xref: /linux/net/ipv4/tcp.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  *
21  * Fixes:
22  *		Alan Cox	:	Numerous verify_area() calls
23  *		Alan Cox	:	Set the ACK bit on a reset
24  *		Alan Cox	:	Stopped it crashing if it closed while
25  *					sk->inuse=1 and was trying to connect
26  *					(tcp_err()).
27  *		Alan Cox	:	All icmp error handling was broken
28  *					pointers passed where wrong and the
29  *					socket was looked up backwards. Nobody
30  *					tested any icmp error code obviously.
31  *		Alan Cox	:	tcp_err() now handled properly. It
32  *					wakes people on errors. poll
33  *					behaves and the icmp error race
34  *					has gone by moving it into sock.c
35  *		Alan Cox	:	tcp_send_reset() fixed to work for
36  *					everything not just packets for
37  *					unknown sockets.
38  *		Alan Cox	:	tcp option processing.
39  *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40  *					syn rule wrong]
41  *		Herp Rosmanith  :	More reset fixes
42  *		Alan Cox	:	No longer acks invalid rst frames.
43  *					Acking any kind of RST is right out.
44  *		Alan Cox	:	Sets an ignore me flag on an rst
45  *					receive otherwise odd bits of prattle
46  *					escape still
47  *		Alan Cox	:	Fixed another acking RST frame bug.
48  *					Should stop LAN workplace lockups.
49  *		Alan Cox	: 	Some tidyups using the new skb list
50  *					facilities
51  *		Alan Cox	:	sk->keepopen now seems to work
52  *		Alan Cox	:	Pulls options out correctly on accepts
53  *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54  *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55  *					bit to skb ops.
56  *		Alan Cox	:	Tidied tcp_data to avoid a potential
57  *					nasty.
58  *		Alan Cox	:	Added some better commenting, as the
59  *					tcp is hard to follow
60  *		Alan Cox	:	Removed incorrect check for 20 * psh
61  *	Michael O'Reilly	:	ack < copied bug fix.
62  *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63  *		Alan Cox	:	FIN with no memory -> CRASH
64  *		Alan Cox	:	Added socket option proto entries.
65  *					Also added awareness of them to accept.
66  *		Alan Cox	:	Added TCP options (SOL_TCP)
67  *		Alan Cox	:	Switched wakeup calls to callbacks,
68  *					so the kernel can layer network
69  *					sockets.
70  *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71  *		Alan Cox	:	Handle FIN (more) properly (we hope).
72  *		Alan Cox	:	RST frames sent on unsynchronised
73  *					state ack error.
74  *		Alan Cox	:	Put in missing check for SYN bit.
75  *		Alan Cox	:	Added tcp_select_window() aka NET2E
76  *					window non shrink trick.
77  *		Alan Cox	:	Added a couple of small NET2E timer
78  *					fixes
79  *		Charles Hedrick :	TCP fixes
80  *		Toomas Tamm	:	TCP window fixes
81  *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82  *		Charles Hedrick	:	Rewrote most of it to actually work
83  *		Linus		:	Rewrote tcp_read() and URG handling
84  *					completely
85  *		Gerhard Koerting:	Fixed some missing timer handling
86  *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87  *		Gerhard Koerting:	PC/TCP workarounds
88  *		Adam Caldwell	:	Assorted timer/timing errors
89  *		Matthew Dillon	:	Fixed another RST bug
90  *		Alan Cox	:	Move to kernel side addressing changes.
91  *		Alan Cox	:	Beginning work on TCP fastpathing
92  *					(not yet usable)
93  *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94  *		Alan Cox	:	TCP fast path debugging
95  *		Alan Cox	:	Window clamping
96  *		Michael Riepe	:	Bug in tcp_check()
97  *		Matt Dillon	:	More TCP improvements and RST bug fixes
98  *		Matt Dillon	:	Yet more small nasties remove from the
99  *					TCP code (Be very nice to this man if
100  *					tcp finally works 100%) 8)
101  *		Alan Cox	:	BSD accept semantics.
102  *		Alan Cox	:	Reset on closedown bug.
103  *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104  *		Michael Pall	:	Handle poll() after URG properly in
105  *					all cases.
106  *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107  *					(multi URG PUSH broke rlogin).
108  *		Michael Pall	:	Fix the multi URG PUSH problem in
109  *					tcp_readable(), poll() after URG
110  *					works now.
111  *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112  *					BSD api.
113  *		Alan Cox	:	Changed the semantics of sk->socket to
114  *					fix a race and a signal problem with
115  *					accept() and async I/O.
116  *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117  *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118  *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119  *					clients/servers which listen in on
120  *					fixed ports.
121  *		Alan Cox	:	Cleaned the above up and shrank it to
122  *					a sensible code size.
123  *		Alan Cox	:	Self connect lockup fix.
124  *		Alan Cox	:	No connect to multicast.
125  *		Ross Biro	:	Close unaccepted children on master
126  *					socket close.
127  *		Alan Cox	:	Reset tracing code.
128  *		Alan Cox	:	Spurious resets on shutdown.
129  *		Alan Cox	:	Giant 15 minute/60 second timer error
130  *		Alan Cox	:	Small whoops in polling before an
131  *					accept.
132  *		Alan Cox	:	Kept the state trace facility since
133  *					it's handy for debugging.
134  *		Alan Cox	:	More reset handler fixes.
135  *		Alan Cox	:	Started rewriting the code based on
136  *					the RFC's for other useful protocol
137  *					references see: Comer, KA9Q NOS, and
138  *					for a reference on the difference
139  *					between specifications and how BSD
140  *					works see the 4.4lite source.
141  *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142  *					close.
143  *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144  *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145  *		Alan Cox	:	Reimplemented timers as per the RFC
146  *					and using multiple timers for sanity.
147  *		Alan Cox	:	Small bug fixes, and a lot of new
148  *					comments.
149  *		Alan Cox	:	Fixed dual reader crash by locking
150  *					the buffers (much like datagram.c)
151  *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152  *					now gets fed up of retrying without
153  *					(even a no space) answer.
154  *		Alan Cox	:	Extracted closing code better
155  *		Alan Cox	:	Fixed the closing state machine to
156  *					resemble the RFC.
157  *		Alan Cox	:	More 'per spec' fixes.
158  *		Jorge Cwik	:	Even faster checksumming.
159  *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160  *					only frames. At least one pc tcp stack
161  *					generates them.
162  *		Alan Cox	:	Cache last socket.
163  *		Alan Cox	:	Per route irtt.
164  *		Matt Day	:	poll()->select() match BSD precisely on error
165  *		Alan Cox	:	New buffers
166  *		Marc Tamsky	:	Various sk->prot->retransmits and
167  *					sk->retransmits misupdating fixed.
168  *					Fixed tcp_write_timeout: stuck close,
169  *					and TCP syn retries gets used now.
170  *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171  *					ack if state is TCP_CLOSED.
172  *		Alan Cox	:	Look up device on a retransmit - routes may
173  *					change. Doesn't yet cope with MSS shrink right
174  *					but it's a start!
175  *		Marc Tamsky	:	Closing in closing fixes.
176  *		Mike Shaver	:	RFC1122 verifications.
177  *		Alan Cox	:	rcv_saddr errors.
178  *		Alan Cox	:	Block double connect().
179  *		Alan Cox	:	Small hooks for enSKIP.
180  *		Alexey Kuznetsov:	Path MTU discovery.
181  *		Alan Cox	:	Support soft errors.
182  *		Alan Cox	:	Fix MTU discovery pathological case
183  *					when the remote claims no mtu!
184  *		Marc Tamsky	:	TCP_CLOSE fix.
185  *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186  *					window but wrong (fixes NT lpd problems)
187  *		Pedro Roque	:	Better TCP window handling, delayed ack.
188  *		Joerg Reuter	:	No modification of locked buffers in
189  *					tcp_do_retransmit()
190  *		Eric Schenk	:	Changed receiver side silly window
191  *					avoidance algorithm to BSD style
192  *					algorithm. This doubles throughput
193  *					against machines running Solaris,
194  *					and seems to result in general
195  *					improvement.
196  *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197  *	Willy Konynenberg	:	Transparent proxying support.
198  *	Mike McLagan		:	Routing by source
199  *		Keith Owens	:	Do proper merging with partial SKB's in
200  *					tcp_do_sendmsg to avoid burstiness.
201  *		Eric Schenk	:	Fix fast close down bug with
202  *					shutdown() followed by close().
203  *		Andi Kleen 	:	Make poll agree with SIGIO
204  *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205  *					lingertime == 0 (RFC 793 ABORT Call)
206  *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207  *					csum_and_copy_from_user() if possible.
208  *
209  * Description of States:
210  *
211  *	TCP_SYN_SENT		sent a connection request, waiting for ack
212  *
213  *	TCP_SYN_RECV		received a connection request, sent ack,
214  *				waiting for final ack in three-way handshake.
215  *
216  *	TCP_ESTABLISHED		connection established
217  *
218  *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219  *				transmission of remaining buffered data
220  *
221  *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222  *				to shutdown
223  *
224  *	TCP_CLOSING		both sides have shutdown but we still have
225  *				data we have to finish sending
226  *
227  *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228  *				closed, can only be entered from FIN_WAIT2
229  *				or CLOSING.  Required because the other end
230  *				may not have gotten our last ACK causing it
231  *				to retransmit the data packet (which we ignore)
232  *
233  *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234  *				us to finish writing our data and to shutdown
235  *				(we have to close() to move on to LAST_ACK)
236  *
237  *	TCP_LAST_ACK		out side has shutdown after remote has
238  *				shutdown.  There may still be data in our
239  *				buffer that we have to finish sending
240  *
241  *	TCP_CLOSE		socket is finished
242  */
243 
244 #define pr_fmt(fmt) "TCP: " fmt
245 
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270 
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280 
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287 
288 #include "../core/devmem.h"
289 
290 /* Track pending CMSGs. */
291 enum {
292 	TCP_CMSG_INQ = 1,
293 	TCP_CMSG_TS = 2
294 };
295 
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298 
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301 
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304 
305 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
306 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
307 
308 #if IS_ENABLED(CONFIG_SMC)
309 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
310 EXPORT_SYMBOL(tcp_have_smc);
311 #endif
312 
313 /*
314  * Current number of TCP sockets.
315  */
316 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
317 EXPORT_IPV6_MOD(tcp_sockets_allocated);
318 
319 /*
320  * TCP splice context
321  */
322 struct tcp_splice_state {
323 	struct pipe_inode_info *pipe;
324 	size_t len;
325 	unsigned int flags;
326 };
327 
328 /*
329  * Pressure flag: try to collapse.
330  * Technical note: it is used by multiple contexts non atomically.
331  * All the __sk_mem_schedule() is of this nature: accounting
332  * is strict, actions are advisory and have some latency.
333  */
334 unsigned long tcp_memory_pressure __read_mostly;
335 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
336 
tcp_enter_memory_pressure(struct sock * sk)337 void tcp_enter_memory_pressure(struct sock *sk)
338 {
339 	unsigned long val;
340 
341 	if (READ_ONCE(tcp_memory_pressure))
342 		return;
343 	val = jiffies;
344 
345 	if (!val)
346 		val--;
347 	if (!cmpxchg(&tcp_memory_pressure, 0, val))
348 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
349 }
350 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
351 
tcp_leave_memory_pressure(struct sock * sk)352 void tcp_leave_memory_pressure(struct sock *sk)
353 {
354 	unsigned long val;
355 
356 	if (!READ_ONCE(tcp_memory_pressure))
357 		return;
358 	val = xchg(&tcp_memory_pressure, 0);
359 	if (val)
360 		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
361 			      jiffies_to_msecs(jiffies - val));
362 }
363 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
364 
365 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)366 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
367 {
368 	u8 res = 0;
369 
370 	if (seconds > 0) {
371 		int period = timeout;
372 
373 		res = 1;
374 		while (seconds > period && res < 255) {
375 			res++;
376 			timeout <<= 1;
377 			if (timeout > rto_max)
378 				timeout = rto_max;
379 			period += timeout;
380 		}
381 	}
382 	return res;
383 }
384 
385 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)386 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
387 {
388 	int period = 0;
389 
390 	if (retrans > 0) {
391 		period = timeout;
392 		while (--retrans) {
393 			timeout <<= 1;
394 			if (timeout > rto_max)
395 				timeout = rto_max;
396 			period += timeout;
397 		}
398 	}
399 	return period;
400 }
401 
tcp_compute_delivery_rate(const struct tcp_sock * tp)402 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
403 {
404 	u32 rate = READ_ONCE(tp->rate_delivered);
405 	u32 intv = READ_ONCE(tp->rate_interval_us);
406 	u64 rate64 = 0;
407 
408 	if (rate && intv) {
409 		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
410 		do_div(rate64, intv);
411 	}
412 	return rate64;
413 }
414 
415 /* Address-family independent initialization for a tcp_sock.
416  *
417  * NOTE: A lot of things set to zero explicitly by call to
418  *       sk_alloc() so need not be done here.
419  */
tcp_init_sock(struct sock * sk)420 void tcp_init_sock(struct sock *sk)
421 {
422 	struct inet_connection_sock *icsk = inet_csk(sk);
423 	struct tcp_sock *tp = tcp_sk(sk);
424 	int rto_min_us, rto_max_ms;
425 
426 	tp->out_of_order_queue = RB_ROOT;
427 	sk->tcp_rtx_queue = RB_ROOT;
428 	tcp_init_xmit_timers(sk);
429 	INIT_LIST_HEAD(&tp->tsq_node);
430 	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
431 
432 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
433 
434 	rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
435 	icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
436 
437 	rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
438 	icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
439 	icsk->icsk_delack_max = TCP_DELACK_MAX;
440 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
441 	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
442 
443 	/* So many TCP implementations out there (incorrectly) count the
444 	 * initial SYN frame in their delayed-ACK and congestion control
445 	 * algorithms that we must have the following bandaid to talk
446 	 * efficiently to them.  -DaveM
447 	 */
448 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
449 
450 	/* There's a bubble in the pipe until at least the first ACK. */
451 	tp->app_limited = ~0U;
452 	tp->rate_app_limited = 1;
453 
454 	/* See draft-stevens-tcpca-spec-01 for discussion of the
455 	 * initialization of these values.
456 	 */
457 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
458 	tp->snd_cwnd_clamp = ~0;
459 	tp->mss_cache = TCP_MSS_DEFAULT;
460 
461 	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
462 	tcp_assign_congestion_control(sk);
463 
464 	tp->tsoffset = 0;
465 	tp->rack.reo_wnd_steps = 1;
466 
467 	sk->sk_write_space = sk_stream_write_space;
468 	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
469 
470 	icsk->icsk_sync_mss = tcp_sync_mss;
471 
472 	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
473 	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
474 	tcp_scaling_ratio_init(sk);
475 
476 	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
477 	sk_sockets_allocated_inc(sk);
478 	xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
479 }
480 EXPORT_IPV6_MOD(tcp_init_sock);
481 
tcp_tx_timestamp(struct sock * sk,struct sockcm_cookie * sockc)482 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
483 {
484 	struct sk_buff *skb = tcp_write_queue_tail(sk);
485 	u32 tsflags = sockc->tsflags;
486 
487 	if (tsflags && skb) {
488 		struct skb_shared_info *shinfo = skb_shinfo(skb);
489 		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
490 
491 		sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
492 		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
493 			tcb->txstamp_ack |= TSTAMP_ACK_SK;
494 		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
495 			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
496 	}
497 
498 	if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
499 	    SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
500 		bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
501 }
502 
tcp_stream_is_readable(struct sock * sk,int target)503 static bool tcp_stream_is_readable(struct sock *sk, int target)
504 {
505 	if (tcp_epollin_ready(sk, target))
506 		return true;
507 	return sk_is_readable(sk);
508 }
509 
510 /*
511  *	Wait for a TCP event.
512  *
513  *	Note that we don't need to lock the socket, as the upper poll layers
514  *	take care of normal races (between the test and the event) and we don't
515  *	go look at any of the socket buffers directly.
516  */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)517 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
518 {
519 	__poll_t mask;
520 	struct sock *sk = sock->sk;
521 	const struct tcp_sock *tp = tcp_sk(sk);
522 	u8 shutdown;
523 	int state;
524 
525 	sock_poll_wait(file, sock, wait);
526 
527 	state = inet_sk_state_load(sk);
528 	if (state == TCP_LISTEN)
529 		return inet_csk_listen_poll(sk);
530 
531 	/* Socket is not locked. We are protected from async events
532 	 * by poll logic and correct handling of state changes
533 	 * made by other threads is impossible in any case.
534 	 */
535 
536 	mask = 0;
537 
538 	/*
539 	 * EPOLLHUP is certainly not done right. But poll() doesn't
540 	 * have a notion of HUP in just one direction, and for a
541 	 * socket the read side is more interesting.
542 	 *
543 	 * Some poll() documentation says that EPOLLHUP is incompatible
544 	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
545 	 * all. But careful, it tends to be safer to return too many
546 	 * bits than too few, and you can easily break real applications
547 	 * if you don't tell them that something has hung up!
548 	 *
549 	 * Check-me.
550 	 *
551 	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
552 	 * our fs/select.c). It means that after we received EOF,
553 	 * poll always returns immediately, making impossible poll() on write()
554 	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
555 	 * if and only if shutdown has been made in both directions.
556 	 * Actually, it is interesting to look how Solaris and DUX
557 	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
558 	 * then we could set it on SND_SHUTDOWN. BTW examples given
559 	 * in Stevens' books assume exactly this behaviour, it explains
560 	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
561 	 *
562 	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
563 	 * blocking on fresh not-connected or disconnected socket. --ANK
564 	 */
565 	shutdown = READ_ONCE(sk->sk_shutdown);
566 	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
567 		mask |= EPOLLHUP;
568 	if (shutdown & RCV_SHUTDOWN)
569 		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
570 
571 	/* Connected or passive Fast Open socket? */
572 	if (state != TCP_SYN_SENT &&
573 	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
574 		int target = sock_rcvlowat(sk, 0, INT_MAX);
575 		u16 urg_data = READ_ONCE(tp->urg_data);
576 
577 		if (unlikely(urg_data) &&
578 		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
579 		    !sock_flag(sk, SOCK_URGINLINE))
580 			target++;
581 
582 		if (tcp_stream_is_readable(sk, target))
583 			mask |= EPOLLIN | EPOLLRDNORM;
584 
585 		if (!(shutdown & SEND_SHUTDOWN)) {
586 			if (__sk_stream_is_writeable(sk, 1)) {
587 				mask |= EPOLLOUT | EPOLLWRNORM;
588 			} else {  /* send SIGIO later */
589 				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
590 				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
591 
592 				/* Race breaker. If space is freed after
593 				 * wspace test but before the flags are set,
594 				 * IO signal will be lost. Memory barrier
595 				 * pairs with the input side.
596 				 */
597 				smp_mb__after_atomic();
598 				if (__sk_stream_is_writeable(sk, 1))
599 					mask |= EPOLLOUT | EPOLLWRNORM;
600 			}
601 		} else
602 			mask |= EPOLLOUT | EPOLLWRNORM;
603 
604 		if (urg_data & TCP_URG_VALID)
605 			mask |= EPOLLPRI;
606 	} else if (state == TCP_SYN_SENT &&
607 		   inet_test_bit(DEFER_CONNECT, sk)) {
608 		/* Active TCP fastopen socket with defer_connect
609 		 * Return EPOLLOUT so application can call write()
610 		 * in order for kernel to generate SYN+data
611 		 */
612 		mask |= EPOLLOUT | EPOLLWRNORM;
613 	}
614 	/* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
615 	smp_rmb();
616 	if (READ_ONCE(sk->sk_err) ||
617 	    !skb_queue_empty_lockless(&sk->sk_error_queue))
618 		mask |= EPOLLERR;
619 
620 	return mask;
621 }
622 EXPORT_SYMBOL(tcp_poll);
623 
tcp_ioctl(struct sock * sk,int cmd,int * karg)624 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
625 {
626 	struct tcp_sock *tp = tcp_sk(sk);
627 	int answ;
628 	bool slow;
629 
630 	switch (cmd) {
631 	case SIOCINQ:
632 		if (sk->sk_state == TCP_LISTEN)
633 			return -EINVAL;
634 
635 		slow = lock_sock_fast(sk);
636 		answ = tcp_inq(sk);
637 		unlock_sock_fast(sk, slow);
638 		break;
639 	case SIOCATMARK:
640 		answ = READ_ONCE(tp->urg_data) &&
641 		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
642 		break;
643 	case SIOCOUTQ:
644 		if (sk->sk_state == TCP_LISTEN)
645 			return -EINVAL;
646 
647 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
648 			answ = 0;
649 		else
650 			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
651 		break;
652 	case SIOCOUTQNSD:
653 		if (sk->sk_state == TCP_LISTEN)
654 			return -EINVAL;
655 
656 		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
657 			answ = 0;
658 		else
659 			answ = READ_ONCE(tp->write_seq) -
660 			       READ_ONCE(tp->snd_nxt);
661 		break;
662 	default:
663 		return -ENOIOCTLCMD;
664 	}
665 
666 	*karg = answ;
667 	return 0;
668 }
669 EXPORT_IPV6_MOD(tcp_ioctl);
670 
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)671 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
672 {
673 	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
674 	tp->pushed_seq = tp->write_seq;
675 }
676 
forced_push(const struct tcp_sock * tp)677 static inline bool forced_push(const struct tcp_sock *tp)
678 {
679 	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
680 }
681 
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)682 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
683 {
684 	struct tcp_sock *tp = tcp_sk(sk);
685 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
686 
687 	tcb->seq     = tcb->end_seq = tp->write_seq;
688 	tcb->tcp_flags = TCPHDR_ACK;
689 	__skb_header_release(skb);
690 	tcp_add_write_queue_tail(sk, skb);
691 	sk_wmem_queued_add(sk, skb->truesize);
692 	sk_mem_charge(sk, skb->truesize);
693 	if (tp->nonagle & TCP_NAGLE_PUSH)
694 		tp->nonagle &= ~TCP_NAGLE_PUSH;
695 
696 	tcp_slow_start_after_idle_check(sk);
697 }
698 
tcp_mark_urg(struct tcp_sock * tp,int flags)699 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
700 {
701 	if (flags & MSG_OOB)
702 		tp->snd_up = tp->write_seq;
703 }
704 
705 /* If a not yet filled skb is pushed, do not send it if
706  * we have data packets in Qdisc or NIC queues :
707  * Because TX completion will happen shortly, it gives a chance
708  * to coalesce future sendmsg() payload into this skb, without
709  * need for a timer, and with no latency trade off.
710  * As packets containing data payload have a bigger truesize
711  * than pure acks (dataless) packets, the last checks prevent
712  * autocorking if we only have an ACK in Qdisc/NIC queues,
713  * or if TX completion was delayed after we processed ACK packet.
714  */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)715 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
716 				int size_goal)
717 {
718 	return skb->len < size_goal &&
719 	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
720 	       !tcp_rtx_queue_empty(sk) &&
721 	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
722 	       tcp_skb_can_collapse_to(skb);
723 }
724 
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)725 void tcp_push(struct sock *sk, int flags, int mss_now,
726 	      int nonagle, int size_goal)
727 {
728 	struct tcp_sock *tp = tcp_sk(sk);
729 	struct sk_buff *skb;
730 
731 	skb = tcp_write_queue_tail(sk);
732 	if (!skb)
733 		return;
734 	if (!(flags & MSG_MORE) || forced_push(tp))
735 		tcp_mark_push(tp, skb);
736 
737 	tcp_mark_urg(tp, flags);
738 
739 	if (tcp_should_autocork(sk, skb, size_goal)) {
740 
741 		/* avoid atomic op if TSQ_THROTTLED bit is already set */
742 		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
743 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
744 			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
745 			smp_mb__after_atomic();
746 		}
747 		/* It is possible TX completion already happened
748 		 * before we set TSQ_THROTTLED.
749 		 */
750 		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
751 			return;
752 	}
753 
754 	if (flags & MSG_MORE)
755 		nonagle = TCP_NAGLE_CORK;
756 
757 	__tcp_push_pending_frames(sk, mss_now, nonagle);
758 }
759 
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)760 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
761 				unsigned int offset, size_t len)
762 {
763 	struct tcp_splice_state *tss = rd_desc->arg.data;
764 	int ret;
765 
766 	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
767 			      min(rd_desc->count, len), tss->flags);
768 	if (ret > 0)
769 		rd_desc->count -= ret;
770 	return ret;
771 }
772 
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)773 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
774 {
775 	/* Store TCP splice context information in read_descriptor_t. */
776 	read_descriptor_t rd_desc = {
777 		.arg.data = tss,
778 		.count	  = tss->len,
779 	};
780 
781 	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
782 }
783 
784 /**
785  *  tcp_splice_read - splice data from TCP socket to a pipe
786  * @sock:	socket to splice from
787  * @ppos:	position (not valid)
788  * @pipe:	pipe to splice to
789  * @len:	number of bytes to splice
790  * @flags:	splice modifier flags
791  *
792  * Description:
793  *    Will read pages from given socket and fill them into a pipe.
794  *
795  **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)796 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
797 			struct pipe_inode_info *pipe, size_t len,
798 			unsigned int flags)
799 {
800 	struct sock *sk = sock->sk;
801 	struct tcp_splice_state tss = {
802 		.pipe = pipe,
803 		.len = len,
804 		.flags = flags,
805 	};
806 	long timeo;
807 	ssize_t spliced;
808 	int ret;
809 
810 	sock_rps_record_flow(sk);
811 	/*
812 	 * We can't seek on a socket input
813 	 */
814 	if (unlikely(*ppos))
815 		return -ESPIPE;
816 
817 	ret = spliced = 0;
818 
819 	lock_sock(sk);
820 
821 	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
822 	while (tss.len) {
823 		ret = __tcp_splice_read(sk, &tss);
824 		if (ret < 0)
825 			break;
826 		else if (!ret) {
827 			if (spliced)
828 				break;
829 			if (sock_flag(sk, SOCK_DONE))
830 				break;
831 			if (sk->sk_err) {
832 				ret = sock_error(sk);
833 				break;
834 			}
835 			if (sk->sk_shutdown & RCV_SHUTDOWN)
836 				break;
837 			if (sk->sk_state == TCP_CLOSE) {
838 				/*
839 				 * This occurs when user tries to read
840 				 * from never connected socket.
841 				 */
842 				ret = -ENOTCONN;
843 				break;
844 			}
845 			if (!timeo) {
846 				ret = -EAGAIN;
847 				break;
848 			}
849 			/* if __tcp_splice_read() got nothing while we have
850 			 * an skb in receive queue, we do not want to loop.
851 			 * This might happen with URG data.
852 			 */
853 			if (!skb_queue_empty(&sk->sk_receive_queue))
854 				break;
855 			ret = sk_wait_data(sk, &timeo, NULL);
856 			if (ret < 0)
857 				break;
858 			if (signal_pending(current)) {
859 				ret = sock_intr_errno(timeo);
860 				break;
861 			}
862 			continue;
863 		}
864 		tss.len -= ret;
865 		spliced += ret;
866 
867 		if (!tss.len || !timeo)
868 			break;
869 		release_sock(sk);
870 		lock_sock(sk);
871 
872 		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
873 		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
874 		    signal_pending(current))
875 			break;
876 	}
877 
878 	release_sock(sk);
879 
880 	if (spliced)
881 		return spliced;
882 
883 	return ret;
884 }
885 EXPORT_IPV6_MOD(tcp_splice_read);
886 
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)887 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
888 				     bool force_schedule)
889 {
890 	struct sk_buff *skb;
891 
892 	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
893 	if (likely(skb)) {
894 		bool mem_scheduled;
895 
896 		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
897 		if (force_schedule) {
898 			mem_scheduled = true;
899 			sk_forced_mem_schedule(sk, skb->truesize);
900 		} else {
901 			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
902 		}
903 		if (likely(mem_scheduled)) {
904 			skb_reserve(skb, MAX_TCP_HEADER);
905 			skb->ip_summed = CHECKSUM_PARTIAL;
906 			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
907 			return skb;
908 		}
909 		__kfree_skb(skb);
910 	} else {
911 		sk->sk_prot->enter_memory_pressure(sk);
912 		sk_stream_moderate_sndbuf(sk);
913 	}
914 	return NULL;
915 }
916 
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)917 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
918 				       int large_allowed)
919 {
920 	struct tcp_sock *tp = tcp_sk(sk);
921 	u32 new_size_goal, size_goal;
922 
923 	if (!large_allowed)
924 		return mss_now;
925 
926 	/* Note : tcp_tso_autosize() will eventually split this later */
927 	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
928 
929 	/* We try hard to avoid divides here */
930 	size_goal = tp->gso_segs * mss_now;
931 	if (unlikely(new_size_goal < size_goal ||
932 		     new_size_goal >= size_goal + mss_now)) {
933 		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
934 				     sk->sk_gso_max_segs);
935 		size_goal = tp->gso_segs * mss_now;
936 	}
937 
938 	return max(size_goal, mss_now);
939 }
940 
tcp_send_mss(struct sock * sk,int * size_goal,int flags)941 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
942 {
943 	int mss_now;
944 
945 	mss_now = tcp_current_mss(sk);
946 	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
947 
948 	return mss_now;
949 }
950 
951 /* In some cases, sendmsg() could have added an skb to the write queue,
952  * but failed adding payload on it. We need to remove it to consume less
953  * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
954  * epoll() users. Another reason is that tcp_write_xmit() does not like
955  * finding an empty skb in the write queue.
956  */
tcp_remove_empty_skb(struct sock * sk)957 void tcp_remove_empty_skb(struct sock *sk)
958 {
959 	struct sk_buff *skb = tcp_write_queue_tail(sk);
960 
961 	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
962 		tcp_unlink_write_queue(skb, sk);
963 		if (tcp_write_queue_empty(sk))
964 			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
965 		tcp_wmem_free_skb(sk, skb);
966 	}
967 }
968 
969 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)970 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
971 {
972 	if (unlikely(skb_zcopy_pure(skb))) {
973 		u32 extra = skb->truesize -
974 			    SKB_TRUESIZE(skb_end_offset(skb));
975 
976 		if (!sk_wmem_schedule(sk, extra))
977 			return -ENOMEM;
978 
979 		sk_mem_charge(sk, extra);
980 		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
981 	}
982 	return 0;
983 }
984 
985 
tcp_wmem_schedule(struct sock * sk,int copy)986 int tcp_wmem_schedule(struct sock *sk, int copy)
987 {
988 	int left;
989 
990 	if (likely(sk_wmem_schedule(sk, copy)))
991 		return copy;
992 
993 	/* We could be in trouble if we have nothing queued.
994 	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
995 	 * to guarantee some progress.
996 	 */
997 	left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
998 	if (left > 0)
999 		sk_forced_mem_schedule(sk, min(left, copy));
1000 	return min(copy, sk->sk_forward_alloc);
1001 }
1002 
tcp_free_fastopen_req(struct tcp_sock * tp)1003 void tcp_free_fastopen_req(struct tcp_sock *tp)
1004 {
1005 	if (tp->fastopen_req) {
1006 		kfree(tp->fastopen_req);
1007 		tp->fastopen_req = NULL;
1008 	}
1009 }
1010 
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1011 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1012 			 size_t size, struct ubuf_info *uarg)
1013 {
1014 	struct tcp_sock *tp = tcp_sk(sk);
1015 	struct inet_sock *inet = inet_sk(sk);
1016 	struct sockaddr *uaddr = msg->msg_name;
1017 	int err, flags;
1018 
1019 	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1020 	      TFO_CLIENT_ENABLE) ||
1021 	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1022 	     uaddr->sa_family == AF_UNSPEC))
1023 		return -EOPNOTSUPP;
1024 	if (tp->fastopen_req)
1025 		return -EALREADY; /* Another Fast Open is in progress */
1026 
1027 	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1028 				   sk->sk_allocation);
1029 	if (unlikely(!tp->fastopen_req))
1030 		return -ENOBUFS;
1031 	tp->fastopen_req->data = msg;
1032 	tp->fastopen_req->size = size;
1033 	tp->fastopen_req->uarg = uarg;
1034 
1035 	if (inet_test_bit(DEFER_CONNECT, sk)) {
1036 		err = tcp_connect(sk);
1037 		/* Same failure procedure as in tcp_v4/6_connect */
1038 		if (err) {
1039 			tcp_set_state(sk, TCP_CLOSE);
1040 			inet->inet_dport = 0;
1041 			sk->sk_route_caps = 0;
1042 		}
1043 	}
1044 	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1045 	err = __inet_stream_connect(sk->sk_socket, uaddr,
1046 				    msg->msg_namelen, flags, 1);
1047 	/* fastopen_req could already be freed in __inet_stream_connect
1048 	 * if the connection times out or gets rst
1049 	 */
1050 	if (tp->fastopen_req) {
1051 		*copied = tp->fastopen_req->copied;
1052 		tcp_free_fastopen_req(tp);
1053 		inet_clear_bit(DEFER_CONNECT, sk);
1054 	}
1055 	return err;
1056 }
1057 
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1058 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1059 {
1060 	struct net_devmem_dmabuf_binding *binding = NULL;
1061 	struct tcp_sock *tp = tcp_sk(sk);
1062 	struct ubuf_info *uarg = NULL;
1063 	struct sk_buff *skb;
1064 	struct sockcm_cookie sockc;
1065 	int flags, err, copied = 0;
1066 	int mss_now = 0, size_goal, copied_syn = 0;
1067 	int process_backlog = 0;
1068 	int sockc_err = 0;
1069 	int zc = 0;
1070 	long timeo;
1071 
1072 	flags = msg->msg_flags;
1073 
1074 	sockc = (struct sockcm_cookie){ .tsflags = READ_ONCE(sk->sk_tsflags) };
1075 	if (msg->msg_controllen) {
1076 		sockc_err = sock_cmsg_send(sk, msg, &sockc);
1077 		/* Don't return error until MSG_FASTOPEN has been processed;
1078 		 * that may succeed even if the cmsg is invalid.
1079 		 */
1080 	}
1081 
1082 	if ((flags & MSG_ZEROCOPY) && size) {
1083 		if (msg->msg_ubuf) {
1084 			uarg = msg->msg_ubuf;
1085 			if (sk->sk_route_caps & NETIF_F_SG)
1086 				zc = MSG_ZEROCOPY;
1087 		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1088 			skb = tcp_write_queue_tail(sk);
1089 			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb),
1090 						    !sockc_err && sockc.dmabuf_id);
1091 			if (!uarg) {
1092 				err = -ENOBUFS;
1093 				goto out_err;
1094 			}
1095 			if (sk->sk_route_caps & NETIF_F_SG)
1096 				zc = MSG_ZEROCOPY;
1097 			else
1098 				uarg_to_msgzc(uarg)->zerocopy = 0;
1099 
1100 			if (!sockc_err && sockc.dmabuf_id) {
1101 				binding = net_devmem_get_binding(sk, sockc.dmabuf_id);
1102 				if (IS_ERR(binding)) {
1103 					err = PTR_ERR(binding);
1104 					binding = NULL;
1105 					goto out_err;
1106 				}
1107 			}
1108 		}
1109 	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1110 		if (sk->sk_route_caps & NETIF_F_SG)
1111 			zc = MSG_SPLICE_PAGES;
1112 	}
1113 
1114 	if (!sockc_err && sockc.dmabuf_id &&
1115 	    (!(flags & MSG_ZEROCOPY) || !sock_flag(sk, SOCK_ZEROCOPY))) {
1116 		err = -EINVAL;
1117 		goto out_err;
1118 	}
1119 
1120 	if (unlikely(flags & MSG_FASTOPEN ||
1121 		     inet_test_bit(DEFER_CONNECT, sk)) &&
1122 	    !tp->repair) {
1123 		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1124 		if (err == -EINPROGRESS && copied_syn > 0)
1125 			goto out;
1126 		else if (err)
1127 			goto out_err;
1128 	}
1129 
1130 	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1131 
1132 	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1133 
1134 	/* Wait for a connection to finish. One exception is TCP Fast Open
1135 	 * (passive side) where data is allowed to be sent before a connection
1136 	 * is fully established.
1137 	 */
1138 	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1139 	    !tcp_passive_fastopen(sk)) {
1140 		err = sk_stream_wait_connect(sk, &timeo);
1141 		if (err != 0)
1142 			goto do_error;
1143 	}
1144 
1145 	if (unlikely(tp->repair)) {
1146 		if (tp->repair_queue == TCP_RECV_QUEUE) {
1147 			copied = tcp_send_rcvq(sk, msg, size);
1148 			goto out_nopush;
1149 		}
1150 
1151 		err = -EINVAL;
1152 		if (tp->repair_queue == TCP_NO_QUEUE)
1153 			goto out_err;
1154 
1155 		/* 'common' sending to sendq */
1156 	}
1157 
1158 	if (sockc_err) {
1159 		err = sockc_err;
1160 		goto out_err;
1161 	}
1162 
1163 	/* This should be in poll */
1164 	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1165 
1166 	/* Ok commence sending. */
1167 	copied = 0;
1168 
1169 restart:
1170 	mss_now = tcp_send_mss(sk, &size_goal, flags);
1171 
1172 	err = -EPIPE;
1173 	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1174 		goto do_error;
1175 
1176 	while (msg_data_left(msg)) {
1177 		int copy = 0;
1178 
1179 		skb = tcp_write_queue_tail(sk);
1180 		if (skb)
1181 			copy = size_goal - skb->len;
1182 
1183 		trace_tcp_sendmsg_locked(sk, msg, skb, size_goal);
1184 
1185 		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1186 			bool first_skb;
1187 
1188 new_segment:
1189 			if (!sk_stream_memory_free(sk))
1190 				goto wait_for_space;
1191 
1192 			if (unlikely(process_backlog >= 16)) {
1193 				process_backlog = 0;
1194 				if (sk_flush_backlog(sk))
1195 					goto restart;
1196 			}
1197 			first_skb = tcp_rtx_and_write_queues_empty(sk);
1198 			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1199 						   first_skb);
1200 			if (!skb)
1201 				goto wait_for_space;
1202 
1203 			process_backlog++;
1204 
1205 #ifdef CONFIG_SKB_DECRYPTED
1206 			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1207 #endif
1208 			tcp_skb_entail(sk, skb);
1209 			copy = size_goal;
1210 
1211 			/* All packets are restored as if they have
1212 			 * already been sent. skb_mstamp_ns isn't set to
1213 			 * avoid wrong rtt estimation.
1214 			 */
1215 			if (tp->repair)
1216 				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1217 		}
1218 
1219 		/* Try to append data to the end of skb. */
1220 		if (copy > msg_data_left(msg))
1221 			copy = msg_data_left(msg);
1222 
1223 		if (zc == 0) {
1224 			bool merge = true;
1225 			int i = skb_shinfo(skb)->nr_frags;
1226 			struct page_frag *pfrag = sk_page_frag(sk);
1227 
1228 			if (!sk_page_frag_refill(sk, pfrag))
1229 				goto wait_for_space;
1230 
1231 			if (!skb_can_coalesce(skb, i, pfrag->page,
1232 					      pfrag->offset)) {
1233 				if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1234 					tcp_mark_push(tp, skb);
1235 					goto new_segment;
1236 				}
1237 				merge = false;
1238 			}
1239 
1240 			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1241 
1242 			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1243 				if (tcp_downgrade_zcopy_pure(sk, skb))
1244 					goto wait_for_space;
1245 				skb_zcopy_downgrade_managed(skb);
1246 			}
1247 
1248 			copy = tcp_wmem_schedule(sk, copy);
1249 			if (!copy)
1250 				goto wait_for_space;
1251 
1252 			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1253 						       pfrag->page,
1254 						       pfrag->offset,
1255 						       copy);
1256 			if (err)
1257 				goto do_error;
1258 
1259 			/* Update the skb. */
1260 			if (merge) {
1261 				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1262 			} else {
1263 				skb_fill_page_desc(skb, i, pfrag->page,
1264 						   pfrag->offset, copy);
1265 				page_ref_inc(pfrag->page);
1266 			}
1267 			pfrag->offset += copy;
1268 		} else if (zc == MSG_ZEROCOPY)  {
1269 			/* First append to a fragless skb builds initial
1270 			 * pure zerocopy skb
1271 			 */
1272 			if (!skb->len)
1273 				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1274 
1275 			if (!skb_zcopy_pure(skb)) {
1276 				copy = tcp_wmem_schedule(sk, copy);
1277 				if (!copy)
1278 					goto wait_for_space;
1279 			}
1280 
1281 			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg,
1282 						       binding);
1283 			if (err == -EMSGSIZE || err == -EEXIST) {
1284 				tcp_mark_push(tp, skb);
1285 				goto new_segment;
1286 			}
1287 			if (err < 0)
1288 				goto do_error;
1289 			copy = err;
1290 		} else if (zc == MSG_SPLICE_PAGES) {
1291 			/* Splice in data if we can; copy if we can't. */
1292 			if (tcp_downgrade_zcopy_pure(sk, skb))
1293 				goto wait_for_space;
1294 			copy = tcp_wmem_schedule(sk, copy);
1295 			if (!copy)
1296 				goto wait_for_space;
1297 
1298 			err = skb_splice_from_iter(skb, &msg->msg_iter, copy);
1299 			if (err < 0) {
1300 				if (err == -EMSGSIZE) {
1301 					tcp_mark_push(tp, skb);
1302 					goto new_segment;
1303 				}
1304 				goto do_error;
1305 			}
1306 			copy = err;
1307 
1308 			if (!(flags & MSG_NO_SHARED_FRAGS))
1309 				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1310 
1311 			sk_wmem_queued_add(sk, copy);
1312 			sk_mem_charge(sk, copy);
1313 		}
1314 
1315 		if (!copied)
1316 			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1317 
1318 		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1319 		TCP_SKB_CB(skb)->end_seq += copy;
1320 		tcp_skb_pcount_set(skb, 0);
1321 
1322 		copied += copy;
1323 		if (!msg_data_left(msg)) {
1324 			if (unlikely(flags & MSG_EOR))
1325 				TCP_SKB_CB(skb)->eor = 1;
1326 			goto out;
1327 		}
1328 
1329 		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1330 			continue;
1331 
1332 		if (forced_push(tp)) {
1333 			tcp_mark_push(tp, skb);
1334 			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1335 		} else if (skb == tcp_send_head(sk))
1336 			tcp_push_one(sk, mss_now);
1337 		continue;
1338 
1339 wait_for_space:
1340 		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1341 		tcp_remove_empty_skb(sk);
1342 		if (copied)
1343 			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1344 				 TCP_NAGLE_PUSH, size_goal);
1345 
1346 		err = sk_stream_wait_memory(sk, &timeo);
1347 		if (err != 0)
1348 			goto do_error;
1349 
1350 		mss_now = tcp_send_mss(sk, &size_goal, flags);
1351 	}
1352 
1353 out:
1354 	if (copied) {
1355 		tcp_tx_timestamp(sk, &sockc);
1356 		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1357 	}
1358 out_nopush:
1359 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1360 	if (uarg && !msg->msg_ubuf)
1361 		net_zcopy_put(uarg);
1362 	if (binding)
1363 		net_devmem_dmabuf_binding_put(binding);
1364 	return copied + copied_syn;
1365 
1366 do_error:
1367 	tcp_remove_empty_skb(sk);
1368 
1369 	if (copied + copied_syn)
1370 		goto out;
1371 out_err:
1372 	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1373 	if (uarg && !msg->msg_ubuf)
1374 		net_zcopy_put_abort(uarg, true);
1375 	err = sk_stream_error(sk, flags, err);
1376 	/* make sure we wake any epoll edge trigger waiter */
1377 	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1378 		sk->sk_write_space(sk);
1379 		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1380 	}
1381 	if (binding)
1382 		net_devmem_dmabuf_binding_put(binding);
1383 
1384 	return err;
1385 }
1386 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1387 
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1388 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1389 {
1390 	int ret;
1391 
1392 	lock_sock(sk);
1393 	ret = tcp_sendmsg_locked(sk, msg, size);
1394 	release_sock(sk);
1395 
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL(tcp_sendmsg);
1399 
tcp_splice_eof(struct socket * sock)1400 void tcp_splice_eof(struct socket *sock)
1401 {
1402 	struct sock *sk = sock->sk;
1403 	struct tcp_sock *tp = tcp_sk(sk);
1404 	int mss_now, size_goal;
1405 
1406 	if (!tcp_write_queue_tail(sk))
1407 		return;
1408 
1409 	lock_sock(sk);
1410 	mss_now = tcp_send_mss(sk, &size_goal, 0);
1411 	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1412 	release_sock(sk);
1413 }
1414 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1415 
1416 /*
1417  *	Handle reading urgent data. BSD has very simple semantics for
1418  *	this, no blocking and very strange errors 8)
1419  */
1420 
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1421 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1422 {
1423 	struct tcp_sock *tp = tcp_sk(sk);
1424 
1425 	/* No URG data to read. */
1426 	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1427 	    tp->urg_data == TCP_URG_READ)
1428 		return -EINVAL;	/* Yes this is right ! */
1429 
1430 	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1431 		return -ENOTCONN;
1432 
1433 	if (tp->urg_data & TCP_URG_VALID) {
1434 		int err = 0;
1435 		char c = tp->urg_data;
1436 
1437 		if (!(flags & MSG_PEEK))
1438 			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1439 
1440 		/* Read urgent data. */
1441 		msg->msg_flags |= MSG_OOB;
1442 
1443 		if (len > 0) {
1444 			if (!(flags & MSG_TRUNC))
1445 				err = memcpy_to_msg(msg, &c, 1);
1446 			len = 1;
1447 		} else
1448 			msg->msg_flags |= MSG_TRUNC;
1449 
1450 		return err ? -EFAULT : len;
1451 	}
1452 
1453 	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1454 		return 0;
1455 
1456 	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1457 	 * the available implementations agree in this case:
1458 	 * this call should never block, independent of the
1459 	 * blocking state of the socket.
1460 	 * Mike <pall@rz.uni-karlsruhe.de>
1461 	 */
1462 	return -EAGAIN;
1463 }
1464 
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1465 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1466 {
1467 	struct sk_buff *skb;
1468 	int copied = 0, err = 0;
1469 
1470 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1471 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1472 		if (err)
1473 			return err;
1474 		copied += skb->len;
1475 	}
1476 
1477 	skb_queue_walk(&sk->sk_write_queue, skb) {
1478 		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1479 		if (err)
1480 			break;
1481 
1482 		copied += skb->len;
1483 	}
1484 
1485 	return err ?: copied;
1486 }
1487 
1488 /* Clean up the receive buffer for full frames taken by the user,
1489  * then send an ACK if necessary.  COPIED is the number of bytes
1490  * tcp_recvmsg has given to the user so far, it speeds up the
1491  * calculation of whether or not we must ACK for the sake of
1492  * a window update.
1493  */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1494 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1495 {
1496 	struct tcp_sock *tp = tcp_sk(sk);
1497 	bool time_to_ack = false;
1498 
1499 	if (inet_csk_ack_scheduled(sk)) {
1500 		const struct inet_connection_sock *icsk = inet_csk(sk);
1501 
1502 		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1503 		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1504 		    /*
1505 		     * If this read emptied read buffer, we send ACK, if
1506 		     * connection is not bidirectional, user drained
1507 		     * receive buffer and there was a small segment
1508 		     * in queue.
1509 		     */
1510 		    (copied > 0 &&
1511 		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1512 		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1513 		       !inet_csk_in_pingpong_mode(sk))) &&
1514 		      !atomic_read(&sk->sk_rmem_alloc)))
1515 			time_to_ack = true;
1516 	}
1517 
1518 	/* We send an ACK if we can now advertise a non-zero window
1519 	 * which has been raised "significantly".
1520 	 *
1521 	 * Even if window raised up to infinity, do not send window open ACK
1522 	 * in states, where we will not receive more. It is useless.
1523 	 */
1524 	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1525 		__u32 rcv_window_now = tcp_receive_window(tp);
1526 
1527 		/* Optimize, __tcp_select_window() is not cheap. */
1528 		if (2*rcv_window_now <= tp->window_clamp) {
1529 			__u32 new_window = __tcp_select_window(sk);
1530 
1531 			/* Send ACK now, if this read freed lots of space
1532 			 * in our buffer. Certainly, new_window is new window.
1533 			 * We can advertise it now, if it is not less than current one.
1534 			 * "Lots" means "at least twice" here.
1535 			 */
1536 			if (new_window && new_window >= 2 * rcv_window_now)
1537 				time_to_ack = true;
1538 		}
1539 	}
1540 	if (time_to_ack)
1541 		tcp_send_ack(sk);
1542 }
1543 
tcp_cleanup_rbuf(struct sock * sk,int copied)1544 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1545 {
1546 	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1547 	struct tcp_sock *tp = tcp_sk(sk);
1548 
1549 	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1550 	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1551 	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1552 	__tcp_cleanup_rbuf(sk, copied);
1553 }
1554 
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1555 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1556 {
1557 	__skb_unlink(skb, &sk->sk_receive_queue);
1558 	if (likely(skb->destructor == sock_rfree)) {
1559 		sock_rfree(skb);
1560 		skb->destructor = NULL;
1561 		skb->sk = NULL;
1562 		return skb_attempt_defer_free(skb);
1563 	}
1564 	__kfree_skb(skb);
1565 }
1566 
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1567 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1568 {
1569 	struct sk_buff *skb;
1570 	u32 offset;
1571 
1572 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1573 		offset = seq - TCP_SKB_CB(skb)->seq;
1574 		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1575 			pr_err_once("%s: found a SYN, please report !\n", __func__);
1576 			offset--;
1577 		}
1578 		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1579 			*off = offset;
1580 			return skb;
1581 		}
1582 		/* This looks weird, but this can happen if TCP collapsing
1583 		 * splitted a fat GRO packet, while we released socket lock
1584 		 * in skb_splice_bits()
1585 		 */
1586 		tcp_eat_recv_skb(sk, skb);
1587 	}
1588 	return NULL;
1589 }
1590 EXPORT_SYMBOL(tcp_recv_skb);
1591 
1592 /*
1593  * This routine provides an alternative to tcp_recvmsg() for routines
1594  * that would like to handle copying from skbuffs directly in 'sendfile'
1595  * fashion.
1596  * Note:
1597  *	- It is assumed that the socket was locked by the caller.
1598  *	- The routine does not block.
1599  *	- At present, there is no support for reading OOB data
1600  *	  or for 'peeking' the socket using this routine
1601  *	  (although both would be easy to implement).
1602  */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1603 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1604 			   sk_read_actor_t recv_actor, bool noack,
1605 			   u32 *copied_seq)
1606 {
1607 	struct sk_buff *skb;
1608 	struct tcp_sock *tp = tcp_sk(sk);
1609 	u32 seq = *copied_seq;
1610 	u32 offset;
1611 	int copied = 0;
1612 
1613 	if (sk->sk_state == TCP_LISTEN)
1614 		return -ENOTCONN;
1615 	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1616 		if (offset < skb->len) {
1617 			int used;
1618 			size_t len;
1619 
1620 			len = skb->len - offset;
1621 			/* Stop reading if we hit a patch of urgent data */
1622 			if (unlikely(tp->urg_data)) {
1623 				u32 urg_offset = tp->urg_seq - seq;
1624 				if (urg_offset < len)
1625 					len = urg_offset;
1626 				if (!len)
1627 					break;
1628 			}
1629 			used = recv_actor(desc, skb, offset, len);
1630 			if (used <= 0) {
1631 				if (!copied)
1632 					copied = used;
1633 				break;
1634 			}
1635 			if (WARN_ON_ONCE(used > len))
1636 				used = len;
1637 			seq += used;
1638 			copied += used;
1639 			offset += used;
1640 
1641 			/* If recv_actor drops the lock (e.g. TCP splice
1642 			 * receive) the skb pointer might be invalid when
1643 			 * getting here: tcp_collapse might have deleted it
1644 			 * while aggregating skbs from the socket queue.
1645 			 */
1646 			skb = tcp_recv_skb(sk, seq - 1, &offset);
1647 			if (!skb)
1648 				break;
1649 			/* TCP coalescing might have appended data to the skb.
1650 			 * Try to splice more frags
1651 			 */
1652 			if (offset + 1 != skb->len)
1653 				continue;
1654 		}
1655 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1656 			tcp_eat_recv_skb(sk, skb);
1657 			++seq;
1658 			break;
1659 		}
1660 		tcp_eat_recv_skb(sk, skb);
1661 		if (!desc->count)
1662 			break;
1663 		WRITE_ONCE(*copied_seq, seq);
1664 	}
1665 	WRITE_ONCE(*copied_seq, seq);
1666 
1667 	if (noack)
1668 		goto out;
1669 
1670 	tcp_rcv_space_adjust(sk);
1671 
1672 	/* Clean up data we have read: This will do ACK frames. */
1673 	if (copied > 0) {
1674 		tcp_recv_skb(sk, seq, &offset);
1675 		tcp_cleanup_rbuf(sk, copied);
1676 	}
1677 out:
1678 	return copied;
1679 }
1680 
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1681 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1682 		  sk_read_actor_t recv_actor)
1683 {
1684 	return __tcp_read_sock(sk, desc, recv_actor, false,
1685 			       &tcp_sk(sk)->copied_seq);
1686 }
1687 EXPORT_SYMBOL(tcp_read_sock);
1688 
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1689 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1690 			sk_read_actor_t recv_actor, bool noack,
1691 			u32 *copied_seq)
1692 {
1693 	return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1694 }
1695 
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1696 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1697 {
1698 	struct sk_buff *skb;
1699 	int copied = 0;
1700 
1701 	if (sk->sk_state == TCP_LISTEN)
1702 		return -ENOTCONN;
1703 
1704 	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1705 		u8 tcp_flags;
1706 		int used;
1707 
1708 		__skb_unlink(skb, &sk->sk_receive_queue);
1709 		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1710 		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1711 		used = recv_actor(sk, skb);
1712 		if (used < 0) {
1713 			if (!copied)
1714 				copied = used;
1715 			break;
1716 		}
1717 		copied += used;
1718 
1719 		if (tcp_flags & TCPHDR_FIN)
1720 			break;
1721 	}
1722 	return copied;
1723 }
1724 EXPORT_IPV6_MOD(tcp_read_skb);
1725 
tcp_read_done(struct sock * sk,size_t len)1726 void tcp_read_done(struct sock *sk, size_t len)
1727 {
1728 	struct tcp_sock *tp = tcp_sk(sk);
1729 	u32 seq = tp->copied_seq;
1730 	struct sk_buff *skb;
1731 	size_t left;
1732 	u32 offset;
1733 
1734 	if (sk->sk_state == TCP_LISTEN)
1735 		return;
1736 
1737 	left = len;
1738 	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1739 		int used;
1740 
1741 		used = min_t(size_t, skb->len - offset, left);
1742 		seq += used;
1743 		left -= used;
1744 
1745 		if (skb->len > offset + used)
1746 			break;
1747 
1748 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1749 			tcp_eat_recv_skb(sk, skb);
1750 			++seq;
1751 			break;
1752 		}
1753 		tcp_eat_recv_skb(sk, skb);
1754 	}
1755 	WRITE_ONCE(tp->copied_seq, seq);
1756 
1757 	tcp_rcv_space_adjust(sk);
1758 
1759 	/* Clean up data we have read: This will do ACK frames. */
1760 	if (left != len)
1761 		tcp_cleanup_rbuf(sk, len - left);
1762 }
1763 EXPORT_SYMBOL(tcp_read_done);
1764 
tcp_peek_len(struct socket * sock)1765 int tcp_peek_len(struct socket *sock)
1766 {
1767 	return tcp_inq(sock->sk);
1768 }
1769 EXPORT_IPV6_MOD(tcp_peek_len);
1770 
1771 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1772 int tcp_set_rcvlowat(struct sock *sk, int val)
1773 {
1774 	int space, cap;
1775 
1776 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1777 		cap = sk->sk_rcvbuf >> 1;
1778 	else
1779 		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1780 	val = min(val, cap);
1781 	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1782 
1783 	/* Check if we need to signal EPOLLIN right now */
1784 	tcp_data_ready(sk);
1785 
1786 	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1787 		return 0;
1788 
1789 	space = tcp_space_from_win(sk, val);
1790 	if (space > sk->sk_rcvbuf) {
1791 		WRITE_ONCE(sk->sk_rcvbuf, space);
1792 		WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1793 	}
1794 	return 0;
1795 }
1796 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1797 
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1798 void tcp_update_recv_tstamps(struct sk_buff *skb,
1799 			     struct scm_timestamping_internal *tss)
1800 {
1801 	if (skb->tstamp)
1802 		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1803 	else
1804 		tss->ts[0] = (struct timespec64) {0};
1805 
1806 	if (skb_hwtstamps(skb)->hwtstamp)
1807 		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1808 	else
1809 		tss->ts[2] = (struct timespec64) {0};
1810 }
1811 
1812 #ifdef CONFIG_MMU
1813 static const struct vm_operations_struct tcp_vm_ops = {
1814 };
1815 
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1816 int tcp_mmap(struct file *file, struct socket *sock,
1817 	     struct vm_area_struct *vma)
1818 {
1819 	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1820 		return -EPERM;
1821 	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1822 
1823 	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1824 	vm_flags_set(vma, VM_MIXEDMAP);
1825 
1826 	vma->vm_ops = &tcp_vm_ops;
1827 	return 0;
1828 }
1829 EXPORT_IPV6_MOD(tcp_mmap);
1830 
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1831 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1832 				       u32 *offset_frag)
1833 {
1834 	skb_frag_t *frag;
1835 
1836 	if (unlikely(offset_skb >= skb->len))
1837 		return NULL;
1838 
1839 	offset_skb -= skb_headlen(skb);
1840 	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1841 		return NULL;
1842 
1843 	frag = skb_shinfo(skb)->frags;
1844 	while (offset_skb) {
1845 		if (skb_frag_size(frag) > offset_skb) {
1846 			*offset_frag = offset_skb;
1847 			return frag;
1848 		}
1849 		offset_skb -= skb_frag_size(frag);
1850 		++frag;
1851 	}
1852 	*offset_frag = 0;
1853 	return frag;
1854 }
1855 
can_map_frag(const skb_frag_t * frag)1856 static bool can_map_frag(const skb_frag_t *frag)
1857 {
1858 	struct page *page;
1859 
1860 	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1861 		return false;
1862 
1863 	page = skb_frag_page(frag);
1864 
1865 	if (PageCompound(page) || page->mapping)
1866 		return false;
1867 
1868 	return true;
1869 }
1870 
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1871 static int find_next_mappable_frag(const skb_frag_t *frag,
1872 				   int remaining_in_skb)
1873 {
1874 	int offset = 0;
1875 
1876 	if (likely(can_map_frag(frag)))
1877 		return 0;
1878 
1879 	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1880 		offset += skb_frag_size(frag);
1881 		++frag;
1882 	}
1883 	return offset;
1884 }
1885 
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1886 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1887 					  struct tcp_zerocopy_receive *zc,
1888 					  struct sk_buff *skb, u32 offset)
1889 {
1890 	u32 frag_offset, partial_frag_remainder = 0;
1891 	int mappable_offset;
1892 	skb_frag_t *frag;
1893 
1894 	/* worst case: skip to next skb. try to improve on this case below */
1895 	zc->recv_skip_hint = skb->len - offset;
1896 
1897 	/* Find the frag containing this offset (and how far into that frag) */
1898 	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1899 	if (!frag)
1900 		return;
1901 
1902 	if (frag_offset) {
1903 		struct skb_shared_info *info = skb_shinfo(skb);
1904 
1905 		/* We read part of the last frag, must recvmsg() rest of skb. */
1906 		if (frag == &info->frags[info->nr_frags - 1])
1907 			return;
1908 
1909 		/* Else, we must at least read the remainder in this frag. */
1910 		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1911 		zc->recv_skip_hint -= partial_frag_remainder;
1912 		++frag;
1913 	}
1914 
1915 	/* partial_frag_remainder: If part way through a frag, must read rest.
1916 	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1917 	 * in partial_frag_remainder.
1918 	 */
1919 	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1920 	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1921 }
1922 
1923 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1924 			      int flags, struct scm_timestamping_internal *tss,
1925 			      int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1926 static int receive_fallback_to_copy(struct sock *sk,
1927 				    struct tcp_zerocopy_receive *zc, int inq,
1928 				    struct scm_timestamping_internal *tss)
1929 {
1930 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1931 	struct msghdr msg = {};
1932 	int err;
1933 
1934 	zc->length = 0;
1935 	zc->recv_skip_hint = 0;
1936 
1937 	if (copy_address != zc->copybuf_address)
1938 		return -EINVAL;
1939 
1940 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1941 			  &msg.msg_iter);
1942 	if (err)
1943 		return err;
1944 
1945 	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1946 				 tss, &zc->msg_flags);
1947 	if (err < 0)
1948 		return err;
1949 
1950 	zc->copybuf_len = err;
1951 	if (likely(zc->copybuf_len)) {
1952 		struct sk_buff *skb;
1953 		u32 offset;
1954 
1955 		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1956 		if (skb)
1957 			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1958 	}
1959 	return 0;
1960 }
1961 
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1962 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1963 				   struct sk_buff *skb, u32 copylen,
1964 				   u32 *offset, u32 *seq)
1965 {
1966 	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1967 	struct msghdr msg = {};
1968 	int err;
1969 
1970 	if (copy_address != zc->copybuf_address)
1971 		return -EINVAL;
1972 
1973 	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1974 			  &msg.msg_iter);
1975 	if (err)
1976 		return err;
1977 	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1978 	if (err)
1979 		return err;
1980 	zc->recv_skip_hint -= copylen;
1981 	*offset += copylen;
1982 	*seq += copylen;
1983 	return (__s32)copylen;
1984 }
1985 
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1986 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1987 				  struct sock *sk,
1988 				  struct sk_buff *skb,
1989 				  u32 *seq,
1990 				  s32 copybuf_len,
1991 				  struct scm_timestamping_internal *tss)
1992 {
1993 	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1994 
1995 	if (!copylen)
1996 		return 0;
1997 	/* skb is null if inq < PAGE_SIZE. */
1998 	if (skb) {
1999 		offset = *seq - TCP_SKB_CB(skb)->seq;
2000 	} else {
2001 		skb = tcp_recv_skb(sk, *seq, &offset);
2002 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2003 			tcp_update_recv_tstamps(skb, tss);
2004 			zc->msg_flags |= TCP_CMSG_TS;
2005 		}
2006 	}
2007 
2008 	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
2009 						  seq);
2010 	return zc->copybuf_len < 0 ? 0 : copylen;
2011 }
2012 
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)2013 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
2014 					      struct page **pending_pages,
2015 					      unsigned long pages_remaining,
2016 					      unsigned long *address,
2017 					      u32 *length,
2018 					      u32 *seq,
2019 					      struct tcp_zerocopy_receive *zc,
2020 					      u32 total_bytes_to_map,
2021 					      int err)
2022 {
2023 	/* At least one page did not map. Try zapping if we skipped earlier. */
2024 	if (err == -EBUSY &&
2025 	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
2026 		u32 maybe_zap_len;
2027 
2028 		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
2029 				*length + /* Mapped or pending */
2030 				(pages_remaining * PAGE_SIZE); /* Failed map. */
2031 		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2032 		err = 0;
2033 	}
2034 
2035 	if (!err) {
2036 		unsigned long leftover_pages = pages_remaining;
2037 		int bytes_mapped;
2038 
2039 		/* We called zap_page_range_single, try to reinsert. */
2040 		err = vm_insert_pages(vma, *address,
2041 				      pending_pages,
2042 				      &pages_remaining);
2043 		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2044 		*seq += bytes_mapped;
2045 		*address += bytes_mapped;
2046 	}
2047 	if (err) {
2048 		/* Either we were unable to zap, OR we zapped, retried an
2049 		 * insert, and still had an issue. Either ways, pages_remaining
2050 		 * is the number of pages we were unable to map, and we unroll
2051 		 * some state we speculatively touched before.
2052 		 */
2053 		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2054 
2055 		*length -= bytes_not_mapped;
2056 		zc->recv_skip_hint += bytes_not_mapped;
2057 	}
2058 	return err;
2059 }
2060 
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2061 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2062 					struct page **pages,
2063 					unsigned int pages_to_map,
2064 					unsigned long *address,
2065 					u32 *length,
2066 					u32 *seq,
2067 					struct tcp_zerocopy_receive *zc,
2068 					u32 total_bytes_to_map)
2069 {
2070 	unsigned long pages_remaining = pages_to_map;
2071 	unsigned int pages_mapped;
2072 	unsigned int bytes_mapped;
2073 	int err;
2074 
2075 	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2076 	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2077 	bytes_mapped = PAGE_SIZE * pages_mapped;
2078 	/* Even if vm_insert_pages fails, it may have partially succeeded in
2079 	 * mapping (some but not all of the pages).
2080 	 */
2081 	*seq += bytes_mapped;
2082 	*address += bytes_mapped;
2083 
2084 	if (likely(!err))
2085 		return 0;
2086 
2087 	/* Error: maybe zap and retry + rollback state for failed inserts. */
2088 	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2089 		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2090 		err);
2091 }
2092 
2093 #define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2094 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2095 				      struct tcp_zerocopy_receive *zc,
2096 				      struct scm_timestamping_internal *tss)
2097 {
2098 	unsigned long msg_control_addr;
2099 	struct msghdr cmsg_dummy;
2100 
2101 	msg_control_addr = (unsigned long)zc->msg_control;
2102 	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2103 	cmsg_dummy.msg_controllen =
2104 		(__kernel_size_t)zc->msg_controllen;
2105 	cmsg_dummy.msg_flags = in_compat_syscall()
2106 		? MSG_CMSG_COMPAT : 0;
2107 	cmsg_dummy.msg_control_is_user = true;
2108 	zc->msg_flags = 0;
2109 	if (zc->msg_control == msg_control_addr &&
2110 	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2111 		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2112 		zc->msg_control = (__u64)
2113 			((uintptr_t)cmsg_dummy.msg_control_user);
2114 		zc->msg_controllen =
2115 			(__u64)cmsg_dummy.msg_controllen;
2116 		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2117 	}
2118 }
2119 
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2120 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2121 					   unsigned long address,
2122 					   bool *mmap_locked)
2123 {
2124 	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2125 
2126 	if (vma) {
2127 		if (vma->vm_ops != &tcp_vm_ops) {
2128 			vma_end_read(vma);
2129 			return NULL;
2130 		}
2131 		*mmap_locked = false;
2132 		return vma;
2133 	}
2134 
2135 	mmap_read_lock(mm);
2136 	vma = vma_lookup(mm, address);
2137 	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2138 		mmap_read_unlock(mm);
2139 		return NULL;
2140 	}
2141 	*mmap_locked = true;
2142 	return vma;
2143 }
2144 
2145 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2146 static int tcp_zerocopy_receive(struct sock *sk,
2147 				struct tcp_zerocopy_receive *zc,
2148 				struct scm_timestamping_internal *tss)
2149 {
2150 	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2151 	unsigned long address = (unsigned long)zc->address;
2152 	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2153 	s32 copybuf_len = zc->copybuf_len;
2154 	struct tcp_sock *tp = tcp_sk(sk);
2155 	const skb_frag_t *frags = NULL;
2156 	unsigned int pages_to_map = 0;
2157 	struct vm_area_struct *vma;
2158 	struct sk_buff *skb = NULL;
2159 	u32 seq = tp->copied_seq;
2160 	u32 total_bytes_to_map;
2161 	int inq = tcp_inq(sk);
2162 	bool mmap_locked;
2163 	int ret;
2164 
2165 	zc->copybuf_len = 0;
2166 	zc->msg_flags = 0;
2167 
2168 	if (address & (PAGE_SIZE - 1) || address != zc->address)
2169 		return -EINVAL;
2170 
2171 	if (sk->sk_state == TCP_LISTEN)
2172 		return -ENOTCONN;
2173 
2174 	sock_rps_record_flow(sk);
2175 
2176 	if (inq && inq <= copybuf_len)
2177 		return receive_fallback_to_copy(sk, zc, inq, tss);
2178 
2179 	if (inq < PAGE_SIZE) {
2180 		zc->length = 0;
2181 		zc->recv_skip_hint = inq;
2182 		if (!inq && sock_flag(sk, SOCK_DONE))
2183 			return -EIO;
2184 		return 0;
2185 	}
2186 
2187 	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2188 	if (!vma)
2189 		return -EINVAL;
2190 
2191 	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2192 	avail_len = min_t(u32, vma_len, inq);
2193 	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2194 	if (total_bytes_to_map) {
2195 		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2196 			zap_page_range_single(vma, address, total_bytes_to_map,
2197 					      NULL);
2198 		zc->length = total_bytes_to_map;
2199 		zc->recv_skip_hint = 0;
2200 	} else {
2201 		zc->length = avail_len;
2202 		zc->recv_skip_hint = avail_len;
2203 	}
2204 	ret = 0;
2205 	while (length + PAGE_SIZE <= zc->length) {
2206 		int mappable_offset;
2207 		struct page *page;
2208 
2209 		if (zc->recv_skip_hint < PAGE_SIZE) {
2210 			u32 offset_frag;
2211 
2212 			if (skb) {
2213 				if (zc->recv_skip_hint > 0)
2214 					break;
2215 				skb = skb->next;
2216 				offset = seq - TCP_SKB_CB(skb)->seq;
2217 			} else {
2218 				skb = tcp_recv_skb(sk, seq, &offset);
2219 			}
2220 
2221 			if (!skb_frags_readable(skb))
2222 				break;
2223 
2224 			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2225 				tcp_update_recv_tstamps(skb, tss);
2226 				zc->msg_flags |= TCP_CMSG_TS;
2227 			}
2228 			zc->recv_skip_hint = skb->len - offset;
2229 			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2230 			if (!frags || offset_frag)
2231 				break;
2232 		}
2233 
2234 		mappable_offset = find_next_mappable_frag(frags,
2235 							  zc->recv_skip_hint);
2236 		if (mappable_offset) {
2237 			zc->recv_skip_hint = mappable_offset;
2238 			break;
2239 		}
2240 		page = skb_frag_page(frags);
2241 		if (WARN_ON_ONCE(!page))
2242 			break;
2243 
2244 		prefetchw(page);
2245 		pages[pages_to_map++] = page;
2246 		length += PAGE_SIZE;
2247 		zc->recv_skip_hint -= PAGE_SIZE;
2248 		frags++;
2249 		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2250 		    zc->recv_skip_hint < PAGE_SIZE) {
2251 			/* Either full batch, or we're about to go to next skb
2252 			 * (and we cannot unroll failed ops across skbs).
2253 			 */
2254 			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2255 							   pages_to_map,
2256 							   &address, &length,
2257 							   &seq, zc,
2258 							   total_bytes_to_map);
2259 			if (ret)
2260 				goto out;
2261 			pages_to_map = 0;
2262 		}
2263 	}
2264 	if (pages_to_map) {
2265 		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2266 						   &address, &length, &seq,
2267 						   zc, total_bytes_to_map);
2268 	}
2269 out:
2270 	if (mmap_locked)
2271 		mmap_read_unlock(current->mm);
2272 	else
2273 		vma_end_read(vma);
2274 	/* Try to copy straggler data. */
2275 	if (!ret)
2276 		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2277 
2278 	if (length + copylen) {
2279 		WRITE_ONCE(tp->copied_seq, seq);
2280 		tcp_rcv_space_adjust(sk);
2281 
2282 		/* Clean up data we have read: This will do ACK frames. */
2283 		tcp_recv_skb(sk, seq, &offset);
2284 		tcp_cleanup_rbuf(sk, length + copylen);
2285 		ret = 0;
2286 		if (length == zc->length)
2287 			zc->recv_skip_hint = 0;
2288 	} else {
2289 		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2290 			ret = -EIO;
2291 	}
2292 	zc->length = length;
2293 	return ret;
2294 }
2295 #endif
2296 
2297 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2298 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2299 			struct scm_timestamping_internal *tss)
2300 {
2301 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2302 	u32 tsflags = READ_ONCE(sk->sk_tsflags);
2303 	bool has_timestamping = false;
2304 
2305 	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2306 		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2307 			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2308 				if (new_tstamp) {
2309 					struct __kernel_timespec kts = {
2310 						.tv_sec = tss->ts[0].tv_sec,
2311 						.tv_nsec = tss->ts[0].tv_nsec,
2312 					};
2313 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2314 						 sizeof(kts), &kts);
2315 				} else {
2316 					struct __kernel_old_timespec ts_old = {
2317 						.tv_sec = tss->ts[0].tv_sec,
2318 						.tv_nsec = tss->ts[0].tv_nsec,
2319 					};
2320 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2321 						 sizeof(ts_old), &ts_old);
2322 				}
2323 			} else {
2324 				if (new_tstamp) {
2325 					struct __kernel_sock_timeval stv = {
2326 						.tv_sec = tss->ts[0].tv_sec,
2327 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2328 					};
2329 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2330 						 sizeof(stv), &stv);
2331 				} else {
2332 					struct __kernel_old_timeval tv = {
2333 						.tv_sec = tss->ts[0].tv_sec,
2334 						.tv_usec = tss->ts[0].tv_nsec / 1000,
2335 					};
2336 					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2337 						 sizeof(tv), &tv);
2338 				}
2339 			}
2340 		}
2341 
2342 		if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2343 		    (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2344 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2345 			has_timestamping = true;
2346 		else
2347 			tss->ts[0] = (struct timespec64) {0};
2348 	}
2349 
2350 	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2351 		if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2352 		    (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2353 		     !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2354 			has_timestamping = true;
2355 		else
2356 			tss->ts[2] = (struct timespec64) {0};
2357 	}
2358 
2359 	if (has_timestamping) {
2360 		tss->ts[1] = (struct timespec64) {0};
2361 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2362 			put_cmsg_scm_timestamping64(msg, tss);
2363 		else
2364 			put_cmsg_scm_timestamping(msg, tss);
2365 	}
2366 }
2367 
tcp_inq_hint(struct sock * sk)2368 static int tcp_inq_hint(struct sock *sk)
2369 {
2370 	const struct tcp_sock *tp = tcp_sk(sk);
2371 	u32 copied_seq = READ_ONCE(tp->copied_seq);
2372 	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2373 	int inq;
2374 
2375 	inq = rcv_nxt - copied_seq;
2376 	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2377 		lock_sock(sk);
2378 		inq = tp->rcv_nxt - tp->copied_seq;
2379 		release_sock(sk);
2380 	}
2381 	/* After receiving a FIN, tell the user-space to continue reading
2382 	 * by returning a non-zero inq.
2383 	 */
2384 	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2385 		inq = 1;
2386 	return inq;
2387 }
2388 
2389 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2390 struct tcp_xa_pool {
2391 	u8		max; /* max <= MAX_SKB_FRAGS */
2392 	u8		idx; /* idx <= max */
2393 	__u32		tokens[MAX_SKB_FRAGS];
2394 	netmem_ref	netmems[MAX_SKB_FRAGS];
2395 };
2396 
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2397 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2398 {
2399 	int i;
2400 
2401 	/* Commit part that has been copied to user space. */
2402 	for (i = 0; i < p->idx; i++)
2403 		__xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2404 			     (__force void *)p->netmems[i], GFP_KERNEL);
2405 	/* Rollback what has been pre-allocated and is no longer needed. */
2406 	for (; i < p->max; i++)
2407 		__xa_erase(&sk->sk_user_frags, p->tokens[i]);
2408 
2409 	p->max = 0;
2410 	p->idx = 0;
2411 }
2412 
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2413 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2414 {
2415 	if (!p->max)
2416 		return;
2417 
2418 	xa_lock_bh(&sk->sk_user_frags);
2419 
2420 	tcp_xa_pool_commit_locked(sk, p);
2421 
2422 	xa_unlock_bh(&sk->sk_user_frags);
2423 }
2424 
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2425 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2426 			      unsigned int max_frags)
2427 {
2428 	int err, k;
2429 
2430 	if (p->idx < p->max)
2431 		return 0;
2432 
2433 	xa_lock_bh(&sk->sk_user_frags);
2434 
2435 	tcp_xa_pool_commit_locked(sk, p);
2436 
2437 	for (k = 0; k < max_frags; k++) {
2438 		err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2439 				 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2440 		if (err)
2441 			break;
2442 	}
2443 
2444 	xa_unlock_bh(&sk->sk_user_frags);
2445 
2446 	p->max = k;
2447 	p->idx = 0;
2448 	return k ? 0 : err;
2449 }
2450 
2451 /* On error, returns the -errno. On success, returns number of bytes sent to the
2452  * user. May not consume all of @remaining_len.
2453  */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2454 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2455 			      unsigned int offset, struct msghdr *msg,
2456 			      int remaining_len)
2457 {
2458 	struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2459 	struct tcp_xa_pool tcp_xa_pool;
2460 	unsigned int start;
2461 	int i, copy, n;
2462 	int sent = 0;
2463 	int err = 0;
2464 
2465 	tcp_xa_pool.max = 0;
2466 	tcp_xa_pool.idx = 0;
2467 	do {
2468 		start = skb_headlen(skb);
2469 
2470 		if (skb_frags_readable(skb)) {
2471 			err = -ENODEV;
2472 			goto out;
2473 		}
2474 
2475 		/* Copy header. */
2476 		copy = start - offset;
2477 		if (copy > 0) {
2478 			copy = min(copy, remaining_len);
2479 
2480 			n = copy_to_iter(skb->data + offset, copy,
2481 					 &msg->msg_iter);
2482 			if (n != copy) {
2483 				err = -EFAULT;
2484 				goto out;
2485 			}
2486 
2487 			offset += copy;
2488 			remaining_len -= copy;
2489 
2490 			/* First a dmabuf_cmsg for # bytes copied to user
2491 			 * buffer.
2492 			 */
2493 			memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2494 			dmabuf_cmsg.frag_size = copy;
2495 			err = put_cmsg_notrunc(msg, SOL_SOCKET,
2496 					       SO_DEVMEM_LINEAR,
2497 					       sizeof(dmabuf_cmsg),
2498 					       &dmabuf_cmsg);
2499 			if (err)
2500 				goto out;
2501 
2502 			sent += copy;
2503 
2504 			if (remaining_len == 0)
2505 				goto out;
2506 		}
2507 
2508 		/* after that, send information of dmabuf pages through a
2509 		 * sequence of cmsg
2510 		 */
2511 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2512 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2513 			struct net_iov *niov;
2514 			u64 frag_offset;
2515 			int end;
2516 
2517 			/* !skb_frags_readable() should indicate that ALL the
2518 			 * frags in this skb are dmabuf net_iovs. We're checking
2519 			 * for that flag above, but also check individual frags
2520 			 * here. If the tcp stack is not setting
2521 			 * skb_frags_readable() correctly, we still don't want
2522 			 * to crash here.
2523 			 */
2524 			if (!skb_frag_net_iov(frag)) {
2525 				net_err_ratelimited("Found non-dmabuf skb with net_iov");
2526 				err = -ENODEV;
2527 				goto out;
2528 			}
2529 
2530 			niov = skb_frag_net_iov(frag);
2531 			if (!net_is_devmem_iov(niov)) {
2532 				err = -ENODEV;
2533 				goto out;
2534 			}
2535 
2536 			end = start + skb_frag_size(frag);
2537 			copy = end - offset;
2538 
2539 			if (copy > 0) {
2540 				copy = min(copy, remaining_len);
2541 
2542 				frag_offset = net_iov_virtual_addr(niov) +
2543 					      skb_frag_off(frag) + offset -
2544 					      start;
2545 				dmabuf_cmsg.frag_offset = frag_offset;
2546 				dmabuf_cmsg.frag_size = copy;
2547 				err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2548 							 skb_shinfo(skb)->nr_frags - i);
2549 				if (err)
2550 					goto out;
2551 
2552 				/* Will perform the exchange later */
2553 				dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2554 				dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2555 
2556 				offset += copy;
2557 				remaining_len -= copy;
2558 
2559 				err = put_cmsg_notrunc(msg, SOL_SOCKET,
2560 						       SO_DEVMEM_DMABUF,
2561 						       sizeof(dmabuf_cmsg),
2562 						       &dmabuf_cmsg);
2563 				if (err)
2564 					goto out;
2565 
2566 				atomic_long_inc(&niov->pp_ref_count);
2567 				tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2568 
2569 				sent += copy;
2570 
2571 				if (remaining_len == 0)
2572 					goto out;
2573 			}
2574 			start = end;
2575 		}
2576 
2577 		tcp_xa_pool_commit(sk, &tcp_xa_pool);
2578 		if (!remaining_len)
2579 			goto out;
2580 
2581 		/* if remaining_len is not satisfied yet, we need to go to the
2582 		 * next frag in the frag_list to satisfy remaining_len.
2583 		 */
2584 		skb = skb_shinfo(skb)->frag_list ?: skb->next;
2585 
2586 		offset = offset - start;
2587 	} while (skb);
2588 
2589 	if (remaining_len) {
2590 		err = -EFAULT;
2591 		goto out;
2592 	}
2593 
2594 out:
2595 	tcp_xa_pool_commit(sk, &tcp_xa_pool);
2596 	if (!sent)
2597 		sent = err;
2598 
2599 	return sent;
2600 }
2601 
2602 /*
2603  *	This routine copies from a sock struct into the user buffer.
2604  *
2605  *	Technical note: in 2.3 we work on _locked_ socket, so that
2606  *	tricks with *seq access order and skb->users are not required.
2607  *	Probably, code can be easily improved even more.
2608  */
2609 
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2610 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2611 			      int flags, struct scm_timestamping_internal *tss,
2612 			      int *cmsg_flags)
2613 {
2614 	struct tcp_sock *tp = tcp_sk(sk);
2615 	int last_copied_dmabuf = -1; /* uninitialized */
2616 	int copied = 0;
2617 	u32 peek_seq;
2618 	u32 *seq;
2619 	unsigned long used;
2620 	int err;
2621 	int target;		/* Read at least this many bytes */
2622 	long timeo;
2623 	struct sk_buff *skb, *last;
2624 	u32 peek_offset = 0;
2625 	u32 urg_hole = 0;
2626 
2627 	err = -ENOTCONN;
2628 	if (sk->sk_state == TCP_LISTEN)
2629 		goto out;
2630 
2631 	if (tp->recvmsg_inq) {
2632 		*cmsg_flags = TCP_CMSG_INQ;
2633 		msg->msg_get_inq = 1;
2634 	}
2635 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2636 
2637 	/* Urgent data needs to be handled specially. */
2638 	if (flags & MSG_OOB)
2639 		goto recv_urg;
2640 
2641 	if (unlikely(tp->repair)) {
2642 		err = -EPERM;
2643 		if (!(flags & MSG_PEEK))
2644 			goto out;
2645 
2646 		if (tp->repair_queue == TCP_SEND_QUEUE)
2647 			goto recv_sndq;
2648 
2649 		err = -EINVAL;
2650 		if (tp->repair_queue == TCP_NO_QUEUE)
2651 			goto out;
2652 
2653 		/* 'common' recv queue MSG_PEEK-ing */
2654 	}
2655 
2656 	seq = &tp->copied_seq;
2657 	if (flags & MSG_PEEK) {
2658 		peek_offset = max(sk_peek_offset(sk, flags), 0);
2659 		peek_seq = tp->copied_seq + peek_offset;
2660 		seq = &peek_seq;
2661 	}
2662 
2663 	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2664 
2665 	do {
2666 		u32 offset;
2667 
2668 		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2669 		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2670 			if (copied)
2671 				break;
2672 			if (signal_pending(current)) {
2673 				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2674 				break;
2675 			}
2676 		}
2677 
2678 		/* Next get a buffer. */
2679 
2680 		last = skb_peek_tail(&sk->sk_receive_queue);
2681 		skb_queue_walk(&sk->sk_receive_queue, skb) {
2682 			last = skb;
2683 			/* Now that we have two receive queues this
2684 			 * shouldn't happen.
2685 			 */
2686 			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2687 				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2688 				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2689 				 flags))
2690 				break;
2691 
2692 			offset = *seq - TCP_SKB_CB(skb)->seq;
2693 			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2694 				pr_err_once("%s: found a SYN, please report !\n", __func__);
2695 				offset--;
2696 			}
2697 			if (offset < skb->len)
2698 				goto found_ok_skb;
2699 			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2700 				goto found_fin_ok;
2701 			WARN(!(flags & MSG_PEEK),
2702 			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2703 			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2704 		}
2705 
2706 		/* Well, if we have backlog, try to process it now yet. */
2707 
2708 		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2709 			break;
2710 
2711 		if (copied) {
2712 			if (!timeo ||
2713 			    sk->sk_err ||
2714 			    sk->sk_state == TCP_CLOSE ||
2715 			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2716 			    signal_pending(current))
2717 				break;
2718 		} else {
2719 			if (sock_flag(sk, SOCK_DONE))
2720 				break;
2721 
2722 			if (sk->sk_err) {
2723 				copied = sock_error(sk);
2724 				break;
2725 			}
2726 
2727 			if (sk->sk_shutdown & RCV_SHUTDOWN)
2728 				break;
2729 
2730 			if (sk->sk_state == TCP_CLOSE) {
2731 				/* This occurs when user tries to read
2732 				 * from never connected socket.
2733 				 */
2734 				copied = -ENOTCONN;
2735 				break;
2736 			}
2737 
2738 			if (!timeo) {
2739 				copied = -EAGAIN;
2740 				break;
2741 			}
2742 
2743 			if (signal_pending(current)) {
2744 				copied = sock_intr_errno(timeo);
2745 				break;
2746 			}
2747 		}
2748 
2749 		if (copied >= target) {
2750 			/* Do not sleep, just process backlog. */
2751 			__sk_flush_backlog(sk);
2752 		} else {
2753 			tcp_cleanup_rbuf(sk, copied);
2754 			err = sk_wait_data(sk, &timeo, last);
2755 			if (err < 0) {
2756 				err = copied ? : err;
2757 				goto out;
2758 			}
2759 		}
2760 
2761 		if ((flags & MSG_PEEK) &&
2762 		    (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2763 			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2764 					    current->comm,
2765 					    task_pid_nr(current));
2766 			peek_seq = tp->copied_seq + peek_offset;
2767 		}
2768 		continue;
2769 
2770 found_ok_skb:
2771 		/* Ok so how much can we use? */
2772 		used = skb->len - offset;
2773 		if (len < used)
2774 			used = len;
2775 
2776 		/* Do we have urgent data here? */
2777 		if (unlikely(tp->urg_data)) {
2778 			u32 urg_offset = tp->urg_seq - *seq;
2779 			if (urg_offset < used) {
2780 				if (!urg_offset) {
2781 					if (!sock_flag(sk, SOCK_URGINLINE)) {
2782 						WRITE_ONCE(*seq, *seq + 1);
2783 						urg_hole++;
2784 						offset++;
2785 						used--;
2786 						if (!used)
2787 							goto skip_copy;
2788 					}
2789 				} else
2790 					used = urg_offset;
2791 			}
2792 		}
2793 
2794 		if (!(flags & MSG_TRUNC)) {
2795 			if (last_copied_dmabuf != -1 &&
2796 			    last_copied_dmabuf != !skb_frags_readable(skb))
2797 				break;
2798 
2799 			if (skb_frags_readable(skb)) {
2800 				err = skb_copy_datagram_msg(skb, offset, msg,
2801 							    used);
2802 				if (err) {
2803 					/* Exception. Bailout! */
2804 					if (!copied)
2805 						copied = -EFAULT;
2806 					break;
2807 				}
2808 			} else {
2809 				if (!(flags & MSG_SOCK_DEVMEM)) {
2810 					/* dmabuf skbs can only be received
2811 					 * with the MSG_SOCK_DEVMEM flag.
2812 					 */
2813 					if (!copied)
2814 						copied = -EFAULT;
2815 
2816 					break;
2817 				}
2818 
2819 				err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2820 							 used);
2821 				if (err <= 0) {
2822 					if (!copied)
2823 						copied = -EFAULT;
2824 
2825 					break;
2826 				}
2827 				used = err;
2828 			}
2829 		}
2830 
2831 		last_copied_dmabuf = !skb_frags_readable(skb);
2832 
2833 		WRITE_ONCE(*seq, *seq + used);
2834 		copied += used;
2835 		len -= used;
2836 		if (flags & MSG_PEEK)
2837 			sk_peek_offset_fwd(sk, used);
2838 		else
2839 			sk_peek_offset_bwd(sk, used);
2840 		tcp_rcv_space_adjust(sk);
2841 
2842 skip_copy:
2843 		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2844 			WRITE_ONCE(tp->urg_data, 0);
2845 			tcp_fast_path_check(sk);
2846 		}
2847 
2848 		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2849 			tcp_update_recv_tstamps(skb, tss);
2850 			*cmsg_flags |= TCP_CMSG_TS;
2851 		}
2852 
2853 		if (used + offset < skb->len)
2854 			continue;
2855 
2856 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2857 			goto found_fin_ok;
2858 		if (!(flags & MSG_PEEK))
2859 			tcp_eat_recv_skb(sk, skb);
2860 		continue;
2861 
2862 found_fin_ok:
2863 		/* Process the FIN. */
2864 		WRITE_ONCE(*seq, *seq + 1);
2865 		if (!(flags & MSG_PEEK))
2866 			tcp_eat_recv_skb(sk, skb);
2867 		break;
2868 	} while (len > 0);
2869 
2870 	/* According to UNIX98, msg_name/msg_namelen are ignored
2871 	 * on connected socket. I was just happy when found this 8) --ANK
2872 	 */
2873 
2874 	/* Clean up data we have read: This will do ACK frames. */
2875 	tcp_cleanup_rbuf(sk, copied);
2876 	return copied;
2877 
2878 out:
2879 	return err;
2880 
2881 recv_urg:
2882 	err = tcp_recv_urg(sk, msg, len, flags);
2883 	goto out;
2884 
2885 recv_sndq:
2886 	err = tcp_peek_sndq(sk, msg, len);
2887 	goto out;
2888 }
2889 
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2890 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2891 		int *addr_len)
2892 {
2893 	int cmsg_flags = 0, ret;
2894 	struct scm_timestamping_internal tss;
2895 
2896 	if (unlikely(flags & MSG_ERRQUEUE))
2897 		return inet_recv_error(sk, msg, len, addr_len);
2898 
2899 	if (sk_can_busy_loop(sk) &&
2900 	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2901 	    sk->sk_state == TCP_ESTABLISHED)
2902 		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2903 
2904 	lock_sock(sk);
2905 	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2906 	release_sock(sk);
2907 
2908 	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2909 		if (cmsg_flags & TCP_CMSG_TS)
2910 			tcp_recv_timestamp(msg, sk, &tss);
2911 		if (msg->msg_get_inq) {
2912 			msg->msg_inq = tcp_inq_hint(sk);
2913 			if (cmsg_flags & TCP_CMSG_INQ)
2914 				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2915 					 sizeof(msg->msg_inq), &msg->msg_inq);
2916 		}
2917 	}
2918 	return ret;
2919 }
2920 EXPORT_IPV6_MOD(tcp_recvmsg);
2921 
tcp_set_state(struct sock * sk,int state)2922 void tcp_set_state(struct sock *sk, int state)
2923 {
2924 	int oldstate = sk->sk_state;
2925 
2926 	/* We defined a new enum for TCP states that are exported in BPF
2927 	 * so as not force the internal TCP states to be frozen. The
2928 	 * following checks will detect if an internal state value ever
2929 	 * differs from the BPF value. If this ever happens, then we will
2930 	 * need to remap the internal value to the BPF value before calling
2931 	 * tcp_call_bpf_2arg.
2932 	 */
2933 	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2934 	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2935 	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2936 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2937 	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2938 	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2939 	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2940 	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2941 	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2942 	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2943 	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2944 	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2945 	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2946 	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2947 
2948 	/* bpf uapi header bpf.h defines an anonymous enum with values
2949 	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2950 	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2951 	 * But clang built vmlinux does not have this enum in DWARF
2952 	 * since clang removes the above code before generating IR/debuginfo.
2953 	 * Let us explicitly emit the type debuginfo to ensure the
2954 	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2955 	 * regardless of which compiler is used.
2956 	 */
2957 	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2958 
2959 	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2960 		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2961 
2962 	switch (state) {
2963 	case TCP_ESTABLISHED:
2964 		if (oldstate != TCP_ESTABLISHED)
2965 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2966 		break;
2967 	case TCP_CLOSE_WAIT:
2968 		if (oldstate == TCP_SYN_RECV)
2969 			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2970 		break;
2971 
2972 	case TCP_CLOSE:
2973 		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2974 			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2975 
2976 		sk->sk_prot->unhash(sk);
2977 		if (inet_csk(sk)->icsk_bind_hash &&
2978 		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2979 			inet_put_port(sk);
2980 		fallthrough;
2981 	default:
2982 		if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2983 			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2984 	}
2985 
2986 	/* Change state AFTER socket is unhashed to avoid closed
2987 	 * socket sitting in hash tables.
2988 	 */
2989 	inet_sk_state_store(sk, state);
2990 }
2991 EXPORT_SYMBOL_GPL(tcp_set_state);
2992 
2993 /*
2994  *	State processing on a close. This implements the state shift for
2995  *	sending our FIN frame. Note that we only send a FIN for some
2996  *	states. A shutdown() may have already sent the FIN, or we may be
2997  *	closed.
2998  */
2999 
3000 static const unsigned char new_state[16] = {
3001   /* current state:        new state:      action:	*/
3002   [0 /* (Invalid) */]	= TCP_CLOSE,
3003   [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3004   [TCP_SYN_SENT]	= TCP_CLOSE,
3005   [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
3006   [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
3007   [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
3008   [TCP_TIME_WAIT]	= TCP_CLOSE,
3009   [TCP_CLOSE]		= TCP_CLOSE,
3010   [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
3011   [TCP_LAST_ACK]	= TCP_LAST_ACK,
3012   [TCP_LISTEN]		= TCP_CLOSE,
3013   [TCP_CLOSING]		= TCP_CLOSING,
3014   [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
3015 };
3016 
tcp_close_state(struct sock * sk)3017 static int tcp_close_state(struct sock *sk)
3018 {
3019 	int next = (int)new_state[sk->sk_state];
3020 	int ns = next & TCP_STATE_MASK;
3021 
3022 	tcp_set_state(sk, ns);
3023 
3024 	return next & TCP_ACTION_FIN;
3025 }
3026 
3027 /*
3028  *	Shutdown the sending side of a connection. Much like close except
3029  *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3030  */
3031 
tcp_shutdown(struct sock * sk,int how)3032 void tcp_shutdown(struct sock *sk, int how)
3033 {
3034 	/*	We need to grab some memory, and put together a FIN,
3035 	 *	and then put it into the queue to be sent.
3036 	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3037 	 */
3038 	if (!(how & SEND_SHUTDOWN))
3039 		return;
3040 
3041 	/* If we've already sent a FIN, or it's a closed state, skip this. */
3042 	if ((1 << sk->sk_state) &
3043 	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3044 	     TCPF_CLOSE_WAIT)) {
3045 		/* Clear out any half completed packets.  FIN if needed. */
3046 		if (tcp_close_state(sk))
3047 			tcp_send_fin(sk);
3048 	}
3049 }
3050 EXPORT_IPV6_MOD(tcp_shutdown);
3051 
tcp_orphan_count_sum(void)3052 int tcp_orphan_count_sum(void)
3053 {
3054 	int i, total = 0;
3055 
3056 	for_each_possible_cpu(i)
3057 		total += per_cpu(tcp_orphan_count, i);
3058 
3059 	return max(total, 0);
3060 }
3061 
3062 static int tcp_orphan_cache;
3063 static struct timer_list tcp_orphan_timer;
3064 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3065 
tcp_orphan_update(struct timer_list * unused)3066 static void tcp_orphan_update(struct timer_list *unused)
3067 {
3068 	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3069 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3070 }
3071 
tcp_too_many_orphans(int shift)3072 static bool tcp_too_many_orphans(int shift)
3073 {
3074 	return READ_ONCE(tcp_orphan_cache) << shift >
3075 		READ_ONCE(sysctl_tcp_max_orphans);
3076 }
3077 
tcp_out_of_memory(const struct sock * sk)3078 static bool tcp_out_of_memory(const struct sock *sk)
3079 {
3080 	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3081 	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3082 		return true;
3083 	return false;
3084 }
3085 
tcp_check_oom(const struct sock * sk,int shift)3086 bool tcp_check_oom(const struct sock *sk, int shift)
3087 {
3088 	bool too_many_orphans, out_of_socket_memory;
3089 
3090 	too_many_orphans = tcp_too_many_orphans(shift);
3091 	out_of_socket_memory = tcp_out_of_memory(sk);
3092 
3093 	if (too_many_orphans)
3094 		net_info_ratelimited("too many orphaned sockets\n");
3095 	if (out_of_socket_memory)
3096 		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3097 	return too_many_orphans || out_of_socket_memory;
3098 }
3099 
__tcp_close(struct sock * sk,long timeout)3100 void __tcp_close(struct sock *sk, long timeout)
3101 {
3102 	struct sk_buff *skb;
3103 	int data_was_unread = 0;
3104 	int state;
3105 
3106 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3107 
3108 	if (sk->sk_state == TCP_LISTEN) {
3109 		tcp_set_state(sk, TCP_CLOSE);
3110 
3111 		/* Special case. */
3112 		inet_csk_listen_stop(sk);
3113 
3114 		goto adjudge_to_death;
3115 	}
3116 
3117 	/*  We need to flush the recv. buffs.  We do this only on the
3118 	 *  descriptor close, not protocol-sourced closes, because the
3119 	 *  reader process may not have drained the data yet!
3120 	 */
3121 	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3122 		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3123 
3124 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3125 			len--;
3126 		data_was_unread += len;
3127 		__kfree_skb(skb);
3128 	}
3129 
3130 	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3131 	if (sk->sk_state == TCP_CLOSE)
3132 		goto adjudge_to_death;
3133 
3134 	/* As outlined in RFC 2525, section 2.17, we send a RST here because
3135 	 * data was lost. To witness the awful effects of the old behavior of
3136 	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3137 	 * GET in an FTP client, suspend the process, wait for the client to
3138 	 * advertise a zero window, then kill -9 the FTP client, wheee...
3139 	 * Note: timeout is always zero in such a case.
3140 	 */
3141 	if (unlikely(tcp_sk(sk)->repair)) {
3142 		sk->sk_prot->disconnect(sk, 0);
3143 	} else if (data_was_unread) {
3144 		/* Unread data was tossed, zap the connection. */
3145 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3146 		tcp_set_state(sk, TCP_CLOSE);
3147 		tcp_send_active_reset(sk, sk->sk_allocation,
3148 				      SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3149 	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3150 		/* Check zero linger _after_ checking for unread data. */
3151 		sk->sk_prot->disconnect(sk, 0);
3152 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3153 	} else if (tcp_close_state(sk)) {
3154 		/* We FIN if the application ate all the data before
3155 		 * zapping the connection.
3156 		 */
3157 
3158 		/* RED-PEN. Formally speaking, we have broken TCP state
3159 		 * machine. State transitions:
3160 		 *
3161 		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3162 		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (it is difficult)
3163 		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3164 		 *
3165 		 * are legal only when FIN has been sent (i.e. in window),
3166 		 * rather than queued out of window. Purists blame.
3167 		 *
3168 		 * F.e. "RFC state" is ESTABLISHED,
3169 		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3170 		 *
3171 		 * The visible declinations are that sometimes
3172 		 * we enter time-wait state, when it is not required really
3173 		 * (harmless), do not send active resets, when they are
3174 		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3175 		 * they look as CLOSING or LAST_ACK for Linux)
3176 		 * Probably, I missed some more holelets.
3177 		 * 						--ANK
3178 		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3179 		 * in a single packet! (May consider it later but will
3180 		 * probably need API support or TCP_CORK SYN-ACK until
3181 		 * data is written and socket is closed.)
3182 		 */
3183 		tcp_send_fin(sk);
3184 	}
3185 
3186 	sk_stream_wait_close(sk, timeout);
3187 
3188 adjudge_to_death:
3189 	state = sk->sk_state;
3190 	sock_hold(sk);
3191 	sock_orphan(sk);
3192 
3193 	local_bh_disable();
3194 	bh_lock_sock(sk);
3195 	/* remove backlog if any, without releasing ownership. */
3196 	__release_sock(sk);
3197 
3198 	this_cpu_inc(tcp_orphan_count);
3199 
3200 	/* Have we already been destroyed by a softirq or backlog? */
3201 	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3202 		goto out;
3203 
3204 	/*	This is a (useful) BSD violating of the RFC. There is a
3205 	 *	problem with TCP as specified in that the other end could
3206 	 *	keep a socket open forever with no application left this end.
3207 	 *	We use a 1 minute timeout (about the same as BSD) then kill
3208 	 *	our end. If they send after that then tough - BUT: long enough
3209 	 *	that we won't make the old 4*rto = almost no time - whoops
3210 	 *	reset mistake.
3211 	 *
3212 	 *	Nope, it was not mistake. It is really desired behaviour
3213 	 *	f.e. on http servers, when such sockets are useless, but
3214 	 *	consume significant resources. Let's do it with special
3215 	 *	linger2	option.					--ANK
3216 	 */
3217 
3218 	if (sk->sk_state == TCP_FIN_WAIT2) {
3219 		struct tcp_sock *tp = tcp_sk(sk);
3220 		if (READ_ONCE(tp->linger2) < 0) {
3221 			tcp_set_state(sk, TCP_CLOSE);
3222 			tcp_send_active_reset(sk, GFP_ATOMIC,
3223 					      SK_RST_REASON_TCP_ABORT_ON_LINGER);
3224 			__NET_INC_STATS(sock_net(sk),
3225 					LINUX_MIB_TCPABORTONLINGER);
3226 		} else {
3227 			const int tmo = tcp_fin_time(sk);
3228 
3229 			if (tmo > TCP_TIMEWAIT_LEN) {
3230 				tcp_reset_keepalive_timer(sk,
3231 						tmo - TCP_TIMEWAIT_LEN);
3232 			} else {
3233 				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3234 				goto out;
3235 			}
3236 		}
3237 	}
3238 	if (sk->sk_state != TCP_CLOSE) {
3239 		if (tcp_check_oom(sk, 0)) {
3240 			tcp_set_state(sk, TCP_CLOSE);
3241 			tcp_send_active_reset(sk, GFP_ATOMIC,
3242 					      SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3243 			__NET_INC_STATS(sock_net(sk),
3244 					LINUX_MIB_TCPABORTONMEMORY);
3245 		} else if (!check_net(sock_net(sk))) {
3246 			/* Not possible to send reset; just close */
3247 			tcp_set_state(sk, TCP_CLOSE);
3248 		}
3249 	}
3250 
3251 	if (sk->sk_state == TCP_CLOSE) {
3252 		struct request_sock *req;
3253 
3254 		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3255 						lockdep_sock_is_held(sk));
3256 		/* We could get here with a non-NULL req if the socket is
3257 		 * aborted (e.g., closed with unread data) before 3WHS
3258 		 * finishes.
3259 		 */
3260 		if (req)
3261 			reqsk_fastopen_remove(sk, req, false);
3262 		inet_csk_destroy_sock(sk);
3263 	}
3264 	/* Otherwise, socket is reprieved until protocol close. */
3265 
3266 out:
3267 	bh_unlock_sock(sk);
3268 	local_bh_enable();
3269 }
3270 
tcp_close(struct sock * sk,long timeout)3271 void tcp_close(struct sock *sk, long timeout)
3272 {
3273 	lock_sock(sk);
3274 	__tcp_close(sk, timeout);
3275 	release_sock(sk);
3276 	if (!sk->sk_net_refcnt)
3277 		inet_csk_clear_xmit_timers_sync(sk);
3278 	sock_put(sk);
3279 }
3280 EXPORT_SYMBOL(tcp_close);
3281 
3282 /* These states need RST on ABORT according to RFC793 */
3283 
tcp_need_reset(int state)3284 static inline bool tcp_need_reset(int state)
3285 {
3286 	return (1 << state) &
3287 	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3288 		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3289 }
3290 
tcp_rtx_queue_purge(struct sock * sk)3291 static void tcp_rtx_queue_purge(struct sock *sk)
3292 {
3293 	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3294 
3295 	tcp_sk(sk)->highest_sack = NULL;
3296 	while (p) {
3297 		struct sk_buff *skb = rb_to_skb(p);
3298 
3299 		p = rb_next(p);
3300 		/* Since we are deleting whole queue, no need to
3301 		 * list_del(&skb->tcp_tsorted_anchor)
3302 		 */
3303 		tcp_rtx_queue_unlink(skb, sk);
3304 		tcp_wmem_free_skb(sk, skb);
3305 	}
3306 }
3307 
tcp_write_queue_purge(struct sock * sk)3308 void tcp_write_queue_purge(struct sock *sk)
3309 {
3310 	struct sk_buff *skb;
3311 
3312 	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3313 	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3314 		tcp_skb_tsorted_anchor_cleanup(skb);
3315 		tcp_wmem_free_skb(sk, skb);
3316 	}
3317 	tcp_rtx_queue_purge(sk);
3318 	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3319 	tcp_clear_all_retrans_hints(tcp_sk(sk));
3320 	tcp_sk(sk)->packets_out = 0;
3321 	inet_csk(sk)->icsk_backoff = 0;
3322 }
3323 
tcp_disconnect(struct sock * sk,int flags)3324 int tcp_disconnect(struct sock *sk, int flags)
3325 {
3326 	struct inet_sock *inet = inet_sk(sk);
3327 	struct inet_connection_sock *icsk = inet_csk(sk);
3328 	struct tcp_sock *tp = tcp_sk(sk);
3329 	int old_state = sk->sk_state;
3330 	u32 seq;
3331 
3332 	if (old_state != TCP_CLOSE)
3333 		tcp_set_state(sk, TCP_CLOSE);
3334 
3335 	/* ABORT function of RFC793 */
3336 	if (old_state == TCP_LISTEN) {
3337 		inet_csk_listen_stop(sk);
3338 	} else if (unlikely(tp->repair)) {
3339 		WRITE_ONCE(sk->sk_err, ECONNABORTED);
3340 	} else if (tcp_need_reset(old_state)) {
3341 		tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3342 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3343 	} else if (tp->snd_nxt != tp->write_seq &&
3344 		   (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3345 		/* The last check adjusts for discrepancy of Linux wrt. RFC
3346 		 * states
3347 		 */
3348 		tcp_send_active_reset(sk, gfp_any(),
3349 				      SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3350 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3351 	} else if (old_state == TCP_SYN_SENT)
3352 		WRITE_ONCE(sk->sk_err, ECONNRESET);
3353 
3354 	tcp_clear_xmit_timers(sk);
3355 	__skb_queue_purge(&sk->sk_receive_queue);
3356 	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3357 	WRITE_ONCE(tp->urg_data, 0);
3358 	sk_set_peek_off(sk, -1);
3359 	tcp_write_queue_purge(sk);
3360 	tcp_fastopen_active_disable_ofo_check(sk);
3361 	skb_rbtree_purge(&tp->out_of_order_queue);
3362 
3363 	inet->inet_dport = 0;
3364 
3365 	inet_bhash2_reset_saddr(sk);
3366 
3367 	WRITE_ONCE(sk->sk_shutdown, 0);
3368 	sock_reset_flag(sk, SOCK_DONE);
3369 	tp->srtt_us = 0;
3370 	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3371 	tp->rcv_rtt_last_tsecr = 0;
3372 
3373 	seq = tp->write_seq + tp->max_window + 2;
3374 	if (!seq)
3375 		seq = 1;
3376 	WRITE_ONCE(tp->write_seq, seq);
3377 
3378 	icsk->icsk_backoff = 0;
3379 	icsk->icsk_probes_out = 0;
3380 	icsk->icsk_probes_tstamp = 0;
3381 	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3382 	WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3383 	WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3384 	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3385 	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3386 	tp->snd_cwnd_cnt = 0;
3387 	tp->is_cwnd_limited = 0;
3388 	tp->max_packets_out = 0;
3389 	tp->window_clamp = 0;
3390 	tp->delivered = 0;
3391 	tp->delivered_ce = 0;
3392 	if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3393 		icsk->icsk_ca_ops->release(sk);
3394 	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3395 	icsk->icsk_ca_initialized = 0;
3396 	tcp_set_ca_state(sk, TCP_CA_Open);
3397 	tp->is_sack_reneg = 0;
3398 	tcp_clear_retrans(tp);
3399 	tp->total_retrans = 0;
3400 	inet_csk_delack_init(sk);
3401 	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3402 	 * issue in __tcp_select_window()
3403 	 */
3404 	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3405 	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3406 	__sk_dst_reset(sk);
3407 	dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3408 	tcp_saved_syn_free(tp);
3409 	tp->compressed_ack = 0;
3410 	tp->segs_in = 0;
3411 	tp->segs_out = 0;
3412 	tp->bytes_sent = 0;
3413 	tp->bytes_acked = 0;
3414 	tp->bytes_received = 0;
3415 	tp->bytes_retrans = 0;
3416 	tp->data_segs_in = 0;
3417 	tp->data_segs_out = 0;
3418 	tp->duplicate_sack[0].start_seq = 0;
3419 	tp->duplicate_sack[0].end_seq = 0;
3420 	tp->dsack_dups = 0;
3421 	tp->reord_seen = 0;
3422 	tp->retrans_out = 0;
3423 	tp->sacked_out = 0;
3424 	tp->tlp_high_seq = 0;
3425 	tp->last_oow_ack_time = 0;
3426 	tp->plb_rehash = 0;
3427 	/* There's a bubble in the pipe until at least the first ACK. */
3428 	tp->app_limited = ~0U;
3429 	tp->rate_app_limited = 1;
3430 	tp->rack.mstamp = 0;
3431 	tp->rack.advanced = 0;
3432 	tp->rack.reo_wnd_steps = 1;
3433 	tp->rack.last_delivered = 0;
3434 	tp->rack.reo_wnd_persist = 0;
3435 	tp->rack.dsack_seen = 0;
3436 	tp->syn_data_acked = 0;
3437 	tp->syn_fastopen_child = 0;
3438 	tp->rx_opt.saw_tstamp = 0;
3439 	tp->rx_opt.dsack = 0;
3440 	tp->rx_opt.num_sacks = 0;
3441 	tp->rcv_ooopack = 0;
3442 
3443 
3444 	/* Clean up fastopen related fields */
3445 	tcp_free_fastopen_req(tp);
3446 	inet_clear_bit(DEFER_CONNECT, sk);
3447 	tp->fastopen_client_fail = 0;
3448 
3449 	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3450 
3451 	if (sk->sk_frag.page) {
3452 		put_page(sk->sk_frag.page);
3453 		sk->sk_frag.page = NULL;
3454 		sk->sk_frag.offset = 0;
3455 	}
3456 	sk_error_report(sk);
3457 	return 0;
3458 }
3459 EXPORT_SYMBOL(tcp_disconnect);
3460 
tcp_can_repair_sock(const struct sock * sk)3461 static inline bool tcp_can_repair_sock(const struct sock *sk)
3462 {
3463 	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3464 		(sk->sk_state != TCP_LISTEN);
3465 }
3466 
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3467 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3468 {
3469 	struct tcp_repair_window opt;
3470 
3471 	if (!tp->repair)
3472 		return -EPERM;
3473 
3474 	if (len != sizeof(opt))
3475 		return -EINVAL;
3476 
3477 	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3478 		return -EFAULT;
3479 
3480 	if (opt.max_window < opt.snd_wnd)
3481 		return -EINVAL;
3482 
3483 	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3484 		return -EINVAL;
3485 
3486 	if (after(opt.rcv_wup, tp->rcv_nxt))
3487 		return -EINVAL;
3488 
3489 	tp->snd_wl1	= opt.snd_wl1;
3490 	tp->snd_wnd	= opt.snd_wnd;
3491 	tp->max_window	= opt.max_window;
3492 
3493 	tp->rcv_wnd	= opt.rcv_wnd;
3494 	tp->rcv_wup	= opt.rcv_wup;
3495 
3496 	return 0;
3497 }
3498 
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3499 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3500 		unsigned int len)
3501 {
3502 	struct tcp_sock *tp = tcp_sk(sk);
3503 	struct tcp_repair_opt opt;
3504 	size_t offset = 0;
3505 
3506 	while (len >= sizeof(opt)) {
3507 		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3508 			return -EFAULT;
3509 
3510 		offset += sizeof(opt);
3511 		len -= sizeof(opt);
3512 
3513 		switch (opt.opt_code) {
3514 		case TCPOPT_MSS:
3515 			tp->rx_opt.mss_clamp = opt.opt_val;
3516 			tcp_mtup_init(sk);
3517 			break;
3518 		case TCPOPT_WINDOW:
3519 			{
3520 				u16 snd_wscale = opt.opt_val & 0xFFFF;
3521 				u16 rcv_wscale = opt.opt_val >> 16;
3522 
3523 				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3524 					return -EFBIG;
3525 
3526 				tp->rx_opt.snd_wscale = snd_wscale;
3527 				tp->rx_opt.rcv_wscale = rcv_wscale;
3528 				tp->rx_opt.wscale_ok = 1;
3529 			}
3530 			break;
3531 		case TCPOPT_SACK_PERM:
3532 			if (opt.opt_val != 0)
3533 				return -EINVAL;
3534 
3535 			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3536 			break;
3537 		case TCPOPT_TIMESTAMP:
3538 			if (opt.opt_val != 0)
3539 				return -EINVAL;
3540 
3541 			tp->rx_opt.tstamp_ok = 1;
3542 			break;
3543 		}
3544 	}
3545 
3546 	return 0;
3547 }
3548 
3549 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3550 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3551 
tcp_enable_tx_delay(void)3552 static void tcp_enable_tx_delay(void)
3553 {
3554 	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3555 		static int __tcp_tx_delay_enabled = 0;
3556 
3557 		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3558 			static_branch_enable(&tcp_tx_delay_enabled);
3559 			pr_info("TCP_TX_DELAY enabled\n");
3560 		}
3561 	}
3562 }
3563 
3564 /* When set indicates to always queue non-full frames.  Later the user clears
3565  * this option and we transmit any pending partial frames in the queue.  This is
3566  * meant to be used alongside sendfile() to get properly filled frames when the
3567  * user (for example) must write out headers with a write() call first and then
3568  * use sendfile to send out the data parts.
3569  *
3570  * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3571  * TCP_NODELAY.
3572  */
__tcp_sock_set_cork(struct sock * sk,bool on)3573 void __tcp_sock_set_cork(struct sock *sk, bool on)
3574 {
3575 	struct tcp_sock *tp = tcp_sk(sk);
3576 
3577 	if (on) {
3578 		tp->nonagle |= TCP_NAGLE_CORK;
3579 	} else {
3580 		tp->nonagle &= ~TCP_NAGLE_CORK;
3581 		if (tp->nonagle & TCP_NAGLE_OFF)
3582 			tp->nonagle |= TCP_NAGLE_PUSH;
3583 		tcp_push_pending_frames(sk);
3584 	}
3585 }
3586 
tcp_sock_set_cork(struct sock * sk,bool on)3587 void tcp_sock_set_cork(struct sock *sk, bool on)
3588 {
3589 	lock_sock(sk);
3590 	__tcp_sock_set_cork(sk, on);
3591 	release_sock(sk);
3592 }
3593 EXPORT_SYMBOL(tcp_sock_set_cork);
3594 
3595 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3596  * remembered, but it is not activated until cork is cleared.
3597  *
3598  * However, when TCP_NODELAY is set we make an explicit push, which overrides
3599  * even TCP_CORK for currently queued segments.
3600  */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3601 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3602 {
3603 	if (on) {
3604 		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3605 		tcp_push_pending_frames(sk);
3606 	} else {
3607 		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3608 	}
3609 }
3610 
tcp_sock_set_nodelay(struct sock * sk)3611 void tcp_sock_set_nodelay(struct sock *sk)
3612 {
3613 	lock_sock(sk);
3614 	__tcp_sock_set_nodelay(sk, true);
3615 	release_sock(sk);
3616 }
3617 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3618 
__tcp_sock_set_quickack(struct sock * sk,int val)3619 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3620 {
3621 	if (!val) {
3622 		inet_csk_enter_pingpong_mode(sk);
3623 		return;
3624 	}
3625 
3626 	inet_csk_exit_pingpong_mode(sk);
3627 	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3628 	    inet_csk_ack_scheduled(sk)) {
3629 		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3630 		tcp_cleanup_rbuf(sk, 1);
3631 		if (!(val & 1))
3632 			inet_csk_enter_pingpong_mode(sk);
3633 	}
3634 }
3635 
tcp_sock_set_quickack(struct sock * sk,int val)3636 void tcp_sock_set_quickack(struct sock *sk, int val)
3637 {
3638 	lock_sock(sk);
3639 	__tcp_sock_set_quickack(sk, val);
3640 	release_sock(sk);
3641 }
3642 EXPORT_SYMBOL(tcp_sock_set_quickack);
3643 
tcp_sock_set_syncnt(struct sock * sk,int val)3644 int tcp_sock_set_syncnt(struct sock *sk, int val)
3645 {
3646 	if (val < 1 || val > MAX_TCP_SYNCNT)
3647 		return -EINVAL;
3648 
3649 	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3650 	return 0;
3651 }
3652 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3653 
tcp_sock_set_user_timeout(struct sock * sk,int val)3654 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3655 {
3656 	/* Cap the max time in ms TCP will retry or probe the window
3657 	 * before giving up and aborting (ETIMEDOUT) a connection.
3658 	 */
3659 	if (val < 0)
3660 		return -EINVAL;
3661 
3662 	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3663 	return 0;
3664 }
3665 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3666 
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3667 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3668 {
3669 	struct tcp_sock *tp = tcp_sk(sk);
3670 
3671 	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3672 		return -EINVAL;
3673 
3674 	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3675 	WRITE_ONCE(tp->keepalive_time, val * HZ);
3676 	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3677 	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3678 		u32 elapsed = keepalive_time_elapsed(tp);
3679 
3680 		if (tp->keepalive_time > elapsed)
3681 			elapsed = tp->keepalive_time - elapsed;
3682 		else
3683 			elapsed = 0;
3684 		tcp_reset_keepalive_timer(sk, elapsed);
3685 	}
3686 
3687 	return 0;
3688 }
3689 
tcp_sock_set_keepidle(struct sock * sk,int val)3690 int tcp_sock_set_keepidle(struct sock *sk, int val)
3691 {
3692 	int err;
3693 
3694 	lock_sock(sk);
3695 	err = tcp_sock_set_keepidle_locked(sk, val);
3696 	release_sock(sk);
3697 	return err;
3698 }
3699 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3700 
tcp_sock_set_keepintvl(struct sock * sk,int val)3701 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3702 {
3703 	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3704 		return -EINVAL;
3705 
3706 	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3707 	return 0;
3708 }
3709 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3710 
tcp_sock_set_keepcnt(struct sock * sk,int val)3711 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3712 {
3713 	if (val < 1 || val > MAX_TCP_KEEPCNT)
3714 		return -EINVAL;
3715 
3716 	/* Paired with READ_ONCE() in keepalive_probes() */
3717 	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3718 	return 0;
3719 }
3720 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3721 
tcp_set_window_clamp(struct sock * sk,int val)3722 int tcp_set_window_clamp(struct sock *sk, int val)
3723 {
3724 	u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3725 	struct tcp_sock *tp = tcp_sk(sk);
3726 
3727 	if (!val) {
3728 		if (sk->sk_state != TCP_CLOSE)
3729 			return -EINVAL;
3730 		WRITE_ONCE(tp->window_clamp, 0);
3731 		return 0;
3732 	}
3733 
3734 	old_window_clamp = tp->window_clamp;
3735 	new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3736 
3737 	if (new_window_clamp == old_window_clamp)
3738 		return 0;
3739 
3740 	WRITE_ONCE(tp->window_clamp, new_window_clamp);
3741 
3742 	/* Need to apply the reserved mem provisioning only
3743 	 * when shrinking the window clamp.
3744 	 */
3745 	if (new_window_clamp < old_window_clamp) {
3746 		__tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3747 	} else {
3748 		new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3749 		tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3750 	}
3751 	return 0;
3752 }
3753 
tcp_sock_set_maxseg(struct sock * sk,int val)3754 int tcp_sock_set_maxseg(struct sock *sk, int val)
3755 {
3756 	/* Values greater than interface MTU won't take effect. However
3757 	 * at the point when this call is done we typically don't yet
3758 	 * know which interface is going to be used
3759 	 */
3760 	if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW))
3761 		return -EINVAL;
3762 
3763 	tcp_sk(sk)->rx_opt.user_mss = val;
3764 	return 0;
3765 }
3766 
3767 /*
3768  *	Socket option code for TCP.
3769  */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3770 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3771 		      sockptr_t optval, unsigned int optlen)
3772 {
3773 	struct tcp_sock *tp = tcp_sk(sk);
3774 	struct inet_connection_sock *icsk = inet_csk(sk);
3775 	struct net *net = sock_net(sk);
3776 	int val;
3777 	int err = 0;
3778 
3779 	/* These are data/string values, all the others are ints */
3780 	switch (optname) {
3781 	case TCP_CONGESTION: {
3782 		char name[TCP_CA_NAME_MAX];
3783 
3784 		if (optlen < 1)
3785 			return -EINVAL;
3786 
3787 		val = strncpy_from_sockptr(name, optval,
3788 					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3789 		if (val < 0)
3790 			return -EFAULT;
3791 		name[val] = 0;
3792 
3793 		sockopt_lock_sock(sk);
3794 		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3795 						 sockopt_ns_capable(sock_net(sk)->user_ns,
3796 								    CAP_NET_ADMIN));
3797 		sockopt_release_sock(sk);
3798 		return err;
3799 	}
3800 	case TCP_ULP: {
3801 		char name[TCP_ULP_NAME_MAX];
3802 
3803 		if (optlen < 1)
3804 			return -EINVAL;
3805 
3806 		val = strncpy_from_sockptr(name, optval,
3807 					min_t(long, TCP_ULP_NAME_MAX - 1,
3808 					      optlen));
3809 		if (val < 0)
3810 			return -EFAULT;
3811 		name[val] = 0;
3812 
3813 		sockopt_lock_sock(sk);
3814 		err = tcp_set_ulp(sk, name);
3815 		sockopt_release_sock(sk);
3816 		return err;
3817 	}
3818 	case TCP_FASTOPEN_KEY: {
3819 		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3820 		__u8 *backup_key = NULL;
3821 
3822 		/* Allow a backup key as well to facilitate key rotation
3823 		 * First key is the active one.
3824 		 */
3825 		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3826 		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3827 			return -EINVAL;
3828 
3829 		if (copy_from_sockptr(key, optval, optlen))
3830 			return -EFAULT;
3831 
3832 		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3833 			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3834 
3835 		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3836 	}
3837 	default:
3838 		/* fallthru */
3839 		break;
3840 	}
3841 
3842 	if (optlen < sizeof(int))
3843 		return -EINVAL;
3844 
3845 	if (copy_from_sockptr(&val, optval, sizeof(val)))
3846 		return -EFAULT;
3847 
3848 	/* Handle options that can be set without locking the socket. */
3849 	switch (optname) {
3850 	case TCP_SYNCNT:
3851 		return tcp_sock_set_syncnt(sk, val);
3852 	case TCP_USER_TIMEOUT:
3853 		return tcp_sock_set_user_timeout(sk, val);
3854 	case TCP_KEEPINTVL:
3855 		return tcp_sock_set_keepintvl(sk, val);
3856 	case TCP_KEEPCNT:
3857 		return tcp_sock_set_keepcnt(sk, val);
3858 	case TCP_LINGER2:
3859 		if (val < 0)
3860 			WRITE_ONCE(tp->linger2, -1);
3861 		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3862 			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3863 		else
3864 			WRITE_ONCE(tp->linger2, val * HZ);
3865 		return 0;
3866 	case TCP_DEFER_ACCEPT:
3867 		/* Translate value in seconds to number of retransmits */
3868 		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3869 			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3870 					   TCP_RTO_MAX / HZ));
3871 		return 0;
3872 	case TCP_RTO_MAX_MS:
3873 		if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3874 			return -EINVAL;
3875 		WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3876 		return 0;
3877 	case TCP_RTO_MIN_US: {
3878 		int rto_min = usecs_to_jiffies(val);
3879 
3880 		if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3881 			return -EINVAL;
3882 		WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3883 		return 0;
3884 	}
3885 	case TCP_DELACK_MAX_US: {
3886 		int delack_max = usecs_to_jiffies(val);
3887 
3888 		if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3889 			return -EINVAL;
3890 		WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3891 		return 0;
3892 	}
3893 	}
3894 
3895 	sockopt_lock_sock(sk);
3896 
3897 	switch (optname) {
3898 	case TCP_MAXSEG:
3899 		err = tcp_sock_set_maxseg(sk, val);
3900 		break;
3901 
3902 	case TCP_NODELAY:
3903 		__tcp_sock_set_nodelay(sk, val);
3904 		break;
3905 
3906 	case TCP_THIN_LINEAR_TIMEOUTS:
3907 		if (val < 0 || val > 1)
3908 			err = -EINVAL;
3909 		else
3910 			tp->thin_lto = val;
3911 		break;
3912 
3913 	case TCP_THIN_DUPACK:
3914 		if (val < 0 || val > 1)
3915 			err = -EINVAL;
3916 		break;
3917 
3918 	case TCP_REPAIR:
3919 		if (!tcp_can_repair_sock(sk))
3920 			err = -EPERM;
3921 		else if (val == TCP_REPAIR_ON) {
3922 			tp->repair = 1;
3923 			sk->sk_reuse = SK_FORCE_REUSE;
3924 			tp->repair_queue = TCP_NO_QUEUE;
3925 		} else if (val == TCP_REPAIR_OFF) {
3926 			tp->repair = 0;
3927 			sk->sk_reuse = SK_NO_REUSE;
3928 			tcp_send_window_probe(sk);
3929 		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3930 			tp->repair = 0;
3931 			sk->sk_reuse = SK_NO_REUSE;
3932 		} else
3933 			err = -EINVAL;
3934 
3935 		break;
3936 
3937 	case TCP_REPAIR_QUEUE:
3938 		if (!tp->repair)
3939 			err = -EPERM;
3940 		else if ((unsigned int)val < TCP_QUEUES_NR)
3941 			tp->repair_queue = val;
3942 		else
3943 			err = -EINVAL;
3944 		break;
3945 
3946 	case TCP_QUEUE_SEQ:
3947 		if (sk->sk_state != TCP_CLOSE) {
3948 			err = -EPERM;
3949 		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3950 			if (!tcp_rtx_queue_empty(sk))
3951 				err = -EPERM;
3952 			else
3953 				WRITE_ONCE(tp->write_seq, val);
3954 		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3955 			if (tp->rcv_nxt != tp->copied_seq) {
3956 				err = -EPERM;
3957 			} else {
3958 				WRITE_ONCE(tp->rcv_nxt, val);
3959 				WRITE_ONCE(tp->copied_seq, val);
3960 			}
3961 		} else {
3962 			err = -EINVAL;
3963 		}
3964 		break;
3965 
3966 	case TCP_REPAIR_OPTIONS:
3967 		if (!tp->repair)
3968 			err = -EINVAL;
3969 		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3970 			err = tcp_repair_options_est(sk, optval, optlen);
3971 		else
3972 			err = -EPERM;
3973 		break;
3974 
3975 	case TCP_CORK:
3976 		__tcp_sock_set_cork(sk, val);
3977 		break;
3978 
3979 	case TCP_KEEPIDLE:
3980 		err = tcp_sock_set_keepidle_locked(sk, val);
3981 		break;
3982 	case TCP_SAVE_SYN:
3983 		/* 0: disable, 1: enable, 2: start from ether_header */
3984 		if (val < 0 || val > 2)
3985 			err = -EINVAL;
3986 		else
3987 			tp->save_syn = val;
3988 		break;
3989 
3990 	case TCP_WINDOW_CLAMP:
3991 		err = tcp_set_window_clamp(sk, val);
3992 		break;
3993 
3994 	case TCP_QUICKACK:
3995 		__tcp_sock_set_quickack(sk, val);
3996 		break;
3997 
3998 	case TCP_AO_REPAIR:
3999 		if (!tcp_can_repair_sock(sk)) {
4000 			err = -EPERM;
4001 			break;
4002 		}
4003 		err = tcp_ao_set_repair(sk, optval, optlen);
4004 		break;
4005 #ifdef CONFIG_TCP_AO
4006 	case TCP_AO_ADD_KEY:
4007 	case TCP_AO_DEL_KEY:
4008 	case TCP_AO_INFO: {
4009 		/* If this is the first TCP-AO setsockopt() on the socket,
4010 		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
4011 		 * in any state.
4012 		 */
4013 		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
4014 			goto ao_parse;
4015 		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
4016 					      lockdep_sock_is_held(sk)))
4017 			goto ao_parse;
4018 		if (tp->repair)
4019 			goto ao_parse;
4020 		err = -EISCONN;
4021 		break;
4022 ao_parse:
4023 		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
4024 		break;
4025 	}
4026 #endif
4027 #ifdef CONFIG_TCP_MD5SIG
4028 	case TCP_MD5SIG:
4029 	case TCP_MD5SIG_EXT:
4030 		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
4031 		break;
4032 #endif
4033 	case TCP_FASTOPEN:
4034 		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4035 		    TCPF_LISTEN))) {
4036 			tcp_fastopen_init_key_once(net);
4037 
4038 			fastopen_queue_tune(sk, val);
4039 		} else {
4040 			err = -EINVAL;
4041 		}
4042 		break;
4043 	case TCP_FASTOPEN_CONNECT:
4044 		if (val > 1 || val < 0) {
4045 			err = -EINVAL;
4046 		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4047 			   TFO_CLIENT_ENABLE) {
4048 			if (sk->sk_state == TCP_CLOSE)
4049 				tp->fastopen_connect = val;
4050 			else
4051 				err = -EINVAL;
4052 		} else {
4053 			err = -EOPNOTSUPP;
4054 		}
4055 		break;
4056 	case TCP_FASTOPEN_NO_COOKIE:
4057 		if (val > 1 || val < 0)
4058 			err = -EINVAL;
4059 		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4060 			err = -EINVAL;
4061 		else
4062 			tp->fastopen_no_cookie = val;
4063 		break;
4064 	case TCP_TIMESTAMP:
4065 		if (!tp->repair) {
4066 			err = -EPERM;
4067 			break;
4068 		}
4069 		/* val is an opaque field,
4070 		 * and low order bit contains usec_ts enable bit.
4071 		 * Its a best effort, and we do not care if user makes an error.
4072 		 */
4073 		tp->tcp_usec_ts = val & 1;
4074 		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4075 		break;
4076 	case TCP_REPAIR_WINDOW:
4077 		err = tcp_repair_set_window(tp, optval, optlen);
4078 		break;
4079 	case TCP_NOTSENT_LOWAT:
4080 		WRITE_ONCE(tp->notsent_lowat, val);
4081 		sk->sk_write_space(sk);
4082 		break;
4083 	case TCP_INQ:
4084 		if (val > 1 || val < 0)
4085 			err = -EINVAL;
4086 		else
4087 			tp->recvmsg_inq = val;
4088 		break;
4089 	case TCP_TX_DELAY:
4090 		if (val)
4091 			tcp_enable_tx_delay();
4092 		WRITE_ONCE(tp->tcp_tx_delay, val);
4093 		break;
4094 	default:
4095 		err = -ENOPROTOOPT;
4096 		break;
4097 	}
4098 
4099 	sockopt_release_sock(sk);
4100 	return err;
4101 }
4102 
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4103 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4104 		   unsigned int optlen)
4105 {
4106 	const struct inet_connection_sock *icsk = inet_csk(sk);
4107 
4108 	if (level != SOL_TCP)
4109 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4110 		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4111 								optval, optlen);
4112 	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4113 }
4114 EXPORT_IPV6_MOD(tcp_setsockopt);
4115 
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4116 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4117 				      struct tcp_info *info)
4118 {
4119 	u64 stats[__TCP_CHRONO_MAX], total = 0;
4120 	enum tcp_chrono i;
4121 
4122 	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4123 		stats[i] = tp->chrono_stat[i - 1];
4124 		if (i == tp->chrono_type)
4125 			stats[i] += tcp_jiffies32 - tp->chrono_start;
4126 		stats[i] *= USEC_PER_SEC / HZ;
4127 		total += stats[i];
4128 	}
4129 
4130 	info->tcpi_busy_time = total;
4131 	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4132 	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4133 }
4134 
4135 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4136 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4137 {
4138 	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4139 	const struct inet_connection_sock *icsk = inet_csk(sk);
4140 	unsigned long rate;
4141 	u32 now;
4142 	u64 rate64;
4143 	bool slow;
4144 
4145 	memset(info, 0, sizeof(*info));
4146 	if (sk->sk_type != SOCK_STREAM)
4147 		return;
4148 
4149 	info->tcpi_state = inet_sk_state_load(sk);
4150 
4151 	/* Report meaningful fields for all TCP states, including listeners */
4152 	rate = READ_ONCE(sk->sk_pacing_rate);
4153 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4154 	info->tcpi_pacing_rate = rate64;
4155 
4156 	rate = READ_ONCE(sk->sk_max_pacing_rate);
4157 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4158 	info->tcpi_max_pacing_rate = rate64;
4159 
4160 	info->tcpi_reordering = tp->reordering;
4161 	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4162 
4163 	if (info->tcpi_state == TCP_LISTEN) {
4164 		/* listeners aliased fields :
4165 		 * tcpi_unacked -> Number of children ready for accept()
4166 		 * tcpi_sacked  -> max backlog
4167 		 */
4168 		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4169 		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4170 		return;
4171 	}
4172 
4173 	slow = lock_sock_fast(sk);
4174 
4175 	info->tcpi_ca_state = icsk->icsk_ca_state;
4176 	info->tcpi_retransmits = icsk->icsk_retransmits;
4177 	info->tcpi_probes = icsk->icsk_probes_out;
4178 	info->tcpi_backoff = icsk->icsk_backoff;
4179 
4180 	if (tp->rx_opt.tstamp_ok)
4181 		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4182 	if (tcp_is_sack(tp))
4183 		info->tcpi_options |= TCPI_OPT_SACK;
4184 	if (tp->rx_opt.wscale_ok) {
4185 		info->tcpi_options |= TCPI_OPT_WSCALE;
4186 		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4187 		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4188 	}
4189 
4190 	if (tcp_ecn_mode_any(tp))
4191 		info->tcpi_options |= TCPI_OPT_ECN;
4192 	if (tp->ecn_flags & TCP_ECN_SEEN)
4193 		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4194 	if (tp->syn_data_acked)
4195 		info->tcpi_options |= TCPI_OPT_SYN_DATA;
4196 	if (tp->tcp_usec_ts)
4197 		info->tcpi_options |= TCPI_OPT_USEC_TS;
4198 	if (tp->syn_fastopen_child)
4199 		info->tcpi_options |= TCPI_OPT_TFO_CHILD;
4200 
4201 	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4202 	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4203 						tcp_delack_max(sk)));
4204 	info->tcpi_snd_mss = tp->mss_cache;
4205 	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4206 
4207 	info->tcpi_unacked = tp->packets_out;
4208 	info->tcpi_sacked = tp->sacked_out;
4209 
4210 	info->tcpi_lost = tp->lost_out;
4211 	info->tcpi_retrans = tp->retrans_out;
4212 
4213 	now = tcp_jiffies32;
4214 	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4215 	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4216 	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4217 
4218 	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4219 	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4220 	info->tcpi_rtt = tp->srtt_us >> 3;
4221 	info->tcpi_rttvar = tp->mdev_us >> 2;
4222 	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4223 	info->tcpi_advmss = tp->advmss;
4224 
4225 	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4226 	info->tcpi_rcv_space = tp->rcvq_space.space;
4227 
4228 	info->tcpi_total_retrans = tp->total_retrans;
4229 
4230 	info->tcpi_bytes_acked = tp->bytes_acked;
4231 	info->tcpi_bytes_received = tp->bytes_received;
4232 	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4233 	tcp_get_info_chrono_stats(tp, info);
4234 
4235 	info->tcpi_segs_out = tp->segs_out;
4236 
4237 	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4238 	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4239 	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4240 
4241 	info->tcpi_min_rtt = tcp_min_rtt(tp);
4242 	info->tcpi_data_segs_out = tp->data_segs_out;
4243 
4244 	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4245 	rate64 = tcp_compute_delivery_rate(tp);
4246 	if (rate64)
4247 		info->tcpi_delivery_rate = rate64;
4248 	info->tcpi_delivered = tp->delivered;
4249 	info->tcpi_delivered_ce = tp->delivered_ce;
4250 	info->tcpi_bytes_sent = tp->bytes_sent;
4251 	info->tcpi_bytes_retrans = tp->bytes_retrans;
4252 	info->tcpi_dsack_dups = tp->dsack_dups;
4253 	info->tcpi_reord_seen = tp->reord_seen;
4254 	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4255 	info->tcpi_snd_wnd = tp->snd_wnd;
4256 	info->tcpi_rcv_wnd = tp->rcv_wnd;
4257 	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4258 	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4259 
4260 	info->tcpi_total_rto = tp->total_rto;
4261 	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4262 	info->tcpi_total_rto_time = tp->total_rto_time;
4263 	if (tp->rto_stamp)
4264 		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4265 
4266 	unlock_sock_fast(sk, slow);
4267 }
4268 EXPORT_SYMBOL_GPL(tcp_get_info);
4269 
tcp_opt_stats_get_size(void)4270 static size_t tcp_opt_stats_get_size(void)
4271 {
4272 	return
4273 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4274 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4275 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4276 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4277 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4278 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4279 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4280 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4281 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4282 		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4283 		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4284 		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4285 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4286 		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4287 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4288 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4289 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4290 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4291 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4292 		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4293 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4294 		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4295 		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4296 		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4297 		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4298 		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4299 		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4300 		0;
4301 }
4302 
4303 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4304 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4305 {
4306 	if (skb->protocol == htons(ETH_P_IP))
4307 		return ip_hdr(skb)->ttl;
4308 	else if (skb->protocol == htons(ETH_P_IPV6))
4309 		return ipv6_hdr(skb)->hop_limit;
4310 	else
4311 		return 0;
4312 }
4313 
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4314 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4315 					       const struct sk_buff *orig_skb,
4316 					       const struct sk_buff *ack_skb)
4317 {
4318 	const struct tcp_sock *tp = tcp_sk(sk);
4319 	struct sk_buff *stats;
4320 	struct tcp_info info;
4321 	unsigned long rate;
4322 	u64 rate64;
4323 
4324 	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4325 	if (!stats)
4326 		return NULL;
4327 
4328 	tcp_get_info_chrono_stats(tp, &info);
4329 	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4330 			  info.tcpi_busy_time, TCP_NLA_PAD);
4331 	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4332 			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
4333 	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4334 			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4335 	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4336 			  tp->data_segs_out, TCP_NLA_PAD);
4337 	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4338 			  tp->total_retrans, TCP_NLA_PAD);
4339 
4340 	rate = READ_ONCE(sk->sk_pacing_rate);
4341 	rate64 = (rate != ~0UL) ? rate : ~0ULL;
4342 	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4343 
4344 	rate64 = tcp_compute_delivery_rate(tp);
4345 	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4346 
4347 	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4348 	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4349 	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4350 
4351 	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4352 	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4353 	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4354 	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4355 	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4356 
4357 	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4358 	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4359 
4360 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4361 			  TCP_NLA_PAD);
4362 	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4363 			  TCP_NLA_PAD);
4364 	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4365 	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4366 	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4367 	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4368 	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4369 		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
4370 	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4371 			  TCP_NLA_PAD);
4372 	if (ack_skb)
4373 		nla_put_u8(stats, TCP_NLA_TTL,
4374 			   tcp_skb_ttl_or_hop_limit(ack_skb));
4375 
4376 	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4377 	return stats;
4378 }
4379 
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4380 int do_tcp_getsockopt(struct sock *sk, int level,
4381 		      int optname, sockptr_t optval, sockptr_t optlen)
4382 {
4383 	struct inet_connection_sock *icsk = inet_csk(sk);
4384 	struct tcp_sock *tp = tcp_sk(sk);
4385 	struct net *net = sock_net(sk);
4386 	int val, len;
4387 
4388 	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4389 		return -EFAULT;
4390 
4391 	if (len < 0)
4392 		return -EINVAL;
4393 
4394 	len = min_t(unsigned int, len, sizeof(int));
4395 
4396 	switch (optname) {
4397 	case TCP_MAXSEG:
4398 		val = tp->mss_cache;
4399 		if (tp->rx_opt.user_mss &&
4400 		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4401 			val = tp->rx_opt.user_mss;
4402 		if (tp->repair)
4403 			val = tp->rx_opt.mss_clamp;
4404 		break;
4405 	case TCP_NODELAY:
4406 		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4407 		break;
4408 	case TCP_CORK:
4409 		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4410 		break;
4411 	case TCP_KEEPIDLE:
4412 		val = keepalive_time_when(tp) / HZ;
4413 		break;
4414 	case TCP_KEEPINTVL:
4415 		val = keepalive_intvl_when(tp) / HZ;
4416 		break;
4417 	case TCP_KEEPCNT:
4418 		val = keepalive_probes(tp);
4419 		break;
4420 	case TCP_SYNCNT:
4421 		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4422 			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4423 		break;
4424 	case TCP_LINGER2:
4425 		val = READ_ONCE(tp->linger2);
4426 		if (val >= 0)
4427 			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4428 		break;
4429 	case TCP_DEFER_ACCEPT:
4430 		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4431 		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4432 				      TCP_RTO_MAX / HZ);
4433 		break;
4434 	case TCP_WINDOW_CLAMP:
4435 		val = READ_ONCE(tp->window_clamp);
4436 		break;
4437 	case TCP_INFO: {
4438 		struct tcp_info info;
4439 
4440 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4441 			return -EFAULT;
4442 
4443 		tcp_get_info(sk, &info);
4444 
4445 		len = min_t(unsigned int, len, sizeof(info));
4446 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4447 			return -EFAULT;
4448 		if (copy_to_sockptr(optval, &info, len))
4449 			return -EFAULT;
4450 		return 0;
4451 	}
4452 	case TCP_CC_INFO: {
4453 		const struct tcp_congestion_ops *ca_ops;
4454 		union tcp_cc_info info;
4455 		size_t sz = 0;
4456 		int attr;
4457 
4458 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4459 			return -EFAULT;
4460 
4461 		ca_ops = icsk->icsk_ca_ops;
4462 		if (ca_ops && ca_ops->get_info)
4463 			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4464 
4465 		len = min_t(unsigned int, len, sz);
4466 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4467 			return -EFAULT;
4468 		if (copy_to_sockptr(optval, &info, len))
4469 			return -EFAULT;
4470 		return 0;
4471 	}
4472 	case TCP_QUICKACK:
4473 		val = !inet_csk_in_pingpong_mode(sk);
4474 		break;
4475 
4476 	case TCP_CONGESTION:
4477 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4478 			return -EFAULT;
4479 		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4480 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4481 			return -EFAULT;
4482 		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4483 			return -EFAULT;
4484 		return 0;
4485 
4486 	case TCP_ULP:
4487 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4488 			return -EFAULT;
4489 		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4490 		if (!icsk->icsk_ulp_ops) {
4491 			len = 0;
4492 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4493 				return -EFAULT;
4494 			return 0;
4495 		}
4496 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4497 			return -EFAULT;
4498 		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4499 			return -EFAULT;
4500 		return 0;
4501 
4502 	case TCP_FASTOPEN_KEY: {
4503 		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4504 		unsigned int key_len;
4505 
4506 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4507 			return -EFAULT;
4508 
4509 		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4510 				TCP_FASTOPEN_KEY_LENGTH;
4511 		len = min_t(unsigned int, len, key_len);
4512 		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4513 			return -EFAULT;
4514 		if (copy_to_sockptr(optval, key, len))
4515 			return -EFAULT;
4516 		return 0;
4517 	}
4518 	case TCP_THIN_LINEAR_TIMEOUTS:
4519 		val = tp->thin_lto;
4520 		break;
4521 
4522 	case TCP_THIN_DUPACK:
4523 		val = 0;
4524 		break;
4525 
4526 	case TCP_REPAIR:
4527 		val = tp->repair;
4528 		break;
4529 
4530 	case TCP_REPAIR_QUEUE:
4531 		if (tp->repair)
4532 			val = tp->repair_queue;
4533 		else
4534 			return -EINVAL;
4535 		break;
4536 
4537 	case TCP_REPAIR_WINDOW: {
4538 		struct tcp_repair_window opt;
4539 
4540 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4541 			return -EFAULT;
4542 
4543 		if (len != sizeof(opt))
4544 			return -EINVAL;
4545 
4546 		if (!tp->repair)
4547 			return -EPERM;
4548 
4549 		opt.snd_wl1	= tp->snd_wl1;
4550 		opt.snd_wnd	= tp->snd_wnd;
4551 		opt.max_window	= tp->max_window;
4552 		opt.rcv_wnd	= tp->rcv_wnd;
4553 		opt.rcv_wup	= tp->rcv_wup;
4554 
4555 		if (copy_to_sockptr(optval, &opt, len))
4556 			return -EFAULT;
4557 		return 0;
4558 	}
4559 	case TCP_QUEUE_SEQ:
4560 		if (tp->repair_queue == TCP_SEND_QUEUE)
4561 			val = tp->write_seq;
4562 		else if (tp->repair_queue == TCP_RECV_QUEUE)
4563 			val = tp->rcv_nxt;
4564 		else
4565 			return -EINVAL;
4566 		break;
4567 
4568 	case TCP_USER_TIMEOUT:
4569 		val = READ_ONCE(icsk->icsk_user_timeout);
4570 		break;
4571 
4572 	case TCP_FASTOPEN:
4573 		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4574 		break;
4575 
4576 	case TCP_FASTOPEN_CONNECT:
4577 		val = tp->fastopen_connect;
4578 		break;
4579 
4580 	case TCP_FASTOPEN_NO_COOKIE:
4581 		val = tp->fastopen_no_cookie;
4582 		break;
4583 
4584 	case TCP_TX_DELAY:
4585 		val = READ_ONCE(tp->tcp_tx_delay);
4586 		break;
4587 
4588 	case TCP_TIMESTAMP:
4589 		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4590 		if (tp->tcp_usec_ts)
4591 			val |= 1;
4592 		else
4593 			val &= ~1;
4594 		break;
4595 	case TCP_NOTSENT_LOWAT:
4596 		val = READ_ONCE(tp->notsent_lowat);
4597 		break;
4598 	case TCP_INQ:
4599 		val = tp->recvmsg_inq;
4600 		break;
4601 	case TCP_SAVE_SYN:
4602 		val = tp->save_syn;
4603 		break;
4604 	case TCP_SAVED_SYN: {
4605 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4606 			return -EFAULT;
4607 
4608 		sockopt_lock_sock(sk);
4609 		if (tp->saved_syn) {
4610 			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4611 				len = tcp_saved_syn_len(tp->saved_syn);
4612 				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4613 					sockopt_release_sock(sk);
4614 					return -EFAULT;
4615 				}
4616 				sockopt_release_sock(sk);
4617 				return -EINVAL;
4618 			}
4619 			len = tcp_saved_syn_len(tp->saved_syn);
4620 			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4621 				sockopt_release_sock(sk);
4622 				return -EFAULT;
4623 			}
4624 			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4625 				sockopt_release_sock(sk);
4626 				return -EFAULT;
4627 			}
4628 			tcp_saved_syn_free(tp);
4629 			sockopt_release_sock(sk);
4630 		} else {
4631 			sockopt_release_sock(sk);
4632 			len = 0;
4633 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4634 				return -EFAULT;
4635 		}
4636 		return 0;
4637 	}
4638 #ifdef CONFIG_MMU
4639 	case TCP_ZEROCOPY_RECEIVE: {
4640 		struct scm_timestamping_internal tss;
4641 		struct tcp_zerocopy_receive zc = {};
4642 		int err;
4643 
4644 		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4645 			return -EFAULT;
4646 		if (len < 0 ||
4647 		    len < offsetofend(struct tcp_zerocopy_receive, length))
4648 			return -EINVAL;
4649 		if (unlikely(len > sizeof(zc))) {
4650 			err = check_zeroed_sockptr(optval, sizeof(zc),
4651 						   len - sizeof(zc));
4652 			if (err < 1)
4653 				return err == 0 ? -EINVAL : err;
4654 			len = sizeof(zc);
4655 			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4656 				return -EFAULT;
4657 		}
4658 		if (copy_from_sockptr(&zc, optval, len))
4659 			return -EFAULT;
4660 		if (zc.reserved)
4661 			return -EINVAL;
4662 		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4663 			return -EINVAL;
4664 		sockopt_lock_sock(sk);
4665 		err = tcp_zerocopy_receive(sk, &zc, &tss);
4666 		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4667 							  &zc, &len, err);
4668 		sockopt_release_sock(sk);
4669 		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4670 			goto zerocopy_rcv_cmsg;
4671 		switch (len) {
4672 		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4673 			goto zerocopy_rcv_cmsg;
4674 		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4675 		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4676 		case offsetofend(struct tcp_zerocopy_receive, flags):
4677 		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4678 		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4679 		case offsetofend(struct tcp_zerocopy_receive, err):
4680 			goto zerocopy_rcv_sk_err;
4681 		case offsetofend(struct tcp_zerocopy_receive, inq):
4682 			goto zerocopy_rcv_inq;
4683 		case offsetofend(struct tcp_zerocopy_receive, length):
4684 		default:
4685 			goto zerocopy_rcv_out;
4686 		}
4687 zerocopy_rcv_cmsg:
4688 		if (zc.msg_flags & TCP_CMSG_TS)
4689 			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4690 		else
4691 			zc.msg_flags = 0;
4692 zerocopy_rcv_sk_err:
4693 		if (!err)
4694 			zc.err = sock_error(sk);
4695 zerocopy_rcv_inq:
4696 		zc.inq = tcp_inq_hint(sk);
4697 zerocopy_rcv_out:
4698 		if (!err && copy_to_sockptr(optval, &zc, len))
4699 			err = -EFAULT;
4700 		return err;
4701 	}
4702 #endif
4703 	case TCP_AO_REPAIR:
4704 		if (!tcp_can_repair_sock(sk))
4705 			return -EPERM;
4706 		return tcp_ao_get_repair(sk, optval, optlen);
4707 	case TCP_AO_GET_KEYS:
4708 	case TCP_AO_INFO: {
4709 		int err;
4710 
4711 		sockopt_lock_sock(sk);
4712 		if (optname == TCP_AO_GET_KEYS)
4713 			err = tcp_ao_get_mkts(sk, optval, optlen);
4714 		else
4715 			err = tcp_ao_get_sock_info(sk, optval, optlen);
4716 		sockopt_release_sock(sk);
4717 
4718 		return err;
4719 	}
4720 	case TCP_IS_MPTCP:
4721 		val = 0;
4722 		break;
4723 	case TCP_RTO_MAX_MS:
4724 		val = jiffies_to_msecs(tcp_rto_max(sk));
4725 		break;
4726 	case TCP_RTO_MIN_US:
4727 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4728 		break;
4729 	case TCP_DELACK_MAX_US:
4730 		val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4731 		break;
4732 	default:
4733 		return -ENOPROTOOPT;
4734 	}
4735 
4736 	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4737 		return -EFAULT;
4738 	if (copy_to_sockptr(optval, &val, len))
4739 		return -EFAULT;
4740 	return 0;
4741 }
4742 
tcp_bpf_bypass_getsockopt(int level,int optname)4743 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4744 {
4745 	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4746 	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4747 	 */
4748 	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4749 		return true;
4750 
4751 	return false;
4752 }
4753 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4754 
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4755 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4756 		   int __user *optlen)
4757 {
4758 	struct inet_connection_sock *icsk = inet_csk(sk);
4759 
4760 	if (level != SOL_TCP)
4761 		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4762 		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4763 								optval, optlen);
4764 	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4765 				 USER_SOCKPTR(optlen));
4766 }
4767 EXPORT_IPV6_MOD(tcp_getsockopt);
4768 
4769 #ifdef CONFIG_TCP_MD5SIG
4770 int tcp_md5_sigpool_id = -1;
4771 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4772 
tcp_md5_alloc_sigpool(void)4773 int tcp_md5_alloc_sigpool(void)
4774 {
4775 	size_t scratch_size;
4776 	int ret;
4777 
4778 	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4779 	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4780 	if (ret >= 0) {
4781 		/* As long as any md5 sigpool was allocated, the return
4782 		 * id would stay the same. Re-write the id only for the case
4783 		 * when previously all MD5 keys were deleted and this call
4784 		 * allocates the first MD5 key, which may return a different
4785 		 * sigpool id than was used previously.
4786 		 */
4787 		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4788 		return 0;
4789 	}
4790 	return ret;
4791 }
4792 
tcp_md5_release_sigpool(void)4793 void tcp_md5_release_sigpool(void)
4794 {
4795 	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4796 }
4797 
tcp_md5_add_sigpool(void)4798 void tcp_md5_add_sigpool(void)
4799 {
4800 	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4801 }
4802 
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4803 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4804 		     const struct tcp_md5sig_key *key)
4805 {
4806 	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4807 	struct scatterlist sg;
4808 
4809 	sg_init_one(&sg, key->key, keylen);
4810 	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4811 
4812 	/* We use data_race() because tcp_md5_do_add() might change
4813 	 * key->key under us
4814 	 */
4815 	return data_race(crypto_ahash_update(hp->req));
4816 }
4817 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4818 
4819 /* Called with rcu_read_lock() */
4820 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4821 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4822 		     const void *saddr, const void *daddr,
4823 		     int family, int l3index, const __u8 *hash_location)
4824 {
4825 	/* This gets called for each TCP segment that has TCP-MD5 option.
4826 	 * We have 3 drop cases:
4827 	 * o No MD5 hash and one expected.
4828 	 * o MD5 hash and we're not expecting one.
4829 	 * o MD5 hash and its wrong.
4830 	 */
4831 	const struct tcp_sock *tp = tcp_sk(sk);
4832 	struct tcp_md5sig_key *key;
4833 	u8 newhash[16];
4834 	int genhash;
4835 
4836 	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4837 
4838 	if (!key && hash_location) {
4839 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4840 		trace_tcp_hash_md5_unexpected(sk, skb);
4841 		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4842 	}
4843 
4844 	/* Check the signature.
4845 	 * To support dual stack listeners, we need to handle
4846 	 * IPv4-mapped case.
4847 	 */
4848 	if (family == AF_INET)
4849 		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4850 	else
4851 		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4852 							 NULL, skb);
4853 	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4854 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4855 		trace_tcp_hash_md5_mismatch(sk, skb);
4856 		return SKB_DROP_REASON_TCP_MD5FAILURE;
4857 	}
4858 	return SKB_NOT_DROPPED_YET;
4859 }
4860 #else
4861 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4862 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4863 		     const void *saddr, const void *daddr,
4864 		     int family, int l3index, const __u8 *hash_location)
4865 {
4866 	return SKB_NOT_DROPPED_YET;
4867 }
4868 
4869 #endif
4870 
4871 /* Called with rcu_read_lock() */
4872 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4873 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4874 		 const struct sk_buff *skb,
4875 		 const void *saddr, const void *daddr,
4876 		 int family, int dif, int sdif)
4877 {
4878 	const struct tcphdr *th = tcp_hdr(skb);
4879 	const struct tcp_ao_hdr *aoh;
4880 	const __u8 *md5_location;
4881 	int l3index;
4882 
4883 	/* Invalid option or two times meet any of auth options */
4884 	if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4885 		trace_tcp_hash_bad_header(sk, skb);
4886 		return SKB_DROP_REASON_TCP_AUTH_HDR;
4887 	}
4888 
4889 	if (req) {
4890 		if (tcp_rsk_used_ao(req) != !!aoh) {
4891 			u8 keyid, rnext, maclen;
4892 
4893 			if (aoh) {
4894 				keyid = aoh->keyid;
4895 				rnext = aoh->rnext_keyid;
4896 				maclen = tcp_ao_hdr_maclen(aoh);
4897 			} else {
4898 				keyid = rnext = maclen = 0;
4899 			}
4900 
4901 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4902 			trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4903 			return SKB_DROP_REASON_TCP_AOFAILURE;
4904 		}
4905 	}
4906 
4907 	/* sdif set, means packet ingressed via a device
4908 	 * in an L3 domain and dif is set to the l3mdev
4909 	 */
4910 	l3index = sdif ? dif : 0;
4911 
4912 	/* Fast path: unsigned segments */
4913 	if (likely(!md5_location && !aoh)) {
4914 		/* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4915 		 * for the remote peer. On TCP-AO established connection
4916 		 * the last key is impossible to remove, so there's
4917 		 * always at least one current_key.
4918 		 */
4919 		if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4920 			trace_tcp_hash_ao_required(sk, skb);
4921 			return SKB_DROP_REASON_TCP_AONOTFOUND;
4922 		}
4923 		if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4924 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4925 			trace_tcp_hash_md5_required(sk, skb);
4926 			return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4927 		}
4928 		return SKB_NOT_DROPPED_YET;
4929 	}
4930 
4931 	if (aoh)
4932 		return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4933 
4934 	return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4935 				    l3index, md5_location);
4936 }
4937 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4938 
tcp_done(struct sock * sk)4939 void tcp_done(struct sock *sk)
4940 {
4941 	struct request_sock *req;
4942 
4943 	/* We might be called with a new socket, after
4944 	 * inet_csk_prepare_forced_close() has been called
4945 	 * so we can not use lockdep_sock_is_held(sk)
4946 	 */
4947 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4948 
4949 	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4950 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4951 
4952 	tcp_set_state(sk, TCP_CLOSE);
4953 	tcp_clear_xmit_timers(sk);
4954 	if (req)
4955 		reqsk_fastopen_remove(sk, req, false);
4956 
4957 	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4958 
4959 	if (!sock_flag(sk, SOCK_DEAD))
4960 		sk->sk_state_change(sk);
4961 	else
4962 		inet_csk_destroy_sock(sk);
4963 }
4964 EXPORT_SYMBOL_GPL(tcp_done);
4965 
tcp_abort(struct sock * sk,int err)4966 int tcp_abort(struct sock *sk, int err)
4967 {
4968 	int state = inet_sk_state_load(sk);
4969 
4970 	if (state == TCP_NEW_SYN_RECV) {
4971 		struct request_sock *req = inet_reqsk(sk);
4972 
4973 		local_bh_disable();
4974 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4975 		local_bh_enable();
4976 		return 0;
4977 	}
4978 	if (state == TCP_TIME_WAIT) {
4979 		struct inet_timewait_sock *tw = inet_twsk(sk);
4980 
4981 		refcount_inc(&tw->tw_refcnt);
4982 		local_bh_disable();
4983 		inet_twsk_deschedule_put(tw);
4984 		local_bh_enable();
4985 		return 0;
4986 	}
4987 
4988 	/* BPF context ensures sock locking. */
4989 	if (!has_current_bpf_ctx())
4990 		/* Don't race with userspace socket closes such as tcp_close. */
4991 		lock_sock(sk);
4992 
4993 	/* Avoid closing the same socket twice. */
4994 	if (sk->sk_state == TCP_CLOSE) {
4995 		if (!has_current_bpf_ctx())
4996 			release_sock(sk);
4997 		return -ENOENT;
4998 	}
4999 
5000 	if (sk->sk_state == TCP_LISTEN) {
5001 		tcp_set_state(sk, TCP_CLOSE);
5002 		inet_csk_listen_stop(sk);
5003 	}
5004 
5005 	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
5006 	local_bh_disable();
5007 	bh_lock_sock(sk);
5008 
5009 	if (tcp_need_reset(sk->sk_state))
5010 		tcp_send_active_reset(sk, GFP_ATOMIC,
5011 				      SK_RST_REASON_TCP_STATE);
5012 	tcp_done_with_error(sk, err);
5013 
5014 	bh_unlock_sock(sk);
5015 	local_bh_enable();
5016 	if (!has_current_bpf_ctx())
5017 		release_sock(sk);
5018 	return 0;
5019 }
5020 EXPORT_SYMBOL_GPL(tcp_abort);
5021 
5022 extern struct tcp_congestion_ops tcp_reno;
5023 
5024 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)5025 static int __init set_thash_entries(char *str)
5026 {
5027 	ssize_t ret;
5028 
5029 	if (!str)
5030 		return 0;
5031 
5032 	ret = kstrtoul(str, 0, &thash_entries);
5033 	if (ret)
5034 		return 0;
5035 
5036 	return 1;
5037 }
5038 __setup("thash_entries=", set_thash_entries);
5039 
tcp_init_mem(void)5040 static void __init tcp_init_mem(void)
5041 {
5042 	unsigned long limit = nr_free_buffer_pages() / 16;
5043 
5044 	limit = max(limit, 128UL);
5045 	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
5046 	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
5047 	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
5048 }
5049 
tcp_struct_check(void)5050 static void __init tcp_struct_check(void)
5051 {
5052 	/* TX read-mostly hotpath cache lines */
5053 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5054 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5055 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5056 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5057 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5058 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5059 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 32);
5060 
5061 	/* TXRX read-mostly hotpath cache lines */
5062 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5063 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5064 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5065 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5066 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5067 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5068 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5069 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5070 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5071 
5072 	/* RX read-mostly hotpath cache lines */
5073 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5074 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5075 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5076 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5077 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5078 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5079 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5080 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5081 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5082 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5083 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5084 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5085 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5086 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5087 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5088 #else
5089 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5090 #endif
5091 
5092 	/* TX read-write hotpath cache lines */
5093 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5094 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5095 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5096 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5097 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5098 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5099 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5100 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5101 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5102 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5103 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5104 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5105 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5106 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5107 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5108 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5109 
5110 	/* TXRX read-write hotpath cache lines */
5111 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5112 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5113 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5114 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5115 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5116 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5117 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5118 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5119 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5120 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5121 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5122 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5123 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5124 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5125 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5126 
5127 	/* 32bit arches with 8byte alignment on u64 fields might need padding
5128 	 * before tcp_clock_cache.
5129 	 */
5130 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5131 
5132 	/* RX read-write hotpath cache lines */
5133 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5134 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5135 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5136 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5137 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5138 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5139 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5140 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5141 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5142 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5143 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5144 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5145 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5146 	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5147 	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5148 }
5149 
tcp_init(void)5150 void __init tcp_init(void)
5151 {
5152 	int max_rshare, max_wshare, cnt;
5153 	unsigned long limit;
5154 	unsigned int i;
5155 
5156 	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5157 	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5158 		     sizeof_field(struct sk_buff, cb));
5159 
5160 	tcp_struct_check();
5161 
5162 	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5163 
5164 	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5165 	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5166 
5167 	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5168 			    thash_entries, 21,  /* one slot per 2 MB*/
5169 			    0, 64 * 1024);
5170 	tcp_hashinfo.bind_bucket_cachep =
5171 		kmem_cache_create("tcp_bind_bucket",
5172 				  sizeof(struct inet_bind_bucket), 0,
5173 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5174 				  SLAB_ACCOUNT,
5175 				  NULL);
5176 	tcp_hashinfo.bind2_bucket_cachep =
5177 		kmem_cache_create("tcp_bind2_bucket",
5178 				  sizeof(struct inet_bind2_bucket), 0,
5179 				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5180 				  SLAB_ACCOUNT,
5181 				  NULL);
5182 
5183 	/* Size and allocate the main established and bind bucket
5184 	 * hash tables.
5185 	 *
5186 	 * The methodology is similar to that of the buffer cache.
5187 	 */
5188 	tcp_hashinfo.ehash =
5189 		alloc_large_system_hash("TCP established",
5190 					sizeof(struct inet_ehash_bucket),
5191 					thash_entries,
5192 					17, /* one slot per 128 KB of memory */
5193 					0,
5194 					NULL,
5195 					&tcp_hashinfo.ehash_mask,
5196 					0,
5197 					thash_entries ? 0 : 512 * 1024);
5198 	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5199 		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5200 
5201 	if (inet_ehash_locks_alloc(&tcp_hashinfo))
5202 		panic("TCP: failed to alloc ehash_locks");
5203 	tcp_hashinfo.bhash =
5204 		alloc_large_system_hash("TCP bind",
5205 					2 * sizeof(struct inet_bind_hashbucket),
5206 					tcp_hashinfo.ehash_mask + 1,
5207 					17, /* one slot per 128 KB of memory */
5208 					0,
5209 					&tcp_hashinfo.bhash_size,
5210 					NULL,
5211 					0,
5212 					64 * 1024);
5213 	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5214 	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5215 	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5216 		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5217 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5218 		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5219 		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5220 	}
5221 
5222 	tcp_hashinfo.pernet = false;
5223 
5224 	cnt = tcp_hashinfo.ehash_mask + 1;
5225 	sysctl_tcp_max_orphans = cnt / 2;
5226 
5227 	tcp_init_mem();
5228 	/* Set per-socket limits to no more than 1/128 the pressure threshold */
5229 	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5230 	max_wshare = min(4UL*1024*1024, limit);
5231 	max_rshare = min(32UL*1024*1024, limit);
5232 
5233 	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5234 	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5235 	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5236 
5237 	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5238 	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5239 	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5240 
5241 	pr_info("Hash tables configured (established %u bind %u)\n",
5242 		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5243 
5244 	tcp_v4_init();
5245 	tcp_metrics_init();
5246 	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5247 	tcp_tsq_work_init();
5248 	mptcp_init();
5249 }
5250