xref: /linux/rust/kernel/str.rs (revision ec7714e4947909190ffb3041a03311a975350fe0)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! String representations.
4 
5 use crate::alloc::{flags::*, AllocError, KVec};
6 use core::fmt::{self, Write};
7 use core::ops::{self, Deref, DerefMut, Index};
8 
9 use crate::prelude::*;
10 
11 /// Byte string without UTF-8 validity guarantee.
12 #[repr(transparent)]
13 pub struct BStr([u8]);
14 
15 impl BStr {
16     /// Returns the length of this string.
17     #[inline]
len(&self) -> usize18     pub const fn len(&self) -> usize {
19         self.0.len()
20     }
21 
22     /// Returns `true` if the string is empty.
23     #[inline]
is_empty(&self) -> bool24     pub const fn is_empty(&self) -> bool {
25         self.len() == 0
26     }
27 
28     /// Creates a [`BStr`] from a `[u8]`.
29     #[inline]
from_bytes(bytes: &[u8]) -> &Self30     pub const fn from_bytes(bytes: &[u8]) -> &Self {
31         // SAFETY: `BStr` is transparent to `[u8]`.
32         unsafe { &*(bytes as *const [u8] as *const BStr) }
33     }
34 
35     /// Strip a prefix from `self`. Delegates to [`slice::strip_prefix`].
36     ///
37     /// # Examples
38     ///
39     /// ```
40     /// # use kernel::b_str;
41     /// assert_eq!(Some(b_str!("bar")), b_str!("foobar").strip_prefix(b_str!("foo")));
42     /// assert_eq!(None, b_str!("foobar").strip_prefix(b_str!("bar")));
43     /// assert_eq!(Some(b_str!("foobar")), b_str!("foobar").strip_prefix(b_str!("")));
44     /// assert_eq!(Some(b_str!("")), b_str!("foobar").strip_prefix(b_str!("foobar")));
45     /// ```
strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr>46     pub fn strip_prefix(&self, pattern: impl AsRef<Self>) -> Option<&BStr> {
47         self.deref()
48             .strip_prefix(pattern.as_ref().deref())
49             .map(Self::from_bytes)
50     }
51 }
52 
53 impl fmt::Display for BStr {
54     /// Formats printable ASCII characters, escaping the rest.
55     ///
56     /// ```
57     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
58     /// let ascii = b_str!("Hello, BStr!");
59     /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
60     /// assert_eq!(s.as_bytes(), "Hello, BStr!".as_bytes());
61     ///
62     /// let non_ascii = b_str!("��");
63     /// let s = CString::try_from_fmt(fmt!("{}", non_ascii))?;
64     /// assert_eq!(s.as_bytes(), "\\xf0\\x9f\\xa6\\x80".as_bytes());
65     /// # Ok::<(), kernel::error::Error>(())
66     /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result67     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
68         for &b in &self.0 {
69             match b {
70                 // Common escape codes.
71                 b'\t' => f.write_str("\\t")?,
72                 b'\n' => f.write_str("\\n")?,
73                 b'\r' => f.write_str("\\r")?,
74                 // Printable characters.
75                 0x20..=0x7e => f.write_char(b as char)?,
76                 _ => write!(f, "\\x{b:02x}")?,
77             }
78         }
79         Ok(())
80     }
81 }
82 
83 impl fmt::Debug for BStr {
84     /// Formats printable ASCII characters with a double quote on either end,
85     /// escaping the rest.
86     ///
87     /// ```
88     /// # use kernel::{fmt, b_str, str::{BStr, CString}};
89     /// // Embedded double quotes are escaped.
90     /// let ascii = b_str!("Hello, \"BStr\"!");
91     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
92     /// assert_eq!(s.as_bytes(), "\"Hello, \\\"BStr\\\"!\"".as_bytes());
93     ///
94     /// let non_ascii = b_str!("��");
95     /// let s = CString::try_from_fmt(fmt!("{:?}", non_ascii))?;
96     /// assert_eq!(s.as_bytes(), "\"\\xf0\\x9f\\x98\\xba\"".as_bytes());
97     /// # Ok::<(), kernel::error::Error>(())
98     /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result99     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
100         f.write_char('"')?;
101         for &b in &self.0 {
102             match b {
103                 // Common escape codes.
104                 b'\t' => f.write_str("\\t")?,
105                 b'\n' => f.write_str("\\n")?,
106                 b'\r' => f.write_str("\\r")?,
107                 // String escape characters.
108                 b'\"' => f.write_str("\\\"")?,
109                 b'\\' => f.write_str("\\\\")?,
110                 // Printable characters.
111                 0x20..=0x7e => f.write_char(b as char)?,
112                 _ => write!(f, "\\x{b:02x}")?,
113             }
114         }
115         f.write_char('"')
116     }
117 }
118 
119 impl Deref for BStr {
120     type Target = [u8];
121 
122     #[inline]
deref(&self) -> &Self::Target123     fn deref(&self) -> &Self::Target {
124         &self.0
125     }
126 }
127 
128 impl PartialEq for BStr {
eq(&self, other: &Self) -> bool129     fn eq(&self, other: &Self) -> bool {
130         self.deref().eq(other.deref())
131     }
132 }
133 
134 impl<Idx> Index<Idx> for BStr
135 where
136     [u8]: Index<Idx, Output = [u8]>,
137 {
138     type Output = Self;
139 
index(&self, index: Idx) -> &Self::Output140     fn index(&self, index: Idx) -> &Self::Output {
141         BStr::from_bytes(&self.0[index])
142     }
143 }
144 
145 impl AsRef<BStr> for [u8] {
as_ref(&self) -> &BStr146     fn as_ref(&self) -> &BStr {
147         BStr::from_bytes(self)
148     }
149 }
150 
151 impl AsRef<BStr> for BStr {
as_ref(&self) -> &BStr152     fn as_ref(&self) -> &BStr {
153         self
154     }
155 }
156 
157 /// Creates a new [`BStr`] from a string literal.
158 ///
159 /// `b_str!` converts the supplied string literal to byte string, so non-ASCII
160 /// characters can be included.
161 ///
162 /// # Examples
163 ///
164 /// ```
165 /// # use kernel::b_str;
166 /// # use kernel::str::BStr;
167 /// const MY_BSTR: &BStr = b_str!("My awesome BStr!");
168 /// ```
169 #[macro_export]
170 macro_rules! b_str {
171     ($str:literal) => {{
172         const S: &'static str = $str;
173         const C: &'static $crate::str::BStr = $crate::str::BStr::from_bytes(S.as_bytes());
174         C
175     }};
176 }
177 
178 /// Possible errors when using conversion functions in [`CStr`].
179 #[derive(Debug, Clone, Copy)]
180 pub enum CStrConvertError {
181     /// Supplied bytes contain an interior `NUL`.
182     InteriorNul,
183 
184     /// Supplied bytes are not terminated by `NUL`.
185     NotNulTerminated,
186 }
187 
188 impl From<CStrConvertError> for Error {
189     #[inline]
from(_: CStrConvertError) -> Error190     fn from(_: CStrConvertError) -> Error {
191         EINVAL
192     }
193 }
194 
195 /// A string that is guaranteed to have exactly one `NUL` byte, which is at the
196 /// end.
197 ///
198 /// Used for interoperability with kernel APIs that take C strings.
199 #[repr(transparent)]
200 pub struct CStr([u8]);
201 
202 impl CStr {
203     /// Returns the length of this string excluding `NUL`.
204     #[inline]
len(&self) -> usize205     pub const fn len(&self) -> usize {
206         self.len_with_nul() - 1
207     }
208 
209     /// Returns the length of this string with `NUL`.
210     #[inline]
len_with_nul(&self) -> usize211     pub const fn len_with_nul(&self) -> usize {
212         if self.0.is_empty() {
213             // SAFETY: This is one of the invariant of `CStr`.
214             // We add a `unreachable_unchecked` here to hint the optimizer that
215             // the value returned from this function is non-zero.
216             unsafe { core::hint::unreachable_unchecked() };
217         }
218         self.0.len()
219     }
220 
221     /// Returns `true` if the string only includes `NUL`.
222     #[inline]
is_empty(&self) -> bool223     pub const fn is_empty(&self) -> bool {
224         self.len() == 0
225     }
226 
227     /// Wraps a raw C string pointer.
228     ///
229     /// # Safety
230     ///
231     /// `ptr` must be a valid pointer to a `NUL`-terminated C string, and it must
232     /// last at least `'a`. When `CStr` is alive, the memory pointed by `ptr`
233     /// must not be mutated.
234     #[inline]
from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self235     pub unsafe fn from_char_ptr<'a>(ptr: *const crate::ffi::c_char) -> &'a Self {
236         // SAFETY: The safety precondition guarantees `ptr` is a valid pointer
237         // to a `NUL`-terminated C string.
238         let len = unsafe { bindings::strlen(ptr) } + 1;
239         // SAFETY: Lifetime guaranteed by the safety precondition.
240         let bytes = unsafe { core::slice::from_raw_parts(ptr as _, len) };
241         // SAFETY: As `len` is returned by `strlen`, `bytes` does not contain interior `NUL`.
242         // As we have added 1 to `len`, the last byte is known to be `NUL`.
243         unsafe { Self::from_bytes_with_nul_unchecked(bytes) }
244     }
245 
246     /// Creates a [`CStr`] from a `[u8]`.
247     ///
248     /// The provided slice must be `NUL`-terminated, does not contain any
249     /// interior `NUL` bytes.
from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError>250     pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, CStrConvertError> {
251         if bytes.is_empty() {
252             return Err(CStrConvertError::NotNulTerminated);
253         }
254         if bytes[bytes.len() - 1] != 0 {
255             return Err(CStrConvertError::NotNulTerminated);
256         }
257         let mut i = 0;
258         // `i + 1 < bytes.len()` allows LLVM to optimize away bounds checking,
259         // while it couldn't optimize away bounds checks for `i < bytes.len() - 1`.
260         while i + 1 < bytes.len() {
261             if bytes[i] == 0 {
262                 return Err(CStrConvertError::InteriorNul);
263             }
264             i += 1;
265         }
266         // SAFETY: We just checked that all properties hold.
267         Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
268     }
269 
270     /// Creates a [`CStr`] from a `[u8]` without performing any additional
271     /// checks.
272     ///
273     /// # Safety
274     ///
275     /// `bytes` *must* end with a `NUL` byte, and should only have a single
276     /// `NUL` byte (or the string will be truncated).
277     #[inline]
from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr278     pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
279         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
280         unsafe { core::mem::transmute(bytes) }
281     }
282 
283     /// Creates a mutable [`CStr`] from a `[u8]` without performing any
284     /// additional checks.
285     ///
286     /// # Safety
287     ///
288     /// `bytes` *must* end with a `NUL` byte, and should only have a single
289     /// `NUL` byte (or the string will be truncated).
290     #[inline]
from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr291     pub unsafe fn from_bytes_with_nul_unchecked_mut(bytes: &mut [u8]) -> &mut CStr {
292         // SAFETY: Properties of `bytes` guaranteed by the safety precondition.
293         unsafe { &mut *(bytes as *mut [u8] as *mut CStr) }
294     }
295 
296     /// Returns a C pointer to the string.
297     #[inline]
as_char_ptr(&self) -> *const crate::ffi::c_char298     pub const fn as_char_ptr(&self) -> *const crate::ffi::c_char {
299         self.0.as_ptr()
300     }
301 
302     /// Convert the string to a byte slice without the trailing `NUL` byte.
303     #[inline]
as_bytes(&self) -> &[u8]304     pub fn as_bytes(&self) -> &[u8] {
305         &self.0[..self.len()]
306     }
307 
308     /// Convert the string to a byte slice containing the trailing `NUL` byte.
309     #[inline]
as_bytes_with_nul(&self) -> &[u8]310     pub const fn as_bytes_with_nul(&self) -> &[u8] {
311         &self.0
312     }
313 
314     /// Yields a [`&str`] slice if the [`CStr`] contains valid UTF-8.
315     ///
316     /// If the contents of the [`CStr`] are valid UTF-8 data, this
317     /// function will return the corresponding [`&str`] slice. Otherwise,
318     /// it will return an error with details of where UTF-8 validation failed.
319     ///
320     /// # Examples
321     ///
322     /// ```
323     /// # use kernel::str::CStr;
324     /// let cstr = CStr::from_bytes_with_nul(b"foo\0")?;
325     /// assert_eq!(cstr.to_str(), Ok("foo"));
326     /// # Ok::<(), kernel::error::Error>(())
327     /// ```
328     #[inline]
to_str(&self) -> Result<&str, core::str::Utf8Error>329     pub fn to_str(&self) -> Result<&str, core::str::Utf8Error> {
330         core::str::from_utf8(self.as_bytes())
331     }
332 
333     /// Unsafely convert this [`CStr`] into a [`&str`], without checking for
334     /// valid UTF-8.
335     ///
336     /// # Safety
337     ///
338     /// The contents must be valid UTF-8.
339     ///
340     /// # Examples
341     ///
342     /// ```
343     /// # use kernel::c_str;
344     /// # use kernel::str::CStr;
345     /// let bar = c_str!("ツ");
346     /// // SAFETY: String literals are guaranteed to be valid UTF-8
347     /// // by the Rust compiler.
348     /// assert_eq!(unsafe { bar.as_str_unchecked() }, "ツ");
349     /// ```
350     #[inline]
as_str_unchecked(&self) -> &str351     pub unsafe fn as_str_unchecked(&self) -> &str {
352         // SAFETY: TODO.
353         unsafe { core::str::from_utf8_unchecked(self.as_bytes()) }
354     }
355 
356     /// Convert this [`CStr`] into a [`CString`] by allocating memory and
357     /// copying over the string data.
to_cstring(&self) -> Result<CString, AllocError>358     pub fn to_cstring(&self) -> Result<CString, AllocError> {
359         CString::try_from(self)
360     }
361 
362     /// Converts this [`CStr`] to its ASCII lower case equivalent in-place.
363     ///
364     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
365     /// but non-ASCII letters are unchanged.
366     ///
367     /// To return a new lowercased value without modifying the existing one, use
368     /// [`to_ascii_lowercase()`].
369     ///
370     /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
make_ascii_lowercase(&mut self)371     pub fn make_ascii_lowercase(&mut self) {
372         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
373         // string.
374         self.0.make_ascii_lowercase();
375     }
376 
377     /// Converts this [`CStr`] to its ASCII upper case equivalent in-place.
378     ///
379     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
380     /// but non-ASCII letters are unchanged.
381     ///
382     /// To return a new uppercased value without modifying the existing one, use
383     /// [`to_ascii_uppercase()`].
384     ///
385     /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
make_ascii_uppercase(&mut self)386     pub fn make_ascii_uppercase(&mut self) {
387         // INVARIANT: This doesn't introduce or remove NUL bytes in the C
388         // string.
389         self.0.make_ascii_uppercase();
390     }
391 
392     /// Returns a copy of this [`CString`] where each character is mapped to its
393     /// ASCII lower case equivalent.
394     ///
395     /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
396     /// but non-ASCII letters are unchanged.
397     ///
398     /// To lowercase the value in-place, use [`make_ascii_lowercase`].
399     ///
400     /// [`make_ascii_lowercase`]: str::make_ascii_lowercase
to_ascii_lowercase(&self) -> Result<CString, AllocError>401     pub fn to_ascii_lowercase(&self) -> Result<CString, AllocError> {
402         let mut s = self.to_cstring()?;
403 
404         s.make_ascii_lowercase();
405 
406         Ok(s)
407     }
408 
409     /// Returns a copy of this [`CString`] where each character is mapped to its
410     /// ASCII upper case equivalent.
411     ///
412     /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
413     /// but non-ASCII letters are unchanged.
414     ///
415     /// To uppercase the value in-place, use [`make_ascii_uppercase`].
416     ///
417     /// [`make_ascii_uppercase`]: str::make_ascii_uppercase
to_ascii_uppercase(&self) -> Result<CString, AllocError>418     pub fn to_ascii_uppercase(&self) -> Result<CString, AllocError> {
419         let mut s = self.to_cstring()?;
420 
421         s.make_ascii_uppercase();
422 
423         Ok(s)
424     }
425 }
426 
427 impl fmt::Display for CStr {
428     /// Formats printable ASCII characters, escaping the rest.
429     ///
430     /// ```
431     /// # use kernel::c_str;
432     /// # use kernel::fmt;
433     /// # use kernel::str::CStr;
434     /// # use kernel::str::CString;
435     /// let penguin = c_str!("��");
436     /// let s = CString::try_from_fmt(fmt!("{}", penguin))?;
437     /// assert_eq!(s.as_bytes_with_nul(), "\\xf0\\x9f\\x90\\xa7\0".as_bytes());
438     ///
439     /// let ascii = c_str!("so \"cool\"");
440     /// let s = CString::try_from_fmt(fmt!("{}", ascii))?;
441     /// assert_eq!(s.as_bytes_with_nul(), "so \"cool\"\0".as_bytes());
442     /// # Ok::<(), kernel::error::Error>(())
443     /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result444     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
445         for &c in self.as_bytes() {
446             if (0x20..0x7f).contains(&c) {
447                 // Printable character.
448                 f.write_char(c as char)?;
449             } else {
450                 write!(f, "\\x{c:02x}")?;
451             }
452         }
453         Ok(())
454     }
455 }
456 
457 impl fmt::Debug for CStr {
458     /// Formats printable ASCII characters with a double quote on either end, escaping the rest.
459     ///
460     /// ```
461     /// # use kernel::c_str;
462     /// # use kernel::fmt;
463     /// # use kernel::str::CStr;
464     /// # use kernel::str::CString;
465     /// let penguin = c_str!("��");
466     /// let s = CString::try_from_fmt(fmt!("{:?}", penguin))?;
467     /// assert_eq!(s.as_bytes_with_nul(), "\"\\xf0\\x9f\\x90\\xa7\"\0".as_bytes());
468     ///
469     /// // Embedded double quotes are escaped.
470     /// let ascii = c_str!("so \"cool\"");
471     /// let s = CString::try_from_fmt(fmt!("{:?}", ascii))?;
472     /// assert_eq!(s.as_bytes_with_nul(), "\"so \\\"cool\\\"\"\0".as_bytes());
473     /// # Ok::<(), kernel::error::Error>(())
474     /// ```
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result475     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
476         f.write_str("\"")?;
477         for &c in self.as_bytes() {
478             match c {
479                 // Printable characters.
480                 b'\"' => f.write_str("\\\"")?,
481                 0x20..=0x7e => f.write_char(c as char)?,
482                 _ => write!(f, "\\x{c:02x}")?,
483             }
484         }
485         f.write_str("\"")
486     }
487 }
488 
489 impl AsRef<BStr> for CStr {
490     #[inline]
as_ref(&self) -> &BStr491     fn as_ref(&self) -> &BStr {
492         BStr::from_bytes(self.as_bytes())
493     }
494 }
495 
496 impl Deref for CStr {
497     type Target = BStr;
498 
499     #[inline]
deref(&self) -> &Self::Target500     fn deref(&self) -> &Self::Target {
501         self.as_ref()
502     }
503 }
504 
505 impl Index<ops::RangeFrom<usize>> for CStr {
506     type Output = CStr;
507 
508     #[inline]
index(&self, index: ops::RangeFrom<usize>) -> &Self::Output509     fn index(&self, index: ops::RangeFrom<usize>) -> &Self::Output {
510         // Delegate bounds checking to slice.
511         // Assign to _ to mute clippy's unnecessary operation warning.
512         let _ = &self.as_bytes()[index.start..];
513         // SAFETY: We just checked the bounds.
514         unsafe { Self::from_bytes_with_nul_unchecked(&self.0[index.start..]) }
515     }
516 }
517 
518 impl Index<ops::RangeFull> for CStr {
519     type Output = CStr;
520 
521     #[inline]
index(&self, _index: ops::RangeFull) -> &Self::Output522     fn index(&self, _index: ops::RangeFull) -> &Self::Output {
523         self
524     }
525 }
526 
527 mod private {
528     use core::ops;
529 
530     // Marker trait for index types that can be forward to `BStr`.
531     pub trait CStrIndex {}
532 
533     impl CStrIndex for usize {}
534     impl CStrIndex for ops::Range<usize> {}
535     impl CStrIndex for ops::RangeInclusive<usize> {}
536     impl CStrIndex for ops::RangeToInclusive<usize> {}
537 }
538 
539 impl<Idx> Index<Idx> for CStr
540 where
541     Idx: private::CStrIndex,
542     BStr: Index<Idx>,
543 {
544     type Output = <BStr as Index<Idx>>::Output;
545 
546     #[inline]
index(&self, index: Idx) -> &Self::Output547     fn index(&self, index: Idx) -> &Self::Output {
548         &self.as_ref()[index]
549     }
550 }
551 
552 /// Creates a new [`CStr`] from a string literal.
553 ///
554 /// The string literal should not contain any `NUL` bytes.
555 ///
556 /// # Examples
557 ///
558 /// ```
559 /// # use kernel::c_str;
560 /// # use kernel::str::CStr;
561 /// const MY_CSTR: &CStr = c_str!("My awesome CStr!");
562 /// ```
563 #[macro_export]
564 macro_rules! c_str {
565     ($str:expr) => {{
566         const S: &str = concat!($str, "\0");
567         const C: &$crate::str::CStr = match $crate::str::CStr::from_bytes_with_nul(S.as_bytes()) {
568             Ok(v) => v,
569             Err(_) => panic!("string contains interior NUL"),
570         };
571         C
572     }};
573 }
574 
575 #[kunit_tests(rust_kernel_str)]
576 mod tests {
577     use super::*;
578 
579     macro_rules! format {
580         ($($f:tt)*) => ({
581             CString::try_from_fmt(::kernel::fmt!($($f)*))?.to_str()?
582         })
583     }
584 
585     const ALL_ASCII_CHARS: &str =
586         "\\x01\\x02\\x03\\x04\\x05\\x06\\x07\\x08\\x09\\x0a\\x0b\\x0c\\x0d\\x0e\\x0f\
587         \\x10\\x11\\x12\\x13\\x14\\x15\\x16\\x17\\x18\\x19\\x1a\\x1b\\x1c\\x1d\\x1e\\x1f \
588         !\"#$%&'()*+,-./0123456789:;<=>?@\
589         ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~\\x7f\
590         \\x80\\x81\\x82\\x83\\x84\\x85\\x86\\x87\\x88\\x89\\x8a\\x8b\\x8c\\x8d\\x8e\\x8f\
591         \\x90\\x91\\x92\\x93\\x94\\x95\\x96\\x97\\x98\\x99\\x9a\\x9b\\x9c\\x9d\\x9e\\x9f\
592         \\xa0\\xa1\\xa2\\xa3\\xa4\\xa5\\xa6\\xa7\\xa8\\xa9\\xaa\\xab\\xac\\xad\\xae\\xaf\
593         \\xb0\\xb1\\xb2\\xb3\\xb4\\xb5\\xb6\\xb7\\xb8\\xb9\\xba\\xbb\\xbc\\xbd\\xbe\\xbf\
594         \\xc0\\xc1\\xc2\\xc3\\xc4\\xc5\\xc6\\xc7\\xc8\\xc9\\xca\\xcb\\xcc\\xcd\\xce\\xcf\
595         \\xd0\\xd1\\xd2\\xd3\\xd4\\xd5\\xd6\\xd7\\xd8\\xd9\\xda\\xdb\\xdc\\xdd\\xde\\xdf\
596         \\xe0\\xe1\\xe2\\xe3\\xe4\\xe5\\xe6\\xe7\\xe8\\xe9\\xea\\xeb\\xec\\xed\\xee\\xef\
597         \\xf0\\xf1\\xf2\\xf3\\xf4\\xf5\\xf6\\xf7\\xf8\\xf9\\xfa\\xfb\\xfc\\xfd\\xfe\\xff";
598 
599     #[test]
test_cstr_to_str() -> Result600     fn test_cstr_to_str() -> Result {
601         let good_bytes = b"\xf0\x9f\xa6\x80\0";
602         let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
603         let checked_str = checked_cstr.to_str()?;
604         assert_eq!(checked_str, "��");
605         Ok(())
606     }
607 
608     #[test]
test_cstr_to_str_invalid_utf8() -> Result609     fn test_cstr_to_str_invalid_utf8() -> Result {
610         let bad_bytes = b"\xc3\x28\0";
611         let checked_cstr = CStr::from_bytes_with_nul(bad_bytes)?;
612         assert!(checked_cstr.to_str().is_err());
613         Ok(())
614     }
615 
616     #[test]
test_cstr_as_str_unchecked() -> Result617     fn test_cstr_as_str_unchecked() -> Result {
618         let good_bytes = b"\xf0\x9f\x90\xA7\0";
619         let checked_cstr = CStr::from_bytes_with_nul(good_bytes)?;
620         // SAFETY: The contents come from a string literal which contains valid UTF-8.
621         let unchecked_str = unsafe { checked_cstr.as_str_unchecked() };
622         assert_eq!(unchecked_str, "��");
623         Ok(())
624     }
625 
626     #[test]
test_cstr_display() -> Result627     fn test_cstr_display() -> Result {
628         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
629         assert_eq!(format!("{hello_world}"), "hello, world!");
630         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
631         assert_eq!(format!("{non_printables}"), "\\x01\\x09\\x0a");
632         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
633         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
634         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
635         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
636         Ok(())
637     }
638 
639     #[test]
test_cstr_display_all_bytes() -> Result640     fn test_cstr_display_all_bytes() -> Result {
641         let mut bytes: [u8; 256] = [0; 256];
642         // fill `bytes` with [1..=255] + [0]
643         for i in u8::MIN..=u8::MAX {
644             bytes[i as usize] = i.wrapping_add(1);
645         }
646         let cstr = CStr::from_bytes_with_nul(&bytes)?;
647         assert_eq!(format!("{cstr}"), ALL_ASCII_CHARS);
648         Ok(())
649     }
650 
651     #[test]
test_cstr_debug() -> Result652     fn test_cstr_debug() -> Result {
653         let hello_world = CStr::from_bytes_with_nul(b"hello, world!\0")?;
654         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
655         let non_printables = CStr::from_bytes_with_nul(b"\x01\x09\x0a\0")?;
656         assert_eq!(format!("{non_printables:?}"), "\"\\x01\\x09\\x0a\"");
657         let non_ascii = CStr::from_bytes_with_nul(b"d\xe9j\xe0 vu\0")?;
658         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
659         let good_bytes = CStr::from_bytes_with_nul(b"\xf0\x9f\xa6\x80\0")?;
660         assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
661         Ok(())
662     }
663 
664     #[test]
test_bstr_display() -> Result665     fn test_bstr_display() -> Result {
666         let hello_world = BStr::from_bytes(b"hello, world!");
667         assert_eq!(format!("{hello_world}"), "hello, world!");
668         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
669         assert_eq!(format!("{escapes}"), "_\\t_\\n_\\r_\\_'_\"_");
670         let others = BStr::from_bytes(b"\x01");
671         assert_eq!(format!("{others}"), "\\x01");
672         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
673         assert_eq!(format!("{non_ascii}"), "d\\xe9j\\xe0 vu");
674         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
675         assert_eq!(format!("{good_bytes}"), "\\xf0\\x9f\\xa6\\x80");
676         Ok(())
677     }
678 
679     #[test]
test_bstr_debug() -> Result680     fn test_bstr_debug() -> Result {
681         let hello_world = BStr::from_bytes(b"hello, world!");
682         assert_eq!(format!("{hello_world:?}"), "\"hello, world!\"");
683         let escapes = BStr::from_bytes(b"_\t_\n_\r_\\_\'_\"_");
684         assert_eq!(format!("{escapes:?}"), "\"_\\t_\\n_\\r_\\\\_'_\\\"_\"");
685         let others = BStr::from_bytes(b"\x01");
686         assert_eq!(format!("{others:?}"), "\"\\x01\"");
687         let non_ascii = BStr::from_bytes(b"d\xe9j\xe0 vu");
688         assert_eq!(format!("{non_ascii:?}"), "\"d\\xe9j\\xe0 vu\"");
689         let good_bytes = BStr::from_bytes(b"\xf0\x9f\xa6\x80");
690         assert_eq!(format!("{good_bytes:?}"), "\"\\xf0\\x9f\\xa6\\x80\"");
691         Ok(())
692     }
693 }
694 
695 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
696 ///
697 /// It does not fail if callers write past the end of the buffer so that they can calculate the
698 /// size required to fit everything.
699 ///
700 /// # Invariants
701 ///
702 /// The memory region between `pos` (inclusive) and `end` (exclusive) is valid for writes if `pos`
703 /// is less than `end`.
704 pub(crate) struct RawFormatter {
705     // Use `usize` to use `saturating_*` functions.
706     beg: usize,
707     pos: usize,
708     end: usize,
709 }
710 
711 impl RawFormatter {
712     /// Creates a new instance of [`RawFormatter`] with an empty buffer.
new() -> Self713     fn new() -> Self {
714         // INVARIANT: The buffer is empty, so the region that needs to be writable is empty.
715         Self {
716             beg: 0,
717             pos: 0,
718             end: 0,
719         }
720     }
721 
722     /// Creates a new instance of [`RawFormatter`] with the given buffer pointers.
723     ///
724     /// # Safety
725     ///
726     /// If `pos` is less than `end`, then the region between `pos` (inclusive) and `end`
727     /// (exclusive) must be valid for writes for the lifetime of the returned [`RawFormatter`].
from_ptrs(pos: *mut u8, end: *mut u8) -> Self728     pub(crate) unsafe fn from_ptrs(pos: *mut u8, end: *mut u8) -> Self {
729         // INVARIANT: The safety requirements guarantee the type invariants.
730         Self {
731             beg: pos as _,
732             pos: pos as _,
733             end: end as _,
734         }
735     }
736 
737     /// Creates a new instance of [`RawFormatter`] with the given buffer.
738     ///
739     /// # Safety
740     ///
741     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
742     /// for the lifetime of the returned [`RawFormatter`].
from_buffer(buf: *mut u8, len: usize) -> Self743     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
744         let pos = buf as usize;
745         // INVARIANT: We ensure that `end` is never less than `buf`, and the safety requirements
746         // guarantees that the memory region is valid for writes.
747         Self {
748             pos,
749             beg: pos,
750             end: pos.saturating_add(len),
751         }
752     }
753 
754     /// Returns the current insert position.
755     ///
756     /// N.B. It may point to invalid memory.
pos(&self) -> *mut u8757     pub(crate) fn pos(&self) -> *mut u8 {
758         self.pos as _
759     }
760 
761     /// Returns the number of bytes written to the formatter.
bytes_written(&self) -> usize762     pub(crate) fn bytes_written(&self) -> usize {
763         self.pos - self.beg
764     }
765 }
766 
767 impl fmt::Write for RawFormatter {
write_str(&mut self, s: &str) -> fmt::Result768     fn write_str(&mut self, s: &str) -> fmt::Result {
769         // `pos` value after writing `len` bytes. This does not have to be bounded by `end`, but we
770         // don't want it to wrap around to 0.
771         let pos_new = self.pos.saturating_add(s.len());
772 
773         // Amount that we can copy. `saturating_sub` ensures we get 0 if `pos` goes past `end`.
774         let len_to_copy = core::cmp::min(pos_new, self.end).saturating_sub(self.pos);
775 
776         if len_to_copy > 0 {
777             // SAFETY: If `len_to_copy` is non-zero, then we know `pos` has not gone past `end`
778             // yet, so it is valid for write per the type invariants.
779             unsafe {
780                 core::ptr::copy_nonoverlapping(
781                     s.as_bytes().as_ptr(),
782                     self.pos as *mut u8,
783                     len_to_copy,
784                 )
785             };
786         }
787 
788         self.pos = pos_new;
789         Ok(())
790     }
791 }
792 
793 /// Allows formatting of [`fmt::Arguments`] into a raw buffer.
794 ///
795 /// Fails if callers attempt to write more than will fit in the buffer.
796 pub(crate) struct Formatter(RawFormatter);
797 
798 impl Formatter {
799     /// Creates a new instance of [`Formatter`] with the given buffer.
800     ///
801     /// # Safety
802     ///
803     /// The memory region starting at `buf` and extending for `len` bytes must be valid for writes
804     /// for the lifetime of the returned [`Formatter`].
from_buffer(buf: *mut u8, len: usize) -> Self805     pub(crate) unsafe fn from_buffer(buf: *mut u8, len: usize) -> Self {
806         // SAFETY: The safety requirements of this function satisfy those of the callee.
807         Self(unsafe { RawFormatter::from_buffer(buf, len) })
808     }
809 }
810 
811 impl Deref for Formatter {
812     type Target = RawFormatter;
813 
deref(&self) -> &Self::Target814     fn deref(&self) -> &Self::Target {
815         &self.0
816     }
817 }
818 
819 impl fmt::Write for Formatter {
write_str(&mut self, s: &str) -> fmt::Result820     fn write_str(&mut self, s: &str) -> fmt::Result {
821         self.0.write_str(s)?;
822 
823         // Fail the request if we go past the end of the buffer.
824         if self.0.pos > self.0.end {
825             Err(fmt::Error)
826         } else {
827             Ok(())
828         }
829     }
830 }
831 
832 /// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
833 ///
834 /// Used for interoperability with kernel APIs that take C strings.
835 ///
836 /// # Invariants
837 ///
838 /// The string is always `NUL`-terminated and contains no other `NUL` bytes.
839 ///
840 /// # Examples
841 ///
842 /// ```
843 /// use kernel::{str::CString, fmt};
844 ///
845 /// let s = CString::try_from_fmt(fmt!("{}{}{}", "abc", 10, 20))?;
846 /// assert_eq!(s.as_bytes_with_nul(), "abc1020\0".as_bytes());
847 ///
848 /// let tmp = "testing";
849 /// let s = CString::try_from_fmt(fmt!("{tmp}{}", 123))?;
850 /// assert_eq!(s.as_bytes_with_nul(), "testing123\0".as_bytes());
851 ///
852 /// // This fails because it has an embedded `NUL` byte.
853 /// let s = CString::try_from_fmt(fmt!("a\0b{}", 123));
854 /// assert_eq!(s.is_ok(), false);
855 /// # Ok::<(), kernel::error::Error>(())
856 /// ```
857 pub struct CString {
858     buf: KVec<u8>,
859 }
860 
861 impl CString {
862     /// Creates an instance of [`CString`] from the given formatted arguments.
try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error>863     pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
864         // Calculate the size needed (formatted string plus `NUL` terminator).
865         let mut f = RawFormatter::new();
866         f.write_fmt(args)?;
867         f.write_str("\0")?;
868         let size = f.bytes_written();
869 
870         // Allocate a vector with the required number of bytes, and write to it.
871         let mut buf = KVec::with_capacity(size, GFP_KERNEL)?;
872         // SAFETY: The buffer stored in `buf` is at least of size `size` and is valid for writes.
873         let mut f = unsafe { Formatter::from_buffer(buf.as_mut_ptr(), size) };
874         f.write_fmt(args)?;
875         f.write_str("\0")?;
876 
877         // SAFETY: The number of bytes that can be written to `f` is bounded by `size`, which is
878         // `buf`'s capacity. The contents of the buffer have been initialised by writes to `f`.
879         unsafe { buf.inc_len(f.bytes_written()) };
880 
881         // Check that there are no `NUL` bytes before the end.
882         // SAFETY: The buffer is valid for read because `f.bytes_written()` is bounded by `size`
883         // (which the minimum buffer size) and is non-zero (we wrote at least the `NUL` terminator)
884         // so `f.bytes_written() - 1` doesn't underflow.
885         let ptr = unsafe { bindings::memchr(buf.as_ptr().cast(), 0, f.bytes_written() - 1) };
886         if !ptr.is_null() {
887             return Err(EINVAL);
888         }
889 
890         // INVARIANT: We wrote the `NUL` terminator and checked above that no other `NUL` bytes
891         // exist in the buffer.
892         Ok(Self { buf })
893     }
894 }
895 
896 impl Deref for CString {
897     type Target = CStr;
898 
deref(&self) -> &Self::Target899     fn deref(&self) -> &Self::Target {
900         // SAFETY: The type invariants guarantee that the string is `NUL`-terminated and that no
901         // other `NUL` bytes exist.
902         unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
903     }
904 }
905 
906 impl DerefMut for CString {
deref_mut(&mut self) -> &mut Self::Target907     fn deref_mut(&mut self) -> &mut Self::Target {
908         // SAFETY: A `CString` is always NUL-terminated and contains no other
909         // NUL bytes.
910         unsafe { CStr::from_bytes_with_nul_unchecked_mut(self.buf.as_mut_slice()) }
911     }
912 }
913 
914 impl<'a> TryFrom<&'a CStr> for CString {
915     type Error = AllocError;
916 
try_from(cstr: &'a CStr) -> Result<CString, AllocError>917     fn try_from(cstr: &'a CStr) -> Result<CString, AllocError> {
918         let mut buf = KVec::new();
919 
920         buf.extend_from_slice(cstr.as_bytes_with_nul(), GFP_KERNEL)?;
921 
922         // INVARIANT: The `CStr` and `CString` types have the same invariants for
923         // the string data, and we copied it over without changes.
924         Ok(CString { buf })
925     }
926 }
927 
928 impl fmt::Debug for CString {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result929     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
930         fmt::Debug::fmt(&**self, f)
931     }
932 }
933 
934 /// A convenience alias for [`core::format_args`].
935 #[macro_export]
936 macro_rules! fmt {
937     ($($f:tt)*) => ( ::core::format_args!($($f)*) )
938 }
939