xref: /linux/tools/testing/selftests/kvm/arm64/set_id_regs.c (revision 63eb28bb1402891b1ad2be02a530f29a9dd7f1cd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 bool have_cap_arm_mte;
19 
20 enum ftr_type {
21 	FTR_EXACT,			/* Use a predefined safe value */
22 	FTR_LOWER_SAFE,			/* Smaller value is safe */
23 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
24 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
25 	FTR_END,			/* Mark the last ftr bits */
26 };
27 
28 #define FTR_SIGNED	true	/* Value should be treated as signed */
29 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
30 
31 struct reg_ftr_bits {
32 	char *name;
33 	bool sign;
34 	enum ftr_type type;
35 	uint8_t shift;
36 	uint64_t mask;
37 	/*
38 	 * For FTR_EXACT, safe_val is used as the exact safe value.
39 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
40 	 */
41 	int64_t safe_val;
42 };
43 
44 struct test_feature_reg {
45 	uint32_t reg;
46 	const struct reg_ftr_bits *ftr_bits;
47 };
48 
49 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
50 	{								\
51 		.name = #NAME,						\
52 		.sign = SIGNED,						\
53 		.type = TYPE,						\
54 		.shift = SHIFT,						\
55 		.mask = MASK,						\
56 		.safe_val = SAFE_VAL,					\
57 	}
58 
59 #define REG_FTR_BITS(type, reg, field, safe_val) \
60 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
61 		       reg##_##field##_MASK, safe_val)
62 
63 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
64 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
65 		       reg##_##field##_MASK, safe_val)
66 
67 #define REG_FTR_END					\
68 	{						\
69 		.type = FTR_END,			\
70 	}
71 
72 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
73 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
74 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
75 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
76 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
77 	REG_FTR_END,
78 };
79 
80 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
81 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
82 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
83 	REG_FTR_END,
84 };
85 
86 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
98 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
99 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
100 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
101 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
102 	REG_FTR_END,
103 };
104 
105 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
114 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
115 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
116 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
117 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
118 	REG_FTR_END,
119 };
120 
121 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
122 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
123 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
124 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
125 	REG_FTR_END,
126 };
127 
128 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
129 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
130 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
131 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
132 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
133 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
134 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1),
135 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1),
136 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1),
137 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1),
138 	REG_FTR_END,
139 };
140 
141 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
142 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0),
143 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
144 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
145 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
146 	REG_FTR_END,
147 };
148 
149 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
150 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
151 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
152 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1),
153 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1),
154 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1),
155 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
156 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
157 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
158 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
159 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
160 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
161 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
162 	REG_FTR_END,
163 };
164 
165 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
166 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
167 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
168 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
169 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
170 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
171 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
172 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
173 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
174 	REG_FTR_END,
175 };
176 
177 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
180 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
181 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
182 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
183 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
184 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
185 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
186 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
187 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
188 	REG_FTR_END,
189 };
190 
191 static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = {
192 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0),
193 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0),
194 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0),
195 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0),
196 	REG_FTR_END,
197 };
198 
199 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
200 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
201 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
202 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
203 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
204 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
205 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
206 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
207 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
208 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
209 	REG_FTR_END,
210 };
211 
212 #define TEST_REG(id, table)			\
213 	{					\
214 		.reg = id,			\
215 		.ftr_bits = &((table)[0]),	\
216 	}
217 
218 static struct test_feature_reg test_regs[] = {
219 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
220 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
221 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
222 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
223 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
224 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
225 	TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
226 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
227 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
228 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
229 	TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1),
230 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
231 };
232 
233 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
234 
guest_code(void)235 static void guest_code(void)
236 {
237 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
238 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
239 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
240 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
241 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
242 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
243 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
244 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
245 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
246 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
247 	GUEST_REG_SYNC(SYS_CTR_EL0);
248 	GUEST_REG_SYNC(SYS_MIDR_EL1);
249 	GUEST_REG_SYNC(SYS_REVIDR_EL1);
250 	GUEST_REG_SYNC(SYS_AIDR_EL1);
251 
252 	GUEST_DONE();
253 }
254 
255 /* Return a safe value to a given ftr_bits an ftr value */
get_safe_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)256 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
257 {
258 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
259 
260 	if (ftr_bits->sign == FTR_UNSIGNED) {
261 		switch (ftr_bits->type) {
262 		case FTR_EXACT:
263 			ftr = ftr_bits->safe_val;
264 			break;
265 		case FTR_LOWER_SAFE:
266 			if (ftr > ftr_bits->safe_val)
267 				ftr--;
268 			break;
269 		case FTR_HIGHER_SAFE:
270 			if (ftr < ftr_max)
271 				ftr++;
272 			break;
273 		case FTR_HIGHER_OR_ZERO_SAFE:
274 			if (ftr == ftr_max)
275 				ftr = 0;
276 			else if (ftr != 0)
277 				ftr++;
278 			break;
279 		default:
280 			break;
281 		}
282 	} else if (ftr != ftr_max) {
283 		switch (ftr_bits->type) {
284 		case FTR_EXACT:
285 			ftr = ftr_bits->safe_val;
286 			break;
287 		case FTR_LOWER_SAFE:
288 			if (ftr > ftr_bits->safe_val)
289 				ftr--;
290 			break;
291 		case FTR_HIGHER_SAFE:
292 			if (ftr < ftr_max - 1)
293 				ftr++;
294 			break;
295 		case FTR_HIGHER_OR_ZERO_SAFE:
296 			if (ftr != 0 && ftr != ftr_max - 1)
297 				ftr++;
298 			break;
299 		default:
300 			break;
301 		}
302 	}
303 
304 	return ftr;
305 }
306 
307 /* Return an invalid value to a given ftr_bits an ftr value */
get_invalid_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)308 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
309 {
310 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
311 
312 	if (ftr_bits->sign == FTR_UNSIGNED) {
313 		switch (ftr_bits->type) {
314 		case FTR_EXACT:
315 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
316 			break;
317 		case FTR_LOWER_SAFE:
318 			ftr++;
319 			break;
320 		case FTR_HIGHER_SAFE:
321 			ftr--;
322 			break;
323 		case FTR_HIGHER_OR_ZERO_SAFE:
324 			if (ftr == 0)
325 				ftr = ftr_max;
326 			else
327 				ftr--;
328 			break;
329 		default:
330 			break;
331 		}
332 	} else if (ftr != ftr_max) {
333 		switch (ftr_bits->type) {
334 		case FTR_EXACT:
335 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
336 			break;
337 		case FTR_LOWER_SAFE:
338 			ftr++;
339 			break;
340 		case FTR_HIGHER_SAFE:
341 			ftr--;
342 			break;
343 		case FTR_HIGHER_OR_ZERO_SAFE:
344 			if (ftr == 0)
345 				ftr = ftr_max - 1;
346 			else
347 				ftr--;
348 			break;
349 		default:
350 			break;
351 		}
352 	} else {
353 		ftr = 0;
354 	}
355 
356 	return ftr;
357 }
358 
test_reg_set_success(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)359 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
360 				     const struct reg_ftr_bits *ftr_bits)
361 {
362 	uint8_t shift = ftr_bits->shift;
363 	uint64_t mask = ftr_bits->mask;
364 	uint64_t val, new_val, ftr;
365 
366 	val = vcpu_get_reg(vcpu, reg);
367 	ftr = (val & mask) >> shift;
368 
369 	ftr = get_safe_value(ftr_bits, ftr);
370 
371 	ftr <<= shift;
372 	val &= ~mask;
373 	val |= ftr;
374 
375 	vcpu_set_reg(vcpu, reg, val);
376 	new_val = vcpu_get_reg(vcpu, reg);
377 	TEST_ASSERT_EQ(new_val, val);
378 
379 	return new_val;
380 }
381 
test_reg_set_fail(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)382 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
383 			      const struct reg_ftr_bits *ftr_bits)
384 {
385 	uint8_t shift = ftr_bits->shift;
386 	uint64_t mask = ftr_bits->mask;
387 	uint64_t val, old_val, ftr;
388 	int r;
389 
390 	val = vcpu_get_reg(vcpu, reg);
391 	ftr = (val & mask) >> shift;
392 
393 	ftr = get_invalid_value(ftr_bits, ftr);
394 
395 	old_val = val;
396 	ftr <<= shift;
397 	val &= ~mask;
398 	val |= ftr;
399 
400 	r = __vcpu_set_reg(vcpu, reg, val);
401 	TEST_ASSERT(r < 0 && errno == EINVAL,
402 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
403 
404 	val = vcpu_get_reg(vcpu, reg);
405 	TEST_ASSERT_EQ(val, old_val);
406 }
407 
408 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
409 
410 #define encoding_to_range_idx(encoding)							\
411 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
412 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
413 				     sys_reg_Op2(encoding))
414 
415 
test_vm_ftr_id_regs(struct kvm_vcpu * vcpu,bool aarch64_only)416 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
417 {
418 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
419 	struct reg_mask_range range = {
420 		.addr = (__u64)masks,
421 	};
422 	int ret;
423 
424 	/* KVM should return error when reserved field is not zero */
425 	range.reserved[0] = 1;
426 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
427 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
428 
429 	/* Get writable masks for feature ID registers */
430 	memset(range.reserved, 0, sizeof(range.reserved));
431 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
432 
433 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
434 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
435 		uint32_t reg_id = test_regs[i].reg;
436 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
437 		int idx;
438 
439 		/* Get the index to masks array for the idreg */
440 		idx = encoding_to_range_idx(reg_id);
441 
442 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
443 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
444 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
445 				ksft_test_result_skip("%s on AARCH64 only system\n",
446 						      ftr_bits[j].name);
447 				continue;
448 			}
449 
450 			/* Make sure the feature field is writable */
451 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
452 
453 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
454 
455 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
456 								  &ftr_bits[j]);
457 
458 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
459 		}
460 	}
461 }
462 
463 #define MPAM_IDREG_TEST	6
test_user_set_mpam_reg(struct kvm_vcpu * vcpu)464 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
465 {
466 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
467 	struct reg_mask_range range = {
468 		.addr = (__u64)masks,
469 	};
470 	uint64_t val;
471 	int idx, err;
472 
473 	/*
474 	 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
475 	 * check that if it can be set to 1, (i.e. it is supported by the
476 	 * hardware), that it can't be set to other values.
477 	 */
478 
479 	/* Get writable masks for feature ID registers */
480 	memset(range.reserved, 0, sizeof(range.reserved));
481 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
482 
483 	/* Writeable? Nothing to test! */
484 	idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
485 	if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
486 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
487 		return;
488 	}
489 
490 	/* Get the id register value */
491 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
492 
493 	/* Try to set MPAM=0. This should always be possible. */
494 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
495 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
496 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
497 	if (err)
498 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
499 	else
500 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
501 
502 	/* Try to set MPAM=1 */
503 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
504 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
505 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
506 	if (err)
507 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
508 	else
509 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
510 
511 	/* Try to set MPAM=2 */
512 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
513 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
514 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
515 	if (err)
516 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
517 	else
518 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
519 
520 	/* And again for ID_AA64PFR1_EL1.MPAM_frac */
521 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
522 	if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
523 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
524 		return;
525 	}
526 
527 	/* Get the id register value */
528 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
529 
530 	/* Try to set MPAM_frac=0. This should always be possible. */
531 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
532 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
533 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
534 	if (err)
535 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
536 	else
537 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
538 
539 	/* Try to set MPAM_frac=1 */
540 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
541 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
542 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
543 	if (err)
544 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
545 	else
546 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
547 
548 	/* Try to set MPAM_frac=2 */
549 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
550 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
551 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
552 	if (err)
553 		ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
554 	else
555 		ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
556 }
557 
558 #define MTE_IDREG_TEST 1
test_user_set_mte_reg(struct kvm_vcpu * vcpu)559 static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
560 {
561 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
562 	struct reg_mask_range range = {
563 		.addr = (__u64)masks,
564 	};
565 	uint64_t val;
566 	uint64_t mte;
567 	uint64_t mte_frac;
568 	int idx, err;
569 
570 	if (!have_cap_arm_mte) {
571 		ksft_test_result_skip("MTE capability not supported, nothing to test\n");
572 		return;
573 	}
574 
575 	/* Get writable masks for feature ID registers */
576 	memset(range.reserved, 0, sizeof(range.reserved));
577 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
578 
579 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
580 	if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) {
581 		ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n");
582 		return;
583 	}
584 
585 	/*
586 	 * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2)
587 	 * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported
588 	 * and MTE_frac == 0 indicates it is supported.
589 	 *
590 	 * As MTE_frac was previously unconditionally read as 0, check
591 	 * that the set to 0 succeeds but does not change MTE_frac
592 	 * from unsupported (0xF) to supported (0).
593 	 *
594 	 */
595 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
596 
597 	mte = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE), val);
598 	mte_frac = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac), val);
599 	if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
600 	    mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
601 		ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
602 		return;
603 	}
604 
605 	/* Try to set MTE_frac=0. */
606 	val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
607 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0);
608 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
609 	if (err) {
610 		ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n");
611 		return;
612 	}
613 
614 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
615 	mte_frac = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE_frac), val);
616 	if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
617 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
618 	else
619 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n");
620 }
621 
test_guest_reg_read(struct kvm_vcpu * vcpu)622 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
623 {
624 	bool done = false;
625 	struct ucall uc;
626 
627 	while (!done) {
628 		vcpu_run(vcpu);
629 
630 		switch (get_ucall(vcpu, &uc)) {
631 		case UCALL_ABORT:
632 			REPORT_GUEST_ASSERT(uc);
633 			break;
634 		case UCALL_SYNC:
635 			/* Make sure the written values are seen by guest */
636 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
637 				       uc.args[3]);
638 			break;
639 		case UCALL_DONE:
640 			done = true;
641 			break;
642 		default:
643 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
644 		}
645 	}
646 }
647 
648 /* Politely lifted from arch/arm64/include/asm/cache.h */
649 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
650 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
651 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
652 #define CLIDR_CTYPE(clidr, level)	\
653 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
654 
test_clidr(struct kvm_vcpu * vcpu)655 static void test_clidr(struct kvm_vcpu *vcpu)
656 {
657 	uint64_t clidr;
658 	int level;
659 
660 	clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
661 
662 	/* find the first empty level in the cache hierarchy */
663 	for (level = 1; level < 7; level++) {
664 		if (!CLIDR_CTYPE(clidr, level))
665 			break;
666 	}
667 
668 	/*
669 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
670 	 * get to fix this.
671 	 */
672 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
673 
674 	/* stick in a unified cache level */
675 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
676 
677 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
678 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
679 }
680 
test_ctr(struct kvm_vcpu * vcpu)681 static void test_ctr(struct kvm_vcpu *vcpu)
682 {
683 	u64 ctr;
684 
685 	ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
686 	ctr &= ~CTR_EL0_DIC_MASK;
687 	if (ctr & CTR_EL0_IminLine_MASK)
688 		ctr--;
689 
690 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
691 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
692 }
693 
test_id_reg(struct kvm_vcpu * vcpu,u32 id)694 static void test_id_reg(struct kvm_vcpu *vcpu, u32 id)
695 {
696 	u64 val;
697 
698 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id));
699 	val++;
700 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val);
701 	test_reg_vals[encoding_to_range_idx(id)] = val;
702 }
703 
test_vcpu_ftr_id_regs(struct kvm_vcpu * vcpu)704 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
705 {
706 	test_clidr(vcpu);
707 	test_ctr(vcpu);
708 
709 	test_id_reg(vcpu, SYS_MPIDR_EL1);
710 	ksft_test_result_pass("%s\n", __func__);
711 }
712 
test_vcpu_non_ftr_id_regs(struct kvm_vcpu * vcpu)713 static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu)
714 {
715 	test_id_reg(vcpu, SYS_MIDR_EL1);
716 	test_id_reg(vcpu, SYS_REVIDR_EL1);
717 	test_id_reg(vcpu, SYS_AIDR_EL1);
718 
719 	ksft_test_result_pass("%s\n", __func__);
720 }
721 
test_assert_id_reg_unchanged(struct kvm_vcpu * vcpu,uint32_t encoding)722 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
723 {
724 	size_t idx = encoding_to_range_idx(encoding);
725 	uint64_t observed;
726 
727 	observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
728 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
729 }
730 
test_reset_preserves_id_regs(struct kvm_vcpu * vcpu)731 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
732 {
733 	/*
734 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
735 	 * architectural reset of the vCPU.
736 	 */
737 	aarch64_vcpu_setup(vcpu, NULL);
738 
739 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
740 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
741 
742 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
743 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
744 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
745 	test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1);
746 	test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1);
747 	test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1);
748 
749 	ksft_test_result_pass("%s\n", __func__);
750 }
751 
kvm_arch_vm_post_create(struct kvm_vm * vm)752 void kvm_arch_vm_post_create(struct kvm_vm *vm)
753 {
754 	if (vm_check_cap(vm, KVM_CAP_ARM_MTE)) {
755 		vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0);
756 		have_cap_arm_mte = true;
757 	}
758 }
759 
main(void)760 int main(void)
761 {
762 	struct kvm_vcpu *vcpu;
763 	struct kvm_vm *vm;
764 	bool aarch64_only;
765 	uint64_t val, el0;
766 	int test_cnt;
767 
768 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
769 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS));
770 
771 	vm = vm_create(1);
772 	vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0);
773 	vcpu = vm_vcpu_add(vm, 0, guest_code);
774 
775 	/* Check for AARCH64 only system */
776 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
777 	el0 = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_EL0), val);
778 	aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
779 
780 	ksft_print_header();
781 
782 	test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) +
783 		   ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) +
784 		   ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) +
785 		   ARRAY_SIZE(ftr_id_aa64pfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr0_el1) +
786 		   ARRAY_SIZE(ftr_id_aa64mmfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr2_el1) +
787 		   ARRAY_SIZE(ftr_id_aa64mmfr3_el1) + ARRAY_SIZE(ftr_id_aa64zfr0_el1) -
788 		   ARRAY_SIZE(test_regs) + 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST;
789 
790 	ksft_set_plan(test_cnt);
791 
792 	test_vm_ftr_id_regs(vcpu, aarch64_only);
793 	test_vcpu_ftr_id_regs(vcpu);
794 	test_vcpu_non_ftr_id_regs(vcpu);
795 	test_user_set_mpam_reg(vcpu);
796 	test_user_set_mte_reg(vcpu);
797 
798 	test_guest_reg_read(vcpu);
799 
800 	test_reset_preserves_id_regs(vcpu);
801 
802 	kvm_vm_free(vm);
803 
804 	ksft_finished();
805 }
806