xref: /linux/arch/x86/kernel/alternative.c (revision 9591fdb0611dccdeeeeacb99d89f0098737d209b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "SMP alternatives: " fmt
3 
4 #include <linux/mmu_context.h>
5 #include <linux/perf_event.h>
6 #include <linux/vmalloc.h>
7 #include <linux/memory.h>
8 #include <linux/execmem.h>
9 
10 #include <asm/text-patching.h>
11 #include <asm/insn.h>
12 #include <asm/ibt.h>
13 #include <asm/set_memory.h>
14 #include <asm/nmi.h>
15 
16 int __read_mostly alternatives_patched;
17 
18 EXPORT_SYMBOL_GPL(alternatives_patched);
19 
20 #define MAX_PATCH_LEN (255-1)
21 
22 #define DA_ALL		(~0)
23 #define DA_ALT		0x01
24 #define DA_RET		0x02
25 #define DA_RETPOLINE	0x04
26 #define DA_ENDBR	0x08
27 #define DA_SMP		0x10
28 
29 static unsigned int debug_alternative;
30 
debug_alt(char * str)31 static int __init debug_alt(char *str)
32 {
33 	if (str && *str == '=')
34 		str++;
35 
36 	if (!str || kstrtouint(str, 0, &debug_alternative))
37 		debug_alternative = DA_ALL;
38 
39 	return 1;
40 }
41 __setup("debug-alternative", debug_alt);
42 
43 static int noreplace_smp;
44 
setup_noreplace_smp(char * str)45 static int __init setup_noreplace_smp(char *str)
46 {
47 	noreplace_smp = 1;
48 	return 1;
49 }
50 __setup("noreplace-smp", setup_noreplace_smp);
51 
52 #define DPRINTK(type, fmt, args...)					\
53 do {									\
54 	if (debug_alternative & DA_##type)				\
55 		printk(KERN_DEBUG pr_fmt(fmt) "\n", ##args);		\
56 } while (0)
57 
58 #define DUMP_BYTES(type, buf, len, fmt, args...)			\
59 do {									\
60 	if (unlikely(debug_alternative & DA_##type)) {			\
61 		int j;							\
62 									\
63 		if (!(len))						\
64 			break;						\
65 									\
66 		printk(KERN_DEBUG pr_fmt(fmt), ##args);			\
67 		for (j = 0; j < (len) - 1; j++)				\
68 			printk(KERN_CONT "%02hhx ", buf[j]);		\
69 		printk(KERN_CONT "%02hhx\n", buf[j]);			\
70 	}								\
71 } while (0)
72 
73 static const unsigned char x86nops[] =
74 {
75 	BYTES_NOP1,
76 	BYTES_NOP2,
77 	BYTES_NOP3,
78 	BYTES_NOP4,
79 	BYTES_NOP5,
80 	BYTES_NOP6,
81 	BYTES_NOP7,
82 	BYTES_NOP8,
83 #ifdef CONFIG_64BIT
84 	BYTES_NOP9,
85 	BYTES_NOP10,
86 	BYTES_NOP11,
87 #endif
88 };
89 
90 const unsigned char * const x86_nops[ASM_NOP_MAX+1] =
91 {
92 	NULL,
93 	x86nops,
94 	x86nops + 1,
95 	x86nops + 1 + 2,
96 	x86nops + 1 + 2 + 3,
97 	x86nops + 1 + 2 + 3 + 4,
98 	x86nops + 1 + 2 + 3 + 4 + 5,
99 	x86nops + 1 + 2 + 3 + 4 + 5 + 6,
100 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7,
101 #ifdef CONFIG_64BIT
102 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8,
103 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9,
104 	x86nops + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10,
105 #endif
106 };
107 
108 #ifdef CONFIG_FINEIBT
109 static bool cfi_paranoid __ro_after_init;
110 #endif
111 
112 #ifdef CONFIG_MITIGATION_ITS
113 
114 #ifdef CONFIG_MODULES
115 static struct module *its_mod;
116 #endif
117 static void *its_page;
118 static unsigned int its_offset;
119 struct its_array its_pages;
120 
__its_alloc(struct its_array * pages)121 static void *__its_alloc(struct its_array *pages)
122 {
123 	void *page __free(execmem) = execmem_alloc_rw(EXECMEM_MODULE_TEXT, PAGE_SIZE);
124 	if (!page)
125 		return NULL;
126 
127 	void *tmp = krealloc(pages->pages, (pages->num+1) * sizeof(void *),
128 			     GFP_KERNEL);
129 	if (!tmp)
130 		return NULL;
131 
132 	pages->pages = tmp;
133 	pages->pages[pages->num++] = page;
134 
135 	return no_free_ptr(page);
136 }
137 
138 /* Initialize a thunk with the "jmp *reg; int3" instructions. */
its_init_thunk(void * thunk,int reg)139 static void *its_init_thunk(void *thunk, int reg)
140 {
141 	u8 *bytes = thunk;
142 	int offset = 0;
143 	int i = 0;
144 
145 #ifdef CONFIG_FINEIBT
146 	if (cfi_paranoid) {
147 		/*
148 		 * When ITS uses indirect branch thunk the fineibt_paranoid
149 		 * caller sequence doesn't fit in the caller site. So put the
150 		 * remaining part of the sequence (UDB + JNE) into the ITS
151 		 * thunk.
152 		 */
153 		bytes[i++] = 0xd6; /* UDB */
154 		bytes[i++] = 0x75; /* JNE */
155 		bytes[i++] = 0xfd;
156 
157 		offset = 1;
158 	}
159 #endif
160 
161 	if (reg >= 8) {
162 		bytes[i++] = 0x41; /* REX.B prefix */
163 		reg -= 8;
164 	}
165 	bytes[i++] = 0xff;
166 	bytes[i++] = 0xe0 + reg; /* JMP *reg */
167 	bytes[i++] = 0xcc;
168 
169 	return thunk + offset;
170 }
171 
its_pages_protect(struct its_array * pages)172 static void its_pages_protect(struct its_array *pages)
173 {
174 	for (int i = 0; i < pages->num; i++) {
175 		void *page = pages->pages[i];
176 		execmem_restore_rox(page, PAGE_SIZE);
177 	}
178 }
179 
its_fini_core(void)180 static void its_fini_core(void)
181 {
182 	if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX))
183 		its_pages_protect(&its_pages);
184 	kfree(its_pages.pages);
185 }
186 
187 #ifdef CONFIG_MODULES
its_init_mod(struct module * mod)188 void its_init_mod(struct module *mod)
189 {
190 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
191 		return;
192 
193 	mutex_lock(&text_mutex);
194 	its_mod = mod;
195 	its_page = NULL;
196 }
197 
its_fini_mod(struct module * mod)198 void its_fini_mod(struct module *mod)
199 {
200 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
201 		return;
202 
203 	WARN_ON_ONCE(its_mod != mod);
204 
205 	its_mod = NULL;
206 	its_page = NULL;
207 	mutex_unlock(&text_mutex);
208 
209 	if (IS_ENABLED(CONFIG_STRICT_MODULE_RWX))
210 		its_pages_protect(&mod->arch.its_pages);
211 }
212 
its_free_mod(struct module * mod)213 void its_free_mod(struct module *mod)
214 {
215 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
216 		return;
217 
218 	for (int i = 0; i < mod->arch.its_pages.num; i++) {
219 		void *page = mod->arch.its_pages.pages[i];
220 		execmem_free(page);
221 	}
222 	kfree(mod->arch.its_pages.pages);
223 }
224 #endif /* CONFIG_MODULES */
225 
its_alloc(void)226 static void *its_alloc(void)
227 {
228 	struct its_array *pages = &its_pages;
229 	void *page;
230 
231 #ifdef CONFIG_MODULES
232 	if (its_mod)
233 		pages = &its_mod->arch.its_pages;
234 #endif
235 
236 	page = __its_alloc(pages);
237 	if (!page)
238 		return NULL;
239 
240 	if (pages == &its_pages)
241 		set_memory_x((unsigned long)page, 1);
242 
243 	return page;
244 }
245 
its_allocate_thunk(int reg)246 static void *its_allocate_thunk(int reg)
247 {
248 	int size = 3 + (reg / 8);
249 	void *thunk;
250 
251 #ifdef CONFIG_FINEIBT
252 	/*
253 	 * The ITS thunk contains an indirect jump and an int3 instruction so
254 	 * its size is 3 or 4 bytes depending on the register used. If CFI
255 	 * paranoid is used then 3 extra bytes are added in the ITS thunk to
256 	 * complete the fineibt_paranoid caller sequence.
257 	 */
258 	if (cfi_paranoid)
259 		size += 3;
260 #endif
261 
262 	if (!its_page || (its_offset + size - 1) >= PAGE_SIZE) {
263 		its_page = its_alloc();
264 		if (!its_page) {
265 			pr_err("ITS page allocation failed\n");
266 			return NULL;
267 		}
268 		memset(its_page, INT3_INSN_OPCODE, PAGE_SIZE);
269 		its_offset = 32;
270 	}
271 
272 	/*
273 	 * If the indirect branch instruction will be in the lower half
274 	 * of a cacheline, then update the offset to reach the upper half.
275 	 */
276 	if ((its_offset + size - 1) % 64 < 32)
277 		its_offset = ((its_offset - 1) | 0x3F) + 33;
278 
279 	thunk = its_page + its_offset;
280 	its_offset += size;
281 
282 	return its_init_thunk(thunk, reg);
283 }
284 
its_static_thunk(int reg)285 u8 *its_static_thunk(int reg)
286 {
287 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
288 
289 #ifdef CONFIG_FINEIBT
290 	/* Paranoid thunk starts 2 bytes before */
291 	if (cfi_paranoid)
292 		return thunk - 2;
293 #endif
294 	return thunk;
295 }
296 
297 #else
its_fini_core(void)298 static inline void its_fini_core(void) {}
299 #endif /* CONFIG_MITIGATION_ITS */
300 
301 /*
302  * Nomenclature for variable names to simplify and clarify this code and ease
303  * any potential staring at it:
304  *
305  * @instr: source address of the original instructions in the kernel text as
306  * generated by the compiler.
307  *
308  * @buf: temporary buffer on which the patching operates. This buffer is
309  * eventually text-poked into the kernel image.
310  *
311  * @replacement/@repl: pointer to the opcodes which are replacing @instr, located
312  * in the .altinstr_replacement section.
313  */
314 
315 /*
316  * Fill the buffer with a single effective instruction of size @len.
317  *
318  * In order not to issue an ORC stack depth tracking CFI entry (Call Frame Info)
319  * for every single-byte NOP, try to generate the maximally available NOP of
320  * size <= ASM_NOP_MAX such that only a single CFI entry is generated (vs one for
321  * each single-byte NOPs). If @len to fill out is > ASM_NOP_MAX, pad with INT3 and
322  * *jump* over instead of executing long and daft NOPs.
323  */
add_nop(u8 * buf,unsigned int len)324 static void add_nop(u8 *buf, unsigned int len)
325 {
326 	u8 *target = buf + len;
327 
328 	if (!len)
329 		return;
330 
331 	if (len <= ASM_NOP_MAX) {
332 		memcpy(buf, x86_nops[len], len);
333 		return;
334 	}
335 
336 	if (len < 128) {
337 		__text_gen_insn(buf, JMP8_INSN_OPCODE, buf, target, JMP8_INSN_SIZE);
338 		buf += JMP8_INSN_SIZE;
339 	} else {
340 		__text_gen_insn(buf, JMP32_INSN_OPCODE, buf, target, JMP32_INSN_SIZE);
341 		buf += JMP32_INSN_SIZE;
342 	}
343 
344 	for (;buf < target; buf++)
345 		*buf = INT3_INSN_OPCODE;
346 }
347 
348 /*
349  * Matches NOP and NOPL, not any of the other possible NOPs.
350  */
insn_is_nop(struct insn * insn)351 static bool insn_is_nop(struct insn *insn)
352 {
353 	/* Anything NOP, but no REP NOP */
354 	if (insn->opcode.bytes[0] == 0x90 &&
355 	    (!insn->prefixes.nbytes || insn->prefixes.bytes[0] != 0xF3))
356 		return true;
357 
358 	/* NOPL */
359 	if (insn->opcode.bytes[0] == 0x0F && insn->opcode.bytes[1] == 0x1F)
360 		return true;
361 
362 	/* TODO: more nops */
363 
364 	return false;
365 }
366 
367 /*
368  * Find the offset of the first non-NOP instruction starting at @offset
369  * but no further than @len.
370  */
skip_nops(u8 * buf,int offset,int len)371 static int skip_nops(u8 *buf, int offset, int len)
372 {
373 	struct insn insn;
374 
375 	for (; offset < len; offset += insn.length) {
376 		if (insn_decode_kernel(&insn, &buf[offset]))
377 			break;
378 
379 		if (!insn_is_nop(&insn))
380 			break;
381 	}
382 
383 	return offset;
384 }
385 
386 /*
387  * "noinline" to cause control flow change and thus invalidate I$ and
388  * cause refetch after modification.
389  */
optimize_nops(const u8 * const instr,u8 * buf,size_t len)390 static void noinline optimize_nops(const u8 * const instr, u8 *buf, size_t len)
391 {
392 	for (int next, i = 0; i < len; i = next) {
393 		struct insn insn;
394 
395 		if (insn_decode_kernel(&insn, &buf[i]))
396 			return;
397 
398 		next = i + insn.length;
399 
400 		if (insn_is_nop(&insn)) {
401 			int nop = i;
402 
403 			/* Has the NOP already been optimized? */
404 			if (i + insn.length == len)
405 				return;
406 
407 			next = skip_nops(buf, next, len);
408 
409 			add_nop(buf + nop, next - nop);
410 			DUMP_BYTES(ALT, buf, len, "%px: [%d:%d) optimized NOPs: ", instr, nop, next);
411 		}
412 	}
413 }
414 
415 /*
416  * In this context, "source" is where the instructions are placed in the
417  * section .altinstr_replacement, for example during kernel build by the
418  * toolchain.
419  * "Destination" is where the instructions are being patched in by this
420  * machinery.
421  *
422  * The source offset is:
423  *
424  *   src_imm = target - src_next_ip                  (1)
425  *
426  * and the target offset is:
427  *
428  *   dst_imm = target - dst_next_ip                  (2)
429  *
430  * so rework (1) as an expression for target like:
431  *
432  *   target = src_imm + src_next_ip                  (1a)
433  *
434  * and substitute in (2) to get:
435  *
436  *   dst_imm = (src_imm + src_next_ip) - dst_next_ip (3)
437  *
438  * Now, since the instruction stream is 'identical' at src and dst (it
439  * is being copied after all) it can be stated that:
440  *
441  *   src_next_ip = src + ip_offset
442  *   dst_next_ip = dst + ip_offset                   (4)
443  *
444  * Substitute (4) in (3) and observe ip_offset being cancelled out to
445  * obtain:
446  *
447  *   dst_imm = src_imm + (src + ip_offset) - (dst + ip_offset)
448  *           = src_imm + src - dst + ip_offset - ip_offset
449  *           = src_imm + src - dst                   (5)
450  *
451  * IOW, only the relative displacement of the code block matters.
452  */
453 
454 #define apply_reloc_n(n_, p_, d_)				\
455 	do {							\
456 		s32 v = *(s##n_ *)(p_);				\
457 		v += (d_);					\
458 		BUG_ON((v >> 31) != (v >> (n_-1)));		\
459 		*(s##n_ *)(p_) = (s##n_)v;			\
460 	} while (0)
461 
462 
463 static __always_inline
apply_reloc(int n,void * ptr,uintptr_t diff)464 void apply_reloc(int n, void *ptr, uintptr_t diff)
465 {
466 	switch (n) {
467 	case 1: apply_reloc_n(8, ptr, diff); break;
468 	case 2: apply_reloc_n(16, ptr, diff); break;
469 	case 4: apply_reloc_n(32, ptr, diff); break;
470 	default: BUG();
471 	}
472 }
473 
474 static __always_inline
need_reloc(unsigned long offset,u8 * src,size_t src_len)475 bool need_reloc(unsigned long offset, u8 *src, size_t src_len)
476 {
477 	u8 *target = src + offset;
478 	/*
479 	 * If the target is inside the patched block, it's relative to the
480 	 * block itself and does not need relocation.
481 	 */
482 	return (target < src || target > src + src_len);
483 }
484 
__apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)485 static void __apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
486 {
487 	for (int next, i = 0; i < instrlen; i = next) {
488 		struct insn insn;
489 
490 		if (WARN_ON_ONCE(insn_decode_kernel(&insn, &buf[i])))
491 			return;
492 
493 		next = i + insn.length;
494 
495 		switch (insn.opcode.bytes[0]) {
496 		case 0x0f:
497 			if (insn.opcode.bytes[1] < 0x80 ||
498 			    insn.opcode.bytes[1] > 0x8f)
499 				break;
500 
501 			fallthrough;	/* Jcc.d32 */
502 		case 0x70 ... 0x7f:	/* Jcc.d8 */
503 		case JMP8_INSN_OPCODE:
504 		case JMP32_INSN_OPCODE:
505 		case CALL_INSN_OPCODE:
506 			if (need_reloc(next + insn.immediate.value, repl, repl_len)) {
507 				apply_reloc(insn.immediate.nbytes,
508 					    buf + i + insn_offset_immediate(&insn),
509 					    repl - instr);
510 			}
511 
512 			/*
513 			 * Where possible, convert JMP.d32 into JMP.d8.
514 			 */
515 			if (insn.opcode.bytes[0] == JMP32_INSN_OPCODE) {
516 				s32 imm = insn.immediate.value;
517 				imm += repl - instr;
518 				imm += JMP32_INSN_SIZE - JMP8_INSN_SIZE;
519 				if ((imm >> 31) == (imm >> 7)) {
520 					buf[i+0] = JMP8_INSN_OPCODE;
521 					buf[i+1] = (s8)imm;
522 
523 					memset(&buf[i+2], INT3_INSN_OPCODE, insn.length - 2);
524 				}
525 			}
526 			break;
527 		}
528 
529 		if (insn_rip_relative(&insn)) {
530 			if (need_reloc(next + insn.displacement.value, repl, repl_len)) {
531 				apply_reloc(insn.displacement.nbytes,
532 					    buf + i + insn_offset_displacement(&insn),
533 					    repl - instr);
534 			}
535 		}
536 	}
537 }
538 
text_poke_apply_relocation(u8 * buf,const u8 * const instr,size_t instrlen,u8 * repl,size_t repl_len)539 void text_poke_apply_relocation(u8 *buf, const u8 * const instr, size_t instrlen, u8 *repl, size_t repl_len)
540 {
541 	__apply_relocation(buf, instr, instrlen, repl, repl_len);
542 	optimize_nops(instr, buf, instrlen);
543 }
544 
545 /* Low-level backend functions usable from alternative code replacements. */
546 DEFINE_ASM_FUNC(nop_func, "", .entry.text);
547 EXPORT_SYMBOL_GPL(nop_func);
548 
BUG_func(void)549 noinstr void BUG_func(void)
550 {
551 	BUG();
552 }
553 EXPORT_SYMBOL(BUG_func);
554 
555 #define CALL_RIP_REL_OPCODE	0xff
556 #define CALL_RIP_REL_MODRM	0x15
557 
558 /*
559  * Rewrite the "call BUG_func" replacement to point to the target of the
560  * indirect pv_ops call "call *disp(%ip)".
561  */
alt_replace_call(u8 * instr,u8 * insn_buff,struct alt_instr * a)562 static int alt_replace_call(u8 *instr, u8 *insn_buff, struct alt_instr *a)
563 {
564 	void *target, *bug = &BUG_func;
565 	s32 disp;
566 
567 	if (a->replacementlen != 5 || insn_buff[0] != CALL_INSN_OPCODE) {
568 		pr_err("ALT_FLAG_DIRECT_CALL set for a non-call replacement instruction\n");
569 		BUG();
570 	}
571 
572 	if (a->instrlen != 6 ||
573 	    instr[0] != CALL_RIP_REL_OPCODE ||
574 	    instr[1] != CALL_RIP_REL_MODRM) {
575 		pr_err("ALT_FLAG_DIRECT_CALL set for unrecognized indirect call\n");
576 		BUG();
577 	}
578 
579 	/* Skip CALL_RIP_REL_OPCODE and CALL_RIP_REL_MODRM */
580 	disp = *(s32 *)(instr + 2);
581 #ifdef CONFIG_X86_64
582 	/* ff 15 00 00 00 00   call   *0x0(%rip) */
583 	/* target address is stored at "next instruction + disp". */
584 	target = *(void **)(instr + a->instrlen + disp);
585 #else
586 	/* ff 15 00 00 00 00   call   *0x0 */
587 	/* target address is stored at disp. */
588 	target = *(void **)disp;
589 #endif
590 	if (!target)
591 		target = bug;
592 
593 	/* (BUG_func - .) + (target - BUG_func) := target - . */
594 	*(s32 *)(insn_buff + 1) += target - bug;
595 
596 	if (target == &nop_func)
597 		return 0;
598 
599 	return 5;
600 }
601 
instr_va(struct alt_instr * i)602 static inline u8 * instr_va(struct alt_instr *i)
603 {
604 	return (u8 *)&i->instr_offset + i->instr_offset;
605 }
606 
607 /*
608  * Replace instructions with better alternatives for this CPU type. This runs
609  * before SMP is initialized to avoid SMP problems with self modifying code.
610  * This implies that asymmetric systems where APs have less capabilities than
611  * the boot processor are not handled. Tough. Make sure you disable such
612  * features by hand.
613  *
614  * Marked "noinline" to cause control flow change and thus insn cache
615  * to refetch changed I$ lines.
616  */
apply_alternatives(struct alt_instr * start,struct alt_instr * end)617 void __init_or_module noinline apply_alternatives(struct alt_instr *start,
618 						  struct alt_instr *end)
619 {
620 	u8 insn_buff[MAX_PATCH_LEN];
621 	u8 *instr, *replacement;
622 	struct alt_instr *a, *b;
623 
624 	DPRINTK(ALT, "alt table %px, -> %px", start, end);
625 
626 	/*
627 	 * KASAN_SHADOW_START is defined using
628 	 * cpu_feature_enabled(X86_FEATURE_LA57) and is therefore patched here.
629 	 * During the process, KASAN becomes confused seeing partial LA57
630 	 * conversion and triggers a false-positive out-of-bound report.
631 	 *
632 	 * Disable KASAN until the patching is complete.
633 	 */
634 	kasan_disable_current();
635 
636 	/*
637 	 * The scan order should be from start to end. A later scanned
638 	 * alternative code can overwrite previously scanned alternative code.
639 	 * Some kernel functions (e.g. memcpy, memset, etc) use this order to
640 	 * patch code.
641 	 *
642 	 * So be careful if you want to change the scan order to any other
643 	 * order.
644 	 */
645 	for (a = start; a < end; a++) {
646 		int insn_buff_sz = 0;
647 
648 		/*
649 		 * In case of nested ALTERNATIVE()s the outer alternative might
650 		 * add more padding. To ensure consistent patching find the max
651 		 * padding for all alt_instr entries for this site (nested
652 		 * alternatives result in consecutive entries).
653 		 */
654 		for (b = a+1; b < end && instr_va(b) == instr_va(a); b++) {
655 			u8 len = max(a->instrlen, b->instrlen);
656 			a->instrlen = b->instrlen = len;
657 		}
658 
659 		instr = instr_va(a);
660 		replacement = (u8 *)&a->repl_offset + a->repl_offset;
661 		BUG_ON(a->instrlen > sizeof(insn_buff));
662 		BUG_ON(a->cpuid >= (NCAPINTS + NBUGINTS) * 32);
663 
664 		/*
665 		 * Patch if either:
666 		 * - feature is present
667 		 * - feature not present but ALT_FLAG_NOT is set to mean,
668 		 *   patch if feature is *NOT* present.
669 		 */
670 		if (!boot_cpu_has(a->cpuid) == !(a->flags & ALT_FLAG_NOT)) {
671 			memcpy(insn_buff, instr, a->instrlen);
672 			optimize_nops(instr, insn_buff, a->instrlen);
673 			text_poke_early(instr, insn_buff, a->instrlen);
674 			continue;
675 		}
676 
677 		DPRINTK(ALT, "feat: %d*32+%d, old: (%pS (%px) len: %d), repl: (%px, len: %d) flags: 0x%x",
678 			a->cpuid >> 5,
679 			a->cpuid & 0x1f,
680 			instr, instr, a->instrlen,
681 			replacement, a->replacementlen, a->flags);
682 
683 		memcpy(insn_buff, replacement, a->replacementlen);
684 		insn_buff_sz = a->replacementlen;
685 
686 		if (a->flags & ALT_FLAG_DIRECT_CALL) {
687 			insn_buff_sz = alt_replace_call(instr, insn_buff, a);
688 			if (insn_buff_sz < 0)
689 				continue;
690 		}
691 
692 		for (; insn_buff_sz < a->instrlen; insn_buff_sz++)
693 			insn_buff[insn_buff_sz] = 0x90;
694 
695 		text_poke_apply_relocation(insn_buff, instr, a->instrlen, replacement, a->replacementlen);
696 
697 		DUMP_BYTES(ALT, instr, a->instrlen, "%px:   old_insn: ", instr);
698 		DUMP_BYTES(ALT, replacement, a->replacementlen, "%px:   rpl_insn: ", replacement);
699 		DUMP_BYTES(ALT, insn_buff, insn_buff_sz, "%px: final_insn: ", instr);
700 
701 		text_poke_early(instr, insn_buff, insn_buff_sz);
702 	}
703 
704 	kasan_enable_current();
705 }
706 
is_jcc32(struct insn * insn)707 static inline bool is_jcc32(struct insn *insn)
708 {
709 	/* Jcc.d32 second opcode byte is in the range: 0x80-0x8f */
710 	return insn->opcode.bytes[0] == 0x0f && (insn->opcode.bytes[1] & 0xf0) == 0x80;
711 }
712 
713 #if defined(CONFIG_MITIGATION_RETPOLINE) && defined(CONFIG_OBJTOOL)
714 
715 /*
716  * [CS]{,3} CALL/JMP *%\reg [INT3]*
717  */
emit_indirect(int op,int reg,u8 * bytes,int len)718 static int emit_indirect(int op, int reg, u8 *bytes, int len)
719 {
720 	int cs = 0, bp = 0;
721 	int i = 0;
722 	u8 modrm;
723 
724 	/*
725 	 * Set @len to the excess bytes after writing the instruction.
726 	 */
727 	len -= 2 + (reg >= 8);
728 	WARN_ON_ONCE(len < 0);
729 
730 	switch (op) {
731 	case CALL_INSN_OPCODE:
732 		modrm = 0x10; /* Reg = 2; CALL r/m */
733 		/*
734 		 * Additional NOP is better than prefix decode penalty.
735 		 */
736 		if (len <= 3)
737 			cs = len;
738 		break;
739 
740 	case JMP32_INSN_OPCODE:
741 		modrm = 0x20; /* Reg = 4; JMP r/m */
742 		bp = len;
743 		break;
744 
745 	default:
746 		WARN_ON_ONCE(1);
747 		return -1;
748 	}
749 
750 	while (cs--)
751 		bytes[i++] = 0x2e; /* CS-prefix */
752 
753 	if (reg >= 8) {
754 		bytes[i++] = 0x41; /* REX.B prefix */
755 		reg -= 8;
756 	}
757 
758 	modrm |= 0xc0; /* Mod = 3 */
759 	modrm += reg;
760 
761 	bytes[i++] = 0xff; /* opcode */
762 	bytes[i++] = modrm;
763 
764 	while (bp--)
765 		bytes[i++] = 0xcc; /* INT3 */
766 
767 	return i;
768 }
769 
__emit_trampoline(void * addr,struct insn * insn,u8 * bytes,void * call_dest,void * jmp_dest)770 static int __emit_trampoline(void *addr, struct insn *insn, u8 *bytes,
771 			     void *call_dest, void *jmp_dest)
772 {
773 	u8 op = insn->opcode.bytes[0];
774 	int i = 0;
775 
776 	/*
777 	 * Clang does 'weird' Jcc __x86_indirect_thunk_r11 conditional
778 	 * tail-calls. Deal with them.
779 	 */
780 	if (is_jcc32(insn)) {
781 		bytes[i++] = op;
782 		op = insn->opcode.bytes[1];
783 		goto clang_jcc;
784 	}
785 
786 	if (insn->length == 6)
787 		bytes[i++] = 0x2e; /* CS-prefix */
788 
789 	switch (op) {
790 	case CALL_INSN_OPCODE:
791 		__text_gen_insn(bytes+i, op, addr+i,
792 				call_dest,
793 				CALL_INSN_SIZE);
794 		i += CALL_INSN_SIZE;
795 		break;
796 
797 	case JMP32_INSN_OPCODE:
798 clang_jcc:
799 		__text_gen_insn(bytes+i, op, addr+i,
800 				jmp_dest,
801 				JMP32_INSN_SIZE);
802 		i += JMP32_INSN_SIZE;
803 		break;
804 
805 	default:
806 		WARN(1, "%pS %px %*ph\n", addr, addr, 6, addr);
807 		return -1;
808 	}
809 
810 	WARN_ON_ONCE(i != insn->length);
811 
812 	return i;
813 }
814 
emit_call_track_retpoline(void * addr,struct insn * insn,int reg,u8 * bytes)815 static int emit_call_track_retpoline(void *addr, struct insn *insn, int reg, u8 *bytes)
816 {
817 	return __emit_trampoline(addr, insn, bytes,
818 				 __x86_indirect_call_thunk_array[reg],
819 				 __x86_indirect_jump_thunk_array[reg]);
820 }
821 
822 #ifdef CONFIG_MITIGATION_ITS
emit_its_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)823 static int emit_its_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
824 {
825 	u8 *thunk = __x86_indirect_its_thunk_array[reg];
826 	u8 *tmp = its_allocate_thunk(reg);
827 
828 	if (tmp)
829 		thunk = tmp;
830 
831 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
832 }
833 
834 /* Check if an indirect branch is at ITS-unsafe address */
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)835 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
836 {
837 	if (!cpu_feature_enabled(X86_FEATURE_INDIRECT_THUNK_ITS))
838 		return false;
839 
840 	/* Indirect branch opcode is 2 or 3 bytes depending on reg */
841 	addr += 1 + reg / 8;
842 
843 	/* Lower-half of the cacheline? */
844 	return !(addr & 0x20);
845 }
846 #else /* CONFIG_MITIGATION_ITS */
847 
848 #ifdef CONFIG_FINEIBT
cpu_wants_indirect_its_thunk_at(unsigned long addr,int reg)849 static bool cpu_wants_indirect_its_thunk_at(unsigned long addr, int reg)
850 {
851 	return false;
852 }
853 #endif
854 
855 #endif /* CONFIG_MITIGATION_ITS */
856 
857 /*
858  * Rewrite the compiler generated retpoline thunk calls.
859  *
860  * For spectre_v2=off (!X86_FEATURE_RETPOLINE), rewrite them into immediate
861  * indirect instructions, avoiding the extra indirection.
862  *
863  * For example, convert:
864  *
865  *   CALL __x86_indirect_thunk_\reg
866  *
867  * into:
868  *
869  *   CALL *%\reg
870  *
871  * It also tries to inline spectre_v2=retpoline,lfence when size permits.
872  */
patch_retpoline(void * addr,struct insn * insn,u8 * bytes)873 static int patch_retpoline(void *addr, struct insn *insn, u8 *bytes)
874 {
875 	retpoline_thunk_t *target;
876 	int reg, ret, i = 0;
877 	u8 op, cc;
878 
879 	target = addr + insn->length + insn->immediate.value;
880 	reg = target - __x86_indirect_thunk_array;
881 
882 	if (WARN_ON_ONCE(reg & ~0xf))
883 		return -1;
884 
885 	/* If anyone ever does: CALL/JMP *%rsp, we're in deep trouble. */
886 	BUG_ON(reg == 4);
887 
888 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE) &&
889 	    !cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
890 		if (cpu_feature_enabled(X86_FEATURE_CALL_DEPTH))
891 			return emit_call_track_retpoline(addr, insn, reg, bytes);
892 
893 		return -1;
894 	}
895 
896 	op = insn->opcode.bytes[0];
897 
898 	/*
899 	 * Convert:
900 	 *
901 	 *   Jcc.d32 __x86_indirect_thunk_\reg
902 	 *
903 	 * into:
904 	 *
905 	 *   Jncc.d8 1f
906 	 *   [ LFENCE ]
907 	 *   JMP *%\reg
908 	 *   [ NOP ]
909 	 * 1:
910 	 */
911 	if (is_jcc32(insn)) {
912 		cc = insn->opcode.bytes[1] & 0xf;
913 		cc ^= 1; /* invert condition */
914 
915 		bytes[i++] = 0x70 + cc;        /* Jcc.d8 */
916 		bytes[i++] = insn->length - 2; /* sizeof(Jcc.d8) == 2 */
917 
918 		/* Continue as if: JMP.d32 __x86_indirect_thunk_\reg */
919 		op = JMP32_INSN_OPCODE;
920 	}
921 
922 	/*
923 	 * For RETPOLINE_LFENCE: prepend the indirect CALL/JMP with an LFENCE.
924 	 */
925 	if (cpu_feature_enabled(X86_FEATURE_RETPOLINE_LFENCE)) {
926 		bytes[i++] = 0x0f;
927 		bytes[i++] = 0xae;
928 		bytes[i++] = 0xe8; /* LFENCE */
929 	}
930 
931 #ifdef CONFIG_MITIGATION_ITS
932 	/*
933 	 * Check if the address of last byte of emitted-indirect is in
934 	 * lower-half of the cacheline. Such branches need ITS mitigation.
935 	 */
936 	if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + i, reg))
937 		return emit_its_trampoline(addr, insn, reg, bytes);
938 #endif
939 
940 	ret = emit_indirect(op, reg, bytes + i, insn->length - i);
941 	if (ret < 0)
942 		return ret;
943 	i += ret;
944 
945 	for (; i < insn->length;)
946 		bytes[i++] = BYTES_NOP1;
947 
948 	return i;
949 }
950 
951 /*
952  * Generated by 'objtool --retpoline'.
953  */
apply_retpolines(s32 * start,s32 * end)954 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end)
955 {
956 	s32 *s;
957 
958 	for (s = start; s < end; s++) {
959 		void *addr = (void *)s + *s;
960 		struct insn insn;
961 		int len, ret;
962 		u8 bytes[16];
963 		u8 op1, op2;
964 		u8 *dest;
965 
966 		ret = insn_decode_kernel(&insn, addr);
967 		if (WARN_ON_ONCE(ret < 0))
968 			continue;
969 
970 		op1 = insn.opcode.bytes[0];
971 		op2 = insn.opcode.bytes[1];
972 
973 		switch (op1) {
974 		case 0x70 ... 0x7f:	/* Jcc.d8 */
975 			/* See cfi_paranoid. */
976 			WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
977 			continue;
978 
979 		case CALL_INSN_OPCODE:
980 		case JMP32_INSN_OPCODE:
981 			/* Check for cfi_paranoid + ITS */
982 			dest = addr + insn.length + insn.immediate.value;
983 			if (dest[-1] == 0xd6 && (dest[0] & 0xf0) == 0x70) {
984 				WARN_ON_ONCE(cfi_mode != CFI_FINEIBT);
985 				continue;
986 			}
987 			break;
988 
989 		case 0x0f: /* escape */
990 			if (op2 >= 0x80 && op2 <= 0x8f)
991 				break;
992 			fallthrough;
993 		default:
994 			WARN_ON_ONCE(1);
995 			continue;
996 		}
997 
998 		DPRINTK(RETPOLINE, "retpoline at: %pS (%px) len: %d to: %pS",
999 			addr, addr, insn.length,
1000 			addr + insn.length + insn.immediate.value);
1001 
1002 		len = patch_retpoline(addr, &insn, bytes);
1003 		if (len == insn.length) {
1004 			optimize_nops(addr, bytes, len);
1005 			DUMP_BYTES(RETPOLINE, ((u8*)addr),  len, "%px: orig: ", addr);
1006 			DUMP_BYTES(RETPOLINE, ((u8*)bytes), len, "%px: repl: ", addr);
1007 			text_poke_early(addr, bytes, len);
1008 		}
1009 	}
1010 }
1011 
1012 #ifdef CONFIG_MITIGATION_RETHUNK
1013 
cpu_wants_rethunk(void)1014 bool cpu_wants_rethunk(void)
1015 {
1016 	return cpu_feature_enabled(X86_FEATURE_RETHUNK);
1017 }
1018 
cpu_wants_rethunk_at(void * addr)1019 bool cpu_wants_rethunk_at(void *addr)
1020 {
1021 	if (!cpu_feature_enabled(X86_FEATURE_RETHUNK))
1022 		return false;
1023 	if (x86_return_thunk != its_return_thunk)
1024 		return true;
1025 
1026 	return !((unsigned long)addr & 0x20);
1027 }
1028 
1029 /*
1030  * Rewrite the compiler generated return thunk tail-calls.
1031  *
1032  * For example, convert:
1033  *
1034  *   JMP __x86_return_thunk
1035  *
1036  * into:
1037  *
1038  *   RET
1039  */
patch_return(void * addr,struct insn * insn,u8 * bytes)1040 static int patch_return(void *addr, struct insn *insn, u8 *bytes)
1041 {
1042 	int i = 0;
1043 
1044 	/* Patch the custom return thunks... */
1045 	if (cpu_wants_rethunk_at(addr)) {
1046 		i = JMP32_INSN_SIZE;
1047 		__text_gen_insn(bytes, JMP32_INSN_OPCODE, addr, x86_return_thunk, i);
1048 	} else {
1049 		/* ... or patch them out if not needed. */
1050 		bytes[i++] = RET_INSN_OPCODE;
1051 	}
1052 
1053 	for (; i < insn->length;)
1054 		bytes[i++] = INT3_INSN_OPCODE;
1055 	return i;
1056 }
1057 
apply_returns(s32 * start,s32 * end)1058 void __init_or_module noinline apply_returns(s32 *start, s32 *end)
1059 {
1060 	s32 *s;
1061 
1062 	if (cpu_wants_rethunk())
1063 		static_call_force_reinit();
1064 
1065 	for (s = start; s < end; s++) {
1066 		void *dest = NULL, *addr = (void *)s + *s;
1067 		struct insn insn;
1068 		int len, ret;
1069 		u8 bytes[16];
1070 		u8 op;
1071 
1072 		ret = insn_decode_kernel(&insn, addr);
1073 		if (WARN_ON_ONCE(ret < 0))
1074 			continue;
1075 
1076 		op = insn.opcode.bytes[0];
1077 		if (op == JMP32_INSN_OPCODE)
1078 			dest = addr + insn.length + insn.immediate.value;
1079 
1080 		if (__static_call_fixup(addr, op, dest) ||
1081 		    WARN_ONCE(dest != &__x86_return_thunk,
1082 			      "missing return thunk: %pS-%pS: %*ph",
1083 			      addr, dest, 5, addr))
1084 			continue;
1085 
1086 		DPRINTK(RET, "return thunk at: %pS (%px) len: %d to: %pS",
1087 			addr, addr, insn.length,
1088 			addr + insn.length + insn.immediate.value);
1089 
1090 		len = patch_return(addr, &insn, bytes);
1091 		if (len == insn.length) {
1092 			DUMP_BYTES(RET, ((u8*)addr),  len, "%px: orig: ", addr);
1093 			DUMP_BYTES(RET, ((u8*)bytes), len, "%px: repl: ", addr);
1094 			text_poke_early(addr, bytes, len);
1095 		}
1096 	}
1097 }
1098 #else /* !CONFIG_MITIGATION_RETHUNK: */
apply_returns(s32 * start,s32 * end)1099 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1100 #endif /* !CONFIG_MITIGATION_RETHUNK */
1101 
1102 #else /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1103 
apply_retpolines(s32 * start,s32 * end)1104 void __init_or_module noinline apply_retpolines(s32 *start, s32 *end) { }
apply_returns(s32 * start,s32 * end)1105 void __init_or_module noinline apply_returns(s32 *start, s32 *end) { }
1106 
1107 #endif /* !CONFIG_MITIGATION_RETPOLINE || !CONFIG_OBJTOOL */
1108 
1109 #ifdef CONFIG_X86_KERNEL_IBT
1110 
is_endbr(u32 * val)1111 __noendbr bool is_endbr(u32 *val)
1112 {
1113 	u32 endbr;
1114 
1115 	__get_kernel_nofault(&endbr, val, u32, Efault);
1116 	return __is_endbr(endbr);
1117 
1118 Efault:
1119 	return false;
1120 }
1121 
1122 #ifdef CONFIG_FINEIBT
1123 
exact_endbr(u32 * val)1124 static __noendbr bool exact_endbr(u32 *val)
1125 {
1126 	u32 endbr;
1127 
1128 	__get_kernel_nofault(&endbr, val, u32, Efault);
1129 	return endbr == gen_endbr();
1130 
1131 Efault:
1132 	return false;
1133 }
1134 
1135 #endif
1136 
1137 static void poison_cfi(void *addr);
1138 
poison_endbr(void * addr)1139 static void __init_or_module poison_endbr(void *addr)
1140 {
1141 	u32 poison = gen_endbr_poison();
1142 
1143 	if (WARN_ON_ONCE(!is_endbr(addr)))
1144 		return;
1145 
1146 	DPRINTK(ENDBR, "ENDBR at: %pS (%px)", addr, addr);
1147 
1148 	/*
1149 	 * When we have IBT, the lack of ENDBR will trigger #CP
1150 	 */
1151 	DUMP_BYTES(ENDBR, ((u8*)addr), 4, "%px: orig: ", addr);
1152 	DUMP_BYTES(ENDBR, ((u8*)&poison), 4, "%px: repl: ", addr);
1153 	text_poke_early(addr, &poison, 4);
1154 }
1155 
1156 /*
1157  * Generated by: objtool --ibt
1158  *
1159  * Seal the functions for indirect calls by clobbering the ENDBR instructions
1160  * and the kCFI hash value.
1161  */
apply_seal_endbr(s32 * start,s32 * end)1162 void __init_or_module noinline apply_seal_endbr(s32 *start, s32 *end)
1163 {
1164 	s32 *s;
1165 
1166 	for (s = start; s < end; s++) {
1167 		void *addr = (void *)s + *s;
1168 
1169 		poison_endbr(addr);
1170 		if (IS_ENABLED(CONFIG_FINEIBT))
1171 			poison_cfi(addr - 16);
1172 	}
1173 }
1174 
1175 #else /* !CONFIG_X86_KERNEL_IBT: */
1176 
apply_seal_endbr(s32 * start,s32 * end)1177 void __init_or_module apply_seal_endbr(s32 *start, s32 *end) { }
1178 
1179 #endif /* !CONFIG_X86_KERNEL_IBT */
1180 
1181 #ifdef CONFIG_CFI_AUTO_DEFAULT
1182 # define __CFI_DEFAULT CFI_AUTO
1183 #elif defined(CONFIG_CFI)
1184 # define __CFI_DEFAULT CFI_KCFI
1185 #else
1186 # define __CFI_DEFAULT CFI_OFF
1187 #endif
1188 
1189 enum cfi_mode cfi_mode __ro_after_init = __CFI_DEFAULT;
1190 static bool cfi_debug __ro_after_init;
1191 
1192 #ifdef CONFIG_FINEIBT_BHI
1193 bool cfi_bhi __ro_after_init = false;
1194 #endif
1195 
1196 #ifdef CONFIG_CFI
cfi_get_func_hash(void * func)1197 u32 cfi_get_func_hash(void *func)
1198 {
1199 	u32 hash;
1200 
1201 	func -= cfi_get_offset();
1202 	switch (cfi_mode) {
1203 	case CFI_FINEIBT:
1204 		func += 7;
1205 		break;
1206 	case CFI_KCFI:
1207 		func += 1;
1208 		break;
1209 	default:
1210 		return 0;
1211 	}
1212 
1213 	if (get_kernel_nofault(hash, func))
1214 		return 0;
1215 
1216 	return hash;
1217 }
1218 
cfi_get_func_arity(void * func)1219 int cfi_get_func_arity(void *func)
1220 {
1221 	bhi_thunk *target;
1222 	s32 disp;
1223 
1224 	if (cfi_mode != CFI_FINEIBT && !cfi_bhi)
1225 		return 0;
1226 
1227 	if (get_kernel_nofault(disp, func - 4))
1228 		return 0;
1229 
1230 	target = func + disp;
1231 	return target - __bhi_args;
1232 }
1233 #endif
1234 
1235 #ifdef CONFIG_FINEIBT
1236 
1237 static bool cfi_rand __ro_after_init = true;
1238 static u32  cfi_seed __ro_after_init;
1239 
1240 /*
1241  * Re-hash the CFI hash with a boot-time seed while making sure the result is
1242  * not a valid ENDBR instruction.
1243  */
cfi_rehash(u32 hash)1244 static u32 cfi_rehash(u32 hash)
1245 {
1246 	hash ^= cfi_seed;
1247 	while (unlikely(__is_endbr(hash) || __is_endbr(-hash))) {
1248 		bool lsb = hash & 1;
1249 		hash >>= 1;
1250 		if (lsb)
1251 			hash ^= 0x80200003;
1252 	}
1253 	return hash;
1254 }
1255 
cfi_parse_cmdline(char * str)1256 static __init int cfi_parse_cmdline(char *str)
1257 {
1258 	if (!str)
1259 		return -EINVAL;
1260 
1261 	while (str) {
1262 		char *next = strchr(str, ',');
1263 		if (next) {
1264 			*next = 0;
1265 			next++;
1266 		}
1267 
1268 		if (!strcmp(str, "auto")) {
1269 			cfi_mode = CFI_AUTO;
1270 		} else if (!strcmp(str, "off")) {
1271 			cfi_mode = CFI_OFF;
1272 			cfi_rand = false;
1273 		} else if (!strcmp(str, "debug")) {
1274 			cfi_debug = true;
1275 		} else if (!strcmp(str, "kcfi")) {
1276 			cfi_mode = CFI_KCFI;
1277 		} else if (!strcmp(str, "fineibt")) {
1278 			cfi_mode = CFI_FINEIBT;
1279 		} else if (!strcmp(str, "norand")) {
1280 			cfi_rand = false;
1281 		} else if (!strcmp(str, "warn")) {
1282 			pr_alert("CFI: mismatch non-fatal!\n");
1283 			cfi_warn = true;
1284 		} else if (!strcmp(str, "paranoid")) {
1285 			if (cfi_mode == CFI_FINEIBT) {
1286 				cfi_paranoid = true;
1287 			} else {
1288 				pr_err("CFI: ignoring paranoid; depends on fineibt.\n");
1289 			}
1290 		} else if (!strcmp(str, "bhi")) {
1291 #ifdef CONFIG_FINEIBT_BHI
1292 			if (cfi_mode == CFI_FINEIBT) {
1293 				cfi_bhi = true;
1294 			} else {
1295 				pr_err("CFI: ignoring bhi; depends on fineibt.\n");
1296 			}
1297 #else
1298 			pr_err("CFI: ignoring bhi; depends on FINEIBT_BHI=y.\n");
1299 #endif
1300 		} else {
1301 			pr_err("CFI: Ignoring unknown option (%s).", str);
1302 		}
1303 
1304 		str = next;
1305 	}
1306 
1307 	return 0;
1308 }
1309 early_param("cfi", cfi_parse_cmdline);
1310 
1311 /*
1312  * kCFI						FineIBT
1313  *
1314  * __cfi_\func:					__cfi_\func:
1315  *	movl   $0x12345678,%eax		// 5	     endbr64			// 4
1316  *	nop					     subl   $0x12345678,%eax    // 5
1317  *	nop					     jne.d32,pn \func+3		// 7
1318  *	nop
1319  *	nop
1320  *	nop
1321  *	nop
1322  *	nop
1323  *	nop
1324  *	nop
1325  *	nop
1326  *	nop
1327  * \func:					\func:
1328  *	endbr64					     nopl -42(%rax)
1329  *
1330  *
1331  * caller:					caller:
1332  *	movl	$(-0x12345678),%r10d	 // 6	     movl   $0x12345678,%eax	// 5
1333  *	addl	$-15(%r11),%r10d	 // 4	     lea    -0x10(%r11),%r11	// 4
1334  *	je	1f			 // 2	     nop5			// 5
1335  *	ud2				 // 2
1336  * 1:	cs call	__x86_indirect_thunk_r11 // 6	     call   *%r11; nop3;	// 6
1337  *
1338  *
1339  * Notably, the FineIBT sequences are crafted such that branches are presumed
1340  * non-taken. This is based on Agner Fog's optimization manual, which states:
1341  *
1342  *  "Make conditional jumps most often not taken: The efficiency and throughput
1343  *   for not-taken branches is better than for taken branches on most
1344  *   processors. Therefore, it is good to place the most frequent branch first"
1345  */
1346 
1347 /*
1348  * <fineibt_preamble_start>:
1349  *  0:   f3 0f 1e fa             endbr64
1350  *  4:   2d 78 56 34 12          sub    $0x12345678, %eax
1351  *  9:   2e 0f 85 03 00 00 00    jne,pn 13 <fineibt_preamble_start+0x13>
1352  * 10:   0f 1f 40 d6             nopl   -0x2a(%rax)
1353  *
1354  * Note that the JNE target is the 0xD6 byte inside the NOPL, this decodes as
1355  * UDB on x86_64 and raises #UD.
1356  */
1357 asm(	".pushsection .rodata				\n"
1358 	"fineibt_preamble_start:			\n"
1359 	"	endbr64					\n"
1360 	"	subl	$0x12345678, %eax		\n"
1361 	"fineibt_preamble_bhi:				\n"
1362 	"	cs jne.d32 fineibt_preamble_start+0x13	\n"
1363 	"#fineibt_func:					\n"
1364 	"	nopl	-42(%rax)			\n"
1365 	"fineibt_preamble_end:				\n"
1366 	".popsection\n"
1367 );
1368 
1369 extern u8 fineibt_preamble_start[];
1370 extern u8 fineibt_preamble_bhi[];
1371 extern u8 fineibt_preamble_end[];
1372 
1373 #define fineibt_preamble_size (fineibt_preamble_end - fineibt_preamble_start)
1374 #define fineibt_preamble_bhi  (fineibt_preamble_bhi - fineibt_preamble_start)
1375 #define fineibt_preamble_ud   0x13
1376 #define fineibt_preamble_hash 5
1377 
1378 /*
1379  * <fineibt_caller_start>:
1380  *  0:   b8 78 56 34 12          mov    $0x12345678, %eax
1381  *  5:   4d 8d 5b f0             lea    -0x10(%r11), %r11
1382  *  9:   0f 1f 44 00 00          nopl   0x0(%rax,%rax,1)
1383  */
1384 asm(	".pushsection .rodata			\n"
1385 	"fineibt_caller_start:			\n"
1386 	"	movl	$0x12345678, %eax	\n"
1387 	"	lea	-0x10(%r11), %r11	\n"
1388 	ASM_NOP5
1389 	"fineibt_caller_end:			\n"
1390 	".popsection				\n"
1391 );
1392 
1393 extern u8 fineibt_caller_start[];
1394 extern u8 fineibt_caller_end[];
1395 
1396 #define fineibt_caller_size (fineibt_caller_end - fineibt_caller_start)
1397 #define fineibt_caller_hash 1
1398 
1399 #define fineibt_caller_jmp (fineibt_caller_size - 2)
1400 
1401 /*
1402  * Since FineIBT does hash validation on the callee side it is prone to
1403  * circumvention attacks where a 'naked' ENDBR instruction exists that
1404  * is not part of the fineibt_preamble sequence.
1405  *
1406  * Notably the x86 entry points must be ENDBR and equally cannot be
1407  * fineibt_preamble.
1408  *
1409  * The fineibt_paranoid caller sequence adds additional caller side
1410  * hash validation. This stops such circumvention attacks dead, but at the cost
1411  * of adding a load.
1412  *
1413  * <fineibt_paranoid_start>:
1414  *  0:   b8 78 56 34 12          mov    $0x12345678, %eax
1415  *  5:   41 3b 43 f5             cmp    -0x11(%r11), %eax
1416  *  9:   2e 4d 8d 5b <f0>        cs lea -0x10(%r11), %r11
1417  *  e:   75 fd                   jne    d <fineibt_paranoid_start+0xd>
1418  * 10:   41 ff d3                call   *%r11
1419  * 13:   90                      nop
1420  *
1421  * Notably LEA does not modify flags and can be reordered with the CMP,
1422  * avoiding a dependency. Again, using a non-taken (backwards) branch
1423  * for the failure case, abusing LEA's immediate 0xf0 as LOCK prefix for the
1424  * Jcc.d8, causing #UD.
1425  */
1426 asm(	".pushsection .rodata				\n"
1427 	"fineibt_paranoid_start:			\n"
1428 	"	mov	$0x12345678, %eax		\n"
1429 	"	cmpl	-11(%r11), %eax			\n"
1430 	"	cs lea	-0x10(%r11), %r11		\n"
1431 	"#fineibt_caller_size:                          \n"
1432 	"	jne	fineibt_paranoid_start+0xd	\n"
1433 	"fineibt_paranoid_ind:				\n"
1434 	"	cs call	*%r11				\n"
1435 	"fineibt_paranoid_end:				\n"
1436 	".popsection					\n"
1437 );
1438 
1439 extern u8 fineibt_paranoid_start[];
1440 extern u8 fineibt_paranoid_ind[];
1441 extern u8 fineibt_paranoid_end[];
1442 
1443 #define fineibt_paranoid_size (fineibt_paranoid_end - fineibt_paranoid_start)
1444 #define fineibt_paranoid_ind  (fineibt_paranoid_ind - fineibt_paranoid_start)
1445 #define fineibt_paranoid_ud   0xd
1446 
decode_preamble_hash(void * addr,int * reg)1447 static u32 decode_preamble_hash(void *addr, int *reg)
1448 {
1449 	u8 *p = addr;
1450 
1451 	/* b8+reg 78 56 34 12          movl    $0x12345678,\reg */
1452 	if (p[0] >= 0xb8 && p[0] < 0xc0) {
1453 		if (reg)
1454 			*reg = p[0] - 0xb8;
1455 		return *(u32 *)(addr + 1);
1456 	}
1457 
1458 	return 0; /* invalid hash value */
1459 }
1460 
decode_caller_hash(void * addr)1461 static u32 decode_caller_hash(void *addr)
1462 {
1463 	u8 *p = addr;
1464 
1465 	/* 41 ba 88 a9 cb ed       mov    $(-0x12345678),%r10d */
1466 	if (p[0] == 0x41 && p[1] == 0xba)
1467 		return -*(u32 *)(addr + 2);
1468 
1469 	/* e8 0c 88 a9 cb ed	   jmp.d8  +12 */
1470 	if (p[0] == JMP8_INSN_OPCODE && p[1] == fineibt_caller_jmp)
1471 		return -*(u32 *)(addr + 2);
1472 
1473 	return 0; /* invalid hash value */
1474 }
1475 
1476 /* .retpoline_sites */
cfi_disable_callers(s32 * start,s32 * end)1477 static int cfi_disable_callers(s32 *start, s32 *end)
1478 {
1479 	/*
1480 	 * Disable kCFI by patching in a JMP.d8, this leaves the hash immediate
1481 	 * in tact for later usage. Also see decode_caller_hash() and
1482 	 * cfi_rewrite_callers().
1483 	 */
1484 	const u8 jmp[] = { JMP8_INSN_OPCODE, fineibt_caller_jmp };
1485 	s32 *s;
1486 
1487 	for (s = start; s < end; s++) {
1488 		void *addr = (void *)s + *s;
1489 		u32 hash;
1490 
1491 		addr -= fineibt_caller_size;
1492 		hash = decode_caller_hash(addr);
1493 		if (!hash) /* nocfi callers */
1494 			continue;
1495 
1496 		text_poke_early(addr, jmp, 2);
1497 	}
1498 
1499 	return 0;
1500 }
1501 
cfi_enable_callers(s32 * start,s32 * end)1502 static int cfi_enable_callers(s32 *start, s32 *end)
1503 {
1504 	/*
1505 	 * Re-enable kCFI, undo what cfi_disable_callers() did.
1506 	 */
1507 	const u8 mov[] = { 0x41, 0xba };
1508 	s32 *s;
1509 
1510 	for (s = start; s < end; s++) {
1511 		void *addr = (void *)s + *s;
1512 		u32 hash;
1513 
1514 		addr -= fineibt_caller_size;
1515 		hash = decode_caller_hash(addr);
1516 		if (!hash) /* nocfi callers */
1517 			continue;
1518 
1519 		text_poke_early(addr, mov, 2);
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /* .cfi_sites */
cfi_rand_preamble(s32 * start,s32 * end)1526 static int cfi_rand_preamble(s32 *start, s32 *end)
1527 {
1528 	s32 *s;
1529 
1530 	for (s = start; s < end; s++) {
1531 		void *addr = (void *)s + *s;
1532 		u32 hash;
1533 
1534 		hash = decode_preamble_hash(addr, NULL);
1535 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1536 			 addr, addr, 5, addr))
1537 			return -EINVAL;
1538 
1539 		hash = cfi_rehash(hash);
1540 		text_poke_early(addr + 1, &hash, 4);
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Inline the bhi-arity 1 case:
1548  *
1549  * __cfi_foo:
1550  *  0: f3 0f 1e fa             endbr64
1551  *  4: 2d 78 56 34 12          sub    $0x12345678, %eax
1552  *  9: 49 0f 45 fa             cmovne %rax, %rdi
1553  *  d: 2e 75 03                jne,pn    foo+0x3
1554  *
1555  * foo:
1556  * 10: 0f 1f 40 <d6>           nopl -42(%rax)
1557  *
1558  * Notably, this scheme is incompatible with permissive CFI
1559  * because the CMOVcc is unconditional and RDI will have been
1560  * clobbered.
1561  */
1562 asm(	".pushsection .rodata				\n"
1563 	"fineibt_bhi1_start:				\n"
1564 	"	cmovne %rax, %rdi			\n"
1565 	"	cs jne fineibt_bhi1_func + 0x3		\n"
1566 	"fineibt_bhi1_func:				\n"
1567 	"	nopl -42(%rax)				\n"
1568 	"fineibt_bhi1_end:				\n"
1569 	".popsection					\n"
1570 );
1571 
1572 extern u8 fineibt_bhi1_start[];
1573 extern u8 fineibt_bhi1_end[];
1574 
1575 #define fineibt_bhi1_size (fineibt_bhi1_end - fineibt_bhi1_start)
1576 
cfi_fineibt_bhi_preamble(void * addr,int arity)1577 static void cfi_fineibt_bhi_preamble(void *addr, int arity)
1578 {
1579 	u8 bytes[MAX_INSN_SIZE];
1580 
1581 	if (!arity)
1582 		return;
1583 
1584 	if (!cfi_warn && arity == 1) {
1585 		text_poke_early(addr + fineibt_preamble_bhi,
1586 				fineibt_bhi1_start, fineibt_bhi1_size);
1587 		return;
1588 	}
1589 
1590 	/*
1591 	 * Replace the bytes at fineibt_preamble_bhi with a CALL instruction
1592 	 * that lines up exactly with the end of the preamble, such that the
1593 	 * return address will be foo+0.
1594 	 *
1595 	 * __cfi_foo:
1596 	 *  0: f3 0f 1e fa             endbr64
1597 	 *  4: 2d 78 56 34 12          sub    $0x12345678, %eax
1598 	 *  9: 2e 2e e8 DD DD DD DD    cs cs call __bhi_args[arity]
1599 	 */
1600 	bytes[0] = 0x2e;
1601 	bytes[1] = 0x2e;
1602 	__text_gen_insn(bytes + 2, CALL_INSN_OPCODE,
1603 			addr + fineibt_preamble_bhi + 2,
1604 			__bhi_args[arity], CALL_INSN_SIZE);
1605 
1606 	text_poke_early(addr + fineibt_preamble_bhi, bytes, 7);
1607 }
1608 
cfi_rewrite_preamble(s32 * start,s32 * end)1609 static int cfi_rewrite_preamble(s32 *start, s32 *end)
1610 {
1611 	s32 *s;
1612 
1613 	for (s = start; s < end; s++) {
1614 		void *addr = (void *)s + *s;
1615 		int arity;
1616 		u32 hash;
1617 
1618 		/*
1619 		 * When the function doesn't start with ENDBR the compiler will
1620 		 * have determined there are no indirect calls to it and we
1621 		 * don't need no CFI either.
1622 		 */
1623 		if (!is_endbr(addr + 16))
1624 			continue;
1625 
1626 		hash = decode_preamble_hash(addr, &arity);
1627 		if (WARN(!hash, "no CFI hash found at: %pS %px %*ph\n",
1628 			 addr, addr, 5, addr))
1629 			return -EINVAL;
1630 
1631 		text_poke_early(addr, fineibt_preamble_start, fineibt_preamble_size);
1632 		WARN_ON(*(u32 *)(addr + fineibt_preamble_hash) != 0x12345678);
1633 		text_poke_early(addr + fineibt_preamble_hash, &hash, 4);
1634 
1635 		WARN_ONCE(!IS_ENABLED(CONFIG_FINEIBT_BHI) && arity,
1636 			  "kCFI preamble has wrong register at: %pS %*ph\n",
1637 			  addr, 5, addr);
1638 
1639 		if (cfi_bhi)
1640 			cfi_fineibt_bhi_preamble(addr, arity);
1641 	}
1642 
1643 	return 0;
1644 }
1645 
cfi_rewrite_endbr(s32 * start,s32 * end)1646 static void cfi_rewrite_endbr(s32 *start, s32 *end)
1647 {
1648 	s32 *s;
1649 
1650 	for (s = start; s < end; s++) {
1651 		void *addr = (void *)s + *s;
1652 
1653 		if (!exact_endbr(addr + 16))
1654 			continue;
1655 
1656 		poison_endbr(addr + 16);
1657 	}
1658 }
1659 
1660 /* .retpoline_sites */
cfi_rand_callers(s32 * start,s32 * end)1661 static int cfi_rand_callers(s32 *start, s32 *end)
1662 {
1663 	s32 *s;
1664 
1665 	for (s = start; s < end; s++) {
1666 		void *addr = (void *)s + *s;
1667 		u32 hash;
1668 
1669 		addr -= fineibt_caller_size;
1670 		hash = decode_caller_hash(addr);
1671 		if (hash) {
1672 			hash = -cfi_rehash(hash);
1673 			text_poke_early(addr + 2, &hash, 4);
1674 		}
1675 	}
1676 
1677 	return 0;
1678 }
1679 
emit_paranoid_trampoline(void * addr,struct insn * insn,int reg,u8 * bytes)1680 static int emit_paranoid_trampoline(void *addr, struct insn *insn, int reg, u8 *bytes)
1681 {
1682 	u8 *thunk = (void *)__x86_indirect_its_thunk_array[reg] - 2;
1683 
1684 #ifdef CONFIG_MITIGATION_ITS
1685 	u8 *tmp = its_allocate_thunk(reg);
1686 	if (tmp)
1687 		thunk = tmp;
1688 #endif
1689 
1690 	return __emit_trampoline(addr, insn, bytes, thunk, thunk);
1691 }
1692 
cfi_rewrite_callers(s32 * start,s32 * end)1693 static int cfi_rewrite_callers(s32 *start, s32 *end)
1694 {
1695 	s32 *s;
1696 
1697 	for (s = start; s < end; s++) {
1698 		void *addr = (void *)s + *s;
1699 		struct insn insn;
1700 		u8 bytes[20];
1701 		u32 hash;
1702 		int ret;
1703 		u8 op;
1704 
1705 		addr -= fineibt_caller_size;
1706 		hash = decode_caller_hash(addr);
1707 		if (!hash)
1708 			continue;
1709 
1710 		if (!cfi_paranoid) {
1711 			text_poke_early(addr, fineibt_caller_start, fineibt_caller_size);
1712 			WARN_ON(*(u32 *)(addr + fineibt_caller_hash) != 0x12345678);
1713 			text_poke_early(addr + fineibt_caller_hash, &hash, 4);
1714 			/* rely on apply_retpolines() */
1715 			continue;
1716 		}
1717 
1718 		/* cfi_paranoid */
1719 		ret = insn_decode_kernel(&insn, addr + fineibt_caller_size);
1720 		if (WARN_ON_ONCE(ret < 0))
1721 			continue;
1722 
1723 		op = insn.opcode.bytes[0];
1724 		if (op != CALL_INSN_OPCODE && op != JMP32_INSN_OPCODE) {
1725 			WARN_ON_ONCE(1);
1726 			continue;
1727 		}
1728 
1729 		memcpy(bytes, fineibt_paranoid_start, fineibt_paranoid_size);
1730 		memcpy(bytes + fineibt_caller_hash, &hash, 4);
1731 
1732 		if (cpu_wants_indirect_its_thunk_at((unsigned long)addr + fineibt_paranoid_ind, 11)) {
1733 			emit_paranoid_trampoline(addr + fineibt_caller_size,
1734 						 &insn, 11, bytes + fineibt_caller_size);
1735 		} else {
1736 			int len = fineibt_paranoid_size - fineibt_paranoid_ind;
1737 			ret = emit_indirect(op, 11, bytes + fineibt_paranoid_ind, len);
1738 			if (WARN_ON_ONCE(ret != len))
1739 				continue;
1740 		}
1741 
1742 		text_poke_early(addr, bytes, fineibt_paranoid_size);
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 #define pr_cfi_debug(X...) if (cfi_debug) pr_info(X)
1749 
1750 #define FINEIBT_WARN(_f, _v) \
1751 	WARN_ONCE((_f) != (_v), "FineIBT: " #_f " %ld != %d\n", _f, _v)
1752 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)1753 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
1754 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
1755 {
1756 	int ret;
1757 
1758 	if (FINEIBT_WARN(fineibt_preamble_size, 20)			||
1759 	    FINEIBT_WARN(fineibt_preamble_bhi + fineibt_bhi1_size, 20)	||
1760 	    FINEIBT_WARN(fineibt_caller_size, 14)			||
1761 	    FINEIBT_WARN(fineibt_paranoid_size, 20))
1762 		return;
1763 
1764 	if (cfi_mode == CFI_AUTO) {
1765 		cfi_mode = CFI_KCFI;
1766 		if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT)) {
1767 			/*
1768 			 * FRED has much saner context on exception entry and
1769 			 * is less easy to take advantage of.
1770 			 */
1771 			if (!cpu_feature_enabled(X86_FEATURE_FRED))
1772 				cfi_paranoid = true;
1773 			cfi_mode = CFI_FINEIBT;
1774 		}
1775 	}
1776 
1777 	/*
1778 	 * Rewrite the callers to not use the __cfi_ stubs, such that we might
1779 	 * rewrite them. This disables all CFI. If this succeeds but any of the
1780 	 * later stages fails, we're without CFI.
1781 	 */
1782 	pr_cfi_debug("CFI: disabling all indirect call checking\n");
1783 	ret = cfi_disable_callers(start_retpoline, end_retpoline);
1784 	if (ret)
1785 		goto err;
1786 
1787 	if (cfi_rand) {
1788 		if (builtin) {
1789 			cfi_seed = get_random_u32();
1790 			cfi_bpf_hash = cfi_rehash(cfi_bpf_hash);
1791 			cfi_bpf_subprog_hash = cfi_rehash(cfi_bpf_subprog_hash);
1792 		}
1793 		pr_cfi_debug("CFI: cfi_seed: 0x%08x\n", cfi_seed);
1794 
1795 		pr_cfi_debug("CFI: rehashing all preambles\n");
1796 		ret = cfi_rand_preamble(start_cfi, end_cfi);
1797 		if (ret)
1798 			goto err;
1799 
1800 		pr_cfi_debug("CFI: rehashing all indirect calls\n");
1801 		ret = cfi_rand_callers(start_retpoline, end_retpoline);
1802 		if (ret)
1803 			goto err;
1804 	} else {
1805 		pr_cfi_debug("CFI: rehashing disabled\n");
1806 	}
1807 
1808 	switch (cfi_mode) {
1809 	case CFI_OFF:
1810 		if (builtin)
1811 			pr_info("CFI: disabled\n");
1812 		return;
1813 
1814 	case CFI_KCFI:
1815 		pr_cfi_debug("CFI: re-enabling all indirect call checking\n");
1816 		ret = cfi_enable_callers(start_retpoline, end_retpoline);
1817 		if (ret)
1818 			goto err;
1819 
1820 		if (builtin)
1821 			pr_info("CFI: Using %sretpoline kCFI\n",
1822 				cfi_rand ? "rehashed " : "");
1823 		return;
1824 
1825 	case CFI_FINEIBT:
1826 		pr_cfi_debug("CFI: adding FineIBT to all preambles\n");
1827 		/* place the FineIBT preamble at func()-16 */
1828 		ret = cfi_rewrite_preamble(start_cfi, end_cfi);
1829 		if (ret)
1830 			goto err;
1831 
1832 		/* rewrite the callers to target func()-16 */
1833 		pr_cfi_debug("CFI: rewriting indirect call sites to use FineIBT\n");
1834 		ret = cfi_rewrite_callers(start_retpoline, end_retpoline);
1835 		if (ret)
1836 			goto err;
1837 
1838 		/* now that nobody targets func()+0, remove ENDBR there */
1839 		pr_cfi_debug("CFI: removing old endbr insns\n");
1840 		cfi_rewrite_endbr(start_cfi, end_cfi);
1841 
1842 		if (builtin) {
1843 			pr_info("Using %sFineIBT%s CFI\n",
1844 				cfi_paranoid ? "paranoid " : "",
1845 				cfi_bhi ? "+BHI" : "");
1846 		}
1847 		return;
1848 
1849 	default:
1850 		break;
1851 	}
1852 
1853 err:
1854 	pr_err("Something went horribly wrong trying to rewrite the CFI implementation.\n");
1855 }
1856 
poison_hash(void * addr)1857 static inline void poison_hash(void *addr)
1858 {
1859 	*(u32 *)addr = 0;
1860 }
1861 
poison_cfi(void * addr)1862 static void poison_cfi(void *addr)
1863 {
1864 	/*
1865 	 * Compilers manage to be inconsistent with ENDBR vs __cfi prefixes,
1866 	 * some (static) functions for which they can determine the address
1867 	 * is never taken do not get a __cfi prefix, but *DO* get an ENDBR.
1868 	 *
1869 	 * As such, these functions will get sealed, but we need to be careful
1870 	 * to not unconditionally scribble the previous function.
1871 	 */
1872 	switch (cfi_mode) {
1873 	case CFI_FINEIBT:
1874 		/*
1875 		 * FineIBT prefix should start with an ENDBR.
1876 		 */
1877 		if (!is_endbr(addr))
1878 			break;
1879 
1880 		/*
1881 		 * __cfi_\func:
1882 		 *	nopl	-42(%rax)
1883 		 *	sub	$0, %eax
1884 		 *	jne	\func+3
1885 		 * \func:
1886 		 *	nopl	-42(%rax)
1887 		 */
1888 		poison_endbr(addr);
1889 		poison_hash(addr + fineibt_preamble_hash);
1890 		break;
1891 
1892 	case CFI_KCFI:
1893 		/*
1894 		 * kCFI prefix should start with a valid hash.
1895 		 */
1896 		if (!decode_preamble_hash(addr, NULL))
1897 			break;
1898 
1899 		/*
1900 		 * __cfi_\func:
1901 		 *	movl	$0, %eax
1902 		 *	.skip	11, 0x90
1903 		 */
1904 		poison_hash(addr + 1);
1905 		break;
1906 
1907 	default:
1908 		break;
1909 	}
1910 }
1911 
1912 #define fineibt_prefix_size (fineibt_preamble_size - ENDBR_INSN_SIZE)
1913 
1914 /*
1915  * When regs->ip points to a 0xD6 byte in the FineIBT preamble,
1916  * return true and fill out target and type.
1917  *
1918  * We check the preamble by checking for the ENDBR instruction relative to the
1919  * UDB instruction.
1920  */
decode_fineibt_preamble(struct pt_regs * regs,unsigned long * target,u32 * type)1921 static bool decode_fineibt_preamble(struct pt_regs *regs, unsigned long *target, u32 *type)
1922 {
1923 	unsigned long addr = regs->ip - fineibt_preamble_ud;
1924 	u32 hash;
1925 
1926 	if (!exact_endbr((void *)addr))
1927 		return false;
1928 
1929 	*target = addr + fineibt_prefix_size;
1930 
1931 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1932 	*type = (u32)regs->ax + hash;
1933 
1934 	/*
1935 	 * Since regs->ip points to the middle of an instruction; it cannot
1936 	 * continue with the normal fixup.
1937 	 */
1938 	regs->ip = *target;
1939 
1940 	return true;
1941 
1942 Efault:
1943 	return false;
1944 }
1945 
1946 /*
1947  * regs->ip points to one of the UD2 in __bhi_args[].
1948  */
decode_fineibt_bhi(struct pt_regs * regs,unsigned long * target,u32 * type)1949 static bool decode_fineibt_bhi(struct pt_regs *regs, unsigned long *target, u32 *type)
1950 {
1951 	unsigned long addr;
1952 	u32 hash;
1953 
1954 	if (!cfi_bhi)
1955 		return false;
1956 
1957 	if (regs->ip < (unsigned long)__bhi_args ||
1958 	    regs->ip >= (unsigned long)__bhi_args_end)
1959 		return false;
1960 
1961 	/*
1962 	 * Fetch the return address from the stack, this points to the
1963 	 * FineIBT preamble. Since the CALL instruction is in the 5 last
1964 	 * bytes of the preamble, the return address is in fact the target
1965 	 * address.
1966 	 */
1967 	__get_kernel_nofault(&addr, regs->sp, unsigned long, Efault);
1968 	*target = addr;
1969 
1970 	addr -= fineibt_prefix_size;
1971 	if (!exact_endbr((void *)addr))
1972 		return false;
1973 
1974 	__get_kernel_nofault(&hash, addr + fineibt_preamble_hash, u32, Efault);
1975 	*type = (u32)regs->ax + hash;
1976 
1977 	/*
1978 	 * The UD2 sites are constructed with a RET immediately following,
1979 	 * as such the non-fatal case can use the regular fixup.
1980 	 */
1981 	return true;
1982 
1983 Efault:
1984 	return false;
1985 }
1986 
is_paranoid_thunk(unsigned long addr)1987 static bool is_paranoid_thunk(unsigned long addr)
1988 {
1989 	u32 thunk;
1990 
1991 	__get_kernel_nofault(&thunk, (u32 *)addr, u32, Efault);
1992 	return (thunk & 0x00FFFFFF) == 0xfd75d6;
1993 
1994 Efault:
1995 	return false;
1996 }
1997 
1998 /*
1999  * regs->ip points to a LOCK Jcc.d8 instruction from the fineibt_paranoid_start[]
2000  * sequence, or to UDB + Jcc.d8 for cfi_paranoid + ITS thunk.
2001  */
decode_fineibt_paranoid(struct pt_regs * regs,unsigned long * target,u32 * type)2002 static bool decode_fineibt_paranoid(struct pt_regs *regs, unsigned long *target, u32 *type)
2003 {
2004 	unsigned long addr = regs->ip - fineibt_paranoid_ud;
2005 
2006 	if (!cfi_paranoid)
2007 		return false;
2008 
2009 	if (is_cfi_trap(addr + fineibt_caller_size - LEN_UD2)) {
2010 		*target = regs->r11 + fineibt_prefix_size;
2011 		*type = regs->ax;
2012 
2013 		/*
2014 		 * Since the trapping instruction is the exact, but LOCK prefixed,
2015 		 * Jcc.d8 that got us here, the normal fixup will work.
2016 		 */
2017 		return true;
2018 	}
2019 
2020 	/*
2021 	 * The cfi_paranoid + ITS thunk combination results in:
2022 	 *
2023 	 *  0:   b8 78 56 34 12          mov    $0x12345678, %eax
2024 	 *  5:   41 3b 43 f7             cmp    -11(%r11), %eax
2025 	 *  a:   2e 3d 8d 5b f0          cs lea -0x10(%r11), %r11
2026 	 *  e:   2e e8 XX XX XX XX	 cs call __x86_indirect_paranoid_thunk_r11
2027 	 *
2028 	 * Where the paranoid_thunk looks like:
2029 	 *
2030 	 *  1d:  <d6>                    udb
2031 	 *  __x86_indirect_paranoid_thunk_r11:
2032 	 *  1e:  75 fd                   jne 1d
2033 	 *  __x86_indirect_its_thunk_r11:
2034 	 *  20:  41 ff eb                jmp *%r11
2035 	 *  23:  cc                      int3
2036 	 *
2037 	 */
2038 	if (is_paranoid_thunk(regs->ip)) {
2039 		*target = regs->r11 + fineibt_prefix_size;
2040 		*type = regs->ax;
2041 
2042 		regs->ip = *target;
2043 		return true;
2044 	}
2045 
2046 	return false;
2047 }
2048 
decode_fineibt_insn(struct pt_regs * regs,unsigned long * target,u32 * type)2049 bool decode_fineibt_insn(struct pt_regs *regs, unsigned long *target, u32 *type)
2050 {
2051 	if (decode_fineibt_paranoid(regs, target, type))
2052 		return true;
2053 
2054 	if (decode_fineibt_bhi(regs, target, type))
2055 		return true;
2056 
2057 	return decode_fineibt_preamble(regs, target, type);
2058 }
2059 
2060 #else /* !CONFIG_FINEIBT: */
2061 
__apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi,bool builtin)2062 static void __apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2063 			    s32 *start_cfi, s32 *end_cfi, bool builtin)
2064 {
2065 	if (IS_ENABLED(CONFIG_CFI) && builtin)
2066 		pr_info("CFI: Using standard kCFI\n");
2067 }
2068 
2069 #ifdef CONFIG_X86_KERNEL_IBT
poison_cfi(void * addr)2070 static void poison_cfi(void *addr) { }
2071 #endif
2072 
2073 #endif /* !CONFIG_FINEIBT */
2074 
apply_fineibt(s32 * start_retpoline,s32 * end_retpoline,s32 * start_cfi,s32 * end_cfi)2075 void apply_fineibt(s32 *start_retpoline, s32 *end_retpoline,
2076 		   s32 *start_cfi, s32 *end_cfi)
2077 {
2078 	return __apply_fineibt(start_retpoline, end_retpoline,
2079 			       start_cfi, end_cfi,
2080 			       /* .builtin = */ false);
2081 }
2082 
2083 #ifdef CONFIG_SMP
alternatives_smp_lock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2084 static void alternatives_smp_lock(const s32 *start, const s32 *end,
2085 				  u8 *text, u8 *text_end)
2086 {
2087 	const s32 *poff;
2088 
2089 	for (poff = start; poff < end; poff++) {
2090 		u8 *ptr = (u8 *)poff + *poff;
2091 
2092 		if (!*poff || ptr < text || ptr >= text_end)
2093 			continue;
2094 		/* turn DS segment override prefix into lock prefix */
2095 		if (*ptr == 0x3e)
2096 			text_poke(ptr, ((unsigned char []){0xf0}), 1);
2097 	}
2098 }
2099 
alternatives_smp_unlock(const s32 * start,const s32 * end,u8 * text,u8 * text_end)2100 static void alternatives_smp_unlock(const s32 *start, const s32 *end,
2101 				    u8 *text, u8 *text_end)
2102 {
2103 	const s32 *poff;
2104 
2105 	for (poff = start; poff < end; poff++) {
2106 		u8 *ptr = (u8 *)poff + *poff;
2107 
2108 		if (!*poff || ptr < text || ptr >= text_end)
2109 			continue;
2110 		/* turn lock prefix into DS segment override prefix */
2111 		if (*ptr == 0xf0)
2112 			text_poke(ptr, ((unsigned char []){0x3E}), 1);
2113 	}
2114 }
2115 
2116 struct smp_alt_module {
2117 	/* what is this ??? */
2118 	struct module	*mod;
2119 	char		*name;
2120 
2121 	/* ptrs to lock prefixes */
2122 	const s32	*locks;
2123 	const s32	*locks_end;
2124 
2125 	/* .text segment, needed to avoid patching init code ;) */
2126 	u8		*text;
2127 	u8		*text_end;
2128 
2129 	struct list_head next;
2130 };
2131 static LIST_HEAD(smp_alt_modules);
2132 static bool uniproc_patched = false;	/* protected by text_mutex */
2133 
alternatives_smp_module_add(struct module * mod,char * name,void * locks,void * locks_end,void * text,void * text_end)2134 void __init_or_module alternatives_smp_module_add(struct module *mod,
2135 						  char *name,
2136 						  void *locks, void *locks_end,
2137 						  void *text,  void *text_end)
2138 {
2139 	struct smp_alt_module *smp;
2140 
2141 	mutex_lock(&text_mutex);
2142 	if (!uniproc_patched)
2143 		goto unlock;
2144 
2145 	if (num_possible_cpus() == 1)
2146 		/* Don't bother remembering, we'll never have to undo it. */
2147 		goto smp_unlock;
2148 
2149 	smp = kzalloc(sizeof(*smp), GFP_KERNEL);
2150 	if (NULL == smp)
2151 		/* we'll run the (safe but slow) SMP code then ... */
2152 		goto unlock;
2153 
2154 	smp->mod	= mod;
2155 	smp->name	= name;
2156 	smp->locks	= locks;
2157 	smp->locks_end	= locks_end;
2158 	smp->text	= text;
2159 	smp->text_end	= text_end;
2160 	DPRINTK(SMP, "locks %p -> %p, text %p -> %p, name %s\n",
2161 		smp->locks, smp->locks_end,
2162 		smp->text, smp->text_end, smp->name);
2163 
2164 	list_add_tail(&smp->next, &smp_alt_modules);
2165 smp_unlock:
2166 	alternatives_smp_unlock(locks, locks_end, text, text_end);
2167 unlock:
2168 	mutex_unlock(&text_mutex);
2169 }
2170 
alternatives_smp_module_del(struct module * mod)2171 void __init_or_module alternatives_smp_module_del(struct module *mod)
2172 {
2173 	struct smp_alt_module *item;
2174 
2175 	mutex_lock(&text_mutex);
2176 	list_for_each_entry(item, &smp_alt_modules, next) {
2177 		if (mod != item->mod)
2178 			continue;
2179 		list_del(&item->next);
2180 		kfree(item);
2181 		break;
2182 	}
2183 	mutex_unlock(&text_mutex);
2184 }
2185 
alternatives_enable_smp(void)2186 void alternatives_enable_smp(void)
2187 {
2188 	struct smp_alt_module *mod;
2189 
2190 	/* Why bother if there are no other CPUs? */
2191 	BUG_ON(num_possible_cpus() == 1);
2192 
2193 	mutex_lock(&text_mutex);
2194 
2195 	if (uniproc_patched) {
2196 		pr_info("switching to SMP code\n");
2197 		BUG_ON(num_online_cpus() != 1);
2198 		clear_cpu_cap(&boot_cpu_data, X86_FEATURE_UP);
2199 		clear_cpu_cap(&cpu_data(0), X86_FEATURE_UP);
2200 		list_for_each_entry(mod, &smp_alt_modules, next)
2201 			alternatives_smp_lock(mod->locks, mod->locks_end,
2202 					      mod->text, mod->text_end);
2203 		uniproc_patched = false;
2204 	}
2205 	mutex_unlock(&text_mutex);
2206 }
2207 
2208 /*
2209  * Return 1 if the address range is reserved for SMP-alternatives.
2210  * Must hold text_mutex.
2211  */
alternatives_text_reserved(void * start,void * end)2212 int alternatives_text_reserved(void *start, void *end)
2213 {
2214 	struct smp_alt_module *mod;
2215 	const s32 *poff;
2216 	u8 *text_start = start;
2217 	u8 *text_end = end;
2218 
2219 	lockdep_assert_held(&text_mutex);
2220 
2221 	list_for_each_entry(mod, &smp_alt_modules, next) {
2222 		if (mod->text > text_end || mod->text_end < text_start)
2223 			continue;
2224 		for (poff = mod->locks; poff < mod->locks_end; poff++) {
2225 			const u8 *ptr = (const u8 *)poff + *poff;
2226 
2227 			if (text_start <= ptr && text_end > ptr)
2228 				return 1;
2229 		}
2230 	}
2231 
2232 	return 0;
2233 }
2234 #endif /* CONFIG_SMP */
2235 
2236 /*
2237  * Self-test for the INT3 based CALL emulation code.
2238  *
2239  * This exercises int3_emulate_call() to make sure INT3 pt_regs are set up
2240  * properly and that there is a stack gap between the INT3 frame and the
2241  * previous context. Without this gap doing a virtual PUSH on the interrupted
2242  * stack would corrupt the INT3 IRET frame.
2243  *
2244  * See entry_{32,64}.S for more details.
2245  */
2246 
2247 /*
2248  * We define the int3_magic() function in assembly to control the calling
2249  * convention such that we can 'call' it from assembly.
2250  */
2251 
2252 extern void int3_magic(unsigned int *ptr); /* defined in asm */
2253 
2254 asm (
2255 "	.pushsection	.init.text, \"ax\", @progbits\n"
2256 "	.type		int3_magic, @function\n"
2257 "int3_magic:\n"
2258 	ANNOTATE_NOENDBR
2259 "	movl	$1, (%" _ASM_ARG1 ")\n"
2260 	ASM_RET
2261 "	.size		int3_magic, .-int3_magic\n"
2262 "	.popsection\n"
2263 );
2264 
2265 extern void int3_selftest_ip(void); /* defined in asm below */
2266 
2267 static int __init
int3_exception_notify(struct notifier_block * self,unsigned long val,void * data)2268 int3_exception_notify(struct notifier_block *self, unsigned long val, void *data)
2269 {
2270 	unsigned long selftest = (unsigned long)&int3_selftest_ip;
2271 	struct die_args *args = data;
2272 	struct pt_regs *regs = args->regs;
2273 
2274 	OPTIMIZER_HIDE_VAR(selftest);
2275 
2276 	if (!regs || user_mode(regs))
2277 		return NOTIFY_DONE;
2278 
2279 	if (val != DIE_INT3)
2280 		return NOTIFY_DONE;
2281 
2282 	if (regs->ip - INT3_INSN_SIZE != selftest)
2283 		return NOTIFY_DONE;
2284 
2285 	int3_emulate_call(regs, (unsigned long)&int3_magic);
2286 	return NOTIFY_STOP;
2287 }
2288 
2289 /* Must be noinline to ensure uniqueness of int3_selftest_ip. */
int3_selftest(void)2290 static noinline void __init int3_selftest(void)
2291 {
2292 	static __initdata struct notifier_block int3_exception_nb = {
2293 		.notifier_call	= int3_exception_notify,
2294 		.priority	= INT_MAX-1, /* last */
2295 	};
2296 	unsigned int val = 0;
2297 
2298 	BUG_ON(register_die_notifier(&int3_exception_nb));
2299 
2300 	/*
2301 	 * Basically: int3_magic(&val); but really complicated :-)
2302 	 *
2303 	 * INT3 padded with NOP to CALL_INSN_SIZE. The int3_exception_nb
2304 	 * notifier above will emulate CALL for us.
2305 	 */
2306 	asm volatile ("int3_selftest_ip:\n\t"
2307 		      ANNOTATE_NOENDBR
2308 		      "    int3; nop; nop; nop; nop\n\t"
2309 		      : ASM_CALL_CONSTRAINT
2310 		      : __ASM_SEL_RAW(a, D) (&val)
2311 		      : "memory");
2312 
2313 	BUG_ON(val != 1);
2314 
2315 	unregister_die_notifier(&int3_exception_nb);
2316 }
2317 
2318 static __initdata int __alt_reloc_selftest_addr;
2319 
2320 extern void __init __alt_reloc_selftest(void *arg);
__alt_reloc_selftest(void * arg)2321 __visible noinline void __init __alt_reloc_selftest(void *arg)
2322 {
2323 	WARN_ON(arg != &__alt_reloc_selftest_addr);
2324 }
2325 
alt_reloc_selftest(void)2326 static noinline void __init alt_reloc_selftest(void)
2327 {
2328 	/*
2329 	 * Tests text_poke_apply_relocation().
2330 	 *
2331 	 * This has a relative immediate (CALL) in a place other than the first
2332 	 * instruction and additionally on x86_64 we get a RIP-relative LEA:
2333 	 *
2334 	 *   lea    0x0(%rip),%rdi  # 5d0: R_X86_64_PC32    .init.data+0x5566c
2335 	 *   call   +0              # 5d5: R_X86_64_PLT32   __alt_reloc_selftest-0x4
2336 	 *
2337 	 * Getting this wrong will either crash and burn or tickle the WARN
2338 	 * above.
2339 	 */
2340 	asm_inline volatile (
2341 		ALTERNATIVE("", "lea %[mem], %%" _ASM_ARG1 "; call __alt_reloc_selftest;", X86_FEATURE_ALWAYS)
2342 		: ASM_CALL_CONSTRAINT
2343 		: [mem] "m" (__alt_reloc_selftest_addr)
2344 		: _ASM_ARG1
2345 	);
2346 }
2347 
alternative_instructions(void)2348 void __init alternative_instructions(void)
2349 {
2350 	u64 ibt;
2351 
2352 	int3_selftest();
2353 
2354 	/*
2355 	 * The patching is not fully atomic, so try to avoid local
2356 	 * interruptions that might execute the to be patched code.
2357 	 * Other CPUs are not running.
2358 	 */
2359 	stop_nmi();
2360 
2361 	/*
2362 	 * Don't stop machine check exceptions while patching.
2363 	 * MCEs only happen when something got corrupted and in this
2364 	 * case we must do something about the corruption.
2365 	 * Ignoring it is worse than an unlikely patching race.
2366 	 * Also machine checks tend to be broadcast and if one CPU
2367 	 * goes into machine check the others follow quickly, so we don't
2368 	 * expect a machine check to cause undue problems during to code
2369 	 * patching.
2370 	 */
2371 
2372 	/*
2373 	 * Make sure to set (artificial) features depending on used paravirt
2374 	 * functions which can later influence alternative patching.
2375 	 */
2376 	paravirt_set_cap();
2377 
2378 	/* Keep CET-IBT disabled until caller/callee are patched */
2379 	ibt = ibt_save(/*disable*/ true);
2380 
2381 	__apply_fineibt(__retpoline_sites, __retpoline_sites_end,
2382 			__cfi_sites, __cfi_sites_end, true);
2383 	cfi_debug = false;
2384 
2385 	/*
2386 	 * Rewrite the retpolines, must be done before alternatives since
2387 	 * those can rewrite the retpoline thunks.
2388 	 */
2389 	apply_retpolines(__retpoline_sites, __retpoline_sites_end);
2390 	apply_returns(__return_sites, __return_sites_end);
2391 
2392 	its_fini_core();
2393 
2394 	/*
2395 	 * Adjust all CALL instructions to point to func()-10, including
2396 	 * those in .altinstr_replacement.
2397 	 */
2398 	callthunks_patch_builtin_calls();
2399 
2400 	apply_alternatives(__alt_instructions, __alt_instructions_end);
2401 
2402 	/*
2403 	 * Seal all functions that do not have their address taken.
2404 	 */
2405 	apply_seal_endbr(__ibt_endbr_seal, __ibt_endbr_seal_end);
2406 
2407 	ibt_restore(ibt);
2408 
2409 #ifdef CONFIG_SMP
2410 	/* Patch to UP if other cpus not imminent. */
2411 	if (!noreplace_smp && (num_present_cpus() == 1 || setup_max_cpus <= 1)) {
2412 		uniproc_patched = true;
2413 		alternatives_smp_module_add(NULL, "core kernel",
2414 					    __smp_locks, __smp_locks_end,
2415 					    _text, _etext);
2416 	}
2417 
2418 	if (!uniproc_patched || num_possible_cpus() == 1) {
2419 		free_init_pages("SMP alternatives",
2420 				(unsigned long)__smp_locks,
2421 				(unsigned long)__smp_locks_end);
2422 	}
2423 #endif
2424 
2425 	restart_nmi();
2426 	alternatives_patched = 1;
2427 
2428 	alt_reloc_selftest();
2429 }
2430 
2431 /**
2432  * text_poke_early - Update instructions on a live kernel at boot time
2433  * @addr: address to modify
2434  * @opcode: source of the copy
2435  * @len: length to copy
2436  *
2437  * When you use this code to patch more than one byte of an instruction
2438  * you need to make sure that other CPUs cannot execute this code in parallel.
2439  * Also no thread must be currently preempted in the middle of these
2440  * instructions. And on the local CPU you need to be protected against NMI or
2441  * MCE handlers seeing an inconsistent instruction while you patch.
2442  */
text_poke_early(void * addr,const void * opcode,size_t len)2443 void __init_or_module text_poke_early(void *addr, const void *opcode,
2444 				      size_t len)
2445 {
2446 	unsigned long flags;
2447 
2448 	if (boot_cpu_has(X86_FEATURE_NX) &&
2449 	    is_module_text_address((unsigned long)addr)) {
2450 		/*
2451 		 * Modules text is marked initially as non-executable, so the
2452 		 * code cannot be running and speculative code-fetches are
2453 		 * prevented. Just change the code.
2454 		 */
2455 		memcpy(addr, opcode, len);
2456 	} else {
2457 		local_irq_save(flags);
2458 		memcpy(addr, opcode, len);
2459 		sync_core();
2460 		local_irq_restore(flags);
2461 
2462 		/*
2463 		 * Could also do a CLFLUSH here to speed up CPU recovery; but
2464 		 * that causes hangs on some VIA CPUs.
2465 		 */
2466 	}
2467 }
2468 
2469 __ro_after_init struct mm_struct *text_poke_mm;
2470 __ro_after_init unsigned long text_poke_mm_addr;
2471 
text_poke_memcpy(void * dst,const void * src,size_t len)2472 static void text_poke_memcpy(void *dst, const void *src, size_t len)
2473 {
2474 	memcpy(dst, src, len);
2475 }
2476 
text_poke_memset(void * dst,const void * src,size_t len)2477 static void text_poke_memset(void *dst, const void *src, size_t len)
2478 {
2479 	int c = *(const int *)src;
2480 
2481 	memset(dst, c, len);
2482 }
2483 
2484 typedef void text_poke_f(void *dst, const void *src, size_t len);
2485 
__text_poke(text_poke_f func,void * addr,const void * src,size_t len)2486 static void *__text_poke(text_poke_f func, void *addr, const void *src, size_t len)
2487 {
2488 	bool cross_page_boundary = offset_in_page(addr) + len > PAGE_SIZE;
2489 	struct page *pages[2] = {NULL};
2490 	struct mm_struct *prev_mm;
2491 	unsigned long flags;
2492 	pte_t pte, *ptep;
2493 	spinlock_t *ptl;
2494 	pgprot_t pgprot;
2495 
2496 	/*
2497 	 * While boot memory allocator is running we cannot use struct pages as
2498 	 * they are not yet initialized. There is no way to recover.
2499 	 */
2500 	BUG_ON(!after_bootmem);
2501 
2502 	if (!core_kernel_text((unsigned long)addr)) {
2503 		pages[0] = vmalloc_to_page(addr);
2504 		if (cross_page_boundary)
2505 			pages[1] = vmalloc_to_page(addr + PAGE_SIZE);
2506 	} else {
2507 		pages[0] = virt_to_page(addr);
2508 		WARN_ON(!PageReserved(pages[0]));
2509 		if (cross_page_boundary)
2510 			pages[1] = virt_to_page(addr + PAGE_SIZE);
2511 	}
2512 	/*
2513 	 * If something went wrong, crash and burn since recovery paths are not
2514 	 * implemented.
2515 	 */
2516 	BUG_ON(!pages[0] || (cross_page_boundary && !pages[1]));
2517 
2518 	/*
2519 	 * Map the page without the global bit, as TLB flushing is done with
2520 	 * flush_tlb_mm_range(), which is intended for non-global PTEs.
2521 	 */
2522 	pgprot = __pgprot(pgprot_val(PAGE_KERNEL) & ~_PAGE_GLOBAL);
2523 
2524 	/*
2525 	 * The lock is not really needed, but this allows to avoid open-coding.
2526 	 */
2527 	ptep = get_locked_pte(text_poke_mm, text_poke_mm_addr, &ptl);
2528 
2529 	/*
2530 	 * This must not fail; preallocated in poking_init().
2531 	 */
2532 	VM_BUG_ON(!ptep);
2533 
2534 	local_irq_save(flags);
2535 
2536 	pte = mk_pte(pages[0], pgprot);
2537 	set_pte_at(text_poke_mm, text_poke_mm_addr, ptep, pte);
2538 
2539 	if (cross_page_boundary) {
2540 		pte = mk_pte(pages[1], pgprot);
2541 		set_pte_at(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1, pte);
2542 	}
2543 
2544 	/*
2545 	 * Loading the temporary mm behaves as a compiler barrier, which
2546 	 * guarantees that the PTE will be set at the time memcpy() is done.
2547 	 */
2548 	prev_mm = use_temporary_mm(text_poke_mm);
2549 
2550 	kasan_disable_current();
2551 	func((u8 *)text_poke_mm_addr + offset_in_page(addr), src, len);
2552 	kasan_enable_current();
2553 
2554 	/*
2555 	 * Ensure that the PTE is only cleared after the instructions of memcpy
2556 	 * were issued by using a compiler barrier.
2557 	 */
2558 	barrier();
2559 
2560 	pte_clear(text_poke_mm, text_poke_mm_addr, ptep);
2561 	if (cross_page_boundary)
2562 		pte_clear(text_poke_mm, text_poke_mm_addr + PAGE_SIZE, ptep + 1);
2563 
2564 	/*
2565 	 * Loading the previous page-table hierarchy requires a serializing
2566 	 * instruction that already allows the core to see the updated version.
2567 	 * Xen-PV is assumed to serialize execution in a similar manner.
2568 	 */
2569 	unuse_temporary_mm(prev_mm);
2570 
2571 	/*
2572 	 * Flushing the TLB might involve IPIs, which would require enabled
2573 	 * IRQs, but not if the mm is not used, as it is in this point.
2574 	 */
2575 	flush_tlb_mm_range(text_poke_mm, text_poke_mm_addr, text_poke_mm_addr +
2576 			   (cross_page_boundary ? 2 : 1) * PAGE_SIZE,
2577 			   PAGE_SHIFT, false);
2578 
2579 	if (func == text_poke_memcpy) {
2580 		/*
2581 		 * If the text does not match what we just wrote then something is
2582 		 * fundamentally screwy; there's nothing we can really do about that.
2583 		 */
2584 		BUG_ON(memcmp(addr, src, len));
2585 	}
2586 
2587 	local_irq_restore(flags);
2588 	pte_unmap_unlock(ptep, ptl);
2589 	return addr;
2590 }
2591 
2592 /**
2593  * text_poke - Update instructions on a live kernel
2594  * @addr: address to modify
2595  * @opcode: source of the copy
2596  * @len: length to copy
2597  *
2598  * Only atomic text poke/set should be allowed when not doing early patching.
2599  * It means the size must be writable atomically and the address must be aligned
2600  * in a way that permits an atomic write. It also makes sure we fit on a single
2601  * page.
2602  *
2603  * Note that the caller must ensure that if the modified code is part of a
2604  * module, the module would not be removed during poking. This can be achieved
2605  * by registering a module notifier, and ordering module removal and patching
2606  * through a mutex.
2607  */
text_poke(void * addr,const void * opcode,size_t len)2608 void *text_poke(void *addr, const void *opcode, size_t len)
2609 {
2610 	lockdep_assert_held(&text_mutex);
2611 
2612 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2613 }
2614 
2615 /**
2616  * text_poke_kgdb - Update instructions on a live kernel by kgdb
2617  * @addr: address to modify
2618  * @opcode: source of the copy
2619  * @len: length to copy
2620  *
2621  * Only atomic text poke/set should be allowed when not doing early patching.
2622  * It means the size must be writable atomically and the address must be aligned
2623  * in a way that permits an atomic write. It also makes sure we fit on a single
2624  * page.
2625  *
2626  * Context: should only be used by kgdb, which ensures no other core is running,
2627  *	    despite the fact it does not hold the text_mutex.
2628  */
text_poke_kgdb(void * addr,const void * opcode,size_t len)2629 void *text_poke_kgdb(void *addr, const void *opcode, size_t len)
2630 {
2631 	return __text_poke(text_poke_memcpy, addr, opcode, len);
2632 }
2633 
text_poke_copy_locked(void * addr,const void * opcode,size_t len,bool core_ok)2634 void *text_poke_copy_locked(void *addr, const void *opcode, size_t len,
2635 			    bool core_ok)
2636 {
2637 	unsigned long start = (unsigned long)addr;
2638 	size_t patched = 0;
2639 
2640 	if (WARN_ON_ONCE(!core_ok && core_kernel_text(start)))
2641 		return NULL;
2642 
2643 	while (patched < len) {
2644 		unsigned long ptr = start + patched;
2645 		size_t s;
2646 
2647 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2648 
2649 		__text_poke(text_poke_memcpy, (void *)ptr, opcode + patched, s);
2650 		patched += s;
2651 	}
2652 	return addr;
2653 }
2654 
2655 /**
2656  * text_poke_copy - Copy instructions into (an unused part of) RX memory
2657  * @addr: address to modify
2658  * @opcode: source of the copy
2659  * @len: length to copy, could be more than 2x PAGE_SIZE
2660  *
2661  * Not safe against concurrent execution; useful for JITs to dump
2662  * new code blocks into unused regions of RX memory. Can be used in
2663  * conjunction with synchronize_rcu_tasks() to wait for existing
2664  * execution to quiesce after having made sure no existing functions
2665  * pointers are live.
2666  */
text_poke_copy(void * addr,const void * opcode,size_t len)2667 void *text_poke_copy(void *addr, const void *opcode, size_t len)
2668 {
2669 	mutex_lock(&text_mutex);
2670 	addr = text_poke_copy_locked(addr, opcode, len, false);
2671 	mutex_unlock(&text_mutex);
2672 	return addr;
2673 }
2674 
2675 /**
2676  * text_poke_set - memset into (an unused part of) RX memory
2677  * @addr: address to modify
2678  * @c: the byte to fill the area with
2679  * @len: length to copy, could be more than 2x PAGE_SIZE
2680  *
2681  * This is useful to overwrite unused regions of RX memory with illegal
2682  * instructions.
2683  */
text_poke_set(void * addr,int c,size_t len)2684 void *text_poke_set(void *addr, int c, size_t len)
2685 {
2686 	unsigned long start = (unsigned long)addr;
2687 	size_t patched = 0;
2688 
2689 	if (WARN_ON_ONCE(core_kernel_text(start)))
2690 		return NULL;
2691 
2692 	mutex_lock(&text_mutex);
2693 	while (patched < len) {
2694 		unsigned long ptr = start + patched;
2695 		size_t s;
2696 
2697 		s = min_t(size_t, PAGE_SIZE * 2 - offset_in_page(ptr), len - patched);
2698 
2699 		__text_poke(text_poke_memset, (void *)ptr, (void *)&c, s);
2700 		patched += s;
2701 	}
2702 	mutex_unlock(&text_mutex);
2703 	return addr;
2704 }
2705 
do_sync_core(void * info)2706 static void do_sync_core(void *info)
2707 {
2708 	sync_core();
2709 }
2710 
smp_text_poke_sync_each_cpu(void)2711 void smp_text_poke_sync_each_cpu(void)
2712 {
2713 	on_each_cpu(do_sync_core, NULL, 1);
2714 }
2715 
2716 /*
2717  * NOTE: crazy scheme to allow patching Jcc.d32 but not increase the size of
2718  * this thing. When len == 6 everything is prefixed with 0x0f and we map
2719  * opcode to Jcc.d8, using len to distinguish.
2720  */
2721 struct smp_text_poke_loc {
2722 	/* addr := _stext + rel_addr */
2723 	s32 rel_addr;
2724 	s32 disp;
2725 	u8 len;
2726 	u8 opcode;
2727 	const u8 text[TEXT_POKE_MAX_OPCODE_SIZE];
2728 	/* see smp_text_poke_batch_finish() */
2729 	u8 old;
2730 };
2731 
2732 #define TEXT_POKE_ARRAY_MAX (PAGE_SIZE / sizeof(struct smp_text_poke_loc))
2733 
2734 static struct smp_text_poke_array {
2735 	struct smp_text_poke_loc vec[TEXT_POKE_ARRAY_MAX];
2736 	int nr_entries;
2737 } text_poke_array;
2738 
2739 static DEFINE_PER_CPU(atomic_t, text_poke_array_refs);
2740 
2741 /*
2742  * These four __always_inline annotations imply noinstr, necessary
2743  * due to smp_text_poke_int3_handler() being noinstr:
2744  */
2745 
try_get_text_poke_array(void)2746 static __always_inline bool try_get_text_poke_array(void)
2747 {
2748 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2749 
2750 	if (!raw_atomic_inc_not_zero(refs))
2751 		return false;
2752 
2753 	return true;
2754 }
2755 
put_text_poke_array(void)2756 static __always_inline void put_text_poke_array(void)
2757 {
2758 	atomic_t *refs = this_cpu_ptr(&text_poke_array_refs);
2759 
2760 	smp_mb__before_atomic();
2761 	raw_atomic_dec(refs);
2762 }
2763 
text_poke_addr(const struct smp_text_poke_loc * tpl)2764 static __always_inline void *text_poke_addr(const struct smp_text_poke_loc *tpl)
2765 {
2766 	return _stext + tpl->rel_addr;
2767 }
2768 
patch_cmp(const void * tpl_a,const void * tpl_b)2769 static __always_inline int patch_cmp(const void *tpl_a, const void *tpl_b)
2770 {
2771 	if (tpl_a < text_poke_addr(tpl_b))
2772 		return -1;
2773 	if (tpl_a > text_poke_addr(tpl_b))
2774 		return 1;
2775 	return 0;
2776 }
2777 
smp_text_poke_int3_handler(struct pt_regs * regs)2778 noinstr int smp_text_poke_int3_handler(struct pt_regs *regs)
2779 {
2780 	struct smp_text_poke_loc *tpl;
2781 	int ret = 0;
2782 	void *ip;
2783 
2784 	if (user_mode(regs))
2785 		return 0;
2786 
2787 	/*
2788 	 * Having observed our INT3 instruction, we now must observe
2789 	 * text_poke_array with non-zero refcount:
2790 	 *
2791 	 *	text_poke_array_refs = 1		INT3
2792 	 *	WMB			RMB
2793 	 *	write INT3		if (text_poke_array_refs != 0)
2794 	 */
2795 	smp_rmb();
2796 
2797 	if (!try_get_text_poke_array())
2798 		return 0;
2799 
2800 	/*
2801 	 * Discount the INT3. See smp_text_poke_batch_finish().
2802 	 */
2803 	ip = (void *) regs->ip - INT3_INSN_SIZE;
2804 
2805 	/*
2806 	 * Skip the binary search if there is a single member in the vector.
2807 	 */
2808 	if (unlikely(text_poke_array.nr_entries > 1)) {
2809 		tpl = __inline_bsearch(ip, text_poke_array.vec, text_poke_array.nr_entries,
2810 				      sizeof(struct smp_text_poke_loc),
2811 				      patch_cmp);
2812 		if (!tpl)
2813 			goto out_put;
2814 	} else {
2815 		tpl = text_poke_array.vec;
2816 		if (text_poke_addr(tpl) != ip)
2817 			goto out_put;
2818 	}
2819 
2820 	ip += tpl->len;
2821 
2822 	switch (tpl->opcode) {
2823 	case INT3_INSN_OPCODE:
2824 		/*
2825 		 * Someone poked an explicit INT3, they'll want to handle it,
2826 		 * do not consume.
2827 		 */
2828 		goto out_put;
2829 
2830 	case RET_INSN_OPCODE:
2831 		int3_emulate_ret(regs);
2832 		break;
2833 
2834 	case CALL_INSN_OPCODE:
2835 		int3_emulate_call(regs, (long)ip + tpl->disp);
2836 		break;
2837 
2838 	case JMP32_INSN_OPCODE:
2839 	case JMP8_INSN_OPCODE:
2840 		int3_emulate_jmp(regs, (long)ip + tpl->disp);
2841 		break;
2842 
2843 	case 0x70 ... 0x7f: /* Jcc */
2844 		int3_emulate_jcc(regs, tpl->opcode & 0xf, (long)ip, tpl->disp);
2845 		break;
2846 
2847 	default:
2848 		BUG();
2849 	}
2850 
2851 	ret = 1;
2852 
2853 out_put:
2854 	put_text_poke_array();
2855 	return ret;
2856 }
2857 
2858 /**
2859  * smp_text_poke_batch_finish() -- update instructions on live kernel on SMP
2860  *
2861  * Input state:
2862  *  text_poke_array.vec: vector of instructions to patch
2863  *  text_poke_array.nr_entries: number of entries in the vector
2864  *
2865  * Modify multi-byte instructions by using INT3 breakpoints on SMP.
2866  * We completely avoid using stop_machine() here, and achieve the
2867  * synchronization using INT3 breakpoints and SMP cross-calls.
2868  *
2869  * The way it is done:
2870  *	- For each entry in the vector:
2871  *		- add an INT3 trap to the address that will be patched
2872  *	- SMP sync all CPUs
2873  *	- For each entry in the vector:
2874  *		- update all but the first byte of the patched range
2875  *	- SMP sync all CPUs
2876  *	- For each entry in the vector:
2877  *		- replace the first byte (INT3) by the first byte of the
2878  *		  replacing opcode
2879  *	- SMP sync all CPUs
2880  */
smp_text_poke_batch_finish(void)2881 void smp_text_poke_batch_finish(void)
2882 {
2883 	unsigned char int3 = INT3_INSN_OPCODE;
2884 	unsigned int i;
2885 	int do_sync;
2886 
2887 	if (!text_poke_array.nr_entries)
2888 		return;
2889 
2890 	lockdep_assert_held(&text_mutex);
2891 
2892 	/*
2893 	 * Corresponds to the implicit memory barrier in try_get_text_poke_array() to
2894 	 * ensure reading a non-zero refcount provides up to date text_poke_array data.
2895 	 */
2896 	for_each_possible_cpu(i)
2897 		atomic_set_release(per_cpu_ptr(&text_poke_array_refs, i), 1);
2898 
2899 	/*
2900 	 * Function tracing can enable thousands of places that need to be
2901 	 * updated. This can take quite some time, and with full kernel debugging
2902 	 * enabled, this could cause the softlockup watchdog to trigger.
2903 	 * This function gets called every 256 entries added to be patched.
2904 	 * Call cond_resched() here to make sure that other tasks can get scheduled
2905 	 * while processing all the functions being patched.
2906 	 */
2907 	cond_resched();
2908 
2909 	/*
2910 	 * Corresponding read barrier in INT3 notifier for making sure the
2911 	 * text_poke_array.nr_entries and handler are correctly ordered wrt. patching.
2912 	 */
2913 	smp_wmb();
2914 
2915 	/*
2916 	 * First step: add a INT3 trap to the address that will be patched.
2917 	 */
2918 	for (i = 0; i < text_poke_array.nr_entries; i++) {
2919 		text_poke_array.vec[i].old = *(u8 *)text_poke_addr(&text_poke_array.vec[i]);
2920 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &int3, INT3_INSN_SIZE);
2921 	}
2922 
2923 	smp_text_poke_sync_each_cpu();
2924 
2925 	/*
2926 	 * Second step: update all but the first byte of the patched range.
2927 	 */
2928 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2929 		u8 old[TEXT_POKE_MAX_OPCODE_SIZE+1] = { text_poke_array.vec[i].old, };
2930 		u8 _new[TEXT_POKE_MAX_OPCODE_SIZE+1];
2931 		const u8 *new = text_poke_array.vec[i].text;
2932 		int len = text_poke_array.vec[i].len;
2933 
2934 		if (len - INT3_INSN_SIZE > 0) {
2935 			memcpy(old + INT3_INSN_SIZE,
2936 			       text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2937 			       len - INT3_INSN_SIZE);
2938 
2939 			if (len == 6) {
2940 				_new[0] = 0x0f;
2941 				memcpy(_new + 1, new, 5);
2942 				new = _new;
2943 			}
2944 
2945 			text_poke(text_poke_addr(&text_poke_array.vec[i]) + INT3_INSN_SIZE,
2946 				  new + INT3_INSN_SIZE,
2947 				  len - INT3_INSN_SIZE);
2948 
2949 			do_sync++;
2950 		}
2951 
2952 		/*
2953 		 * Emit a perf event to record the text poke, primarily to
2954 		 * support Intel PT decoding which must walk the executable code
2955 		 * to reconstruct the trace. The flow up to here is:
2956 		 *   - write INT3 byte
2957 		 *   - IPI-SYNC
2958 		 *   - write instruction tail
2959 		 * At this point the actual control flow will be through the
2960 		 * INT3 and handler and not hit the old or new instruction.
2961 		 * Intel PT outputs FUP/TIP packets for the INT3, so the flow
2962 		 * can still be decoded. Subsequently:
2963 		 *   - emit RECORD_TEXT_POKE with the new instruction
2964 		 *   - IPI-SYNC
2965 		 *   - write first byte
2966 		 *   - IPI-SYNC
2967 		 * So before the text poke event timestamp, the decoder will see
2968 		 * either the old instruction flow or FUP/TIP of INT3. After the
2969 		 * text poke event timestamp, the decoder will see either the
2970 		 * new instruction flow or FUP/TIP of INT3. Thus decoders can
2971 		 * use the timestamp as the point at which to modify the
2972 		 * executable code.
2973 		 * The old instruction is recorded so that the event can be
2974 		 * processed forwards or backwards.
2975 		 */
2976 		perf_event_text_poke(text_poke_addr(&text_poke_array.vec[i]), old, len, new, len);
2977 	}
2978 
2979 	if (do_sync) {
2980 		/*
2981 		 * According to Intel, this core syncing is very likely
2982 		 * not necessary and we'd be safe even without it. But
2983 		 * better safe than sorry (plus there's not only Intel).
2984 		 */
2985 		smp_text_poke_sync_each_cpu();
2986 	}
2987 
2988 	/*
2989 	 * Third step: replace the first byte (INT3) by the first byte of the
2990 	 * replacing opcode.
2991 	 */
2992 	for (do_sync = 0, i = 0; i < text_poke_array.nr_entries; i++) {
2993 		u8 byte = text_poke_array.vec[i].text[0];
2994 
2995 		if (text_poke_array.vec[i].len == 6)
2996 			byte = 0x0f;
2997 
2998 		if (byte == INT3_INSN_OPCODE)
2999 			continue;
3000 
3001 		text_poke(text_poke_addr(&text_poke_array.vec[i]), &byte, INT3_INSN_SIZE);
3002 		do_sync++;
3003 	}
3004 
3005 	if (do_sync)
3006 		smp_text_poke_sync_each_cpu();
3007 
3008 	/*
3009 	 * Remove and wait for refs to be zero.
3010 	 *
3011 	 * Notably, if after step-3 above the INT3 got removed, then the
3012 	 * smp_text_poke_sync_each_cpu() will have serialized against any running INT3
3013 	 * handlers and the below spin-wait will not happen.
3014 	 *
3015 	 * IOW. unless the replacement instruction is INT3, this case goes
3016 	 * unused.
3017 	 */
3018 	for_each_possible_cpu(i) {
3019 		atomic_t *refs = per_cpu_ptr(&text_poke_array_refs, i);
3020 
3021 		if (unlikely(!atomic_dec_and_test(refs)))
3022 			atomic_cond_read_acquire(refs, !VAL);
3023 	}
3024 
3025 	/* They are all completed: */
3026 	text_poke_array.nr_entries = 0;
3027 }
3028 
__smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)3029 static void __smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3030 {
3031 	struct smp_text_poke_loc *tpl;
3032 	struct insn insn;
3033 	int ret, i = 0;
3034 
3035 	tpl = &text_poke_array.vec[text_poke_array.nr_entries++];
3036 
3037 	if (len == 6)
3038 		i = 1;
3039 	memcpy((void *)tpl->text, opcode+i, len-i);
3040 	if (!emulate)
3041 		emulate = opcode;
3042 
3043 	ret = insn_decode_kernel(&insn, emulate);
3044 	BUG_ON(ret < 0);
3045 
3046 	tpl->rel_addr = addr - (void *)_stext;
3047 	tpl->len = len;
3048 	tpl->opcode = insn.opcode.bytes[0];
3049 
3050 	if (is_jcc32(&insn)) {
3051 		/*
3052 		 * Map Jcc.d32 onto Jcc.d8 and use len to distinguish.
3053 		 */
3054 		tpl->opcode = insn.opcode.bytes[1] - 0x10;
3055 	}
3056 
3057 	switch (tpl->opcode) {
3058 	case RET_INSN_OPCODE:
3059 	case JMP32_INSN_OPCODE:
3060 	case JMP8_INSN_OPCODE:
3061 		/*
3062 		 * Control flow instructions without implied execution of the
3063 		 * next instruction can be padded with INT3.
3064 		 */
3065 		for (i = insn.length; i < len; i++)
3066 			BUG_ON(tpl->text[i] != INT3_INSN_OPCODE);
3067 		break;
3068 
3069 	default:
3070 		BUG_ON(len != insn.length);
3071 	}
3072 
3073 	switch (tpl->opcode) {
3074 	case INT3_INSN_OPCODE:
3075 	case RET_INSN_OPCODE:
3076 		break;
3077 
3078 	case CALL_INSN_OPCODE:
3079 	case JMP32_INSN_OPCODE:
3080 	case JMP8_INSN_OPCODE:
3081 	case 0x70 ... 0x7f: /* Jcc */
3082 		tpl->disp = insn.immediate.value;
3083 		break;
3084 
3085 	default: /* assume NOP */
3086 		switch (len) {
3087 		case 2: /* NOP2 -- emulate as JMP8+0 */
3088 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3089 			tpl->opcode = JMP8_INSN_OPCODE;
3090 			tpl->disp = 0;
3091 			break;
3092 
3093 		case 5: /* NOP5 -- emulate as JMP32+0 */
3094 			BUG_ON(memcmp(emulate, x86_nops[len], len));
3095 			tpl->opcode = JMP32_INSN_OPCODE;
3096 			tpl->disp = 0;
3097 			break;
3098 
3099 		default: /* unknown instruction */
3100 			BUG();
3101 		}
3102 		break;
3103 	}
3104 }
3105 
3106 /*
3107  * We hard rely on the text_poke_array.vec being ordered; ensure this is so by flushing
3108  * early if needed.
3109  */
text_poke_addr_ordered(void * addr)3110 static bool text_poke_addr_ordered(void *addr)
3111 {
3112 	WARN_ON_ONCE(!addr);
3113 
3114 	if (!text_poke_array.nr_entries)
3115 		return true;
3116 
3117 	/*
3118 	 * If the last current entry's address is higher than the
3119 	 * new entry's address we'd like to add, then ordering
3120 	 * is violated and we must first flush all pending patching
3121 	 * requests:
3122 	 */
3123 	if (text_poke_addr(text_poke_array.vec + text_poke_array.nr_entries-1) > addr)
3124 		return false;
3125 
3126 	return true;
3127 }
3128 
3129 /**
3130  * smp_text_poke_batch_add() -- update instruction on live kernel on SMP, batched
3131  * @addr:	address to patch
3132  * @opcode:	opcode of new instruction
3133  * @len:	length to copy
3134  * @emulate:	instruction to be emulated
3135  *
3136  * Add a new instruction to the current queue of to-be-patched instructions
3137  * the kernel maintains. The patching request will not be executed immediately,
3138  * but becomes part of an array of patching requests, optimized for batched
3139  * execution. All pending patching requests will be executed on the next
3140  * smp_text_poke_batch_finish() call.
3141  */
smp_text_poke_batch_add(void * addr,const void * opcode,size_t len,const void * emulate)3142 void __ref smp_text_poke_batch_add(void *addr, const void *opcode, size_t len, const void *emulate)
3143 {
3144 	if (text_poke_array.nr_entries == TEXT_POKE_ARRAY_MAX || !text_poke_addr_ordered(addr))
3145 		smp_text_poke_batch_finish();
3146 	__smp_text_poke_batch_add(addr, opcode, len, emulate);
3147 }
3148 
3149 /**
3150  * smp_text_poke_single() -- update instruction on live kernel on SMP immediately
3151  * @addr:	address to patch
3152  * @opcode:	opcode of new instruction
3153  * @len:	length to copy
3154  * @emulate:	instruction to be emulated
3155  *
3156  * Update a single instruction with the vector in the stack, avoiding
3157  * dynamically allocated memory. This function should be used when it is
3158  * not possible to allocate memory for a vector. The single instruction
3159  * is patched in immediately.
3160  */
smp_text_poke_single(void * addr,const void * opcode,size_t len,const void * emulate)3161 void __ref smp_text_poke_single(void *addr, const void *opcode, size_t len, const void *emulate)
3162 {
3163 	smp_text_poke_batch_add(addr, opcode, len, emulate);
3164 	smp_text_poke_batch_finish();
3165 }
3166