1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287
288 #include "../core/devmem.h"
289
290 /* Track pending CMSGs. */
291 enum {
292 TCP_CMSG_INQ = 1,
293 TCP_CMSG_TS = 2
294 };
295
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304
305 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
306 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
307
308 #if IS_ENABLED(CONFIG_SMC)
309 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
310 EXPORT_SYMBOL(tcp_have_smc);
311 #endif
312
313 /*
314 * Current number of TCP sockets.
315 */
316 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
317 EXPORT_IPV6_MOD(tcp_sockets_allocated);
318
319 /*
320 * TCP splice context
321 */
322 struct tcp_splice_state {
323 struct pipe_inode_info *pipe;
324 size_t len;
325 unsigned int flags;
326 };
327
328 /*
329 * Pressure flag: try to collapse.
330 * Technical note: it is used by multiple contexts non atomically.
331 * All the __sk_mem_schedule() is of this nature: accounting
332 * is strict, actions are advisory and have some latency.
333 */
334 unsigned long tcp_memory_pressure __read_mostly;
335 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
336
tcp_enter_memory_pressure(struct sock * sk)337 void tcp_enter_memory_pressure(struct sock *sk)
338 {
339 unsigned long val;
340
341 if (READ_ONCE(tcp_memory_pressure))
342 return;
343 val = jiffies;
344
345 if (!val)
346 val--;
347 if (!cmpxchg(&tcp_memory_pressure, 0, val))
348 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
349 }
350 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
351
tcp_leave_memory_pressure(struct sock * sk)352 void tcp_leave_memory_pressure(struct sock *sk)
353 {
354 unsigned long val;
355
356 if (!READ_ONCE(tcp_memory_pressure))
357 return;
358 val = xchg(&tcp_memory_pressure, 0);
359 if (val)
360 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
361 jiffies_to_msecs(jiffies - val));
362 }
363 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
364
365 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)366 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
367 {
368 u8 res = 0;
369
370 if (seconds > 0) {
371 int period = timeout;
372
373 res = 1;
374 while (seconds > period && res < 255) {
375 res++;
376 timeout <<= 1;
377 if (timeout > rto_max)
378 timeout = rto_max;
379 period += timeout;
380 }
381 }
382 return res;
383 }
384
385 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)386 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
387 {
388 int period = 0;
389
390 if (retrans > 0) {
391 period = timeout;
392 while (--retrans) {
393 timeout <<= 1;
394 if (timeout > rto_max)
395 timeout = rto_max;
396 period += timeout;
397 }
398 }
399 return period;
400 }
401
tcp_compute_delivery_rate(const struct tcp_sock * tp)402 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
403 {
404 u32 rate = READ_ONCE(tp->rate_delivered);
405 u32 intv = READ_ONCE(tp->rate_interval_us);
406 u64 rate64 = 0;
407
408 if (rate && intv) {
409 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
410 do_div(rate64, intv);
411 }
412 return rate64;
413 }
414
415 /* Address-family independent initialization for a tcp_sock.
416 *
417 * NOTE: A lot of things set to zero explicitly by call to
418 * sk_alloc() so need not be done here.
419 */
tcp_init_sock(struct sock * sk)420 void tcp_init_sock(struct sock *sk)
421 {
422 struct inet_connection_sock *icsk = inet_csk(sk);
423 struct tcp_sock *tp = tcp_sk(sk);
424 int rto_min_us, rto_max_ms;
425
426 tp->out_of_order_queue = RB_ROOT;
427 sk->tcp_rtx_queue = RB_ROOT;
428 tcp_init_xmit_timers(sk);
429 INIT_LIST_HEAD(&tp->tsq_node);
430 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
431
432 icsk->icsk_rto = TCP_TIMEOUT_INIT;
433
434 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
435 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
436
437 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
438 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
439 icsk->icsk_delack_max = TCP_DELACK_MAX;
440 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
441 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
442
443 /* So many TCP implementations out there (incorrectly) count the
444 * initial SYN frame in their delayed-ACK and congestion control
445 * algorithms that we must have the following bandaid to talk
446 * efficiently to them. -DaveM
447 */
448 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
449
450 /* There's a bubble in the pipe until at least the first ACK. */
451 tp->app_limited = ~0U;
452 tp->rate_app_limited = 1;
453
454 /* See draft-stevens-tcpca-spec-01 for discussion of the
455 * initialization of these values.
456 */
457 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
458 tp->snd_cwnd_clamp = ~0;
459 tp->mss_cache = TCP_MSS_DEFAULT;
460
461 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
462 tcp_assign_congestion_control(sk);
463
464 tp->tsoffset = 0;
465 tp->rack.reo_wnd_steps = 1;
466
467 sk->sk_write_space = sk_stream_write_space;
468 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
469
470 icsk->icsk_sync_mss = tcp_sync_mss;
471
472 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
473 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
474 tcp_scaling_ratio_init(sk);
475
476 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
477 sk_sockets_allocated_inc(sk);
478 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
479 }
480 EXPORT_IPV6_MOD(tcp_init_sock);
481
tcp_tx_timestamp(struct sock * sk,struct sockcm_cookie * sockc)482 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
483 {
484 struct sk_buff *skb = tcp_write_queue_tail(sk);
485 u32 tsflags = sockc->tsflags;
486
487 if (tsflags && skb) {
488 struct skb_shared_info *shinfo = skb_shinfo(skb);
489 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
490
491 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
492 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
493 tcb->txstamp_ack |= TSTAMP_ACK_SK;
494 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
495 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
496 }
497
498 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
499 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
500 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
501 }
502
tcp_stream_is_readable(struct sock * sk,int target)503 static bool tcp_stream_is_readable(struct sock *sk, int target)
504 {
505 if (tcp_epollin_ready(sk, target))
506 return true;
507 return sk_is_readable(sk);
508 }
509
510 /*
511 * Wait for a TCP event.
512 *
513 * Note that we don't need to lock the socket, as the upper poll layers
514 * take care of normal races (between the test and the event) and we don't
515 * go look at any of the socket buffers directly.
516 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)517 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
518 {
519 __poll_t mask;
520 struct sock *sk = sock->sk;
521 const struct tcp_sock *tp = tcp_sk(sk);
522 u8 shutdown;
523 int state;
524
525 sock_poll_wait(file, sock, wait);
526
527 state = inet_sk_state_load(sk);
528 if (state == TCP_LISTEN)
529 return inet_csk_listen_poll(sk);
530
531 /* Socket is not locked. We are protected from async events
532 * by poll logic and correct handling of state changes
533 * made by other threads is impossible in any case.
534 */
535
536 mask = 0;
537
538 /*
539 * EPOLLHUP is certainly not done right. But poll() doesn't
540 * have a notion of HUP in just one direction, and for a
541 * socket the read side is more interesting.
542 *
543 * Some poll() documentation says that EPOLLHUP is incompatible
544 * with the EPOLLOUT/POLLWR flags, so somebody should check this
545 * all. But careful, it tends to be safer to return too many
546 * bits than too few, and you can easily break real applications
547 * if you don't tell them that something has hung up!
548 *
549 * Check-me.
550 *
551 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
552 * our fs/select.c). It means that after we received EOF,
553 * poll always returns immediately, making impossible poll() on write()
554 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
555 * if and only if shutdown has been made in both directions.
556 * Actually, it is interesting to look how Solaris and DUX
557 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
558 * then we could set it on SND_SHUTDOWN. BTW examples given
559 * in Stevens' books assume exactly this behaviour, it explains
560 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
561 *
562 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
563 * blocking on fresh not-connected or disconnected socket. --ANK
564 */
565 shutdown = READ_ONCE(sk->sk_shutdown);
566 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
567 mask |= EPOLLHUP;
568 if (shutdown & RCV_SHUTDOWN)
569 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
570
571 /* Connected or passive Fast Open socket? */
572 if (state != TCP_SYN_SENT &&
573 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
574 int target = sock_rcvlowat(sk, 0, INT_MAX);
575 u16 urg_data = READ_ONCE(tp->urg_data);
576
577 if (unlikely(urg_data) &&
578 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
579 !sock_flag(sk, SOCK_URGINLINE))
580 target++;
581
582 if (tcp_stream_is_readable(sk, target))
583 mask |= EPOLLIN | EPOLLRDNORM;
584
585 if (!(shutdown & SEND_SHUTDOWN)) {
586 if (__sk_stream_is_writeable(sk, 1)) {
587 mask |= EPOLLOUT | EPOLLWRNORM;
588 } else { /* send SIGIO later */
589 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
590 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
591
592 /* Race breaker. If space is freed after
593 * wspace test but before the flags are set,
594 * IO signal will be lost. Memory barrier
595 * pairs with the input side.
596 */
597 smp_mb__after_atomic();
598 if (__sk_stream_is_writeable(sk, 1))
599 mask |= EPOLLOUT | EPOLLWRNORM;
600 }
601 } else
602 mask |= EPOLLOUT | EPOLLWRNORM;
603
604 if (urg_data & TCP_URG_VALID)
605 mask |= EPOLLPRI;
606 } else if (state == TCP_SYN_SENT &&
607 inet_test_bit(DEFER_CONNECT, sk)) {
608 /* Active TCP fastopen socket with defer_connect
609 * Return EPOLLOUT so application can call write()
610 * in order for kernel to generate SYN+data
611 */
612 mask |= EPOLLOUT | EPOLLWRNORM;
613 }
614 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
615 smp_rmb();
616 if (READ_ONCE(sk->sk_err) ||
617 !skb_queue_empty_lockless(&sk->sk_error_queue))
618 mask |= EPOLLERR;
619
620 return mask;
621 }
622 EXPORT_SYMBOL(tcp_poll);
623
tcp_ioctl(struct sock * sk,int cmd,int * karg)624 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
625 {
626 struct tcp_sock *tp = tcp_sk(sk);
627 int answ;
628 bool slow;
629
630 switch (cmd) {
631 case SIOCINQ:
632 if (sk->sk_state == TCP_LISTEN)
633 return -EINVAL;
634
635 slow = lock_sock_fast(sk);
636 answ = tcp_inq(sk);
637 unlock_sock_fast(sk, slow);
638 break;
639 case SIOCATMARK:
640 answ = READ_ONCE(tp->urg_data) &&
641 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
642 break;
643 case SIOCOUTQ:
644 if (sk->sk_state == TCP_LISTEN)
645 return -EINVAL;
646
647 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
648 answ = 0;
649 else
650 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
651 break;
652 case SIOCOUTQNSD:
653 if (sk->sk_state == TCP_LISTEN)
654 return -EINVAL;
655
656 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
657 answ = 0;
658 else
659 answ = READ_ONCE(tp->write_seq) -
660 READ_ONCE(tp->snd_nxt);
661 break;
662 default:
663 return -ENOIOCTLCMD;
664 }
665
666 *karg = answ;
667 return 0;
668 }
669 EXPORT_IPV6_MOD(tcp_ioctl);
670
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)671 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
672 {
673 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
674 tp->pushed_seq = tp->write_seq;
675 }
676
forced_push(const struct tcp_sock * tp)677 static inline bool forced_push(const struct tcp_sock *tp)
678 {
679 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
680 }
681
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)682 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
683 {
684 struct tcp_sock *tp = tcp_sk(sk);
685 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
686
687 tcb->seq = tcb->end_seq = tp->write_seq;
688 tcb->tcp_flags = TCPHDR_ACK;
689 __skb_header_release(skb);
690 tcp_add_write_queue_tail(sk, skb);
691 sk_wmem_queued_add(sk, skb->truesize);
692 sk_mem_charge(sk, skb->truesize);
693 if (tp->nonagle & TCP_NAGLE_PUSH)
694 tp->nonagle &= ~TCP_NAGLE_PUSH;
695
696 tcp_slow_start_after_idle_check(sk);
697 }
698
tcp_mark_urg(struct tcp_sock * tp,int flags)699 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
700 {
701 if (flags & MSG_OOB)
702 tp->snd_up = tp->write_seq;
703 }
704
705 /* If a not yet filled skb is pushed, do not send it if
706 * we have data packets in Qdisc or NIC queues :
707 * Because TX completion will happen shortly, it gives a chance
708 * to coalesce future sendmsg() payload into this skb, without
709 * need for a timer, and with no latency trade off.
710 * As packets containing data payload have a bigger truesize
711 * than pure acks (dataless) packets, the last checks prevent
712 * autocorking if we only have an ACK in Qdisc/NIC queues,
713 * or if TX completion was delayed after we processed ACK packet.
714 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)715 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
716 int size_goal)
717 {
718 return skb->len < size_goal &&
719 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
720 !tcp_rtx_queue_empty(sk) &&
721 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
722 tcp_skb_can_collapse_to(skb);
723 }
724
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)725 void tcp_push(struct sock *sk, int flags, int mss_now,
726 int nonagle, int size_goal)
727 {
728 struct tcp_sock *tp = tcp_sk(sk);
729 struct sk_buff *skb;
730
731 skb = tcp_write_queue_tail(sk);
732 if (!skb)
733 return;
734 if (!(flags & MSG_MORE) || forced_push(tp))
735 tcp_mark_push(tp, skb);
736
737 tcp_mark_urg(tp, flags);
738
739 if (tcp_should_autocork(sk, skb, size_goal)) {
740
741 /* avoid atomic op if TSQ_THROTTLED bit is already set */
742 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
743 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
744 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
745 smp_mb__after_atomic();
746 }
747 /* It is possible TX completion already happened
748 * before we set TSQ_THROTTLED.
749 */
750 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
751 return;
752 }
753
754 if (flags & MSG_MORE)
755 nonagle = TCP_NAGLE_CORK;
756
757 __tcp_push_pending_frames(sk, mss_now, nonagle);
758 }
759
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)760 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
761 unsigned int offset, size_t len)
762 {
763 struct tcp_splice_state *tss = rd_desc->arg.data;
764 int ret;
765
766 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
767 min(rd_desc->count, len), tss->flags);
768 if (ret > 0)
769 rd_desc->count -= ret;
770 return ret;
771 }
772
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)773 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
774 {
775 /* Store TCP splice context information in read_descriptor_t. */
776 read_descriptor_t rd_desc = {
777 .arg.data = tss,
778 .count = tss->len,
779 };
780
781 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
782 }
783
784 /**
785 * tcp_splice_read - splice data from TCP socket to a pipe
786 * @sock: socket to splice from
787 * @ppos: position (not valid)
788 * @pipe: pipe to splice to
789 * @len: number of bytes to splice
790 * @flags: splice modifier flags
791 *
792 * Description:
793 * Will read pages from given socket and fill them into a pipe.
794 *
795 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)796 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
797 struct pipe_inode_info *pipe, size_t len,
798 unsigned int flags)
799 {
800 struct sock *sk = sock->sk;
801 struct tcp_splice_state tss = {
802 .pipe = pipe,
803 .len = len,
804 .flags = flags,
805 };
806 long timeo;
807 ssize_t spliced;
808 int ret;
809
810 sock_rps_record_flow(sk);
811 /*
812 * We can't seek on a socket input
813 */
814 if (unlikely(*ppos))
815 return -ESPIPE;
816
817 ret = spliced = 0;
818
819 lock_sock(sk);
820
821 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
822 while (tss.len) {
823 ret = __tcp_splice_read(sk, &tss);
824 if (ret < 0)
825 break;
826 else if (!ret) {
827 if (spliced)
828 break;
829 if (sock_flag(sk, SOCK_DONE))
830 break;
831 if (sk->sk_err) {
832 ret = sock_error(sk);
833 break;
834 }
835 if (sk->sk_shutdown & RCV_SHUTDOWN)
836 break;
837 if (sk->sk_state == TCP_CLOSE) {
838 /*
839 * This occurs when user tries to read
840 * from never connected socket.
841 */
842 ret = -ENOTCONN;
843 break;
844 }
845 if (!timeo) {
846 ret = -EAGAIN;
847 break;
848 }
849 /* if __tcp_splice_read() got nothing while we have
850 * an skb in receive queue, we do not want to loop.
851 * This might happen with URG data.
852 */
853 if (!skb_queue_empty(&sk->sk_receive_queue))
854 break;
855 ret = sk_wait_data(sk, &timeo, NULL);
856 if (ret < 0)
857 break;
858 if (signal_pending(current)) {
859 ret = sock_intr_errno(timeo);
860 break;
861 }
862 continue;
863 }
864 tss.len -= ret;
865 spliced += ret;
866
867 if (!tss.len || !timeo)
868 break;
869 release_sock(sk);
870 lock_sock(sk);
871
872 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
873 (sk->sk_shutdown & RCV_SHUTDOWN) ||
874 signal_pending(current))
875 break;
876 }
877
878 release_sock(sk);
879
880 if (spliced)
881 return spliced;
882
883 return ret;
884 }
885 EXPORT_IPV6_MOD(tcp_splice_read);
886
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)887 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
888 bool force_schedule)
889 {
890 struct sk_buff *skb;
891
892 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
893 if (likely(skb)) {
894 bool mem_scheduled;
895
896 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
897 if (force_schedule) {
898 mem_scheduled = true;
899 sk_forced_mem_schedule(sk, skb->truesize);
900 } else {
901 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
902 }
903 if (likely(mem_scheduled)) {
904 skb_reserve(skb, MAX_TCP_HEADER);
905 skb->ip_summed = CHECKSUM_PARTIAL;
906 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
907 return skb;
908 }
909 __kfree_skb(skb);
910 } else {
911 sk->sk_prot->enter_memory_pressure(sk);
912 sk_stream_moderate_sndbuf(sk);
913 }
914 return NULL;
915 }
916
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)917 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
918 int large_allowed)
919 {
920 struct tcp_sock *tp = tcp_sk(sk);
921 u32 new_size_goal, size_goal;
922
923 if (!large_allowed)
924 return mss_now;
925
926 /* Note : tcp_tso_autosize() will eventually split this later */
927 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
928
929 /* We try hard to avoid divides here */
930 size_goal = tp->gso_segs * mss_now;
931 if (unlikely(new_size_goal < size_goal ||
932 new_size_goal >= size_goal + mss_now)) {
933 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
934 sk->sk_gso_max_segs);
935 size_goal = tp->gso_segs * mss_now;
936 }
937
938 return max(size_goal, mss_now);
939 }
940
tcp_send_mss(struct sock * sk,int * size_goal,int flags)941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
942 {
943 int mss_now;
944
945 mss_now = tcp_current_mss(sk);
946 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947
948 return mss_now;
949 }
950
951 /* In some cases, sendmsg() could have added an skb to the write queue,
952 * but failed adding payload on it. We need to remove it to consume less
953 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
954 * epoll() users. Another reason is that tcp_write_xmit() does not like
955 * finding an empty skb in the write queue.
956 */
tcp_remove_empty_skb(struct sock * sk)957 void tcp_remove_empty_skb(struct sock *sk)
958 {
959 struct sk_buff *skb = tcp_write_queue_tail(sk);
960
961 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
962 tcp_unlink_write_queue(skb, sk);
963 if (tcp_write_queue_empty(sk))
964 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
965 tcp_wmem_free_skb(sk, skb);
966 }
967 }
968
969 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)970 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
971 {
972 if (unlikely(skb_zcopy_pure(skb))) {
973 u32 extra = skb->truesize -
974 SKB_TRUESIZE(skb_end_offset(skb));
975
976 if (!sk_wmem_schedule(sk, extra))
977 return -ENOMEM;
978
979 sk_mem_charge(sk, extra);
980 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
981 }
982 return 0;
983 }
984
985
tcp_wmem_schedule(struct sock * sk,int copy)986 int tcp_wmem_schedule(struct sock *sk, int copy)
987 {
988 int left;
989
990 if (likely(sk_wmem_schedule(sk, copy)))
991 return copy;
992
993 /* We could be in trouble if we have nothing queued.
994 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
995 * to guarantee some progress.
996 */
997 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
998 if (left > 0)
999 sk_forced_mem_schedule(sk, min(left, copy));
1000 return min(copy, sk->sk_forward_alloc);
1001 }
1002
tcp_free_fastopen_req(struct tcp_sock * tp)1003 void tcp_free_fastopen_req(struct tcp_sock *tp)
1004 {
1005 if (tp->fastopen_req) {
1006 kfree(tp->fastopen_req);
1007 tp->fastopen_req = NULL;
1008 }
1009 }
1010
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1011 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1012 size_t size, struct ubuf_info *uarg)
1013 {
1014 struct tcp_sock *tp = tcp_sk(sk);
1015 struct inet_sock *inet = inet_sk(sk);
1016 struct sockaddr *uaddr = msg->msg_name;
1017 int err, flags;
1018
1019 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1020 TFO_CLIENT_ENABLE) ||
1021 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1022 uaddr->sa_family == AF_UNSPEC))
1023 return -EOPNOTSUPP;
1024 if (tp->fastopen_req)
1025 return -EALREADY; /* Another Fast Open is in progress */
1026
1027 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1028 sk->sk_allocation);
1029 if (unlikely(!tp->fastopen_req))
1030 return -ENOBUFS;
1031 tp->fastopen_req->data = msg;
1032 tp->fastopen_req->size = size;
1033 tp->fastopen_req->uarg = uarg;
1034
1035 if (inet_test_bit(DEFER_CONNECT, sk)) {
1036 err = tcp_connect(sk);
1037 /* Same failure procedure as in tcp_v4/6_connect */
1038 if (err) {
1039 tcp_set_state(sk, TCP_CLOSE);
1040 inet->inet_dport = 0;
1041 sk->sk_route_caps = 0;
1042 }
1043 }
1044 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1045 err = __inet_stream_connect(sk->sk_socket, uaddr,
1046 msg->msg_namelen, flags, 1);
1047 /* fastopen_req could already be freed in __inet_stream_connect
1048 * if the connection times out or gets rst
1049 */
1050 if (tp->fastopen_req) {
1051 *copied = tp->fastopen_req->copied;
1052 tcp_free_fastopen_req(tp);
1053 inet_clear_bit(DEFER_CONNECT, sk);
1054 }
1055 return err;
1056 }
1057
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1058 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1059 {
1060 struct net_devmem_dmabuf_binding *binding = NULL;
1061 struct tcp_sock *tp = tcp_sk(sk);
1062 struct ubuf_info *uarg = NULL;
1063 struct sk_buff *skb;
1064 struct sockcm_cookie sockc;
1065 int flags, err, copied = 0;
1066 int mss_now = 0, size_goal, copied_syn = 0;
1067 int process_backlog = 0;
1068 int sockc_err = 0;
1069 int zc = 0;
1070 long timeo;
1071
1072 flags = msg->msg_flags;
1073
1074 sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1075 if (msg->msg_controllen) {
1076 sockc_err = sock_cmsg_send(sk, msg, &sockc);
1077 /* Don't return error until MSG_FASTOPEN has been processed;
1078 * that may succeed even if the cmsg is invalid.
1079 */
1080 }
1081
1082 if ((flags & MSG_ZEROCOPY) && size) {
1083 if (msg->msg_ubuf) {
1084 uarg = msg->msg_ubuf;
1085 if (sk->sk_route_caps & NETIF_F_SG)
1086 zc = MSG_ZEROCOPY;
1087 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1088 skb = tcp_write_queue_tail(sk);
1089 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1090 !sockc_err && sockc.dmabuf_id);
1091 if (!uarg) {
1092 err = -ENOBUFS;
1093 goto out_err;
1094 }
1095 if (sk->sk_route_caps & NETIF_F_SG)
1096 zc = MSG_ZEROCOPY;
1097 else
1098 uarg_to_msgzc(uarg)->zerocopy = 0;
1099
1100 if (!sockc_err && sockc.dmabuf_id) {
1101 binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1102 if (IS_ERR(binding)) {
1103 err = PTR_ERR(binding);
1104 binding = NULL;
1105 goto out_err;
1106 }
1107 }
1108 }
1109 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1110 if (sk->sk_route_caps & NETIF_F_SG)
1111 zc = MSG_SPLICE_PAGES;
1112 }
1113
1114 if (!sockc_err && sockc.dmabuf_id &&
1115 (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1116 err = -EINVAL;
1117 goto out_err;
1118 }
1119
1120 if (unlikely(flags & MSG_FASTOPEN ||
1121 inet_test_bit(DEFER_CONNECT, sk)) &&
1122 !tp->repair) {
1123 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1124 if (err == -EINPROGRESS && copied_syn > 0)
1125 goto out;
1126 else if (err)
1127 goto out_err;
1128 }
1129
1130 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1131
1132 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1133
1134 /* Wait for a connection to finish. One exception is TCP Fast Open
1135 * (passive side) where data is allowed to be sent before a connection
1136 * is fully established.
1137 */
1138 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1139 !tcp_passive_fastopen(sk)) {
1140 err = sk_stream_wait_connect(sk, &timeo);
1141 if (err != 0)
1142 goto do_error;
1143 }
1144
1145 if (unlikely(tp->repair)) {
1146 if (tp->repair_queue == TCP_RECV_QUEUE) {
1147 copied = tcp_send_rcvq(sk, msg, size);
1148 goto out_nopush;
1149 }
1150
1151 err = -EINVAL;
1152 if (tp->repair_queue == TCP_NO_QUEUE)
1153 goto out_err;
1154
1155 /* 'common' sending to sendq */
1156 }
1157
1158 if (sockc_err) {
1159 err = sockc_err;
1160 goto out_err;
1161 }
1162
1163 /* This should be in poll */
1164 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1165
1166 /* Ok commence sending. */
1167 copied = 0;
1168
1169 restart:
1170 mss_now = tcp_send_mss(sk, &size_goal, flags);
1171
1172 err = -EPIPE;
1173 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1174 goto do_error;
1175
1176 while (msg_data_left(msg)) {
1177 int copy = 0;
1178
1179 skb = tcp_write_queue_tail(sk);
1180 if (skb)
1181 copy = size_goal - skb->len;
1182
1183 trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1184
1185 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1186 bool first_skb;
1187
1188 new_segment:
1189 if (!sk_stream_memory_free(sk))
1190 goto wait_for_space;
1191
1192 if (unlikely(process_backlog >= 16)) {
1193 process_backlog = 0;
1194 if (sk_flush_backlog(sk))
1195 goto restart;
1196 }
1197 first_skb = tcp_rtx_and_write_queues_empty(sk);
1198 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1199 first_skb);
1200 if (!skb)
1201 goto wait_for_space;
1202
1203 process_backlog++;
1204
1205 #ifdef CONFIG_SKB_DECRYPTED
1206 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1207 #endif
1208 tcp_skb_entail(sk, skb);
1209 copy = size_goal;
1210
1211 /* All packets are restored as if they have
1212 * already been sent. skb_mstamp_ns isn't set to
1213 * avoid wrong rtt estimation.
1214 */
1215 if (tp->repair)
1216 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1217 }
1218
1219 /* Try to append data to the end of skb. */
1220 if (copy > msg_data_left(msg))
1221 copy = msg_data_left(msg);
1222
1223 if (zc == 0) {
1224 bool merge = true;
1225 int i = skb_shinfo(skb)->nr_frags;
1226 struct page_frag *pfrag = sk_page_frag(sk);
1227
1228 if (!sk_page_frag_refill(sk, pfrag))
1229 goto wait_for_space;
1230
1231 if (!skb_can_coalesce(skb, i, pfrag->page,
1232 pfrag->offset)) {
1233 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1234 tcp_mark_push(tp, skb);
1235 goto new_segment;
1236 }
1237 merge = false;
1238 }
1239
1240 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1241
1242 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1243 if (tcp_downgrade_zcopy_pure(sk, skb))
1244 goto wait_for_space;
1245 skb_zcopy_downgrade_managed(skb);
1246 }
1247
1248 copy = tcp_wmem_schedule(sk, copy);
1249 if (!copy)
1250 goto wait_for_space;
1251
1252 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1253 pfrag->page,
1254 pfrag->offset,
1255 copy);
1256 if (err)
1257 goto do_error;
1258
1259 /* Update the skb. */
1260 if (merge) {
1261 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1262 } else {
1263 skb_fill_page_desc(skb, i, pfrag->page,
1264 pfrag->offset, copy);
1265 page_ref_inc(pfrag->page);
1266 }
1267 pfrag->offset += copy;
1268 } else if (zc == MSG_ZEROCOPY) {
1269 /* First append to a fragless skb builds initial
1270 * pure zerocopy skb
1271 */
1272 if (!skb->len)
1273 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1274
1275 if (!skb_zcopy_pure(skb)) {
1276 copy = tcp_wmem_schedule(sk, copy);
1277 if (!copy)
1278 goto wait_for_space;
1279 }
1280
1281 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1282 binding);
1283 if (err == -EMSGSIZE || err == -EEXIST) {
1284 tcp_mark_push(tp, skb);
1285 goto new_segment;
1286 }
1287 if (err < 0)
1288 goto do_error;
1289 copy = err;
1290 } else if (zc == MSG_SPLICE_PAGES) {
1291 /* Splice in data if we can; copy if we can't. */
1292 if (tcp_downgrade_zcopy_pure(sk, skb))
1293 goto wait_for_space;
1294 copy = tcp_wmem_schedule(sk, copy);
1295 if (!copy)
1296 goto wait_for_space;
1297
1298 err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1299 if (err < 0) {
1300 if (err == -EMSGSIZE) {
1301 tcp_mark_push(tp, skb);
1302 goto new_segment;
1303 }
1304 goto do_error;
1305 }
1306 copy = err;
1307
1308 if (!(flags & MSG_NO_SHARED_FRAGS))
1309 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1310
1311 sk_wmem_queued_add(sk, copy);
1312 sk_mem_charge(sk, copy);
1313 }
1314
1315 if (!copied)
1316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1317
1318 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1319 TCP_SKB_CB(skb)->end_seq += copy;
1320 tcp_skb_pcount_set(skb, 0);
1321
1322 copied += copy;
1323 if (!msg_data_left(msg)) {
1324 if (unlikely(flags & MSG_EOR))
1325 TCP_SKB_CB(skb)->eor = 1;
1326 goto out;
1327 }
1328
1329 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1330 continue;
1331
1332 if (forced_push(tp)) {
1333 tcp_mark_push(tp, skb);
1334 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1335 } else if (skb == tcp_send_head(sk))
1336 tcp_push_one(sk, mss_now);
1337 continue;
1338
1339 wait_for_space:
1340 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1341 tcp_remove_empty_skb(sk);
1342 if (copied)
1343 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1344 TCP_NAGLE_PUSH, size_goal);
1345
1346 err = sk_stream_wait_memory(sk, &timeo);
1347 if (err != 0)
1348 goto do_error;
1349
1350 mss_now = tcp_send_mss(sk, &size_goal, flags);
1351 }
1352
1353 out:
1354 if (copied) {
1355 tcp_tx_timestamp(sk, &sockc);
1356 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1357 }
1358 out_nopush:
1359 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1360 if (uarg && !msg->msg_ubuf)
1361 net_zcopy_put(uarg);
1362 if (binding)
1363 net_devmem_dmabuf_binding_put(binding);
1364 return copied + copied_syn;
1365
1366 do_error:
1367 tcp_remove_empty_skb(sk);
1368
1369 if (copied + copied_syn)
1370 goto out;
1371 out_err:
1372 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1373 if (uarg && !msg->msg_ubuf)
1374 net_zcopy_put_abort(uarg, true);
1375 err = sk_stream_error(sk, flags, err);
1376 /* make sure we wake any epoll edge trigger waiter */
1377 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1378 sk->sk_write_space(sk);
1379 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1380 }
1381 if (binding)
1382 net_devmem_dmabuf_binding_put(binding);
1383
1384 return err;
1385 }
1386 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1387
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1388 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1389 {
1390 int ret;
1391
1392 lock_sock(sk);
1393 ret = tcp_sendmsg_locked(sk, msg, size);
1394 release_sock(sk);
1395
1396 return ret;
1397 }
1398 EXPORT_SYMBOL(tcp_sendmsg);
1399
tcp_splice_eof(struct socket * sock)1400 void tcp_splice_eof(struct socket *sock)
1401 {
1402 struct sock *sk = sock->sk;
1403 struct tcp_sock *tp = tcp_sk(sk);
1404 int mss_now, size_goal;
1405
1406 if (!tcp_write_queue_tail(sk))
1407 return;
1408
1409 lock_sock(sk);
1410 mss_now = tcp_send_mss(sk, &size_goal, 0);
1411 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1412 release_sock(sk);
1413 }
1414 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1415
1416 /*
1417 * Handle reading urgent data. BSD has very simple semantics for
1418 * this, no blocking and very strange errors 8)
1419 */
1420
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1421 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1422 {
1423 struct tcp_sock *tp = tcp_sk(sk);
1424
1425 /* No URG data to read. */
1426 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1427 tp->urg_data == TCP_URG_READ)
1428 return -EINVAL; /* Yes this is right ! */
1429
1430 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1431 return -ENOTCONN;
1432
1433 if (tp->urg_data & TCP_URG_VALID) {
1434 int err = 0;
1435 char c = tp->urg_data;
1436
1437 if (!(flags & MSG_PEEK))
1438 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1439
1440 /* Read urgent data. */
1441 msg->msg_flags |= MSG_OOB;
1442
1443 if (len > 0) {
1444 if (!(flags & MSG_TRUNC))
1445 err = memcpy_to_msg(msg, &c, 1);
1446 len = 1;
1447 } else
1448 msg->msg_flags |= MSG_TRUNC;
1449
1450 return err ? -EFAULT : len;
1451 }
1452
1453 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1454 return 0;
1455
1456 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1457 * the available implementations agree in this case:
1458 * this call should never block, independent of the
1459 * blocking state of the socket.
1460 * Mike <pall@rz.uni-karlsruhe.de>
1461 */
1462 return -EAGAIN;
1463 }
1464
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1465 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1466 {
1467 struct sk_buff *skb;
1468 int copied = 0, err = 0;
1469
1470 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1471 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1472 if (err)
1473 return err;
1474 copied += skb->len;
1475 }
1476
1477 skb_queue_walk(&sk->sk_write_queue, skb) {
1478 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1479 if (err)
1480 break;
1481
1482 copied += skb->len;
1483 }
1484
1485 return err ?: copied;
1486 }
1487
1488 /* Clean up the receive buffer for full frames taken by the user,
1489 * then send an ACK if necessary. COPIED is the number of bytes
1490 * tcp_recvmsg has given to the user so far, it speeds up the
1491 * calculation of whether or not we must ACK for the sake of
1492 * a window update.
1493 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1494 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1495 {
1496 struct tcp_sock *tp = tcp_sk(sk);
1497 bool time_to_ack = false;
1498
1499 if (inet_csk_ack_scheduled(sk)) {
1500 const struct inet_connection_sock *icsk = inet_csk(sk);
1501
1502 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1503 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1504 /*
1505 * If this read emptied read buffer, we send ACK, if
1506 * connection is not bidirectional, user drained
1507 * receive buffer and there was a small segment
1508 * in queue.
1509 */
1510 (copied > 0 &&
1511 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1512 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1513 !inet_csk_in_pingpong_mode(sk))) &&
1514 !atomic_read(&sk->sk_rmem_alloc)))
1515 time_to_ack = true;
1516 }
1517
1518 /* We send an ACK if we can now advertise a non-zero window
1519 * which has been raised "significantly".
1520 *
1521 * Even if window raised up to infinity, do not send window open ACK
1522 * in states, where we will not receive more. It is useless.
1523 */
1524 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1525 __u32 rcv_window_now = tcp_receive_window(tp);
1526
1527 /* Optimize, __tcp_select_window() is not cheap. */
1528 if (2*rcv_window_now <= tp->window_clamp) {
1529 __u32 new_window = __tcp_select_window(sk);
1530
1531 /* Send ACK now, if this read freed lots of space
1532 * in our buffer. Certainly, new_window is new window.
1533 * We can advertise it now, if it is not less than current one.
1534 * "Lots" means "at least twice" here.
1535 */
1536 if (new_window && new_window >= 2 * rcv_window_now)
1537 time_to_ack = true;
1538 }
1539 }
1540 if (time_to_ack)
1541 tcp_send_ack(sk);
1542 }
1543
tcp_cleanup_rbuf(struct sock * sk,int copied)1544 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1545 {
1546 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1547 struct tcp_sock *tp = tcp_sk(sk);
1548
1549 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1550 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1551 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1552 __tcp_cleanup_rbuf(sk, copied);
1553 }
1554
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1555 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1556 {
1557 __skb_unlink(skb, &sk->sk_receive_queue);
1558 if (likely(skb->destructor == sock_rfree)) {
1559 sock_rfree(skb);
1560 skb->destructor = NULL;
1561 skb->sk = NULL;
1562 return skb_attempt_defer_free(skb);
1563 }
1564 __kfree_skb(skb);
1565 }
1566
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1567 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1568 {
1569 struct sk_buff *skb;
1570 u32 offset;
1571
1572 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1573 offset = seq - TCP_SKB_CB(skb)->seq;
1574 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1575 pr_err_once("%s: found a SYN, please report !\n", __func__);
1576 offset--;
1577 }
1578 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1579 *off = offset;
1580 return skb;
1581 }
1582 /* This looks weird, but this can happen if TCP collapsing
1583 * splitted a fat GRO packet, while we released socket lock
1584 * in skb_splice_bits()
1585 */
1586 tcp_eat_recv_skb(sk, skb);
1587 }
1588 return NULL;
1589 }
1590 EXPORT_SYMBOL(tcp_recv_skb);
1591
1592 /*
1593 * This routine provides an alternative to tcp_recvmsg() for routines
1594 * that would like to handle copying from skbuffs directly in 'sendfile'
1595 * fashion.
1596 * Note:
1597 * - It is assumed that the socket was locked by the caller.
1598 * - The routine does not block.
1599 * - At present, there is no support for reading OOB data
1600 * or for 'peeking' the socket using this routine
1601 * (although both would be easy to implement).
1602 */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1603 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1604 sk_read_actor_t recv_actor, bool noack,
1605 u32 *copied_seq)
1606 {
1607 struct sk_buff *skb;
1608 struct tcp_sock *tp = tcp_sk(sk);
1609 u32 seq = *copied_seq;
1610 u32 offset;
1611 int copied = 0;
1612
1613 if (sk->sk_state == TCP_LISTEN)
1614 return -ENOTCONN;
1615 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1616 if (offset < skb->len) {
1617 int used;
1618 size_t len;
1619
1620 len = skb->len - offset;
1621 /* Stop reading if we hit a patch of urgent data */
1622 if (unlikely(tp->urg_data)) {
1623 u32 urg_offset = tp->urg_seq - seq;
1624 if (urg_offset < len)
1625 len = urg_offset;
1626 if (!len)
1627 break;
1628 }
1629 used = recv_actor(desc, skb, offset, len);
1630 if (used <= 0) {
1631 if (!copied)
1632 copied = used;
1633 break;
1634 }
1635 if (WARN_ON_ONCE(used > len))
1636 used = len;
1637 seq += used;
1638 copied += used;
1639 offset += used;
1640
1641 /* If recv_actor drops the lock (e.g. TCP splice
1642 * receive) the skb pointer might be invalid when
1643 * getting here: tcp_collapse might have deleted it
1644 * while aggregating skbs from the socket queue.
1645 */
1646 skb = tcp_recv_skb(sk, seq - 1, &offset);
1647 if (!skb)
1648 break;
1649 /* TCP coalescing might have appended data to the skb.
1650 * Try to splice more frags
1651 */
1652 if (offset + 1 != skb->len)
1653 continue;
1654 }
1655 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1656 tcp_eat_recv_skb(sk, skb);
1657 ++seq;
1658 break;
1659 }
1660 tcp_eat_recv_skb(sk, skb);
1661 if (!desc->count)
1662 break;
1663 WRITE_ONCE(*copied_seq, seq);
1664 }
1665 WRITE_ONCE(*copied_seq, seq);
1666
1667 if (noack)
1668 goto out;
1669
1670 tcp_rcv_space_adjust(sk);
1671
1672 /* Clean up data we have read: This will do ACK frames. */
1673 if (copied > 0) {
1674 tcp_recv_skb(sk, seq, &offset);
1675 tcp_cleanup_rbuf(sk, copied);
1676 }
1677 out:
1678 return copied;
1679 }
1680
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1681 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1682 sk_read_actor_t recv_actor)
1683 {
1684 return __tcp_read_sock(sk, desc, recv_actor, false,
1685 &tcp_sk(sk)->copied_seq);
1686 }
1687 EXPORT_SYMBOL(tcp_read_sock);
1688
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1689 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1690 sk_read_actor_t recv_actor, bool noack,
1691 u32 *copied_seq)
1692 {
1693 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1694 }
1695
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1696 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1697 {
1698 struct sk_buff *skb;
1699 int copied = 0;
1700
1701 if (sk->sk_state == TCP_LISTEN)
1702 return -ENOTCONN;
1703
1704 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1705 u8 tcp_flags;
1706 int used;
1707
1708 __skb_unlink(skb, &sk->sk_receive_queue);
1709 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1710 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1711 used = recv_actor(sk, skb);
1712 if (used < 0) {
1713 if (!copied)
1714 copied = used;
1715 break;
1716 }
1717 copied += used;
1718
1719 if (tcp_flags & TCPHDR_FIN)
1720 break;
1721 }
1722 return copied;
1723 }
1724 EXPORT_IPV6_MOD(tcp_read_skb);
1725
tcp_read_done(struct sock * sk,size_t len)1726 void tcp_read_done(struct sock *sk, size_t len)
1727 {
1728 struct tcp_sock *tp = tcp_sk(sk);
1729 u32 seq = tp->copied_seq;
1730 struct sk_buff *skb;
1731 size_t left;
1732 u32 offset;
1733
1734 if (sk->sk_state == TCP_LISTEN)
1735 return;
1736
1737 left = len;
1738 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1739 int used;
1740
1741 used = min_t(size_t, skb->len - offset, left);
1742 seq += used;
1743 left -= used;
1744
1745 if (skb->len > offset + used)
1746 break;
1747
1748 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1749 tcp_eat_recv_skb(sk, skb);
1750 ++seq;
1751 break;
1752 }
1753 tcp_eat_recv_skb(sk, skb);
1754 }
1755 WRITE_ONCE(tp->copied_seq, seq);
1756
1757 tcp_rcv_space_adjust(sk);
1758
1759 /* Clean up data we have read: This will do ACK frames. */
1760 if (left != len)
1761 tcp_cleanup_rbuf(sk, len - left);
1762 }
1763 EXPORT_SYMBOL(tcp_read_done);
1764
tcp_peek_len(struct socket * sock)1765 int tcp_peek_len(struct socket *sock)
1766 {
1767 return tcp_inq(sock->sk);
1768 }
1769 EXPORT_IPV6_MOD(tcp_peek_len);
1770
1771 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1772 int tcp_set_rcvlowat(struct sock *sk, int val)
1773 {
1774 int space, cap;
1775
1776 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1777 cap = sk->sk_rcvbuf >> 1;
1778 else
1779 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1780 val = min(val, cap);
1781 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1782
1783 /* Check if we need to signal EPOLLIN right now */
1784 tcp_data_ready(sk);
1785
1786 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1787 return 0;
1788
1789 space = tcp_space_from_win(sk, val);
1790 if (space > sk->sk_rcvbuf) {
1791 WRITE_ONCE(sk->sk_rcvbuf, space);
1792 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1793 }
1794 return 0;
1795 }
1796 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1797
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1798 void tcp_update_recv_tstamps(struct sk_buff *skb,
1799 struct scm_timestamping_internal *tss)
1800 {
1801 if (skb->tstamp)
1802 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1803 else
1804 tss->ts[0] = (struct timespec64) {0};
1805
1806 if (skb_hwtstamps(skb)->hwtstamp)
1807 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1808 else
1809 tss->ts[2] = (struct timespec64) {0};
1810 }
1811
1812 #ifdef CONFIG_MMU
1813 static const struct vm_operations_struct tcp_vm_ops = {
1814 };
1815
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1816 int tcp_mmap(struct file *file, struct socket *sock,
1817 struct vm_area_struct *vma)
1818 {
1819 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1820 return -EPERM;
1821 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1822
1823 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1824 vm_flags_set(vma, VM_MIXEDMAP);
1825
1826 vma->vm_ops = &tcp_vm_ops;
1827 return 0;
1828 }
1829 EXPORT_IPV6_MOD(tcp_mmap);
1830
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1831 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1832 u32 *offset_frag)
1833 {
1834 skb_frag_t *frag;
1835
1836 if (unlikely(offset_skb >= skb->len))
1837 return NULL;
1838
1839 offset_skb -= skb_headlen(skb);
1840 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1841 return NULL;
1842
1843 frag = skb_shinfo(skb)->frags;
1844 while (offset_skb) {
1845 if (skb_frag_size(frag) > offset_skb) {
1846 *offset_frag = offset_skb;
1847 return frag;
1848 }
1849 offset_skb -= skb_frag_size(frag);
1850 ++frag;
1851 }
1852 *offset_frag = 0;
1853 return frag;
1854 }
1855
can_map_frag(const skb_frag_t * frag)1856 static bool can_map_frag(const skb_frag_t *frag)
1857 {
1858 struct page *page;
1859
1860 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1861 return false;
1862
1863 page = skb_frag_page(frag);
1864
1865 if (PageCompound(page) || page->mapping)
1866 return false;
1867
1868 return true;
1869 }
1870
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1871 static int find_next_mappable_frag(const skb_frag_t *frag,
1872 int remaining_in_skb)
1873 {
1874 int offset = 0;
1875
1876 if (likely(can_map_frag(frag)))
1877 return 0;
1878
1879 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1880 offset += skb_frag_size(frag);
1881 ++frag;
1882 }
1883 return offset;
1884 }
1885
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1886 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1887 struct tcp_zerocopy_receive *zc,
1888 struct sk_buff *skb, u32 offset)
1889 {
1890 u32 frag_offset, partial_frag_remainder = 0;
1891 int mappable_offset;
1892 skb_frag_t *frag;
1893
1894 /* worst case: skip to next skb. try to improve on this case below */
1895 zc->recv_skip_hint = skb->len - offset;
1896
1897 /* Find the frag containing this offset (and how far into that frag) */
1898 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1899 if (!frag)
1900 return;
1901
1902 if (frag_offset) {
1903 struct skb_shared_info *info = skb_shinfo(skb);
1904
1905 /* We read part of the last frag, must recvmsg() rest of skb. */
1906 if (frag == &info->frags[info->nr_frags - 1])
1907 return;
1908
1909 /* Else, we must at least read the remainder in this frag. */
1910 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1911 zc->recv_skip_hint -= partial_frag_remainder;
1912 ++frag;
1913 }
1914
1915 /* partial_frag_remainder: If part way through a frag, must read rest.
1916 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1917 * in partial_frag_remainder.
1918 */
1919 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1920 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1921 }
1922
1923 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1924 int flags, struct scm_timestamping_internal *tss,
1925 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1926 static int receive_fallback_to_copy(struct sock *sk,
1927 struct tcp_zerocopy_receive *zc, int inq,
1928 struct scm_timestamping_internal *tss)
1929 {
1930 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1931 struct msghdr msg = {};
1932 int err;
1933
1934 zc->length = 0;
1935 zc->recv_skip_hint = 0;
1936
1937 if (copy_address != zc->copybuf_address)
1938 return -EINVAL;
1939
1940 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1941 &msg.msg_iter);
1942 if (err)
1943 return err;
1944
1945 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1946 tss, &zc->msg_flags);
1947 if (err < 0)
1948 return err;
1949
1950 zc->copybuf_len = err;
1951 if (likely(zc->copybuf_len)) {
1952 struct sk_buff *skb;
1953 u32 offset;
1954
1955 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1956 if (skb)
1957 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1958 }
1959 return 0;
1960 }
1961
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1962 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1963 struct sk_buff *skb, u32 copylen,
1964 u32 *offset, u32 *seq)
1965 {
1966 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1967 struct msghdr msg = {};
1968 int err;
1969
1970 if (copy_address != zc->copybuf_address)
1971 return -EINVAL;
1972
1973 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1974 &msg.msg_iter);
1975 if (err)
1976 return err;
1977 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1978 if (err)
1979 return err;
1980 zc->recv_skip_hint -= copylen;
1981 *offset += copylen;
1982 *seq += copylen;
1983 return (__s32)copylen;
1984 }
1985
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1986 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1987 struct sock *sk,
1988 struct sk_buff *skb,
1989 u32 *seq,
1990 s32 copybuf_len,
1991 struct scm_timestamping_internal *tss)
1992 {
1993 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1994
1995 if (!copylen)
1996 return 0;
1997 /* skb is null if inq < PAGE_SIZE. */
1998 if (skb) {
1999 offset = *seq - TCP_SKB_CB(skb)->seq;
2000 } else {
2001 skb = tcp_recv_skb(sk, *seq, &offset);
2002 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2003 tcp_update_recv_tstamps(skb, tss);
2004 zc->msg_flags |= TCP_CMSG_TS;
2005 }
2006 }
2007
2008 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2009 seq);
2010 return zc->copybuf_len < 0 ? 0 : copylen;
2011 }
2012
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2013 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2014 struct page **pending_pages,
2015 unsigned long pages_remaining,
2016 unsigned long *address,
2017 u32 *length,
2018 u32 *seq,
2019 struct tcp_zerocopy_receive *zc,
2020 u32 total_bytes_to_map,
2021 int err)
2022 {
2023 /* At least one page did not map. Try zapping if we skipped earlier. */
2024 if (err == -EBUSY &&
2025 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2026 u32 maybe_zap_len;
2027
2028 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2029 *length + /* Mapped or pending */
2030 (pages_remaining * PAGE_SIZE); /* Failed map. */
2031 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2032 err = 0;
2033 }
2034
2035 if (!err) {
2036 unsigned long leftover_pages = pages_remaining;
2037 int bytes_mapped;
2038
2039 /* We called zap_page_range_single, try to reinsert. */
2040 err = vm_insert_pages(vma, *address,
2041 pending_pages,
2042 &pages_remaining);
2043 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2044 *seq += bytes_mapped;
2045 *address += bytes_mapped;
2046 }
2047 if (err) {
2048 /* Either we were unable to zap, OR we zapped, retried an
2049 * insert, and still had an issue. Either ways, pages_remaining
2050 * is the number of pages we were unable to map, and we unroll
2051 * some state we speculatively touched before.
2052 */
2053 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2054
2055 *length -= bytes_not_mapped;
2056 zc->recv_skip_hint += bytes_not_mapped;
2057 }
2058 return err;
2059 }
2060
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2061 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2062 struct page **pages,
2063 unsigned int pages_to_map,
2064 unsigned long *address,
2065 u32 *length,
2066 u32 *seq,
2067 struct tcp_zerocopy_receive *zc,
2068 u32 total_bytes_to_map)
2069 {
2070 unsigned long pages_remaining = pages_to_map;
2071 unsigned int pages_mapped;
2072 unsigned int bytes_mapped;
2073 int err;
2074
2075 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2076 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2077 bytes_mapped = PAGE_SIZE * pages_mapped;
2078 /* Even if vm_insert_pages fails, it may have partially succeeded in
2079 * mapping (some but not all of the pages).
2080 */
2081 *seq += bytes_mapped;
2082 *address += bytes_mapped;
2083
2084 if (likely(!err))
2085 return 0;
2086
2087 /* Error: maybe zap and retry + rollback state for failed inserts. */
2088 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2089 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2090 err);
2091 }
2092
2093 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2094 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2095 struct tcp_zerocopy_receive *zc,
2096 struct scm_timestamping_internal *tss)
2097 {
2098 unsigned long msg_control_addr;
2099 struct msghdr cmsg_dummy;
2100
2101 msg_control_addr = (unsigned long)zc->msg_control;
2102 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2103 cmsg_dummy.msg_controllen =
2104 (__kernel_size_t)zc->msg_controllen;
2105 cmsg_dummy.msg_flags = in_compat_syscall()
2106 ? MSG_CMSG_COMPAT : 0;
2107 cmsg_dummy.msg_control_is_user = true;
2108 zc->msg_flags = 0;
2109 if (zc->msg_control == msg_control_addr &&
2110 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2111 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2112 zc->msg_control = (__u64)
2113 ((uintptr_t)cmsg_dummy.msg_control_user);
2114 zc->msg_controllen =
2115 (__u64)cmsg_dummy.msg_controllen;
2116 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2117 }
2118 }
2119
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2120 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2121 unsigned long address,
2122 bool *mmap_locked)
2123 {
2124 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2125
2126 if (vma) {
2127 if (vma->vm_ops != &tcp_vm_ops) {
2128 vma_end_read(vma);
2129 return NULL;
2130 }
2131 *mmap_locked = false;
2132 return vma;
2133 }
2134
2135 mmap_read_lock(mm);
2136 vma = vma_lookup(mm, address);
2137 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2138 mmap_read_unlock(mm);
2139 return NULL;
2140 }
2141 *mmap_locked = true;
2142 return vma;
2143 }
2144
2145 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2146 static int tcp_zerocopy_receive(struct sock *sk,
2147 struct tcp_zerocopy_receive *zc,
2148 struct scm_timestamping_internal *tss)
2149 {
2150 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2151 unsigned long address = (unsigned long)zc->address;
2152 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2153 s32 copybuf_len = zc->copybuf_len;
2154 struct tcp_sock *tp = tcp_sk(sk);
2155 const skb_frag_t *frags = NULL;
2156 unsigned int pages_to_map = 0;
2157 struct vm_area_struct *vma;
2158 struct sk_buff *skb = NULL;
2159 u32 seq = tp->copied_seq;
2160 u32 total_bytes_to_map;
2161 int inq = tcp_inq(sk);
2162 bool mmap_locked;
2163 int ret;
2164
2165 zc->copybuf_len = 0;
2166 zc->msg_flags = 0;
2167
2168 if (address & (PAGE_SIZE - 1) || address != zc->address)
2169 return -EINVAL;
2170
2171 if (sk->sk_state == TCP_LISTEN)
2172 return -ENOTCONN;
2173
2174 sock_rps_record_flow(sk);
2175
2176 if (inq && inq <= copybuf_len)
2177 return receive_fallback_to_copy(sk, zc, inq, tss);
2178
2179 if (inq < PAGE_SIZE) {
2180 zc->length = 0;
2181 zc->recv_skip_hint = inq;
2182 if (!inq && sock_flag(sk, SOCK_DONE))
2183 return -EIO;
2184 return 0;
2185 }
2186
2187 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2188 if (!vma)
2189 return -EINVAL;
2190
2191 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2192 avail_len = min_t(u32, vma_len, inq);
2193 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2194 if (total_bytes_to_map) {
2195 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2196 zap_page_range_single(vma, address, total_bytes_to_map,
2197 NULL);
2198 zc->length = total_bytes_to_map;
2199 zc->recv_skip_hint = 0;
2200 } else {
2201 zc->length = avail_len;
2202 zc->recv_skip_hint = avail_len;
2203 }
2204 ret = 0;
2205 while (length + PAGE_SIZE <= zc->length) {
2206 int mappable_offset;
2207 struct page *page;
2208
2209 if (zc->recv_skip_hint < PAGE_SIZE) {
2210 u32 offset_frag;
2211
2212 if (skb) {
2213 if (zc->recv_skip_hint > 0)
2214 break;
2215 skb = skb->next;
2216 offset = seq - TCP_SKB_CB(skb)->seq;
2217 } else {
2218 skb = tcp_recv_skb(sk, seq, &offset);
2219 }
2220
2221 if (!skb_frags_readable(skb))
2222 break;
2223
2224 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2225 tcp_update_recv_tstamps(skb, tss);
2226 zc->msg_flags |= TCP_CMSG_TS;
2227 }
2228 zc->recv_skip_hint = skb->len - offset;
2229 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2230 if (!frags || offset_frag)
2231 break;
2232 }
2233
2234 mappable_offset = find_next_mappable_frag(frags,
2235 zc->recv_skip_hint);
2236 if (mappable_offset) {
2237 zc->recv_skip_hint = mappable_offset;
2238 break;
2239 }
2240 page = skb_frag_page(frags);
2241 if (WARN_ON_ONCE(!page))
2242 break;
2243
2244 prefetchw(page);
2245 pages[pages_to_map++] = page;
2246 length += PAGE_SIZE;
2247 zc->recv_skip_hint -= PAGE_SIZE;
2248 frags++;
2249 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2250 zc->recv_skip_hint < PAGE_SIZE) {
2251 /* Either full batch, or we're about to go to next skb
2252 * (and we cannot unroll failed ops across skbs).
2253 */
2254 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2255 pages_to_map,
2256 &address, &length,
2257 &seq, zc,
2258 total_bytes_to_map);
2259 if (ret)
2260 goto out;
2261 pages_to_map = 0;
2262 }
2263 }
2264 if (pages_to_map) {
2265 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2266 &address, &length, &seq,
2267 zc, total_bytes_to_map);
2268 }
2269 out:
2270 if (mmap_locked)
2271 mmap_read_unlock(current->mm);
2272 else
2273 vma_end_read(vma);
2274 /* Try to copy straggler data. */
2275 if (!ret)
2276 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2277
2278 if (length + copylen) {
2279 WRITE_ONCE(tp->copied_seq, seq);
2280 tcp_rcv_space_adjust(sk);
2281
2282 /* Clean up data we have read: This will do ACK frames. */
2283 tcp_recv_skb(sk, seq, &offset);
2284 tcp_cleanup_rbuf(sk, length + copylen);
2285 ret = 0;
2286 if (length == zc->length)
2287 zc->recv_skip_hint = 0;
2288 } else {
2289 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2290 ret = -EIO;
2291 }
2292 zc->length = length;
2293 return ret;
2294 }
2295 #endif
2296
2297 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2298 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2299 struct scm_timestamping_internal *tss)
2300 {
2301 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2302 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2303 bool has_timestamping = false;
2304
2305 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2306 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2307 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2308 if (new_tstamp) {
2309 struct __kernel_timespec kts = {
2310 .tv_sec = tss->ts[0].tv_sec,
2311 .tv_nsec = tss->ts[0].tv_nsec,
2312 };
2313 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2314 sizeof(kts), &kts);
2315 } else {
2316 struct __kernel_old_timespec ts_old = {
2317 .tv_sec = tss->ts[0].tv_sec,
2318 .tv_nsec = tss->ts[0].tv_nsec,
2319 };
2320 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2321 sizeof(ts_old), &ts_old);
2322 }
2323 } else {
2324 if (new_tstamp) {
2325 struct __kernel_sock_timeval stv = {
2326 .tv_sec = tss->ts[0].tv_sec,
2327 .tv_usec = tss->ts[0].tv_nsec / 1000,
2328 };
2329 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2330 sizeof(stv), &stv);
2331 } else {
2332 struct __kernel_old_timeval tv = {
2333 .tv_sec = tss->ts[0].tv_sec,
2334 .tv_usec = tss->ts[0].tv_nsec / 1000,
2335 };
2336 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2337 sizeof(tv), &tv);
2338 }
2339 }
2340 }
2341
2342 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2343 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2344 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2345 has_timestamping = true;
2346 else
2347 tss->ts[0] = (struct timespec64) {0};
2348 }
2349
2350 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2351 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2352 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2353 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2354 has_timestamping = true;
2355 else
2356 tss->ts[2] = (struct timespec64) {0};
2357 }
2358
2359 if (has_timestamping) {
2360 tss->ts[1] = (struct timespec64) {0};
2361 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2362 put_cmsg_scm_timestamping64(msg, tss);
2363 else
2364 put_cmsg_scm_timestamping(msg, tss);
2365 }
2366 }
2367
tcp_inq_hint(struct sock * sk)2368 static int tcp_inq_hint(struct sock *sk)
2369 {
2370 const struct tcp_sock *tp = tcp_sk(sk);
2371 u32 copied_seq = READ_ONCE(tp->copied_seq);
2372 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2373 int inq;
2374
2375 inq = rcv_nxt - copied_seq;
2376 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2377 lock_sock(sk);
2378 inq = tp->rcv_nxt - tp->copied_seq;
2379 release_sock(sk);
2380 }
2381 /* After receiving a FIN, tell the user-space to continue reading
2382 * by returning a non-zero inq.
2383 */
2384 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2385 inq = 1;
2386 return inq;
2387 }
2388
2389 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2390 struct tcp_xa_pool {
2391 u8 max; /* max <= MAX_SKB_FRAGS */
2392 u8 idx; /* idx <= max */
2393 __u32 tokens[MAX_SKB_FRAGS];
2394 netmem_ref netmems[MAX_SKB_FRAGS];
2395 };
2396
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2397 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2398 {
2399 int i;
2400
2401 /* Commit part that has been copied to user space. */
2402 for (i = 0; i < p->idx; i++)
2403 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2404 (__force void *)p->netmems[i], GFP_KERNEL);
2405 /* Rollback what has been pre-allocated and is no longer needed. */
2406 for (; i < p->max; i++)
2407 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2408
2409 p->max = 0;
2410 p->idx = 0;
2411 }
2412
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2413 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2414 {
2415 if (!p->max)
2416 return;
2417
2418 xa_lock_bh(&sk->sk_user_frags);
2419
2420 tcp_xa_pool_commit_locked(sk, p);
2421
2422 xa_unlock_bh(&sk->sk_user_frags);
2423 }
2424
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2425 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2426 unsigned int max_frags)
2427 {
2428 int err, k;
2429
2430 if (p->idx < p->max)
2431 return 0;
2432
2433 xa_lock_bh(&sk->sk_user_frags);
2434
2435 tcp_xa_pool_commit_locked(sk, p);
2436
2437 for (k = 0; k < max_frags; k++) {
2438 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2439 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2440 if (err)
2441 break;
2442 }
2443
2444 xa_unlock_bh(&sk->sk_user_frags);
2445
2446 p->max = k;
2447 p->idx = 0;
2448 return k ? 0 : err;
2449 }
2450
2451 /* On error, returns the -errno. On success, returns number of bytes sent to the
2452 * user. May not consume all of @remaining_len.
2453 */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2454 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2455 unsigned int offset, struct msghdr *msg,
2456 int remaining_len)
2457 {
2458 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2459 struct tcp_xa_pool tcp_xa_pool;
2460 unsigned int start;
2461 int i, copy, n;
2462 int sent = 0;
2463 int err = 0;
2464
2465 tcp_xa_pool.max = 0;
2466 tcp_xa_pool.idx = 0;
2467 do {
2468 start = skb_headlen(skb);
2469
2470 if (skb_frags_readable(skb)) {
2471 err = -ENODEV;
2472 goto out;
2473 }
2474
2475 /* Copy header. */
2476 copy = start - offset;
2477 if (copy > 0) {
2478 copy = min(copy, remaining_len);
2479
2480 n = copy_to_iter(skb->data + offset, copy,
2481 &msg->msg_iter);
2482 if (n != copy) {
2483 err = -EFAULT;
2484 goto out;
2485 }
2486
2487 offset += copy;
2488 remaining_len -= copy;
2489
2490 /* First a dmabuf_cmsg for # bytes copied to user
2491 * buffer.
2492 */
2493 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2494 dmabuf_cmsg.frag_size = copy;
2495 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2496 SO_DEVMEM_LINEAR,
2497 sizeof(dmabuf_cmsg),
2498 &dmabuf_cmsg);
2499 if (err)
2500 goto out;
2501
2502 sent += copy;
2503
2504 if (remaining_len == 0)
2505 goto out;
2506 }
2507
2508 /* after that, send information of dmabuf pages through a
2509 * sequence of cmsg
2510 */
2511 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2512 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2513 struct net_iov *niov;
2514 u64 frag_offset;
2515 int end;
2516
2517 /* !skb_frags_readable() should indicate that ALL the
2518 * frags in this skb are dmabuf net_iovs. We're checking
2519 * for that flag above, but also check individual frags
2520 * here. If the tcp stack is not setting
2521 * skb_frags_readable() correctly, we still don't want
2522 * to crash here.
2523 */
2524 if (!skb_frag_net_iov(frag)) {
2525 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2526 err = -ENODEV;
2527 goto out;
2528 }
2529
2530 niov = skb_frag_net_iov(frag);
2531 if (!net_is_devmem_iov(niov)) {
2532 err = -ENODEV;
2533 goto out;
2534 }
2535
2536 end = start + skb_frag_size(frag);
2537 copy = end - offset;
2538
2539 if (copy > 0) {
2540 copy = min(copy, remaining_len);
2541
2542 frag_offset = net_iov_virtual_addr(niov) +
2543 skb_frag_off(frag) + offset -
2544 start;
2545 dmabuf_cmsg.frag_offset = frag_offset;
2546 dmabuf_cmsg.frag_size = copy;
2547 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2548 skb_shinfo(skb)->nr_frags - i);
2549 if (err)
2550 goto out;
2551
2552 /* Will perform the exchange later */
2553 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2554 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2555
2556 offset += copy;
2557 remaining_len -= copy;
2558
2559 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2560 SO_DEVMEM_DMABUF,
2561 sizeof(dmabuf_cmsg),
2562 &dmabuf_cmsg);
2563 if (err)
2564 goto out;
2565
2566 atomic_long_inc(&niov->pp_ref_count);
2567 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2568
2569 sent += copy;
2570
2571 if (remaining_len == 0)
2572 goto out;
2573 }
2574 start = end;
2575 }
2576
2577 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2578 if (!remaining_len)
2579 goto out;
2580
2581 /* if remaining_len is not satisfied yet, we need to go to the
2582 * next frag in the frag_list to satisfy remaining_len.
2583 */
2584 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2585
2586 offset = offset - start;
2587 } while (skb);
2588
2589 if (remaining_len) {
2590 err = -EFAULT;
2591 goto out;
2592 }
2593
2594 out:
2595 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2596 if (!sent)
2597 sent = err;
2598
2599 return sent;
2600 }
2601
2602 /*
2603 * This routine copies from a sock struct into the user buffer.
2604 *
2605 * Technical note: in 2.3 we work on _locked_ socket, so that
2606 * tricks with *seq access order and skb->users are not required.
2607 * Probably, code can be easily improved even more.
2608 */
2609
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2610 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2611 int flags, struct scm_timestamping_internal *tss,
2612 int *cmsg_flags)
2613 {
2614 struct tcp_sock *tp = tcp_sk(sk);
2615 int last_copied_dmabuf = -1; /* uninitialized */
2616 int copied = 0;
2617 u32 peek_seq;
2618 u32 *seq;
2619 unsigned long used;
2620 int err;
2621 int target; /* Read at least this many bytes */
2622 long timeo;
2623 struct sk_buff *skb, *last;
2624 u32 peek_offset = 0;
2625 u32 urg_hole = 0;
2626
2627 err = -ENOTCONN;
2628 if (sk->sk_state == TCP_LISTEN)
2629 goto out;
2630
2631 if (tp->recvmsg_inq) {
2632 *cmsg_flags = TCP_CMSG_INQ;
2633 msg->msg_get_inq = 1;
2634 }
2635 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2636
2637 /* Urgent data needs to be handled specially. */
2638 if (flags & MSG_OOB)
2639 goto recv_urg;
2640
2641 if (unlikely(tp->repair)) {
2642 err = -EPERM;
2643 if (!(flags & MSG_PEEK))
2644 goto out;
2645
2646 if (tp->repair_queue == TCP_SEND_QUEUE)
2647 goto recv_sndq;
2648
2649 err = -EINVAL;
2650 if (tp->repair_queue == TCP_NO_QUEUE)
2651 goto out;
2652
2653 /* 'common' recv queue MSG_PEEK-ing */
2654 }
2655
2656 seq = &tp->copied_seq;
2657 if (flags & MSG_PEEK) {
2658 peek_offset = max(sk_peek_offset(sk, flags), 0);
2659 peek_seq = tp->copied_seq + peek_offset;
2660 seq = &peek_seq;
2661 }
2662
2663 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2664
2665 do {
2666 u32 offset;
2667
2668 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2669 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2670 if (copied)
2671 break;
2672 if (signal_pending(current)) {
2673 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2674 break;
2675 }
2676 }
2677
2678 /* Next get a buffer. */
2679
2680 last = skb_peek_tail(&sk->sk_receive_queue);
2681 skb_queue_walk(&sk->sk_receive_queue, skb) {
2682 last = skb;
2683 /* Now that we have two receive queues this
2684 * shouldn't happen.
2685 */
2686 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2687 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2688 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2689 flags))
2690 break;
2691
2692 offset = *seq - TCP_SKB_CB(skb)->seq;
2693 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2694 pr_err_once("%s: found a SYN, please report !\n", __func__);
2695 offset--;
2696 }
2697 if (offset < skb->len)
2698 goto found_ok_skb;
2699 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2700 goto found_fin_ok;
2701 WARN(!(flags & MSG_PEEK),
2702 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2703 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2704 }
2705
2706 /* Well, if we have backlog, try to process it now yet. */
2707
2708 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2709 break;
2710
2711 if (copied) {
2712 if (!timeo ||
2713 sk->sk_err ||
2714 sk->sk_state == TCP_CLOSE ||
2715 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2716 signal_pending(current))
2717 break;
2718 } else {
2719 if (sock_flag(sk, SOCK_DONE))
2720 break;
2721
2722 if (sk->sk_err) {
2723 copied = sock_error(sk);
2724 break;
2725 }
2726
2727 if (sk->sk_shutdown & RCV_SHUTDOWN)
2728 break;
2729
2730 if (sk->sk_state == TCP_CLOSE) {
2731 /* This occurs when user tries to read
2732 * from never connected socket.
2733 */
2734 copied = -ENOTCONN;
2735 break;
2736 }
2737
2738 if (!timeo) {
2739 copied = -EAGAIN;
2740 break;
2741 }
2742
2743 if (signal_pending(current)) {
2744 copied = sock_intr_errno(timeo);
2745 break;
2746 }
2747 }
2748
2749 if (copied >= target) {
2750 /* Do not sleep, just process backlog. */
2751 __sk_flush_backlog(sk);
2752 } else {
2753 tcp_cleanup_rbuf(sk, copied);
2754 err = sk_wait_data(sk, &timeo, last);
2755 if (err < 0) {
2756 err = copied ? : err;
2757 goto out;
2758 }
2759 }
2760
2761 if ((flags & MSG_PEEK) &&
2762 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2763 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2764 current->comm,
2765 task_pid_nr(current));
2766 peek_seq = tp->copied_seq + peek_offset;
2767 }
2768 continue;
2769
2770 found_ok_skb:
2771 /* Ok so how much can we use? */
2772 used = skb->len - offset;
2773 if (len < used)
2774 used = len;
2775
2776 /* Do we have urgent data here? */
2777 if (unlikely(tp->urg_data)) {
2778 u32 urg_offset = tp->urg_seq - *seq;
2779 if (urg_offset < used) {
2780 if (!urg_offset) {
2781 if (!sock_flag(sk, SOCK_URGINLINE)) {
2782 WRITE_ONCE(*seq, *seq + 1);
2783 urg_hole++;
2784 offset++;
2785 used--;
2786 if (!used)
2787 goto skip_copy;
2788 }
2789 } else
2790 used = urg_offset;
2791 }
2792 }
2793
2794 if (!(flags & MSG_TRUNC)) {
2795 if (last_copied_dmabuf != -1 &&
2796 last_copied_dmabuf != !skb_frags_readable(skb))
2797 break;
2798
2799 if (skb_frags_readable(skb)) {
2800 err = skb_copy_datagram_msg(skb, offset, msg,
2801 used);
2802 if (err) {
2803 /* Exception. Bailout! */
2804 if (!copied)
2805 copied = -EFAULT;
2806 break;
2807 }
2808 } else {
2809 if (!(flags & MSG_SOCK_DEVMEM)) {
2810 /* dmabuf skbs can only be received
2811 * with the MSG_SOCK_DEVMEM flag.
2812 */
2813 if (!copied)
2814 copied = -EFAULT;
2815
2816 break;
2817 }
2818
2819 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2820 used);
2821 if (err <= 0) {
2822 if (!copied)
2823 copied = -EFAULT;
2824
2825 break;
2826 }
2827 used = err;
2828 }
2829 }
2830
2831 last_copied_dmabuf = !skb_frags_readable(skb);
2832
2833 WRITE_ONCE(*seq, *seq + used);
2834 copied += used;
2835 len -= used;
2836 if (flags & MSG_PEEK)
2837 sk_peek_offset_fwd(sk, used);
2838 else
2839 sk_peek_offset_bwd(sk, used);
2840 tcp_rcv_space_adjust(sk);
2841
2842 skip_copy:
2843 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2844 WRITE_ONCE(tp->urg_data, 0);
2845 tcp_fast_path_check(sk);
2846 }
2847
2848 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2849 tcp_update_recv_tstamps(skb, tss);
2850 *cmsg_flags |= TCP_CMSG_TS;
2851 }
2852
2853 if (used + offset < skb->len)
2854 continue;
2855
2856 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2857 goto found_fin_ok;
2858 if (!(flags & MSG_PEEK))
2859 tcp_eat_recv_skb(sk, skb);
2860 continue;
2861
2862 found_fin_ok:
2863 /* Process the FIN. */
2864 WRITE_ONCE(*seq, *seq + 1);
2865 if (!(flags & MSG_PEEK))
2866 tcp_eat_recv_skb(sk, skb);
2867 break;
2868 } while (len > 0);
2869
2870 /* According to UNIX98, msg_name/msg_namelen are ignored
2871 * on connected socket. I was just happy when found this 8) --ANK
2872 */
2873
2874 /* Clean up data we have read: This will do ACK frames. */
2875 tcp_cleanup_rbuf(sk, copied);
2876 return copied;
2877
2878 out:
2879 return err;
2880
2881 recv_urg:
2882 err = tcp_recv_urg(sk, msg, len, flags);
2883 goto out;
2884
2885 recv_sndq:
2886 err = tcp_peek_sndq(sk, msg, len);
2887 goto out;
2888 }
2889
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2890 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2891 int *addr_len)
2892 {
2893 int cmsg_flags = 0, ret;
2894 struct scm_timestamping_internal tss;
2895
2896 if (unlikely(flags & MSG_ERRQUEUE))
2897 return inet_recv_error(sk, msg, len, addr_len);
2898
2899 if (sk_can_busy_loop(sk) &&
2900 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2901 sk->sk_state == TCP_ESTABLISHED)
2902 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2903
2904 lock_sock(sk);
2905 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2906 release_sock(sk);
2907
2908 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2909 if (cmsg_flags & TCP_CMSG_TS)
2910 tcp_recv_timestamp(msg, sk, &tss);
2911 if (msg->msg_get_inq) {
2912 msg->msg_inq = tcp_inq_hint(sk);
2913 if (cmsg_flags & TCP_CMSG_INQ)
2914 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2915 sizeof(msg->msg_inq), &msg->msg_inq);
2916 }
2917 }
2918 return ret;
2919 }
2920 EXPORT_IPV6_MOD(tcp_recvmsg);
2921
tcp_set_state(struct sock * sk,int state)2922 void tcp_set_state(struct sock *sk, int state)
2923 {
2924 int oldstate = sk->sk_state;
2925
2926 /* We defined a new enum for TCP states that are exported in BPF
2927 * so as not force the internal TCP states to be frozen. The
2928 * following checks will detect if an internal state value ever
2929 * differs from the BPF value. If this ever happens, then we will
2930 * need to remap the internal value to the BPF value before calling
2931 * tcp_call_bpf_2arg.
2932 */
2933 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2934 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2935 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2936 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2937 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2938 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2939 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2940 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2941 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2942 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2943 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2944 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2945 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2946 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2947
2948 /* bpf uapi header bpf.h defines an anonymous enum with values
2949 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2950 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2951 * But clang built vmlinux does not have this enum in DWARF
2952 * since clang removes the above code before generating IR/debuginfo.
2953 * Let us explicitly emit the type debuginfo to ensure the
2954 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2955 * regardless of which compiler is used.
2956 */
2957 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2958
2959 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2960 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2961
2962 switch (state) {
2963 case TCP_ESTABLISHED:
2964 if (oldstate != TCP_ESTABLISHED)
2965 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2966 break;
2967 case TCP_CLOSE_WAIT:
2968 if (oldstate == TCP_SYN_RECV)
2969 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2970 break;
2971
2972 case TCP_CLOSE:
2973 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2974 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2975
2976 sk->sk_prot->unhash(sk);
2977 if (inet_csk(sk)->icsk_bind_hash &&
2978 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2979 inet_put_port(sk);
2980 fallthrough;
2981 default:
2982 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2983 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2984 }
2985
2986 /* Change state AFTER socket is unhashed to avoid closed
2987 * socket sitting in hash tables.
2988 */
2989 inet_sk_state_store(sk, state);
2990 }
2991 EXPORT_SYMBOL_GPL(tcp_set_state);
2992
2993 /*
2994 * State processing on a close. This implements the state shift for
2995 * sending our FIN frame. Note that we only send a FIN for some
2996 * states. A shutdown() may have already sent the FIN, or we may be
2997 * closed.
2998 */
2999
3000 static const unsigned char new_state[16] = {
3001 /* current state: new state: action: */
3002 [0 /* (Invalid) */] = TCP_CLOSE,
3003 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3004 [TCP_SYN_SENT] = TCP_CLOSE,
3005 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3006 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
3007 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
3008 [TCP_TIME_WAIT] = TCP_CLOSE,
3009 [TCP_CLOSE] = TCP_CLOSE,
3010 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
3011 [TCP_LAST_ACK] = TCP_LAST_ACK,
3012 [TCP_LISTEN] = TCP_CLOSE,
3013 [TCP_CLOSING] = TCP_CLOSING,
3014 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
3015 };
3016
tcp_close_state(struct sock * sk)3017 static int tcp_close_state(struct sock *sk)
3018 {
3019 int next = (int)new_state[sk->sk_state];
3020 int ns = next & TCP_STATE_MASK;
3021
3022 tcp_set_state(sk, ns);
3023
3024 return next & TCP_ACTION_FIN;
3025 }
3026
3027 /*
3028 * Shutdown the sending side of a connection. Much like close except
3029 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3030 */
3031
tcp_shutdown(struct sock * sk,int how)3032 void tcp_shutdown(struct sock *sk, int how)
3033 {
3034 /* We need to grab some memory, and put together a FIN,
3035 * and then put it into the queue to be sent.
3036 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3037 */
3038 if (!(how & SEND_SHUTDOWN))
3039 return;
3040
3041 /* If we've already sent a FIN, or it's a closed state, skip this. */
3042 if ((1 << sk->sk_state) &
3043 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3044 TCPF_CLOSE_WAIT)) {
3045 /* Clear out any half completed packets. FIN if needed. */
3046 if (tcp_close_state(sk))
3047 tcp_send_fin(sk);
3048 }
3049 }
3050 EXPORT_IPV6_MOD(tcp_shutdown);
3051
tcp_orphan_count_sum(void)3052 int tcp_orphan_count_sum(void)
3053 {
3054 int i, total = 0;
3055
3056 for_each_possible_cpu(i)
3057 total += per_cpu(tcp_orphan_count, i);
3058
3059 return max(total, 0);
3060 }
3061
3062 static int tcp_orphan_cache;
3063 static struct timer_list tcp_orphan_timer;
3064 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3065
tcp_orphan_update(struct timer_list * unused)3066 static void tcp_orphan_update(struct timer_list *unused)
3067 {
3068 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3069 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3070 }
3071
tcp_too_many_orphans(int shift)3072 static bool tcp_too_many_orphans(int shift)
3073 {
3074 return READ_ONCE(tcp_orphan_cache) << shift >
3075 READ_ONCE(sysctl_tcp_max_orphans);
3076 }
3077
tcp_out_of_memory(const struct sock * sk)3078 static bool tcp_out_of_memory(const struct sock *sk)
3079 {
3080 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3081 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3082 return true;
3083 return false;
3084 }
3085
tcp_check_oom(const struct sock * sk,int shift)3086 bool tcp_check_oom(const struct sock *sk, int shift)
3087 {
3088 bool too_many_orphans, out_of_socket_memory;
3089
3090 too_many_orphans = tcp_too_many_orphans(shift);
3091 out_of_socket_memory = tcp_out_of_memory(sk);
3092
3093 if (too_many_orphans)
3094 net_info_ratelimited("too many orphaned sockets\n");
3095 if (out_of_socket_memory)
3096 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3097 return too_many_orphans || out_of_socket_memory;
3098 }
3099
__tcp_close(struct sock * sk,long timeout)3100 void __tcp_close(struct sock *sk, long timeout)
3101 {
3102 struct sk_buff *skb;
3103 int data_was_unread = 0;
3104 int state;
3105
3106 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3107
3108 if (sk->sk_state == TCP_LISTEN) {
3109 tcp_set_state(sk, TCP_CLOSE);
3110
3111 /* Special case. */
3112 inet_csk_listen_stop(sk);
3113
3114 goto adjudge_to_death;
3115 }
3116
3117 /* We need to flush the recv. buffs. We do this only on the
3118 * descriptor close, not protocol-sourced closes, because the
3119 * reader process may not have drained the data yet!
3120 */
3121 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3122 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3123
3124 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3125 len--;
3126 data_was_unread += len;
3127 __kfree_skb(skb);
3128 }
3129
3130 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3131 if (sk->sk_state == TCP_CLOSE)
3132 goto adjudge_to_death;
3133
3134 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3135 * data was lost. To witness the awful effects of the old behavior of
3136 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3137 * GET in an FTP client, suspend the process, wait for the client to
3138 * advertise a zero window, then kill -9 the FTP client, wheee...
3139 * Note: timeout is always zero in such a case.
3140 */
3141 if (unlikely(tcp_sk(sk)->repair)) {
3142 sk->sk_prot->disconnect(sk, 0);
3143 } else if (data_was_unread) {
3144 /* Unread data was tossed, zap the connection. */
3145 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3146 tcp_set_state(sk, TCP_CLOSE);
3147 tcp_send_active_reset(sk, sk->sk_allocation,
3148 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3149 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3150 /* Check zero linger _after_ checking for unread data. */
3151 sk->sk_prot->disconnect(sk, 0);
3152 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3153 } else if (tcp_close_state(sk)) {
3154 /* We FIN if the application ate all the data before
3155 * zapping the connection.
3156 */
3157
3158 /* RED-PEN. Formally speaking, we have broken TCP state
3159 * machine. State transitions:
3160 *
3161 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3162 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3163 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3164 *
3165 * are legal only when FIN has been sent (i.e. in window),
3166 * rather than queued out of window. Purists blame.
3167 *
3168 * F.e. "RFC state" is ESTABLISHED,
3169 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3170 *
3171 * The visible declinations are that sometimes
3172 * we enter time-wait state, when it is not required really
3173 * (harmless), do not send active resets, when they are
3174 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3175 * they look as CLOSING or LAST_ACK for Linux)
3176 * Probably, I missed some more holelets.
3177 * --ANK
3178 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3179 * in a single packet! (May consider it later but will
3180 * probably need API support or TCP_CORK SYN-ACK until
3181 * data is written and socket is closed.)
3182 */
3183 tcp_send_fin(sk);
3184 }
3185
3186 sk_stream_wait_close(sk, timeout);
3187
3188 adjudge_to_death:
3189 state = sk->sk_state;
3190 sock_hold(sk);
3191 sock_orphan(sk);
3192
3193 local_bh_disable();
3194 bh_lock_sock(sk);
3195 /* remove backlog if any, without releasing ownership. */
3196 __release_sock(sk);
3197
3198 this_cpu_inc(tcp_orphan_count);
3199
3200 /* Have we already been destroyed by a softirq or backlog? */
3201 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3202 goto out;
3203
3204 /* This is a (useful) BSD violating of the RFC. There is a
3205 * problem with TCP as specified in that the other end could
3206 * keep a socket open forever with no application left this end.
3207 * We use a 1 minute timeout (about the same as BSD) then kill
3208 * our end. If they send after that then tough - BUT: long enough
3209 * that we won't make the old 4*rto = almost no time - whoops
3210 * reset mistake.
3211 *
3212 * Nope, it was not mistake. It is really desired behaviour
3213 * f.e. on http servers, when such sockets are useless, but
3214 * consume significant resources. Let's do it with special
3215 * linger2 option. --ANK
3216 */
3217
3218 if (sk->sk_state == TCP_FIN_WAIT2) {
3219 struct tcp_sock *tp = tcp_sk(sk);
3220 if (READ_ONCE(tp->linger2) < 0) {
3221 tcp_set_state(sk, TCP_CLOSE);
3222 tcp_send_active_reset(sk, GFP_ATOMIC,
3223 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3224 __NET_INC_STATS(sock_net(sk),
3225 LINUX_MIB_TCPABORTONLINGER);
3226 } else {
3227 const int tmo = tcp_fin_time(sk);
3228
3229 if (tmo > TCP_TIMEWAIT_LEN) {
3230 tcp_reset_keepalive_timer(sk,
3231 tmo - TCP_TIMEWAIT_LEN);
3232 } else {
3233 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3234 goto out;
3235 }
3236 }
3237 }
3238 if (sk->sk_state != TCP_CLOSE) {
3239 if (tcp_check_oom(sk, 0)) {
3240 tcp_set_state(sk, TCP_CLOSE);
3241 tcp_send_active_reset(sk, GFP_ATOMIC,
3242 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3243 __NET_INC_STATS(sock_net(sk),
3244 LINUX_MIB_TCPABORTONMEMORY);
3245 } else if (!check_net(sock_net(sk))) {
3246 /* Not possible to send reset; just close */
3247 tcp_set_state(sk, TCP_CLOSE);
3248 }
3249 }
3250
3251 if (sk->sk_state == TCP_CLOSE) {
3252 struct request_sock *req;
3253
3254 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3255 lockdep_sock_is_held(sk));
3256 /* We could get here with a non-NULL req if the socket is
3257 * aborted (e.g., closed with unread data) before 3WHS
3258 * finishes.
3259 */
3260 if (req)
3261 reqsk_fastopen_remove(sk, req, false);
3262 inet_csk_destroy_sock(sk);
3263 }
3264 /* Otherwise, socket is reprieved until protocol close. */
3265
3266 out:
3267 bh_unlock_sock(sk);
3268 local_bh_enable();
3269 }
3270
tcp_close(struct sock * sk,long timeout)3271 void tcp_close(struct sock *sk, long timeout)
3272 {
3273 lock_sock(sk);
3274 __tcp_close(sk, timeout);
3275 release_sock(sk);
3276 if (!sk->sk_net_refcnt)
3277 inet_csk_clear_xmit_timers_sync(sk);
3278 sock_put(sk);
3279 }
3280 EXPORT_SYMBOL(tcp_close);
3281
3282 /* These states need RST on ABORT according to RFC793 */
3283
tcp_need_reset(int state)3284 static inline bool tcp_need_reset(int state)
3285 {
3286 return (1 << state) &
3287 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3288 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3289 }
3290
tcp_rtx_queue_purge(struct sock * sk)3291 static void tcp_rtx_queue_purge(struct sock *sk)
3292 {
3293 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3294
3295 tcp_sk(sk)->highest_sack = NULL;
3296 while (p) {
3297 struct sk_buff *skb = rb_to_skb(p);
3298
3299 p = rb_next(p);
3300 /* Since we are deleting whole queue, no need to
3301 * list_del(&skb->tcp_tsorted_anchor)
3302 */
3303 tcp_rtx_queue_unlink(skb, sk);
3304 tcp_wmem_free_skb(sk, skb);
3305 }
3306 }
3307
tcp_write_queue_purge(struct sock * sk)3308 void tcp_write_queue_purge(struct sock *sk)
3309 {
3310 struct sk_buff *skb;
3311
3312 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3313 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3314 tcp_skb_tsorted_anchor_cleanup(skb);
3315 tcp_wmem_free_skb(sk, skb);
3316 }
3317 tcp_rtx_queue_purge(sk);
3318 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3319 tcp_clear_all_retrans_hints(tcp_sk(sk));
3320 tcp_sk(sk)->packets_out = 0;
3321 inet_csk(sk)->icsk_backoff = 0;
3322 }
3323
tcp_disconnect(struct sock * sk,int flags)3324 int tcp_disconnect(struct sock *sk, int flags)
3325 {
3326 struct inet_sock *inet = inet_sk(sk);
3327 struct inet_connection_sock *icsk = inet_csk(sk);
3328 struct tcp_sock *tp = tcp_sk(sk);
3329 int old_state = sk->sk_state;
3330 u32 seq;
3331
3332 if (old_state != TCP_CLOSE)
3333 tcp_set_state(sk, TCP_CLOSE);
3334
3335 /* ABORT function of RFC793 */
3336 if (old_state == TCP_LISTEN) {
3337 inet_csk_listen_stop(sk);
3338 } else if (unlikely(tp->repair)) {
3339 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3340 } else if (tcp_need_reset(old_state)) {
3341 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3342 WRITE_ONCE(sk->sk_err, ECONNRESET);
3343 } else if (tp->snd_nxt != tp->write_seq &&
3344 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3345 /* The last check adjusts for discrepancy of Linux wrt. RFC
3346 * states
3347 */
3348 tcp_send_active_reset(sk, gfp_any(),
3349 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3350 WRITE_ONCE(sk->sk_err, ECONNRESET);
3351 } else if (old_state == TCP_SYN_SENT)
3352 WRITE_ONCE(sk->sk_err, ECONNRESET);
3353
3354 tcp_clear_xmit_timers(sk);
3355 __skb_queue_purge(&sk->sk_receive_queue);
3356 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3357 WRITE_ONCE(tp->urg_data, 0);
3358 sk_set_peek_off(sk, -1);
3359 tcp_write_queue_purge(sk);
3360 tcp_fastopen_active_disable_ofo_check(sk);
3361 skb_rbtree_purge(&tp->out_of_order_queue);
3362
3363 inet->inet_dport = 0;
3364
3365 inet_bhash2_reset_saddr(sk);
3366
3367 WRITE_ONCE(sk->sk_shutdown, 0);
3368 sock_reset_flag(sk, SOCK_DONE);
3369 tp->srtt_us = 0;
3370 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3371 tp->rcv_rtt_last_tsecr = 0;
3372
3373 seq = tp->write_seq + tp->max_window + 2;
3374 if (!seq)
3375 seq = 1;
3376 WRITE_ONCE(tp->write_seq, seq);
3377
3378 icsk->icsk_backoff = 0;
3379 icsk->icsk_probes_out = 0;
3380 icsk->icsk_probes_tstamp = 0;
3381 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3382 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3383 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3384 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3385 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3386 tp->snd_cwnd_cnt = 0;
3387 tp->is_cwnd_limited = 0;
3388 tp->max_packets_out = 0;
3389 tp->window_clamp = 0;
3390 tp->delivered = 0;
3391 tp->delivered_ce = 0;
3392 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3393 icsk->icsk_ca_ops->release(sk);
3394 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3395 icsk->icsk_ca_initialized = 0;
3396 tcp_set_ca_state(sk, TCP_CA_Open);
3397 tp->is_sack_reneg = 0;
3398 tcp_clear_retrans(tp);
3399 tp->total_retrans = 0;
3400 inet_csk_delack_init(sk);
3401 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3402 * issue in __tcp_select_window()
3403 */
3404 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3405 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3406 __sk_dst_reset(sk);
3407 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3408 tcp_saved_syn_free(tp);
3409 tp->compressed_ack = 0;
3410 tp->segs_in = 0;
3411 tp->segs_out = 0;
3412 tp->bytes_sent = 0;
3413 tp->bytes_acked = 0;
3414 tp->bytes_received = 0;
3415 tp->bytes_retrans = 0;
3416 tp->data_segs_in = 0;
3417 tp->data_segs_out = 0;
3418 tp->duplicate_sack[0].start_seq = 0;
3419 tp->duplicate_sack[0].end_seq = 0;
3420 tp->dsack_dups = 0;
3421 tp->reord_seen = 0;
3422 tp->retrans_out = 0;
3423 tp->sacked_out = 0;
3424 tp->tlp_high_seq = 0;
3425 tp->last_oow_ack_time = 0;
3426 tp->plb_rehash = 0;
3427 /* There's a bubble in the pipe until at least the first ACK. */
3428 tp->app_limited = ~0U;
3429 tp->rate_app_limited = 1;
3430 tp->rack.mstamp = 0;
3431 tp->rack.advanced = 0;
3432 tp->rack.reo_wnd_steps = 1;
3433 tp->rack.last_delivered = 0;
3434 tp->rack.reo_wnd_persist = 0;
3435 tp->rack.dsack_seen = 0;
3436 tp->syn_data_acked = 0;
3437 tp->syn_fastopen_child = 0;
3438 tp->rx_opt.saw_tstamp = 0;
3439 tp->rx_opt.dsack = 0;
3440 tp->rx_opt.num_sacks = 0;
3441 tp->rcv_ooopack = 0;
3442
3443
3444 /* Clean up fastopen related fields */
3445 tcp_free_fastopen_req(tp);
3446 inet_clear_bit(DEFER_CONNECT, sk);
3447 tp->fastopen_client_fail = 0;
3448
3449 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3450
3451 if (sk->sk_frag.page) {
3452 put_page(sk->sk_frag.page);
3453 sk->sk_frag.page = NULL;
3454 sk->sk_frag.offset = 0;
3455 }
3456 sk_error_report(sk);
3457 return 0;
3458 }
3459 EXPORT_SYMBOL(tcp_disconnect);
3460
tcp_can_repair_sock(const struct sock * sk)3461 static inline bool tcp_can_repair_sock(const struct sock *sk)
3462 {
3463 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3464 (sk->sk_state != TCP_LISTEN);
3465 }
3466
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3467 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3468 {
3469 struct tcp_repair_window opt;
3470
3471 if (!tp->repair)
3472 return -EPERM;
3473
3474 if (len != sizeof(opt))
3475 return -EINVAL;
3476
3477 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3478 return -EFAULT;
3479
3480 if (opt.max_window < opt.snd_wnd)
3481 return -EINVAL;
3482
3483 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3484 return -EINVAL;
3485
3486 if (after(opt.rcv_wup, tp->rcv_nxt))
3487 return -EINVAL;
3488
3489 tp->snd_wl1 = opt.snd_wl1;
3490 tp->snd_wnd = opt.snd_wnd;
3491 tp->max_window = opt.max_window;
3492
3493 tp->rcv_wnd = opt.rcv_wnd;
3494 tp->rcv_wup = opt.rcv_wup;
3495
3496 return 0;
3497 }
3498
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3499 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3500 unsigned int len)
3501 {
3502 struct tcp_sock *tp = tcp_sk(sk);
3503 struct tcp_repair_opt opt;
3504 size_t offset = 0;
3505
3506 while (len >= sizeof(opt)) {
3507 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3508 return -EFAULT;
3509
3510 offset += sizeof(opt);
3511 len -= sizeof(opt);
3512
3513 switch (opt.opt_code) {
3514 case TCPOPT_MSS:
3515 tp->rx_opt.mss_clamp = opt.opt_val;
3516 tcp_mtup_init(sk);
3517 break;
3518 case TCPOPT_WINDOW:
3519 {
3520 u16 snd_wscale = opt.opt_val & 0xFFFF;
3521 u16 rcv_wscale = opt.opt_val >> 16;
3522
3523 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3524 return -EFBIG;
3525
3526 tp->rx_opt.snd_wscale = snd_wscale;
3527 tp->rx_opt.rcv_wscale = rcv_wscale;
3528 tp->rx_opt.wscale_ok = 1;
3529 }
3530 break;
3531 case TCPOPT_SACK_PERM:
3532 if (opt.opt_val != 0)
3533 return -EINVAL;
3534
3535 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3536 break;
3537 case TCPOPT_TIMESTAMP:
3538 if (opt.opt_val != 0)
3539 return -EINVAL;
3540
3541 tp->rx_opt.tstamp_ok = 1;
3542 break;
3543 }
3544 }
3545
3546 return 0;
3547 }
3548
3549 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3550 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3551
tcp_enable_tx_delay(void)3552 static void tcp_enable_tx_delay(void)
3553 {
3554 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3555 static int __tcp_tx_delay_enabled = 0;
3556
3557 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3558 static_branch_enable(&tcp_tx_delay_enabled);
3559 pr_info("TCP_TX_DELAY enabled\n");
3560 }
3561 }
3562 }
3563
3564 /* When set indicates to always queue non-full frames. Later the user clears
3565 * this option and we transmit any pending partial frames in the queue. This is
3566 * meant to be used alongside sendfile() to get properly filled frames when the
3567 * user (for example) must write out headers with a write() call first and then
3568 * use sendfile to send out the data parts.
3569 *
3570 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3571 * TCP_NODELAY.
3572 */
__tcp_sock_set_cork(struct sock * sk,bool on)3573 void __tcp_sock_set_cork(struct sock *sk, bool on)
3574 {
3575 struct tcp_sock *tp = tcp_sk(sk);
3576
3577 if (on) {
3578 tp->nonagle |= TCP_NAGLE_CORK;
3579 } else {
3580 tp->nonagle &= ~TCP_NAGLE_CORK;
3581 if (tp->nonagle & TCP_NAGLE_OFF)
3582 tp->nonagle |= TCP_NAGLE_PUSH;
3583 tcp_push_pending_frames(sk);
3584 }
3585 }
3586
tcp_sock_set_cork(struct sock * sk,bool on)3587 void tcp_sock_set_cork(struct sock *sk, bool on)
3588 {
3589 lock_sock(sk);
3590 __tcp_sock_set_cork(sk, on);
3591 release_sock(sk);
3592 }
3593 EXPORT_SYMBOL(tcp_sock_set_cork);
3594
3595 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3596 * remembered, but it is not activated until cork is cleared.
3597 *
3598 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3599 * even TCP_CORK for currently queued segments.
3600 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3601 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3602 {
3603 if (on) {
3604 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3605 tcp_push_pending_frames(sk);
3606 } else {
3607 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3608 }
3609 }
3610
tcp_sock_set_nodelay(struct sock * sk)3611 void tcp_sock_set_nodelay(struct sock *sk)
3612 {
3613 lock_sock(sk);
3614 __tcp_sock_set_nodelay(sk, true);
3615 release_sock(sk);
3616 }
3617 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3618
__tcp_sock_set_quickack(struct sock * sk,int val)3619 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3620 {
3621 if (!val) {
3622 inet_csk_enter_pingpong_mode(sk);
3623 return;
3624 }
3625
3626 inet_csk_exit_pingpong_mode(sk);
3627 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3628 inet_csk_ack_scheduled(sk)) {
3629 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3630 tcp_cleanup_rbuf(sk, 1);
3631 if (!(val & 1))
3632 inet_csk_enter_pingpong_mode(sk);
3633 }
3634 }
3635
tcp_sock_set_quickack(struct sock * sk,int val)3636 void tcp_sock_set_quickack(struct sock *sk, int val)
3637 {
3638 lock_sock(sk);
3639 __tcp_sock_set_quickack(sk, val);
3640 release_sock(sk);
3641 }
3642 EXPORT_SYMBOL(tcp_sock_set_quickack);
3643
tcp_sock_set_syncnt(struct sock * sk,int val)3644 int tcp_sock_set_syncnt(struct sock *sk, int val)
3645 {
3646 if (val < 1 || val > MAX_TCP_SYNCNT)
3647 return -EINVAL;
3648
3649 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3650 return 0;
3651 }
3652 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3653
tcp_sock_set_user_timeout(struct sock * sk,int val)3654 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3655 {
3656 /* Cap the max time in ms TCP will retry or probe the window
3657 * before giving up and aborting (ETIMEDOUT) a connection.
3658 */
3659 if (val < 0)
3660 return -EINVAL;
3661
3662 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3663 return 0;
3664 }
3665 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3666
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3667 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3668 {
3669 struct tcp_sock *tp = tcp_sk(sk);
3670
3671 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3672 return -EINVAL;
3673
3674 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3675 WRITE_ONCE(tp->keepalive_time, val * HZ);
3676 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3677 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3678 u32 elapsed = keepalive_time_elapsed(tp);
3679
3680 if (tp->keepalive_time > elapsed)
3681 elapsed = tp->keepalive_time - elapsed;
3682 else
3683 elapsed = 0;
3684 tcp_reset_keepalive_timer(sk, elapsed);
3685 }
3686
3687 return 0;
3688 }
3689
tcp_sock_set_keepidle(struct sock * sk,int val)3690 int tcp_sock_set_keepidle(struct sock *sk, int val)
3691 {
3692 int err;
3693
3694 lock_sock(sk);
3695 err = tcp_sock_set_keepidle_locked(sk, val);
3696 release_sock(sk);
3697 return err;
3698 }
3699 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3700
tcp_sock_set_keepintvl(struct sock * sk,int val)3701 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3702 {
3703 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3704 return -EINVAL;
3705
3706 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3707 return 0;
3708 }
3709 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3710
tcp_sock_set_keepcnt(struct sock * sk,int val)3711 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3712 {
3713 if (val < 1 || val > MAX_TCP_KEEPCNT)
3714 return -EINVAL;
3715
3716 /* Paired with READ_ONCE() in keepalive_probes() */
3717 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3718 return 0;
3719 }
3720 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3721
tcp_set_window_clamp(struct sock * sk,int val)3722 int tcp_set_window_clamp(struct sock *sk, int val)
3723 {
3724 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3725 struct tcp_sock *tp = tcp_sk(sk);
3726
3727 if (!val) {
3728 if (sk->sk_state != TCP_CLOSE)
3729 return -EINVAL;
3730 WRITE_ONCE(tp->window_clamp, 0);
3731 return 0;
3732 }
3733
3734 old_window_clamp = tp->window_clamp;
3735 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3736
3737 if (new_window_clamp == old_window_clamp)
3738 return 0;
3739
3740 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3741
3742 /* Need to apply the reserved mem provisioning only
3743 * when shrinking the window clamp.
3744 */
3745 if (new_window_clamp < old_window_clamp) {
3746 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3747 } else {
3748 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3749 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3750 }
3751 return 0;
3752 }
3753
tcp_sock_set_maxseg(struct sock * sk,int val)3754 int tcp_sock_set_maxseg(struct sock *sk, int val)
3755 {
3756 /* Values greater than interface MTU won't take effect. However
3757 * at the point when this call is done we typically don't yet
3758 * know which interface is going to be used
3759 */
3760 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW))
3761 return -EINVAL;
3762
3763 tcp_sk(sk)->rx_opt.user_mss = val;
3764 return 0;
3765 }
3766
3767 /*
3768 * Socket option code for TCP.
3769 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3770 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3771 sockptr_t optval, unsigned int optlen)
3772 {
3773 struct tcp_sock *tp = tcp_sk(sk);
3774 struct inet_connection_sock *icsk = inet_csk(sk);
3775 struct net *net = sock_net(sk);
3776 int val;
3777 int err = 0;
3778
3779 /* These are data/string values, all the others are ints */
3780 switch (optname) {
3781 case TCP_CONGESTION: {
3782 char name[TCP_CA_NAME_MAX];
3783
3784 if (optlen < 1)
3785 return -EINVAL;
3786
3787 val = strncpy_from_sockptr(name, optval,
3788 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3789 if (val < 0)
3790 return -EFAULT;
3791 name[val] = 0;
3792
3793 sockopt_lock_sock(sk);
3794 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3795 sockopt_ns_capable(sock_net(sk)->user_ns,
3796 CAP_NET_ADMIN));
3797 sockopt_release_sock(sk);
3798 return err;
3799 }
3800 case TCP_ULP: {
3801 char name[TCP_ULP_NAME_MAX];
3802
3803 if (optlen < 1)
3804 return -EINVAL;
3805
3806 val = strncpy_from_sockptr(name, optval,
3807 min_t(long, TCP_ULP_NAME_MAX - 1,
3808 optlen));
3809 if (val < 0)
3810 return -EFAULT;
3811 name[val] = 0;
3812
3813 sockopt_lock_sock(sk);
3814 err = tcp_set_ulp(sk, name);
3815 sockopt_release_sock(sk);
3816 return err;
3817 }
3818 case TCP_FASTOPEN_KEY: {
3819 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3820 __u8 *backup_key = NULL;
3821
3822 /* Allow a backup key as well to facilitate key rotation
3823 * First key is the active one.
3824 */
3825 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3826 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3827 return -EINVAL;
3828
3829 if (copy_from_sockptr(key, optval, optlen))
3830 return -EFAULT;
3831
3832 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3833 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3834
3835 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3836 }
3837 default:
3838 /* fallthru */
3839 break;
3840 }
3841
3842 if (optlen < sizeof(int))
3843 return -EINVAL;
3844
3845 if (copy_from_sockptr(&val, optval, sizeof(val)))
3846 return -EFAULT;
3847
3848 /* Handle options that can be set without locking the socket. */
3849 switch (optname) {
3850 case TCP_SYNCNT:
3851 return tcp_sock_set_syncnt(sk, val);
3852 case TCP_USER_TIMEOUT:
3853 return tcp_sock_set_user_timeout(sk, val);
3854 case TCP_KEEPINTVL:
3855 return tcp_sock_set_keepintvl(sk, val);
3856 case TCP_KEEPCNT:
3857 return tcp_sock_set_keepcnt(sk, val);
3858 case TCP_LINGER2:
3859 if (val < 0)
3860 WRITE_ONCE(tp->linger2, -1);
3861 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3862 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3863 else
3864 WRITE_ONCE(tp->linger2, val * HZ);
3865 return 0;
3866 case TCP_DEFER_ACCEPT:
3867 /* Translate value in seconds to number of retransmits */
3868 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3869 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3870 TCP_RTO_MAX / HZ));
3871 return 0;
3872 case TCP_RTO_MAX_MS:
3873 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3874 return -EINVAL;
3875 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3876 return 0;
3877 case TCP_RTO_MIN_US: {
3878 int rto_min = usecs_to_jiffies(val);
3879
3880 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3881 return -EINVAL;
3882 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3883 return 0;
3884 }
3885 case TCP_DELACK_MAX_US: {
3886 int delack_max = usecs_to_jiffies(val);
3887
3888 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3889 return -EINVAL;
3890 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3891 return 0;
3892 }
3893 }
3894
3895 sockopt_lock_sock(sk);
3896
3897 switch (optname) {
3898 case TCP_MAXSEG:
3899 err = tcp_sock_set_maxseg(sk, val);
3900 break;
3901
3902 case TCP_NODELAY:
3903 __tcp_sock_set_nodelay(sk, val);
3904 break;
3905
3906 case TCP_THIN_LINEAR_TIMEOUTS:
3907 if (val < 0 || val > 1)
3908 err = -EINVAL;
3909 else
3910 tp->thin_lto = val;
3911 break;
3912
3913 case TCP_THIN_DUPACK:
3914 if (val < 0 || val > 1)
3915 err = -EINVAL;
3916 break;
3917
3918 case TCP_REPAIR:
3919 if (!tcp_can_repair_sock(sk))
3920 err = -EPERM;
3921 else if (val == TCP_REPAIR_ON) {
3922 tp->repair = 1;
3923 sk->sk_reuse = SK_FORCE_REUSE;
3924 tp->repair_queue = TCP_NO_QUEUE;
3925 } else if (val == TCP_REPAIR_OFF) {
3926 tp->repair = 0;
3927 sk->sk_reuse = SK_NO_REUSE;
3928 tcp_send_window_probe(sk);
3929 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3930 tp->repair = 0;
3931 sk->sk_reuse = SK_NO_REUSE;
3932 } else
3933 err = -EINVAL;
3934
3935 break;
3936
3937 case TCP_REPAIR_QUEUE:
3938 if (!tp->repair)
3939 err = -EPERM;
3940 else if ((unsigned int)val < TCP_QUEUES_NR)
3941 tp->repair_queue = val;
3942 else
3943 err = -EINVAL;
3944 break;
3945
3946 case TCP_QUEUE_SEQ:
3947 if (sk->sk_state != TCP_CLOSE) {
3948 err = -EPERM;
3949 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3950 if (!tcp_rtx_queue_empty(sk))
3951 err = -EPERM;
3952 else
3953 WRITE_ONCE(tp->write_seq, val);
3954 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3955 if (tp->rcv_nxt != tp->copied_seq) {
3956 err = -EPERM;
3957 } else {
3958 WRITE_ONCE(tp->rcv_nxt, val);
3959 WRITE_ONCE(tp->copied_seq, val);
3960 }
3961 } else {
3962 err = -EINVAL;
3963 }
3964 break;
3965
3966 case TCP_REPAIR_OPTIONS:
3967 if (!tp->repair)
3968 err = -EINVAL;
3969 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3970 err = tcp_repair_options_est(sk, optval, optlen);
3971 else
3972 err = -EPERM;
3973 break;
3974
3975 case TCP_CORK:
3976 __tcp_sock_set_cork(sk, val);
3977 break;
3978
3979 case TCP_KEEPIDLE:
3980 err = tcp_sock_set_keepidle_locked(sk, val);
3981 break;
3982 case TCP_SAVE_SYN:
3983 /* 0: disable, 1: enable, 2: start from ether_header */
3984 if (val < 0 || val > 2)
3985 err = -EINVAL;
3986 else
3987 tp->save_syn = val;
3988 break;
3989
3990 case TCP_WINDOW_CLAMP:
3991 err = tcp_set_window_clamp(sk, val);
3992 break;
3993
3994 case TCP_QUICKACK:
3995 __tcp_sock_set_quickack(sk, val);
3996 break;
3997
3998 case TCP_AO_REPAIR:
3999 if (!tcp_can_repair_sock(sk)) {
4000 err = -EPERM;
4001 break;
4002 }
4003 err = tcp_ao_set_repair(sk, optval, optlen);
4004 break;
4005 #ifdef CONFIG_TCP_AO
4006 case TCP_AO_ADD_KEY:
4007 case TCP_AO_DEL_KEY:
4008 case TCP_AO_INFO: {
4009 /* If this is the first TCP-AO setsockopt() on the socket,
4010 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4011 * in any state.
4012 */
4013 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4014 goto ao_parse;
4015 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4016 lockdep_sock_is_held(sk)))
4017 goto ao_parse;
4018 if (tp->repair)
4019 goto ao_parse;
4020 err = -EISCONN;
4021 break;
4022 ao_parse:
4023 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4024 break;
4025 }
4026 #endif
4027 #ifdef CONFIG_TCP_MD5SIG
4028 case TCP_MD5SIG:
4029 case TCP_MD5SIG_EXT:
4030 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4031 break;
4032 #endif
4033 case TCP_FASTOPEN:
4034 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4035 TCPF_LISTEN))) {
4036 tcp_fastopen_init_key_once(net);
4037
4038 fastopen_queue_tune(sk, val);
4039 } else {
4040 err = -EINVAL;
4041 }
4042 break;
4043 case TCP_FASTOPEN_CONNECT:
4044 if (val > 1 || val < 0) {
4045 err = -EINVAL;
4046 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4047 TFO_CLIENT_ENABLE) {
4048 if (sk->sk_state == TCP_CLOSE)
4049 tp->fastopen_connect = val;
4050 else
4051 err = -EINVAL;
4052 } else {
4053 err = -EOPNOTSUPP;
4054 }
4055 break;
4056 case TCP_FASTOPEN_NO_COOKIE:
4057 if (val > 1 || val < 0)
4058 err = -EINVAL;
4059 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4060 err = -EINVAL;
4061 else
4062 tp->fastopen_no_cookie = val;
4063 break;
4064 case TCP_TIMESTAMP:
4065 if (!tp->repair) {
4066 err = -EPERM;
4067 break;
4068 }
4069 /* val is an opaque field,
4070 * and low order bit contains usec_ts enable bit.
4071 * Its a best effort, and we do not care if user makes an error.
4072 */
4073 tp->tcp_usec_ts = val & 1;
4074 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4075 break;
4076 case TCP_REPAIR_WINDOW:
4077 err = tcp_repair_set_window(tp, optval, optlen);
4078 break;
4079 case TCP_NOTSENT_LOWAT:
4080 WRITE_ONCE(tp->notsent_lowat, val);
4081 sk->sk_write_space(sk);
4082 break;
4083 case TCP_INQ:
4084 if (val > 1 || val < 0)
4085 err = -EINVAL;
4086 else
4087 tp->recvmsg_inq = val;
4088 break;
4089 case TCP_TX_DELAY:
4090 if (val)
4091 tcp_enable_tx_delay();
4092 WRITE_ONCE(tp->tcp_tx_delay, val);
4093 break;
4094 default:
4095 err = -ENOPROTOOPT;
4096 break;
4097 }
4098
4099 sockopt_release_sock(sk);
4100 return err;
4101 }
4102
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4103 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4104 unsigned int optlen)
4105 {
4106 const struct inet_connection_sock *icsk = inet_csk(sk);
4107
4108 if (level != SOL_TCP)
4109 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4110 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4111 optval, optlen);
4112 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4113 }
4114 EXPORT_IPV6_MOD(tcp_setsockopt);
4115
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4116 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4117 struct tcp_info *info)
4118 {
4119 u64 stats[__TCP_CHRONO_MAX], total = 0;
4120 enum tcp_chrono i;
4121
4122 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4123 stats[i] = tp->chrono_stat[i - 1];
4124 if (i == tp->chrono_type)
4125 stats[i] += tcp_jiffies32 - tp->chrono_start;
4126 stats[i] *= USEC_PER_SEC / HZ;
4127 total += stats[i];
4128 }
4129
4130 info->tcpi_busy_time = total;
4131 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4132 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4133 }
4134
4135 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4136 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4137 {
4138 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4139 const struct inet_connection_sock *icsk = inet_csk(sk);
4140 unsigned long rate;
4141 u32 now;
4142 u64 rate64;
4143 bool slow;
4144
4145 memset(info, 0, sizeof(*info));
4146 if (sk->sk_type != SOCK_STREAM)
4147 return;
4148
4149 info->tcpi_state = inet_sk_state_load(sk);
4150
4151 /* Report meaningful fields for all TCP states, including listeners */
4152 rate = READ_ONCE(sk->sk_pacing_rate);
4153 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4154 info->tcpi_pacing_rate = rate64;
4155
4156 rate = READ_ONCE(sk->sk_max_pacing_rate);
4157 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4158 info->tcpi_max_pacing_rate = rate64;
4159
4160 info->tcpi_reordering = tp->reordering;
4161 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4162
4163 if (info->tcpi_state == TCP_LISTEN) {
4164 /* listeners aliased fields :
4165 * tcpi_unacked -> Number of children ready for accept()
4166 * tcpi_sacked -> max backlog
4167 */
4168 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4169 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4170 return;
4171 }
4172
4173 slow = lock_sock_fast(sk);
4174
4175 info->tcpi_ca_state = icsk->icsk_ca_state;
4176 info->tcpi_retransmits = icsk->icsk_retransmits;
4177 info->tcpi_probes = icsk->icsk_probes_out;
4178 info->tcpi_backoff = icsk->icsk_backoff;
4179
4180 if (tp->rx_opt.tstamp_ok)
4181 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4182 if (tcp_is_sack(tp))
4183 info->tcpi_options |= TCPI_OPT_SACK;
4184 if (tp->rx_opt.wscale_ok) {
4185 info->tcpi_options |= TCPI_OPT_WSCALE;
4186 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4187 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4188 }
4189
4190 if (tcp_ecn_mode_any(tp))
4191 info->tcpi_options |= TCPI_OPT_ECN;
4192 if (tp->ecn_flags & TCP_ECN_SEEN)
4193 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4194 if (tp->syn_data_acked)
4195 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4196 if (tp->tcp_usec_ts)
4197 info->tcpi_options |= TCPI_OPT_USEC_TS;
4198 if (tp->syn_fastopen_child)
4199 info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4200
4201 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4202 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4203 tcp_delack_max(sk)));
4204 info->tcpi_snd_mss = tp->mss_cache;
4205 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4206
4207 info->tcpi_unacked = tp->packets_out;
4208 info->tcpi_sacked = tp->sacked_out;
4209
4210 info->tcpi_lost = tp->lost_out;
4211 info->tcpi_retrans = tp->retrans_out;
4212
4213 now = tcp_jiffies32;
4214 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4215 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4216 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4217
4218 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4219 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4220 info->tcpi_rtt = tp->srtt_us >> 3;
4221 info->tcpi_rttvar = tp->mdev_us >> 2;
4222 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4223 info->tcpi_advmss = tp->advmss;
4224
4225 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4226 info->tcpi_rcv_space = tp->rcvq_space.space;
4227
4228 info->tcpi_total_retrans = tp->total_retrans;
4229
4230 info->tcpi_bytes_acked = tp->bytes_acked;
4231 info->tcpi_bytes_received = tp->bytes_received;
4232 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4233 tcp_get_info_chrono_stats(tp, info);
4234
4235 info->tcpi_segs_out = tp->segs_out;
4236
4237 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4238 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4239 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4240
4241 info->tcpi_min_rtt = tcp_min_rtt(tp);
4242 info->tcpi_data_segs_out = tp->data_segs_out;
4243
4244 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4245 rate64 = tcp_compute_delivery_rate(tp);
4246 if (rate64)
4247 info->tcpi_delivery_rate = rate64;
4248 info->tcpi_delivered = tp->delivered;
4249 info->tcpi_delivered_ce = tp->delivered_ce;
4250 info->tcpi_bytes_sent = tp->bytes_sent;
4251 info->tcpi_bytes_retrans = tp->bytes_retrans;
4252 info->tcpi_dsack_dups = tp->dsack_dups;
4253 info->tcpi_reord_seen = tp->reord_seen;
4254 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4255 info->tcpi_snd_wnd = tp->snd_wnd;
4256 info->tcpi_rcv_wnd = tp->rcv_wnd;
4257 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4258 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4259
4260 info->tcpi_total_rto = tp->total_rto;
4261 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4262 info->tcpi_total_rto_time = tp->total_rto_time;
4263 if (tp->rto_stamp)
4264 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4265
4266 unlock_sock_fast(sk, slow);
4267 }
4268 EXPORT_SYMBOL_GPL(tcp_get_info);
4269
tcp_opt_stats_get_size(void)4270 static size_t tcp_opt_stats_get_size(void)
4271 {
4272 return
4273 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4274 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4275 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4276 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4277 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4278 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4279 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4280 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4281 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4282 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4283 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4284 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4285 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4286 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4287 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4288 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4289 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4290 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4291 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4292 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4293 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4294 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4295 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4296 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4297 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4298 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4299 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4300 0;
4301 }
4302
4303 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4304 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4305 {
4306 if (skb->protocol == htons(ETH_P_IP))
4307 return ip_hdr(skb)->ttl;
4308 else if (skb->protocol == htons(ETH_P_IPV6))
4309 return ipv6_hdr(skb)->hop_limit;
4310 else
4311 return 0;
4312 }
4313
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4314 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4315 const struct sk_buff *orig_skb,
4316 const struct sk_buff *ack_skb)
4317 {
4318 const struct tcp_sock *tp = tcp_sk(sk);
4319 struct sk_buff *stats;
4320 struct tcp_info info;
4321 unsigned long rate;
4322 u64 rate64;
4323
4324 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4325 if (!stats)
4326 return NULL;
4327
4328 tcp_get_info_chrono_stats(tp, &info);
4329 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4330 info.tcpi_busy_time, TCP_NLA_PAD);
4331 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4332 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4333 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4334 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4335 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4336 tp->data_segs_out, TCP_NLA_PAD);
4337 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4338 tp->total_retrans, TCP_NLA_PAD);
4339
4340 rate = READ_ONCE(sk->sk_pacing_rate);
4341 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4342 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4343
4344 rate64 = tcp_compute_delivery_rate(tp);
4345 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4346
4347 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4348 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4349 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4350
4351 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4352 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4353 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4354 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4355 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4356
4357 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4358 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4359
4360 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4361 TCP_NLA_PAD);
4362 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4363 TCP_NLA_PAD);
4364 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4365 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4366 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4367 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4368 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4369 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4370 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4371 TCP_NLA_PAD);
4372 if (ack_skb)
4373 nla_put_u8(stats, TCP_NLA_TTL,
4374 tcp_skb_ttl_or_hop_limit(ack_skb));
4375
4376 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4377 return stats;
4378 }
4379
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4380 int do_tcp_getsockopt(struct sock *sk, int level,
4381 int optname, sockptr_t optval, sockptr_t optlen)
4382 {
4383 struct inet_connection_sock *icsk = inet_csk(sk);
4384 struct tcp_sock *tp = tcp_sk(sk);
4385 struct net *net = sock_net(sk);
4386 int val, len;
4387
4388 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4389 return -EFAULT;
4390
4391 if (len < 0)
4392 return -EINVAL;
4393
4394 len = min_t(unsigned int, len, sizeof(int));
4395
4396 switch (optname) {
4397 case TCP_MAXSEG:
4398 val = tp->mss_cache;
4399 if (tp->rx_opt.user_mss &&
4400 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4401 val = tp->rx_opt.user_mss;
4402 if (tp->repair)
4403 val = tp->rx_opt.mss_clamp;
4404 break;
4405 case TCP_NODELAY:
4406 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4407 break;
4408 case TCP_CORK:
4409 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4410 break;
4411 case TCP_KEEPIDLE:
4412 val = keepalive_time_when(tp) / HZ;
4413 break;
4414 case TCP_KEEPINTVL:
4415 val = keepalive_intvl_when(tp) / HZ;
4416 break;
4417 case TCP_KEEPCNT:
4418 val = keepalive_probes(tp);
4419 break;
4420 case TCP_SYNCNT:
4421 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4422 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4423 break;
4424 case TCP_LINGER2:
4425 val = READ_ONCE(tp->linger2);
4426 if (val >= 0)
4427 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4428 break;
4429 case TCP_DEFER_ACCEPT:
4430 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4431 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4432 TCP_RTO_MAX / HZ);
4433 break;
4434 case TCP_WINDOW_CLAMP:
4435 val = READ_ONCE(tp->window_clamp);
4436 break;
4437 case TCP_INFO: {
4438 struct tcp_info info;
4439
4440 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4441 return -EFAULT;
4442
4443 tcp_get_info(sk, &info);
4444
4445 len = min_t(unsigned int, len, sizeof(info));
4446 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4447 return -EFAULT;
4448 if (copy_to_sockptr(optval, &info, len))
4449 return -EFAULT;
4450 return 0;
4451 }
4452 case TCP_CC_INFO: {
4453 const struct tcp_congestion_ops *ca_ops;
4454 union tcp_cc_info info;
4455 size_t sz = 0;
4456 int attr;
4457
4458 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4459 return -EFAULT;
4460
4461 ca_ops = icsk->icsk_ca_ops;
4462 if (ca_ops && ca_ops->get_info)
4463 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4464
4465 len = min_t(unsigned int, len, sz);
4466 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4467 return -EFAULT;
4468 if (copy_to_sockptr(optval, &info, len))
4469 return -EFAULT;
4470 return 0;
4471 }
4472 case TCP_QUICKACK:
4473 val = !inet_csk_in_pingpong_mode(sk);
4474 break;
4475
4476 case TCP_CONGESTION:
4477 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4478 return -EFAULT;
4479 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4480 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4481 return -EFAULT;
4482 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4483 return -EFAULT;
4484 return 0;
4485
4486 case TCP_ULP:
4487 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4488 return -EFAULT;
4489 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4490 if (!icsk->icsk_ulp_ops) {
4491 len = 0;
4492 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4493 return -EFAULT;
4494 return 0;
4495 }
4496 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4497 return -EFAULT;
4498 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4499 return -EFAULT;
4500 return 0;
4501
4502 case TCP_FASTOPEN_KEY: {
4503 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4504 unsigned int key_len;
4505
4506 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4507 return -EFAULT;
4508
4509 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4510 TCP_FASTOPEN_KEY_LENGTH;
4511 len = min_t(unsigned int, len, key_len);
4512 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4513 return -EFAULT;
4514 if (copy_to_sockptr(optval, key, len))
4515 return -EFAULT;
4516 return 0;
4517 }
4518 case TCP_THIN_LINEAR_TIMEOUTS:
4519 val = tp->thin_lto;
4520 break;
4521
4522 case TCP_THIN_DUPACK:
4523 val = 0;
4524 break;
4525
4526 case TCP_REPAIR:
4527 val = tp->repair;
4528 break;
4529
4530 case TCP_REPAIR_QUEUE:
4531 if (tp->repair)
4532 val = tp->repair_queue;
4533 else
4534 return -EINVAL;
4535 break;
4536
4537 case TCP_REPAIR_WINDOW: {
4538 struct tcp_repair_window opt;
4539
4540 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4541 return -EFAULT;
4542
4543 if (len != sizeof(opt))
4544 return -EINVAL;
4545
4546 if (!tp->repair)
4547 return -EPERM;
4548
4549 opt.snd_wl1 = tp->snd_wl1;
4550 opt.snd_wnd = tp->snd_wnd;
4551 opt.max_window = tp->max_window;
4552 opt.rcv_wnd = tp->rcv_wnd;
4553 opt.rcv_wup = tp->rcv_wup;
4554
4555 if (copy_to_sockptr(optval, &opt, len))
4556 return -EFAULT;
4557 return 0;
4558 }
4559 case TCP_QUEUE_SEQ:
4560 if (tp->repair_queue == TCP_SEND_QUEUE)
4561 val = tp->write_seq;
4562 else if (tp->repair_queue == TCP_RECV_QUEUE)
4563 val = tp->rcv_nxt;
4564 else
4565 return -EINVAL;
4566 break;
4567
4568 case TCP_USER_TIMEOUT:
4569 val = READ_ONCE(icsk->icsk_user_timeout);
4570 break;
4571
4572 case TCP_FASTOPEN:
4573 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4574 break;
4575
4576 case TCP_FASTOPEN_CONNECT:
4577 val = tp->fastopen_connect;
4578 break;
4579
4580 case TCP_FASTOPEN_NO_COOKIE:
4581 val = tp->fastopen_no_cookie;
4582 break;
4583
4584 case TCP_TX_DELAY:
4585 val = READ_ONCE(tp->tcp_tx_delay);
4586 break;
4587
4588 case TCP_TIMESTAMP:
4589 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4590 if (tp->tcp_usec_ts)
4591 val |= 1;
4592 else
4593 val &= ~1;
4594 break;
4595 case TCP_NOTSENT_LOWAT:
4596 val = READ_ONCE(tp->notsent_lowat);
4597 break;
4598 case TCP_INQ:
4599 val = tp->recvmsg_inq;
4600 break;
4601 case TCP_SAVE_SYN:
4602 val = tp->save_syn;
4603 break;
4604 case TCP_SAVED_SYN: {
4605 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4606 return -EFAULT;
4607
4608 sockopt_lock_sock(sk);
4609 if (tp->saved_syn) {
4610 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4611 len = tcp_saved_syn_len(tp->saved_syn);
4612 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4613 sockopt_release_sock(sk);
4614 return -EFAULT;
4615 }
4616 sockopt_release_sock(sk);
4617 return -EINVAL;
4618 }
4619 len = tcp_saved_syn_len(tp->saved_syn);
4620 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4621 sockopt_release_sock(sk);
4622 return -EFAULT;
4623 }
4624 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4625 sockopt_release_sock(sk);
4626 return -EFAULT;
4627 }
4628 tcp_saved_syn_free(tp);
4629 sockopt_release_sock(sk);
4630 } else {
4631 sockopt_release_sock(sk);
4632 len = 0;
4633 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4634 return -EFAULT;
4635 }
4636 return 0;
4637 }
4638 #ifdef CONFIG_MMU
4639 case TCP_ZEROCOPY_RECEIVE: {
4640 struct scm_timestamping_internal tss;
4641 struct tcp_zerocopy_receive zc = {};
4642 int err;
4643
4644 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4645 return -EFAULT;
4646 if (len < 0 ||
4647 len < offsetofend(struct tcp_zerocopy_receive, length))
4648 return -EINVAL;
4649 if (unlikely(len > sizeof(zc))) {
4650 err = check_zeroed_sockptr(optval, sizeof(zc),
4651 len - sizeof(zc));
4652 if (err < 1)
4653 return err == 0 ? -EINVAL : err;
4654 len = sizeof(zc);
4655 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4656 return -EFAULT;
4657 }
4658 if (copy_from_sockptr(&zc, optval, len))
4659 return -EFAULT;
4660 if (zc.reserved)
4661 return -EINVAL;
4662 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4663 return -EINVAL;
4664 sockopt_lock_sock(sk);
4665 err = tcp_zerocopy_receive(sk, &zc, &tss);
4666 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4667 &zc, &len, err);
4668 sockopt_release_sock(sk);
4669 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4670 goto zerocopy_rcv_cmsg;
4671 switch (len) {
4672 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4673 goto zerocopy_rcv_cmsg;
4674 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4675 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4676 case offsetofend(struct tcp_zerocopy_receive, flags):
4677 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4678 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4679 case offsetofend(struct tcp_zerocopy_receive, err):
4680 goto zerocopy_rcv_sk_err;
4681 case offsetofend(struct tcp_zerocopy_receive, inq):
4682 goto zerocopy_rcv_inq;
4683 case offsetofend(struct tcp_zerocopy_receive, length):
4684 default:
4685 goto zerocopy_rcv_out;
4686 }
4687 zerocopy_rcv_cmsg:
4688 if (zc.msg_flags & TCP_CMSG_TS)
4689 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4690 else
4691 zc.msg_flags = 0;
4692 zerocopy_rcv_sk_err:
4693 if (!err)
4694 zc.err = sock_error(sk);
4695 zerocopy_rcv_inq:
4696 zc.inq = tcp_inq_hint(sk);
4697 zerocopy_rcv_out:
4698 if (!err && copy_to_sockptr(optval, &zc, len))
4699 err = -EFAULT;
4700 return err;
4701 }
4702 #endif
4703 case TCP_AO_REPAIR:
4704 if (!tcp_can_repair_sock(sk))
4705 return -EPERM;
4706 return tcp_ao_get_repair(sk, optval, optlen);
4707 case TCP_AO_GET_KEYS:
4708 case TCP_AO_INFO: {
4709 int err;
4710
4711 sockopt_lock_sock(sk);
4712 if (optname == TCP_AO_GET_KEYS)
4713 err = tcp_ao_get_mkts(sk, optval, optlen);
4714 else
4715 err = tcp_ao_get_sock_info(sk, optval, optlen);
4716 sockopt_release_sock(sk);
4717
4718 return err;
4719 }
4720 case TCP_IS_MPTCP:
4721 val = 0;
4722 break;
4723 case TCP_RTO_MAX_MS:
4724 val = jiffies_to_msecs(tcp_rto_max(sk));
4725 break;
4726 case TCP_RTO_MIN_US:
4727 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4728 break;
4729 case TCP_DELACK_MAX_US:
4730 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4731 break;
4732 default:
4733 return -ENOPROTOOPT;
4734 }
4735
4736 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4737 return -EFAULT;
4738 if (copy_to_sockptr(optval, &val, len))
4739 return -EFAULT;
4740 return 0;
4741 }
4742
tcp_bpf_bypass_getsockopt(int level,int optname)4743 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4744 {
4745 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4746 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4747 */
4748 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4749 return true;
4750
4751 return false;
4752 }
4753 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4754
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4755 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4756 int __user *optlen)
4757 {
4758 struct inet_connection_sock *icsk = inet_csk(sk);
4759
4760 if (level != SOL_TCP)
4761 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4762 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4763 optval, optlen);
4764 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4765 USER_SOCKPTR(optlen));
4766 }
4767 EXPORT_IPV6_MOD(tcp_getsockopt);
4768
4769 #ifdef CONFIG_TCP_MD5SIG
4770 int tcp_md5_sigpool_id = -1;
4771 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4772
tcp_md5_alloc_sigpool(void)4773 int tcp_md5_alloc_sigpool(void)
4774 {
4775 size_t scratch_size;
4776 int ret;
4777
4778 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4779 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4780 if (ret >= 0) {
4781 /* As long as any md5 sigpool was allocated, the return
4782 * id would stay the same. Re-write the id only for the case
4783 * when previously all MD5 keys were deleted and this call
4784 * allocates the first MD5 key, which may return a different
4785 * sigpool id than was used previously.
4786 */
4787 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4788 return 0;
4789 }
4790 return ret;
4791 }
4792
tcp_md5_release_sigpool(void)4793 void tcp_md5_release_sigpool(void)
4794 {
4795 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4796 }
4797
tcp_md5_add_sigpool(void)4798 void tcp_md5_add_sigpool(void)
4799 {
4800 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4801 }
4802
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4803 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4804 const struct tcp_md5sig_key *key)
4805 {
4806 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4807 struct scatterlist sg;
4808
4809 sg_init_one(&sg, key->key, keylen);
4810 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4811
4812 /* We use data_race() because tcp_md5_do_add() might change
4813 * key->key under us
4814 */
4815 return data_race(crypto_ahash_update(hp->req));
4816 }
4817 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4818
4819 /* Called with rcu_read_lock() */
4820 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4821 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4822 const void *saddr, const void *daddr,
4823 int family, int l3index, const __u8 *hash_location)
4824 {
4825 /* This gets called for each TCP segment that has TCP-MD5 option.
4826 * We have 3 drop cases:
4827 * o No MD5 hash and one expected.
4828 * o MD5 hash and we're not expecting one.
4829 * o MD5 hash and its wrong.
4830 */
4831 const struct tcp_sock *tp = tcp_sk(sk);
4832 struct tcp_md5sig_key *key;
4833 u8 newhash[16];
4834 int genhash;
4835
4836 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4837
4838 if (!key && hash_location) {
4839 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4840 trace_tcp_hash_md5_unexpected(sk, skb);
4841 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4842 }
4843
4844 /* Check the signature.
4845 * To support dual stack listeners, we need to handle
4846 * IPv4-mapped case.
4847 */
4848 if (family == AF_INET)
4849 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4850 else
4851 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4852 NULL, skb);
4853 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4854 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4855 trace_tcp_hash_md5_mismatch(sk, skb);
4856 return SKB_DROP_REASON_TCP_MD5FAILURE;
4857 }
4858 return SKB_NOT_DROPPED_YET;
4859 }
4860 #else
4861 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4862 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4863 const void *saddr, const void *daddr,
4864 int family, int l3index, const __u8 *hash_location)
4865 {
4866 return SKB_NOT_DROPPED_YET;
4867 }
4868
4869 #endif
4870
4871 /* Called with rcu_read_lock() */
4872 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4873 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4874 const struct sk_buff *skb,
4875 const void *saddr, const void *daddr,
4876 int family, int dif, int sdif)
4877 {
4878 const struct tcphdr *th = tcp_hdr(skb);
4879 const struct tcp_ao_hdr *aoh;
4880 const __u8 *md5_location;
4881 int l3index;
4882
4883 /* Invalid option or two times meet any of auth options */
4884 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4885 trace_tcp_hash_bad_header(sk, skb);
4886 return SKB_DROP_REASON_TCP_AUTH_HDR;
4887 }
4888
4889 if (req) {
4890 if (tcp_rsk_used_ao(req) != !!aoh) {
4891 u8 keyid, rnext, maclen;
4892
4893 if (aoh) {
4894 keyid = aoh->keyid;
4895 rnext = aoh->rnext_keyid;
4896 maclen = tcp_ao_hdr_maclen(aoh);
4897 } else {
4898 keyid = rnext = maclen = 0;
4899 }
4900
4901 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4902 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4903 return SKB_DROP_REASON_TCP_AOFAILURE;
4904 }
4905 }
4906
4907 /* sdif set, means packet ingressed via a device
4908 * in an L3 domain and dif is set to the l3mdev
4909 */
4910 l3index = sdif ? dif : 0;
4911
4912 /* Fast path: unsigned segments */
4913 if (likely(!md5_location && !aoh)) {
4914 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4915 * for the remote peer. On TCP-AO established connection
4916 * the last key is impossible to remove, so there's
4917 * always at least one current_key.
4918 */
4919 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4920 trace_tcp_hash_ao_required(sk, skb);
4921 return SKB_DROP_REASON_TCP_AONOTFOUND;
4922 }
4923 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4924 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4925 trace_tcp_hash_md5_required(sk, skb);
4926 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4927 }
4928 return SKB_NOT_DROPPED_YET;
4929 }
4930
4931 if (aoh)
4932 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4933
4934 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4935 l3index, md5_location);
4936 }
4937 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4938
tcp_done(struct sock * sk)4939 void tcp_done(struct sock *sk)
4940 {
4941 struct request_sock *req;
4942
4943 /* We might be called with a new socket, after
4944 * inet_csk_prepare_forced_close() has been called
4945 * so we can not use lockdep_sock_is_held(sk)
4946 */
4947 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4948
4949 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4950 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4951
4952 tcp_set_state(sk, TCP_CLOSE);
4953 tcp_clear_xmit_timers(sk);
4954 if (req)
4955 reqsk_fastopen_remove(sk, req, false);
4956
4957 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4958
4959 if (!sock_flag(sk, SOCK_DEAD))
4960 sk->sk_state_change(sk);
4961 else
4962 inet_csk_destroy_sock(sk);
4963 }
4964 EXPORT_SYMBOL_GPL(tcp_done);
4965
tcp_abort(struct sock * sk,int err)4966 int tcp_abort(struct sock *sk, int err)
4967 {
4968 int state = inet_sk_state_load(sk);
4969
4970 if (state == TCP_NEW_SYN_RECV) {
4971 struct request_sock *req = inet_reqsk(sk);
4972
4973 local_bh_disable();
4974 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4975 local_bh_enable();
4976 return 0;
4977 }
4978 if (state == TCP_TIME_WAIT) {
4979 struct inet_timewait_sock *tw = inet_twsk(sk);
4980
4981 refcount_inc(&tw->tw_refcnt);
4982 local_bh_disable();
4983 inet_twsk_deschedule_put(tw);
4984 local_bh_enable();
4985 return 0;
4986 }
4987
4988 /* BPF context ensures sock locking. */
4989 if (!has_current_bpf_ctx())
4990 /* Don't race with userspace socket closes such as tcp_close. */
4991 lock_sock(sk);
4992
4993 /* Avoid closing the same socket twice. */
4994 if (sk->sk_state == TCP_CLOSE) {
4995 if (!has_current_bpf_ctx())
4996 release_sock(sk);
4997 return -ENOENT;
4998 }
4999
5000 if (sk->sk_state == TCP_LISTEN) {
5001 tcp_set_state(sk, TCP_CLOSE);
5002 inet_csk_listen_stop(sk);
5003 }
5004
5005 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
5006 local_bh_disable();
5007 bh_lock_sock(sk);
5008
5009 if (tcp_need_reset(sk->sk_state))
5010 tcp_send_active_reset(sk, GFP_ATOMIC,
5011 SK_RST_REASON_TCP_STATE);
5012 tcp_done_with_error(sk, err);
5013
5014 bh_unlock_sock(sk);
5015 local_bh_enable();
5016 if (!has_current_bpf_ctx())
5017 release_sock(sk);
5018 return 0;
5019 }
5020 EXPORT_SYMBOL_GPL(tcp_abort);
5021
5022 extern struct tcp_congestion_ops tcp_reno;
5023
5024 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)5025 static int __init set_thash_entries(char *str)
5026 {
5027 ssize_t ret;
5028
5029 if (!str)
5030 return 0;
5031
5032 ret = kstrtoul(str, 0, &thash_entries);
5033 if (ret)
5034 return 0;
5035
5036 return 1;
5037 }
5038 __setup("thash_entries=", set_thash_entries);
5039
tcp_init_mem(void)5040 static void __init tcp_init_mem(void)
5041 {
5042 unsigned long limit = nr_free_buffer_pages() / 16;
5043
5044 limit = max(limit, 128UL);
5045 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
5046 sysctl_tcp_mem[1] = limit; /* 6.25 % */
5047 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
5048 }
5049
tcp_struct_check(void)5050 static void __init tcp_struct_check(void)
5051 {
5052 /* TX read-mostly hotpath cache lines */
5053 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5054 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5055 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5056 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5057 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5058 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5059 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 32);
5060
5061 /* TXRX read-mostly hotpath cache lines */
5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5069 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5070 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5071
5072 /* RX read-mostly hotpath cache lines */
5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5074 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5075 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5076 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5084 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5085 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5086 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5087 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5088 #else
5089 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5090 #endif
5091
5092 /* TX read-write hotpath cache lines */
5093 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5094 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5095 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5096 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5097 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5098 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5106 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5107 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5108 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5109
5110 /* TXRX read-write hotpath cache lines */
5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5113 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5114 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5115 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5116 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5117 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5118 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5119 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5120 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5121 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5122 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5123 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5124 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5125 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5126
5127 /* 32bit arches with 8byte alignment on u64 fields might need padding
5128 * before tcp_clock_cache.
5129 */
5130 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5131
5132 /* RX read-write hotpath cache lines */
5133 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5134 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5135 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5136 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5137 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5138 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5139 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5140 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5141 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5142 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5143 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5144 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5145 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5146 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5147 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5148 }
5149
tcp_init(void)5150 void __init tcp_init(void)
5151 {
5152 int max_rshare, max_wshare, cnt;
5153 unsigned long limit;
5154 unsigned int i;
5155
5156 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5157 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5158 sizeof_field(struct sk_buff, cb));
5159
5160 tcp_struct_check();
5161
5162 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5163
5164 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5165 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5166
5167 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5168 thash_entries, 21, /* one slot per 2 MB*/
5169 0, 64 * 1024);
5170 tcp_hashinfo.bind_bucket_cachep =
5171 kmem_cache_create("tcp_bind_bucket",
5172 sizeof(struct inet_bind_bucket), 0,
5173 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5174 SLAB_ACCOUNT,
5175 NULL);
5176 tcp_hashinfo.bind2_bucket_cachep =
5177 kmem_cache_create("tcp_bind2_bucket",
5178 sizeof(struct inet_bind2_bucket), 0,
5179 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5180 SLAB_ACCOUNT,
5181 NULL);
5182
5183 /* Size and allocate the main established and bind bucket
5184 * hash tables.
5185 *
5186 * The methodology is similar to that of the buffer cache.
5187 */
5188 tcp_hashinfo.ehash =
5189 alloc_large_system_hash("TCP established",
5190 sizeof(struct inet_ehash_bucket),
5191 thash_entries,
5192 17, /* one slot per 128 KB of memory */
5193 0,
5194 NULL,
5195 &tcp_hashinfo.ehash_mask,
5196 0,
5197 thash_entries ? 0 : 512 * 1024);
5198 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5199 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5200
5201 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5202 panic("TCP: failed to alloc ehash_locks");
5203 tcp_hashinfo.bhash =
5204 alloc_large_system_hash("TCP bind",
5205 2 * sizeof(struct inet_bind_hashbucket),
5206 tcp_hashinfo.ehash_mask + 1,
5207 17, /* one slot per 128 KB of memory */
5208 0,
5209 &tcp_hashinfo.bhash_size,
5210 NULL,
5211 0,
5212 64 * 1024);
5213 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5214 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5215 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5216 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5217 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5218 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5219 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5220 }
5221
5222 tcp_hashinfo.pernet = false;
5223
5224 cnt = tcp_hashinfo.ehash_mask + 1;
5225 sysctl_tcp_max_orphans = cnt / 2;
5226
5227 tcp_init_mem();
5228 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5229 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5230 max_wshare = min(4UL*1024*1024, limit);
5231 max_rshare = min(32UL*1024*1024, limit);
5232
5233 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5234 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5235 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5236
5237 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5238 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5239 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5240
5241 pr_info("Hash tables configured (established %u bind %u)\n",
5242 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5243
5244 tcp_v4_init();
5245 tcp_metrics_init();
5246 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5247 tcp_tsq_work_init();
5248 mptcp_init();
5249 }
5250