xref: /linux/tools/testing/selftests/kvm/arm64/set_id_regs.c (revision 11e7861d680c3757eab18ec0a474ff680e007dc4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * set_id_regs - Test for setting ID register from usersapce.
4  *
5  * Copyright (c) 2023 Google LLC.
6  *
7  *
8  * Test that KVM supports setting ID registers from userspace and handles the
9  * feature set correctly.
10  */
11 
12 #include <stdint.h>
13 #include "kvm_util.h"
14 #include "processor.h"
15 #include "test_util.h"
16 #include <linux/bitfield.h>
17 
18 bool have_cap_arm_mte;
19 
20 enum ftr_type {
21 	FTR_EXACT,			/* Use a predefined safe value */
22 	FTR_LOWER_SAFE,			/* Smaller value is safe */
23 	FTR_HIGHER_SAFE,		/* Bigger value is safe */
24 	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
25 	FTR_END,			/* Mark the last ftr bits */
26 };
27 
28 #define FTR_SIGNED	true	/* Value should be treated as signed */
29 #define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
30 
31 struct reg_ftr_bits {
32 	char *name;
33 	bool sign;
34 	enum ftr_type type;
35 	uint8_t shift;
36 	uint64_t mask;
37 	/*
38 	 * For FTR_EXACT, safe_val is used as the exact safe value.
39 	 * For FTR_LOWER_SAFE, safe_val is used as the minimal safe value.
40 	 */
41 	int64_t safe_val;
42 };
43 
44 struct test_feature_reg {
45 	uint32_t reg;
46 	const struct reg_ftr_bits *ftr_bits;
47 };
48 
49 #define __REG_FTR_BITS(NAME, SIGNED, TYPE, SHIFT, MASK, SAFE_VAL)	\
50 	{								\
51 		.name = #NAME,						\
52 		.sign = SIGNED,						\
53 		.type = TYPE,						\
54 		.shift = SHIFT,						\
55 		.mask = MASK,						\
56 		.safe_val = SAFE_VAL,					\
57 	}
58 
59 #define REG_FTR_BITS(type, reg, field, safe_val) \
60 	__REG_FTR_BITS(reg##_##field, FTR_UNSIGNED, type, reg##_##field##_SHIFT, \
61 		       reg##_##field##_MASK, safe_val)
62 
63 #define S_REG_FTR_BITS(type, reg, field, safe_val) \
64 	__REG_FTR_BITS(reg##_##field, FTR_SIGNED, type, reg##_##field##_SHIFT, \
65 		       reg##_##field##_MASK, safe_val)
66 
67 #define REG_FTR_END					\
68 	{						\
69 		.type = FTR_END,			\
70 	}
71 
72 static const struct reg_ftr_bits ftr_id_aa64dfr0_el1[] = {
73 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DoubleLock, 0),
74 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, WRPs, 0),
75 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, PMUVer, 0),
76 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64DFR0_EL1, DebugVer, ID_AA64DFR0_EL1_DebugVer_IMP),
77 	REG_FTR_END,
78 };
79 
80 static const struct reg_ftr_bits ftr_id_dfr0_el1[] = {
81 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, PerfMon, ID_DFR0_EL1_PerfMon_PMUv3),
82 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_DFR0_EL1, CopDbg, ID_DFR0_EL1_CopDbg_Armv8),
83 	REG_FTR_END,
84 };
85 
86 static const struct reg_ftr_bits ftr_id_aa64isar0_el1[] = {
87 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RNDR, 0),
88 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TLB, 0),
89 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TS, 0),
90 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, FHM, 0),
91 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, DP, 0),
92 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM4, 0),
93 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SM3, 0),
94 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA3, 0),
95 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, RDM, 0),
96 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, TME, 0),
97 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, ATOMIC, 0),
98 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, CRC32, 0),
99 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA2, 0),
100 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, SHA1, 0),
101 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR0_EL1, AES, 0),
102 	REG_FTR_END,
103 };
104 
105 static const struct reg_ftr_bits ftr_id_aa64isar1_el1[] = {
106 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LS64, 0),
107 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, XS, 0),
108 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, I8MM, 0),
109 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DGH, 0),
110 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, BF16, 0),
111 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SPECRES, 0),
112 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, SB, 0),
113 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FRINTTS, 0),
114 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, LRCPC, 0),
115 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, FCMA, 0),
116 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, JSCVT, 0),
117 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR1_EL1, DPB, 0),
118 	REG_FTR_END,
119 };
120 
121 static const struct reg_ftr_bits ftr_id_aa64isar2_el1[] = {
122 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, BC, 0),
123 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, RPRES, 0),
124 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ISAR2_EL1, WFxT, 0),
125 	REG_FTR_END,
126 };
127 
128 static const struct reg_ftr_bits ftr_id_aa64pfr0_el1[] = {
129 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV3, 0),
130 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, CSV2, 0),
131 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, DIT, 0),
132 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, SEL2, 0),
133 	REG_FTR_BITS(FTR_EXACT, ID_AA64PFR0_EL1, GIC, 0),
134 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL3, 1),
135 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL2, 1),
136 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL1, 1),
137 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR0_EL1, EL0, 1),
138 	REG_FTR_END,
139 };
140 
141 static const struct reg_ftr_bits ftr_id_aa64pfr1_el1[] = {
142 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, DF2, 0),
143 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, CSV2_frac, 0),
144 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, SSBS, ID_AA64PFR1_EL1_SSBS_NI),
145 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64PFR1_EL1, BT, 0),
146 	REG_FTR_END,
147 };
148 
149 static const struct reg_ftr_bits ftr_id_aa64mmfr0_el1[] = {
150 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, ECV, 0),
151 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, EXS, 0),
152 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN4_2, 1),
153 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN64_2, 1),
154 	REG_FTR_BITS(FTR_EXACT, ID_AA64MMFR0_EL1, TGRAN16_2, 1),
155 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN4, 0),
156 	S_REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN64, 0),
157 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, TGRAN16, 0),
158 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGENDEL0, 0),
159 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, SNSMEM, 0),
160 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, BIGEND, 0),
161 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR0_EL1, PARANGE, 0),
162 	REG_FTR_END,
163 };
164 
165 static const struct reg_ftr_bits ftr_id_aa64mmfr1_el1[] = {
166 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, TIDCP1, 0),
167 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, AFP, 0),
168 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, ETS, 0),
169 	REG_FTR_BITS(FTR_HIGHER_SAFE, ID_AA64MMFR1_EL1, SpecSEI, 0),
170 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, PAN, 0),
171 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, LO, 0),
172 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HPDS, 0),
173 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR1_EL1, HAFDBS, 0),
174 	REG_FTR_END,
175 };
176 
177 static const struct reg_ftr_bits ftr_id_aa64mmfr2_el1[] = {
178 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, E0PD, 0),
179 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, BBM, 0),
180 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, TTL, 0),
181 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, AT, 0),
182 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, ST, 0),
183 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, VARange, 0),
184 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, IESB, 0),
185 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, LSM, 0),
186 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, UAO, 0),
187 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR2_EL1, CnP, 0),
188 	REG_FTR_END,
189 };
190 
191 static const struct reg_ftr_bits ftr_id_aa64mmfr3_el1[] = {
192 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1POE, 0),
193 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, S1PIE, 0),
194 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, SCTLRX, 0),
195 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64MMFR3_EL1, TCRX, 0),
196 	REG_FTR_END,
197 };
198 
199 static const struct reg_ftr_bits ftr_id_aa64zfr0_el1[] = {
200 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F64MM, 0),
201 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, F32MM, 0),
202 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, I8MM, 0),
203 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SM4, 0),
204 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SHA3, 0),
205 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BF16, 0),
206 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, BitPerm, 0),
207 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, AES, 0),
208 	REG_FTR_BITS(FTR_LOWER_SAFE, ID_AA64ZFR0_EL1, SVEver, 0),
209 	REG_FTR_END,
210 };
211 
212 #define TEST_REG(id, table)			\
213 	{					\
214 		.reg = id,			\
215 		.ftr_bits = &((table)[0]),	\
216 	}
217 
218 static struct test_feature_reg test_regs[] = {
219 	TEST_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0_el1),
220 	TEST_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0_el1),
221 	TEST_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0_el1),
222 	TEST_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1_el1),
223 	TEST_REG(SYS_ID_AA64ISAR2_EL1, ftr_id_aa64isar2_el1),
224 	TEST_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0_el1),
225 	TEST_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1_el1),
226 	TEST_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0_el1),
227 	TEST_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1_el1),
228 	TEST_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2_el1),
229 	TEST_REG(SYS_ID_AA64MMFR3_EL1, ftr_id_aa64mmfr3_el1),
230 	TEST_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0_el1),
231 };
232 
233 #define GUEST_REG_SYNC(id) GUEST_SYNC_ARGS(0, id, read_sysreg_s(id), 0, 0);
234 
guest_code(void)235 static void guest_code(void)
236 {
237 	GUEST_REG_SYNC(SYS_ID_AA64DFR0_EL1);
238 	GUEST_REG_SYNC(SYS_ID_DFR0_EL1);
239 	GUEST_REG_SYNC(SYS_ID_AA64ISAR0_EL1);
240 	GUEST_REG_SYNC(SYS_ID_AA64ISAR1_EL1);
241 	GUEST_REG_SYNC(SYS_ID_AA64ISAR2_EL1);
242 	GUEST_REG_SYNC(SYS_ID_AA64PFR0_EL1);
243 	GUEST_REG_SYNC(SYS_ID_AA64MMFR0_EL1);
244 	GUEST_REG_SYNC(SYS_ID_AA64MMFR1_EL1);
245 	GUEST_REG_SYNC(SYS_ID_AA64MMFR2_EL1);
246 	GUEST_REG_SYNC(SYS_ID_AA64MMFR3_EL1);
247 	GUEST_REG_SYNC(SYS_ID_AA64ZFR0_EL1);
248 	GUEST_REG_SYNC(SYS_CTR_EL0);
249 	GUEST_REG_SYNC(SYS_MIDR_EL1);
250 	GUEST_REG_SYNC(SYS_REVIDR_EL1);
251 	GUEST_REG_SYNC(SYS_AIDR_EL1);
252 
253 	GUEST_DONE();
254 }
255 
256 /* Return a safe value to a given ftr_bits an ftr value */
get_safe_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)257 uint64_t get_safe_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
258 {
259 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
260 
261 	if (ftr_bits->sign == FTR_UNSIGNED) {
262 		switch (ftr_bits->type) {
263 		case FTR_EXACT:
264 			ftr = ftr_bits->safe_val;
265 			break;
266 		case FTR_LOWER_SAFE:
267 			if (ftr > ftr_bits->safe_val)
268 				ftr--;
269 			break;
270 		case FTR_HIGHER_SAFE:
271 			if (ftr < ftr_max)
272 				ftr++;
273 			break;
274 		case FTR_HIGHER_OR_ZERO_SAFE:
275 			if (ftr == ftr_max)
276 				ftr = 0;
277 			else if (ftr != 0)
278 				ftr++;
279 			break;
280 		default:
281 			break;
282 		}
283 	} else if (ftr != ftr_max) {
284 		switch (ftr_bits->type) {
285 		case FTR_EXACT:
286 			ftr = ftr_bits->safe_val;
287 			break;
288 		case FTR_LOWER_SAFE:
289 			if (ftr > ftr_bits->safe_val)
290 				ftr--;
291 			break;
292 		case FTR_HIGHER_SAFE:
293 			if (ftr < ftr_max - 1)
294 				ftr++;
295 			break;
296 		case FTR_HIGHER_OR_ZERO_SAFE:
297 			if (ftr != 0 && ftr != ftr_max - 1)
298 				ftr++;
299 			break;
300 		default:
301 			break;
302 		}
303 	}
304 
305 	return ftr;
306 }
307 
308 /* Return an invalid value to a given ftr_bits an ftr value */
get_invalid_value(const struct reg_ftr_bits * ftr_bits,uint64_t ftr)309 uint64_t get_invalid_value(const struct reg_ftr_bits *ftr_bits, uint64_t ftr)
310 {
311 	uint64_t ftr_max = GENMASK_ULL(ARM64_FEATURE_FIELD_BITS - 1, 0);
312 
313 	if (ftr_bits->sign == FTR_UNSIGNED) {
314 		switch (ftr_bits->type) {
315 		case FTR_EXACT:
316 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
317 			break;
318 		case FTR_LOWER_SAFE:
319 			ftr++;
320 			break;
321 		case FTR_HIGHER_SAFE:
322 			ftr--;
323 			break;
324 		case FTR_HIGHER_OR_ZERO_SAFE:
325 			if (ftr == 0)
326 				ftr = ftr_max;
327 			else
328 				ftr--;
329 			break;
330 		default:
331 			break;
332 		}
333 	} else if (ftr != ftr_max) {
334 		switch (ftr_bits->type) {
335 		case FTR_EXACT:
336 			ftr = max((uint64_t)ftr_bits->safe_val + 1, ftr + 1);
337 			break;
338 		case FTR_LOWER_SAFE:
339 			ftr++;
340 			break;
341 		case FTR_HIGHER_SAFE:
342 			ftr--;
343 			break;
344 		case FTR_HIGHER_OR_ZERO_SAFE:
345 			if (ftr == 0)
346 				ftr = ftr_max - 1;
347 			else
348 				ftr--;
349 			break;
350 		default:
351 			break;
352 		}
353 	} else {
354 		ftr = 0;
355 	}
356 
357 	return ftr;
358 }
359 
test_reg_set_success(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)360 static uint64_t test_reg_set_success(struct kvm_vcpu *vcpu, uint64_t reg,
361 				     const struct reg_ftr_bits *ftr_bits)
362 {
363 	uint8_t shift = ftr_bits->shift;
364 	uint64_t mask = ftr_bits->mask;
365 	uint64_t val, new_val, ftr;
366 
367 	val = vcpu_get_reg(vcpu, reg);
368 	ftr = (val & mask) >> shift;
369 
370 	ftr = get_safe_value(ftr_bits, ftr);
371 
372 	ftr <<= shift;
373 	val &= ~mask;
374 	val |= ftr;
375 
376 	vcpu_set_reg(vcpu, reg, val);
377 	new_val = vcpu_get_reg(vcpu, reg);
378 	TEST_ASSERT_EQ(new_val, val);
379 
380 	return new_val;
381 }
382 
test_reg_set_fail(struct kvm_vcpu * vcpu,uint64_t reg,const struct reg_ftr_bits * ftr_bits)383 static void test_reg_set_fail(struct kvm_vcpu *vcpu, uint64_t reg,
384 			      const struct reg_ftr_bits *ftr_bits)
385 {
386 	uint8_t shift = ftr_bits->shift;
387 	uint64_t mask = ftr_bits->mask;
388 	uint64_t val, old_val, ftr;
389 	int r;
390 
391 	val = vcpu_get_reg(vcpu, reg);
392 	ftr = (val & mask) >> shift;
393 
394 	ftr = get_invalid_value(ftr_bits, ftr);
395 
396 	old_val = val;
397 	ftr <<= shift;
398 	val &= ~mask;
399 	val |= ftr;
400 
401 	r = __vcpu_set_reg(vcpu, reg, val);
402 	TEST_ASSERT(r < 0 && errno == EINVAL,
403 		    "Unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno);
404 
405 	val = vcpu_get_reg(vcpu, reg);
406 	TEST_ASSERT_EQ(val, old_val);
407 }
408 
409 static uint64_t test_reg_vals[KVM_ARM_FEATURE_ID_RANGE_SIZE];
410 
411 #define encoding_to_range_idx(encoding)							\
412 	KVM_ARM_FEATURE_ID_RANGE_IDX(sys_reg_Op0(encoding), sys_reg_Op1(encoding),	\
413 				     sys_reg_CRn(encoding), sys_reg_CRm(encoding),	\
414 				     sys_reg_Op2(encoding))
415 
416 
test_vm_ftr_id_regs(struct kvm_vcpu * vcpu,bool aarch64_only)417 static void test_vm_ftr_id_regs(struct kvm_vcpu *vcpu, bool aarch64_only)
418 {
419 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
420 	struct reg_mask_range range = {
421 		.addr = (__u64)masks,
422 	};
423 	int ret;
424 
425 	/* KVM should return error when reserved field is not zero */
426 	range.reserved[0] = 1;
427 	ret = __vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
428 	TEST_ASSERT(ret, "KVM doesn't check invalid parameters.");
429 
430 	/* Get writable masks for feature ID registers */
431 	memset(range.reserved, 0, sizeof(range.reserved));
432 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
433 
434 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++) {
435 		const struct reg_ftr_bits *ftr_bits = test_regs[i].ftr_bits;
436 		uint32_t reg_id = test_regs[i].reg;
437 		uint64_t reg = KVM_ARM64_SYS_REG(reg_id);
438 		int idx;
439 
440 		/* Get the index to masks array for the idreg */
441 		idx = encoding_to_range_idx(reg_id);
442 
443 		for (int j = 0;  ftr_bits[j].type != FTR_END; j++) {
444 			/* Skip aarch32 reg on aarch64 only system, since they are RAZ/WI. */
445 			if (aarch64_only && sys_reg_CRm(reg_id) < 4) {
446 				ksft_test_result_skip("%s on AARCH64 only system\n",
447 						      ftr_bits[j].name);
448 				continue;
449 			}
450 
451 			/* Make sure the feature field is writable */
452 			TEST_ASSERT_EQ(masks[idx] & ftr_bits[j].mask, ftr_bits[j].mask);
453 
454 			test_reg_set_fail(vcpu, reg, &ftr_bits[j]);
455 
456 			test_reg_vals[idx] = test_reg_set_success(vcpu, reg,
457 								  &ftr_bits[j]);
458 
459 			ksft_test_result_pass("%s\n", ftr_bits[j].name);
460 		}
461 	}
462 }
463 
464 #define MPAM_IDREG_TEST	6
test_user_set_mpam_reg(struct kvm_vcpu * vcpu)465 static void test_user_set_mpam_reg(struct kvm_vcpu *vcpu)
466 {
467 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
468 	struct reg_mask_range range = {
469 		.addr = (__u64)masks,
470 	};
471 	uint64_t val;
472 	int idx, err;
473 
474 	/*
475 	 * If ID_AA64PFR0.MPAM is _not_ officially modifiable and is zero,
476 	 * check that if it can be set to 1, (i.e. it is supported by the
477 	 * hardware), that it can't be set to other values.
478 	 */
479 
480 	/* Get writable masks for feature ID registers */
481 	memset(range.reserved, 0, sizeof(range.reserved));
482 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
483 
484 	/* Writeable? Nothing to test! */
485 	idx = encoding_to_range_idx(SYS_ID_AA64PFR0_EL1);
486 	if ((masks[idx] & ID_AA64PFR0_EL1_MPAM_MASK) == ID_AA64PFR0_EL1_MPAM_MASK) {
487 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is officially writable, nothing to test\n");
488 		return;
489 	}
490 
491 	/* Get the id register value */
492 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
493 
494 	/* Try to set MPAM=0. This should always be possible. */
495 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
496 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 0);
497 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
498 	if (err)
499 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM=0 was not accepted\n");
500 	else
501 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=0 worked\n");
502 
503 	/* Try to set MPAM=1 */
504 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
505 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 1);
506 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
507 	if (err)
508 		ksft_test_result_skip("ID_AA64PFR0_EL1.MPAM is not writable, nothing to test\n");
509 	else
510 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM=1 was writable\n");
511 
512 	/* Try to set MPAM=2 */
513 	val &= ~ID_AA64PFR0_EL1_MPAM_MASK;
514 	val |= FIELD_PREP(ID_AA64PFR0_EL1_MPAM_MASK, 2);
515 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), val);
516 	if (err)
517 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM not arbitrarily modifiable\n");
518 	else
519 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM value should not be ignored\n");
520 
521 	/* And again for ID_AA64PFR1_EL1.MPAM_frac */
522 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
523 	if ((masks[idx] & ID_AA64PFR1_EL1_MPAM_frac_MASK) == ID_AA64PFR1_EL1_MPAM_frac_MASK) {
524 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is officially writable, nothing to test\n");
525 		return;
526 	}
527 
528 	/* Get the id register value */
529 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
530 
531 	/* Try to set MPAM_frac=0. This should always be possible. */
532 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
533 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 0);
534 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
535 	if (err)
536 		ksft_test_result_fail("ID_AA64PFR0_EL1.MPAM_frac=0 was not accepted\n");
537 	else
538 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=0 worked\n");
539 
540 	/* Try to set MPAM_frac=1 */
541 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
542 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 1);
543 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
544 	if (err)
545 		ksft_test_result_skip("ID_AA64PFR1_EL1.MPAM_frac is not writable, nothing to test\n");
546 	else
547 		ksft_test_result_pass("ID_AA64PFR0_EL1.MPAM_frac=1 was writable\n");
548 
549 	/* Try to set MPAM_frac=2 */
550 	val &= ~ID_AA64PFR1_EL1_MPAM_frac_MASK;
551 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MPAM_frac_MASK, 2);
552 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
553 	if (err)
554 		ksft_test_result_pass("ID_AA64PFR1_EL1.MPAM_frac not arbitrarily modifiable\n");
555 	else
556 		ksft_test_result_fail("ID_AA64PFR1_EL1.MPAM_frac value should not be ignored\n");
557 }
558 
559 #define MTE_IDREG_TEST 1
test_user_set_mte_reg(struct kvm_vcpu * vcpu)560 static void test_user_set_mte_reg(struct kvm_vcpu *vcpu)
561 {
562 	uint64_t masks[KVM_ARM_FEATURE_ID_RANGE_SIZE];
563 	struct reg_mask_range range = {
564 		.addr = (__u64)masks,
565 	};
566 	uint64_t val;
567 	uint64_t mte;
568 	uint64_t mte_frac;
569 	int idx, err;
570 
571 	if (!have_cap_arm_mte) {
572 		ksft_test_result_skip("MTE capability not supported, nothing to test\n");
573 		return;
574 	}
575 
576 	/* Get writable masks for feature ID registers */
577 	memset(range.reserved, 0, sizeof(range.reserved));
578 	vm_ioctl(vcpu->vm, KVM_ARM_GET_REG_WRITABLE_MASKS, &range);
579 
580 	idx = encoding_to_range_idx(SYS_ID_AA64PFR1_EL1);
581 	if ((masks[idx] & ID_AA64PFR1_EL1_MTE_frac_MASK) == ID_AA64PFR1_EL1_MTE_frac_MASK) {
582 		ksft_test_result_skip("ID_AA64PFR1_EL1.MTE_frac is officially writable, nothing to test\n");
583 		return;
584 	}
585 
586 	/*
587 	 * When MTE is supported but MTE_ASYMM is not (ID_AA64PFR1_EL1.MTE == 2)
588 	 * ID_AA64PFR1_EL1.MTE_frac == 0xF indicates MTE_ASYNC is unsupported
589 	 * and MTE_frac == 0 indicates it is supported.
590 	 *
591 	 * As MTE_frac was previously unconditionally read as 0, check
592 	 * that the set to 0 succeeds but does not change MTE_frac
593 	 * from unsupported (0xF) to supported (0).
594 	 *
595 	 */
596 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
597 
598 	mte = FIELD_GET(ID_AA64PFR1_EL1_MTE, val);
599 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
600 	if (mte != ID_AA64PFR1_EL1_MTE_MTE2 ||
601 	    mte_frac != ID_AA64PFR1_EL1_MTE_frac_NI) {
602 		ksft_test_result_skip("MTE_ASYNC or MTE_ASYMM are supported, nothing to test\n");
603 		return;
604 	}
605 
606 	/* Try to set MTE_frac=0. */
607 	val &= ~ID_AA64PFR1_EL1_MTE_frac_MASK;
608 	val |= FIELD_PREP(ID_AA64PFR1_EL1_MTE_frac_MASK, 0);
609 	err = __vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1), val);
610 	if (err) {
611 		ksft_test_result_fail("ID_AA64PFR1_EL1.MTE_frac=0 was not accepted\n");
612 		return;
613 	}
614 
615 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR1_EL1));
616 	mte_frac = FIELD_GET(ID_AA64PFR1_EL1_MTE_frac, val);
617 	if (mte_frac == ID_AA64PFR1_EL1_MTE_frac_NI)
618 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac=0 accepted and still 0xF\n");
619 	else
620 		ksft_test_result_pass("ID_AA64PFR1_EL1.MTE_frac no longer 0xF\n");
621 }
622 
test_guest_reg_read(struct kvm_vcpu * vcpu)623 static void test_guest_reg_read(struct kvm_vcpu *vcpu)
624 {
625 	bool done = false;
626 	struct ucall uc;
627 
628 	while (!done) {
629 		vcpu_run(vcpu);
630 
631 		switch (get_ucall(vcpu, &uc)) {
632 		case UCALL_ABORT:
633 			REPORT_GUEST_ASSERT(uc);
634 			break;
635 		case UCALL_SYNC:
636 			/* Make sure the written values are seen by guest */
637 			TEST_ASSERT_EQ(test_reg_vals[encoding_to_range_idx(uc.args[2])],
638 				       uc.args[3]);
639 			break;
640 		case UCALL_DONE:
641 			done = true;
642 			break;
643 		default:
644 			TEST_FAIL("Unexpected ucall: %lu", uc.cmd);
645 		}
646 	}
647 }
648 
649 /* Politely lifted from arch/arm64/include/asm/cache.h */
650 /* Ctypen, bits[3(n - 1) + 2 : 3(n - 1)], for n = 1 to 7 */
651 #define CLIDR_CTYPE_SHIFT(level)	(3 * (level - 1))
652 #define CLIDR_CTYPE_MASK(level)		(7 << CLIDR_CTYPE_SHIFT(level))
653 #define CLIDR_CTYPE(clidr, level)	\
654 	(((clidr) & CLIDR_CTYPE_MASK(level)) >> CLIDR_CTYPE_SHIFT(level))
655 
test_clidr(struct kvm_vcpu * vcpu)656 static void test_clidr(struct kvm_vcpu *vcpu)
657 {
658 	uint64_t clidr;
659 	int level;
660 
661 	clidr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1));
662 
663 	/* find the first empty level in the cache hierarchy */
664 	for (level = 1; level < 7; level++) {
665 		if (!CLIDR_CTYPE(clidr, level))
666 			break;
667 	}
668 
669 	/*
670 	 * If you have a mind-boggling 7 levels of cache, congratulations, you
671 	 * get to fix this.
672 	 */
673 	TEST_ASSERT(level <= 7, "can't find an empty level in cache hierarchy");
674 
675 	/* stick in a unified cache level */
676 	clidr |= BIT(2) << CLIDR_CTYPE_SHIFT(level);
677 
678 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CLIDR_EL1), clidr);
679 	test_reg_vals[encoding_to_range_idx(SYS_CLIDR_EL1)] = clidr;
680 }
681 
test_ctr(struct kvm_vcpu * vcpu)682 static void test_ctr(struct kvm_vcpu *vcpu)
683 {
684 	u64 ctr;
685 
686 	ctr = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0));
687 	ctr &= ~CTR_EL0_DIC_MASK;
688 	if (ctr & CTR_EL0_IminLine_MASK)
689 		ctr--;
690 
691 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CTR_EL0), ctr);
692 	test_reg_vals[encoding_to_range_idx(SYS_CTR_EL0)] = ctr;
693 }
694 
test_id_reg(struct kvm_vcpu * vcpu,u32 id)695 static void test_id_reg(struct kvm_vcpu *vcpu, u32 id)
696 {
697 	u64 val;
698 
699 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(id));
700 	val++;
701 	vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(id), val);
702 	test_reg_vals[encoding_to_range_idx(id)] = val;
703 }
704 
test_vcpu_ftr_id_regs(struct kvm_vcpu * vcpu)705 static void test_vcpu_ftr_id_regs(struct kvm_vcpu *vcpu)
706 {
707 	test_clidr(vcpu);
708 	test_ctr(vcpu);
709 
710 	test_id_reg(vcpu, SYS_MPIDR_EL1);
711 	ksft_test_result_pass("%s\n", __func__);
712 }
713 
test_vcpu_non_ftr_id_regs(struct kvm_vcpu * vcpu)714 static void test_vcpu_non_ftr_id_regs(struct kvm_vcpu *vcpu)
715 {
716 	test_id_reg(vcpu, SYS_MIDR_EL1);
717 	test_id_reg(vcpu, SYS_REVIDR_EL1);
718 	test_id_reg(vcpu, SYS_AIDR_EL1);
719 
720 	ksft_test_result_pass("%s\n", __func__);
721 }
722 
test_assert_id_reg_unchanged(struct kvm_vcpu * vcpu,uint32_t encoding)723 static void test_assert_id_reg_unchanged(struct kvm_vcpu *vcpu, uint32_t encoding)
724 {
725 	size_t idx = encoding_to_range_idx(encoding);
726 	uint64_t observed;
727 
728 	observed = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(encoding));
729 	TEST_ASSERT_EQ(test_reg_vals[idx], observed);
730 }
731 
test_reset_preserves_id_regs(struct kvm_vcpu * vcpu)732 static void test_reset_preserves_id_regs(struct kvm_vcpu *vcpu)
733 {
734 	/*
735 	 * Calls KVM_ARM_VCPU_INIT behind the scenes, which will do an
736 	 * architectural reset of the vCPU.
737 	 */
738 	aarch64_vcpu_setup(vcpu, NULL);
739 
740 	for (int i = 0; i < ARRAY_SIZE(test_regs); i++)
741 		test_assert_id_reg_unchanged(vcpu, test_regs[i].reg);
742 
743 	test_assert_id_reg_unchanged(vcpu, SYS_MPIDR_EL1);
744 	test_assert_id_reg_unchanged(vcpu, SYS_CLIDR_EL1);
745 	test_assert_id_reg_unchanged(vcpu, SYS_CTR_EL0);
746 	test_assert_id_reg_unchanged(vcpu, SYS_MIDR_EL1);
747 	test_assert_id_reg_unchanged(vcpu, SYS_REVIDR_EL1);
748 	test_assert_id_reg_unchanged(vcpu, SYS_AIDR_EL1);
749 
750 	ksft_test_result_pass("%s\n", __func__);
751 }
752 
kvm_arch_vm_post_create(struct kvm_vm * vm)753 void kvm_arch_vm_post_create(struct kvm_vm *vm)
754 {
755 	if (vm_check_cap(vm, KVM_CAP_ARM_MTE)) {
756 		vm_enable_cap(vm, KVM_CAP_ARM_MTE, 0);
757 		have_cap_arm_mte = true;
758 	}
759 }
760 
main(void)761 int main(void)
762 {
763 	struct kvm_vcpu *vcpu;
764 	struct kvm_vm *vm;
765 	bool aarch64_only;
766 	uint64_t val, el0;
767 	int test_cnt;
768 
769 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES));
770 	TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_WRITABLE_IMP_ID_REGS));
771 
772 	vm = vm_create(1);
773 	vm_enable_cap(vm, KVM_CAP_ARM_WRITABLE_IMP_ID_REGS, 0);
774 	vcpu = vm_vcpu_add(vm, 0, guest_code);
775 
776 	/* Check for AARCH64 only system */
777 	val = vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1));
778 	el0 = FIELD_GET(ID_AA64PFR0_EL1_EL0, val);
779 	aarch64_only = (el0 == ID_AA64PFR0_EL1_EL0_IMP);
780 
781 	ksft_print_header();
782 
783 	test_cnt = ARRAY_SIZE(ftr_id_aa64dfr0_el1) + ARRAY_SIZE(ftr_id_dfr0_el1) +
784 		   ARRAY_SIZE(ftr_id_aa64isar0_el1) + ARRAY_SIZE(ftr_id_aa64isar1_el1) +
785 		   ARRAY_SIZE(ftr_id_aa64isar2_el1) + ARRAY_SIZE(ftr_id_aa64pfr0_el1) +
786 		   ARRAY_SIZE(ftr_id_aa64pfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr0_el1) +
787 		   ARRAY_SIZE(ftr_id_aa64mmfr1_el1) + ARRAY_SIZE(ftr_id_aa64mmfr2_el1) +
788 		   ARRAY_SIZE(ftr_id_aa64mmfr3_el1) + ARRAY_SIZE(ftr_id_aa64zfr0_el1) -
789 		   ARRAY_SIZE(test_regs) + 3 + MPAM_IDREG_TEST + MTE_IDREG_TEST;
790 
791 	ksft_set_plan(test_cnt);
792 
793 	test_vm_ftr_id_regs(vcpu, aarch64_only);
794 	test_vcpu_ftr_id_regs(vcpu);
795 	test_vcpu_non_ftr_id_regs(vcpu);
796 	test_user_set_mpam_reg(vcpu);
797 	test_user_set_mte_reg(vcpu);
798 
799 	test_guest_reg_read(vcpu);
800 
801 	test_reset_preserves_id_regs(vcpu);
802 
803 	kvm_vm_free(vm);
804 
805 	ksft_finished();
806 }
807