
2155 
2156 	return 0;
2157 }
2158 
2159 static irqreturn_t
ptp_ocp_ts_irq(int irq,void * priv)2160 ptp_ocp_ts_irq(int irq, void *priv)
2161 {
2162 	struct ptp_ocp_ext_src *ext = priv;
2163 	struct ts_reg __iomem *reg = ext->mem;
2164 	struct ptp_clock_event ev;
2165 	u32 sec, nsec;
2166 
2167 	if (ext == ext->bp->pps) {
2168 		if (ext->bp->pps_req_map & OCP_REQ_PPS) {
2169 			ev.type = PTP_CLOCK_PPS;
2170 			ptp_clock_event(ext->bp->ptp, &ev);
2171 		}
2172 
2173 		if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
2174 			goto out;
2175 	}
2176 
2177 	/* XXX should fix API - this converts s/ns -> ts -> s/ns */
2178 	sec = ioread32(&reg->time_sec);
2179 	nsec = ioread32(&reg->time_ns);
2180 
2181 	ev.type = PTP_CLOCK_EXTTS;
2182 	ev.index = ext->info->index;
2183 	ev.timestamp = sec * NSEC_PER_SEC + nsec;
2184 
2185 	ptp_clock_event(ext->bp->ptp, &ev);
2186 
2187 out:
2188 	iowrite32(1, &reg->intr);	/* write 1 to ack */
2189 
2190 	return IRQ_HANDLED;
2191 }
2192 
2193 static int
ptp_ocp_ts_enable(void * priv,u32 req,bool enable)2194 ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
2195 {
2196 	struct ptp_ocp_ext_src *ext = priv;
2197 	struct ts_reg __iomem *reg = ext->mem;
2198 	struct ptp_ocp *bp = ext->bp;
2199 
2200 	if (ext == bp->pps) {
2201 		u32 old_map = bp->pps_req_map;
2202 
2203 		if (enable)
2204 			bp->pps_req_map |= req;
2205 		else
2206 			bp->pps_req_map &= ~req;
2207 
2208 		/* if no state change, just return */
2209 		if ((!!old_map ^ !!bp->pps_req_map) == 0)
2210 			return 0;
2211 	}
2212 
2213 	if (enable) {
2214 		iowrite32(1, &reg->enable);
2215 		iowrite32(1, &reg->intr_mask);
2216 		iowrite32(1, &reg->intr);
2217 	} else {
2218 		iowrite32(0, &reg->intr_mask);
2219 		iowrite32(0, &reg->enable);
2220 	}
2221 
2222 	return 0;
2223 }
2224 
2225 static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src * ext)2226 ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
2227 {
2228 	ext->info->enable(ext, ~0, false);
2229 	pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
2230 	kfree(ext);
2231 }
2232 
2233 static int
ptp_ocp_register_ext(struct ptp_ocp * bp,struct ocp_resource * r)2234 ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
2235 {
2236 	struct pci_dev *pdev = bp->pdev;
2237 	struct ptp_ocp_ext_src *ext;
2238 	int err;
2239 
2240 	ext = kzalloc(sizeof(*ext), GFP_KERNEL);
2241 	if (!ext)
2242 		return -ENOMEM;
2243 
2244 	ext->mem = ptp_ocp_get_mem(bp, r);
2245 	if (IS_ERR(ext->mem)) {
2246 		err = PTR_ERR(ext->mem);
2247 		goto out;
2248 	}
2249 
2250 	ext->bp = bp;
2251 	ext->info = r->extra;
2252 	ext->irq_vec = r->irq_vec;
2253 
2254 	err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
2255 			      ext, "ocp%d.%s", bp->id, r->name);
2256 	if (err) {
2257 		dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
2258 		goto out;
2259 	}
2260 
2261 	bp_assign_entry(bp, r, ext);
2262 
2263 	return 0;
2264 
2265 out:
2266 	kfree(ext);
2267 	return err;
2268 }
2269 
2270 static int
ptp_ocp_serial_line(struct ptp_ocp * bp,struct ocp_resource * r)2271 ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
2272 {
2273 	struct pci_dev *pdev = bp->pdev;
2274 	struct uart_8250_port uart;
2275 
2276 	/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
2277 	 * the serial port device claim and release the pci resource.
2278 	 */
2279 	memset(&uart, 0, sizeof(uart));
2280 	uart.port.dev = &pdev->dev;
2281 	uart.port.iotype = UPIO_MEM;
2282 	uart.port.regshift = 2;
2283 	uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
2284 	uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
2285 	uart.port.uartclk = 50000000;
2286 	uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
2287 	uart.port.type = PORT_16550A;
2288 
2289 	return serial8250_register_8250_port(&uart);
2290 }
2291 
2292 static int
ptp_ocp_register_serial(struct ptp_ocp * bp,struct ocp_resource * r)2293 ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
2294 {
2295 	struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
2296 	struct ptp_ocp_serial_port port = {};
2297 
2298 	port.line = ptp_ocp_serial_line(bp, r);
2299 	if (port.line < 0)
2300 		return port.line;
2301 
2302 	if (p)
2303 		port.baud = p->baud;
2304 
2305 	bp_assign_entry(bp, r, port);
2306 
2307 	return 0;
2308 }
2309 
2310 static int
ptp_ocp_register_mem(struct ptp_ocp * bp,struct ocp_resource * r)2311 ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
2312 {
2313 	void __iomem *mem;
2314 
2315 	mem = ptp_ocp_get_mem(bp, r);
2316 	if (IS_ERR(mem))
2317 		return PTR_ERR(mem);
2318 
2319 	bp_assign_entry(bp, r, mem);
2320 
2321 	return 0;
2322 }
2323 
2324 static void
ptp_ocp_nmea_out_init(struct ptp_ocp * bp)2325 ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
2326 {
2327 	if (!bp->nmea_out)
2328 		return;
2329 
2330 	iowrite32(0, &bp->nmea_out->ctrl);		/* disable */
2331 	iowrite32(7, &bp->nmea_out->uart_baud);		/* 115200 */
2332 	iowrite32(1, &bp->nmea_out->ctrl);		/* enable */
2333 }
2334 
2335 static void
_ptp_ocp_signal_init(struct ptp_ocp_signal * s,struct signal_reg __iomem * reg)2336 _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
2337 {
2338 	u32 val;
2339 
2340 	iowrite32(0, &reg->enable);		/* disable */
2341 
2342 	val = ioread32(&reg->polarity);
2343 	s->polarity = val ? true : false;
2344 	s->duty = 50;
2345 }
2346 
2347 static void
ptp_ocp_signal_init(struct ptp_ocp * bp)2348 ptp_ocp_signal_init(struct ptp_ocp *bp)
2349 {
2350 	int i;
2351 
2352 	for (i = 0; i < 4; i++)
2353 		if (bp->signal_out[i])
2354 			_ptp_ocp_signal_init(&bp->signal[i],
2355 					     bp->signal_out[i]->mem);
2356 }
2357 
2358 static void
ptp_ocp_attr_group_del(struct ptp_ocp * bp)2359 ptp_ocp_attr_group_del(struct ptp_ocp *bp)
2360 {
2361 	sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
2362 	kfree(bp->attr_group);
2363 }
2364 
2365 static int
ptp_ocp_attr_group_add(struct ptp_ocp * bp,const struct ocp_attr_group * attr_tbl)2366 ptp_ocp_attr_group_add(struct ptp_ocp *bp,
2367 		       const struct ocp_attr_group *attr_tbl)
2368 {
2369 	int count, i;
2370 	int err;
2371 
2372 	count = 0;
2373 	for (i = 0; attr_tbl[i].cap; i++)
2374 		if (attr_tbl[i].cap & bp->fw_cap)
2375 			count++;
2376 
2377 	bp->attr_group = kcalloc(count + 1, sizeof(*bp->attr_group),
2378 				 GFP_KERNEL);
2379 	if (!bp->attr_group)
2380 		return -ENOMEM;
2381 
2382 	count = 0;
2383 	for (i = 0; attr_tbl[i].cap; i++)
2384 		if (attr_tbl[i].cap & bp->fw_cap)
2385 			bp->attr_group[count++] = attr_tbl[i].group;
2386 
2387 	err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
2388 	if (err)
2389 		bp->attr_group[0] = NULL;
2390 
2391 	return err;
2392 }
2393 
2394 static void
ptp_ocp_enable_fpga(u32 __iomem * reg,u32 bit,bool enable)2395 ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
2396 {
2397 	u32 ctrl;
2398 	bool on;
2399 
2400 	ctrl = ioread32(reg);
2401 	on = ctrl & bit;
2402 	if (on ^ enable) {
2403 		ctrl &= ~bit;
2404 		ctrl |= enable ? bit : 0;
2405 		iowrite32(ctrl, reg);
2406 	}
2407 }
2408 
2409 static void
ptp_ocp_irig_out(struct ptp_ocp * bp,bool enable)2410 ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
2411 {
2412 	return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
2413 				   IRIG_M_CTRL_ENABLE, enable);
2414 }
2415 
2416 static void
ptp_ocp_irig_in(struct ptp_ocp * bp,bool enable)2417 ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
2418 {
2419 	return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
2420 				   IRIG_S_CTRL_ENABLE, enable);
2421 }
2422 
2423 static void
ptp_ocp_dcf_out(struct ptp_ocp * bp,bool enable)2424 ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
2425 {
2426 	return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
2427 				   DCF_M_CTRL_ENABLE, enable);
2428 }
2429 
2430 static void
ptp_ocp_dcf_in(struct ptp_ocp * bp,bool enable)2431 ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
2432 {
2433 	return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
2434 				   DCF_S_CTRL_ENABLE, enable);
2435 }
2436 
2437 static void
__handle_signal_outputs(struct ptp_ocp * bp,u32 val)2438 __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
2439 {
2440 	ptp_ocp_irig_out(bp, val & 0x00100010);
2441 	ptp_ocp_dcf_out(bp, val & 0x00200020);
2442 }
2443 
2444 static void
__handle_signal_inputs(struct ptp_ocp * bp,u32 val)2445 __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
2446 {
2447 	ptp_ocp_irig_in(bp, val & 0x00100010);
2448 	ptp_ocp_dcf_in(bp, val & 0x00200020);
2449 }
2450 
2451 static u32
ptp_ocp_sma_fb_get(struct ptp_ocp * bp,int sma_nr)2452 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
2453 {
2454 	u32 __iomem *gpio;
2455 	u32 shift;
2456 
2457 	if (bp->sma[sma_nr - 1].fixed_fcn)
2458 		return (sma_nr - 1) & 1;
2459 
2460 	if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
2461 		gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2462 	else
2463 		gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2464 	shift = sma_nr & 1 ? 0 : 16;
2465 
2466 	return (ioread32(gpio) >> shift) & 0xffff;
2467 }
2468 
2469 static int
ptp_ocp_sma_fb_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2470 ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2471 {
2472 	u32 reg, mask, shift;
2473 	unsigned long flags;
2474 	u32 __iomem *gpio;
2475 
2476 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2477 	shift = sma_nr & 1 ? 0 : 16;
2478 
2479 	mask = 0xffff << (16 - shift);
2480 
2481 	spin_lock_irqsave(&bp->lock, flags);
2482 
2483 	reg = ioread32(gpio);
2484 	reg = (reg & mask) | (val << shift);
2485 
2486 	__handle_signal_outputs(bp, reg);
2487 
2488 	iowrite32(reg, gpio);
2489 
2490 	spin_unlock_irqrestore(&bp->lock, flags);
2491 
2492 	return 0;
2493 }
2494 
2495 static int
ptp_ocp_sma_fb_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2496 ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2497 {
2498 	u32 reg, mask, shift;
2499 	unsigned long flags;
2500 	u32 __iomem *gpio;
2501 
2502 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2503 	shift = sma_nr & 1 ? 0 : 16;
2504 
2505 	mask = 0xffff << (16 - shift);
2506 
2507 	spin_lock_irqsave(&bp->lock, flags);
2508 
2509 	reg = ioread32(gpio);
2510 	reg = (reg & mask) | (val << shift);
2511 
2512 	__handle_signal_inputs(bp, reg);
2513 
2514 	iowrite32(reg, gpio);
2515 
2516 	spin_unlock_irqrestore(&bp->lock, flags);
2517 
2518 	return 0;
2519 }
2520 
2521 static void
ptp_ocp_sma_fb_init(struct ptp_ocp * bp)2522 ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
2523 {
2524 	struct dpll_pin_properties prop = {
2525 		.board_label = NULL,
2526 		.type = DPLL_PIN_TYPE_EXT,
2527 		.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
2528 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2529 		.freq_supported = ptp_ocp_sma_freq,
2530 
2531 	};
2532 	u32 reg;
2533 	int i;
2534 
2535 	/* defaults */
2536 	for (i = 0; i < OCP_SMA_NUM; i++) {
2537 		bp->sma[i].default_fcn = i & 1;
2538 		bp->sma[i].dpll_prop = prop;
2539 		bp->sma[i].dpll_prop.board_label =
2540 			bp->ptp_info.pin_config[i].name;
2541 	}
2542 	bp->sma[0].mode = SMA_MODE_IN;
2543 	bp->sma[1].mode = SMA_MODE_IN;
2544 	bp->sma[2].mode = SMA_MODE_OUT;
2545 	bp->sma[3].mode = SMA_MODE_OUT;
2546 	/* If no SMA1 map, the pin functions and directions are fixed. */
2547 	if (!bp->sma_map1) {
2548 		for (i = 0; i < OCP_SMA_NUM; i++) {
2549 			bp->sma[i].fixed_fcn = true;
2550 			bp->sma[i].fixed_dir = true;
2551 			bp->sma[1].dpll_prop.capabilities &=
2552 				~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2553 		}
2554 		return;
2555 	}
2556 
2557 	/* If SMA2 GPIO output map is all 1, it is not present.
2558 	 * This indicates the firmware has fixed direction SMA pins.
2559 	 */
2560 	reg = ioread32(&bp->sma_map2->gpio2);
2561 	if (reg == 0xffffffff) {
2562 		for (i = 0; i < OCP_SMA_NUM; i++)
2563 			bp->sma[i].fixed_dir = true;
2564 	} else {
2565 		reg = ioread32(&bp->sma_map1->gpio1);
2566 		bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
2567 		bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
2568 
2569 		reg = ioread32(&bp->sma_map1->gpio2);
2570 		bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
2571 		bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
2572 	}
2573 }
2574 
2575 static const struct ocp_sma_op ocp_fb_sma_op = {
2576 	.tbl		= { ptp_ocp_sma_in, ptp_ocp_sma_out },
2577 	.init		= ptp_ocp_sma_fb_init,
2578 	.get		= ptp_ocp_sma_fb_get,
2579 	.set_inputs	= ptp_ocp_sma_fb_set_inputs,
2580 	.set_output	= ptp_ocp_sma_fb_set_output,
2581 };
2582 
2583 static int
ptp_ocp_sma_adva_set_output(struct ptp_ocp * bp,int sma_nr,u32 val)2584 ptp_ocp_sma_adva_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
2585 {
2586 	u32 reg, mask, shift;
2587 	unsigned long flags;
2588 	u32 __iomem *gpio;
2589 
2590 	gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
2591 	shift = sma_nr & 1 ? 0 : 16;
2592 
2593 	mask = 0xffff << (16 - shift);
2594 
2595 	spin_lock_irqsave(&bp->lock, flags);
2596 
2597 	reg = ioread32(gpio);
2598 	reg = (reg & mask) | (val << shift);
2599 
2600 	iowrite32(reg, gpio);
2601 
2602 	spin_unlock_irqrestore(&bp->lock, flags);
2603 
2604 	return 0;
2605 }
2606 
2607 static int
ptp_ocp_sma_adva_set_inputs(struct ptp_ocp * bp,int sma_nr,u32 val)2608 ptp_ocp_sma_adva_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
2609 {
2610 	u32 reg, mask, shift;
2611 	unsigned long flags;
2612 	u32 __iomem *gpio;
2613 
2614 	gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
2615 	shift = sma_nr & 1 ? 0 : 16;
2616 
2617 	mask = 0xffff << (16 - shift);
2618 
2619 	spin_lock_irqsave(&bp->lock, flags);
2620 
2621 	reg = ioread32(gpio);
2622 	reg = (reg & mask) | (val << shift);
2623 
2624 	iowrite32(reg, gpio);
2625 
2626 	spin_unlock_irqrestore(&bp->lock, flags);
2627 
2628 	return 0;
2629 }
2630 
2631 static const struct ocp_sma_op ocp_adva_sma_op = {
2632 	.tbl		= { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
2633 	.init		= ptp_ocp_sma_fb_init,
2634 	.get		= ptp_ocp_sma_fb_get,
2635 	.set_inputs	= ptp_ocp_sma_adva_set_inputs,
2636 	.set_output	= ptp_ocp_sma_adva_set_output,
2637 };
2638 
2639 static int
ptp_ocp_set_pins(struct ptp_ocp * bp)2640 ptp_ocp_set_pins(struct ptp_ocp *bp)
2641 {
2642 	struct ptp_pin_desc *config;
2643 	int i;
2644 
2645 	config = kcalloc(4, sizeof(*config), GFP_KERNEL);
2646 	if (!config)
2647 		return -ENOMEM;
2648 
2649 	for (i = 0; i < 4; i++) {
2650 		sprintf(config[i].name, "sma%d", i + 1);
2651 		config[i].index = i;
2652 	}
2653 
2654 	bp->ptp_info.n_pins = 4;
2655 	bp->ptp_info.pin_config = config;
2656 
2657 	return 0;
2658 }
2659 
2660 static void
ptp_ocp_fb_set_version(struct ptp_ocp * bp)2661 ptp_ocp_fb_set_version(struct ptp_ocp *bp)
2662 {
2663 	u64 cap = OCP_CAP_BASIC;
2664 	u32 version;
2665 
2666 	version = ioread32(&bp->image->version);
2667 
2668 	/* if lower 16 bits are empty, this is the fw loader. */
2669 	if ((version & 0xffff) == 0) {
2670 		version = version >> 16;
2671 		bp->fw_loader = true;
2672 	}
2673 
2674 	bp->fw_tag = version >> 15;
2675 	bp->fw_version = version & 0x7fff;
2676 
2677 	if (bp->fw_tag) {
2678 		/* FPGA firmware */
2679 		if (version >= 5)
2680 			cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2681 	} else {
2682 		/* SOM firmware */
2683 		if (version >= 19)
2684 			cap |= OCP_CAP_SIGNAL;
2685 		if (version >= 20)
2686 			cap |= OCP_CAP_FREQ;
2687 	}
2688 
2689 	bp->fw_cap = cap;
2690 }
2691 
2692 /* FB specific board initializers; last "resource" registered. */
2693 static int
ptp_ocp_fb_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2694 ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2695 {
2696 	int err;
2697 
2698 	bp->flash_start = 1024 * 4096;
2699 	bp->eeprom_map = fb_eeprom_map;
2700 	bp->fw_version = ioread32(&bp->image->version);
2701 	bp->sma_op = &ocp_fb_sma_op;
2702 	bp->signals_nr = 4;
2703 	bp->freq_in_nr = 4;
2704 
2705 	ptp_ocp_fb_set_version(bp);
2706 
2707 	ptp_ocp_tod_init(bp);
2708 	ptp_ocp_nmea_out_init(bp);
2709 	ptp_ocp_signal_init(bp);
2710 
2711 	err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
2712 	if (err)
2713 		return err;
2714 
2715 	err = ptp_ocp_set_pins(bp);
2716 	if (err)
2717 		return err;
2718 	ptp_ocp_sma_init(bp);
2719 
2720 	return ptp_ocp_init_clock(bp, r->extra);
2721 }
2722 
2723 static bool
ptp_ocp_allow_irq(struct ptp_ocp * bp,struct ocp_resource * r)2724 ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
2725 {
2726 	bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
2727 
2728 	if (!allow)
2729 		dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
2730 			r->irq_vec, r->name);
2731 	return allow;
2732 }
2733 
2734 static int
ptp_ocp_register_resources(struct ptp_ocp * bp,kernel_ulong_t driver_data)2735 ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
2736 {
2737 	struct ocp_resource *r, *table;
2738 	int err = 0;
2739 
2740 	table = (struct ocp_resource *)driver_data;
2741 	for (r = table; r->setup; r++) {
2742 		if (!ptp_ocp_allow_irq(bp, r))
2743 			continue;
2744 		err = r->setup(bp, r);
2745 		if (err) {
2746 			dev_err(&bp->pdev->dev,
2747 				"Could not register %s: err %d\n",
2748 				r->name, err);
2749 			break;
2750 		}
2751 	}
2752 	return err;
2753 }
2754 
2755 static void
ptp_ocp_art_sma_init(struct ptp_ocp * bp)2756 ptp_ocp_art_sma_init(struct ptp_ocp *bp)
2757 {
2758 	struct dpll_pin_properties prop = {
2759 		.board_label = NULL,
2760 		.type = DPLL_PIN_TYPE_EXT,
2761 		.capabilities = 0,
2762 		.freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
2763 		.freq_supported = ptp_ocp_sma_freq,
2764 
2765 	};
2766 	u32 reg;
2767 	int i;
2768 
2769 	/* defaults */
2770 	bp->sma[0].mode = SMA_MODE_IN;
2771 	bp->sma[1].mode = SMA_MODE_IN;
2772 	bp->sma[2].mode = SMA_MODE_OUT;
2773 	bp->sma[3].mode = SMA_MODE_OUT;
2774 
2775 	bp->sma[0].default_fcn = 0x08;	/* IN: 10Mhz */
2776 	bp->sma[1].default_fcn = 0x01;	/* IN: PPS1 */
2777 	bp->sma[2].default_fcn = 0x10;	/* OUT: 10Mhz */
2778 	bp->sma[3].default_fcn = 0x02;	/* OUT: PHC */
2779 
2780 	for (i = 0; i < OCP_SMA_NUM; i++) {
2781 		/* If no SMA map, the pin functions and directions are fixed. */
2782 		bp->sma[i].dpll_prop = prop;
2783 		bp->sma[i].dpll_prop.board_label =
2784 			bp->ptp_info.pin_config[i].name;
2785 		if (!bp->art_sma) {
2786 			bp->sma[i].fixed_fcn = true;
2787 			bp->sma[i].fixed_dir = true;
2788 			continue;
2789 		}
2790 		reg = ioread32(&bp->art_sma->map[i].gpio);
2791 
2792 		switch (reg & 0xff) {
2793 		case 0:
2794 			bp->sma[i].fixed_fcn = true;
2795 			bp->sma[i].fixed_dir = true;
2796 			break;
2797 		case 1:
2798 		case 8:
2799 			bp->sma[i].mode = SMA_MODE_IN;
2800 			bp->sma[i].dpll_prop.capabilities =
2801 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2802 			break;
2803 		default:
2804 			bp->sma[i].mode = SMA_MODE_OUT;
2805 			bp->sma[i].dpll_prop.capabilities =
2806 				DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
2807 			break;
2808 		}
2809 	}
2810 }
2811 
2812 static u32
ptp_ocp_art_sma_get(struct ptp_ocp * bp,int sma_nr)2813 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
2814 {
2815 	if (bp->sma[sma_nr - 1].fixed_fcn)
2816 		return bp->sma[sma_nr - 1].default_fcn;
2817 
2818 	return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
2819 }
2820 
2821 /* note: store 0 is considered invalid. */
2822 static int
ptp_ocp_art_sma_set(struct ptp_ocp * bp,int sma_nr,u32 val)2823 ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
2824 {
2825 	unsigned long flags;
2826 	u32 __iomem *gpio;
2827 	int err = 0;
2828 	u32 reg;
2829 
2830 	val &= SMA_SELECT_MASK;
2831 	if (hweight32(val) > 1)
2832 		return -EINVAL;
2833 
2834 	gpio = &bp->art_sma->map[sma_nr - 1].gpio;
2835 
2836 	spin_lock_irqsave(&bp->lock, flags);
2837 	reg = ioread32(gpio);
2838 	if (((reg >> 16) & val) == 0) {
2839 		err = -EOPNOTSUPP;
2840 	} else {
2841 		reg = (reg & 0xff00) | (val & 0xff);
2842 		iowrite32(reg, gpio);
2843 	}
2844 	spin_unlock_irqrestore(&bp->lock, flags);
2845 
2846 	return err;
2847 }
2848 
2849 static const struct ocp_sma_op ocp_art_sma_op = {
2850 	.tbl		= { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
2851 	.init		= ptp_ocp_art_sma_init,
2852 	.get		= ptp_ocp_art_sma_get,
2853 	.set_inputs	= ptp_ocp_art_sma_set,
2854 	.set_output	= ptp_ocp_art_sma_set,
2855 };
2856 
2857 /* ART specific board initializers; last "resource" registered. */
2858 static int
ptp_ocp_art_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2859 ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2860 {
2861 	int err;
2862 
2863 	bp->flash_start = 0x1000000;
2864 	bp->eeprom_map = art_eeprom_map;
2865 	bp->fw_cap = OCP_CAP_BASIC;
2866 	bp->fw_version = ioread32(&bp->reg->version);
2867 	bp->fw_tag = 2;
2868 	bp->sma_op = &ocp_art_sma_op;
2869 	bp->signals_nr = 4;
2870 	bp->freq_in_nr = 4;
2871 
2872 	/* Enable MAC serial port during initialisation */
2873 	iowrite32(1, &bp->board_config->mro50_serial_activate);
2874 
2875 	err = ptp_ocp_set_pins(bp);
2876 	if (err)
2877 		return err;
2878 	ptp_ocp_sma_init(bp);
2879 
2880 	err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
2881 	if (err)
2882 		return err;
2883 
2884 	return ptp_ocp_init_clock(bp, r->extra);
2885 }
2886 
2887 /* ADVA specific board initializers; last "resource" registered. */
2888 static int
ptp_ocp_adva_board_init(struct ptp_ocp * bp,struct ocp_resource * r)2889 ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
2890 {
2891 	int err;
2892 	u32 version;
2893 
2894 	bp->flash_start = 0xA00000;
2895 	bp->eeprom_map = fb_eeprom_map;
2896 	bp->sma_op = &ocp_adva_sma_op;
2897 	bp->signals_nr = 2;
2898 	bp->freq_in_nr = 2;
2899 
2900 	version = ioread32(&bp->image->version);
2901 	/* if lower 16 bits are empty, this is the fw loader. */
2902 	if ((version & 0xffff) == 0) {
2903 		version = version >> 16;
2904 		bp->fw_loader = true;
2905 	}
2906 	bp->fw_tag = 3;
2907 	bp->fw_version = version & 0xffff;
2908 	bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
2909 
2910 	ptp_ocp_tod_init(bp);
2911 	ptp_ocp_nmea_out_init(bp);
2912 	ptp_ocp_signal_init(bp);
2913 
2914 	err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
2915 	if (err)
2916 		return err;
2917 
2918 	err = ptp_ocp_set_pins(bp);
2919 	if (err)
2920 		return err;
2921 	ptp_ocp_sma_init(bp);
2922 
2923 	return ptp_ocp_init_clock(bp, r->extra);
2924 }
2925 
2926 static ssize_t
ptp_ocp_show_output(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2927 ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
2928 		    int def_val)
2929 {
2930 	const char *name;
2931 	ssize_t count;
2932 
2933 	count = sysfs_emit(buf, "OUT: ");
2934 	name = ptp_ocp_select_name_from_val(tbl, val);
2935 	if (!name)
2936 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2937 	count += sysfs_emit_at(buf, count, "%s\n", name);
2938 	return count;
2939 }
2940 
2941 static ssize_t
ptp_ocp_show_inputs(const struct ocp_selector * tbl,u32 val,char * buf,int def_val)2942 ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
2943 		    int def_val)
2944 {
2945 	const char *name;
2946 	ssize_t count;
2947 	int i;
2948 
2949 	count = sysfs_emit(buf, "IN: ");
2950 	for (i = 0; tbl[i].name; i++) {
2951 		if (val & tbl[i].value) {
2952 			name = tbl[i].name;
2953 			count += sysfs_emit_at(buf, count, "%s ", name);
2954 		}
2955 	}
2956 	if (!val && def_val >= 0) {
2957 		name = ptp_ocp_select_name_from_val(tbl, def_val);
2958 		count += sysfs_emit_at(buf, count, "%s ", name);
2959 	}
2960 	if (count)
2961 		count--;
2962 	count += sysfs_emit_at(buf, count, "\n");
2963 	return count;
2964 }
2965 
2966 static int
sma_parse_inputs(const struct ocp_selector * const tbl[],const char * buf,enum ptp_ocp_sma_mode * mode)2967 sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
2968 		 enum ptp_ocp_sma_mode *mode)
2969 {
2970 	int idx, count, dir;
2971 	char **argv;
2972 	int ret;
2973 
2974 	argv = argv_split(GFP_KERNEL, buf, &count);
2975 	if (!argv)
2976 		return -ENOMEM;
2977 
2978 	ret = -EINVAL;
2979 	if (!count)
2980 		goto out;
2981 
2982 	idx = 0;
2983 	dir = *mode == SMA_MODE_IN ? 0 : 1;
2984 	if (!strcasecmp("IN:", argv[0])) {
2985 		dir = 0;
2986 		idx++;
2987 	}
2988 	if (!strcasecmp("OUT:", argv[0])) {
2989 		dir = 1;
2990 		idx++;
2991 	}
2992 	*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
2993 
2994 	ret = 0;
2995 	for (; idx < count; idx++)
2996 		ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
2997 	if (ret < 0)
2998 		ret = -EINVAL;
2999 
3000 out:
3001 	argv_free(argv);
3002 	return ret;
3003 }
3004 
3005 static ssize_t
ptp_ocp_sma_show(struct ptp_ocp * bp,int sma_nr,char * buf,int default_in_val,int default_out_val)3006 ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
3007 		 int default_in_val, int default_out_val)
3008 {
3009 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3010 	const struct ocp_selector * const *tbl;
3011 	u32 val;
3012 
3013 	tbl = bp->sma_op->tbl;
3014 	val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
3015 
3016 	if (sma->mode == SMA_MODE_IN) {
3017 		if (sma->disabled)
3018 			val = SMA_DISABLE;
3019 		return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
3020 	}
3021 
3022 	return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
3023 }
3024 
3025 static ssize_t
sma1_show(struct device * dev,struct device_attribute * attr,char * buf)3026 sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
3027 {
3028 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3029 
3030 	return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
3031 }
3032 
3033 static ssize_t
sma2_show(struct device * dev,struct device_attribute * attr,char * buf)3034 sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
3035 {
3036 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3037 
3038 	return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
3039 }
3040 
3041 static ssize_t
sma3_show(struct device * dev,struct device_attribute * attr,char * buf)3042 sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
3043 {
3044 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3045 
3046 	return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
3047 }
3048 
3049 static ssize_t
sma4_show(struct device * dev,struct device_attribute * attr,char * buf)3050 sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
3051 {
3052 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3053 
3054 	return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
3055 }
3056 
3057 static int
ptp_ocp_sma_store_val(struct ptp_ocp * bp,int val,enum ptp_ocp_sma_mode mode,int sma_nr)3058 ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
3059 {
3060 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3061 
3062 	if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
3063 		return -EOPNOTSUPP;
3064 
3065 	if (sma->fixed_fcn) {
3066 		if (val != sma->default_fcn)
3067 			return -EOPNOTSUPP;
3068 		return 0;
3069 	}
3070 
3071 	sma->disabled = !!(val & SMA_DISABLE);
3072 
3073 	if (mode != sma->mode) {
3074 		if (mode == SMA_MODE_IN)
3075 			ptp_ocp_sma_set_output(bp, sma_nr, 0);
3076 		else
3077 			ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
3078 		sma->mode = mode;
3079 	}
3080 
3081 	if (!sma->fixed_dir)
3082 		val |= SMA_ENABLE;		/* add enable bit */
3083 
3084 	if (sma->disabled)
3085 		val = 0;
3086 
3087 	if (mode == SMA_MODE_IN)
3088 		val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
3089 	else
3090 		val = ptp_ocp_sma_set_output(bp, sma_nr, val);
3091 
3092 	return val;
3093 }
3094 
3095 static int
ptp_ocp_sma_store(struct ptp_ocp * bp,const char * buf,int sma_nr)3096 ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
3097 {
3098 	struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
3099 	enum ptp_ocp_sma_mode mode;
3100 	int val;
3101 
3102 	mode = sma->mode;
3103 	val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
3104 	if (val < 0)
3105 		return val;
3106 	return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
3107 }
3108 
3109 static ssize_t
sma1_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3110 sma1_store(struct device *dev, struct device_attribute *attr,
3111 	   const char *buf, size_t count)
3112 {
3113 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3114 	int err;
3115 
3116 	err = ptp_ocp_sma_store(bp, buf, 1);
3117 	return err ? err : count;
3118 }
3119 
3120 static ssize_t
sma2_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3121 sma2_store(struct device *dev, struct device_attribute *attr,
3122 	   const char *buf, size_t count)
3123 {
3124 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3125 	int err;
3126 
3127 	err = ptp_ocp_sma_store(bp, buf, 2);
3128 	return err ? err : count;
3129 }
3130 
3131 static ssize_t
sma3_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3132 sma3_store(struct device *dev, struct device_attribute *attr,
3133 	   const char *buf, size_t count)
3134 {
3135 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3136 	int err;
3137 
3138 	err = ptp_ocp_sma_store(bp, buf, 3);
3139 	return err ? err : count;
3140 }
3141 
3142 static ssize_t
sma4_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3143 sma4_store(struct device *dev, struct device_attribute *attr,
3144 	   const char *buf, size_t count)
3145 {
3146 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3147 	int err;
3148 
3149 	err = ptp_ocp_sma_store(bp, buf, 4);
3150 	return err ? err : count;
3151 }
3152 static DEVICE_ATTR_RW(sma1);
3153 static DEVICE_ATTR_RW(sma2);
3154 static DEVICE_ATTR_RW(sma3);
3155 static DEVICE_ATTR_RW(sma4);
3156 
3157 static ssize_t
available_sma_inputs_show(struct device * dev,struct device_attribute * attr,char * buf)3158 available_sma_inputs_show(struct device *dev,
3159 			  struct device_attribute *attr, char *buf)
3160 {
3161 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3162 
3163 	return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
3164 }
3165 static DEVICE_ATTR_RO(available_sma_inputs);
3166 
3167 static ssize_t
available_sma_outputs_show(struct device * dev,struct device_attribute * attr,char * buf)3168 available_sma_outputs_show(struct device *dev,
3169 			   struct device_attribute *attr, char *buf)
3170 {
3171 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3172 
3173 	return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
3174 }
3175 static DEVICE_ATTR_RO(available_sma_outputs);
3176 
3177 #define EXT_ATTR_RO(_group, _name, _val)				\
3178 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3179 		{ __ATTR_RO(_name), (void *)_val }
3180 #define EXT_ATTR_RW(_group, _name, _val)				\
3181 	struct dev_ext_attribute dev_attr_##_group##_val##_##_name =	\
3182 		{ __ATTR_RW(_name), (void *)_val }
3183 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
3184 
3185 /* period [duty [phase [polarity]]] */
3186 static ssize_t
signal_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3187 signal_store(struct device *dev, struct device_attribute *attr,
3188 	     const char *buf, size_t count)
3189 {
3190 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3191 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3192 	struct ptp_ocp_signal s = { };
3193 	int gen = (uintptr_t)ea->var;
3194 	int argc, err;
3195 	char **argv;
3196 
3197 	argv = argv_split(GFP_KERNEL, buf, &argc);
3198 	if (!argv)
3199 		return -ENOMEM;
3200 
3201 	err = -EINVAL;
3202 	s.duty = bp->signal[gen].duty;
3203 	s.phase = bp->signal[gen].phase;
3204 	s.period = bp->signal[gen].period;
3205 	s.polarity = bp->signal[gen].polarity;
3206 
3207 	switch (argc) {
3208 	case 4:
3209 		argc--;
3210 		err = kstrtobool(argv[argc], &s.polarity);
3211 		if (err)
3212 			goto out;
3213 		fallthrough;
3214 	case 3:
3215 		argc--;
3216 		err = kstrtou64(argv[argc], 0, &s.phase);
3217 		if (err)
3218 			goto out;
3219 		fallthrough;
3220 	case 2:
3221 		argc--;
3222 		err = kstrtoint(argv[argc], 0, &s.duty);
3223 		if (err)
3224 			goto out;
3225 		fallthrough;
3226 	case 1:
3227 		argc--;
3228 		err = kstrtou64(argv[argc], 0, &s.period);
3229 		if (err)
3230 			goto out;
3231 		break;
3232 	default:
3233 		goto out;
3234 	}
3235 
3236 	err = ptp_ocp_signal_set(bp, gen, &s);
3237 	if (err)
3238 		goto out;
3239 
3240 	err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
3241 
3242 out:
3243 	argv_free(argv);
3244 	return err ? err : count;
3245 }
3246 
3247 static ssize_t
signal_show(struct device * dev,struct device_attribute * attr,char * buf)3248 signal_show(struct device *dev, struct device_attribute *attr, char *buf)
3249 {
3250 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3251 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3252 	struct ptp_ocp_signal *signal;
3253 	struct timespec64 ts;
3254 	ssize_t count;
3255 	int i;
3256 
3257 	i = (uintptr_t)ea->var;
3258 	signal = &bp->signal[i];
3259 
3260 	count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
3261 			   signal->duty, signal->phase, signal->polarity);
3262 
3263 	ts = ktime_to_timespec64(signal->start);
3264 	count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
3265 
3266 	return count;
3267 }
3268 static EXT_ATTR_RW(signal, signal, 0);
3269 static EXT_ATTR_RW(signal, signal, 1);
3270 static EXT_ATTR_RW(signal, signal, 2);
3271 static EXT_ATTR_RW(signal, signal, 3);
3272 
3273 static ssize_t
duty_show(struct device * dev,struct device_attribute * attr,char * buf)3274 duty_show(struct device *dev, struct device_attribute *attr, char *buf)
3275 {
3276 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3277 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3278 	int i = (uintptr_t)ea->var;
3279 
3280 	return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
3281 }
3282 static EXT_ATTR_RO(signal, duty, 0);
3283 static EXT_ATTR_RO(signal, duty, 1);
3284 static EXT_ATTR_RO(signal, duty, 2);
3285 static EXT_ATTR_RO(signal, duty, 3);
3286 
3287 static ssize_t
period_show(struct device * dev,struct device_attribute * attr,char * buf)3288 period_show(struct device *dev, struct device_attribute *attr, char *buf)
3289 {
3290 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3291 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3292 	int i = (uintptr_t)ea->var;
3293 
3294 	return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
3295 }
3296 static EXT_ATTR_RO(signal, period, 0);
3297 static EXT_ATTR_RO(signal, period, 1);
3298 static EXT_ATTR_RO(signal, period, 2);
3299 static EXT_ATTR_RO(signal, period, 3);
3300 
3301 static ssize_t
phase_show(struct device * dev,struct device_attribute * attr,char * buf)3302 phase_show(struct device *dev, struct device_attribute *attr, char *buf)
3303 {
3304 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3305 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3306 	int i = (uintptr_t)ea->var;
3307 
3308 	return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
3309 }
3310 static EXT_ATTR_RO(signal, phase, 0);
3311 static EXT_ATTR_RO(signal, phase, 1);
3312 static EXT_ATTR_RO(signal, phase, 2);
3313 static EXT_ATTR_RO(signal, phase, 3);
3314 
3315 static ssize_t
polarity_show(struct device * dev,struct device_attribute * attr,char * buf)3316 polarity_show(struct device *dev, struct device_attribute *attr,
3317 	      char *buf)
3318 {
3319 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3320 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3321 	int i = (uintptr_t)ea->var;
3322 
3323 	return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
3324 }
3325 static EXT_ATTR_RO(signal, polarity, 0);
3326 static EXT_ATTR_RO(signal, polarity, 1);
3327 static EXT_ATTR_RO(signal, polarity, 2);
3328 static EXT_ATTR_RO(signal, polarity, 3);
3329 
3330 static ssize_t
running_show(struct device * dev,struct device_attribute * attr,char * buf)3331 running_show(struct device *dev, struct device_attribute *attr, char *buf)
3332 {
3333 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3334 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3335 	int i = (uintptr_t)ea->var;
3336 
3337 	return sysfs_emit(buf, "%d\n", bp->signal[i].running);
3338 }
3339 static EXT_ATTR_RO(signal, running, 0);
3340 static EXT_ATTR_RO(signal, running, 1);
3341 static EXT_ATTR_RO(signal, running, 2);
3342 static EXT_ATTR_RO(signal, running, 3);
3343 
3344 static ssize_t
start_show(struct device * dev,struct device_attribute * attr,char * buf)3345 start_show(struct device *dev, struct device_attribute *attr, char *buf)
3346 {
3347 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3348 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3349 	int i = (uintptr_t)ea->var;
3350 	struct timespec64 ts;
3351 
3352 	ts = ktime_to_timespec64(bp->signal[i].start);
3353 	return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
3354 }
3355 static EXT_ATTR_RO(signal, start, 0);
3356 static EXT_ATTR_RO(signal, start, 1);
3357 static EXT_ATTR_RO(signal, start, 2);
3358 static EXT_ATTR_RO(signal, start, 3);
3359 
3360 static ssize_t
seconds_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3361 seconds_store(struct device *dev, struct device_attribute *attr,
3362 	      const char *buf, size_t count)
3363 {
3364 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3365 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3366 	int idx = (uintptr_t)ea->var;
3367 	u32 val;
3368 	int err;
3369 
3370 	err = kstrtou32(buf, 0, &val);
3371 	if (err)
3372 		return err;
3373 	if (val > 0xff)
3374 		return -EINVAL;
3375 
3376 	if (val)
3377 		val = (val << 8) | 0x1;
3378 
3379 	iowrite32(val, &bp->freq_in[idx]->ctrl);
3380 
3381 	return count;
3382 }
3383 
3384 static ssize_t
seconds_show(struct device * dev,struct device_attribute * attr,char * buf)3385 seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
3386 {
3387 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3388 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3389 	int idx = (uintptr_t)ea->var;
3390 	u32 val;
3391 
3392 	val = ioread32(&bp->freq_in[idx]->ctrl);
3393 	if (val & 1)
3394 		val = (val >> 8) & 0xff;
3395 	else
3396 		val = 0;
3397 
3398 	return sysfs_emit(buf, "%u\n", val);
3399 }
3400 static EXT_ATTR_RW(freq, seconds, 0);
3401 static EXT_ATTR_RW(freq, seconds, 1);
3402 static EXT_ATTR_RW(freq, seconds, 2);
3403 static EXT_ATTR_RW(freq, seconds, 3);
3404 
3405 static ssize_t
frequency_show(struct device * dev,struct device_attribute * attr,char * buf)3406 frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
3407 {
3408 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3409 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3410 	int idx = (uintptr_t)ea->var;
3411 	u32 val;
3412 
3413 	val = ioread32(&bp->freq_in[idx]->status);
3414 	if (val & FREQ_STATUS_ERROR)
3415 		return sysfs_emit(buf, "error\n");
3416 	if (val & FREQ_STATUS_OVERRUN)
3417 		return sysfs_emit(buf, "overrun\n");
3418 	if (val & FREQ_STATUS_VALID)
3419 		return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
3420 	return 0;
3421 }
3422 static EXT_ATTR_RO(freq, frequency, 0);
3423 static EXT_ATTR_RO(freq, frequency, 1);
3424 static EXT_ATTR_RO(freq, frequency, 2);
3425 static EXT_ATTR_RO(freq, frequency, 3);
3426 
3427 static ssize_t
ptp_ocp_tty_show(struct device * dev,struct device_attribute * attr,char * buf)3428 ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
3429 {
3430 	struct dev_ext_attribute *ea = to_ext_attr(attr);
3431 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3432 
3433 	return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
3434 }
3435 
3436 static umode_t
ptp_ocp_timecard_tty_is_visible(struct kobject * kobj,struct attribute * attr,int n)3437 ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
3438 {
3439 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3440 	struct ptp_ocp_serial_port *port;
3441 	struct device_attribute *dattr;
3442 	struct dev_ext_attribute *ea;
3443 
3444 	if (strncmp(attr->name, "tty", 3))
3445 		return attr->mode;
3446 
3447 	dattr = container_of(attr, struct device_attribute, attr);
3448 	ea = container_of(dattr, struct dev_ext_attribute, attr);
3449 	port = &bp->port[(uintptr_t)ea->var];
3450 	return port->line == -1 ? 0 : 0444;
3451 }
3452 
3453 #define EXT_TTY_ATTR_RO(_name, _val)			\
3454 	struct dev_ext_attribute dev_attr_tty##_name =	\
3455 		{ __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
3456 
3457 static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
3458 static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
3459 static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
3460 static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
3461 static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
3462 	&dev_attr_ttyGNSS.attr.attr,
3463 	&dev_attr_ttyGNSS2.attr.attr,
3464 	&dev_attr_ttyMAC.attr.attr,
3465 	&dev_attr_ttyNMEA.attr.attr,
3466 	NULL,
3467 };
3468 
3469 static const struct attribute_group ptp_ocp_timecard_tty_group = {
3470 	.name = "tty",
3471 	.attrs = ptp_ocp_timecard_tty_attrs,
3472 	.is_visible = ptp_ocp_timecard_tty_is_visible,
3473 };
3474 
3475 static ssize_t
serialnum_show(struct device * dev,struct device_attribute * attr,char * buf)3476 serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
3477 {
3478 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3479 
3480 	if (!bp->has_eeprom_data)
3481 		ptp_ocp_read_eeprom(bp);
3482 
3483 	return sysfs_emit(buf, "%pM\n", bp->serial);
3484 }
3485 static DEVICE_ATTR_RO(serialnum);
3486 
3487 static ssize_t
gnss_sync_show(struct device * dev,struct device_attribute * attr,char * buf)3488 gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
3489 {
3490 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3491 	ssize_t ret;
3492 
3493 	if (bp->gnss_lost)
3494 		ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
3495 	else
3496 		ret = sysfs_emit(buf, "SYNC\n");
3497 
3498 	return ret;
3499 }
3500 static DEVICE_ATTR_RO(gnss_sync);
3501 
3502 static ssize_t
utc_tai_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3503 utc_tai_offset_show(struct device *dev,
3504 		    struct device_attribute *attr, char *buf)
3505 {
3506 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3507 
3508 	return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
3509 }
3510 
3511 static ssize_t
utc_tai_offset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3512 utc_tai_offset_store(struct device *dev,
3513 		     struct device_attribute *attr,
3514 		     const char *buf, size_t count)
3515 {
3516 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3517 	int err;
3518 	u32 val;
3519 
3520 	err = kstrtou32(buf, 0, &val);
3521 	if (err)
3522 		return err;
3523 
3524 	ptp_ocp_utc_distribute(bp, val);
3525 
3526 	return count;
3527 }
3528 static DEVICE_ATTR_RW(utc_tai_offset);
3529 
3530 static ssize_t
ts_window_adjust_show(struct device * dev,struct device_attribute * attr,char * buf)3531 ts_window_adjust_show(struct device *dev,
3532 		      struct device_attribute *attr, char *buf)
3533 {
3534 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3535 
3536 	return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
3537 }
3538 
3539 static ssize_t
ts_window_adjust_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3540 ts_window_adjust_store(struct device *dev,
3541 		       struct device_attribute *attr,
3542 		       const char *buf, size_t count)
3543 {
3544 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3545 	int err;
3546 	u32 val;
3547 
3548 	err = kstrtou32(buf, 0, &val);
3549 	if (err)
3550 		return err;
3551 
3552 	bp->ts_window_adjust = val;
3553 
3554 	return count;
3555 }
3556 static DEVICE_ATTR_RW(ts_window_adjust);
3557 
3558 static ssize_t
irig_b_mode_show(struct device * dev,struct device_attribute * attr,char * buf)3559 irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
3560 {
3561 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3562 	u32 val;
3563 
3564 	val = ioread32(&bp->irig_out->ctrl);
3565 	val = (val >> 16) & 0x07;
3566 	return sysfs_emit(buf, "%d\n", val);
3567 }
3568 
3569 static ssize_t
irig_b_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3570 irig_b_mode_store(struct device *dev,
3571 		  struct device_attribute *attr,
3572 		  const char *buf, size_t count)
3573 {
3574 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3575 	unsigned long flags;
3576 	int err;
3577 	u32 reg;
3578 	u8 val;
3579 
3580 	err = kstrtou8(buf, 0, &val);
3581 	if (err)
3582 		return err;
3583 	if (val > 7)
3584 		return -EINVAL;
3585 
3586 	reg = ((val & 0x7) << 16);
3587 
3588 	spin_lock_irqsave(&bp->lock, flags);
3589 	iowrite32(0, &bp->irig_out->ctrl);		/* disable */
3590 	iowrite32(reg, &bp->irig_out->ctrl);		/* change mode */
3591 	iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
3592 	spin_unlock_irqrestore(&bp->lock, flags);
3593 
3594 	return count;
3595 }
3596 static DEVICE_ATTR_RW(irig_b_mode);
3597 
3598 static ssize_t
clock_source_show(struct device * dev,struct device_attribute * attr,char * buf)3599 clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
3600 {
3601 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3602 	const char *p;
3603 	u32 select;
3604 
3605 	select = ioread32(&bp->reg->select);
3606 	p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
3607 
3608 	return sysfs_emit(buf, "%s\n", p);
3609 }
3610 
3611 static ssize_t
clock_source_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3612 clock_source_store(struct device *dev, struct device_attribute *attr,
3613 		   const char *buf, size_t count)
3614 {
3615 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3616 	unsigned long flags;
3617 	int val;
3618 
3619 	val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
3620 	if (val < 0)
3621 		return val;
3622 
3623 	spin_lock_irqsave(&bp->lock, flags);
3624 	iowrite32(val, &bp->reg->select);
3625 	spin_unlock_irqrestore(&bp->lock, flags);
3626 
3627 	return count;
3628 }
3629 static DEVICE_ATTR_RW(clock_source);
3630 
3631 static ssize_t
available_clock_sources_show(struct device * dev,struct device_attribute * attr,char * buf)3632 available_clock_sources_show(struct device *dev,
3633 			     struct device_attribute *attr, char *buf)
3634 {
3635 	return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
3636 }
3637 static DEVICE_ATTR_RO(available_clock_sources);
3638 
3639 static ssize_t
clock_status_drift_show(struct device * dev,struct device_attribute * attr,char * buf)3640 clock_status_drift_show(struct device *dev,
3641 			struct device_attribute *attr, char *buf)
3642 {
3643 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3644 	u32 val;
3645 	int res;
3646 
3647 	val = ioread32(&bp->reg->status_drift);
3648 	res = (val & ~INT_MAX) ? -1 : 1;
3649 	res *= (val & INT_MAX);
3650 	return sysfs_emit(buf, "%d\n", res);
3651 }
3652 static DEVICE_ATTR_RO(clock_status_drift);
3653 
3654 static ssize_t
clock_status_offset_show(struct device * dev,struct device_attribute * attr,char * buf)3655 clock_status_offset_show(struct device *dev,
3656 			 struct device_attribute *attr, char *buf)
3657 {
3658 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3659 	u32 val;
3660 	int res;
3661 
3662 	val = ioread32(&bp->reg->status_offset);
3663 	res = (val & ~INT_MAX) ? -1 : 1;
3664 	res *= (val & INT_MAX);
3665 	return sysfs_emit(buf, "%d\n", res);
3666 }
3667 static DEVICE_ATTR_RO(clock_status_offset);
3668 
3669 static ssize_t
tod_correction_show(struct device * dev,struct device_attribute * attr,char * buf)3670 tod_correction_show(struct device *dev,
3671 		    struct device_attribute *attr, char *buf)
3672 {
3673 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3674 	u32 val;
3675 	int res;
3676 
3677 	val = ioread32(&bp->tod->adj_sec);
3678 	res = (val & ~INT_MAX) ? -1 : 1;
3679 	res *= (val & INT_MAX);
3680 	return sysfs_emit(buf, "%d\n", res);
3681 }
3682 
3683 static ssize_t
tod_correction_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3684 tod_correction_store(struct device *dev, struct device_attribute *attr,
3685 		     const char *buf, size_t count)
3686 {
3687 	struct ptp_ocp *bp = dev_get_drvdata(dev);
3688 	unsigned long flags;
3689 	int err, res;
3690 	u32 val = 0;
3691 
3692 	err = kstrtos32(buf, 0, &res);
3693 	if (err)
3694 		return err;
3695 	if (res < 0) {
3696 		res *= -1;
3697 		val |= BIT(31);
3698 	}
3699 	val |= res;
3700 
3701 	spin_lock_irqsave(&bp->lock, flags);
3702 	iowrite32(val, &bp->tod->adj_sec);
3703 	spin_unlock_irqrestore(&bp->lock, flags);
3704 
3705 	return count;
3706 }
3707 static DEVICE_ATTR_RW(tod_correction);
3708 
3709 #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr)					\
3710 	static struct attribute *fb_timecard_signal##_nr##_attrs[] = {	\
3711 		&dev_attr_signal##_nr##_signal.attr.attr,		\
3712 		&dev_attr_signal##_nr##_duty.attr.attr,			\
3713 		&dev_attr_signal##_nr##_phase.attr.attr,		\
3714 		&dev_attr_signal##_nr##_period.attr.attr,		\
3715 		&dev_attr_signal##_nr##_polarity.attr.attr,		\
3716 		&dev_attr_signal##_nr##_running.attr.attr,		\
3717 		&dev_attr_signal##_nr##_start.attr.attr,		\
3718 		NULL,							\
3719 	}
3720 
3721 #define DEVICE_SIGNAL_GROUP(_name, _nr)					\
3722 	_DEVICE_SIGNAL_GROUP_ATTRS(_nr);				\
3723 	static const struct attribute_group				\
3724 			fb_timecard_signal##_nr##_group = {		\
3725 		.name = #_name,						\
3726 		.attrs = fb_timecard_signal##_nr##_attrs,		\
3727 }
3728 
3729 DEVICE_SIGNAL_GROUP(gen1, 0);
3730 DEVICE_SIGNAL_GROUP(gen2, 1);
3731 DEVICE_SIGNAL_GROUP(gen3, 2);
3732 DEVICE_SIGNAL_GROUP(gen4, 3);
3733 
3734 #define _DEVICE_FREQ_GROUP_ATTRS(_nr)					\
3735 	static struct attribute *fb_timecard_freq##_nr##_attrs[] = {	\
3736 		&dev_attr_freq##_nr##_seconds.attr.attr,		\
3737 		&dev_attr_freq##_nr##_frequency.attr.attr,		\
3738 		NULL,							\
3739 	}
3740 
3741 #define DEVICE_FREQ_GROUP(_name, _nr)					\
3742 	_DEVICE_FREQ_GROUP_ATTRS(_nr);					\
3743 	static const struct attribute_group				\
3744 			fb_timecard_freq##_nr##_group = {		\
3745 		.name = #_name,						\
3746 		.attrs = fb_timecard_freq##_nr##_attrs,			\
3747 }
3748 
3749 DEVICE_FREQ_GROUP(freq1, 0);
3750 DEVICE_FREQ_GROUP(freq2, 1);
3751 DEVICE_FREQ_GROUP(freq3, 2);
3752 DEVICE_FREQ_GROUP(freq4, 3);
3753 
3754 static ssize_t
disciplining_config_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3755 disciplining_config_read(struct file *filp, struct kobject *kobj,
3756 			 const struct bin_attribute *bin_attr, char *buf,
3757 			 loff_t off, size_t count)
3758 {
3759 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3760 	size_t size = OCP_ART_CONFIG_SIZE;
3761 	struct nvmem_device *nvmem;
3762 	ssize_t err;
3763 
3764 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3765 	if (IS_ERR(nvmem))
3766 		return PTR_ERR(nvmem);
3767 
3768 	if (off > size) {
3769 		err = 0;
3770 		goto out;
3771 	}
3772 
3773 	if (off + count > size)
3774 		count = size - off;
3775 
3776 	// the configuration is in the very beginning of the EEPROM
3777 	err = nvmem_device_read(nvmem, off, count, buf);
3778 	if (err != count) {
3779 		err = -EFAULT;
3780 		goto out;
3781 	}
3782 
3783 out:
3784 	ptp_ocp_nvmem_device_put(&nvmem);
3785 
3786 	return err;
3787 }
3788 
3789 static ssize_t
disciplining_config_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3790 disciplining_config_write(struct file *filp, struct kobject *kobj,
3791 			  const struct bin_attribute *bin_attr, char *buf,
3792 			  loff_t off, size_t count)
3793 {
3794 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3795 	struct nvmem_device *nvmem;
3796 	ssize_t err;
3797 
3798 	/* Allow write of the whole area only */
3799 	if (off || count != OCP_ART_CONFIG_SIZE)
3800 		return -EFAULT;
3801 
3802 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3803 	if (IS_ERR(nvmem))
3804 		return PTR_ERR(nvmem);
3805 
3806 	err = nvmem_device_write(nvmem, 0x00, count, buf);
3807 	if (err != count)
3808 		err = -EFAULT;
3809 
3810 	ptp_ocp_nvmem_device_put(&nvmem);
3811 
3812 	return err;
3813 }
3814 static const BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
3815 
3816 static ssize_t
temperature_table_read(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3817 temperature_table_read(struct file *filp, struct kobject *kobj,
3818 		       const struct bin_attribute *bin_attr, char *buf,
3819 		       loff_t off, size_t count)
3820 {
3821 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3822 	size_t size = OCP_ART_TEMP_TABLE_SIZE;
3823 	struct nvmem_device *nvmem;
3824 	ssize_t err;
3825 
3826 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3827 	if (IS_ERR(nvmem))
3828 		return PTR_ERR(nvmem);
3829 
3830 	if (off > size) {
3831 		err = 0;
3832 		goto out;
3833 	}
3834 
3835 	if (off + count > size)
3836 		count = size - off;
3837 
3838 	// the configuration is in the very beginning of the EEPROM
3839 	err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
3840 	if (err != count) {
3841 		err = -EFAULT;
3842 		goto out;
3843 	}
3844 
3845 out:
3846 	ptp_ocp_nvmem_device_put(&nvmem);
3847 
3848 	return err;
3849 }
3850 
3851 static ssize_t
temperature_table_write(struct file * filp,struct kobject * kobj,const struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)3852 temperature_table_write(struct file *filp, struct kobject *kobj,
3853 			const struct bin_attribute *bin_attr, char *buf,
3854 			loff_t off, size_t count)
3855 {
3856 	struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
3857 	struct nvmem_device *nvmem;
3858 	ssize_t err;
3859 
3860 	/* Allow write of the whole area only */
3861 	if (off || count != OCP_ART_TEMP_TABLE_SIZE)
3862 		return -EFAULT;
3863 
3864 	nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
3865 	if (IS_ERR(nvmem))
3866 		return PTR_ERR(nvmem);
3867 
3868 	err = nvmem_device_write(nvmem, 0x90, count, buf);
3869 	if (err != count)
3870 		err = -EFAULT;
3871 
3872 	ptp_ocp_nvmem_device_put(&nvmem);
3873 
3874 	return err;
3875 }
3876 static const BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
3877 
3878 static struct attribute *fb_timecard_attrs[] = {
3879 	&dev_attr_serialnum.attr,
3880 	&dev_attr_gnss_sync.attr,
3881 	&dev_attr_clock_source.attr,
3882 	&dev_attr_available_clock_sources.attr,
3883 	&dev_attr_sma1.attr,
3884 	&dev_attr_sma2.attr,
3885 	&dev_attr_sma3.attr,
3886 	&dev_attr_sma4.attr,
3887 	&dev_attr_available_sma_inputs.attr,
3888 	&dev_attr_available_sma_outputs.attr,
3889 	&dev_attr_clock_status_drift.attr,
3890 	&dev_attr_clock_status_offset.attr,
3891 	&dev_attr_irig_b_mode.attr,
3892 	&dev_attr_utc_tai_offset.attr,
3893 	&dev_attr_ts_window_adjust.attr,
3894 	&dev_attr_tod_correction.attr,
3895 	NULL,
3896 };
3897 
3898 static const struct attribute_group fb_timecard_group = {
3899 	.attrs = fb_timecard_attrs,
3900 };
3901 
3902 static const struct ocp_attr_group fb_timecard_groups[] = {
3903 	{ .cap = OCP_CAP_BASIC,	    .group = &fb_timecard_group },
3904 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3905 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3906 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3907 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal2_group },
3908 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal3_group },
3909 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3910 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3911 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq2_group },
3912 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq3_group },
3913 	{ },
3914 };
3915 
3916 static struct attribute *art_timecard_attrs[] = {
3917 	&dev_attr_serialnum.attr,
3918 	&dev_attr_clock_source.attr,
3919 	&dev_attr_available_clock_sources.attr,
3920 	&dev_attr_utc_tai_offset.attr,
3921 	&dev_attr_ts_window_adjust.attr,
3922 	&dev_attr_sma1.attr,
3923 	&dev_attr_sma2.attr,
3924 	&dev_attr_sma3.attr,
3925 	&dev_attr_sma4.attr,
3926 	&dev_attr_available_sma_inputs.attr,
3927 	&dev_attr_available_sma_outputs.attr,
3928 	NULL,
3929 };
3930 
3931 static const struct bin_attribute *const bin_art_timecard_attrs[] = {
3932 	&bin_attr_disciplining_config,
3933 	&bin_attr_temperature_table,
3934 	NULL,
3935 };
3936 
3937 static const struct attribute_group art_timecard_group = {
3938 	.attrs = art_timecard_attrs,
3939 	.bin_attrs = bin_art_timecard_attrs,
3940 };
3941 
3942 static const struct ocp_attr_group art_timecard_groups[] = {
3943 	{ .cap = OCP_CAP_BASIC,	    .group = &art_timecard_group },
3944 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3945 	{ },
3946 };
3947 
3948 static struct attribute *adva_timecard_attrs[] = {
3949 	&dev_attr_serialnum.attr,
3950 	&dev_attr_gnss_sync.attr,
3951 	&dev_attr_clock_source.attr,
3952 	&dev_attr_available_clock_sources.attr,
3953 	&dev_attr_sma1.attr,
3954 	&dev_attr_sma2.attr,
3955 	&dev_attr_sma3.attr,
3956 	&dev_attr_sma4.attr,
3957 	&dev_attr_available_sma_inputs.attr,
3958 	&dev_attr_available_sma_outputs.attr,
3959 	&dev_attr_clock_status_drift.attr,
3960 	&dev_attr_clock_status_offset.attr,
3961 	&dev_attr_ts_window_adjust.attr,
3962 	&dev_attr_tod_correction.attr,
3963 	NULL,
3964 };
3965 
3966 static const struct attribute_group adva_timecard_group = {
3967 	.attrs = adva_timecard_attrs,
3968 };
3969 
3970 static const struct ocp_attr_group adva_timecard_groups[] = {
3971 	{ .cap = OCP_CAP_BASIC,	    .group = &adva_timecard_group },
3972 	{ .cap = OCP_CAP_BASIC,	    .group = &ptp_ocp_timecard_tty_group },
3973 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal0_group },
3974 	{ .cap = OCP_CAP_SIGNAL,    .group = &fb_timecard_signal1_group },
3975 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq0_group },
3976 	{ .cap = OCP_CAP_FREQ,	    .group = &fb_timecard_freq1_group },
3977 	{ },
3978 };
3979 
3980 static void
gpio_input_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit,const char * def)3981 gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
3982 	       const char *def)
3983 {
3984 	int i;
3985 
3986 	for (i = 0; i < 4; i++) {
3987 		if (bp->sma[i].mode != SMA_MODE_IN)
3988 			continue;
3989 		if (map[i][0] & (1 << bit)) {
3990 			sprintf(buf, "sma%d", i + 1);
3991 			return;
3992 		}
3993 	}
3994 	if (!def)
3995 		def = "----";
3996 	strcpy(buf, def);
3997 }
3998 
3999 static void
gpio_output_map(char * buf,struct ptp_ocp * bp,u16 map[][2],u16 bit)4000 gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
4001 {
4002 	char *ans = buf;
4003 	int i;
4004 
4005 	strcpy(ans, "----");
4006 	for (i = 0; i < 4; i++) {
4007 		if (bp->sma[i].mode != SMA_MODE_OUT)
4008 			continue;
4009 		if (map[i][1] & (1 << bit))
4010 			ans += sprintf(ans, "sma%d ", i + 1);
4011 	}
4012 }
4013 
4014 static void
_signal_summary_show(struct seq_file * s,struct ptp_ocp * bp,int nr)4015 _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
4016 {
4017 	struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
4018 	struct ptp_ocp_signal *signal = &bp->signal[nr];
4019 	char label[16];
4020 	bool on;
4021 	u32 val;
4022 
4023 	on = signal->running;
4024 	sprintf(label, "GEN%d", nr + 1);
4025 	seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
4026 		   label, on ? " ON" : "OFF",
4027 		   signal->period, signal->duty, signal->phase,
4028 		   signal->polarity);
4029 
4030 	val = ioread32(&reg->enable);
4031 	seq_printf(s, " [%x", val);
4032 	val = ioread32(&reg->status);
4033 	seq_printf(s, " %x]", val);
4034 
4035 	seq_printf(s, " start:%llu\n", signal->start);
4036 }
4037 
4038 static void
_frequency_summary_show(struct seq_file * s,int nr,struct frequency_reg __iomem * reg)4039 _frequency_summary_show(struct seq_file *s, int nr,
4040 			struct frequency_reg __iomem *reg)
4041 {
4042 	char label[16];
4043 	bool on;
4044 	u32 val;
4045 
4046 	if (!reg)
4047 		return;
4048 
4049 	sprintf(label, "FREQ%d", nr + 1);
4050 	val = ioread32(&reg->ctrl);
4051 	on = val & 1;
4052 	val = (val >> 8) & 0xff;
4053 	seq_printf(s, "%7s: %s, sec:%u",
4054 		   label,
4055 		   on ? " ON" : "OFF",
4056 		   val);
4057 
4058 	val = ioread32(&reg->status);
4059 	if (val & FREQ_STATUS_ERROR)
4060 		seq_printf(s, ", error");
4061 	if (val & FREQ_STATUS_OVERRUN)
4062 		seq_printf(s, ", overrun");
4063 	if (val & FREQ_STATUS_VALID)
4064 		seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
4065 	seq_printf(s, "  reg:%x\n", val);
4066 }
4067 
4068 static int
ptp_ocp_summary_show(struct seq_file * s,void * data)4069 ptp_ocp_summary_show(struct seq_file *s, void *data)
4070 {
4071 	struct device *dev = s->private;
4072 	struct ptp_system_timestamp sts;
4073 	struct ts_reg __iomem *ts_reg;
4074 	char *buf, *src, *mac_src;
4075 	struct timespec64 ts;
4076 	struct ptp_ocp *bp;
4077 	u16 sma_val[4][2];
4078 	u32 ctrl, val;
4079 	bool on, map;
4080 	int i;
4081 
4082 	buf = (char *)__get_free_page(GFP_KERNEL);
4083 	if (!buf)
4084 		return -ENOMEM;
4085 
4086 	bp = dev_get_drvdata(dev);
4087 
4088 	seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
4089 	for (i = 0; i < __PORT_COUNT; i++) {
4090 		if (bp->port[i].line != -1)
4091 			seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
4092 				   bp->port[i].line);
4093 	}
4094 
4095 	memset(sma_val, 0xff, sizeof(sma_val));
4096 	if (bp->sma_map1) {
4097 		u32 reg;
4098 
4099 		reg = ioread32(&bp->sma_map1->gpio1);
4100 		sma_val[0][0] = reg & 0xffff;
4101 		sma_val[1][0] = reg >> 16;
4102 
4103 		reg = ioread32(&bp->sma_map1->gpio2);
4104 		sma_val[2][1] = reg & 0xffff;
4105 		sma_val[3][1] = reg >> 16;
4106 
4107 		reg = ioread32(&bp->sma_map2->gpio1);
4108 		sma_val[2][0] = reg & 0xffff;
4109 		sma_val[3][0] = reg >> 16;
4110 
4111 		reg = ioread32(&bp->sma_map2->gpio2);
4112 		sma_val[0][1] = reg & 0xffff;
4113 		sma_val[1][1] = reg >> 16;
4114 	}
4115 
4116 	sma1_show(dev, NULL, buf);
4117 	seq_printf(s, "   sma1: %04x,%04x %s",
4118 		   sma_val[0][0], sma_val[0][1], buf);
4119 
4120 	sma2_show(dev, NULL, buf);
4121 	seq_printf(s, "   sma2: %04x,%04x %s",
4122 		   sma_val[1][0], sma_val[1][1], buf);
4123 
4124 	sma3_show(dev, NULL, buf);
4125 	seq_printf(s, "   sma3: %04x,%04x %s",
4126 		   sma_val[2][0], sma_val[2][1], buf);
4127 
4128 	sma4_show(dev, NULL, buf);
4129 	seq_printf(s, "   sma4: %04x,%04x %s",
4130 		   sma_val[3][0], sma_val[3][1], buf);
4131 
4132 	if (bp->ts0) {
4133 		ts_reg = bp->ts0->mem;
4134 		on = ioread32(&ts_reg->enable);
4135 		src = "GNSS1";
4136 		seq_printf(s, "%7s: %s, src: %s\n", "TS0",
4137 			   on ? " ON" : "OFF", src);
4138 	}
4139 
4140 	if (bp->ts1) {
4141 		ts_reg = bp->ts1->mem;
4142 		on = ioread32(&ts_reg->enable);
4143 		gpio_input_map(buf, bp, sma_val, 2, NULL);
4144 		seq_printf(s, "%7s: %s, src: %s\n", "TS1",
4145 			   on ? " ON" : "OFF", buf);
4146 	}
4147 
4148 	if (bp->ts2) {
4149 		ts_reg = bp->ts2->mem;
4150 		on = ioread32(&ts_reg->enable);
4151 		gpio_input_map(buf, bp, sma_val, 3, NULL);
4152 		seq_printf(s, "%7s: %s, src: %s\n", "TS2",
4153 			   on ? " ON" : "OFF", buf);
4154 	}
4155 
4156 	if (bp->ts3) {
4157 		ts_reg = bp->ts3->mem;
4158 		on = ioread32(&ts_reg->enable);
4159 		gpio_input_map(buf, bp, sma_val, 6, NULL);
4160 		seq_printf(s, "%7s: %s, src: %s\n", "TS3",
4161 			   on ? " ON" : "OFF", buf);
4162 	}
4163 
4164 	if (bp->ts4) {
4165 		ts_reg = bp->ts4->mem;
4166 		on = ioread32(&ts_reg->enable);
4167 		gpio_input_map(buf, bp, sma_val, 7, NULL);
4168 		seq_printf(s, "%7s: %s, src: %s\n", "TS4",
4169 			   on ? " ON" : "OFF", buf);
4170 	}
4171 
4172 	if (bp->pps) {
4173 		ts_reg = bp->pps->mem;
4174 		src = "PHC";
4175 		on = ioread32(&ts_reg->enable);
4176 		map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
4177 		seq_printf(s, "%7s: %s, src: %s\n", "TS5",
4178 			   on && map ? " ON" : "OFF", src);
4179 
4180 		map = !!(bp->pps_req_map & OCP_REQ_PPS);
4181 		seq_printf(s, "%7s: %s, src: %s\n", "PPS",
4182 			   on && map ? " ON" : "OFF", src);
4183 	}
4184 
4185 	if (bp->fw_cap & OCP_CAP_SIGNAL)
4186 		for (i = 0; i < bp->signals_nr; i++)
4187 			_signal_summary_show(s, bp, i);
4188 
4189 	if (bp->fw_cap & OCP_CAP_FREQ)
4190 		for (i = 0; i < bp->freq_in_nr; i++)
4191 			_frequency_summary_show(s, i, bp->freq_in[i]);
4192 
4193 	if (bp->irig_out) {
4194 		ctrl = ioread32(&bp->irig_out->ctrl);
4195 		on = ctrl & IRIG_M_CTRL_ENABLE;
4196 		val = ioread32(&bp->irig_out->status);
4197 		gpio_output_map(buf, bp, sma_val, 4);
4198 		seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
4199 			   on ? " ON" : "OFF", val, (ctrl >> 16), buf);
4200 	}
4201 
4202 	if (bp->irig_in) {
4203 		on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
4204 		val = ioread32(&bp->irig_in->status);
4205 		gpio_input_map(buf, bp, sma_val, 4, NULL);
4206 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
4207 			   on ? " ON" : "OFF", val, buf);
4208 	}
4209 
4210 	if (bp->dcf_out) {
4211 		on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
4212 		val = ioread32(&bp->dcf_out->status);
4213 		gpio_output_map(buf, bp, sma_val, 5);
4214 		seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
4215 			   on ? " ON" : "OFF", val, buf);
4216 	}
4217 
4218 	if (bp->dcf_in) {
4219 		on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
4220 		val = ioread32(&bp->dcf_in->status);
4221 		gpio_input_map(buf, bp, sma_val, 5, NULL);
4222 		seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
4223 			   on ? " ON" : "OFF", val, buf);
4224 	}
4225 
4226 	if (bp->nmea_out) {
4227 		on = ioread32(&bp->nmea_out->ctrl) & 1;
4228 		val = ioread32(&bp->nmea_out->status);
4229 		seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
4230 			   on ? " ON" : "OFF", val);
4231 	}
4232 
4233 	/* compute src for PPS1, used below. */
4234 	if (bp->pps_select) {
4235 		val = ioread32(&bp->pps_select->gpio1);
4236 		src = &buf[80];
4237 		mac_src = "GNSS1";
4238 		if (val & 0x01) {
4239 			gpio_input_map(src, bp, sma_val, 0, NULL);
4240 			mac_src = src;
4241 		} else if (val & 0x02) {
4242 			src = "MAC";
4243 		} else if (val & 0x04) {
4244 			src = "GNSS1";
4245 		} else {
4246 			src = "----";
4247 			mac_src = src;
4248 		}
4249 	} else {
4250 		src = "?";
4251 		mac_src = src;
4252 	}
4253 	seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
4254 
4255 	gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
4256 	seq_printf(s, "MAC PPS2 src: %s\n", buf);
4257 
4258 	/* assumes automatic switchover/selection */
4259 	val = ioread32(&bp->reg->select);
4260 	switch (val >> 16) {
4261 	case 0:
4262 		sprintf(buf, "----");
4263 		break;
4264 	case 2:
4265 		sprintf(buf, "IRIG");
4266 		break;
4267 	case 3:
4268 		sprintf(buf, "%s via PPS1", src);
4269 		break;
4270 	case 6:
4271 		sprintf(buf, "DCF");
4272 		break;
4273 	default:
4274 		strcpy(buf, "unknown");
4275 		break;
4276 	}
4277 	seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
4278 		   bp->sync ? "sync" : "unsynced");
4279 
4280 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
4281 		struct timespec64 sys_ts;
4282 		s64 pre_ns, post_ns, ns;
4283 
4284 		pre_ns = timespec64_to_ns(&sts.pre_ts);
4285 		post_ns = timespec64_to_ns(&sts.post_ts);
4286 		ns = (pre_ns + post_ns) / 2;
4287 		ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
4288 		sys_ts = ns_to_timespec64(ns);
4289 
4290 		seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
4291 			   ts.tv_sec, ts.tv_nsec, &ts);
4292 		seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
4293 			   sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
4294 			   bp->utc_tai_offset);
4295 		seq_printf(s, "%7s: PHC:SYS offset: %lld  window: %lld\n", "",
4296 			   timespec64_to_ns(&ts) - ns,
4297 			   post_ns - pre_ns);
4298 	}
4299 
4300 	free_page((unsigned long)buf);
4301 	return 0;
4302 }
4303 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
4304 
4305 static int
ptp_ocp_tod_status_show(struct seq_file * s,void * data)4306 ptp_ocp_tod_status_show(struct seq_file *s, void *data)
4307 {
4308 	struct device *dev = s->private;
4309 	struct ptp_ocp *bp;
4310 	u32 val;
4311 	int idx;
4312 
4313 	bp = dev_get_drvdata(dev);
4314 
4315 	val = ioread32(&bp->tod->ctrl);
4316 	if (!(val & TOD_CTRL_ENABLE)) {
4317 		seq_printf(s, "TOD Slave disabled\n");
4318 		return 0;
4319 	}
4320 	seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
4321 
4322 	idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
4323 	idx += (val >> 16) & 3;
4324 	seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
4325 
4326 	idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
4327 	seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
4328 
4329 	val = ioread32(&bp->tod->version);
4330 	seq_printf(s, "TOD Version %d.%d.%d\n",
4331 		val >> 24, (val >> 16) & 0xff, val & 0xffff);
4332 
4333 	val = ioread32(&bp->tod->status);
4334 	seq_printf(s, "Status register: 0x%08X\n", val);
4335 
4336 	val = ioread32(&bp->tod->adj_sec);
4337 	idx = (val & ~INT_MAX) ? -1 : 1;
4338 	idx *= (val & INT_MAX);
4339 	seq_printf(s, "Correction seconds: %d\n", idx);
4340 
4341 	val = ioread32(&bp->tod->utc_status);
4342 	seq_printf(s, "UTC status register: 0x%08X\n", val);
4343 	seq_printf(s, "UTC offset: %ld  valid:%d\n",
4344 		val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
4345 	seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
4346 		val & TOD_STATUS_LEAP_VALID ? 1 : 0,
4347 		val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
4348 
4349 	val = ioread32(&bp->tod->leap);
4350 	seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
4351 
4352 	return 0;
4353 }
4354 DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
4355 
4356 static struct dentry *ptp_ocp_debugfs_root;
4357 
4358 static void
ptp_ocp_debugfs_add_device(struct ptp_ocp * bp)4359 ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
4360 {
4361 	struct dentry *d;
4362 
4363 	d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
4364 	bp->debug_root = d;
4365 	debugfs_create_file("summary", 0444, bp->debug_root,
4366 			    &bp->dev, &ptp_ocp_summary_fops);
4367 	if (bp->tod)
4368 		debugfs_create_file("tod_status", 0444, bp->debug_root,
4369 				    &bp->dev, &ptp_ocp_tod_status_fops);
4370 }
4371 
4372 static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp * bp)4373 ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
4374 {
4375 	debugfs_remove_recursive(bp->debug_root);
4376 }
4377 
4378 static void
ptp_ocp_debugfs_init(void)4379 ptp_ocp_debugfs_init(void)
4380 {
4381 	ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
4382 }
4383 
4384 static void
ptp_ocp_debugfs_fini(void)4385 ptp_ocp_debugfs_fini(void)
4386 {
4387 	debugfs_remove_recursive(ptp_ocp_debugfs_root);
4388 }
4389 
4390 static void
ptp_ocp_dev_release(struct device * dev)4391 ptp_ocp_dev_release(struct device *dev)
4392 {
4393 	struct ptp_ocp *bp = dev_get_drvdata(dev);
4394 
4395 	mutex_lock(&ptp_ocp_lock);
4396 	idr_remove(&ptp_ocp_idr, bp->id);
4397 	mutex_unlock(&ptp_ocp_lock);
4398 }
4399 
4400 static int
ptp_ocp_device_init(struct ptp_ocp * bp,struct pci_dev * pdev)4401 ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
4402 {
4403 	int i, err;
4404 
4405 	mutex_lock(&ptp_ocp_lock);
4406 	err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
4407 	mutex_unlock(&ptp_ocp_lock);
4408 	if (err < 0) {
4409 		dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
4410 		return err;
4411 	}
4412 	bp->id = err;
4413 
4414 	bp->ptp_info = ptp_ocp_clock_info;
4415 	spin_lock_init(&bp->lock);
4416 
4417 	for (i = 0; i < __PORT_COUNT; i++)
4418 		bp->port[i].line = -1;
4419 
4420 	bp->pdev = pdev;
4421 
4422 	device_initialize(&bp->dev);
4423 	dev_set_name(&bp->dev, "ocp%d", bp->id);
4424 	bp->dev.class = &timecard_class;
4425 	bp->dev.parent = &pdev->dev;
4426 	bp->dev.release = ptp_ocp_dev_release;
4427 	dev_set_drvdata(&bp->dev, bp);
4428 
4429 	err = device_add(&bp->dev);
4430 	if (err) {
4431 		dev_err(&bp->dev, "device add failed: %d\n", err);
4432 		goto out;
4433 	}
4434 
4435 	pci_set_drvdata(pdev, bp);
4436 
4437 	return 0;
4438 
4439 out:
4440 	put_device(&bp->dev);
4441 	return err;
4442 }
4443 
4444 static void
ptp_ocp_symlink(struct ptp_ocp * bp,struct device * child,const char * link)4445 ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
4446 {
4447 	struct device *dev = &bp->dev;
4448 
4449 	if (sysfs_create_link(&dev->kobj, &child->kobj, link))
4450 		dev_err(dev, "%s symlink failed\n", link);
4451 }
4452 
4453 static void
ptp_ocp_link_child(struct ptp_ocp * bp,const char * name,const char * link)4454 ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
4455 {
4456 	struct device *dev, *child;
4457 
4458 	dev = &bp->pdev->dev;
4459 
4460 	child = device_find_child_by_name(dev, name);
4461 	if (!child) {
4462 		dev_err(dev, "Could not find device %s\n", name);
4463 		return;
4464 	}
4465 
4466 	ptp_ocp_symlink(bp, child, link);
4467 	put_device(child);
4468 }
4469 
4470 static int
ptp_ocp_complete(struct ptp_ocp * bp)4471 ptp_ocp_complete(struct ptp_ocp *bp)
4472 {
4473 	struct pps_device *pps;
4474 	char buf[32];
4475 
4476 	sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
4477 	ptp_ocp_link_child(bp, buf, "ptp");
4478 
4479 	pps = pps_lookup_dev(bp->ptp);
4480 	if (pps)
4481 		ptp_ocp_symlink(bp, &pps->dev, "pps");
4482 
4483 	ptp_ocp_debugfs_add_device(bp);
4484 
4485 	return 0;
4486 }
4487 
4488 static void
ptp_ocp_phc_info(struct ptp_ocp * bp)4489 ptp_ocp_phc_info(struct ptp_ocp *bp)
4490 {
4491 	struct timespec64 ts;
4492 	u32 version, select;
4493 
4494 	version = ioread32(&bp->reg->version);
4495 	select = ioread32(&bp->reg->select);
4496 	dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
4497 		 version >> 24, (version >> 16) & 0xff, version & 0xffff,
4498 		 ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
4499 		 ptp_clock_index(bp->ptp));
4500 
4501 	if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
4502 		dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
4503 			 ts.tv_sec, ts.tv_nsec,
4504 			 bp->sync ? "in-sync" : "UNSYNCED");
4505 }
4506 
4507 static void
ptp_ocp_serial_info(struct device * dev,const char * name,int port,int baud)4508 ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
4509 {
4510 	if (port != -1)
4511 		dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
4512 }
4513 
4514 static void
ptp_ocp_info(struct ptp_ocp * bp)4515 ptp_ocp_info(struct ptp_ocp *bp)
4516 {
4517 	static int nmea_baud[] = {
4518 		1200, 2400, 4800, 9600, 19200, 38400,
4519 		57600, 115200, 230400, 460800, 921600,
4520 		1000000, 2000000
4521 	};
4522 	struct device *dev = &bp->pdev->dev;
4523 	u32 reg;
4524 	int i;
4525 
4526 	ptp_ocp_phc_info(bp);
4527 
4528 	for (i = 0; i < __PORT_COUNT; i++) {
4529 		if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
4530 			bp->port[PORT_NMEA].baud = -1;
4531 
4532 			reg = ioread32(&bp->nmea_out->uart_baud);
4533 			if (reg < ARRAY_SIZE(nmea_baud))
4534 				bp->port[PORT_NMEA].baud = nmea_baud[reg];
4535 		}
4536 		ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
4537 				    bp->port[i].baud);
4538 	}
4539 }
4540 
4541 static void
ptp_ocp_detach_sysfs(struct ptp_ocp * bp)4542 ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
4543 {
4544 	struct device *dev = &bp->dev;
4545 
4546 	sysfs_remove_link(&dev->kobj, "ptp");
4547 	sysfs_remove_link(&dev->kobj, "pps");
4548 }
4549 
4550 static void
ptp_ocp_detach(struct ptp_ocp * bp)4551 ptp_ocp_detach(struct ptp_ocp *bp)
4552 {
4553 	int i;
4554 
4555 	ptp_ocp_debugfs_remove_device(bp);
4556 	ptp_ocp_detach_sysfs(bp);
4557 	ptp_ocp_attr_group_del(bp);
4558 	timer_delete_sync(&bp->watchdog);
4559 	if (bp->ts0)
4560 		ptp_ocp_unregister_ext(bp->ts0);
4561 	if (bp->ts1)
4562 		ptp_ocp_unregister_ext(bp->ts1);
4563 	if (bp->ts2)
4564 		ptp_ocp_unregister_ext(bp->ts2);
4565 	if (bp->ts3)
4566 		ptp_ocp_unregister_ext(bp->ts3);
4567 	if (bp->ts4)
4568 		ptp_ocp_unregister_ext(bp->ts4);
4569 	if (bp->pps)
4570 		ptp_ocp_unregister_ext(bp->pps);
4571 	for (i = 0; i < 4; i++)
4572 		if (bp->signal_out[i])
4573 			ptp_ocp_unregister_ext(bp->signal_out[i]);
4574 	for (i = 0; i < __PORT_COUNT; i++)
4575 		if (bp->port[i].line != -1)
4576 			serial8250_unregister_port(bp->port[i].line);
4577 	platform_device_unregister(bp->spi_flash);
4578 	platform_device_unregister(bp->i2c_ctrl);
4579 	if (bp->i2c_clk)
4580 		clk_hw_unregister_fixed_rate(bp->i2c_clk);
4581 	if (bp->n_irqs)
4582 		pci_free_irq_vectors(bp->pdev);
4583 	if (bp->ptp)
4584 		ptp_clock_unregister(bp->ptp);
4585 	kfree(bp->ptp_info.pin_config);
4586 	device_unregister(&bp->dev);
4587 }
4588 
4589 static int
ptp_ocp_dpll_lock_status_get(const struct dpll_device * dpll,void * priv,enum dpll_lock_status * status,enum dpll_lock_status_error * status_error,struct netlink_ext_ack * extack)4590 ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
4591 			     enum dpll_lock_status *status,
4592 			     enum dpll_lock_status_error *status_error,
4593 			     struct netlink_ext_ack *extack)
4594 {
4595 	struct ptp_ocp *bp = priv;
4596 
4597 	*status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
4598 
4599 	return 0;
4600 }
4601 
ptp_ocp_dpll_state_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_state * state,struct netlink_ext_ack * extack)4602 static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
4603 				  const struct dpll_device *dpll, void *priv,
4604 				  enum dpll_pin_state *state,
4605 				  struct netlink_ext_ack *extack)
4606 {
4607 	struct ptp_ocp *bp = priv;
4608 	int idx;
4609 
4610 	if (bp->pps_select) {
4611 		idx = ioread32(&bp->pps_select->gpio1);
4612 		*state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
4613 						      DPLL_PIN_STATE_SELECTABLE;
4614 		return 0;
4615 	}
4616 	NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
4617 	return -EINVAL;
4618 }
4619 
ptp_ocp_dpll_mode_get(const struct dpll_device * dpll,void * priv,enum dpll_mode * mode,struct netlink_ext_ack * extack)4620 static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
4621 				 enum dpll_mode *mode, struct netlink_ext_ack *extack)
4622 {
4623 	*mode = DPLL_MODE_AUTOMATIC;
4624 	return 0;
4625 }
4626 
ptp_ocp_dpll_direction_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * priv,enum dpll_pin_direction * direction,struct netlink_ext_ack * extack)4627 static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
4628 				      void *pin_priv,
4629 				      const struct dpll_device *dpll,
4630 				      void *priv,
4631 				      enum dpll_pin_direction *direction,
4632 				      struct netlink_ext_ack *extack)
4633 {
4634 	struct ptp_ocp_sma_connector *sma = pin_priv;
4635 
4636 	*direction = sma->mode == SMA_MODE_IN ?
4637 				  DPLL_PIN_DIRECTION_INPUT :
4638 				  DPLL_PIN_DIRECTION_OUTPUT;
4639 	return 0;
4640 }
4641 
ptp_ocp_dpll_direction_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,enum dpll_pin_direction direction,struct netlink_ext_ack * extack)4642 static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
4643 				      void *pin_priv,
4644 				      const struct dpll_device *dpll,
4645 				      void *dpll_priv,
4646 				      enum dpll_pin_direction direction,
4647 				      struct netlink_ext_ack *extack)
4648 {
4649 	struct ptp_ocp_sma_connector *sma = pin_priv;
4650 	struct ptp_ocp *bp = dpll_priv;
4651 	enum ptp_ocp_sma_mode mode;
4652 	int sma_nr = (sma - bp->sma);
4653 
4654 	if (sma->fixed_dir)
4655 		return -EOPNOTSUPP;
4656 	mode = direction == DPLL_PIN_DIRECTION_INPUT ?
4657 			    SMA_MODE_IN : SMA_MODE_OUT;
4658 	return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
4659 }
4660 
ptp_ocp_dpll_frequency_set(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 frequency,struct netlink_ext_ack * extack)4661 static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
4662 				      void *pin_priv,
4663 				      const struct dpll_device *dpll,
4664 				      void *dpll_priv, u64 frequency,
4665 				      struct netlink_ext_ack *extack)
4666 {
4667 	struct ptp_ocp_sma_connector *sma = pin_priv;
4668 	struct ptp_ocp *bp = dpll_priv;
4669 	const struct ocp_selector *tbl;
4670 	int sma_nr = (sma - bp->sma);
4671 	int i;
4672 
4673 	if (sma->fixed_fcn)
4674 		return -EOPNOTSUPP;
4675 
4676 	tbl = bp->sma_op->tbl[sma->mode];
4677 	for (i = 0; tbl[i].name; i++)
4678 		if (tbl[i].frequency == frequency)
4679 			return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
4680 	return -EINVAL;
4681 }
4682 
ptp_ocp_dpll_frequency_get(const struct dpll_pin * pin,void * pin_priv,const struct dpll_device * dpll,void * dpll_priv,u64 * frequency,struct netlink_ext_ack * extack)4683 static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
4684 				      void *pin_priv,
4685 				      const struct dpll_device *dpll,
4686 				      void *dpll_priv, u64 *frequency,
4687 				      struct netlink_ext_ack *extack)
4688 {
4689 	struct ptp_ocp_sma_connector *sma = pin_priv;
4690 	struct ptp_ocp *bp = dpll_priv;
4691 	const struct ocp_selector *tbl;
4692 	int sma_nr = (sma - bp->sma);
4693 	u32 val;
4694 	int i;
4695 
4696 	val = bp->sma_op->get(bp, sma_nr + 1);
4697 	tbl = bp->sma_op->tbl[sma->mode];
4698 	for (i = 0; tbl[i].name; i++)
4699 		if (val == tbl[i].value) {
4700 			*frequency = tbl[i].frequency;
4701 			return 0;
4702 		}
4703 
4704 	return -EINVAL;
4705 }
4706 
4707 static const struct dpll_device_ops dpll_ops = {
4708 	.lock_status_get = ptp_ocp_dpll_lock_status_get,
4709 	.mode_get = ptp_ocp_dpll_mode_get,
4710 };
4711 
4712 static const struct dpll_pin_ops dpll_pins_ops = {
4713 	.frequency_get = ptp_ocp_dpll_frequency_get,
4714 	.frequency_set = ptp_ocp_dpll_frequency_set,
4715 	.direction_get = ptp_ocp_dpll_direction_get,
4716 	.direction_set = ptp_ocp_dpll_direction_set,
4717 	.state_on_dpll_get = ptp_ocp_dpll_state_get,
4718 };
4719 
4720 static void
ptp_ocp_sync_work(struct work_struct * work)4721 ptp_ocp_sync_work(struct work_struct *work)
4722 {
4723 	struct ptp_ocp *bp;
4724 	bool sync;
4725 
4726 	bp = container_of(work, struct ptp_ocp, sync_work.work);
4727 	sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
4728 
4729 	if (bp->sync != sync)
4730 		dpll_device_change_ntf(bp->dpll);
4731 
4732 	bp->sync = sync;
4733 
4734 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4735 }
4736 
4737 static int
ptp_ocp_probe(struct pci_dev * pdev,const struct pci_device_id * id)4738 ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
4739 {
4740 	struct devlink *devlink;
4741 	struct ptp_ocp *bp;
4742 	int err, i;
4743 	u64 clkid;
4744 
4745 	devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
4746 	if (!devlink) {
4747 		dev_err(&pdev->dev, "devlink_alloc failed\n");
4748 		return -ENOMEM;
4749 	}
4750 
4751 	err = pci_enable_device(pdev);
4752 	if (err) {
4753 		dev_err(&pdev->dev, "pci_enable_device\n");
4754 		goto out_free;
4755 	}
4756 
4757 	bp = devlink_priv(devlink);
4758 	err = ptp_ocp_device_init(bp, pdev);
4759 	if (err)
4760 		goto out_disable;
4761 
4762 	INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
4763 
4764 	/* compat mode.
4765 	 * Older FPGA firmware only returns 2 irq's.
4766 	 * allow this - if not all of the IRQ's are returned, skip the
4767 	 * extra devices and just register the clock.
4768 	 */
4769 	err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
4770 	if (err < 0) {
4771 		dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
4772 		goto out;
4773 	}
4774 	bp->n_irqs = err;
4775 	pci_set_master(pdev);
4776 
4777 	err = ptp_ocp_register_resources(bp, id->driver_data);
4778 	if (err)
4779 		goto out;
4780 
4781 	bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
4782 	if (IS_ERR(bp->ptp)) {
4783 		err = PTR_ERR(bp->ptp);
4784 		dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
4785 		bp->ptp = NULL;
4786 		goto out;
4787 	}
4788 
4789 	err = ptp_ocp_complete(bp);
4790 	if (err)
4791 		goto out;
4792 
4793 	ptp_ocp_info(bp);
4794 	devlink_register(devlink);
4795 
4796 	clkid = pci_get_dsn(pdev);
4797 	bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
4798 	if (IS_ERR(bp->dpll)) {
4799 		err = PTR_ERR(bp->dpll);
4800 		dev_err(&pdev->dev, "dpll_device_alloc failed\n");
4801 		goto out;
4802 	}
4803 
4804 	err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
4805 	if (err)
4806 		goto out;
4807 
4808 	for (i = 0; i < OCP_SMA_NUM; i++) {
4809 		bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
4810 		if (IS_ERR(bp->sma[i].dpll_pin)) {
4811 			err = PTR_ERR(bp->sma[i].dpll_pin);
4812 			goto out_dpll;
4813 		}
4814 
4815 		err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
4816 					&bp->sma[i]);
4817 		if (err) {
4818 			dpll_pin_put(bp->sma[i].dpll_pin);
4819 			goto out_dpll;
4820 		}
4821 	}
4822 	queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
4823 
4824 	return 0;
4825 out_dpll:
4826 	while (i) {
4827 		--i;
4828 		dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4829 		dpll_pin_put(bp->sma[i].dpll_pin);
4830 	}
4831 	dpll_device_put(bp->dpll);
4832 out:
4833 	ptp_ocp_detach(bp);
4834 out_disable:
4835 	pci_disable_device(pdev);
4836 out_free:
4837 	devlink_free(devlink);
4838 	return err;
4839 }
4840 
4841 static void
ptp_ocp_remove(struct pci_dev * pdev)4842 ptp_ocp_remove(struct pci_dev *pdev)
4843 {
4844 	struct ptp_ocp *bp = pci_get_drvdata(pdev);
4845 	struct devlink *devlink = priv_to_devlink(bp);
4846 	int i;
4847 
4848 	cancel_delayed_work_sync(&bp->sync_work);
4849 	for (i = 0; i < OCP_SMA_NUM; i++) {
4850 		if (bp->sma[i].dpll_pin) {
4851 			dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
4852 			dpll_pin_put(bp->sma[i].dpll_pin);
4853 		}
4854 	}
4855 	dpll_device_unregister(bp->dpll, &dpll_ops, bp);
4856 	dpll_device_put(bp->dpll);
4857 	devlink_unregister(devlink);
4858 	ptp_ocp_detach(bp);
4859 	pci_disable_device(pdev);
4860 
4861 	devlink_free(devlink);
4862 }
4863 
4864 static struct pci_driver ptp_ocp_driver = {
4865 	.name		= KBUILD_MODNAME,
4866 	.id_table	= ptp_ocp_pcidev_id,
4867 	.probe		= ptp_ocp_probe,
4868 	.remove		= ptp_ocp_remove,
4869 };
4870 
4871 static int
ptp_ocp_i2c_notifier_call(struct notifier_block * nb,unsigned long action,void * data)4872 ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
4873 			  unsigned long action, void *data)
4874 {
4875 	struct device *dev, *child = data;
4876 	struct ptp_ocp *bp;
4877 	bool add;
4878 
4879 	switch (action) {
4880 	case BUS_NOTIFY_ADD_DEVICE:
4881 	case BUS_NOTIFY_DEL_DEVICE:
4882 		add = action == BUS_NOTIFY_ADD_DEVICE;
4883 		break;
4884 	default:
4885 		return 0;
4886 	}
4887 
4888 	if (!i2c_verify_adapter(child))
4889 		return 0;
4890 
4891 	dev = child;
4892 	while ((dev = dev->parent))
4893 		if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
4894 			goto found;
4895 	return 0;
4896 
4897 found:
4898 	bp = dev_get_drvdata(dev);
4899 	if (add)
4900 		ptp_ocp_symlink(bp, child, "i2c");
4901 	else
4902 		sysfs_remove_link(&bp->dev.kobj, "i2c");
4903 
4904 	return 0;
4905 }
4906 
4907 static struct notifier_block ptp_ocp_i2c_notifier = {
4908 	.notifier_call = ptp_ocp_i2c_notifier_call,
4909 };
4910 
4911 static int __init
ptp_ocp_init(void)4912 ptp_ocp_init(void)
4913 {
4914 	const char *what;
4915 	int err;
4916 
4917 	ptp_ocp_debugfs_init();
4918 
4919 	what = "timecard class";
4920 	err = class_register(&timecard_class);
4921 	if (err)
4922 		goto out;
4923 
4924 	what = "i2c notifier";
4925 	err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4926 	if (err)
4927 		goto out_notifier;
4928 
4929 	what = "ptp_ocp driver";
4930 	err = pci_register_driver(&ptp_ocp_driver);
4931 	if (err)
4932 		goto out_register;
4933 
4934 	return 0;
4935 
4936 out_register:
4937 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4938 out_notifier:
4939 	class_unregister(&timecard_class);
4940 out:
4941 	ptp_ocp_debugfs_fini();
4942 	pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
4943 	return err;
4944 }
4945 
4946 static void __exit
ptp_ocp_fini(void)4947 ptp_ocp_fini(void)
4948 {
4949 	bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
4950 	pci_unregister_driver(&ptp_ocp_driver);
4951 	class_unregister(&timecard_class);
4952 	ptp_ocp_debugfs_fini();
4953 }
4954 
4955 module_init(ptp_ocp_init);
4956 module_exit(ptp_ocp_fini);
4957 
4958 MODULE_DESCRIPTION("OpenCompute TimeCard driver");
4959 MODULE_LICENSE("GPL v2");
4960