xref: /linux/tools/perf/builtin-sched.c (revision c7decec2f2d2ab0366567f9e30c0e1418cece43f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf.h"
4 #include "perf-sys.h"
5 
6 #include "util/cpumap.h"
7 #include "util/evlist.h"
8 #include "util/evsel.h"
9 #include "util/evsel_fprintf.h"
10 #include "util/mutex.h"
11 #include "util/symbol.h"
12 #include "util/thread.h"
13 #include "util/header.h"
14 #include "util/session.h"
15 #include "util/tool.h"
16 #include "util/cloexec.h"
17 #include "util/thread_map.h"
18 #include "util/color.h"
19 #include "util/stat.h"
20 #include "util/string2.h"
21 #include "util/callchain.h"
22 #include "util/time-utils.h"
23 
24 #include <subcmd/pager.h>
25 #include <subcmd/parse-options.h>
26 #include "util/trace-event.h"
27 
28 #include "util/debug.h"
29 #include "util/event.h"
30 #include "util/util.h"
31 #include "util/synthetic-events.h"
32 #include "util/target.h"
33 
34 #include <linux/kernel.h>
35 #include <linux/log2.h>
36 #include <linux/zalloc.h>
37 #include <sys/prctl.h>
38 #include <sys/resource.h>
39 #include <inttypes.h>
40 
41 #include <errno.h>
42 #include <semaphore.h>
43 #include <pthread.h>
44 #include <math.h>
45 #include <api/fs/fs.h>
46 #include <perf/cpumap.h>
47 #include <linux/time64.h>
48 #include <linux/err.h>
49 
50 #include <linux/ctype.h>
51 
52 #define PR_SET_NAME		15               /* Set process name */
53 #define MAX_CPUS		4096
54 #define COMM_LEN		20
55 #define SYM_LEN			129
56 #define MAX_PID			1024000
57 #define MAX_PRIO		140
58 #define SEP_LEN			100
59 
60 static const char *cpu_list;
61 static struct perf_cpu_map *user_requested_cpus;
62 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
63 
64 struct sched_atom;
65 
66 struct task_desc {
67 	unsigned long		nr;
68 	unsigned long		pid;
69 	char			comm[COMM_LEN];
70 
71 	unsigned long		nr_events;
72 	unsigned long		curr_event;
73 	struct sched_atom	**atoms;
74 
75 	pthread_t		thread;
76 
77 	sem_t			ready_for_work;
78 	sem_t			work_done_sem;
79 
80 	u64			cpu_usage;
81 };
82 
83 enum sched_event_type {
84 	SCHED_EVENT_RUN,
85 	SCHED_EVENT_SLEEP,
86 	SCHED_EVENT_WAKEUP,
87 };
88 
89 struct sched_atom {
90 	enum sched_event_type	type;
91 	u64			timestamp;
92 	u64			duration;
93 	unsigned long		nr;
94 	sem_t			*wait_sem;
95 	struct task_desc	*wakee;
96 };
97 
98 enum thread_state {
99 	THREAD_SLEEPING = 0,
100 	THREAD_WAIT_CPU,
101 	THREAD_SCHED_IN,
102 	THREAD_IGNORE
103 };
104 
105 struct work_atom {
106 	struct list_head	list;
107 	enum thread_state	state;
108 	u64			sched_out_time;
109 	u64			wake_up_time;
110 	u64			sched_in_time;
111 	u64			runtime;
112 };
113 
114 struct work_atoms {
115 	struct list_head	work_list;
116 	struct thread		*thread;
117 	struct rb_node		node;
118 	u64			max_lat;
119 	u64			max_lat_start;
120 	u64			max_lat_end;
121 	u64			total_lat;
122 	u64			nb_atoms;
123 	u64			total_runtime;
124 	int			num_merged;
125 };
126 
127 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
128 
129 struct perf_sched;
130 
131 struct trace_sched_handler {
132 	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
133 			    struct perf_sample *sample, struct machine *machine);
134 
135 	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
136 			     struct perf_sample *sample, struct machine *machine);
137 
138 	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
139 			    struct perf_sample *sample, struct machine *machine);
140 
141 	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
142 	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
143 			  struct machine *machine);
144 
145 	int (*migrate_task_event)(struct perf_sched *sched,
146 				  struct evsel *evsel,
147 				  struct perf_sample *sample,
148 				  struct machine *machine);
149 };
150 
151 #define COLOR_PIDS PERF_COLOR_BLUE
152 #define COLOR_CPUS PERF_COLOR_BG_RED
153 
154 struct perf_sched_map {
155 	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
156 	struct perf_cpu		*comp_cpus;
157 	bool			 comp;
158 	struct perf_thread_map *color_pids;
159 	const char		*color_pids_str;
160 	struct perf_cpu_map	*color_cpus;
161 	const char		*color_cpus_str;
162 	const char		*task_name;
163 	struct strlist		*task_names;
164 	bool			fuzzy;
165 	struct perf_cpu_map	*cpus;
166 	const char		*cpus_str;
167 };
168 
169 struct perf_sched {
170 	struct perf_tool tool;
171 	const char	 *sort_order;
172 	unsigned long	 nr_tasks;
173 	struct task_desc **pid_to_task;
174 	struct task_desc **tasks;
175 	const struct trace_sched_handler *tp_handler;
176 	struct mutex	 start_work_mutex;
177 	struct mutex	 work_done_wait_mutex;
178 	int		 profile_cpu;
179 /*
180  * Track the current task - that way we can know whether there's any
181  * weird events, such as a task being switched away that is not current.
182  */
183 	struct perf_cpu	 max_cpu;
184 	u32		 *curr_pid;
185 	struct thread	 **curr_thread;
186 	struct thread	 **curr_out_thread;
187 	char		 next_shortname1;
188 	char		 next_shortname2;
189 	unsigned int	 replay_repeat;
190 	unsigned long	 nr_run_events;
191 	unsigned long	 nr_sleep_events;
192 	unsigned long	 nr_wakeup_events;
193 	unsigned long	 nr_sleep_corrections;
194 	unsigned long	 nr_run_events_optimized;
195 	unsigned long	 targetless_wakeups;
196 	unsigned long	 multitarget_wakeups;
197 	unsigned long	 nr_runs;
198 	unsigned long	 nr_timestamps;
199 	unsigned long	 nr_unordered_timestamps;
200 	unsigned long	 nr_context_switch_bugs;
201 	unsigned long	 nr_events;
202 	unsigned long	 nr_lost_chunks;
203 	unsigned long	 nr_lost_events;
204 	u64		 run_measurement_overhead;
205 	u64		 sleep_measurement_overhead;
206 	u64		 start_time;
207 	u64		 cpu_usage;
208 	u64		 runavg_cpu_usage;
209 	u64		 parent_cpu_usage;
210 	u64		 runavg_parent_cpu_usage;
211 	u64		 sum_runtime;
212 	u64		 sum_fluct;
213 	u64		 run_avg;
214 	u64		 all_runtime;
215 	u64		 all_count;
216 	u64		 *cpu_last_switched;
217 	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
218 	struct list_head sort_list, cmp_pid;
219 	bool force;
220 	bool skip_merge;
221 	struct perf_sched_map map;
222 
223 	/* options for timehist command */
224 	bool		summary;
225 	bool		summary_only;
226 	bool		idle_hist;
227 	bool		show_callchain;
228 	unsigned int	max_stack;
229 	bool		show_cpu_visual;
230 	bool		show_wakeups;
231 	bool		show_next;
232 	bool		show_migrations;
233 	bool		pre_migrations;
234 	bool		show_state;
235 	bool		show_prio;
236 	u64		skipped_samples;
237 	const char	*time_str;
238 	struct perf_time_interval ptime;
239 	struct perf_time_interval hist_time;
240 	volatile bool   thread_funcs_exit;
241 	const char	*prio_str;
242 	DECLARE_BITMAP(prio_bitmap, MAX_PRIO);
243 
244 	struct perf_session *session;
245 	struct perf_data *data;
246 };
247 
248 /* per thread run time data */
249 struct thread_runtime {
250 	u64 last_time;      /* time of previous sched in/out event */
251 	u64 dt_run;         /* run time */
252 	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
253 	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
254 	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
255 	u64 dt_delay;       /* time between wakeup and sched-in */
256 	u64 dt_pre_mig;     /* time between migration and wakeup */
257 	u64 ready_to_run;   /* time of wakeup */
258 	u64 migrated;	    /* time when a thread is migrated */
259 
260 	struct stats run_stats;
261 	u64 total_run_time;
262 	u64 total_sleep_time;
263 	u64 total_iowait_time;
264 	u64 total_preempt_time;
265 	u64 total_delay_time;
266 	u64 total_pre_mig_time;
267 
268 	char last_state;
269 
270 	char shortname[3];
271 	bool comm_changed;
272 
273 	u64 migrations;
274 
275 	int prio;
276 };
277 
278 /* per event run time data */
279 struct evsel_runtime {
280 	u64 *last_time; /* time this event was last seen per cpu */
281 	u32 ncpu;       /* highest cpu slot allocated */
282 };
283 
284 /* per cpu idle time data */
285 struct idle_thread_runtime {
286 	struct thread_runtime	tr;
287 	struct thread		*last_thread;
288 	struct rb_root_cached	sorted_root;
289 	struct callchain_root	callchain;
290 	struct callchain_cursor	cursor;
291 };
292 
293 /* track idle times per cpu */
294 static struct thread **idle_threads;
295 static int idle_max_cpu;
296 static char idle_comm[] = "<idle>";
297 
get_nsecs(void)298 static u64 get_nsecs(void)
299 {
300 	struct timespec ts;
301 
302 	clock_gettime(CLOCK_MONOTONIC, &ts);
303 
304 	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
305 }
306 
burn_nsecs(struct perf_sched * sched,u64 nsecs)307 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
308 {
309 	u64 T0 = get_nsecs(), T1;
310 
311 	do {
312 		T1 = get_nsecs();
313 	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
314 }
315 
sleep_nsecs(u64 nsecs)316 static void sleep_nsecs(u64 nsecs)
317 {
318 	struct timespec ts;
319 
320 	ts.tv_nsec = nsecs % 999999999;
321 	ts.tv_sec = nsecs / 999999999;
322 
323 	nanosleep(&ts, NULL);
324 }
325 
calibrate_run_measurement_overhead(struct perf_sched * sched)326 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
327 {
328 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
329 	int i;
330 
331 	for (i = 0; i < 10; i++) {
332 		T0 = get_nsecs();
333 		burn_nsecs(sched, 0);
334 		T1 = get_nsecs();
335 		delta = T1-T0;
336 		min_delta = min(min_delta, delta);
337 	}
338 	sched->run_measurement_overhead = min_delta;
339 
340 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
341 }
342 
calibrate_sleep_measurement_overhead(struct perf_sched * sched)343 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
344 {
345 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
346 	int i;
347 
348 	for (i = 0; i < 10; i++) {
349 		T0 = get_nsecs();
350 		sleep_nsecs(10000);
351 		T1 = get_nsecs();
352 		delta = T1-T0;
353 		min_delta = min(min_delta, delta);
354 	}
355 	min_delta -= 10000;
356 	sched->sleep_measurement_overhead = min_delta;
357 
358 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
359 }
360 
361 static struct sched_atom *
get_new_event(struct task_desc * task,u64 timestamp)362 get_new_event(struct task_desc *task, u64 timestamp)
363 {
364 	struct sched_atom *event = zalloc(sizeof(*event));
365 	unsigned long idx = task->nr_events;
366 	size_t size;
367 
368 	event->timestamp = timestamp;
369 	event->nr = idx;
370 
371 	task->nr_events++;
372 	size = sizeof(struct sched_atom *) * task->nr_events;
373 	task->atoms = realloc(task->atoms, size);
374 	BUG_ON(!task->atoms);
375 
376 	task->atoms[idx] = event;
377 
378 	return event;
379 }
380 
last_event(struct task_desc * task)381 static struct sched_atom *last_event(struct task_desc *task)
382 {
383 	if (!task->nr_events)
384 		return NULL;
385 
386 	return task->atoms[task->nr_events - 1];
387 }
388 
add_sched_event_run(struct perf_sched * sched,struct task_desc * task,u64 timestamp,u64 duration)389 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
390 				u64 timestamp, u64 duration)
391 {
392 	struct sched_atom *event, *curr_event = last_event(task);
393 
394 	/*
395 	 * optimize an existing RUN event by merging this one
396 	 * to it:
397 	 */
398 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
399 		sched->nr_run_events_optimized++;
400 		curr_event->duration += duration;
401 		return;
402 	}
403 
404 	event = get_new_event(task, timestamp);
405 
406 	event->type = SCHED_EVENT_RUN;
407 	event->duration = duration;
408 
409 	sched->nr_run_events++;
410 }
411 
add_sched_event_wakeup(struct perf_sched * sched,struct task_desc * task,u64 timestamp,struct task_desc * wakee)412 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
413 				   u64 timestamp, struct task_desc *wakee)
414 {
415 	struct sched_atom *event, *wakee_event;
416 
417 	event = get_new_event(task, timestamp);
418 	event->type = SCHED_EVENT_WAKEUP;
419 	event->wakee = wakee;
420 
421 	wakee_event = last_event(wakee);
422 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
423 		sched->targetless_wakeups++;
424 		return;
425 	}
426 	if (wakee_event->wait_sem) {
427 		sched->multitarget_wakeups++;
428 		return;
429 	}
430 
431 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
432 	sem_init(wakee_event->wait_sem, 0, 0);
433 	event->wait_sem = wakee_event->wait_sem;
434 
435 	sched->nr_wakeup_events++;
436 }
437 
add_sched_event_sleep(struct perf_sched * sched,struct task_desc * task,u64 timestamp)438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
439 				  u64 timestamp)
440 {
441 	struct sched_atom *event = get_new_event(task, timestamp);
442 
443 	event->type = SCHED_EVENT_SLEEP;
444 
445 	sched->nr_sleep_events++;
446 }
447 
register_pid(struct perf_sched * sched,unsigned long pid,const char * comm)448 static struct task_desc *register_pid(struct perf_sched *sched,
449 				      unsigned long pid, const char *comm)
450 {
451 	struct task_desc *task;
452 	static int pid_max;
453 
454 	if (sched->pid_to_task == NULL) {
455 		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
456 			pid_max = MAX_PID;
457 		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
458 	}
459 	if (pid >= (unsigned long)pid_max) {
460 		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
461 			sizeof(struct task_desc *))) == NULL);
462 		while (pid >= (unsigned long)pid_max)
463 			sched->pid_to_task[pid_max++] = NULL;
464 	}
465 
466 	task = sched->pid_to_task[pid];
467 
468 	if (task)
469 		return task;
470 
471 	task = zalloc(sizeof(*task));
472 	task->pid = pid;
473 	task->nr = sched->nr_tasks;
474 	strcpy(task->comm, comm);
475 	/*
476 	 * every task starts in sleeping state - this gets ignored
477 	 * if there's no wakeup pointing to this sleep state:
478 	 */
479 	add_sched_event_sleep(sched, task, 0);
480 
481 	sched->pid_to_task[pid] = task;
482 	sched->nr_tasks++;
483 	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
484 	BUG_ON(!sched->tasks);
485 	sched->tasks[task->nr] = task;
486 
487 	if (verbose > 0)
488 		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
489 
490 	return task;
491 }
492 
493 
print_task_traces(struct perf_sched * sched)494 static void print_task_traces(struct perf_sched *sched)
495 {
496 	struct task_desc *task;
497 	unsigned long i;
498 
499 	for (i = 0; i < sched->nr_tasks; i++) {
500 		task = sched->tasks[i];
501 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
502 			task->nr, task->comm, task->pid, task->nr_events);
503 	}
504 }
505 
add_cross_task_wakeups(struct perf_sched * sched)506 static void add_cross_task_wakeups(struct perf_sched *sched)
507 {
508 	struct task_desc *task1, *task2;
509 	unsigned long i, j;
510 
511 	for (i = 0; i < sched->nr_tasks; i++) {
512 		task1 = sched->tasks[i];
513 		j = i + 1;
514 		if (j == sched->nr_tasks)
515 			j = 0;
516 		task2 = sched->tasks[j];
517 		add_sched_event_wakeup(sched, task1, 0, task2);
518 	}
519 }
520 
perf_sched__process_event(struct perf_sched * sched,struct sched_atom * atom)521 static void perf_sched__process_event(struct perf_sched *sched,
522 				      struct sched_atom *atom)
523 {
524 	int ret = 0;
525 
526 	switch (atom->type) {
527 		case SCHED_EVENT_RUN:
528 			burn_nsecs(sched, atom->duration);
529 			break;
530 		case SCHED_EVENT_SLEEP:
531 			if (atom->wait_sem)
532 				ret = sem_wait(atom->wait_sem);
533 			BUG_ON(ret);
534 			break;
535 		case SCHED_EVENT_WAKEUP:
536 			if (atom->wait_sem)
537 				ret = sem_post(atom->wait_sem);
538 			BUG_ON(ret);
539 			break;
540 		default:
541 			BUG_ON(1);
542 	}
543 }
544 
get_cpu_usage_nsec_parent(void)545 static u64 get_cpu_usage_nsec_parent(void)
546 {
547 	struct rusage ru;
548 	u64 sum;
549 	int err;
550 
551 	err = getrusage(RUSAGE_SELF, &ru);
552 	BUG_ON(err);
553 
554 	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
555 	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
556 
557 	return sum;
558 }
559 
self_open_counters(struct perf_sched * sched,unsigned long cur_task)560 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
561 {
562 	struct perf_event_attr attr;
563 	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
564 	int fd;
565 	struct rlimit limit;
566 	bool need_privilege = false;
567 
568 	memset(&attr, 0, sizeof(attr));
569 
570 	attr.type = PERF_TYPE_SOFTWARE;
571 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
572 
573 force_again:
574 	fd = sys_perf_event_open(&attr, 0, -1, -1,
575 				 perf_event_open_cloexec_flag());
576 
577 	if (fd < 0) {
578 		if (errno == EMFILE) {
579 			if (sched->force) {
580 				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
581 				limit.rlim_cur += sched->nr_tasks - cur_task;
582 				if (limit.rlim_cur > limit.rlim_max) {
583 					limit.rlim_max = limit.rlim_cur;
584 					need_privilege = true;
585 				}
586 				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
587 					if (need_privilege && errno == EPERM)
588 						strcpy(info, "Need privilege\n");
589 				} else
590 					goto force_again;
591 			} else
592 				strcpy(info, "Have a try with -f option\n");
593 		}
594 		pr_err("Error: sys_perf_event_open() syscall returned "
595 		       "with %d (%s)\n%s", fd,
596 		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
597 		exit(EXIT_FAILURE);
598 	}
599 	return fd;
600 }
601 
get_cpu_usage_nsec_self(int fd)602 static u64 get_cpu_usage_nsec_self(int fd)
603 {
604 	u64 runtime;
605 	int ret;
606 
607 	ret = read(fd, &runtime, sizeof(runtime));
608 	BUG_ON(ret != sizeof(runtime));
609 
610 	return runtime;
611 }
612 
613 struct sched_thread_parms {
614 	struct task_desc  *task;
615 	struct perf_sched *sched;
616 	int fd;
617 };
618 
thread_func(void * ctx)619 static void *thread_func(void *ctx)
620 {
621 	struct sched_thread_parms *parms = ctx;
622 	struct task_desc *this_task = parms->task;
623 	struct perf_sched *sched = parms->sched;
624 	u64 cpu_usage_0, cpu_usage_1;
625 	unsigned long i, ret;
626 	char comm2[22];
627 	int fd = parms->fd;
628 
629 	zfree(&parms);
630 
631 	sprintf(comm2, ":%s", this_task->comm);
632 	prctl(PR_SET_NAME, comm2);
633 	if (fd < 0)
634 		return NULL;
635 
636 	while (!sched->thread_funcs_exit) {
637 		ret = sem_post(&this_task->ready_for_work);
638 		BUG_ON(ret);
639 		mutex_lock(&sched->start_work_mutex);
640 		mutex_unlock(&sched->start_work_mutex);
641 
642 		cpu_usage_0 = get_cpu_usage_nsec_self(fd);
643 
644 		for (i = 0; i < this_task->nr_events; i++) {
645 			this_task->curr_event = i;
646 			perf_sched__process_event(sched, this_task->atoms[i]);
647 		}
648 
649 		cpu_usage_1 = get_cpu_usage_nsec_self(fd);
650 		this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
651 		ret = sem_post(&this_task->work_done_sem);
652 		BUG_ON(ret);
653 
654 		mutex_lock(&sched->work_done_wait_mutex);
655 		mutex_unlock(&sched->work_done_wait_mutex);
656 	}
657 	return NULL;
658 }
659 
create_tasks(struct perf_sched * sched)660 static void create_tasks(struct perf_sched *sched)
661 	EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
662 	EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
663 {
664 	struct task_desc *task;
665 	pthread_attr_t attr;
666 	unsigned long i;
667 	int err;
668 
669 	err = pthread_attr_init(&attr);
670 	BUG_ON(err);
671 	err = pthread_attr_setstacksize(&attr,
672 			(size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
673 	BUG_ON(err);
674 	mutex_lock(&sched->start_work_mutex);
675 	mutex_lock(&sched->work_done_wait_mutex);
676 	for (i = 0; i < sched->nr_tasks; i++) {
677 		struct sched_thread_parms *parms = malloc(sizeof(*parms));
678 		BUG_ON(parms == NULL);
679 		parms->task = task = sched->tasks[i];
680 		parms->sched = sched;
681 		parms->fd = self_open_counters(sched, i);
682 		sem_init(&task->ready_for_work, 0, 0);
683 		sem_init(&task->work_done_sem, 0, 0);
684 		task->curr_event = 0;
685 		err = pthread_create(&task->thread, &attr, thread_func, parms);
686 		BUG_ON(err);
687 	}
688 }
689 
destroy_tasks(struct perf_sched * sched)690 static void destroy_tasks(struct perf_sched *sched)
691 	UNLOCK_FUNCTION(sched->start_work_mutex)
692 	UNLOCK_FUNCTION(sched->work_done_wait_mutex)
693 {
694 	struct task_desc *task;
695 	unsigned long i;
696 	int err;
697 
698 	mutex_unlock(&sched->start_work_mutex);
699 	mutex_unlock(&sched->work_done_wait_mutex);
700 	/* Get rid of threads so they won't be upset by mutex destrunction */
701 	for (i = 0; i < sched->nr_tasks; i++) {
702 		task = sched->tasks[i];
703 		err = pthread_join(task->thread, NULL);
704 		BUG_ON(err);
705 		sem_destroy(&task->ready_for_work);
706 		sem_destroy(&task->work_done_sem);
707 	}
708 }
709 
wait_for_tasks(struct perf_sched * sched)710 static void wait_for_tasks(struct perf_sched *sched)
711 	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
712 	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
713 {
714 	u64 cpu_usage_0, cpu_usage_1;
715 	struct task_desc *task;
716 	unsigned long i, ret;
717 
718 	sched->start_time = get_nsecs();
719 	sched->cpu_usage = 0;
720 	mutex_unlock(&sched->work_done_wait_mutex);
721 
722 	for (i = 0; i < sched->nr_tasks; i++) {
723 		task = sched->tasks[i];
724 		ret = sem_wait(&task->ready_for_work);
725 		BUG_ON(ret);
726 		sem_init(&task->ready_for_work, 0, 0);
727 	}
728 	mutex_lock(&sched->work_done_wait_mutex);
729 
730 	cpu_usage_0 = get_cpu_usage_nsec_parent();
731 
732 	mutex_unlock(&sched->start_work_mutex);
733 
734 	for (i = 0; i < sched->nr_tasks; i++) {
735 		task = sched->tasks[i];
736 		ret = sem_wait(&task->work_done_sem);
737 		BUG_ON(ret);
738 		sem_init(&task->work_done_sem, 0, 0);
739 		sched->cpu_usage += task->cpu_usage;
740 		task->cpu_usage = 0;
741 	}
742 
743 	cpu_usage_1 = get_cpu_usage_nsec_parent();
744 	if (!sched->runavg_cpu_usage)
745 		sched->runavg_cpu_usage = sched->cpu_usage;
746 	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
747 
748 	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
749 	if (!sched->runavg_parent_cpu_usage)
750 		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
751 	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
752 					 sched->parent_cpu_usage)/sched->replay_repeat;
753 
754 	mutex_lock(&sched->start_work_mutex);
755 
756 	for (i = 0; i < sched->nr_tasks; i++) {
757 		task = sched->tasks[i];
758 		task->curr_event = 0;
759 	}
760 }
761 
run_one_test(struct perf_sched * sched)762 static void run_one_test(struct perf_sched *sched)
763 	EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
764 	EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
765 {
766 	u64 T0, T1, delta, avg_delta, fluct;
767 
768 	T0 = get_nsecs();
769 	wait_for_tasks(sched);
770 	T1 = get_nsecs();
771 
772 	delta = T1 - T0;
773 	sched->sum_runtime += delta;
774 	sched->nr_runs++;
775 
776 	avg_delta = sched->sum_runtime / sched->nr_runs;
777 	if (delta < avg_delta)
778 		fluct = avg_delta - delta;
779 	else
780 		fluct = delta - avg_delta;
781 	sched->sum_fluct += fluct;
782 	if (!sched->run_avg)
783 		sched->run_avg = delta;
784 	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
785 
786 	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
787 
788 	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
789 
790 	printf("cpu: %0.2f / %0.2f",
791 		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
792 
793 #if 0
794 	/*
795 	 * rusage statistics done by the parent, these are less
796 	 * accurate than the sched->sum_exec_runtime based statistics:
797 	 */
798 	printf(" [%0.2f / %0.2f]",
799 		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
800 		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
801 #endif
802 
803 	printf("\n");
804 
805 	if (sched->nr_sleep_corrections)
806 		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
807 	sched->nr_sleep_corrections = 0;
808 }
809 
test_calibrations(struct perf_sched * sched)810 static void test_calibrations(struct perf_sched *sched)
811 {
812 	u64 T0, T1;
813 
814 	T0 = get_nsecs();
815 	burn_nsecs(sched, NSEC_PER_MSEC);
816 	T1 = get_nsecs();
817 
818 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
819 
820 	T0 = get_nsecs();
821 	sleep_nsecs(NSEC_PER_MSEC);
822 	T1 = get_nsecs();
823 
824 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
825 }
826 
827 static int
replay_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)828 replay_wakeup_event(struct perf_sched *sched,
829 		    struct evsel *evsel, struct perf_sample *sample,
830 		    struct machine *machine __maybe_unused)
831 {
832 	const char *comm = evsel__strval(evsel, sample, "comm");
833 	const u32 pid	 = evsel__intval(evsel, sample, "pid");
834 	struct task_desc *waker, *wakee;
835 
836 	if (verbose > 0) {
837 		printf("sched_wakeup event %p\n", evsel);
838 
839 		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
840 	}
841 
842 	waker = register_pid(sched, sample->tid, "<unknown>");
843 	wakee = register_pid(sched, pid, comm);
844 
845 	add_sched_event_wakeup(sched, waker, sample->time, wakee);
846 	return 0;
847 }
848 
replay_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)849 static int replay_switch_event(struct perf_sched *sched,
850 			       struct evsel *evsel,
851 			       struct perf_sample *sample,
852 			       struct machine *machine __maybe_unused)
853 {
854 	const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
855 		   *next_comm  = evsel__strval(evsel, sample, "next_comm");
856 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
857 		  next_pid = evsel__intval(evsel, sample, "next_pid");
858 	struct task_desc *prev, __maybe_unused *next;
859 	u64 timestamp0, timestamp = sample->time;
860 	int cpu = sample->cpu;
861 	s64 delta;
862 
863 	if (verbose > 0)
864 		printf("sched_switch event %p\n", evsel);
865 
866 	if (cpu >= MAX_CPUS || cpu < 0)
867 		return 0;
868 
869 	timestamp0 = sched->cpu_last_switched[cpu];
870 	if (timestamp0)
871 		delta = timestamp - timestamp0;
872 	else
873 		delta = 0;
874 
875 	if (delta < 0) {
876 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
877 		return -1;
878 	}
879 
880 	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
881 		 prev_comm, prev_pid, next_comm, next_pid, delta);
882 
883 	prev = register_pid(sched, prev_pid, prev_comm);
884 	next = register_pid(sched, next_pid, next_comm);
885 
886 	sched->cpu_last_switched[cpu] = timestamp;
887 
888 	add_sched_event_run(sched, prev, timestamp, delta);
889 	add_sched_event_sleep(sched, prev, timestamp);
890 
891 	return 0;
892 }
893 
replay_fork_event(struct perf_sched * sched,union perf_event * event,struct machine * machine)894 static int replay_fork_event(struct perf_sched *sched,
895 			     union perf_event *event,
896 			     struct machine *machine)
897 {
898 	struct thread *child, *parent;
899 
900 	child = machine__findnew_thread(machine, event->fork.pid,
901 					event->fork.tid);
902 	parent = machine__findnew_thread(machine, event->fork.ppid,
903 					 event->fork.ptid);
904 
905 	if (child == NULL || parent == NULL) {
906 		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
907 				 child, parent);
908 		goto out_put;
909 	}
910 
911 	if (verbose > 0) {
912 		printf("fork event\n");
913 		printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent));
914 		printf("...  child: %s/%d\n", thread__comm_str(child), thread__tid(child));
915 	}
916 
917 	register_pid(sched, thread__tid(parent), thread__comm_str(parent));
918 	register_pid(sched, thread__tid(child), thread__comm_str(child));
919 out_put:
920 	thread__put(child);
921 	thread__put(parent);
922 	return 0;
923 }
924 
925 struct sort_dimension {
926 	const char		*name;
927 	sort_fn_t		cmp;
928 	struct list_head	list;
929 };
930 
init_prio(struct thread_runtime * r)931 static inline void init_prio(struct thread_runtime *r)
932 {
933 	r->prio = -1;
934 }
935 
936 /*
937  * handle runtime stats saved per thread
938  */
thread__init_runtime(struct thread * thread)939 static struct thread_runtime *thread__init_runtime(struct thread *thread)
940 {
941 	struct thread_runtime *r;
942 
943 	r = zalloc(sizeof(struct thread_runtime));
944 	if (!r)
945 		return NULL;
946 
947 	init_stats(&r->run_stats);
948 	init_prio(r);
949 	thread__set_priv(thread, r);
950 
951 	return r;
952 }
953 
thread__get_runtime(struct thread * thread)954 static struct thread_runtime *thread__get_runtime(struct thread *thread)
955 {
956 	struct thread_runtime *tr;
957 
958 	tr = thread__priv(thread);
959 	if (tr == NULL) {
960 		tr = thread__init_runtime(thread);
961 		if (tr == NULL)
962 			pr_debug("Failed to malloc memory for runtime data.\n");
963 	}
964 
965 	return tr;
966 }
967 
968 static int
thread_lat_cmp(struct list_head * list,struct work_atoms * l,struct work_atoms * r)969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
970 {
971 	struct sort_dimension *sort;
972 	int ret = 0;
973 
974 	BUG_ON(list_empty(list));
975 
976 	list_for_each_entry(sort, list, list) {
977 		ret = sort->cmp(l, r);
978 		if (ret)
979 			return ret;
980 	}
981 
982 	return ret;
983 }
984 
985 static struct work_atoms *
thread_atoms_search(struct rb_root_cached * root,struct thread * thread,struct list_head * sort_list)986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
987 			 struct list_head *sort_list)
988 {
989 	struct rb_node *node = root->rb_root.rb_node;
990 	struct work_atoms key = { .thread = thread };
991 
992 	while (node) {
993 		struct work_atoms *atoms;
994 		int cmp;
995 
996 		atoms = container_of(node, struct work_atoms, node);
997 
998 		cmp = thread_lat_cmp(sort_list, &key, atoms);
999 		if (cmp > 0)
1000 			node = node->rb_left;
1001 		else if (cmp < 0)
1002 			node = node->rb_right;
1003 		else {
1004 			BUG_ON(!RC_CHK_EQUAL(thread, atoms->thread));
1005 			return atoms;
1006 		}
1007 	}
1008 	return NULL;
1009 }
1010 
1011 static void
__thread_latency_insert(struct rb_root_cached * root,struct work_atoms * data,struct list_head * sort_list)1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013 			 struct list_head *sort_list)
1014 {
1015 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016 	bool leftmost = true;
1017 
1018 	while (*new) {
1019 		struct work_atoms *this;
1020 		int cmp;
1021 
1022 		this = container_of(*new, struct work_atoms, node);
1023 		parent = *new;
1024 
1025 		cmp = thread_lat_cmp(sort_list, data, this);
1026 
1027 		if (cmp > 0)
1028 			new = &((*new)->rb_left);
1029 		else {
1030 			new = &((*new)->rb_right);
1031 			leftmost = false;
1032 		}
1033 	}
1034 
1035 	rb_link_node(&data->node, parent, new);
1036 	rb_insert_color_cached(&data->node, root, leftmost);
1037 }
1038 
thread_atoms_insert(struct perf_sched * sched,struct thread * thread)1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040 {
1041 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042 	if (!atoms) {
1043 		pr_err("No memory at %s\n", __func__);
1044 		return -1;
1045 	}
1046 
1047 	atoms->thread = thread__get(thread);
1048 	INIT_LIST_HEAD(&atoms->work_list);
1049 	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050 	return 0;
1051 }
1052 
1053 static int
add_sched_out_event(struct work_atoms * atoms,char run_state,u64 timestamp)1054 add_sched_out_event(struct work_atoms *atoms,
1055 		    char run_state,
1056 		    u64 timestamp)
1057 {
1058 	struct work_atom *atom = zalloc(sizeof(*atom));
1059 	if (!atom) {
1060 		pr_err("Non memory at %s", __func__);
1061 		return -1;
1062 	}
1063 
1064 	atom->sched_out_time = timestamp;
1065 
1066 	if (run_state == 'R') {
1067 		atom->state = THREAD_WAIT_CPU;
1068 		atom->wake_up_time = atom->sched_out_time;
1069 	}
1070 
1071 	list_add_tail(&atom->list, &atoms->work_list);
1072 	return 0;
1073 }
1074 
1075 static void
add_runtime_event(struct work_atoms * atoms,u64 delta,u64 timestamp __maybe_unused)1076 add_runtime_event(struct work_atoms *atoms, u64 delta,
1077 		  u64 timestamp __maybe_unused)
1078 {
1079 	struct work_atom *atom;
1080 
1081 	BUG_ON(list_empty(&atoms->work_list));
1082 
1083 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1084 
1085 	atom->runtime += delta;
1086 	atoms->total_runtime += delta;
1087 }
1088 
1089 static void
add_sched_in_event(struct work_atoms * atoms,u64 timestamp)1090 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1091 {
1092 	struct work_atom *atom;
1093 	u64 delta;
1094 
1095 	if (list_empty(&atoms->work_list))
1096 		return;
1097 
1098 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1099 
1100 	if (atom->state != THREAD_WAIT_CPU)
1101 		return;
1102 
1103 	if (timestamp < atom->wake_up_time) {
1104 		atom->state = THREAD_IGNORE;
1105 		return;
1106 	}
1107 
1108 	atom->state = THREAD_SCHED_IN;
1109 	atom->sched_in_time = timestamp;
1110 
1111 	delta = atom->sched_in_time - atom->wake_up_time;
1112 	atoms->total_lat += delta;
1113 	if (delta > atoms->max_lat) {
1114 		atoms->max_lat = delta;
1115 		atoms->max_lat_start = atom->wake_up_time;
1116 		atoms->max_lat_end = timestamp;
1117 	}
1118 	atoms->nb_atoms++;
1119 }
1120 
free_work_atoms(struct work_atoms * atoms)1121 static void free_work_atoms(struct work_atoms *atoms)
1122 {
1123 	struct work_atom *atom, *tmp;
1124 
1125 	if (atoms == NULL)
1126 		return;
1127 
1128 	list_for_each_entry_safe(atom, tmp, &atoms->work_list, list) {
1129 		list_del(&atom->list);
1130 		free(atom);
1131 	}
1132 	thread__zput(atoms->thread);
1133 	free(atoms);
1134 }
1135 
latency_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1136 static int latency_switch_event(struct perf_sched *sched,
1137 				struct evsel *evsel,
1138 				struct perf_sample *sample,
1139 				struct machine *machine)
1140 {
1141 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1142 		  next_pid = evsel__intval(evsel, sample, "next_pid");
1143 	const char prev_state = evsel__taskstate(evsel, sample, "prev_state");
1144 	struct work_atoms *out_events, *in_events;
1145 	struct thread *sched_out, *sched_in;
1146 	u64 timestamp0, timestamp = sample->time;
1147 	int cpu = sample->cpu, err = -1;
1148 	s64 delta;
1149 
1150 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1151 
1152 	timestamp0 = sched->cpu_last_switched[cpu];
1153 	sched->cpu_last_switched[cpu] = timestamp;
1154 	if (timestamp0)
1155 		delta = timestamp - timestamp0;
1156 	else
1157 		delta = 0;
1158 
1159 	if (delta < 0) {
1160 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1161 		return -1;
1162 	}
1163 
1164 	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1165 	sched_in = machine__findnew_thread(machine, -1, next_pid);
1166 	if (sched_out == NULL || sched_in == NULL)
1167 		goto out_put;
1168 
1169 	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1170 	if (!out_events) {
1171 		if (thread_atoms_insert(sched, sched_out))
1172 			goto out_put;
1173 		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1174 		if (!out_events) {
1175 			pr_err("out-event: Internal tree error");
1176 			goto out_put;
1177 		}
1178 	}
1179 	if (add_sched_out_event(out_events, prev_state, timestamp))
1180 		return -1;
1181 
1182 	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1183 	if (!in_events) {
1184 		if (thread_atoms_insert(sched, sched_in))
1185 			goto out_put;
1186 		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1187 		if (!in_events) {
1188 			pr_err("in-event: Internal tree error");
1189 			goto out_put;
1190 		}
1191 		/*
1192 		 * Take came in we have not heard about yet,
1193 		 * add in an initial atom in runnable state:
1194 		 */
1195 		if (add_sched_out_event(in_events, 'R', timestamp))
1196 			goto out_put;
1197 	}
1198 	add_sched_in_event(in_events, timestamp);
1199 	err = 0;
1200 out_put:
1201 	thread__put(sched_out);
1202 	thread__put(sched_in);
1203 	return err;
1204 }
1205 
latency_runtime_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1206 static int latency_runtime_event(struct perf_sched *sched,
1207 				 struct evsel *evsel,
1208 				 struct perf_sample *sample,
1209 				 struct machine *machine)
1210 {
1211 	const u32 pid	   = evsel__intval(evsel, sample, "pid");
1212 	const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1213 	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1214 	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1215 	u64 timestamp = sample->time;
1216 	int cpu = sample->cpu, err = -1;
1217 
1218 	if (thread == NULL)
1219 		return -1;
1220 
1221 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1222 	if (!atoms) {
1223 		if (thread_atoms_insert(sched, thread))
1224 			goto out_put;
1225 		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1226 		if (!atoms) {
1227 			pr_err("in-event: Internal tree error");
1228 			goto out_put;
1229 		}
1230 		if (add_sched_out_event(atoms, 'R', timestamp))
1231 			goto out_put;
1232 	}
1233 
1234 	add_runtime_event(atoms, runtime, timestamp);
1235 	err = 0;
1236 out_put:
1237 	thread__put(thread);
1238 	return err;
1239 }
1240 
latency_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1241 static int latency_wakeup_event(struct perf_sched *sched,
1242 				struct evsel *evsel,
1243 				struct perf_sample *sample,
1244 				struct machine *machine)
1245 {
1246 	const u32 pid	  = evsel__intval(evsel, sample, "pid");
1247 	struct work_atoms *atoms;
1248 	struct work_atom *atom;
1249 	struct thread *wakee;
1250 	u64 timestamp = sample->time;
1251 	int err = -1;
1252 
1253 	wakee = machine__findnew_thread(machine, -1, pid);
1254 	if (wakee == NULL)
1255 		return -1;
1256 	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1257 	if (!atoms) {
1258 		if (thread_atoms_insert(sched, wakee))
1259 			goto out_put;
1260 		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1261 		if (!atoms) {
1262 			pr_err("wakeup-event: Internal tree error");
1263 			goto out_put;
1264 		}
1265 		if (add_sched_out_event(atoms, 'S', timestamp))
1266 			goto out_put;
1267 	}
1268 
1269 	BUG_ON(list_empty(&atoms->work_list));
1270 
1271 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1272 
1273 	/*
1274 	 * As we do not guarantee the wakeup event happens when
1275 	 * task is out of run queue, also may happen when task is
1276 	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1277 	 * then we should not set the ->wake_up_time when wake up a
1278 	 * task which is on run queue.
1279 	 *
1280 	 * You WILL be missing events if you've recorded only
1281 	 * one CPU, or are only looking at only one, so don't
1282 	 * skip in this case.
1283 	 */
1284 	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1285 		goto out_ok;
1286 
1287 	sched->nr_timestamps++;
1288 	if (atom->sched_out_time > timestamp) {
1289 		sched->nr_unordered_timestamps++;
1290 		goto out_ok;
1291 	}
1292 
1293 	atom->state = THREAD_WAIT_CPU;
1294 	atom->wake_up_time = timestamp;
1295 out_ok:
1296 	err = 0;
1297 out_put:
1298 	thread__put(wakee);
1299 	return err;
1300 }
1301 
latency_migrate_task_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1302 static int latency_migrate_task_event(struct perf_sched *sched,
1303 				      struct evsel *evsel,
1304 				      struct perf_sample *sample,
1305 				      struct machine *machine)
1306 {
1307 	const u32 pid = evsel__intval(evsel, sample, "pid");
1308 	u64 timestamp = sample->time;
1309 	struct work_atoms *atoms;
1310 	struct work_atom *atom;
1311 	struct thread *migrant;
1312 	int err = -1;
1313 
1314 	/*
1315 	 * Only need to worry about migration when profiling one CPU.
1316 	 */
1317 	if (sched->profile_cpu == -1)
1318 		return 0;
1319 
1320 	migrant = machine__findnew_thread(machine, -1, pid);
1321 	if (migrant == NULL)
1322 		return -1;
1323 	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1324 	if (!atoms) {
1325 		if (thread_atoms_insert(sched, migrant))
1326 			goto out_put;
1327 		register_pid(sched, thread__tid(migrant), thread__comm_str(migrant));
1328 		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1329 		if (!atoms) {
1330 			pr_err("migration-event: Internal tree error");
1331 			goto out_put;
1332 		}
1333 		if (add_sched_out_event(atoms, 'R', timestamp))
1334 			goto out_put;
1335 	}
1336 
1337 	BUG_ON(list_empty(&atoms->work_list));
1338 
1339 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1340 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1341 
1342 	sched->nr_timestamps++;
1343 
1344 	if (atom->sched_out_time > timestamp)
1345 		sched->nr_unordered_timestamps++;
1346 	err = 0;
1347 out_put:
1348 	thread__put(migrant);
1349 	return err;
1350 }
1351 
output_lat_thread(struct perf_sched * sched,struct work_atoms * work_list)1352 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1353 {
1354 	int i;
1355 	int ret;
1356 	u64 avg;
1357 	char max_lat_start[32], max_lat_end[32];
1358 
1359 	if (!work_list->nb_atoms)
1360 		return;
1361 	/*
1362 	 * Ignore idle threads:
1363 	 */
1364 	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1365 		return;
1366 
1367 	sched->all_runtime += work_list->total_runtime;
1368 	sched->all_count   += work_list->nb_atoms;
1369 
1370 	if (work_list->num_merged > 1) {
1371 		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread),
1372 			     work_list->num_merged);
1373 	} else {
1374 		ret = printf("  %s:%d ", thread__comm_str(work_list->thread),
1375 			     thread__tid(work_list->thread));
1376 	}
1377 
1378 	for (i = 0; i < 24 - ret; i++)
1379 		printf(" ");
1380 
1381 	avg = work_list->total_lat / work_list->nb_atoms;
1382 	timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1383 	timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1384 
1385 	printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1386 	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1387 		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1388 		 (double)work_list->max_lat / NSEC_PER_MSEC,
1389 		 max_lat_start, max_lat_end);
1390 }
1391 
pid_cmp(struct work_atoms * l,struct work_atoms * r)1392 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1393 {
1394 	pid_t l_tid, r_tid;
1395 
1396 	if (RC_CHK_EQUAL(l->thread, r->thread))
1397 		return 0;
1398 	l_tid = thread__tid(l->thread);
1399 	r_tid = thread__tid(r->thread);
1400 	if (l_tid < r_tid)
1401 		return -1;
1402 	if (l_tid > r_tid)
1403 		return 1;
1404 	return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread));
1405 }
1406 
avg_cmp(struct work_atoms * l,struct work_atoms * r)1407 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1408 {
1409 	u64 avgl, avgr;
1410 
1411 	if (!l->nb_atoms)
1412 		return -1;
1413 
1414 	if (!r->nb_atoms)
1415 		return 1;
1416 
1417 	avgl = l->total_lat / l->nb_atoms;
1418 	avgr = r->total_lat / r->nb_atoms;
1419 
1420 	if (avgl < avgr)
1421 		return -1;
1422 	if (avgl > avgr)
1423 		return 1;
1424 
1425 	return 0;
1426 }
1427 
max_cmp(struct work_atoms * l,struct work_atoms * r)1428 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1429 {
1430 	if (l->max_lat < r->max_lat)
1431 		return -1;
1432 	if (l->max_lat > r->max_lat)
1433 		return 1;
1434 
1435 	return 0;
1436 }
1437 
switch_cmp(struct work_atoms * l,struct work_atoms * r)1438 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1439 {
1440 	if (l->nb_atoms < r->nb_atoms)
1441 		return -1;
1442 	if (l->nb_atoms > r->nb_atoms)
1443 		return 1;
1444 
1445 	return 0;
1446 }
1447 
runtime_cmp(struct work_atoms * l,struct work_atoms * r)1448 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1449 {
1450 	if (l->total_runtime < r->total_runtime)
1451 		return -1;
1452 	if (l->total_runtime > r->total_runtime)
1453 		return 1;
1454 
1455 	return 0;
1456 }
1457 
sort_dimension__add(const char * tok,struct list_head * list)1458 static int sort_dimension__add(const char *tok, struct list_head *list)
1459 {
1460 	size_t i;
1461 	static struct sort_dimension avg_sort_dimension = {
1462 		.name = "avg",
1463 		.cmp  = avg_cmp,
1464 	};
1465 	static struct sort_dimension max_sort_dimension = {
1466 		.name = "max",
1467 		.cmp  = max_cmp,
1468 	};
1469 	static struct sort_dimension pid_sort_dimension = {
1470 		.name = "pid",
1471 		.cmp  = pid_cmp,
1472 	};
1473 	static struct sort_dimension runtime_sort_dimension = {
1474 		.name = "runtime",
1475 		.cmp  = runtime_cmp,
1476 	};
1477 	static struct sort_dimension switch_sort_dimension = {
1478 		.name = "switch",
1479 		.cmp  = switch_cmp,
1480 	};
1481 	struct sort_dimension *available_sorts[] = {
1482 		&pid_sort_dimension,
1483 		&avg_sort_dimension,
1484 		&max_sort_dimension,
1485 		&switch_sort_dimension,
1486 		&runtime_sort_dimension,
1487 	};
1488 
1489 	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1490 		if (!strcmp(available_sorts[i]->name, tok)) {
1491 			list_add_tail(&available_sorts[i]->list, list);
1492 
1493 			return 0;
1494 		}
1495 	}
1496 
1497 	return -1;
1498 }
1499 
perf_sched__sort_lat(struct perf_sched * sched)1500 static void perf_sched__sort_lat(struct perf_sched *sched)
1501 {
1502 	struct rb_node *node;
1503 	struct rb_root_cached *root = &sched->atom_root;
1504 again:
1505 	for (;;) {
1506 		struct work_atoms *data;
1507 		node = rb_first_cached(root);
1508 		if (!node)
1509 			break;
1510 
1511 		rb_erase_cached(node, root);
1512 		data = rb_entry(node, struct work_atoms, node);
1513 		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1514 	}
1515 	if (root == &sched->atom_root) {
1516 		root = &sched->merged_atom_root;
1517 		goto again;
1518 	}
1519 }
1520 
process_sched_wakeup_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1521 static int process_sched_wakeup_event(const struct perf_tool *tool,
1522 				      struct evsel *evsel,
1523 				      struct perf_sample *sample,
1524 				      struct machine *machine)
1525 {
1526 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1527 
1528 	if (sched->tp_handler->wakeup_event)
1529 		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1530 
1531 	return 0;
1532 }
1533 
process_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)1534 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
1535 				      struct evsel *evsel __maybe_unused,
1536 				      struct perf_sample *sample __maybe_unused,
1537 				      struct machine *machine __maybe_unused)
1538 {
1539 	return 0;
1540 }
1541 
thread__has_color(struct thread * thread)1542 static bool thread__has_color(struct thread *thread)
1543 {
1544 	return thread__priv(thread) != NULL;
1545 }
1546 
1547 static struct thread*
map__findnew_thread(struct perf_sched * sched,struct machine * machine,pid_t pid,pid_t tid)1548 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1549 {
1550 	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1551 	bool color = false;
1552 
1553 	if (!sched->map.color_pids || !thread || thread__priv(thread))
1554 		return thread;
1555 
1556 	if (thread_map__has(sched->map.color_pids, tid))
1557 		color = true;
1558 
1559 	thread__set_priv(thread, color ? ((void*)1) : NULL);
1560 	return thread;
1561 }
1562 
sched_match_task(struct perf_sched * sched,const char * comm_str)1563 static bool sched_match_task(struct perf_sched *sched, const char *comm_str)
1564 {
1565 	bool fuzzy_match = sched->map.fuzzy;
1566 	struct strlist *task_names = sched->map.task_names;
1567 	struct str_node *node;
1568 
1569 	strlist__for_each_entry(node, task_names) {
1570 		bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) :
1571 							!strcmp(comm_str, node->s);
1572 		if (match_found)
1573 			return true;
1574 	}
1575 
1576 	return false;
1577 }
1578 
print_sched_map(struct perf_sched * sched,struct perf_cpu this_cpu,int cpus_nr,const char * color,bool sched_out)1579 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr,
1580 								const char *color, bool sched_out)
1581 {
1582 	for (int i = 0; i < cpus_nr; i++) {
1583 		struct perf_cpu cpu = {
1584 			.cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1585 		};
1586 		struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1587 		struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu];
1588 		struct thread_runtime *curr_tr;
1589 		const char *pid_color = color;
1590 		const char *cpu_color = color;
1591 		char symbol = ' ';
1592 		struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread;
1593 
1594 		if (thread_to_check && thread__has_color(thread_to_check))
1595 			pid_color = COLOR_PIDS;
1596 
1597 		if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1598 			cpu_color = COLOR_CPUS;
1599 
1600 		if (cpu.cpu == this_cpu.cpu)
1601 			symbol = '*';
1602 
1603 		color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol);
1604 
1605 		thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] :
1606 								sched->curr_thread[cpu.cpu];
1607 
1608 		if (thread_to_check) {
1609 			curr_tr = thread__get_runtime(thread_to_check);
1610 			if (curr_tr == NULL)
1611 				return;
1612 
1613 			if (sched_out) {
1614 				if (cpu.cpu == this_cpu.cpu)
1615 					color_fprintf(stdout, color, "-  ");
1616 				else {
1617 					curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1618 					if (curr_tr != NULL)
1619 						color_fprintf(stdout, pid_color, "%2s ",
1620 										curr_tr->shortname);
1621 				}
1622 			} else
1623 				color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1624 		} else
1625 			color_fprintf(stdout, color, "   ");
1626 	}
1627 }
1628 
map_switch_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1629 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1630 			    struct perf_sample *sample, struct machine *machine)
1631 {
1632 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1633 	const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid");
1634 	struct thread *sched_in, *sched_out;
1635 	struct thread_runtime *tr;
1636 	int new_shortname;
1637 	u64 timestamp0, timestamp = sample->time;
1638 	s64 delta;
1639 	struct perf_cpu this_cpu = {
1640 		.cpu = sample->cpu,
1641 	};
1642 	int cpus_nr;
1643 	int proceed;
1644 	bool new_cpu = false;
1645 	const char *color = PERF_COLOR_NORMAL;
1646 	char stimestamp[32];
1647 	const char *str;
1648 	int ret = -1;
1649 
1650 	BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1651 
1652 	if (this_cpu.cpu > sched->max_cpu.cpu)
1653 		sched->max_cpu = this_cpu;
1654 
1655 	if (sched->map.comp) {
1656 		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1657 		if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1658 			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1659 			new_cpu = true;
1660 		}
1661 	} else
1662 		cpus_nr = sched->max_cpu.cpu;
1663 
1664 	timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1665 	sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1666 	if (timestamp0)
1667 		delta = timestamp - timestamp0;
1668 	else
1669 		delta = 0;
1670 
1671 	if (delta < 0) {
1672 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1673 		return -1;
1674 	}
1675 
1676 	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1677 	sched_out = map__findnew_thread(sched, machine, -1, prev_pid);
1678 	if (sched_in == NULL || sched_out == NULL)
1679 		goto out;
1680 
1681 	tr = thread__get_runtime(sched_in);
1682 	if (tr == NULL)
1683 		goto out;
1684 
1685 	thread__put(sched->curr_thread[this_cpu.cpu]);
1686 	thread__put(sched->curr_out_thread[this_cpu.cpu]);
1687 
1688 	sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1689 	sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out);
1690 
1691 	ret = 0;
1692 
1693 	str = thread__comm_str(sched_in);
1694 	new_shortname = 0;
1695 	if (!tr->shortname[0]) {
1696 		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1697 			/*
1698 			 * Don't allocate a letter-number for swapper:0
1699 			 * as a shortname. Instead, we use '.' for it.
1700 			 */
1701 			tr->shortname[0] = '.';
1702 			tr->shortname[1] = ' ';
1703 		} else if (!sched->map.task_name || sched_match_task(sched, str)) {
1704 			tr->shortname[0] = sched->next_shortname1;
1705 			tr->shortname[1] = sched->next_shortname2;
1706 
1707 			if (sched->next_shortname1 < 'Z') {
1708 				sched->next_shortname1++;
1709 			} else {
1710 				sched->next_shortname1 = 'A';
1711 				if (sched->next_shortname2 < '9')
1712 					sched->next_shortname2++;
1713 				else
1714 					sched->next_shortname2 = '0';
1715 			}
1716 		} else {
1717 			tr->shortname[0] = '-';
1718 			tr->shortname[1] = ' ';
1719 		}
1720 		new_shortname = 1;
1721 	}
1722 
1723 	if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1724 		goto out;
1725 
1726 	proceed = 0;
1727 	str = thread__comm_str(sched_in);
1728 	/*
1729 	 * Check which of sched_in and sched_out matches the passed --task-name
1730 	 * arguments and call the corresponding print_sched_map.
1731 	 */
1732 	if (sched->map.task_name && !sched_match_task(sched, str)) {
1733 		if (!sched_match_task(sched, thread__comm_str(sched_out)))
1734 			goto out;
1735 		else
1736 			goto sched_out;
1737 
1738 	} else {
1739 		str = thread__comm_str(sched_out);
1740 		if (!(sched->map.task_name && !sched_match_task(sched, str)))
1741 			proceed = 1;
1742 	}
1743 
1744 	printf("  ");
1745 
1746 	print_sched_map(sched, this_cpu, cpus_nr, color, false);
1747 
1748 	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1749 	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1750 	if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) {
1751 		const char *pid_color = color;
1752 
1753 		if (thread__has_color(sched_in))
1754 			pid_color = COLOR_PIDS;
1755 
1756 		color_fprintf(stdout, pid_color, "%s => %s:%d",
1757 			tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in));
1758 		tr->comm_changed = false;
1759 	}
1760 
1761 	if (sched->map.comp && new_cpu)
1762 		color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu);
1763 
1764 	if (proceed != 1) {
1765 		color_fprintf(stdout, color, "\n");
1766 		goto out;
1767 	}
1768 
1769 sched_out:
1770 	if (sched->map.task_name) {
1771 		tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]);
1772 		if (strcmp(tr->shortname, "") == 0)
1773 			goto out;
1774 
1775 		if (proceed == 1)
1776 			color_fprintf(stdout, color, "\n");
1777 
1778 		printf("  ");
1779 		print_sched_map(sched, this_cpu, cpus_nr, color, true);
1780 		timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1781 		color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1782 	}
1783 
1784 	color_fprintf(stdout, color, "\n");
1785 
1786 out:
1787 	thread__put(sched_out);
1788 	thread__put(sched_in);
1789 
1790 	return ret;
1791 }
1792 
process_sched_switch_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1793 static int process_sched_switch_event(const struct perf_tool *tool,
1794 				      struct evsel *evsel,
1795 				      struct perf_sample *sample,
1796 				      struct machine *machine)
1797 {
1798 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1799 	int this_cpu = sample->cpu, err = 0;
1800 	u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1801 	    next_pid = evsel__intval(evsel, sample, "next_pid");
1802 
1803 	if (sched->curr_pid[this_cpu] != (u32)-1) {
1804 		/*
1805 		 * Are we trying to switch away a PID that is
1806 		 * not current?
1807 		 */
1808 		if (sched->curr_pid[this_cpu] != prev_pid)
1809 			sched->nr_context_switch_bugs++;
1810 	}
1811 
1812 	if (sched->tp_handler->switch_event)
1813 		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1814 
1815 	sched->curr_pid[this_cpu] = next_pid;
1816 	return err;
1817 }
1818 
process_sched_runtime_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1819 static int process_sched_runtime_event(const struct perf_tool *tool,
1820 				       struct evsel *evsel,
1821 				       struct perf_sample *sample,
1822 				       struct machine *machine)
1823 {
1824 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1825 
1826 	if (sched->tp_handler->runtime_event)
1827 		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1828 
1829 	return 0;
1830 }
1831 
perf_sched__process_fork_event(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct machine * machine)1832 static int perf_sched__process_fork_event(const struct perf_tool *tool,
1833 					  union perf_event *event,
1834 					  struct perf_sample *sample,
1835 					  struct machine *machine)
1836 {
1837 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1838 
1839 	/* run the fork event through the perf machinery */
1840 	perf_event__process_fork(tool, event, sample, machine);
1841 
1842 	/* and then run additional processing needed for this command */
1843 	if (sched->tp_handler->fork_event)
1844 		return sched->tp_handler->fork_event(sched, event, machine);
1845 
1846 	return 0;
1847 }
1848 
process_sched_migrate_task_event(const struct perf_tool * tool,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)1849 static int process_sched_migrate_task_event(const struct perf_tool *tool,
1850 					    struct evsel *evsel,
1851 					    struct perf_sample *sample,
1852 					    struct machine *machine)
1853 {
1854 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1855 
1856 	if (sched->tp_handler->migrate_task_event)
1857 		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1858 
1859 	return 0;
1860 }
1861 
1862 typedef int (*tracepoint_handler)(const struct perf_tool *tool,
1863 				  struct evsel *evsel,
1864 				  struct perf_sample *sample,
1865 				  struct machine *machine);
1866 
perf_sched__process_tracepoint_sample(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)1867 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused,
1868 						 union perf_event *event __maybe_unused,
1869 						 struct perf_sample *sample,
1870 						 struct evsel *evsel,
1871 						 struct machine *machine)
1872 {
1873 	int err = 0;
1874 
1875 	if (evsel->handler != NULL) {
1876 		tracepoint_handler f = evsel->handler;
1877 		err = f(tool, evsel, sample, machine);
1878 	}
1879 
1880 	return err;
1881 }
1882 
perf_sched__process_comm(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine)1883 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused,
1884 				    union perf_event *event,
1885 				    struct perf_sample *sample,
1886 				    struct machine *machine)
1887 {
1888 	struct thread *thread;
1889 	struct thread_runtime *tr;
1890 	int err;
1891 
1892 	err = perf_event__process_comm(tool, event, sample, machine);
1893 	if (err)
1894 		return err;
1895 
1896 	thread = machine__find_thread(machine, sample->pid, sample->tid);
1897 	if (!thread) {
1898 		pr_err("Internal error: can't find thread\n");
1899 		return -1;
1900 	}
1901 
1902 	tr = thread__get_runtime(thread);
1903 	if (tr == NULL) {
1904 		thread__put(thread);
1905 		return -1;
1906 	}
1907 
1908 	tr->comm_changed = true;
1909 	thread__put(thread);
1910 
1911 	return 0;
1912 }
1913 
perf_sched__read_events(struct perf_sched * sched)1914 static int perf_sched__read_events(struct perf_sched *sched)
1915 {
1916 	struct evsel_str_handler handlers[] = {
1917 		{ "sched:sched_switch",	      process_sched_switch_event, },
1918 		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1919 		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1920 		{ "sched:sched_waking",	      process_sched_wakeup_event, },
1921 		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1922 		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1923 	};
1924 	struct perf_session *session;
1925 	struct perf_data data = {
1926 		.path  = input_name,
1927 		.mode  = PERF_DATA_MODE_READ,
1928 		.force = sched->force,
1929 	};
1930 	int rc = -1;
1931 
1932 	session = perf_session__new(&data, &sched->tool);
1933 	if (IS_ERR(session)) {
1934 		pr_debug("Error creating perf session");
1935 		return PTR_ERR(session);
1936 	}
1937 
1938 	symbol__init(perf_session__env(session));
1939 
1940 	/* prefer sched_waking if it is captured */
1941 	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1942 		handlers[2].handler = process_sched_wakeup_ignore;
1943 
1944 	if (perf_session__set_tracepoints_handlers(session, handlers))
1945 		goto out_delete;
1946 
1947 	if (perf_session__has_traces(session, "record -R")) {
1948 		int err = perf_session__process_events(session);
1949 		if (err) {
1950 			pr_err("Failed to process events, error %d", err);
1951 			goto out_delete;
1952 		}
1953 
1954 		sched->nr_events      = session->evlist->stats.nr_events[0];
1955 		sched->nr_lost_events = session->evlist->stats.total_lost;
1956 		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1957 	}
1958 
1959 	rc = 0;
1960 out_delete:
1961 	perf_session__delete(session);
1962 	return rc;
1963 }
1964 
1965 /*
1966  * scheduling times are printed as msec.usec
1967  */
print_sched_time(unsigned long long nsecs,int width)1968 static inline void print_sched_time(unsigned long long nsecs, int width)
1969 {
1970 	unsigned long msecs;
1971 	unsigned long usecs;
1972 
1973 	msecs  = nsecs / NSEC_PER_MSEC;
1974 	nsecs -= msecs * NSEC_PER_MSEC;
1975 	usecs  = nsecs / NSEC_PER_USEC;
1976 	printf("%*lu.%03lu ", width, msecs, usecs);
1977 }
1978 
1979 /*
1980  * returns runtime data for event, allocating memory for it the
1981  * first time it is used.
1982  */
evsel__get_runtime(struct evsel * evsel)1983 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1984 {
1985 	struct evsel_runtime *r = evsel->priv;
1986 
1987 	if (r == NULL) {
1988 		r = zalloc(sizeof(struct evsel_runtime));
1989 		evsel->priv = r;
1990 	}
1991 
1992 	return r;
1993 }
1994 
1995 /*
1996  * save last time event was seen per cpu
1997  */
evsel__save_time(struct evsel * evsel,u64 timestamp,u32 cpu)1998 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1999 {
2000 	struct evsel_runtime *r = evsel__get_runtime(evsel);
2001 
2002 	if (r == NULL)
2003 		return;
2004 
2005 	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
2006 		int i, n = __roundup_pow_of_two(cpu+1);
2007 		void *p = r->last_time;
2008 
2009 		p = realloc(r->last_time, n * sizeof(u64));
2010 		if (!p)
2011 			return;
2012 
2013 		r->last_time = p;
2014 		for (i = r->ncpu; i < n; ++i)
2015 			r->last_time[i] = (u64) 0;
2016 
2017 		r->ncpu = n;
2018 	}
2019 
2020 	r->last_time[cpu] = timestamp;
2021 }
2022 
2023 /* returns last time this event was seen on the given cpu */
evsel__get_time(struct evsel * evsel,u32 cpu)2024 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
2025 {
2026 	struct evsel_runtime *r = evsel__get_runtime(evsel);
2027 
2028 	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
2029 		return 0;
2030 
2031 	return r->last_time[cpu];
2032 }
2033 
timehist__evsel_priv_destructor(void * priv)2034 static void timehist__evsel_priv_destructor(void *priv)
2035 {
2036 	struct evsel_runtime *r = priv;
2037 
2038 	if (r) {
2039 		free(r->last_time);
2040 		free(r);
2041 	}
2042 }
2043 
2044 static int comm_width = 30;
2045 
timehist_get_commstr(struct thread * thread)2046 static char *timehist_get_commstr(struct thread *thread)
2047 {
2048 	static char str[32];
2049 	const char *comm = thread__comm_str(thread);
2050 	pid_t tid = thread__tid(thread);
2051 	pid_t pid = thread__pid(thread);
2052 	int n;
2053 
2054 	if (pid == 0)
2055 		n = scnprintf(str, sizeof(str), "%s", comm);
2056 
2057 	else if (tid != pid)
2058 		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
2059 
2060 	else
2061 		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
2062 
2063 	if (n > comm_width)
2064 		comm_width = n;
2065 
2066 	return str;
2067 }
2068 
2069 /* prio field format: xxx or xxx->yyy */
2070 #define MAX_PRIO_STR_LEN 8
timehist_get_priostr(struct evsel * evsel,struct thread * thread,struct perf_sample * sample)2071 static char *timehist_get_priostr(struct evsel *evsel,
2072 				  struct thread *thread,
2073 				  struct perf_sample *sample)
2074 {
2075 	static char prio_str[16];
2076 	int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio");
2077 	struct thread_runtime *tr = thread__priv(thread);
2078 
2079 	if (tr->prio != prev_prio && tr->prio != -1)
2080 		scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio);
2081 	else
2082 		scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio);
2083 
2084 	return prio_str;
2085 }
2086 
timehist_header(struct perf_sched * sched)2087 static void timehist_header(struct perf_sched *sched)
2088 {
2089 	u32 ncpus = sched->max_cpu.cpu + 1;
2090 	u32 i, j;
2091 
2092 	printf("%15s %6s ", "time", "cpu");
2093 
2094 	if (sched->show_cpu_visual) {
2095 		printf(" ");
2096 		for (i = 0, j = 0; i < ncpus; ++i) {
2097 			printf("%x", j++);
2098 			if (j > 15)
2099 				j = 0;
2100 		}
2101 		printf(" ");
2102 	}
2103 
2104 	printf(" %-*s", comm_width, "task name");
2105 
2106 	if (sched->show_prio)
2107 		printf("  %-*s", MAX_PRIO_STR_LEN, "prio");
2108 
2109 	printf("  %9s  %9s  %9s", "wait time", "sch delay", "run time");
2110 
2111 	if (sched->pre_migrations)
2112 		printf("  %9s", "pre-mig time");
2113 
2114 	if (sched->show_state)
2115 		printf("  %s", "state");
2116 
2117 	printf("\n");
2118 
2119 	/*
2120 	 * units row
2121 	 */
2122 	printf("%15s %-6s ", "", "");
2123 
2124 	if (sched->show_cpu_visual)
2125 		printf(" %*s ", ncpus, "");
2126 
2127 	printf(" %-*s", comm_width, "[tid/pid]");
2128 
2129 	if (sched->show_prio)
2130 		printf("  %-*s", MAX_PRIO_STR_LEN, "");
2131 
2132 	printf("  %9s  %9s  %9s", "(msec)", "(msec)", "(msec)");
2133 
2134 	if (sched->pre_migrations)
2135 		printf("  %9s", "(msec)");
2136 
2137 	printf("\n");
2138 
2139 	/*
2140 	 * separator
2141 	 */
2142 	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2143 
2144 	if (sched->show_cpu_visual)
2145 		printf(" %.*s ", ncpus, graph_dotted_line);
2146 
2147 	printf(" %.*s", comm_width, graph_dotted_line);
2148 
2149 	if (sched->show_prio)
2150 		printf("  %.*s", MAX_PRIO_STR_LEN, graph_dotted_line);
2151 
2152 	printf("  %.9s  %.9s  %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line);
2153 
2154 	if (sched->pre_migrations)
2155 		printf("  %.9s", graph_dotted_line);
2156 
2157 	if (sched->show_state)
2158 		printf("  %.5s", graph_dotted_line);
2159 
2160 	printf("\n");
2161 }
2162 
timehist_print_sample(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct addr_location * al,struct thread * thread,u64 t,const char state)2163 static void timehist_print_sample(struct perf_sched *sched,
2164 				  struct evsel *evsel,
2165 				  struct perf_sample *sample,
2166 				  struct addr_location *al,
2167 				  struct thread *thread,
2168 				  u64 t, const char state)
2169 {
2170 	struct thread_runtime *tr = thread__priv(thread);
2171 	const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2172 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2173 	u32 max_cpus = sched->max_cpu.cpu + 1;
2174 	char tstr[64];
2175 	char nstr[30];
2176 	u64 wait_time;
2177 
2178 	if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2179 		return;
2180 
2181 	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2182 	printf("%15s [%04d] ", tstr, sample->cpu);
2183 
2184 	if (sched->show_cpu_visual) {
2185 		u32 i;
2186 		char c;
2187 
2188 		printf(" ");
2189 		for (i = 0; i < max_cpus; ++i) {
2190 			/* flag idle times with 'i'; others are sched events */
2191 			if (i == sample->cpu)
2192 				c = (thread__tid(thread) == 0) ? 'i' : 's';
2193 			else
2194 				c = ' ';
2195 			printf("%c", c);
2196 		}
2197 		printf(" ");
2198 	}
2199 
2200 	if (!thread__comm_set(thread)) {
2201                 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm");
2202                 thread__set_comm(thread, prev_comm, sample->time);
2203         }
2204 
2205 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2206 
2207 	if (sched->show_prio)
2208 		printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample));
2209 
2210 	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2211 	print_sched_time(wait_time, 6);
2212 
2213 	print_sched_time(tr->dt_delay, 6);
2214 	print_sched_time(tr->dt_run, 6);
2215 	if (sched->pre_migrations)
2216 		print_sched_time(tr->dt_pre_mig, 6);
2217 
2218 	if (sched->show_state)
2219 		printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state);
2220 
2221 	if (sched->show_next) {
2222 		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2223 		printf(" %-*s", comm_width, nstr);
2224 	}
2225 
2226 	if (sched->show_wakeups && !sched->show_next)
2227 		printf("  %-*s", comm_width, "");
2228 
2229 	if (thread__tid(thread) == 0)
2230 		goto out;
2231 
2232 	if (sched->show_callchain)
2233 		printf("  ");
2234 
2235 	sample__fprintf_sym(sample, al, 0,
2236 			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2237 			    EVSEL__PRINT_CALLCHAIN_ARROW |
2238 			    EVSEL__PRINT_SKIP_IGNORED,
2239 			    get_tls_callchain_cursor(), symbol_conf.bt_stop_list,  stdout);
2240 
2241 out:
2242 	printf("\n");
2243 }
2244 
2245 /*
2246  * Explanation of delta-time stats:
2247  *
2248  *            t = time of current schedule out event
2249  *        tprev = time of previous sched out event
2250  *                also time of schedule-in event for current task
2251  *    last_time = time of last sched change event for current task
2252  *                (i.e, time process was last scheduled out)
2253  * ready_to_run = time of wakeup for current task
2254  *     migrated = time of task migration to another CPU
2255  *
2256  * -----|-------------|-------------|-------------|-------------|-----
2257  *    last         ready         migrated       tprev           t
2258  *    time         to run
2259  *
2260  *      |---------------- dt_wait ----------------|
2261  *                   |--------- dt_delay ---------|-- dt_run --|
2262  *                   |- dt_pre_mig -|
2263  *
2264  *     dt_run = run time of current task
2265  *    dt_wait = time between last schedule out event for task and tprev
2266  *              represents time spent off the cpu
2267  *   dt_delay = time between wakeup and schedule-in of task
2268  * dt_pre_mig = time between wakeup and migration to another CPU
2269  */
2270 
timehist_update_runtime_stats(struct thread_runtime * r,u64 t,u64 tprev)2271 static void timehist_update_runtime_stats(struct thread_runtime *r,
2272 					 u64 t, u64 tprev)
2273 {
2274 	r->dt_delay   = 0;
2275 	r->dt_sleep   = 0;
2276 	r->dt_iowait  = 0;
2277 	r->dt_preempt = 0;
2278 	r->dt_run     = 0;
2279 	r->dt_pre_mig = 0;
2280 
2281 	if (tprev) {
2282 		r->dt_run = t - tprev;
2283 		if (r->ready_to_run) {
2284 			if (r->ready_to_run > tprev)
2285 				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2286 			else
2287 				r->dt_delay = tprev - r->ready_to_run;
2288 
2289 			if ((r->migrated > r->ready_to_run) && (r->migrated < tprev))
2290 				r->dt_pre_mig = r->migrated - r->ready_to_run;
2291 		}
2292 
2293 		if (r->last_time > tprev)
2294 			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2295 		else if (r->last_time) {
2296 			u64 dt_wait = tprev - r->last_time;
2297 
2298 			if (r->last_state == 'R')
2299 				r->dt_preempt = dt_wait;
2300 			else if (r->last_state == 'D')
2301 				r->dt_iowait = dt_wait;
2302 			else
2303 				r->dt_sleep = dt_wait;
2304 		}
2305 	}
2306 
2307 	update_stats(&r->run_stats, r->dt_run);
2308 
2309 	r->total_run_time     += r->dt_run;
2310 	r->total_delay_time   += r->dt_delay;
2311 	r->total_sleep_time   += r->dt_sleep;
2312 	r->total_iowait_time  += r->dt_iowait;
2313 	r->total_preempt_time += r->dt_preempt;
2314 	r->total_pre_mig_time += r->dt_pre_mig;
2315 }
2316 
is_idle_sample(struct perf_sample * sample,struct evsel * evsel)2317 static bool is_idle_sample(struct perf_sample *sample,
2318 			   struct evsel *evsel)
2319 {
2320 	/* pid 0 == swapper == idle task */
2321 	if (evsel__name_is(evsel, "sched:sched_switch"))
2322 		return evsel__intval(evsel, sample, "prev_pid") == 0;
2323 
2324 	return sample->pid == 0;
2325 }
2326 
save_task_callchain(struct perf_sched * sched,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)2327 static void save_task_callchain(struct perf_sched *sched,
2328 				struct perf_sample *sample,
2329 				struct evsel *evsel,
2330 				struct machine *machine)
2331 {
2332 	struct callchain_cursor *cursor;
2333 	struct thread *thread;
2334 
2335 	/* want main thread for process - has maps */
2336 	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2337 	if (thread == NULL) {
2338 		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2339 		return;
2340 	}
2341 
2342 	if (!sched->show_callchain || sample->callchain == NULL) {
2343 		thread__put(thread);
2344 		return;
2345 	}
2346 
2347 	cursor = get_tls_callchain_cursor();
2348 
2349 	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2350 				      NULL, NULL, sched->max_stack + 2) != 0) {
2351 		if (verbose > 0)
2352 			pr_err("Failed to resolve callchain. Skipping\n");
2353 
2354 		thread__put(thread);
2355 		return;
2356 	}
2357 
2358 	callchain_cursor_commit(cursor);
2359 	thread__put(thread);
2360 
2361 	while (true) {
2362 		struct callchain_cursor_node *node;
2363 		struct symbol *sym;
2364 
2365 		node = callchain_cursor_current(cursor);
2366 		if (node == NULL)
2367 			break;
2368 
2369 		sym = node->ms.sym;
2370 		if (sym) {
2371 			if (!strcmp(sym->name, "schedule") ||
2372 			    !strcmp(sym->name, "__schedule") ||
2373 			    !strcmp(sym->name, "preempt_schedule"))
2374 				sym->ignore = 1;
2375 		}
2376 
2377 		callchain_cursor_advance(cursor);
2378 	}
2379 }
2380 
init_idle_thread(struct thread * thread)2381 static int init_idle_thread(struct thread *thread)
2382 {
2383 	struct idle_thread_runtime *itr;
2384 
2385 	thread__set_comm(thread, idle_comm, 0);
2386 
2387 	itr = zalloc(sizeof(*itr));
2388 	if (itr == NULL)
2389 		return -ENOMEM;
2390 
2391 	init_prio(&itr->tr);
2392 	init_stats(&itr->tr.run_stats);
2393 	callchain_init(&itr->callchain);
2394 	callchain_cursor_reset(&itr->cursor);
2395 	thread__set_priv(thread, itr);
2396 
2397 	return 0;
2398 }
2399 
2400 /*
2401  * Track idle stats per cpu by maintaining a local thread
2402  * struct for the idle task on each cpu.
2403  */
init_idle_threads(int ncpu)2404 static int init_idle_threads(int ncpu)
2405 {
2406 	int i, ret;
2407 
2408 	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2409 	if (!idle_threads)
2410 		return -ENOMEM;
2411 
2412 	idle_max_cpu = ncpu;
2413 
2414 	/* allocate the actual thread struct if needed */
2415 	for (i = 0; i < ncpu; ++i) {
2416 		idle_threads[i] = thread__new(0, 0);
2417 		if (idle_threads[i] == NULL)
2418 			return -ENOMEM;
2419 
2420 		ret = init_idle_thread(idle_threads[i]);
2421 		if (ret < 0)
2422 			return ret;
2423 	}
2424 
2425 	return 0;
2426 }
2427 
free_idle_threads(void)2428 static void free_idle_threads(void)
2429 {
2430 	int i;
2431 
2432 	if (idle_threads == NULL)
2433 		return;
2434 
2435 	for (i = 0; i < idle_max_cpu; ++i) {
2436 		struct thread *idle = idle_threads[i];
2437 
2438 		if (idle) {
2439 			struct idle_thread_runtime *itr;
2440 
2441 			itr = thread__priv(idle);
2442 			if (itr)
2443 				thread__put(itr->last_thread);
2444 
2445 			thread__delete(idle);
2446 		}
2447 	}
2448 
2449 	free(idle_threads);
2450 }
2451 
get_idle_thread(int cpu)2452 static struct thread *get_idle_thread(int cpu)
2453 {
2454 	/*
2455 	 * expand/allocate array of pointers to local thread
2456 	 * structs if needed
2457 	 */
2458 	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2459 		int i, j = __roundup_pow_of_two(cpu+1);
2460 		void *p;
2461 
2462 		p = realloc(idle_threads, j * sizeof(struct thread *));
2463 		if (!p)
2464 			return NULL;
2465 
2466 		idle_threads = (struct thread **) p;
2467 		for (i = idle_max_cpu; i < j; ++i)
2468 			idle_threads[i] = NULL;
2469 
2470 		idle_max_cpu = j;
2471 	}
2472 
2473 	/* allocate a new thread struct if needed */
2474 	if (idle_threads[cpu] == NULL) {
2475 		idle_threads[cpu] = thread__new(0, 0);
2476 
2477 		if (idle_threads[cpu]) {
2478 			if (init_idle_thread(idle_threads[cpu]) < 0)
2479 				return NULL;
2480 		}
2481 	}
2482 
2483 	return thread__get(idle_threads[cpu]);
2484 }
2485 
save_idle_callchain(struct perf_sched * sched,struct idle_thread_runtime * itr,struct perf_sample * sample)2486 static void save_idle_callchain(struct perf_sched *sched,
2487 				struct idle_thread_runtime *itr,
2488 				struct perf_sample *sample)
2489 {
2490 	struct callchain_cursor *cursor;
2491 
2492 	if (!sched->show_callchain || sample->callchain == NULL)
2493 		return;
2494 
2495 	cursor = get_tls_callchain_cursor();
2496 	if (cursor == NULL)
2497 		return;
2498 
2499 	callchain_cursor__copy(&itr->cursor, cursor);
2500 }
2501 
timehist_get_thread(struct perf_sched * sched,struct perf_sample * sample,struct machine * machine,struct evsel * evsel)2502 static struct thread *timehist_get_thread(struct perf_sched *sched,
2503 					  struct perf_sample *sample,
2504 					  struct machine *machine,
2505 					  struct evsel *evsel)
2506 {
2507 	struct thread *thread;
2508 
2509 	if (is_idle_sample(sample, evsel)) {
2510 		thread = get_idle_thread(sample->cpu);
2511 		if (thread == NULL)
2512 			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2513 
2514 	} else {
2515 		/* there were samples with tid 0 but non-zero pid */
2516 		thread = machine__findnew_thread(machine, sample->pid,
2517 						 sample->tid ?: sample->pid);
2518 		if (thread == NULL) {
2519 			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2520 				 sample->tid);
2521 		}
2522 
2523 		save_task_callchain(sched, sample, evsel, machine);
2524 		if (sched->idle_hist) {
2525 			struct thread *idle;
2526 			struct idle_thread_runtime *itr;
2527 
2528 			idle = get_idle_thread(sample->cpu);
2529 			if (idle == NULL) {
2530 				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2531 				return NULL;
2532 			}
2533 
2534 			itr = thread__priv(idle);
2535 			if (itr == NULL)
2536 				return NULL;
2537 
2538 			thread__put(itr->last_thread);
2539 			itr->last_thread = thread__get(thread);
2540 
2541 			/* copy task callchain when entering to idle */
2542 			if (evsel__intval(evsel, sample, "next_pid") == 0)
2543 				save_idle_callchain(sched, itr, sample);
2544 		}
2545 	}
2546 
2547 	return thread;
2548 }
2549 
timehist_skip_sample(struct perf_sched * sched,struct thread * thread,struct evsel * evsel,struct perf_sample * sample)2550 static bool timehist_skip_sample(struct perf_sched *sched,
2551 				 struct thread *thread,
2552 				 struct evsel *evsel,
2553 				 struct perf_sample *sample)
2554 {
2555 	bool rc = false;
2556 	int prio = -1;
2557 	struct thread_runtime *tr = NULL;
2558 
2559 	if (thread__is_filtered(thread)) {
2560 		rc = true;
2561 		sched->skipped_samples++;
2562 	}
2563 
2564 	if (sched->prio_str) {
2565 		/*
2566 		 * Because priority may be changed during task execution,
2567 		 * first read priority from prev sched_in event for current task.
2568 		 * If prev sched_in event is not saved, then read priority from
2569 		 * current task sched_out event.
2570 		 */
2571 		tr = thread__get_runtime(thread);
2572 		if (tr && tr->prio != -1)
2573 			prio = tr->prio;
2574 		else if (evsel__name_is(evsel, "sched:sched_switch"))
2575 			prio = evsel__intval(evsel, sample, "prev_prio");
2576 
2577 		if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) {
2578 			rc = true;
2579 			sched->skipped_samples++;
2580 		}
2581 	}
2582 
2583 	if (sched->idle_hist) {
2584 		if (!evsel__name_is(evsel, "sched:sched_switch"))
2585 			rc = true;
2586 		else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2587 			 evsel__intval(evsel, sample, "next_pid") != 0)
2588 			rc = true;
2589 	}
2590 
2591 	return rc;
2592 }
2593 
timehist_print_wakeup_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * awakened)2594 static void timehist_print_wakeup_event(struct perf_sched *sched,
2595 					struct evsel *evsel,
2596 					struct perf_sample *sample,
2597 					struct machine *machine,
2598 					struct thread *awakened)
2599 {
2600 	struct thread *thread;
2601 	char tstr[64];
2602 
2603 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2604 	if (thread == NULL)
2605 		return;
2606 
2607 	/* show wakeup unless both awakee and awaker are filtered */
2608 	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2609 	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2610 		thread__put(thread);
2611 		return;
2612 	}
2613 
2614 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2615 	printf("%15s [%04d] ", tstr, sample->cpu);
2616 	if (sched->show_cpu_visual)
2617 		printf(" %*s ", sched->max_cpu.cpu + 1, "");
2618 
2619 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2620 
2621 	/* dt spacer */
2622 	printf("  %9s  %9s  %9s ", "", "", "");
2623 
2624 	printf("awakened: %s", timehist_get_commstr(awakened));
2625 
2626 	printf("\n");
2627 
2628 	thread__put(thread);
2629 }
2630 
timehist_sched_wakeup_ignore(const struct perf_tool * tool __maybe_unused,union perf_event * event __maybe_unused,struct evsel * evsel __maybe_unused,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2631 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused,
2632 					union perf_event *event __maybe_unused,
2633 					struct evsel *evsel __maybe_unused,
2634 					struct perf_sample *sample __maybe_unused,
2635 					struct machine *machine __maybe_unused)
2636 {
2637 	return 0;
2638 }
2639 
timehist_sched_wakeup_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2640 static int timehist_sched_wakeup_event(const struct perf_tool *tool,
2641 				       union perf_event *event __maybe_unused,
2642 				       struct evsel *evsel,
2643 				       struct perf_sample *sample,
2644 				       struct machine *machine)
2645 {
2646 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2647 	struct thread *thread;
2648 	struct thread_runtime *tr = NULL;
2649 	/* want pid of awakened task not pid in sample */
2650 	const u32 pid = evsel__intval(evsel, sample, "pid");
2651 
2652 	thread = machine__findnew_thread(machine, 0, pid);
2653 	if (thread == NULL)
2654 		return -1;
2655 
2656 	tr = thread__get_runtime(thread);
2657 	if (tr == NULL) {
2658 		thread__put(thread);
2659 		return -1;
2660 	}
2661 
2662 	if (tr->ready_to_run == 0)
2663 		tr->ready_to_run = sample->time;
2664 
2665 	/* show wakeups if requested */
2666 	if (sched->show_wakeups &&
2667 	    !perf_time__skip_sample(&sched->ptime, sample->time))
2668 		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2669 
2670 	thread__put(thread);
2671 	return 0;
2672 }
2673 
timehist_print_migration_event(struct perf_sched * sched,struct evsel * evsel,struct perf_sample * sample,struct machine * machine,struct thread * migrated)2674 static void timehist_print_migration_event(struct perf_sched *sched,
2675 					struct evsel *evsel,
2676 					struct perf_sample *sample,
2677 					struct machine *machine,
2678 					struct thread *migrated)
2679 {
2680 	struct thread *thread;
2681 	char tstr[64];
2682 	u32 max_cpus;
2683 	u32 ocpu, dcpu;
2684 
2685 	if (sched->summary_only)
2686 		return;
2687 
2688 	max_cpus = sched->max_cpu.cpu + 1;
2689 	ocpu = evsel__intval(evsel, sample, "orig_cpu");
2690 	dcpu = evsel__intval(evsel, sample, "dest_cpu");
2691 
2692 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2693 	if (thread == NULL)
2694 		return;
2695 
2696 	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2697 	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2698 		thread__put(thread);
2699 		return;
2700 	}
2701 
2702 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2703 	printf("%15s [%04d] ", tstr, sample->cpu);
2704 
2705 	if (sched->show_cpu_visual) {
2706 		u32 i;
2707 		char c;
2708 
2709 		printf("  ");
2710 		for (i = 0; i < max_cpus; ++i) {
2711 			c = (i == sample->cpu) ? 'm' : ' ';
2712 			printf("%c", c);
2713 		}
2714 		printf("  ");
2715 	}
2716 
2717 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2718 
2719 	/* dt spacer */
2720 	printf("  %9s  %9s  %9s ", "", "", "");
2721 
2722 	printf("migrated: %s", timehist_get_commstr(migrated));
2723 	printf(" cpu %d => %d", ocpu, dcpu);
2724 
2725 	printf("\n");
2726 	thread__put(thread);
2727 }
2728 
timehist_migrate_task_event(const struct perf_tool * tool,union perf_event * event __maybe_unused,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2729 static int timehist_migrate_task_event(const struct perf_tool *tool,
2730 				       union perf_event *event __maybe_unused,
2731 				       struct evsel *evsel,
2732 				       struct perf_sample *sample,
2733 				       struct machine *machine)
2734 {
2735 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2736 	struct thread *thread;
2737 	struct thread_runtime *tr = NULL;
2738 	/* want pid of migrated task not pid in sample */
2739 	const u32 pid = evsel__intval(evsel, sample, "pid");
2740 
2741 	thread = machine__findnew_thread(machine, 0, pid);
2742 	if (thread == NULL)
2743 		return -1;
2744 
2745 	tr = thread__get_runtime(thread);
2746 	if (tr == NULL) {
2747 		thread__put(thread);
2748 		return -1;
2749 	}
2750 
2751 	tr->migrations++;
2752 	tr->migrated = sample->time;
2753 
2754 	/* show migrations if requested */
2755 	if (sched->show_migrations) {
2756 		timehist_print_migration_event(sched, evsel, sample,
2757 							machine, thread);
2758 	}
2759 	thread__put(thread);
2760 
2761 	return 0;
2762 }
2763 
timehist_update_task_prio(struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2764 static void timehist_update_task_prio(struct evsel *evsel,
2765 				      struct perf_sample *sample,
2766 				      struct machine *machine)
2767 {
2768 	struct thread *thread;
2769 	struct thread_runtime *tr = NULL;
2770 	const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2771 	const u32 next_prio = evsel__intval(evsel, sample, "next_prio");
2772 
2773 	if (next_pid == 0)
2774 		thread = get_idle_thread(sample->cpu);
2775 	else
2776 		thread = machine__findnew_thread(machine, -1, next_pid);
2777 
2778 	if (thread == NULL)
2779 		return;
2780 
2781 	tr = thread__get_runtime(thread);
2782 	if (tr != NULL)
2783 		tr->prio = next_prio;
2784 
2785 	thread__put(thread);
2786 }
2787 
timehist_sched_change_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine)2788 static int timehist_sched_change_event(const struct perf_tool *tool,
2789 				       union perf_event *event,
2790 				       struct evsel *evsel,
2791 				       struct perf_sample *sample,
2792 				       struct machine *machine)
2793 {
2794 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2795 	struct perf_time_interval *ptime = &sched->ptime;
2796 	struct addr_location al;
2797 	struct thread *thread = NULL;
2798 	struct thread_runtime *tr = NULL;
2799 	u64 tprev, t = sample->time;
2800 	int rc = 0;
2801 	const char state = evsel__taskstate(evsel, sample, "prev_state");
2802 
2803 	addr_location__init(&al);
2804 	if (machine__resolve(machine, &al, sample) < 0) {
2805 		pr_err("problem processing %d event. skipping it\n",
2806 		       event->header.type);
2807 		rc = -1;
2808 		goto out;
2809 	}
2810 
2811 	if (sched->show_prio || sched->prio_str)
2812 		timehist_update_task_prio(evsel, sample, machine);
2813 
2814 	thread = timehist_get_thread(sched, sample, machine, evsel);
2815 	if (thread == NULL) {
2816 		rc = -1;
2817 		goto out;
2818 	}
2819 
2820 	if (timehist_skip_sample(sched, thread, evsel, sample))
2821 		goto out;
2822 
2823 	tr = thread__get_runtime(thread);
2824 	if (tr == NULL) {
2825 		rc = -1;
2826 		goto out;
2827 	}
2828 
2829 	tprev = evsel__get_time(evsel, sample->cpu);
2830 
2831 	/*
2832 	 * If start time given:
2833 	 * - sample time is under window user cares about - skip sample
2834 	 * - tprev is under window user cares about  - reset to start of window
2835 	 */
2836 	if (ptime->start && ptime->start > t)
2837 		goto out;
2838 
2839 	if (tprev && ptime->start > tprev)
2840 		tprev = ptime->start;
2841 
2842 	/*
2843 	 * If end time given:
2844 	 * - previous sched event is out of window - we are done
2845 	 * - sample time is beyond window user cares about - reset it
2846 	 *   to close out stats for time window interest
2847 	 * - If tprev is 0, that is, sched_in event for current task is
2848 	 *   not recorded, cannot determine whether sched_in event is
2849 	 *   within time window interest - ignore it
2850 	 */
2851 	if (ptime->end) {
2852 		if (!tprev || tprev > ptime->end)
2853 			goto out;
2854 
2855 		if (t > ptime->end)
2856 			t = ptime->end;
2857 	}
2858 
2859 	if (!sched->idle_hist || thread__tid(thread) == 0) {
2860 		if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2861 			timehist_update_runtime_stats(tr, t, tprev);
2862 
2863 		if (sched->idle_hist) {
2864 			struct idle_thread_runtime *itr = (void *)tr;
2865 			struct thread_runtime *last_tr;
2866 
2867 			if (itr->last_thread == NULL)
2868 				goto out;
2869 
2870 			/* add current idle time as last thread's runtime */
2871 			last_tr = thread__get_runtime(itr->last_thread);
2872 			if (last_tr == NULL)
2873 				goto out;
2874 
2875 			timehist_update_runtime_stats(last_tr, t, tprev);
2876 			/*
2877 			 * remove delta time of last thread as it's not updated
2878 			 * and otherwise it will show an invalid value next
2879 			 * time.  we only care total run time and run stat.
2880 			 */
2881 			last_tr->dt_run = 0;
2882 			last_tr->dt_delay = 0;
2883 			last_tr->dt_sleep = 0;
2884 			last_tr->dt_iowait = 0;
2885 			last_tr->dt_preempt = 0;
2886 
2887 			if (itr->cursor.nr)
2888 				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2889 
2890 			itr->last_thread = NULL;
2891 		}
2892 
2893 		if (!sched->summary_only)
2894 			timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2895 	}
2896 
2897 out:
2898 	if (sched->hist_time.start == 0 && t >= ptime->start)
2899 		sched->hist_time.start = t;
2900 	if (ptime->end == 0 || t <= ptime->end)
2901 		sched->hist_time.end = t;
2902 
2903 	if (tr) {
2904 		/* time of this sched_switch event becomes last time task seen */
2905 		tr->last_time = sample->time;
2906 
2907 		/* last state is used to determine where to account wait time */
2908 		tr->last_state = state;
2909 
2910 		/* sched out event for task so reset ready to run time and migrated time */
2911 		if (state == 'R')
2912 			tr->ready_to_run = t;
2913 		else
2914 			tr->ready_to_run = 0;
2915 
2916 		tr->migrated = 0;
2917 	}
2918 
2919 	evsel__save_time(evsel, sample->time, sample->cpu);
2920 
2921 	thread__put(thread);
2922 	addr_location__exit(&al);
2923 	return rc;
2924 }
2925 
timehist_sched_switch_event(const struct perf_tool * tool,union perf_event * event,struct evsel * evsel,struct perf_sample * sample,struct machine * machine __maybe_unused)2926 static int timehist_sched_switch_event(const struct perf_tool *tool,
2927 			     union perf_event *event,
2928 			     struct evsel *evsel,
2929 			     struct perf_sample *sample,
2930 			     struct machine *machine __maybe_unused)
2931 {
2932 	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2933 }
2934 
process_lost(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample,struct machine * machine __maybe_unused)2935 static int process_lost(const struct perf_tool *tool __maybe_unused,
2936 			union perf_event *event,
2937 			struct perf_sample *sample,
2938 			struct machine *machine __maybe_unused)
2939 {
2940 	char tstr[64];
2941 
2942 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2943 	printf("%15s ", tstr);
2944 	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2945 
2946 	return 0;
2947 }
2948 
2949 
print_thread_runtime(struct thread * t,struct thread_runtime * r)2950 static void print_thread_runtime(struct thread *t,
2951 				 struct thread_runtime *r)
2952 {
2953 	double mean = avg_stats(&r->run_stats);
2954 	float stddev;
2955 
2956 	printf("%*s   %5d  %9" PRIu64 " ",
2957 	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2958 	       (u64) r->run_stats.n);
2959 
2960 	print_sched_time(r->total_run_time, 8);
2961 	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2962 	print_sched_time(r->run_stats.min, 6);
2963 	printf(" ");
2964 	print_sched_time((u64) mean, 6);
2965 	printf(" ");
2966 	print_sched_time(r->run_stats.max, 6);
2967 	printf("  ");
2968 	printf("%5.2f", stddev);
2969 	printf("   %5" PRIu64, r->migrations);
2970 	printf("\n");
2971 }
2972 
print_thread_waittime(struct thread * t,struct thread_runtime * r)2973 static void print_thread_waittime(struct thread *t,
2974 				  struct thread_runtime *r)
2975 {
2976 	printf("%*s   %5d  %9" PRIu64 " ",
2977 	       comm_width, timehist_get_commstr(t), thread__ppid(t),
2978 	       (u64) r->run_stats.n);
2979 
2980 	print_sched_time(r->total_run_time, 8);
2981 	print_sched_time(r->total_sleep_time, 6);
2982 	printf(" ");
2983 	print_sched_time(r->total_iowait_time, 6);
2984 	printf(" ");
2985 	print_sched_time(r->total_preempt_time, 6);
2986 	printf(" ");
2987 	print_sched_time(r->total_delay_time, 6);
2988 	printf("\n");
2989 }
2990 
2991 struct total_run_stats {
2992 	struct perf_sched *sched;
2993 	u64  sched_count;
2994 	u64  task_count;
2995 	u64  total_run_time;
2996 };
2997 
show_thread_runtime(struct thread * t,void * priv)2998 static int show_thread_runtime(struct thread *t, void *priv)
2999 {
3000 	struct total_run_stats *stats = priv;
3001 	struct thread_runtime *r;
3002 
3003 	if (thread__is_filtered(t))
3004 		return 0;
3005 
3006 	r = thread__priv(t);
3007 	if (r && r->run_stats.n) {
3008 		stats->task_count++;
3009 		stats->sched_count += r->run_stats.n;
3010 		stats->total_run_time += r->total_run_time;
3011 
3012 		if (stats->sched->show_state)
3013 			print_thread_waittime(t, r);
3014 		else
3015 			print_thread_runtime(t, r);
3016 	}
3017 
3018 	return 0;
3019 }
3020 
callchain__fprintf_folded(FILE * fp,struct callchain_node * node)3021 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
3022 {
3023 	const char *sep = " <- ";
3024 	struct callchain_list *chain;
3025 	size_t ret = 0;
3026 	char bf[1024];
3027 	bool first;
3028 
3029 	if (node == NULL)
3030 		return 0;
3031 
3032 	ret = callchain__fprintf_folded(fp, node->parent);
3033 	first = (ret == 0);
3034 
3035 	list_for_each_entry(chain, &node->val, list) {
3036 		if (chain->ip >= PERF_CONTEXT_MAX)
3037 			continue;
3038 		if (chain->ms.sym && chain->ms.sym->ignore)
3039 			continue;
3040 		ret += fprintf(fp, "%s%s", first ? "" : sep,
3041 			       callchain_list__sym_name(chain, bf, sizeof(bf),
3042 							false));
3043 		first = false;
3044 	}
3045 
3046 	return ret;
3047 }
3048 
timehist_print_idlehist_callchain(struct rb_root_cached * root)3049 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
3050 {
3051 	size_t ret = 0;
3052 	FILE *fp = stdout;
3053 	struct callchain_node *chain;
3054 	struct rb_node *rb_node = rb_first_cached(root);
3055 
3056 	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
3057 	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
3058 	       graph_dotted_line);
3059 
3060 	while (rb_node) {
3061 		chain = rb_entry(rb_node, struct callchain_node, rb_node);
3062 		rb_node = rb_next(rb_node);
3063 
3064 		ret += fprintf(fp, "  ");
3065 		print_sched_time(chain->hit, 12);
3066 		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
3067 		ret += fprintf(fp, " %8d  ", chain->count);
3068 		ret += callchain__fprintf_folded(fp, chain);
3069 		ret += fprintf(fp, "\n");
3070 	}
3071 
3072 	return ret;
3073 }
3074 
timehist_print_summary(struct perf_sched * sched,struct perf_session * session)3075 static void timehist_print_summary(struct perf_sched *sched,
3076 				   struct perf_session *session)
3077 {
3078 	struct machine *m = &session->machines.host;
3079 	struct total_run_stats totals;
3080 	u64 task_count;
3081 	struct thread *t;
3082 	struct thread_runtime *r;
3083 	int i;
3084 	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
3085 
3086 	memset(&totals, 0, sizeof(totals));
3087 	totals.sched = sched;
3088 
3089 	if (sched->idle_hist) {
3090 		printf("\nIdle-time summary\n");
3091 		printf("%*s  parent  sched-out  ", comm_width, "comm");
3092 		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
3093 	} else if (sched->show_state) {
3094 		printf("\nWait-time summary\n");
3095 		printf("%*s  parent   sched-in  ", comm_width, "comm");
3096 		printf("   run-time      sleep      iowait     preempt       delay\n");
3097 	} else {
3098 		printf("\nRuntime summary\n");
3099 		printf("%*s  parent   sched-in  ", comm_width, "comm");
3100 		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
3101 	}
3102 	printf("%*s            (count)  ", comm_width, "");
3103 	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
3104 	       sched->show_state ? "(msec)" : "%");
3105 	printf("%.117s\n", graph_dotted_line);
3106 
3107 	machine__for_each_thread(m, show_thread_runtime, &totals);
3108 	task_count = totals.task_count;
3109 	if (!task_count)
3110 		printf("<no still running tasks>\n");
3111 
3112 	/* CPU idle stats not tracked when samples were skipped */
3113 	if (sched->skipped_samples && !sched->idle_hist)
3114 		return;
3115 
3116 	printf("\nIdle stats:\n");
3117 	for (i = 0; i < idle_max_cpu; ++i) {
3118 		if (cpu_list && !test_bit(i, cpu_bitmap))
3119 			continue;
3120 
3121 		t = idle_threads[i];
3122 		if (!t)
3123 			continue;
3124 
3125 		r = thread__priv(t);
3126 		if (r && r->run_stats.n) {
3127 			totals.sched_count += r->run_stats.n;
3128 			printf("    CPU %2d idle for ", i);
3129 			print_sched_time(r->total_run_time, 6);
3130 			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
3131 		} else
3132 			printf("    CPU %2d idle entire time window\n", i);
3133 	}
3134 
3135 	if (sched->idle_hist && sched->show_callchain) {
3136 		callchain_param.mode  = CHAIN_FOLDED;
3137 		callchain_param.value = CCVAL_PERIOD;
3138 
3139 		callchain_register_param(&callchain_param);
3140 
3141 		printf("\nIdle stats by callchain:\n");
3142 		for (i = 0; i < idle_max_cpu; ++i) {
3143 			struct idle_thread_runtime *itr;
3144 
3145 			t = idle_threads[i];
3146 			if (!t)
3147 				continue;
3148 
3149 			itr = thread__priv(t);
3150 			if (itr == NULL)
3151 				continue;
3152 
3153 			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
3154 					     0, &callchain_param);
3155 
3156 			printf("  CPU %2d:", i);
3157 			print_sched_time(itr->tr.total_run_time, 6);
3158 			printf(" msec\n");
3159 			timehist_print_idlehist_callchain(&itr->sorted_root);
3160 			printf("\n");
3161 		}
3162 	}
3163 
3164 	printf("\n"
3165 	       "    Total number of unique tasks: %" PRIu64 "\n"
3166 	       "Total number of context switches: %" PRIu64 "\n",
3167 	       totals.task_count, totals.sched_count);
3168 
3169 	printf("           Total run time (msec): ");
3170 	print_sched_time(totals.total_run_time, 2);
3171 	printf("\n");
3172 
3173 	printf("    Total scheduling time (msec): ");
3174 	print_sched_time(hist_time, 2);
3175 	printf(" (x %d)\n", sched->max_cpu.cpu);
3176 }
3177 
3178 typedef int (*sched_handler)(const struct perf_tool *tool,
3179 			  union perf_event *event,
3180 			  struct evsel *evsel,
3181 			  struct perf_sample *sample,
3182 			  struct machine *machine);
3183 
perf_timehist__process_sample(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample,struct evsel * evsel,struct machine * machine)3184 static int perf_timehist__process_sample(const struct perf_tool *tool,
3185 					 union perf_event *event,
3186 					 struct perf_sample *sample,
3187 					 struct evsel *evsel,
3188 					 struct machine *machine)
3189 {
3190 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3191 	int err = 0;
3192 	struct perf_cpu this_cpu = {
3193 		.cpu = sample->cpu,
3194 	};
3195 
3196 	if (this_cpu.cpu > sched->max_cpu.cpu)
3197 		sched->max_cpu = this_cpu;
3198 
3199 	if (evsel->handler != NULL) {
3200 		sched_handler f = evsel->handler;
3201 
3202 		err = f(tool, event, evsel, sample, machine);
3203 	}
3204 
3205 	return err;
3206 }
3207 
timehist_check_attr(struct perf_sched * sched,struct evlist * evlist)3208 static int timehist_check_attr(struct perf_sched *sched,
3209 			       struct evlist *evlist)
3210 {
3211 	struct evsel *evsel;
3212 	struct evsel_runtime *er;
3213 
3214 	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3215 		er = evsel__get_runtime(evsel);
3216 		if (er == NULL) {
3217 			pr_err("Failed to allocate memory for evsel runtime data\n");
3218 			return -1;
3219 		}
3220 
3221 		/* only need to save callchain related to sched_switch event */
3222 		if (sched->show_callchain &&
3223 		    evsel__name_is(evsel, "sched:sched_switch") &&
3224 		    !evsel__has_callchain(evsel)) {
3225 			pr_info("Samples of sched_switch event do not have callchains.\n");
3226 			sched->show_callchain = 0;
3227 			symbol_conf.use_callchain = 0;
3228 		}
3229 	}
3230 
3231 	return 0;
3232 }
3233 
timehist_parse_prio_str(struct perf_sched * sched)3234 static int timehist_parse_prio_str(struct perf_sched *sched)
3235 {
3236 	char *p;
3237 	unsigned long start_prio, end_prio;
3238 	const char *str = sched->prio_str;
3239 
3240 	if (!str)
3241 		return 0;
3242 
3243 	while (isdigit(*str)) {
3244 		p = NULL;
3245 		start_prio = strtoul(str, &p, 0);
3246 		if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-'))
3247 			return -1;
3248 
3249 		if (*p == '-') {
3250 			str = ++p;
3251 			p = NULL;
3252 			end_prio = strtoul(str, &p, 0);
3253 
3254 			if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ','))
3255 				return -1;
3256 
3257 			if (end_prio < start_prio)
3258 				return -1;
3259 		} else {
3260 			end_prio = start_prio;
3261 		}
3262 
3263 		for (; start_prio <= end_prio; start_prio++)
3264 			__set_bit(start_prio, sched->prio_bitmap);
3265 
3266 		if (*p)
3267 			++p;
3268 
3269 		str = p;
3270 	}
3271 
3272 	return 0;
3273 }
3274 
perf_sched__timehist(struct perf_sched * sched)3275 static int perf_sched__timehist(struct perf_sched *sched)
3276 {
3277 	struct evsel_str_handler handlers[] = {
3278 		{ "sched:sched_switch",       timehist_sched_switch_event, },
3279 		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
3280 		{ "sched:sched_waking",       timehist_sched_wakeup_event, },
3281 		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3282 	};
3283 	const struct evsel_str_handler migrate_handlers[] = {
3284 		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
3285 	};
3286 	struct perf_data data = {
3287 		.path  = input_name,
3288 		.mode  = PERF_DATA_MODE_READ,
3289 		.force = sched->force,
3290 	};
3291 
3292 	struct perf_session *session;
3293 	struct perf_env *env;
3294 	struct evlist *evlist;
3295 	int err = -1;
3296 
3297 	/*
3298 	 * event handlers for timehist option
3299 	 */
3300 	sched->tool.sample	 = perf_timehist__process_sample;
3301 	sched->tool.mmap	 = perf_event__process_mmap;
3302 	sched->tool.comm	 = perf_event__process_comm;
3303 	sched->tool.exit	 = perf_event__process_exit;
3304 	sched->tool.fork	 = perf_event__process_fork;
3305 	sched->tool.lost	 = process_lost;
3306 	sched->tool.attr	 = perf_event__process_attr;
3307 	sched->tool.tracing_data = perf_event__process_tracing_data;
3308 	sched->tool.build_id	 = perf_event__process_build_id;
3309 
3310 	sched->tool.ordering_requires_timestamps = true;
3311 
3312 	symbol_conf.use_callchain = sched->show_callchain;
3313 
3314 	session = perf_session__new(&data, &sched->tool);
3315 	if (IS_ERR(session))
3316 		return PTR_ERR(session);
3317 
3318 	env = perf_session__env(session);
3319 	if (cpu_list) {
3320 		err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3321 		if (err < 0)
3322 			goto out;
3323 	}
3324 
3325 	evlist = session->evlist;
3326 
3327 	symbol__init(env);
3328 
3329 	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3330 		pr_err("Invalid time string\n");
3331 		err = -EINVAL;
3332 		goto out;
3333 	}
3334 
3335 	if (timehist_check_attr(sched, evlist) != 0)
3336 		goto out;
3337 
3338 	if (timehist_parse_prio_str(sched) != 0) {
3339 		pr_err("Invalid prio string\n");
3340 		goto out;
3341 	}
3342 
3343 	setup_pager();
3344 
3345 	evsel__set_priv_destructor(timehist__evsel_priv_destructor);
3346 
3347 	/* prefer sched_waking if it is captured */
3348 	if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3349 		handlers[1].handler = timehist_sched_wakeup_ignore;
3350 
3351 	/* setup per-evsel handlers */
3352 	if (perf_session__set_tracepoints_handlers(session, handlers))
3353 		goto out;
3354 
3355 	/* sched_switch event at a minimum needs to exist */
3356 	if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3357 		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3358 		goto out;
3359 	}
3360 
3361 	if ((sched->show_migrations || sched->pre_migrations) &&
3362 		perf_session__set_tracepoints_handlers(session, migrate_handlers))
3363 		goto out;
3364 
3365 	/* pre-allocate struct for per-CPU idle stats */
3366 	sched->max_cpu.cpu = env->nr_cpus_online;
3367 	if (sched->max_cpu.cpu == 0)
3368 		sched->max_cpu.cpu = 4;
3369 	if (init_idle_threads(sched->max_cpu.cpu))
3370 		goto out;
3371 
3372 	/* summary_only implies summary option, but don't overwrite summary if set */
3373 	if (sched->summary_only)
3374 		sched->summary = sched->summary_only;
3375 
3376 	if (!sched->summary_only)
3377 		timehist_header(sched);
3378 
3379 	err = perf_session__process_events(session);
3380 	if (err) {
3381 		pr_err("Failed to process events, error %d", err);
3382 		goto out;
3383 	}
3384 
3385 	sched->nr_events      = evlist->stats.nr_events[0];
3386 	sched->nr_lost_events = evlist->stats.total_lost;
3387 	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3388 
3389 	if (sched->summary)
3390 		timehist_print_summary(sched, session);
3391 
3392 out:
3393 	free_idle_threads();
3394 	perf_session__delete(session);
3395 
3396 	return err;
3397 }
3398 
3399 
print_bad_events(struct perf_sched * sched)3400 static void print_bad_events(struct perf_sched *sched)
3401 {
3402 	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3403 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3404 			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3405 			sched->nr_unordered_timestamps, sched->nr_timestamps);
3406 	}
3407 	if (sched->nr_lost_events && sched->nr_events) {
3408 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3409 			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3410 			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3411 	}
3412 	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3413 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3414 			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3415 			sched->nr_context_switch_bugs, sched->nr_timestamps);
3416 		if (sched->nr_lost_events)
3417 			printf(" (due to lost events?)");
3418 		printf("\n");
3419 	}
3420 }
3421 
__merge_work_atoms(struct rb_root_cached * root,struct work_atoms * data)3422 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3423 {
3424 	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3425 	struct work_atoms *this;
3426 	const char *comm = thread__comm_str(data->thread), *this_comm;
3427 	bool leftmost = true;
3428 
3429 	while (*new) {
3430 		int cmp;
3431 
3432 		this = container_of(*new, struct work_atoms, node);
3433 		parent = *new;
3434 
3435 		this_comm = thread__comm_str(this->thread);
3436 		cmp = strcmp(comm, this_comm);
3437 		if (cmp > 0) {
3438 			new = &((*new)->rb_left);
3439 		} else if (cmp < 0) {
3440 			new = &((*new)->rb_right);
3441 			leftmost = false;
3442 		} else {
3443 			this->num_merged++;
3444 			this->total_runtime += data->total_runtime;
3445 			this->nb_atoms += data->nb_atoms;
3446 			this->total_lat += data->total_lat;
3447 			list_splice_init(&data->work_list, &this->work_list);
3448 			if (this->max_lat < data->max_lat) {
3449 				this->max_lat = data->max_lat;
3450 				this->max_lat_start = data->max_lat_start;
3451 				this->max_lat_end = data->max_lat_end;
3452 			}
3453 			free_work_atoms(data);
3454 			return;
3455 		}
3456 	}
3457 
3458 	data->num_merged++;
3459 	rb_link_node(&data->node, parent, new);
3460 	rb_insert_color_cached(&data->node, root, leftmost);
3461 }
3462 
perf_sched__merge_lat(struct perf_sched * sched)3463 static void perf_sched__merge_lat(struct perf_sched *sched)
3464 {
3465 	struct work_atoms *data;
3466 	struct rb_node *node;
3467 
3468 	if (sched->skip_merge)
3469 		return;
3470 
3471 	while ((node = rb_first_cached(&sched->atom_root))) {
3472 		rb_erase_cached(node, &sched->atom_root);
3473 		data = rb_entry(node, struct work_atoms, node);
3474 		__merge_work_atoms(&sched->merged_atom_root, data);
3475 	}
3476 }
3477 
setup_cpus_switch_event(struct perf_sched * sched)3478 static int setup_cpus_switch_event(struct perf_sched *sched)
3479 {
3480 	unsigned int i;
3481 
3482 	sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched)));
3483 	if (!sched->cpu_last_switched)
3484 		return -1;
3485 
3486 	sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid)));
3487 	if (!sched->curr_pid) {
3488 		zfree(&sched->cpu_last_switched);
3489 		return -1;
3490 	}
3491 
3492 	for (i = 0; i < MAX_CPUS; i++)
3493 		sched->curr_pid[i] = -1;
3494 
3495 	return 0;
3496 }
3497 
free_cpus_switch_event(struct perf_sched * sched)3498 static void free_cpus_switch_event(struct perf_sched *sched)
3499 {
3500 	zfree(&sched->curr_pid);
3501 	zfree(&sched->cpu_last_switched);
3502 }
3503 
perf_sched__lat(struct perf_sched * sched)3504 static int perf_sched__lat(struct perf_sched *sched)
3505 {
3506 	int rc = -1;
3507 	struct rb_node *next;
3508 
3509 	setup_pager();
3510 
3511 	if (setup_cpus_switch_event(sched))
3512 		return rc;
3513 
3514 	if (perf_sched__read_events(sched))
3515 		goto out_free_cpus_switch_event;
3516 
3517 	perf_sched__merge_lat(sched);
3518 	perf_sched__sort_lat(sched);
3519 
3520 	printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3521 	printf("  Task                  |   Runtime ms  |  Count   | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3522 	printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3523 
3524 	next = rb_first_cached(&sched->sorted_atom_root);
3525 
3526 	while (next) {
3527 		struct work_atoms *work_list;
3528 
3529 		work_list = rb_entry(next, struct work_atoms, node);
3530 		output_lat_thread(sched, work_list);
3531 		next = rb_next(next);
3532 	}
3533 
3534 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3535 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3536 		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3537 
3538 	printf(" ---------------------------------------------------\n");
3539 
3540 	print_bad_events(sched);
3541 	printf("\n");
3542 
3543 	rc = 0;
3544 
3545 	while ((next = rb_first_cached(&sched->sorted_atom_root))) {
3546 		struct work_atoms *data;
3547 
3548 		data = rb_entry(next, struct work_atoms, node);
3549 		rb_erase_cached(next, &sched->sorted_atom_root);
3550 		free_work_atoms(data);
3551 	}
3552 out_free_cpus_switch_event:
3553 	free_cpus_switch_event(sched);
3554 	return rc;
3555 }
3556 
setup_map_cpus(struct perf_sched * sched)3557 static int setup_map_cpus(struct perf_sched *sched)
3558 {
3559 	sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3560 
3561 	if (sched->map.comp) {
3562 		sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3563 		if (!sched->map.comp_cpus)
3564 			return -1;
3565 	}
3566 
3567 	if (sched->map.cpus_str) {
3568 		sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str);
3569 		if (!sched->map.cpus) {
3570 			pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3571 			zfree(&sched->map.comp_cpus);
3572 			return -1;
3573 		}
3574 	}
3575 
3576 	return 0;
3577 }
3578 
setup_color_pids(struct perf_sched * sched)3579 static int setup_color_pids(struct perf_sched *sched)
3580 {
3581 	struct perf_thread_map *map;
3582 
3583 	if (!sched->map.color_pids_str)
3584 		return 0;
3585 
3586 	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3587 	if (!map) {
3588 		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3589 		return -1;
3590 	}
3591 
3592 	sched->map.color_pids = map;
3593 	return 0;
3594 }
3595 
setup_color_cpus(struct perf_sched * sched)3596 static int setup_color_cpus(struct perf_sched *sched)
3597 {
3598 	struct perf_cpu_map *map;
3599 
3600 	if (!sched->map.color_cpus_str)
3601 		return 0;
3602 
3603 	map = perf_cpu_map__new(sched->map.color_cpus_str);
3604 	if (!map) {
3605 		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3606 		return -1;
3607 	}
3608 
3609 	sched->map.color_cpus = map;
3610 	return 0;
3611 }
3612 
perf_sched__map(struct perf_sched * sched)3613 static int perf_sched__map(struct perf_sched *sched)
3614 {
3615 	int rc = -1;
3616 
3617 	sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread)));
3618 	if (!sched->curr_thread)
3619 		return rc;
3620 
3621 	sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread)));
3622 	if (!sched->curr_out_thread)
3623 		goto out_free_curr_thread;
3624 
3625 	if (setup_cpus_switch_event(sched))
3626 		goto out_free_curr_out_thread;
3627 
3628 	if (setup_map_cpus(sched))
3629 		goto out_free_cpus_switch_event;
3630 
3631 	if (setup_color_pids(sched))
3632 		goto out_put_map_cpus;
3633 
3634 	if (setup_color_cpus(sched))
3635 		goto out_put_color_pids;
3636 
3637 	setup_pager();
3638 	if (perf_sched__read_events(sched))
3639 		goto out_put_color_cpus;
3640 
3641 	rc = 0;
3642 	print_bad_events(sched);
3643 
3644 out_put_color_cpus:
3645 	perf_cpu_map__put(sched->map.color_cpus);
3646 
3647 out_put_color_pids:
3648 	perf_thread_map__put(sched->map.color_pids);
3649 
3650 out_put_map_cpus:
3651 	zfree(&sched->map.comp_cpus);
3652 	perf_cpu_map__put(sched->map.cpus);
3653 
3654 out_free_cpus_switch_event:
3655 	free_cpus_switch_event(sched);
3656 
3657 out_free_curr_out_thread:
3658 	for (int i = 0; i < MAX_CPUS; i++)
3659 		thread__put(sched->curr_out_thread[i]);
3660 	zfree(&sched->curr_out_thread);
3661 
3662 out_free_curr_thread:
3663 	for (int i = 0; i < MAX_CPUS; i++)
3664 		thread__put(sched->curr_thread[i]);
3665 	zfree(&sched->curr_thread);
3666 	return rc;
3667 }
3668 
perf_sched__replay(struct perf_sched * sched)3669 static int perf_sched__replay(struct perf_sched *sched)
3670 {
3671 	int ret;
3672 	unsigned long i;
3673 
3674 	mutex_init(&sched->start_work_mutex);
3675 	mutex_init(&sched->work_done_wait_mutex);
3676 
3677 	ret = setup_cpus_switch_event(sched);
3678 	if (ret)
3679 		goto out_mutex_destroy;
3680 
3681 	calibrate_run_measurement_overhead(sched);
3682 	calibrate_sleep_measurement_overhead(sched);
3683 
3684 	test_calibrations(sched);
3685 
3686 	ret = perf_sched__read_events(sched);
3687 	if (ret)
3688 		goto out_free_cpus_switch_event;
3689 
3690 	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3691 	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3692 	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3693 
3694 	if (sched->targetless_wakeups)
3695 		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3696 	if (sched->multitarget_wakeups)
3697 		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3698 	if (sched->nr_run_events_optimized)
3699 		printf("run atoms optimized: %ld\n",
3700 			sched->nr_run_events_optimized);
3701 
3702 	print_task_traces(sched);
3703 	add_cross_task_wakeups(sched);
3704 
3705 	sched->thread_funcs_exit = false;
3706 	create_tasks(sched);
3707 	printf("------------------------------------------------------------\n");
3708 	if (sched->replay_repeat == 0)
3709 		sched->replay_repeat = UINT_MAX;
3710 
3711 	for (i = 0; i < sched->replay_repeat; i++)
3712 		run_one_test(sched);
3713 
3714 	sched->thread_funcs_exit = true;
3715 	destroy_tasks(sched);
3716 
3717 out_free_cpus_switch_event:
3718 	free_cpus_switch_event(sched);
3719 
3720 out_mutex_destroy:
3721 	mutex_destroy(&sched->start_work_mutex);
3722 	mutex_destroy(&sched->work_done_wait_mutex);
3723 	return ret;
3724 }
3725 
setup_sorting(struct perf_sched * sched,const struct option * options,const char * const usage_msg[])3726 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3727 			  const char * const usage_msg[])
3728 {
3729 	char *tmp, *tok, *str = strdup(sched->sort_order);
3730 
3731 	for (tok = strtok_r(str, ", ", &tmp);
3732 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3733 		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3734 			usage_with_options_msg(usage_msg, options,
3735 					"Unknown --sort key: `%s'", tok);
3736 		}
3737 	}
3738 
3739 	free(str);
3740 
3741 	sort_dimension__add("pid", &sched->cmp_pid);
3742 }
3743 
process_synthesized_schedstat_event(const struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)3744 static int process_synthesized_schedstat_event(const struct perf_tool *tool,
3745 					       union perf_event *event,
3746 					       struct perf_sample *sample __maybe_unused,
3747 					       struct machine *machine __maybe_unused)
3748 {
3749 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
3750 
3751 	if (perf_data__write(sched->data, event, event->header.size) <= 0) {
3752 		pr_err("failed to write perf data, error: %m\n");
3753 		return -1;
3754 	}
3755 
3756 	sched->session->header.data_size += event->header.size;
3757 	return 0;
3758 }
3759 
sighandler(int sig __maybe_unused)3760 static void sighandler(int sig __maybe_unused)
3761 {
3762 }
3763 
enable_sched_schedstats(int * reset)3764 static int enable_sched_schedstats(int *reset)
3765 {
3766 	char path[PATH_MAX];
3767 	FILE *fp;
3768 	char ch;
3769 
3770 	snprintf(path, PATH_MAX, "%s/sys/kernel/sched_schedstats", procfs__mountpoint());
3771 	fp = fopen(path, "w+");
3772 	if (!fp) {
3773 		pr_err("Failed to open %s\n", path);
3774 		return -1;
3775 	}
3776 
3777 	ch = getc(fp);
3778 	if (ch == '0') {
3779 		*reset = 1;
3780 		rewind(fp);
3781 		putc('1', fp);
3782 		fclose(fp);
3783 	}
3784 	return 0;
3785 }
3786 
disable_sched_schedstat(void)3787 static int disable_sched_schedstat(void)
3788 {
3789 	char path[PATH_MAX];
3790 	FILE *fp;
3791 
3792 	snprintf(path, PATH_MAX, "%s/sys/kernel/sched_schedstats", procfs__mountpoint());
3793 	fp = fopen(path, "w");
3794 	if (!fp) {
3795 		pr_err("Failed to open %s\n", path);
3796 		return -1;
3797 	}
3798 
3799 	putc('0', fp);
3800 	fclose(fp);
3801 	return 0;
3802 }
3803 
3804 /* perf.data or any other output file name used by stats subcommand (only). */
3805 const char *output_name;
3806 
perf_sched__schedstat_record(struct perf_sched * sched,int argc,const char ** argv)3807 static int perf_sched__schedstat_record(struct perf_sched *sched,
3808 					int argc, const char **argv)
3809 {
3810 	struct perf_session *session;
3811 	struct target target = {};
3812 	struct evlist *evlist;
3813 	int reset = 0;
3814 	int err = 0;
3815 	int fd;
3816 	struct perf_data data = {
3817 		.path  = output_name,
3818 		.mode  = PERF_DATA_MODE_WRITE,
3819 	};
3820 
3821 	signal(SIGINT, sighandler);
3822 	signal(SIGCHLD, sighandler);
3823 	signal(SIGTERM, sighandler);
3824 
3825 	evlist = evlist__new();
3826 	if (!evlist)
3827 		return -ENOMEM;
3828 
3829 	session = perf_session__new(&data, &sched->tool);
3830 	if (IS_ERR(session)) {
3831 		pr_err("Perf session creation failed.\n");
3832 		evlist__delete(evlist);
3833 		return PTR_ERR(session);
3834 	}
3835 
3836 	session->evlist = evlist;
3837 
3838 	sched->session = session;
3839 	sched->data = &data;
3840 
3841 	fd = perf_data__fd(&data);
3842 
3843 	/*
3844 	 * Capture all important metadata about the system. Although they are
3845 	 * not used by `perf sched stats` tool directly, they provide useful
3846 	 * information about profiled environment.
3847 	 */
3848 	perf_header__set_feat(&session->header, HEADER_HOSTNAME);
3849 	perf_header__set_feat(&session->header, HEADER_OSRELEASE);
3850 	perf_header__set_feat(&session->header, HEADER_VERSION);
3851 	perf_header__set_feat(&session->header, HEADER_ARCH);
3852 	perf_header__set_feat(&session->header, HEADER_NRCPUS);
3853 	perf_header__set_feat(&session->header, HEADER_CPUDESC);
3854 	perf_header__set_feat(&session->header, HEADER_CPUID);
3855 	perf_header__set_feat(&session->header, HEADER_TOTAL_MEM);
3856 	perf_header__set_feat(&session->header, HEADER_CMDLINE);
3857 	perf_header__set_feat(&session->header, HEADER_CPU_TOPOLOGY);
3858 	perf_header__set_feat(&session->header, HEADER_NUMA_TOPOLOGY);
3859 	perf_header__set_feat(&session->header, HEADER_CACHE);
3860 	perf_header__set_feat(&session->header, HEADER_MEM_TOPOLOGY);
3861 	perf_header__set_feat(&session->header, HEADER_HYBRID_TOPOLOGY);
3862 	perf_header__set_feat(&session->header, HEADER_CPU_DOMAIN_INFO);
3863 
3864 	err = perf_session__write_header(session, evlist, fd, false);
3865 	if (err < 0)
3866 		goto out;
3867 
3868 	/*
3869 	 * `perf sched stats` does not support workload profiling (-p pid)
3870 	 * since /proc/schedstat file contains cpu specific data only. Hence, a
3871 	 * profile target is either set of cpus or systemwide, never a process.
3872 	 * Note that, although `-- <workload>` is supported, profile data are
3873 	 * still cpu/systemwide.
3874 	 */
3875 	if (cpu_list)
3876 		target.cpu_list = cpu_list;
3877 	else
3878 		target.system_wide = true;
3879 
3880 	if (argc) {
3881 		err = evlist__prepare_workload(evlist, &target, argv, false, NULL);
3882 		if (err)
3883 			goto out;
3884 	}
3885 
3886 	err = evlist__create_maps(evlist, &target);
3887 	if (err < 0)
3888 		goto out;
3889 
3890 	user_requested_cpus = evlist->core.user_requested_cpus;
3891 
3892 	err = perf_event__synthesize_schedstat(&(sched->tool),
3893 					       process_synthesized_schedstat_event,
3894 					       user_requested_cpus);
3895 	if (err < 0)
3896 		goto out;
3897 
3898 	err = enable_sched_schedstats(&reset);
3899 	if (err < 0)
3900 		goto out;
3901 
3902 	if (argc)
3903 		evlist__start_workload(evlist);
3904 
3905 	/* wait for signal */
3906 	pause();
3907 
3908 	if (reset) {
3909 		err = disable_sched_schedstat();
3910 		if (err < 0)
3911 			goto out;
3912 	}
3913 
3914 	err = perf_event__synthesize_schedstat(&(sched->tool),
3915 					       process_synthesized_schedstat_event,
3916 					       user_requested_cpus);
3917 	if (err < 0)
3918 		goto out;
3919 
3920 	err = perf_session__write_header(session, evlist, fd, true);
3921 
3922 out:
3923 	if (!err)
3924 		fprintf(stderr, "[ perf sched stats: Wrote samples to %s ]\n", data.path);
3925 	else
3926 		fprintf(stderr, "[ perf sched stats: Failed !! ]\n");
3927 
3928 	evlist__delete(evlist);
3929 	close(fd);
3930 	return err;
3931 }
3932 
3933 struct schedstat_domain {
3934 	struct list_head domain_list;
3935 	struct perf_record_schedstat_domain *domain_data;
3936 };
3937 
3938 struct schedstat_cpu {
3939 	struct list_head cpu_list;
3940 	struct list_head domain_head;
3941 	struct perf_record_schedstat_cpu *cpu_data;
3942 };
3943 
3944 static struct list_head cpu_head = LIST_HEAD_INIT(cpu_head);
3945 static struct schedstat_cpu *cpu_second_pass;
3946 static struct schedstat_domain *domain_second_pass;
3947 static bool after_workload_flag;
3948 static bool verbose_field;
3949 
store_schedstat_cpu_diff(struct schedstat_cpu * after_workload)3950 static void store_schedstat_cpu_diff(struct schedstat_cpu *after_workload)
3951 {
3952 	struct perf_record_schedstat_cpu *before = cpu_second_pass->cpu_data;
3953 	struct perf_record_schedstat_cpu *after = after_workload->cpu_data;
3954 	__u16 version = after_workload->cpu_data->version;
3955 
3956 #define CPU_FIELD(_type, _name, _desc, _format, _is_pct, _pct_of, _ver)	\
3957 	(before->_ver._name = after->_ver._name - before->_ver._name)
3958 
3959 	if (version == 15) {
3960 #include <perf/schedstat-v15.h>
3961 	} else if (version == 16) {
3962 #include <perf/schedstat-v16.h>
3963 	} else if (version == 17) {
3964 #include <perf/schedstat-v17.h>
3965 	}
3966 
3967 #undef CPU_FIELD
3968 }
3969 
store_schedstat_domain_diff(struct schedstat_domain * after_workload)3970 static void store_schedstat_domain_diff(struct schedstat_domain *after_workload)
3971 {
3972 	struct perf_record_schedstat_domain *before = domain_second_pass->domain_data;
3973 	struct perf_record_schedstat_domain *after = after_workload->domain_data;
3974 	__u16 version = after_workload->domain_data->version;
3975 
3976 #define DOMAIN_FIELD(_type, _name, _desc, _format, _is_jiffies, _ver)	\
3977 	(before->_ver._name = after->_ver._name - before->_ver._name)
3978 
3979 	if (version == 15) {
3980 #include <perf/schedstat-v15.h>
3981 	} else if (version == 16) {
3982 #include <perf/schedstat-v16.h>
3983 	} else if (version == 17) {
3984 #include <perf/schedstat-v17.h>
3985 	}
3986 #undef DOMAIN_FIELD
3987 }
3988 
3989 #define PCT_CHNG(_x, _y)        ((_x) ? ((double)((double)(_y) - (_x)) / (_x)) * 100 : 0.0)
print_cpu_stats(struct perf_record_schedstat_cpu * cs1,struct perf_record_schedstat_cpu * cs2)3990 static inline void print_cpu_stats(struct perf_record_schedstat_cpu *cs1,
3991 				   struct perf_record_schedstat_cpu *cs2)
3992 {
3993 	printf("%-65s ", "DESC");
3994 	if (!cs2)
3995 		printf("%12s %12s", "COUNT", "PCT_CHANGE");
3996 	else
3997 		printf("%12s %11s %12s %14s %10s", "COUNT1", "COUNT2", "PCT_CHANGE",
3998 		       "PCT_CHANGE1", "PCT_CHANGE2");
3999 
4000 	printf("\n");
4001 	print_separator2(SEP_LEN, "", 0);
4002 
4003 #define CALC_PCT(_x, _y)	((_y) ? ((double)(_x) / (_y)) * 100 : 0.0)
4004 
4005 #define CPU_FIELD(_type, _name, _desc, _format, _is_pct, _pct_of, _ver)			\
4006 	do {										\
4007 		printf("%-65s: " _format, verbose_field ? _desc : #_name,		\
4008 		       cs1->_ver._name);						\
4009 		if (!cs2) {								\
4010 			if (_is_pct)							\
4011 				printf("  ( %8.2lf%% )",				\
4012 				       CALC_PCT(cs1->_ver._name, cs1->_ver._pct_of));	\
4013 		} else {								\
4014 			printf("," _format "  | %8.2lf%% |", cs2->_ver._name,		\
4015 			       PCT_CHNG(cs1->_ver._name, cs2->_ver._name));		\
4016 			if (_is_pct)							\
4017 				printf("  ( %8.2lf%%,  %8.2lf%% )",			\
4018 				       CALC_PCT(cs1->_ver._name, cs1->_ver._pct_of),	\
4019 				       CALC_PCT(cs2->_ver._name, cs2->_ver._pct_of));	\
4020 		}									\
4021 		printf("\n");								\
4022 	} while (0)
4023 
4024 	if (cs1->version == 15) {
4025 #include <perf/schedstat-v15.h>
4026 	} else if (cs1->version == 16) {
4027 #include <perf/schedstat-v16.h>
4028 	} else if (cs1->version == 17) {
4029 #include <perf/schedstat-v17.h>
4030 	}
4031 
4032 #undef CPU_FIELD
4033 #undef CALC_PCT
4034 }
4035 
print_domain_stats(struct perf_record_schedstat_domain * ds1,struct perf_record_schedstat_domain * ds2,__u64 jiffies1,__u64 jiffies2)4036 static inline void print_domain_stats(struct perf_record_schedstat_domain *ds1,
4037 				      struct perf_record_schedstat_domain *ds2,
4038 				      __u64 jiffies1, __u64 jiffies2)
4039 {
4040 	printf("%-65s ", "DESC");
4041 	if (!ds2)
4042 		printf("%12s %14s", "COUNT", "AVG_JIFFIES");
4043 	else
4044 		printf("%12s %11s %12s %16s %12s", "COUNT1", "COUNT2", "PCT_CHANGE",
4045 		       "AVG_JIFFIES1", "AVG_JIFFIES2");
4046 	printf("\n");
4047 
4048 #define DOMAIN_CATEGORY(_desc)							\
4049 	do {									\
4050 		size_t _len = strlen(_desc);					\
4051 		size_t _pre_dash_cnt = (SEP_LEN - _len) / 2;			\
4052 		size_t _post_dash_cnt = SEP_LEN - _len - _pre_dash_cnt;		\
4053 		print_separator2((int)_pre_dash_cnt, _desc, (int)_post_dash_cnt);\
4054 	} while (0)
4055 
4056 #define CALC_AVG(_x, _y)	((_y) ? (long double)(_x) / (_y) : 0.0)
4057 
4058 #define DOMAIN_FIELD(_type, _name, _desc, _format, _is_jiffies, _ver)		\
4059 	do {									\
4060 		printf("%-65s: " _format, verbose_field ? _desc : #_name,	\
4061 		       ds1->_ver._name);					\
4062 		if (!ds2) {							\
4063 			if (_is_jiffies)					\
4064 				printf("  $ %11.2Lf $",				\
4065 				       CALC_AVG(jiffies1, ds1->_ver._name));	\
4066 		} else {							\
4067 			printf("," _format "  | %8.2lf%% |", ds2->_ver._name,	\
4068 			       PCT_CHNG(ds1->_ver._name, ds2->_ver._name));	\
4069 			if (_is_jiffies)					\
4070 				printf("  $ %11.2Lf, %11.2Lf $",		\
4071 				       CALC_AVG(jiffies1, ds1->_ver._name),	\
4072 				       CALC_AVG(jiffies2, ds2->_ver._name));	\
4073 		}								\
4074 		printf("\n");							\
4075 	} while (0)
4076 
4077 #define DERIVED_CNT_FIELD(_name, _desc, _format, _x, _y, _z, _ver)		\
4078 	do {									\
4079 		__u32 t1 = ds1->_ver._x - ds1->_ver._y - ds1->_ver._z;		\
4080 		printf("*%-64s: " _format, verbose_field ? _desc : #_name, t1);	\
4081 		if (ds2) {							\
4082 			__u32 t2 = ds2->_ver._x - ds2->_ver._y - ds2->_ver._z;	\
4083 			printf("," _format "  | %8.2lf%% |", t2,		\
4084 			       PCT_CHNG(t1, t2));				\
4085 		}								\
4086 		printf("\n");							\
4087 	} while (0)
4088 
4089 #define DERIVED_AVG_FIELD(_name, _desc, _format, _x, _y, _z, _w, _ver)		\
4090 	do {									\
4091 		__u32 t1 = ds1->_ver._x - ds1->_ver._y - ds1->_ver._z;		\
4092 		printf("*%-64s: " _format, verbose_field ? _desc : #_name,	\
4093 		       CALC_AVG(ds1->_ver._w, t1));				\
4094 		if (ds2) {							\
4095 			__u32 t2 = ds2->_ver._x - ds2->_ver._y - ds2->_ver._z;	\
4096 			printf("," _format "  | %8.2Lf%% |",			\
4097 			       CALC_AVG(ds2->_ver._w, t2),			\
4098 			       PCT_CHNG(CALC_AVG(ds1->_ver._w, t1),		\
4099 					CALC_AVG(ds2->_ver._w, t2)));		\
4100 		}								\
4101 		printf("\n");							\
4102 	} while (0)
4103 
4104 	if (ds1->version == 15) {
4105 #include <perf/schedstat-v15.h>
4106 	} else if (ds1->version == 16) {
4107 #include <perf/schedstat-v16.h>
4108 	} else if (ds1->version == 17) {
4109 #include <perf/schedstat-v17.h>
4110 	}
4111 
4112 #undef DERIVED_AVG_FIELD
4113 #undef DERIVED_CNT_FIELD
4114 #undef DOMAIN_FIELD
4115 #undef CALC_AVG
4116 #undef DOMAIN_CATEGORY
4117 }
4118 #undef PCT_CHNG
4119 
summarize_schedstat_cpu(struct schedstat_cpu * summary_cpu,struct schedstat_cpu * cptr,int cnt,bool is_last)4120 static void summarize_schedstat_cpu(struct schedstat_cpu *summary_cpu,
4121 				    struct schedstat_cpu *cptr,
4122 				    int cnt, bool is_last)
4123 {
4124 	struct perf_record_schedstat_cpu *summary_cs = summary_cpu->cpu_data,
4125 					 *temp_cs = cptr->cpu_data;
4126 
4127 #define CPU_FIELD(_type, _name, _desc, _format, _is_pct, _pct_of, _ver)		\
4128 	do {									\
4129 		summary_cs->_ver._name += temp_cs->_ver._name;			\
4130 		if (is_last)							\
4131 			summary_cs->_ver._name /= cnt;				\
4132 	} while (0)
4133 
4134 	if (cptr->cpu_data->version == 15) {
4135 #include <perf/schedstat-v15.h>
4136 	} else if (cptr->cpu_data->version == 16) {
4137 #include <perf/schedstat-v16.h>
4138 	} else if (cptr->cpu_data->version == 17) {
4139 #include <perf/schedstat-v17.h>
4140 	}
4141 #undef CPU_FIELD
4142 }
4143 
summarize_schedstat_domain(struct schedstat_domain * summary_domain,struct schedstat_domain * dptr,int cnt,bool is_last)4144 static void summarize_schedstat_domain(struct schedstat_domain *summary_domain,
4145 				       struct schedstat_domain *dptr,
4146 				       int cnt, bool is_last)
4147 {
4148 	struct perf_record_schedstat_domain *summary_ds = summary_domain->domain_data,
4149 					    *temp_ds = dptr->domain_data;
4150 
4151 #define DOMAIN_FIELD(_type, _name, _desc, _format, _is_jiffies, _ver)		\
4152 	do {									\
4153 		summary_ds->_ver._name += temp_ds->_ver._name;			\
4154 		if (is_last)							\
4155 			summary_ds->_ver._name /= cnt;				\
4156 	} while (0)
4157 
4158 	if (dptr->domain_data->version == 15) {
4159 #include <perf/schedstat-v15.h>
4160 	} else if (dptr->domain_data->version == 16) {
4161 #include <perf/schedstat-v16.h>
4162 	} else if (dptr->domain_data->version == 17) {
4163 #include <perf/schedstat-v17.h>
4164 	}
4165 #undef DOMAIN_FIELD
4166 }
4167 
4168 /*
4169  * get_all_cpu_stats() appends the summary to the head of the list.
4170  */
get_all_cpu_stats(struct list_head * head)4171 static int get_all_cpu_stats(struct list_head *head)
4172 {
4173 	struct schedstat_cpu *cptr = list_first_entry(head, struct schedstat_cpu, cpu_list);
4174 	struct schedstat_cpu *summary_head = NULL;
4175 	struct perf_record_schedstat_domain *ds;
4176 	struct perf_record_schedstat_cpu *cs;
4177 	struct schedstat_domain *dptr, *tdptr;
4178 	bool is_last = false;
4179 	int cnt = 1;
4180 	int ret = 0;
4181 
4182 	if (cptr) {
4183 		summary_head = zalloc(sizeof(*summary_head));
4184 		if (!summary_head)
4185 			return -ENOMEM;
4186 
4187 		summary_head->cpu_data = zalloc(sizeof(*cs));
4188 		memcpy(summary_head->cpu_data, cptr->cpu_data, sizeof(*cs));
4189 
4190 		INIT_LIST_HEAD(&summary_head->domain_head);
4191 
4192 		list_for_each_entry(dptr, &cptr->domain_head, domain_list) {
4193 			tdptr = zalloc(sizeof(*tdptr));
4194 			if (!tdptr)
4195 				return -ENOMEM;
4196 
4197 			tdptr->domain_data = zalloc(sizeof(*ds));
4198 			if (!tdptr->domain_data)
4199 				return -ENOMEM;
4200 
4201 			memcpy(tdptr->domain_data, dptr->domain_data, sizeof(*ds));
4202 			list_add_tail(&tdptr->domain_list, &summary_head->domain_head);
4203 		}
4204 	}
4205 
4206 	list_for_each_entry(cptr, head, cpu_list) {
4207 		if (list_is_first(&cptr->cpu_list, head))
4208 			continue;
4209 
4210 		if (list_is_last(&cptr->cpu_list, head))
4211 			is_last = true;
4212 
4213 		cnt++;
4214 		summarize_schedstat_cpu(summary_head, cptr, cnt, is_last);
4215 		tdptr = list_first_entry(&summary_head->domain_head, struct schedstat_domain,
4216 					 domain_list);
4217 
4218 		list_for_each_entry(dptr, &cptr->domain_head, domain_list) {
4219 			summarize_schedstat_domain(tdptr, dptr, cnt, is_last);
4220 			tdptr = list_next_entry(tdptr, domain_list);
4221 		}
4222 	}
4223 
4224 	list_add(&summary_head->cpu_list, head);
4225 	return ret;
4226 }
4227 
show_schedstat_data(struct list_head * head1,struct cpu_domain_map ** cd_map1,struct list_head * head2,struct cpu_domain_map ** cd_map2,bool summary_only)4228 static int show_schedstat_data(struct list_head *head1, struct cpu_domain_map **cd_map1,
4229 			       struct list_head *head2, struct cpu_domain_map **cd_map2,
4230 			       bool summary_only)
4231 {
4232 	struct schedstat_cpu *cptr1 = list_first_entry(head1, struct schedstat_cpu, cpu_list);
4233 	struct perf_record_schedstat_domain *ds1 = NULL, *ds2 = NULL;
4234 	struct perf_record_schedstat_cpu *cs1 = NULL, *cs2 = NULL;
4235 	struct schedstat_domain *dptr1 = NULL, *dptr2 = NULL;
4236 	struct schedstat_cpu *cptr2 = NULL;
4237 	__u64 jiffies1 = 0, jiffies2 = 0;
4238 	bool is_summary = true;
4239 	int ret = 0;
4240 
4241 	printf("Description\n");
4242 	print_separator2(SEP_LEN, "", 0);
4243 	printf("%-30s-> %s\n", "DESC", "Description of the field");
4244 	printf("%-30s-> %s\n", "COUNT", "Value of the field");
4245 	printf("%-30s-> %s\n", "PCT_CHANGE", "Percent change with corresponding base value");
4246 	printf("%-30s-> %s\n", "AVG_JIFFIES",
4247 	       "Avg time in jiffies between two consecutive occurrence of event");
4248 
4249 	print_separator2(SEP_LEN, "", 0);
4250 	printf("\n");
4251 
4252 	printf("%-65s: ", "Time elapsed (in jiffies)");
4253 	jiffies1 = cptr1->cpu_data->timestamp;
4254 	printf("%11llu", jiffies1);
4255 	if (head2) {
4256 		cptr2 = list_first_entry(head2, struct schedstat_cpu, cpu_list);
4257 		jiffies2 = cptr2->cpu_data->timestamp;
4258 		printf(",%11llu", jiffies2);
4259 	}
4260 	printf("\n");
4261 
4262 	ret = get_all_cpu_stats(head1);
4263 	if (cptr2) {
4264 		ret = get_all_cpu_stats(head2);
4265 		cptr2 = list_first_entry(head2, struct schedstat_cpu, cpu_list);
4266 	}
4267 
4268 	list_for_each_entry(cptr1, head1, cpu_list) {
4269 		struct cpu_domain_map *cd_info1 = NULL, *cd_info2 = NULL;
4270 
4271 		cs1 = cptr1->cpu_data;
4272 		cd_info1 = cd_map1[cs1->cpu];
4273 		if (cptr2) {
4274 			cs2 = cptr2->cpu_data;
4275 			cd_info2 = cd_map2[cs2->cpu];
4276 			dptr2 = list_first_entry(&cptr2->domain_head, struct schedstat_domain,
4277 						 domain_list);
4278 		}
4279 
4280 		if (cs2 && cs1->cpu != cs2->cpu) {
4281 			pr_err("Failed because matching cpus not found for diff\n");
4282 			return -1;
4283 		}
4284 
4285 		if (cd_info2 && cd_info1->nr_domains != cd_info2->nr_domains) {
4286 			pr_err("Failed because nr_domains is not same for cpus\n");
4287 			return -1;
4288 		}
4289 
4290 		print_separator2(SEP_LEN, "", 0);
4291 
4292 		if (is_summary)
4293 			printf("CPU: <ALL CPUS SUMMARY>\n");
4294 		else
4295 			printf("CPU: %d\n", cs1->cpu);
4296 
4297 		print_separator2(SEP_LEN, "", 0);
4298 		print_cpu_stats(cs1, cs2);
4299 		print_separator2(SEP_LEN, "", 0);
4300 
4301 		list_for_each_entry(dptr1, &cptr1->domain_head, domain_list) {
4302 			struct domain_info *dinfo1 = NULL, *dinfo2 = NULL;
4303 
4304 			ds1 = dptr1->domain_data;
4305 			dinfo1 = cd_info1->domains[ds1->domain];
4306 			if (dptr2) {
4307 				ds2 = dptr2->domain_data;
4308 				dinfo2 = cd_info2->domains[ds2->domain];
4309 			}
4310 
4311 			if (dinfo2 && dinfo1->domain != dinfo2->domain) {
4312 				pr_err("Failed because matching domain not found for diff\n");
4313 				return -1;
4314 			}
4315 
4316 			if (is_summary) {
4317 				if (dinfo1->dname)
4318 					printf("CPU: <ALL CPUS SUMMARY> | DOMAIN: %s\n",
4319 					       dinfo1->dname);
4320 				else
4321 					printf("CPU: <ALL CPUS SUMMARY> | DOMAIN: %d\n",
4322 					       dinfo1->domain);
4323 			} else {
4324 				if (dinfo1->dname)
4325 					printf("CPU: %d | DOMAIN: %s | DOMAIN_CPUS: ",
4326 					       cs1->cpu, dinfo1->dname);
4327 				else
4328 					printf("CPU: %d | DOMAIN: %d | DOMAIN_CPUS: ",
4329 					       cs1->cpu, dinfo1->domain);
4330 
4331 				printf("%s\n", dinfo1->cpulist);
4332 			}
4333 			print_separator2(SEP_LEN, "", 0);
4334 			print_domain_stats(ds1, ds2, jiffies1, jiffies2);
4335 			print_separator2(SEP_LEN, "", 0);
4336 
4337 			if (dptr2)
4338 				dptr2 = list_next_entry(dptr2, domain_list);
4339 		}
4340 		if (summary_only)
4341 			break;
4342 
4343 		if (cptr2)
4344 			cptr2 = list_next_entry(cptr2, cpu_list);
4345 
4346 		is_summary = false;
4347 	}
4348 	return ret;
4349 }
4350 
4351 /*
4352  * Creates a linked list of cpu_data and domain_data. Below represents the structure of the linked
4353  * list where CPU0,CPU1,CPU2, ..., CPU(N-1) stores the cpu_data. Here N is the total number of cpus.
4354  * Each of the CPU points to the list of domain_data. Here DOMAIN0, DOMAIN1, DOMAIN2, ... represents
4355  * the domain_data. Here D0, D1, D2, ..., Dm are the number of domains in the respective cpus.
4356  *
4357  *	+----------+
4358  *	| CPU_HEAD |
4359  *	+----------+
4360  *	      |
4361  *	      v
4362  *	+----------+    +---------+    +---------+    +---------+	    +--------------+
4363  *	|   CPU0   | -> | DOMAIN0 | -> | DOMAIN1 | -> | DOMAIN2 | -> ... -> | DOMAIN(D0-1) |
4364  *	+----------+    +---------+    +---------+    +---------+           +--------------+
4365  *	      |
4366  *	      v
4367  *	+----------+    +---------+    +---------+    +---------+           +--------------+
4368  *	|   CPU1   | -> | DOMAIN0 | -> | DOMAIN1 | -> | DOMAIN2 | -> ... -> | DOMAIN(D1-1) |
4369  *	+----------+    +---------+    +---------+    +---------+           +--------------+
4370  *	      |
4371  *	      v
4372  *	+----------+    +---------+    +---------+    +---------+           +--------------+
4373  *	|   CPU2   | -> | DOMAIN0 | -> | DOMAIN1 | -> | DOMAIN2 | -> ... -> | DOMAIN(D2-1) |
4374  *	+----------+    +---------+    +---------+    +---------+           +--------------+
4375  *	      |
4376  *	      v
4377  *	     ...
4378  *	      |
4379  *	      v
4380  *	+----------+    +---------+    +---------+    +---------+           +--------------+
4381  *	| CPU(N-1) | -> | DOMAIN0 | -> | DOMAIN1 | -> | DOMAIN2 | -> ... -> | DOMAIN(Dm-1) |
4382  *	+----------+    +---------+    +---------+    +---------+           +--------------+
4383  *
4384  * Each cpu as well as domain has 2 enties in the event list one before the workload starts and
4385  * other after completion of the workload. The above linked list stores the diff of the cpu and
4386  * domain statistics.
4387  */
perf_sched__process_schedstat(const struct perf_tool * tool __maybe_unused,struct perf_session * session __maybe_unused,union perf_event * event)4388 static int perf_sched__process_schedstat(const struct perf_tool *tool __maybe_unused,
4389 					 struct perf_session *session __maybe_unused,
4390 					 union perf_event *event)
4391 {
4392 	struct perf_cpu this_cpu;
4393 	static __u32 initial_cpu;
4394 
4395 	switch (event->header.type) {
4396 	case PERF_RECORD_SCHEDSTAT_CPU:
4397 		this_cpu.cpu = event->schedstat_cpu.cpu;
4398 		break;
4399 	case PERF_RECORD_SCHEDSTAT_DOMAIN:
4400 		this_cpu.cpu = event->schedstat_domain.cpu;
4401 		break;
4402 	default:
4403 		return 0;
4404 	}
4405 
4406 	if (user_requested_cpus && !perf_cpu_map__has(user_requested_cpus, this_cpu))
4407 		return 0;
4408 
4409 	if (event->header.type == PERF_RECORD_SCHEDSTAT_CPU) {
4410 		struct schedstat_cpu *temp = zalloc(sizeof(*temp));
4411 
4412 		if (!temp)
4413 			return -ENOMEM;
4414 
4415 		temp->cpu_data = zalloc(sizeof(*temp->cpu_data));
4416 		if (!temp->cpu_data)
4417 			return -ENOMEM;
4418 
4419 		memcpy(temp->cpu_data, &event->schedstat_cpu, sizeof(*temp->cpu_data));
4420 
4421 		if (!list_empty(&cpu_head) && temp->cpu_data->cpu == initial_cpu)
4422 			after_workload_flag = true;
4423 
4424 		if (!after_workload_flag) {
4425 			if (list_empty(&cpu_head))
4426 				initial_cpu = temp->cpu_data->cpu;
4427 
4428 			list_add_tail(&temp->cpu_list, &cpu_head);
4429 			INIT_LIST_HEAD(&temp->domain_head);
4430 		} else {
4431 			if (temp->cpu_data->cpu == initial_cpu) {
4432 				cpu_second_pass = list_first_entry(&cpu_head, struct schedstat_cpu,
4433 								   cpu_list);
4434 				cpu_second_pass->cpu_data->timestamp =
4435 					temp->cpu_data->timestamp - cpu_second_pass->cpu_data->timestamp;
4436 			} else {
4437 				cpu_second_pass = list_next_entry(cpu_second_pass, cpu_list);
4438 			}
4439 			domain_second_pass = list_first_entry(&cpu_second_pass->domain_head,
4440 							      struct schedstat_domain, domain_list);
4441 			store_schedstat_cpu_diff(temp);
4442 		}
4443 	} else if (event->header.type == PERF_RECORD_SCHEDSTAT_DOMAIN) {
4444 		struct schedstat_cpu *cpu_tail;
4445 		struct schedstat_domain *temp = zalloc(sizeof(*temp));
4446 
4447 		if (!temp)
4448 			return -ENOMEM;
4449 
4450 		temp->domain_data = zalloc(sizeof(*temp->domain_data));
4451 		if (!temp->domain_data)
4452 			return -ENOMEM;
4453 
4454 		memcpy(temp->domain_data, &event->schedstat_domain, sizeof(*temp->domain_data));
4455 
4456 		if (!after_workload_flag) {
4457 			cpu_tail = list_last_entry(&cpu_head, struct schedstat_cpu, cpu_list);
4458 			list_add_tail(&temp->domain_list, &cpu_tail->domain_head);
4459 		} else {
4460 			store_schedstat_domain_diff(temp);
4461 			domain_second_pass = list_next_entry(domain_second_pass, domain_list);
4462 		}
4463 	}
4464 
4465 	return 0;
4466 }
4467 
free_schedstat(struct list_head * head)4468 static void free_schedstat(struct list_head *head)
4469 {
4470 	struct schedstat_domain *dptr, *n1;
4471 	struct schedstat_cpu *cptr, *n2;
4472 
4473 	list_for_each_entry_safe(cptr, n2, head, cpu_list) {
4474 		list_for_each_entry_safe(dptr, n1, &cptr->domain_head, domain_list) {
4475 			list_del_init(&dptr->domain_list);
4476 			free(dptr);
4477 		}
4478 		list_del_init(&cptr->cpu_list);
4479 		free(cptr);
4480 	}
4481 }
4482 
perf_sched__schedstat_report(struct perf_sched * sched)4483 static int perf_sched__schedstat_report(struct perf_sched *sched)
4484 {
4485 	struct cpu_domain_map **cd_map;
4486 	struct perf_session *session;
4487 	struct target target = {};
4488 	struct perf_data data = {
4489 		.path  = input_name,
4490 		.mode  = PERF_DATA_MODE_READ,
4491 	};
4492 	int err = 0;
4493 
4494 	sched->tool.schedstat_cpu = perf_sched__process_schedstat;
4495 	sched->tool.schedstat_domain = perf_sched__process_schedstat;
4496 
4497 	session = perf_session__new(&data, &sched->tool);
4498 	if (IS_ERR(session)) {
4499 		pr_err("Perf session creation failed.\n");
4500 		return PTR_ERR(session);
4501 	}
4502 
4503 	if (cpu_list)
4504 		target.cpu_list = cpu_list;
4505 	else
4506 		target.system_wide = true;
4507 
4508 	err = evlist__create_maps(session->evlist, &target);
4509 	if (err < 0)
4510 		goto out;
4511 
4512 	user_requested_cpus = session->evlist->core.user_requested_cpus;
4513 
4514 	err = perf_session__process_events(session);
4515 
4516 	if (!err) {
4517 		setup_pager();
4518 
4519 		if (list_empty(&cpu_head)) {
4520 			pr_err("Data is not available\n");
4521 			err = -1;
4522 			goto out;
4523 		}
4524 
4525 		cd_map = session->header.env.cpu_domain;
4526 		err = show_schedstat_data(&cpu_head, cd_map, NULL, NULL, false);
4527 	}
4528 
4529 out:
4530 	free_schedstat(&cpu_head);
4531 	perf_session__delete(session);
4532 	return err;
4533 }
4534 
perf_sched__schedstat_diff(struct perf_sched * sched,int argc,const char ** argv)4535 static int perf_sched__schedstat_diff(struct perf_sched *sched,
4536 				      int argc, const char **argv)
4537 {
4538 	struct cpu_domain_map **cd_map0 = NULL, **cd_map1 = NULL;
4539 	struct list_head cpu_head_ses0, cpu_head_ses1;
4540 	struct perf_session *session[2];
4541 	struct perf_data data[2];
4542 	int ret = 0, err = 0;
4543 	static const char *defaults[] = {
4544 		"perf.data.old",
4545 		"perf.data",
4546 	};
4547 
4548 	if (argc) {
4549 		if (argc == 1)
4550 			defaults[1] = argv[0];
4551 		else if (argc == 2) {
4552 			defaults[0] = argv[0];
4553 			defaults[1] = argv[1];
4554 		} else {
4555 			pr_err("perf sched stats diff is not supported with more than 2 files.\n");
4556 			goto out_ret;
4557 		}
4558 	}
4559 
4560 	INIT_LIST_HEAD(&cpu_head_ses0);
4561 	INIT_LIST_HEAD(&cpu_head_ses1);
4562 
4563 	sched->tool.schedstat_cpu = perf_sched__process_schedstat;
4564 	sched->tool.schedstat_domain = perf_sched__process_schedstat;
4565 
4566 	data[0].path = defaults[0];
4567 	data[0].mode  = PERF_DATA_MODE_READ;
4568 	session[0] = perf_session__new(&data[0], &sched->tool);
4569 	if (IS_ERR(session[0])) {
4570 		ret = PTR_ERR(session[0]);
4571 		pr_err("Failed to open %s\n", data[0].path);
4572 		goto out_delete_ses0;
4573 	}
4574 
4575 	err = perf_session__process_events(session[0]);
4576 	if (err)
4577 		goto out_delete_ses0;
4578 
4579 	cd_map0 = session[0]->header.env.cpu_domain;
4580 	list_replace_init(&cpu_head, &cpu_head_ses0);
4581 	after_workload_flag = false;
4582 
4583 	data[1].path = defaults[1];
4584 	data[1].mode  = PERF_DATA_MODE_READ;
4585 	session[1] = perf_session__new(&data[1], &sched->tool);
4586 	if (IS_ERR(session[1])) {
4587 		ret = PTR_ERR(session[1]);
4588 		pr_err("Failed to open %s\n", data[1].path);
4589 		goto out_delete_ses1;
4590 	}
4591 
4592 	err = perf_session__process_events(session[1]);
4593 	if (err)
4594 		goto out_delete_ses1;
4595 
4596 	cd_map1 = session[1]->header.env.cpu_domain;
4597 	list_replace_init(&cpu_head, &cpu_head_ses1);
4598 	after_workload_flag = false;
4599 	setup_pager();
4600 
4601 	if (list_empty(&cpu_head_ses1)) {
4602 		pr_err("Data is not available\n");
4603 		ret = -1;
4604 		goto out_delete_ses1;
4605 	}
4606 
4607 	if (list_empty(&cpu_head_ses0)) {
4608 		pr_err("Data is not available\n");
4609 		ret = -1;
4610 		goto out_delete_ses0;
4611 	}
4612 
4613 	show_schedstat_data(&cpu_head_ses0, cd_map0, &cpu_head_ses1, cd_map1, true);
4614 
4615 out_delete_ses1:
4616 	free_schedstat(&cpu_head_ses1);
4617 	if (!IS_ERR(session[1]))
4618 		perf_session__delete(session[1]);
4619 
4620 out_delete_ses0:
4621 	free_schedstat(&cpu_head_ses0);
4622 	if (!IS_ERR(session[0]))
4623 		perf_session__delete(session[0]);
4624 
4625 out_ret:
4626 	return ret;
4627 }
4628 
process_synthesized_event_live(const struct perf_tool * tool __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)4629 static int process_synthesized_event_live(const struct perf_tool *tool __maybe_unused,
4630 					  union perf_event *event,
4631 					  struct perf_sample *sample __maybe_unused,
4632 					  struct machine *machine __maybe_unused)
4633 {
4634 	return perf_sched__process_schedstat(tool, NULL, event);
4635 }
4636 
perf_sched__schedstat_live(struct perf_sched * sched,int argc,const char ** argv)4637 static int perf_sched__schedstat_live(struct perf_sched *sched,
4638 				      int argc, const char **argv)
4639 {
4640 	struct cpu_domain_map **cd_map = NULL;
4641 	struct target target = {};
4642 	u32 __maybe_unused md;
4643 	struct evlist *evlist;
4644 	u32 nr = 0, sv;
4645 	int reset = 0;
4646 	int err = 0;
4647 
4648 	signal(SIGINT, sighandler);
4649 	signal(SIGCHLD, sighandler);
4650 	signal(SIGTERM, sighandler);
4651 
4652 	evlist = evlist__new();
4653 	if (!evlist)
4654 		return -ENOMEM;
4655 
4656 	/*
4657 	 * `perf sched schedstat` does not support workload profiling (-p pid)
4658 	 * since /proc/schedstat file contains cpu specific data only. Hence, a
4659 	 * profile target is either set of cpus or systemwide, never a process.
4660 	 * Note that, although `-- <workload>` is supported, profile data are
4661 	 * still cpu/systemwide.
4662 	 */
4663 	if (cpu_list)
4664 		target.cpu_list = cpu_list;
4665 	else
4666 		target.system_wide = true;
4667 
4668 	if (argc) {
4669 		err = evlist__prepare_workload(evlist, &target, argv, false, NULL);
4670 		if (err)
4671 			goto out;
4672 	}
4673 
4674 	err = evlist__create_maps(evlist, &target);
4675 	if (err < 0)
4676 		goto out;
4677 
4678 	user_requested_cpus = evlist->core.user_requested_cpus;
4679 
4680 	err = perf_event__synthesize_schedstat(&(sched->tool),
4681 					       process_synthesized_event_live,
4682 					       user_requested_cpus);
4683 	if (err < 0)
4684 		goto out;
4685 
4686 	err = enable_sched_schedstats(&reset);
4687 	if (err < 0)
4688 		goto out;
4689 
4690 	if (argc)
4691 		evlist__start_workload(evlist);
4692 
4693 	/* wait for signal */
4694 	pause();
4695 
4696 	if (reset) {
4697 		err = disable_sched_schedstat();
4698 		if (err < 0)
4699 			goto out;
4700 	}
4701 
4702 	err = perf_event__synthesize_schedstat(&(sched->tool),
4703 					       process_synthesized_event_live,
4704 					       user_requested_cpus);
4705 	if (err)
4706 		goto out;
4707 
4708 	setup_pager();
4709 
4710 	if (list_empty(&cpu_head)) {
4711 		pr_err("Data is not available\n");
4712 		err = -1;
4713 		goto out;
4714 	}
4715 
4716 	nr = cpu__max_present_cpu().cpu;
4717 	cd_map = build_cpu_domain_map(&sv, &md, nr);
4718 	if (!cd_map) {
4719 		pr_err("Unable to generate cpu-domain relation info");
4720 		goto out;
4721 	}
4722 
4723 	show_schedstat_data(&cpu_head, cd_map, NULL, NULL, false);
4724 	free_cpu_domain_info(cd_map, sv, nr);
4725 out:
4726 	free_schedstat(&cpu_head);
4727 	evlist__delete(evlist);
4728 	return err;
4729 }
4730 
schedstat_events_exposed(void)4731 static bool schedstat_events_exposed(void)
4732 {
4733 	/*
4734 	 * Select "sched:sched_stat_wait" event to check
4735 	 * whether schedstat tracepoints are exposed.
4736 	 */
4737 	return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
4738 		false : true;
4739 }
4740 
__cmd_record(int argc,const char ** argv)4741 static int __cmd_record(int argc, const char **argv)
4742 {
4743 	unsigned int rec_argc, i, j;
4744 	char **rec_argv;
4745 	const char **rec_argv_copy;
4746 	const char * const record_args[] = {
4747 		"record",
4748 		"-a",
4749 		"-R",
4750 		"-m", "1024",
4751 		"-c", "1",
4752 		"-e", "sched:sched_switch",
4753 		"-e", "sched:sched_stat_runtime",
4754 		"-e", "sched:sched_process_fork",
4755 		"-e", "sched:sched_wakeup_new",
4756 		"-e", "sched:sched_migrate_task",
4757 	};
4758 
4759 	/*
4760 	 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
4761 	 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
4762 	 * to prevent "perf sched record" execution failure, determine
4763 	 * whether to record schedstat events according to actual situation.
4764 	 */
4765 	const char * const schedstat_args[] = {
4766 		"-e", "sched:sched_stat_wait",
4767 		"-e", "sched:sched_stat_sleep",
4768 		"-e", "sched:sched_stat_iowait",
4769 	};
4770 	unsigned int schedstat_argc = schedstat_events_exposed() ?
4771 		ARRAY_SIZE(schedstat_args) : 0;
4772 
4773 	struct tep_event *waking_event;
4774 	int ret;
4775 
4776 	/*
4777 	 * +2 for either "-e", "sched:sched_wakeup" or
4778 	 * "-e", "sched:sched_waking"
4779 	 */
4780 	rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
4781 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
4782 	if (rec_argv == NULL)
4783 		return -ENOMEM;
4784 	rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
4785 	if (rec_argv_copy == NULL) {
4786 		free(rec_argv);
4787 		return -ENOMEM;
4788 	}
4789 
4790 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
4791 		rec_argv[i] = strdup(record_args[i]);
4792 
4793 	rec_argv[i++] = strdup("-e");
4794 	waking_event = trace_event__tp_format("sched", "sched_waking");
4795 	if (!IS_ERR(waking_event))
4796 		rec_argv[i++] = strdup("sched:sched_waking");
4797 	else
4798 		rec_argv[i++] = strdup("sched:sched_wakeup");
4799 
4800 	for (j = 0; j < schedstat_argc; j++)
4801 		rec_argv[i++] = strdup(schedstat_args[j]);
4802 
4803 	for (j = 1; j < (unsigned int)argc; j++, i++)
4804 		rec_argv[i] = strdup(argv[j]);
4805 
4806 	BUG_ON(i != rec_argc);
4807 
4808 	memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
4809 	ret = cmd_record(rec_argc, rec_argv_copy);
4810 
4811 	for (i = 0; i < rec_argc; i++)
4812 		free(rec_argv[i]);
4813 	free(rec_argv);
4814 	free(rec_argv_copy);
4815 
4816 	return ret;
4817 }
4818 
cmd_sched(int argc,const char ** argv)4819 int cmd_sched(int argc, const char **argv)
4820 {
4821 	static const char default_sort_order[] = "avg, max, switch, runtime";
4822 	struct perf_sched sched = {
4823 		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
4824 		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
4825 		.sort_order	      = default_sort_order,
4826 		.replay_repeat	      = 10,
4827 		.profile_cpu	      = -1,
4828 		.next_shortname1      = 'A',
4829 		.next_shortname2      = '0',
4830 		.skip_merge           = 0,
4831 		.show_callchain	      = 1,
4832 		.max_stack            = 5,
4833 	};
4834 	const struct option sched_options[] = {
4835 	OPT_STRING('i', "input", &input_name, "file",
4836 		    "input file name"),
4837 	OPT_INCR('v', "verbose", &verbose,
4838 		    "be more verbose (show symbol address, etc)"),
4839 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
4840 		    "dump raw trace in ASCII"),
4841 	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
4842 	OPT_END()
4843 	};
4844 	const struct option latency_options[] = {
4845 	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
4846 		   "sort by key(s): runtime, switch, avg, max"),
4847 	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
4848 		    "CPU to profile on"),
4849 	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
4850 		    "latency stats per pid instead of per comm"),
4851 	OPT_PARENT(sched_options)
4852 	};
4853 	const struct option replay_options[] = {
4854 	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
4855 		     "repeat the workload replay N times (0: infinite)"),
4856 	OPT_PARENT(sched_options)
4857 	};
4858 	const struct option map_options[] = {
4859 	OPT_BOOLEAN(0, "compact", &sched.map.comp,
4860 		    "map output in compact mode"),
4861 	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
4862 		   "highlight given pids in map"),
4863 	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
4864                     "highlight given CPUs in map"),
4865 	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
4866                     "display given CPUs in map"),
4867 	OPT_STRING(0, "task-name", &sched.map.task_name, "task",
4868 		"map output only for the given task name(s)."),
4869 	OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy,
4870 		"given command name can be partially matched (fuzzy matching)"),
4871 	OPT_PARENT(sched_options)
4872 	};
4873 	const struct option timehist_options[] = {
4874 	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
4875 		   "file", "vmlinux pathname"),
4876 	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
4877 		   "file", "kallsyms pathname"),
4878 	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
4879 		    "Display call chains if present (default on)"),
4880 	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
4881 		   "Maximum number of functions to display backtrace."),
4882 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
4883 		    "Look for files with symbols relative to this directory"),
4884 	OPT_BOOLEAN('s', "summary", &sched.summary_only,
4885 		    "Show only syscall summary with statistics"),
4886 	OPT_BOOLEAN('S', "with-summary", &sched.summary,
4887 		    "Show all syscalls and summary with statistics"),
4888 	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
4889 	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
4890 	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
4891 	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
4892 	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
4893 	OPT_STRING(0, "time", &sched.time_str, "str",
4894 		   "Time span for analysis (start,stop)"),
4895 	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
4896 	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
4897 		   "analyze events only for given process id(s)"),
4898 	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
4899 		   "analyze events only for given thread id(s)"),
4900 	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
4901 	OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"),
4902 	OPT_STRING(0, "prio", &sched.prio_str, "prio",
4903 		   "analyze events only for given task priority(ies)"),
4904 	OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"),
4905 	OPT_PARENT(sched_options)
4906 	};
4907 	const struct option stats_options[] = {
4908 	OPT_STRING('i', "input", &input_name, "file",
4909 		   "`stats report` with input filename"),
4910 	OPT_STRING('o', "output", &output_name, "file",
4911 		   "`stats record` with output filename"),
4912 	OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
4913 	OPT_BOOLEAN('v', "verbose", &verbose_field, "Show explanation for fields in the report"),
4914 	OPT_END()
4915 	};
4916 
4917 	const char * const latency_usage[] = {
4918 		"perf sched latency [<options>]",
4919 		NULL
4920 	};
4921 	const char * const replay_usage[] = {
4922 		"perf sched replay [<options>]",
4923 		NULL
4924 	};
4925 	const char * const map_usage[] = {
4926 		"perf sched map [<options>]",
4927 		NULL
4928 	};
4929 	const char * const timehist_usage[] = {
4930 		"perf sched timehist [<options>]",
4931 		NULL
4932 	};
4933 	const char *stats_usage[] = {
4934 		"perf sched stats {record|report} [<options>]",
4935 		NULL
4936 	};
4937 	const char *const sched_subcommands[] = { "record", "latency", "map",
4938 						  "replay", "script",
4939 						  "timehist", "stats", NULL };
4940 	const char *sched_usage[] = {
4941 		NULL,
4942 		NULL
4943 	};
4944 	struct trace_sched_handler lat_ops  = {
4945 		.wakeup_event	    = latency_wakeup_event,
4946 		.switch_event	    = latency_switch_event,
4947 		.runtime_event	    = latency_runtime_event,
4948 		.migrate_task_event = latency_migrate_task_event,
4949 	};
4950 	struct trace_sched_handler map_ops  = {
4951 		.switch_event	    = map_switch_event,
4952 	};
4953 	struct trace_sched_handler replay_ops  = {
4954 		.wakeup_event	    = replay_wakeup_event,
4955 		.switch_event	    = replay_switch_event,
4956 		.fork_event	    = replay_fork_event,
4957 	};
4958 	int ret;
4959 
4960 	perf_tool__init(&sched.tool, /*ordered_events=*/true);
4961 	sched.tool.sample	 = perf_sched__process_tracepoint_sample;
4962 	sched.tool.comm		 = perf_sched__process_comm;
4963 	sched.tool.namespaces	 = perf_event__process_namespaces;
4964 	sched.tool.lost		 = perf_event__process_lost;
4965 	sched.tool.fork		 = perf_sched__process_fork_event;
4966 
4967 	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
4968 					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
4969 	if (!argc)
4970 		usage_with_options(sched_usage, sched_options);
4971 
4972 	thread__set_priv_destructor(free);
4973 
4974 	/*
4975 	 * Aliased to 'perf script' for now:
4976 	 */
4977 	if (!strcmp(argv[0], "script")) {
4978 		ret = cmd_script(argc, argv);
4979 	} else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
4980 		ret = __cmd_record(argc, argv);
4981 	} else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
4982 		sched.tp_handler = &lat_ops;
4983 		if (argc > 1) {
4984 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
4985 			if (argc)
4986 				usage_with_options(latency_usage, latency_options);
4987 		}
4988 		setup_sorting(&sched, latency_options, latency_usage);
4989 		ret = perf_sched__lat(&sched);
4990 	} else if (!strcmp(argv[0], "map")) {
4991 		if (argc) {
4992 			argc = parse_options(argc, argv, map_options, map_usage, 0);
4993 			if (argc)
4994 				usage_with_options(map_usage, map_options);
4995 
4996 			if (sched.map.task_name) {
4997 				sched.map.task_names = strlist__new(sched.map.task_name, NULL);
4998 				if (sched.map.task_names == NULL) {
4999 					fprintf(stderr, "Failed to parse task names\n");
5000 					ret = -1;
5001 					goto out;
5002 				}
5003 			}
5004 		}
5005 		sched.tp_handler = &map_ops;
5006 		setup_sorting(&sched, latency_options, latency_usage);
5007 		ret = perf_sched__map(&sched);
5008 	} else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
5009 		sched.tp_handler = &replay_ops;
5010 		if (argc) {
5011 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
5012 			if (argc)
5013 				usage_with_options(replay_usage, replay_options);
5014 		}
5015 		ret = perf_sched__replay(&sched);
5016 	} else if (!strcmp(argv[0], "timehist")) {
5017 		if (argc) {
5018 			argc = parse_options(argc, argv, timehist_options,
5019 					     timehist_usage, 0);
5020 			if (argc)
5021 				usage_with_options(timehist_usage, timehist_options);
5022 		}
5023 		if ((sched.show_wakeups || sched.show_next) &&
5024 		    sched.summary_only) {
5025 			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
5026 			parse_options_usage(timehist_usage, timehist_options, "s", true);
5027 			if (sched.show_wakeups)
5028 				parse_options_usage(NULL, timehist_options, "w", true);
5029 			if (sched.show_next)
5030 				parse_options_usage(NULL, timehist_options, "n", true);
5031 			ret = -EINVAL;
5032 			goto out;
5033 		}
5034 		ret = symbol__validate_sym_arguments();
5035 		if (!ret)
5036 			ret = perf_sched__timehist(&sched);
5037 	} else if (!strcmp(argv[0], "stats")) {
5038 		const char *const stats_subcommands[] = {"record", "report", NULL};
5039 
5040 		argc = parse_options_subcommand(argc, argv, stats_options,
5041 						stats_subcommands,
5042 						stats_usage,
5043 						PARSE_OPT_STOP_AT_NON_OPTION);
5044 
5045 		if (argv[0] && !strcmp(argv[0], "record")) {
5046 			if (argc)
5047 				argc = parse_options(argc, argv, stats_options,
5048 						     stats_usage, 0);
5049 			return perf_sched__schedstat_record(&sched, argc, argv);
5050 		} else if (argv[0] && !strcmp(argv[0], "report")) {
5051 			if (argc)
5052 				argc = parse_options(argc, argv, stats_options,
5053 						     stats_usage, 0);
5054 			return perf_sched__schedstat_report(&sched);
5055 		} else if (argv[0] && !strcmp(argv[0], "diff")) {
5056 			if (argc)
5057 				argc = parse_options(argc, argv, stats_options,
5058 						     stats_usage, 0);
5059 			return perf_sched__schedstat_diff(&sched, argc, argv);
5060 		}
5061 		return perf_sched__schedstat_live(&sched, argc, argv);
5062 	} else {
5063 		usage_with_options(sched_usage, sched_options);
5064 	}
5065 
5066 out:
5067 	/* free usage string allocated by parse_options_subcommand */
5068 	free((void *)sched_usage[0]);
5069 
5070 	return ret;
5071 }
5072