xref: /linux/drivers/net/wireless/ath/ath10k/pci.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6  * Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries.
7  */
8 
9 #include <linux/pci.h>
10 #include <linux/module.h>
11 #include <linux/interrupt.h>
12 #include <linux/spinlock.h>
13 #include <linux/bitops.h>
14 
15 #include "core.h"
16 #include "debug.h"
17 #include "coredump.h"
18 
19 #include "targaddrs.h"
20 #include "bmi.h"
21 
22 #include "hif.h"
23 #include "htc.h"
24 
25 #include "ce.h"
26 #include "pci.h"
27 
28 enum ath10k_pci_reset_mode {
29 	ATH10K_PCI_RESET_AUTO = 0,
30 	ATH10K_PCI_RESET_WARM_ONLY = 1,
31 };
32 
33 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
34 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
35 
36 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
37 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
38 
39 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
40 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
41 
42 /* how long wait to wait for target to initialise, in ms */
43 #define ATH10K_PCI_TARGET_WAIT 3000
44 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
45 
46 /* Maximum number of bytes that can be handled atomically by
47  * diag read and write.
48  */
49 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
50 
51 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
52 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
53 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
54 
55 static const struct pci_device_id ath10k_pci_id_table[] = {
56 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
57 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
58 
59 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
60 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
61 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
62 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
63 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
64 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
65 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
66 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
67 	{}
68 };
69 
70 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
71 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
72 	 * hacks. ath10k doesn't have them and these devices crash horribly
73 	 * because of that.
74 	 */
75 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
76 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
77 
78 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
79 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
80 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
81 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
82 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
83 
84 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
85 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
86 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
87 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
88 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
89 
90 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
91 
92 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
93 
94 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
95 
96 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
97 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
98 
99 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
100 };
101 
102 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
103 static int ath10k_pci_cold_reset(struct ath10k *ar);
104 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
105 static int ath10k_pci_init_irq(struct ath10k *ar);
106 static int ath10k_pci_deinit_irq(struct ath10k *ar);
107 static int ath10k_pci_request_irq(struct ath10k *ar);
108 static void ath10k_pci_free_irq(struct ath10k *ar);
109 static int ath10k_pci_bmi_wait(struct ath10k *ar,
110 			       struct ath10k_ce_pipe *tx_pipe,
111 			       struct ath10k_ce_pipe *rx_pipe,
112 			       struct bmi_xfer *xfer);
113 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
114 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
115 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
116 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
117 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
118 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
119 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
120 
121 static const struct ce_attr pci_host_ce_config_wlan[] = {
122 	/* CE0: host->target HTC control and raw streams */
123 	{
124 		.flags = CE_ATTR_FLAGS,
125 		.src_nentries = 16,
126 		.src_sz_max = 256,
127 		.dest_nentries = 0,
128 		.send_cb = ath10k_pci_htc_tx_cb,
129 	},
130 
131 	/* CE1: target->host HTT + HTC control */
132 	{
133 		.flags = CE_ATTR_FLAGS,
134 		.src_nentries = 0,
135 		.src_sz_max = 2048,
136 		.dest_nentries = 512,
137 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
138 	},
139 
140 	/* CE2: target->host WMI */
141 	{
142 		.flags = CE_ATTR_FLAGS,
143 		.src_nentries = 0,
144 		.src_sz_max = 2048,
145 		.dest_nentries = 128,
146 		.recv_cb = ath10k_pci_htc_rx_cb,
147 	},
148 
149 	/* CE3: host->target WMI */
150 	{
151 		.flags = CE_ATTR_FLAGS,
152 		.src_nentries = 32,
153 		.src_sz_max = 2048,
154 		.dest_nentries = 0,
155 		.send_cb = ath10k_pci_htc_tx_cb,
156 	},
157 
158 	/* CE4: host->target HTT */
159 	{
160 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
161 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
162 		.src_sz_max = 256,
163 		.dest_nentries = 0,
164 		.send_cb = ath10k_pci_htt_tx_cb,
165 	},
166 
167 	/* CE5: target->host HTT (HIF->HTT) */
168 	{
169 		.flags = CE_ATTR_FLAGS,
170 		.src_nentries = 0,
171 		.src_sz_max = 512,
172 		.dest_nentries = 512,
173 		.recv_cb = ath10k_pci_htt_rx_cb,
174 	},
175 
176 	/* CE6: target autonomous hif_memcpy */
177 	{
178 		.flags = CE_ATTR_FLAGS,
179 		.src_nentries = 0,
180 		.src_sz_max = 0,
181 		.dest_nentries = 0,
182 	},
183 
184 	/* CE7: ce_diag, the Diagnostic Window */
185 	{
186 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
187 		.src_nentries = 2,
188 		.src_sz_max = DIAG_TRANSFER_LIMIT,
189 		.dest_nentries = 2,
190 	},
191 
192 	/* CE8: target->host pktlog */
193 	{
194 		.flags = CE_ATTR_FLAGS,
195 		.src_nentries = 0,
196 		.src_sz_max = 2048,
197 		.dest_nentries = 128,
198 		.recv_cb = ath10k_pci_pktlog_rx_cb,
199 	},
200 
201 	/* CE9 target autonomous qcache memcpy */
202 	{
203 		.flags = CE_ATTR_FLAGS,
204 		.src_nentries = 0,
205 		.src_sz_max = 0,
206 		.dest_nentries = 0,
207 	},
208 
209 	/* CE10: target autonomous hif memcpy */
210 	{
211 		.flags = CE_ATTR_FLAGS,
212 		.src_nentries = 0,
213 		.src_sz_max = 0,
214 		.dest_nentries = 0,
215 	},
216 
217 	/* CE11: target autonomous hif memcpy */
218 	{
219 		.flags = CE_ATTR_FLAGS,
220 		.src_nentries = 0,
221 		.src_sz_max = 0,
222 		.dest_nentries = 0,
223 	},
224 };
225 
226 /* Target firmware's Copy Engine configuration. */
227 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
228 	/* CE0: host->target HTC control and raw streams */
229 	{
230 		.pipenum = __cpu_to_le32(0),
231 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
232 		.nentries = __cpu_to_le32(32),
233 		.nbytes_max = __cpu_to_le32(256),
234 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
235 		.reserved = __cpu_to_le32(0),
236 	},
237 
238 	/* CE1: target->host HTT + HTC control */
239 	{
240 		.pipenum = __cpu_to_le32(1),
241 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
242 		.nentries = __cpu_to_le32(32),
243 		.nbytes_max = __cpu_to_le32(2048),
244 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
245 		.reserved = __cpu_to_le32(0),
246 	},
247 
248 	/* CE2: target->host WMI */
249 	{
250 		.pipenum = __cpu_to_le32(2),
251 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
252 		.nentries = __cpu_to_le32(64),
253 		.nbytes_max = __cpu_to_le32(2048),
254 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
255 		.reserved = __cpu_to_le32(0),
256 	},
257 
258 	/* CE3: host->target WMI */
259 	{
260 		.pipenum = __cpu_to_le32(3),
261 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
262 		.nentries = __cpu_to_le32(32),
263 		.nbytes_max = __cpu_to_le32(2048),
264 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
265 		.reserved = __cpu_to_le32(0),
266 	},
267 
268 	/* CE4: host->target HTT */
269 	{
270 		.pipenum = __cpu_to_le32(4),
271 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
272 		.nentries = __cpu_to_le32(256),
273 		.nbytes_max = __cpu_to_le32(256),
274 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
275 		.reserved = __cpu_to_le32(0),
276 	},
277 
278 	/* NB: 50% of src nentries, since tx has 2 frags */
279 
280 	/* CE5: target->host HTT (HIF->HTT) */
281 	{
282 		.pipenum = __cpu_to_le32(5),
283 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
284 		.nentries = __cpu_to_le32(32),
285 		.nbytes_max = __cpu_to_le32(512),
286 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
287 		.reserved = __cpu_to_le32(0),
288 	},
289 
290 	/* CE6: Reserved for target autonomous hif_memcpy */
291 	{
292 		.pipenum = __cpu_to_le32(6),
293 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
294 		.nentries = __cpu_to_le32(32),
295 		.nbytes_max = __cpu_to_le32(4096),
296 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
297 		.reserved = __cpu_to_le32(0),
298 	},
299 
300 	/* CE7 used only by Host */
301 	{
302 		.pipenum = __cpu_to_le32(7),
303 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
304 		.nentries = __cpu_to_le32(0),
305 		.nbytes_max = __cpu_to_le32(0),
306 		.flags = __cpu_to_le32(0),
307 		.reserved = __cpu_to_le32(0),
308 	},
309 
310 	/* CE8 target->host packtlog */
311 	{
312 		.pipenum = __cpu_to_le32(8),
313 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
314 		.nentries = __cpu_to_le32(64),
315 		.nbytes_max = __cpu_to_le32(2048),
316 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
317 		.reserved = __cpu_to_le32(0),
318 	},
319 
320 	/* CE9 target autonomous qcache memcpy */
321 	{
322 		.pipenum = __cpu_to_le32(9),
323 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
324 		.nentries = __cpu_to_le32(32),
325 		.nbytes_max = __cpu_to_le32(2048),
326 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
327 		.reserved = __cpu_to_le32(0),
328 	},
329 
330 	/* It not necessary to send target wlan configuration for CE10 & CE11
331 	 * as these CEs are not actively used in target.
332 	 */
333 };
334 
335 /*
336  * Map from service/endpoint to Copy Engine.
337  * This table is derived from the CE_PCI TABLE, above.
338  * It is passed to the Target at startup for use by firmware.
339  */
340 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
341 	{
342 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
343 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
344 		__cpu_to_le32(3),
345 	},
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
348 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
349 		__cpu_to_le32(2),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
353 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
354 		__cpu_to_le32(3),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
358 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
359 		__cpu_to_le32(2),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
363 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
364 		__cpu_to_le32(3),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
368 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
369 		__cpu_to_le32(2),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
373 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
374 		__cpu_to_le32(3),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
378 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
379 		__cpu_to_le32(2),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
383 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
384 		__cpu_to_le32(3),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
388 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
389 		__cpu_to_le32(2),
390 	},
391 	{
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
393 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
394 		__cpu_to_le32(0),
395 	},
396 	{
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
398 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
399 		__cpu_to_le32(1),
400 	},
401 	{ /* not used */
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
403 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
404 		__cpu_to_le32(0),
405 	},
406 	{ /* not used */
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
408 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
409 		__cpu_to_le32(1),
410 	},
411 	{
412 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
413 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
414 		__cpu_to_le32(4),
415 	},
416 	{
417 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
418 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
419 		__cpu_to_le32(5),
420 	},
421 
422 	/* (Additions here) */
423 
424 	{ /* must be last */
425 		__cpu_to_le32(0),
426 		__cpu_to_le32(0),
427 		__cpu_to_le32(0),
428 	},
429 };
430 
ath10k_pci_is_awake(struct ath10k * ar)431 static bool ath10k_pci_is_awake(struct ath10k *ar)
432 {
433 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
434 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
435 			   RTC_STATE_ADDRESS);
436 
437 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
438 }
439 
__ath10k_pci_wake(struct ath10k * ar)440 static void __ath10k_pci_wake(struct ath10k *ar)
441 {
442 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
443 
444 	lockdep_assert_held(&ar_pci->ps_lock);
445 
446 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
447 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
448 
449 	iowrite32(PCIE_SOC_WAKE_V_MASK,
450 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
451 		  PCIE_SOC_WAKE_ADDRESS);
452 }
453 
__ath10k_pci_sleep(struct ath10k * ar)454 static void __ath10k_pci_sleep(struct ath10k *ar)
455 {
456 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
457 
458 	lockdep_assert_held(&ar_pci->ps_lock);
459 
460 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
461 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
462 
463 	iowrite32(PCIE_SOC_WAKE_RESET,
464 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
465 		  PCIE_SOC_WAKE_ADDRESS);
466 	ar_pci->ps_awake = false;
467 }
468 
ath10k_pci_wake_wait(struct ath10k * ar)469 static int ath10k_pci_wake_wait(struct ath10k *ar)
470 {
471 	int tot_delay = 0;
472 	int curr_delay = 5;
473 
474 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
475 		if (ath10k_pci_is_awake(ar)) {
476 			if (tot_delay > PCIE_WAKE_LATE_US)
477 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
478 					    tot_delay / 1000);
479 			return 0;
480 		}
481 
482 		udelay(curr_delay);
483 		tot_delay += curr_delay;
484 
485 		if (curr_delay < 50)
486 			curr_delay += 5;
487 	}
488 
489 	return -ETIMEDOUT;
490 }
491 
ath10k_pci_force_wake(struct ath10k * ar)492 static int ath10k_pci_force_wake(struct ath10k *ar)
493 {
494 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
495 	unsigned long flags;
496 	int ret = 0;
497 
498 	if (ar_pci->pci_ps)
499 		return ret;
500 
501 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
502 
503 	if (!ar_pci->ps_awake) {
504 		iowrite32(PCIE_SOC_WAKE_V_MASK,
505 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
506 			  PCIE_SOC_WAKE_ADDRESS);
507 
508 		ret = ath10k_pci_wake_wait(ar);
509 		if (ret == 0)
510 			ar_pci->ps_awake = true;
511 	}
512 
513 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
514 
515 	return ret;
516 }
517 
ath10k_pci_force_sleep(struct ath10k * ar)518 static void ath10k_pci_force_sleep(struct ath10k *ar)
519 {
520 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
521 	unsigned long flags;
522 
523 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
524 
525 	iowrite32(PCIE_SOC_WAKE_RESET,
526 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
527 		  PCIE_SOC_WAKE_ADDRESS);
528 	ar_pci->ps_awake = false;
529 
530 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
531 }
532 
ath10k_pci_wake(struct ath10k * ar)533 static int ath10k_pci_wake(struct ath10k *ar)
534 {
535 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
536 	unsigned long flags;
537 	int ret = 0;
538 
539 	if (ar_pci->pci_ps == 0)
540 		return ret;
541 
542 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
543 
544 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
545 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
546 
547 	/* This function can be called very frequently. To avoid excessive
548 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
549 	 */
550 	if (!ar_pci->ps_awake) {
551 		__ath10k_pci_wake(ar);
552 
553 		ret = ath10k_pci_wake_wait(ar);
554 		if (ret == 0)
555 			ar_pci->ps_awake = true;
556 	}
557 
558 	if (ret == 0) {
559 		ar_pci->ps_wake_refcount++;
560 		WARN_ON(ar_pci->ps_wake_refcount == 0);
561 	}
562 
563 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
564 
565 	return ret;
566 }
567 
ath10k_pci_sleep(struct ath10k * ar)568 static void ath10k_pci_sleep(struct ath10k *ar)
569 {
570 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
571 	unsigned long flags;
572 
573 	if (ar_pci->pci_ps == 0)
574 		return;
575 
576 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
577 
578 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
579 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
580 
581 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
582 		goto skip;
583 
584 	ar_pci->ps_wake_refcount--;
585 
586 	mod_timer(&ar_pci->ps_timer, jiffies +
587 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
588 
589 skip:
590 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
591 }
592 
ath10k_pci_ps_timer(struct timer_list * t)593 static void ath10k_pci_ps_timer(struct timer_list *t)
594 {
595 	struct ath10k_pci *ar_pci = timer_container_of(ar_pci, t, ps_timer);
596 	struct ath10k *ar = ar_pci->ar;
597 	unsigned long flags;
598 
599 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
600 
601 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
602 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
603 
604 	if (ar_pci->ps_wake_refcount > 0)
605 		goto skip;
606 
607 	__ath10k_pci_sleep(ar);
608 
609 skip:
610 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
611 }
612 
ath10k_pci_sleep_sync(struct ath10k * ar)613 static void ath10k_pci_sleep_sync(struct ath10k *ar)
614 {
615 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
616 	unsigned long flags;
617 
618 	if (ar_pci->pci_ps == 0) {
619 		ath10k_pci_force_sleep(ar);
620 		return;
621 	}
622 
623 	timer_delete_sync(&ar_pci->ps_timer);
624 
625 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
626 	WARN_ON(ar_pci->ps_wake_refcount > 0);
627 	__ath10k_pci_sleep(ar);
628 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
629 }
630 
ath10k_bus_pci_write32(struct ath10k * ar,u32 offset,u32 value)631 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
632 {
633 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
634 	int ret;
635 
636 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
637 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
638 			    offset, offset + sizeof(value), ar_pci->mem_len);
639 		return;
640 	}
641 
642 	ret = ath10k_pci_wake(ar);
643 	if (ret) {
644 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
645 			    value, offset, ret);
646 		return;
647 	}
648 
649 	iowrite32(value, ar_pci->mem + offset);
650 	ath10k_pci_sleep(ar);
651 }
652 
ath10k_bus_pci_read32(struct ath10k * ar,u32 offset)653 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
654 {
655 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
656 	u32 val;
657 	int ret;
658 
659 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
660 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
661 			    offset, offset + sizeof(val), ar_pci->mem_len);
662 		return 0;
663 	}
664 
665 	ret = ath10k_pci_wake(ar);
666 	if (ret) {
667 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
668 			    offset, ret);
669 		return 0xffffffff;
670 	}
671 
672 	val = ioread32(ar_pci->mem + offset);
673 	ath10k_pci_sleep(ar);
674 
675 	return val;
676 }
677 
ath10k_pci_write32(struct ath10k * ar,u32 offset,u32 value)678 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
679 {
680 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
681 
682 	ce->bus_ops->write32(ar, offset, value);
683 }
684 
ath10k_pci_read32(struct ath10k * ar,u32 offset)685 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
686 {
687 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
688 
689 	return ce->bus_ops->read32(ar, offset);
690 }
691 
ath10k_pci_soc_read32(struct ath10k * ar,u32 addr)692 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
693 {
694 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
695 }
696 
ath10k_pci_soc_write32(struct ath10k * ar,u32 addr,u32 val)697 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
698 {
699 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
700 }
701 
ath10k_pci_reg_read32(struct ath10k * ar,u32 addr)702 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
703 {
704 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
705 }
706 
ath10k_pci_reg_write32(struct ath10k * ar,u32 addr,u32 val)707 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
708 {
709 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
710 }
711 
ath10k_pci_irq_pending(struct ath10k * ar)712 bool ath10k_pci_irq_pending(struct ath10k *ar)
713 {
714 	u32 cause;
715 
716 	/* Check if the shared legacy irq is for us */
717 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
718 				  PCIE_INTR_CAUSE_ADDRESS);
719 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
720 		return true;
721 
722 	return false;
723 }
724 
ath10k_pci_disable_and_clear_intx_irq(struct ath10k * ar)725 void ath10k_pci_disable_and_clear_intx_irq(struct ath10k *ar)
726 {
727 	/* IMPORTANT: INTR_CLR register has to be set after
728 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
729 	 * really cleared.
730 	 */
731 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
732 			   0);
733 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
734 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
735 
736 	/* IMPORTANT: this extra read transaction is required to
737 	 * flush the posted write buffer.
738 	 */
739 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
740 				PCIE_INTR_ENABLE_ADDRESS);
741 }
742 
ath10k_pci_enable_intx_irq(struct ath10k * ar)743 void ath10k_pci_enable_intx_irq(struct ath10k *ar)
744 {
745 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
746 			   PCIE_INTR_ENABLE_ADDRESS,
747 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
748 
749 	/* IMPORTANT: this extra read transaction is required to
750 	 * flush the posted write buffer.
751 	 */
752 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
753 				PCIE_INTR_ENABLE_ADDRESS);
754 }
755 
ath10k_pci_get_irq_method(struct ath10k * ar)756 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
757 {
758 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
759 
760 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
761 		return "msi";
762 
763 	return "legacy";
764 }
765 
__ath10k_pci_rx_post_buf(struct ath10k_pci_pipe * pipe)766 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
767 {
768 	struct ath10k *ar = pipe->hif_ce_state;
769 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
770 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
771 	struct sk_buff *skb;
772 	dma_addr_t paddr;
773 	int ret;
774 
775 	skb = dev_alloc_skb(pipe->buf_sz);
776 	if (!skb)
777 		return -ENOMEM;
778 
779 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
780 
781 	paddr = dma_map_single(ar->dev, skb->data,
782 			       skb->len + skb_tailroom(skb),
783 			       DMA_FROM_DEVICE);
784 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
785 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
786 		dev_kfree_skb_any(skb);
787 		return -EIO;
788 	}
789 
790 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
791 
792 	spin_lock_bh(&ce->ce_lock);
793 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
794 	spin_unlock_bh(&ce->ce_lock);
795 	if (ret) {
796 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
797 				 DMA_FROM_DEVICE);
798 		dev_kfree_skb_any(skb);
799 		return ret;
800 	}
801 
802 	return 0;
803 }
804 
ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe * pipe)805 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
806 {
807 	struct ath10k *ar = pipe->hif_ce_state;
808 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
809 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
810 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
811 	int ret, num;
812 
813 	if (pipe->buf_sz == 0)
814 		return;
815 
816 	if (!ce_pipe->dest_ring)
817 		return;
818 
819 	spin_lock_bh(&ce->ce_lock);
820 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
821 	spin_unlock_bh(&ce->ce_lock);
822 
823 	while (num >= 0) {
824 		ret = __ath10k_pci_rx_post_buf(pipe);
825 		if (ret) {
826 			if (ret == -ENOSPC)
827 				break;
828 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
829 			mod_timer(&ar_pci->rx_post_retry, jiffies +
830 				  ATH10K_PCI_RX_POST_RETRY_MS);
831 			break;
832 		}
833 		num--;
834 	}
835 }
836 
ath10k_pci_rx_post(struct ath10k * ar)837 void ath10k_pci_rx_post(struct ath10k *ar)
838 {
839 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
840 	int i;
841 
842 	for (i = 0; i < CE_COUNT; i++)
843 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
844 }
845 
ath10k_pci_rx_replenish_retry(struct timer_list * t)846 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
847 {
848 	struct ath10k_pci *ar_pci = timer_container_of(ar_pci, t,
849 						       rx_post_retry);
850 	struct ath10k *ar = ar_pci->ar;
851 
852 	ath10k_pci_rx_post(ar);
853 }
854 
ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)855 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
856 {
857 	u32 val = 0, region = addr & 0xfffff;
858 
859 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
860 				 & 0x7ff) << 21;
861 	val |= 0x100000 | region;
862 	return val;
863 }
864 
865 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
866  * Support to access target space below 1M for qca6174 and qca9377.
867  * If target space is below 1M, the bit[20] of converted CE addr is 0.
868  * Otherwise bit[20] of converted CE addr is 1.
869  */
ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)870 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
871 {
872 	u32 val = 0, region = addr & 0xfffff;
873 
874 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
875 				 & 0x7ff) << 21;
876 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
877 	return val;
878 }
879 
ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)880 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
881 {
882 	u32 val = 0, region = addr & 0xfffff;
883 
884 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
885 	val |= 0x100000 | region;
886 	return val;
887 }
888 
ath10k_pci_targ_cpu_to_ce_addr(struct ath10k * ar,u32 addr)889 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
890 {
891 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
892 
893 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
894 		return -EOPNOTSUPP;
895 
896 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
897 }
898 
899 /*
900  * Diagnostic read/write access is provided for startup/config/debug usage.
901  * Caller must guarantee proper alignment, when applicable, and single user
902  * at any moment.
903  */
ath10k_pci_diag_read_mem(struct ath10k * ar,u32 address,void * data,int nbytes)904 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
905 				    int nbytes)
906 {
907 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
908 	int ret = 0;
909 	u32 *buf;
910 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
911 	struct ath10k_ce_pipe *ce_diag;
912 	/* Host buffer address in CE space */
913 	u32 ce_data;
914 	dma_addr_t ce_data_base = 0;
915 	void *data_buf;
916 	int i;
917 
918 	mutex_lock(&ar_pci->ce_diag_mutex);
919 	ce_diag = ar_pci->ce_diag;
920 
921 	/*
922 	 * Allocate a temporary bounce buffer to hold caller's data
923 	 * to be DMA'ed from Target. This guarantees
924 	 *   1) 4-byte alignment
925 	 *   2) Buffer in DMA-able space
926 	 */
927 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
928 
929 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
930 				      GFP_ATOMIC);
931 	if (!data_buf) {
932 		ret = -ENOMEM;
933 		goto done;
934 	}
935 
936 	/* The address supplied by the caller is in the
937 	 * Target CPU virtual address space.
938 	 *
939 	 * In order to use this address with the diagnostic CE,
940 	 * convert it from Target CPU virtual address space
941 	 * to CE address space
942 	 */
943 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
944 
945 	remaining_bytes = nbytes;
946 	ce_data = ce_data_base;
947 	while (remaining_bytes) {
948 		nbytes = min_t(unsigned int, remaining_bytes,
949 			       DIAG_TRANSFER_LIMIT);
950 
951 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
952 		if (ret != 0)
953 			goto done;
954 
955 		/* Request CE to send from Target(!) address to Host buffer */
956 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
957 		if (ret)
958 			goto done;
959 
960 		i = 0;
961 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
962 			udelay(DIAG_ACCESS_CE_WAIT_US);
963 			i += DIAG_ACCESS_CE_WAIT_US;
964 
965 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
966 				ret = -EBUSY;
967 				goto done;
968 			}
969 		}
970 
971 		i = 0;
972 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
973 						     &completed_nbytes) != 0) {
974 			udelay(DIAG_ACCESS_CE_WAIT_US);
975 			i += DIAG_ACCESS_CE_WAIT_US;
976 
977 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
978 				ret = -EBUSY;
979 				goto done;
980 			}
981 		}
982 
983 		if (nbytes != completed_nbytes) {
984 			ret = -EIO;
985 			goto done;
986 		}
987 
988 		if (*buf != ce_data) {
989 			ret = -EIO;
990 			goto done;
991 		}
992 
993 		remaining_bytes -= nbytes;
994 		memcpy(data, data_buf, nbytes);
995 
996 		address += nbytes;
997 		data += nbytes;
998 	}
999 
1000 done:
1001 
1002 	if (data_buf)
1003 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1004 				  ce_data_base);
1005 
1006 	mutex_unlock(&ar_pci->ce_diag_mutex);
1007 
1008 	return ret;
1009 }
1010 
ath10k_pci_diag_read32(struct ath10k * ar,u32 address,u32 * value)1011 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1012 {
1013 	__le32 val = 0;
1014 	int ret;
1015 
1016 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1017 	*value = __le32_to_cpu(val);
1018 
1019 	return ret;
1020 }
1021 
__ath10k_pci_diag_read_hi(struct ath10k * ar,void * dest,u32 src,u32 len)1022 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1023 				     u32 src, u32 len)
1024 {
1025 	u32 host_addr, addr;
1026 	int ret;
1027 
1028 	host_addr = host_interest_item_address(src);
1029 
1030 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1031 	if (ret != 0) {
1032 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1033 			    src, ret);
1034 		return ret;
1035 	}
1036 
1037 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1038 	if (ret != 0) {
1039 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1040 			    addr, len, ret);
1041 		return ret;
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1048 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1049 
ath10k_pci_diag_write_mem(struct ath10k * ar,u32 address,const void * data,int nbytes)1050 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1051 			      const void *data, int nbytes)
1052 {
1053 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1054 	int ret = 0;
1055 	u32 *buf;
1056 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1057 	struct ath10k_ce_pipe *ce_diag;
1058 	void *data_buf;
1059 	dma_addr_t ce_data_base = 0;
1060 	int i;
1061 
1062 	mutex_lock(&ar_pci->ce_diag_mutex);
1063 	ce_diag = ar_pci->ce_diag;
1064 
1065 	/*
1066 	 * Allocate a temporary bounce buffer to hold caller's data
1067 	 * to be DMA'ed to Target. This guarantees
1068 	 *   1) 4-byte alignment
1069 	 *   2) Buffer in DMA-able space
1070 	 */
1071 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1072 
1073 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1074 				      GFP_ATOMIC);
1075 	if (!data_buf) {
1076 		ret = -ENOMEM;
1077 		goto done;
1078 	}
1079 
1080 	/*
1081 	 * The address supplied by the caller is in the
1082 	 * Target CPU virtual address space.
1083 	 *
1084 	 * In order to use this address with the diagnostic CE,
1085 	 * convert it from
1086 	 *    Target CPU virtual address space
1087 	 * to
1088 	 *    CE address space
1089 	 */
1090 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1091 
1092 	remaining_bytes = nbytes;
1093 	while (remaining_bytes) {
1094 		/* FIXME: check cast */
1095 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1096 
1097 		/* Copy caller's data to allocated DMA buf */
1098 		memcpy(data_buf, data, nbytes);
1099 
1100 		/* Set up to receive directly into Target(!) address */
1101 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1102 		if (ret != 0)
1103 			goto done;
1104 
1105 		/*
1106 		 * Request CE to send caller-supplied data that
1107 		 * was copied to bounce buffer to Target(!) address.
1108 		 */
1109 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1110 		if (ret != 0)
1111 			goto done;
1112 
1113 		i = 0;
1114 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1115 			udelay(DIAG_ACCESS_CE_WAIT_US);
1116 			i += DIAG_ACCESS_CE_WAIT_US;
1117 
1118 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1119 				ret = -EBUSY;
1120 				goto done;
1121 			}
1122 		}
1123 
1124 		i = 0;
1125 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1126 						     &completed_nbytes) != 0) {
1127 			udelay(DIAG_ACCESS_CE_WAIT_US);
1128 			i += DIAG_ACCESS_CE_WAIT_US;
1129 
1130 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1131 				ret = -EBUSY;
1132 				goto done;
1133 			}
1134 		}
1135 
1136 		if (nbytes != completed_nbytes) {
1137 			ret = -EIO;
1138 			goto done;
1139 		}
1140 
1141 		if (*buf != address) {
1142 			ret = -EIO;
1143 			goto done;
1144 		}
1145 
1146 		remaining_bytes -= nbytes;
1147 		address += nbytes;
1148 		data += nbytes;
1149 	}
1150 
1151 done:
1152 	if (data_buf) {
1153 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1154 				  ce_data_base);
1155 	}
1156 
1157 	if (ret != 0)
1158 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1159 			    address, ret);
1160 
1161 	mutex_unlock(&ar_pci->ce_diag_mutex);
1162 
1163 	return ret;
1164 }
1165 
ath10k_pci_diag_write32(struct ath10k * ar,u32 address,u32 value)1166 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1167 {
1168 	__le32 val = __cpu_to_le32(value);
1169 
1170 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1171 }
1172 
1173 /* Called by lower (CE) layer when a send to Target completes. */
ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe * ce_state)1174 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1175 {
1176 	struct ath10k *ar = ce_state->ar;
1177 	struct sk_buff_head list;
1178 	struct sk_buff *skb;
1179 
1180 	__skb_queue_head_init(&list);
1181 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1182 		/* no need to call tx completion for NULL pointers */
1183 		if (skb == NULL)
1184 			continue;
1185 
1186 		__skb_queue_tail(&list, skb);
1187 	}
1188 
1189 	while ((skb = __skb_dequeue(&list)))
1190 		ath10k_htc_tx_completion_handler(ar, skb);
1191 }
1192 
ath10k_pci_process_rx_cb(struct ath10k_ce_pipe * ce_state,void (* callback)(struct ath10k * ar,struct sk_buff * skb))1193 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1194 				     void (*callback)(struct ath10k *ar,
1195 						      struct sk_buff *skb))
1196 {
1197 	struct ath10k *ar = ce_state->ar;
1198 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1199 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1200 	struct sk_buff *skb;
1201 	struct sk_buff_head list;
1202 	void *transfer_context;
1203 	unsigned int nbytes, max_nbytes;
1204 
1205 	__skb_queue_head_init(&list);
1206 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1207 					     &nbytes) == 0) {
1208 		skb = transfer_context;
1209 		max_nbytes = skb->len + skb_tailroom(skb);
1210 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1211 				 max_nbytes, DMA_FROM_DEVICE);
1212 
1213 		if (unlikely(max_nbytes < nbytes)) {
1214 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1215 				    nbytes, max_nbytes);
1216 			dev_kfree_skb_any(skb);
1217 			continue;
1218 		}
1219 
1220 		skb_put(skb, nbytes);
1221 		__skb_queue_tail(&list, skb);
1222 	}
1223 
1224 	while ((skb = __skb_dequeue(&list))) {
1225 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1226 			   ce_state->id, skb->len);
1227 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1228 				skb->data, skb->len);
1229 
1230 		callback(ar, skb);
1231 	}
1232 
1233 	ath10k_pci_rx_post_pipe(pipe_info);
1234 }
1235 
ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe * ce_state,void (* callback)(struct ath10k * ar,struct sk_buff * skb))1236 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1237 					 void (*callback)(struct ath10k *ar,
1238 							  struct sk_buff *skb))
1239 {
1240 	struct ath10k *ar = ce_state->ar;
1241 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1242 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1243 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1244 	struct sk_buff *skb;
1245 	struct sk_buff_head list;
1246 	void *transfer_context;
1247 	unsigned int nbytes, max_nbytes, nentries;
1248 	int orig_len;
1249 
1250 	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1251 	 * is processed other than init and deinit. Before releasing CE5
1252 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1253 	 */
1254 	__skb_queue_head_init(&list);
1255 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1256 						    &nbytes) == 0) {
1257 		skb = transfer_context;
1258 		max_nbytes = skb->len + skb_tailroom(skb);
1259 
1260 		if (unlikely(max_nbytes < nbytes)) {
1261 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1262 				    nbytes, max_nbytes);
1263 			continue;
1264 		}
1265 
1266 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1267 					max_nbytes, DMA_FROM_DEVICE);
1268 		skb_put(skb, nbytes);
1269 		__skb_queue_tail(&list, skb);
1270 	}
1271 
1272 	nentries = skb_queue_len(&list);
1273 	while ((skb = __skb_dequeue(&list))) {
1274 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1275 			   ce_state->id, skb->len);
1276 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1277 				skb->data, skb->len);
1278 
1279 		orig_len = skb->len;
1280 		callback(ar, skb);
1281 		skb_push(skb, orig_len - skb->len);
1282 		skb_reset_tail_pointer(skb);
1283 		skb_trim(skb, 0);
1284 
1285 		/*let device gain the buffer again*/
1286 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1287 					   skb->len + skb_tailroom(skb),
1288 					   DMA_FROM_DEVICE);
1289 	}
1290 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1291 }
1292 
1293 /* Called by lower (CE) layer when data is received from the Target. */
ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1294 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1295 {
1296 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1297 }
1298 
ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe * ce_state)1299 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1300 {
1301 	/* CE4 polling needs to be done whenever CE pipe which transports
1302 	 * HTT Rx (target->host) is processed.
1303 	 */
1304 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1305 
1306 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1307 }
1308 
1309 /* Called by lower (CE) layer when data is received from the Target.
1310  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1311  */
ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe * ce_state)1312 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1313 {
1314 	ath10k_pci_process_rx_cb(ce_state,
1315 				 ath10k_htt_rx_pktlog_completion_handler);
1316 }
1317 
1318 /* Called by lower (CE) layer when a send to HTT Target completes. */
ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe * ce_state)1319 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1320 {
1321 	struct ath10k *ar = ce_state->ar;
1322 	struct sk_buff *skb;
1323 
1324 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1325 		/* no need to call tx completion for NULL pointers */
1326 		if (!skb)
1327 			continue;
1328 
1329 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1330 				 skb->len, DMA_TO_DEVICE);
1331 		ath10k_htt_hif_tx_complete(ar, skb);
1332 	}
1333 }
1334 
ath10k_pci_htt_rx_deliver(struct ath10k * ar,struct sk_buff * skb)1335 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1336 {
1337 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1338 	ath10k_htt_t2h_msg_handler(ar, skb);
1339 }
1340 
1341 /* Called by lower (CE) layer when HTT data is received from the Target. */
ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe * ce_state)1342 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1343 {
1344 	/* CE4 polling needs to be done whenever CE pipe which transports
1345 	 * HTT Rx (target->host) is processed.
1346 	 */
1347 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1348 
1349 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1350 }
1351 
ath10k_pci_hif_tx_sg(struct ath10k * ar,u8 pipe_id,struct ath10k_hif_sg_item * items,int n_items)1352 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1353 			 struct ath10k_hif_sg_item *items, int n_items)
1354 {
1355 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1356 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1357 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1358 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1359 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1360 	unsigned int nentries_mask;
1361 	unsigned int sw_index;
1362 	unsigned int write_index;
1363 	int err, i = 0;
1364 
1365 	spin_lock_bh(&ce->ce_lock);
1366 
1367 	nentries_mask = src_ring->nentries_mask;
1368 	sw_index = src_ring->sw_index;
1369 	write_index = src_ring->write_index;
1370 
1371 	if (unlikely(CE_RING_DELTA(nentries_mask,
1372 				   write_index, sw_index - 1) < n_items)) {
1373 		err = -ENOBUFS;
1374 		goto err;
1375 	}
1376 
1377 	for (i = 0; i < n_items - 1; i++) {
1378 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1379 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1380 			   i, &items[i].paddr, items[i].len, n_items);
1381 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1382 				items[i].vaddr, items[i].len);
1383 
1384 		err = ath10k_ce_send_nolock(ce_pipe,
1385 					    items[i].transfer_context,
1386 					    items[i].paddr,
1387 					    items[i].len,
1388 					    items[i].transfer_id,
1389 					    CE_SEND_FLAG_GATHER);
1390 		if (err)
1391 			goto err;
1392 	}
1393 
1394 	/* `i` is equal to `n_items -1` after for() */
1395 
1396 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1397 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1398 		   i, &items[i].paddr, items[i].len, n_items);
1399 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1400 			items[i].vaddr, items[i].len);
1401 
1402 	err = ath10k_ce_send_nolock(ce_pipe,
1403 				    items[i].transfer_context,
1404 				    items[i].paddr,
1405 				    items[i].len,
1406 				    items[i].transfer_id,
1407 				    0);
1408 	if (err)
1409 		goto err;
1410 
1411 	spin_unlock_bh(&ce->ce_lock);
1412 	return 0;
1413 
1414 err:
1415 	for (; i > 0; i--)
1416 		__ath10k_ce_send_revert(ce_pipe);
1417 
1418 	spin_unlock_bh(&ce->ce_lock);
1419 	return err;
1420 }
1421 
ath10k_pci_hif_diag_read(struct ath10k * ar,u32 address,void * buf,size_t buf_len)1422 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1423 			     size_t buf_len)
1424 {
1425 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1426 }
1427 
ath10k_pci_hif_get_free_queue_number(struct ath10k * ar,u8 pipe)1428 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1429 {
1430 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1431 
1432 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1433 
1434 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1435 }
1436 
ath10k_pci_dump_registers(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)1437 static void ath10k_pci_dump_registers(struct ath10k *ar,
1438 				      struct ath10k_fw_crash_data *crash_data)
1439 {
1440 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1441 	int i, ret;
1442 
1443 	lockdep_assert_held(&ar->dump_mutex);
1444 
1445 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1446 				      hi_failure_state,
1447 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1448 	if (ret) {
1449 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1450 		return;
1451 	}
1452 
1453 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1454 
1455 	ath10k_err(ar, "firmware register dump:\n");
1456 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1457 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1458 			   i,
1459 			   __le32_to_cpu(reg_dump_values[i]),
1460 			   __le32_to_cpu(reg_dump_values[i + 1]),
1461 			   __le32_to_cpu(reg_dump_values[i + 2]),
1462 			   __le32_to_cpu(reg_dump_values[i + 3]));
1463 
1464 	if (!crash_data)
1465 		return;
1466 
1467 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1468 		crash_data->registers[i] = reg_dump_values[i];
1469 }
1470 
ath10k_pci_dump_memory_section(struct ath10k * ar,const struct ath10k_mem_region * mem_region,u8 * buf,size_t buf_len)1471 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1472 					  const struct ath10k_mem_region *mem_region,
1473 					  u8 *buf, size_t buf_len)
1474 {
1475 	const struct ath10k_mem_section *cur_section, *next_section;
1476 	unsigned int count, section_size, skip_size;
1477 	int ret, i, j;
1478 
1479 	if (!mem_region || !buf)
1480 		return 0;
1481 
1482 	cur_section = &mem_region->section_table.sections[0];
1483 
1484 	if (mem_region->start > cur_section->start) {
1485 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1486 			    mem_region->start, cur_section->start);
1487 		return 0;
1488 	}
1489 
1490 	skip_size = cur_section->start - mem_region->start;
1491 
1492 	/* fill the gap between the first register section and register
1493 	 * start address
1494 	 */
1495 	for (i = 0; i < skip_size; i++) {
1496 		*buf = ATH10K_MAGIC_NOT_COPIED;
1497 		buf++;
1498 	}
1499 
1500 	count = 0;
1501 
1502 	for (i = 0; cur_section != NULL; i++) {
1503 		section_size = cur_section->end - cur_section->start;
1504 
1505 		if (section_size <= 0) {
1506 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1507 				    cur_section->start,
1508 				    cur_section->end);
1509 			break;
1510 		}
1511 
1512 		if ((i + 1) == mem_region->section_table.size) {
1513 			/* last section */
1514 			next_section = NULL;
1515 			skip_size = 0;
1516 		} else {
1517 			next_section = cur_section + 1;
1518 
1519 			if (cur_section->end > next_section->start) {
1520 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1521 					    next_section->start,
1522 					    cur_section->end);
1523 				break;
1524 			}
1525 
1526 			skip_size = next_section->start - cur_section->end;
1527 		}
1528 
1529 		if (buf_len < (skip_size + section_size)) {
1530 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1531 			break;
1532 		}
1533 
1534 		buf_len -= skip_size + section_size;
1535 
1536 		/* read section to dest memory */
1537 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1538 					       buf, section_size);
1539 		if (ret) {
1540 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1541 				    cur_section->start, ret);
1542 			break;
1543 		}
1544 
1545 		buf += section_size;
1546 		count += section_size;
1547 
1548 		/* fill in the gap between this section and the next */
1549 		for (j = 0; j < skip_size; j++) {
1550 			*buf = ATH10K_MAGIC_NOT_COPIED;
1551 			buf++;
1552 		}
1553 
1554 		count += skip_size;
1555 
1556 		if (!next_section)
1557 			/* this was the last section */
1558 			break;
1559 
1560 		cur_section = next_section;
1561 	}
1562 
1563 	return count;
1564 }
1565 
ath10k_pci_set_ram_config(struct ath10k * ar,u32 config)1566 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1567 {
1568 	u32 val;
1569 
1570 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1571 			   FW_RAM_CONFIG_ADDRESS, config);
1572 
1573 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1574 				FW_RAM_CONFIG_ADDRESS);
1575 	if (val != config) {
1576 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1577 			    val, config);
1578 		return -EIO;
1579 	}
1580 
1581 	return 0;
1582 }
1583 
1584 /* Always returns the length */
ath10k_pci_dump_memory_sram(struct ath10k * ar,const struct ath10k_mem_region * region,u8 * buf)1585 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1586 				       const struct ath10k_mem_region *region,
1587 				       u8 *buf)
1588 {
1589 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1590 	u32 base_addr, i;
1591 
1592 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1593 	base_addr += region->start;
1594 
1595 	for (i = 0; i < region->len; i += 4) {
1596 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1597 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1598 	}
1599 
1600 	return region->len;
1601 }
1602 
1603 /* if an error happened returns < 0, otherwise the length */
ath10k_pci_dump_memory_reg(struct ath10k * ar,const struct ath10k_mem_region * region,u8 * buf)1604 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1605 				      const struct ath10k_mem_region *region,
1606 				      u8 *buf)
1607 {
1608 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1609 	u32 i;
1610 	int ret;
1611 
1612 	mutex_lock(&ar->conf_mutex);
1613 	if (ar->state != ATH10K_STATE_ON) {
1614 		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1615 		ret = -EIO;
1616 		goto done;
1617 	}
1618 
1619 	for (i = 0; i < region->len; i += 4)
1620 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1621 
1622 	ret = region->len;
1623 done:
1624 	mutex_unlock(&ar->conf_mutex);
1625 	return ret;
1626 }
1627 
1628 /* if an error happened returns < 0, otherwise the length */
ath10k_pci_dump_memory_generic(struct ath10k * ar,const struct ath10k_mem_region * current_region,u8 * buf)1629 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1630 					  const struct ath10k_mem_region *current_region,
1631 					  u8 *buf)
1632 {
1633 	int ret;
1634 
1635 	if (current_region->section_table.size > 0)
1636 		/* Copy each section individually. */
1637 		return ath10k_pci_dump_memory_section(ar,
1638 						      current_region,
1639 						      buf,
1640 						      current_region->len);
1641 
1642 	/* No individual memory sections defined so we can
1643 	 * copy the entire memory region.
1644 	 */
1645 	ret = ath10k_pci_diag_read_mem(ar,
1646 				       current_region->start,
1647 				       buf,
1648 				       current_region->len);
1649 	if (ret) {
1650 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1651 			    current_region->name, ret);
1652 		return ret;
1653 	}
1654 
1655 	return current_region->len;
1656 }
1657 
ath10k_pci_dump_memory(struct ath10k * ar,struct ath10k_fw_crash_data * crash_data)1658 static void ath10k_pci_dump_memory(struct ath10k *ar,
1659 				   struct ath10k_fw_crash_data *crash_data)
1660 {
1661 	const struct ath10k_hw_mem_layout *mem_layout;
1662 	const struct ath10k_mem_region *current_region;
1663 	struct ath10k_dump_ram_data_hdr *hdr;
1664 	u32 count, shift;
1665 	size_t buf_len;
1666 	int ret, i;
1667 	u8 *buf;
1668 
1669 	lockdep_assert_held(&ar->dump_mutex);
1670 
1671 	if (!crash_data)
1672 		return;
1673 
1674 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1675 	if (!mem_layout)
1676 		return;
1677 
1678 	current_region = &mem_layout->region_table.regions[0];
1679 
1680 	buf = crash_data->ramdump_buf;
1681 	buf_len = crash_data->ramdump_buf_len;
1682 
1683 	memset(buf, 0, buf_len);
1684 
1685 	for (i = 0; i < mem_layout->region_table.size; i++) {
1686 		count = 0;
1687 
1688 		if (current_region->len > buf_len) {
1689 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1690 				    current_region->name,
1691 				    current_region->len,
1692 				    buf_len);
1693 			break;
1694 		}
1695 
1696 		/* To get IRAM dump, the host driver needs to switch target
1697 		 * ram config from DRAM to IRAM.
1698 		 */
1699 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1700 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1701 			shift = current_region->start >> 20;
1702 
1703 			ret = ath10k_pci_set_ram_config(ar, shift);
1704 			if (ret) {
1705 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1706 					    current_region->name, ret);
1707 				break;
1708 			}
1709 		}
1710 
1711 		/* Reserve space for the header. */
1712 		hdr = (void *)buf;
1713 		buf += sizeof(*hdr);
1714 		buf_len -= sizeof(*hdr);
1715 
1716 		switch (current_region->type) {
1717 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1718 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1719 			break;
1720 		case ATH10K_MEM_REGION_TYPE_IOREG:
1721 			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1722 			if (ret < 0)
1723 				break;
1724 
1725 			count = ret;
1726 			break;
1727 		default:
1728 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1729 			if (ret < 0)
1730 				break;
1731 
1732 			count = ret;
1733 			break;
1734 		}
1735 
1736 		hdr->region_type = cpu_to_le32(current_region->type);
1737 		hdr->start = cpu_to_le32(current_region->start);
1738 		hdr->length = cpu_to_le32(count);
1739 
1740 		if (count == 0)
1741 			/* Note: the header remains, just with zero length. */
1742 			break;
1743 
1744 		buf += count;
1745 		buf_len -= count;
1746 
1747 		current_region++;
1748 	}
1749 }
1750 
ath10k_pci_fw_dump_work(struct work_struct * work)1751 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1752 {
1753 	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1754 						 dump_work);
1755 	struct ath10k_fw_crash_data *crash_data;
1756 	struct ath10k *ar = ar_pci->ar;
1757 	char guid[UUID_STRING_LEN + 1];
1758 
1759 	mutex_lock(&ar->dump_mutex);
1760 
1761 	spin_lock_bh(&ar->data_lock);
1762 	ar->stats.fw_crash_counter++;
1763 	spin_unlock_bh(&ar->data_lock);
1764 
1765 	crash_data = ath10k_coredump_new(ar);
1766 
1767 	if (crash_data)
1768 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1769 	else
1770 		scnprintf(guid, sizeof(guid), "n/a");
1771 
1772 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1773 	ath10k_print_driver_info(ar);
1774 	ath10k_pci_dump_registers(ar, crash_data);
1775 	ath10k_ce_dump_registers(ar, crash_data);
1776 	ath10k_pci_dump_memory(ar, crash_data);
1777 
1778 	mutex_unlock(&ar->dump_mutex);
1779 
1780 	ath10k_core_start_recovery(ar);
1781 }
1782 
ath10k_pci_fw_crashed_dump(struct ath10k * ar)1783 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1784 {
1785 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1786 
1787 	queue_work(ar->workqueue, &ar_pci->dump_work);
1788 }
1789 
ath10k_pci_hif_send_complete_check(struct ath10k * ar,u8 pipe,int force)1790 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1791 					int force)
1792 {
1793 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1794 
1795 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1796 
1797 	if (!force) {
1798 		int resources;
1799 		/*
1800 		 * Decide whether to actually poll for completions, or just
1801 		 * wait for a later chance.
1802 		 * If there seem to be plenty of resources left, then just wait
1803 		 * since checking involves reading a CE register, which is a
1804 		 * relatively expensive operation.
1805 		 */
1806 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1807 
1808 		/*
1809 		 * If at least 50% of the total resources are still available,
1810 		 * don't bother checking again yet.
1811 		 */
1812 		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1813 			return;
1814 	}
1815 	ath10k_ce_per_engine_service(ar, pipe);
1816 }
1817 
ath10k_pci_rx_retry_sync(struct ath10k * ar)1818 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1819 {
1820 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1821 
1822 	timer_delete_sync(&ar_pci->rx_post_retry);
1823 }
1824 
ath10k_pci_hif_map_service_to_pipe(struct ath10k * ar,u16 service_id,u8 * ul_pipe,u8 * dl_pipe)1825 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1826 				       u8 *ul_pipe, u8 *dl_pipe)
1827 {
1828 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1829 	const struct ce_service_to_pipe *entry;
1830 	bool ul_set = false, dl_set = false;
1831 	int i;
1832 
1833 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1834 
1835 	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1836 		entry = &ar_pci->serv_to_pipe[i];
1837 
1838 		if (__le32_to_cpu(entry->service_id) != service_id)
1839 			continue;
1840 
1841 		switch (__le32_to_cpu(entry->pipedir)) {
1842 		case PIPEDIR_NONE:
1843 			break;
1844 		case PIPEDIR_IN:
1845 			WARN_ON(dl_set);
1846 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1847 			dl_set = true;
1848 			break;
1849 		case PIPEDIR_OUT:
1850 			WARN_ON(ul_set);
1851 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1852 			ul_set = true;
1853 			break;
1854 		case PIPEDIR_INOUT:
1855 			WARN_ON(dl_set);
1856 			WARN_ON(ul_set);
1857 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1858 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1859 			dl_set = true;
1860 			ul_set = true;
1861 			break;
1862 		}
1863 	}
1864 
1865 	if (!ul_set || !dl_set)
1866 		return -ENOENT;
1867 
1868 	return 0;
1869 }
1870 
ath10k_pci_hif_get_default_pipe(struct ath10k * ar,u8 * ul_pipe,u8 * dl_pipe)1871 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1872 				     u8 *ul_pipe, u8 *dl_pipe)
1873 {
1874 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1875 
1876 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1877 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1878 						 ul_pipe, dl_pipe);
1879 }
1880 
ath10k_pci_irq_msi_fw_mask(struct ath10k * ar)1881 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1882 {
1883 	u32 val;
1884 
1885 	switch (ar->hw_rev) {
1886 	case ATH10K_HW_QCA988X:
1887 	case ATH10K_HW_QCA9887:
1888 	case ATH10K_HW_QCA6174:
1889 	case ATH10K_HW_QCA9377:
1890 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1891 					CORE_CTRL_ADDRESS);
1892 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1893 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1894 				   CORE_CTRL_ADDRESS, val);
1895 		break;
1896 	case ATH10K_HW_QCA99X0:
1897 	case ATH10K_HW_QCA9984:
1898 	case ATH10K_HW_QCA9888:
1899 	case ATH10K_HW_QCA4019:
1900 		/* TODO: Find appropriate register configuration for QCA99X0
1901 		 *  to mask irq/MSI.
1902 		 */
1903 		break;
1904 	case ATH10K_HW_WCN3990:
1905 		break;
1906 	}
1907 }
1908 
ath10k_pci_irq_msi_fw_unmask(struct ath10k * ar)1909 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1910 {
1911 	u32 val;
1912 
1913 	switch (ar->hw_rev) {
1914 	case ATH10K_HW_QCA988X:
1915 	case ATH10K_HW_QCA9887:
1916 	case ATH10K_HW_QCA6174:
1917 	case ATH10K_HW_QCA9377:
1918 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1919 					CORE_CTRL_ADDRESS);
1920 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1921 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1922 				   CORE_CTRL_ADDRESS, val);
1923 		break;
1924 	case ATH10K_HW_QCA99X0:
1925 	case ATH10K_HW_QCA9984:
1926 	case ATH10K_HW_QCA9888:
1927 	case ATH10K_HW_QCA4019:
1928 		/* TODO: Find appropriate register configuration for QCA99X0
1929 		 *  to unmask irq/MSI.
1930 		 */
1931 		break;
1932 	case ATH10K_HW_WCN3990:
1933 		break;
1934 	}
1935 }
1936 
ath10k_pci_irq_disable(struct ath10k * ar)1937 static void ath10k_pci_irq_disable(struct ath10k *ar)
1938 {
1939 	ath10k_ce_disable_interrupts(ar);
1940 	ath10k_pci_disable_and_clear_intx_irq(ar);
1941 	ath10k_pci_irq_msi_fw_mask(ar);
1942 }
1943 
ath10k_pci_irq_sync(struct ath10k * ar)1944 static void ath10k_pci_irq_sync(struct ath10k *ar)
1945 {
1946 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1947 
1948 	synchronize_irq(ar_pci->pdev->irq);
1949 }
1950 
ath10k_pci_irq_enable(struct ath10k * ar)1951 static void ath10k_pci_irq_enable(struct ath10k *ar)
1952 {
1953 	ath10k_ce_enable_interrupts(ar);
1954 	ath10k_pci_enable_intx_irq(ar);
1955 	ath10k_pci_irq_msi_fw_unmask(ar);
1956 }
1957 
ath10k_pci_hif_start(struct ath10k * ar)1958 static int ath10k_pci_hif_start(struct ath10k *ar)
1959 {
1960 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1961 
1962 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
1963 
1964 	ath10k_core_napi_enable(ar);
1965 
1966 	ath10k_pci_irq_enable(ar);
1967 	ath10k_pci_rx_post(ar);
1968 
1969 	pcie_capability_clear_and_set_word(ar_pci->pdev, PCI_EXP_LNKCTL,
1970 					   PCI_EXP_LNKCTL_ASPMC,
1971 					   ar_pci->link_ctl & PCI_EXP_LNKCTL_ASPMC);
1972 
1973 	return 0;
1974 }
1975 
ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)1976 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
1977 {
1978 	struct ath10k *ar;
1979 	struct ath10k_ce_pipe *ce_pipe;
1980 	struct ath10k_ce_ring *ce_ring;
1981 	struct sk_buff *skb;
1982 	int i;
1983 
1984 	ar = pci_pipe->hif_ce_state;
1985 	ce_pipe = pci_pipe->ce_hdl;
1986 	ce_ring = ce_pipe->dest_ring;
1987 
1988 	if (!ce_ring)
1989 		return;
1990 
1991 	if (!pci_pipe->buf_sz)
1992 		return;
1993 
1994 	for (i = 0; i < ce_ring->nentries; i++) {
1995 		skb = ce_ring->per_transfer_context[i];
1996 		if (!skb)
1997 			continue;
1998 
1999 		ce_ring->per_transfer_context[i] = NULL;
2000 
2001 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2002 				 skb->len + skb_tailroom(skb),
2003 				 DMA_FROM_DEVICE);
2004 		dev_kfree_skb_any(skb);
2005 	}
2006 }
2007 
ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe * pci_pipe)2008 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2009 {
2010 	struct ath10k *ar;
2011 	struct ath10k_ce_pipe *ce_pipe;
2012 	struct ath10k_ce_ring *ce_ring;
2013 	struct sk_buff *skb;
2014 	int i;
2015 
2016 	ar = pci_pipe->hif_ce_state;
2017 	ce_pipe = pci_pipe->ce_hdl;
2018 	ce_ring = ce_pipe->src_ring;
2019 
2020 	if (!ce_ring)
2021 		return;
2022 
2023 	if (!pci_pipe->buf_sz)
2024 		return;
2025 
2026 	for (i = 0; i < ce_ring->nentries; i++) {
2027 		skb = ce_ring->per_transfer_context[i];
2028 		if (!skb)
2029 			continue;
2030 
2031 		ce_ring->per_transfer_context[i] = NULL;
2032 
2033 		ath10k_htc_tx_completion_handler(ar, skb);
2034 	}
2035 }
2036 
2037 /*
2038  * Cleanup residual buffers for device shutdown:
2039  *    buffers that were enqueued for receive
2040  *    buffers that were to be sent
2041  * Note: Buffers that had completed but which were
2042  * not yet processed are on a completion queue. They
2043  * are handled when the completion thread shuts down.
2044  */
ath10k_pci_buffer_cleanup(struct ath10k * ar)2045 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2046 {
2047 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2048 	int pipe_num;
2049 
2050 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2051 		struct ath10k_pci_pipe *pipe_info;
2052 
2053 		pipe_info = &ar_pci->pipe_info[pipe_num];
2054 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2055 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2056 	}
2057 }
2058 
ath10k_pci_ce_deinit(struct ath10k * ar)2059 void ath10k_pci_ce_deinit(struct ath10k *ar)
2060 {
2061 	int i;
2062 
2063 	for (i = 0; i < CE_COUNT; i++)
2064 		ath10k_ce_deinit_pipe(ar, i);
2065 }
2066 
ath10k_pci_flush(struct ath10k * ar)2067 void ath10k_pci_flush(struct ath10k *ar)
2068 {
2069 	ath10k_pci_rx_retry_sync(ar);
2070 	ath10k_pci_buffer_cleanup(ar);
2071 }
2072 
ath10k_pci_hif_stop(struct ath10k * ar)2073 static void ath10k_pci_hif_stop(struct ath10k *ar)
2074 {
2075 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2076 	unsigned long flags;
2077 
2078 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2079 
2080 	ath10k_pci_irq_disable(ar);
2081 	ath10k_pci_irq_sync(ar);
2082 
2083 	ath10k_core_napi_sync_disable(ar);
2084 
2085 	cancel_work_sync(&ar_pci->dump_work);
2086 
2087 	/* Most likely the device has HTT Rx ring configured. The only way to
2088 	 * prevent the device from accessing (and possible corrupting) host
2089 	 * memory is to reset the chip now.
2090 	 *
2091 	 * There's also no known way of masking MSI interrupts on the device.
2092 	 * For ranged MSI the CE-related interrupts can be masked. However
2093 	 * regardless how many MSI interrupts are assigned the first one
2094 	 * is always used for firmware indications (crashes) and cannot be
2095 	 * masked. To prevent the device from asserting the interrupt reset it
2096 	 * before proceeding with cleanup.
2097 	 */
2098 	ath10k_pci_safe_chip_reset(ar);
2099 
2100 	ath10k_pci_flush(ar);
2101 
2102 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2103 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2104 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2105 }
2106 
ath10k_pci_hif_exchange_bmi_msg(struct ath10k * ar,void * req,u32 req_len,void * resp,u32 * resp_len)2107 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2108 				    void *req, u32 req_len,
2109 				    void *resp, u32 *resp_len)
2110 {
2111 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2112 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2113 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2114 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2115 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2116 	dma_addr_t req_paddr = 0;
2117 	dma_addr_t resp_paddr = 0;
2118 	struct bmi_xfer xfer = {};
2119 	void *treq, *tresp = NULL;
2120 	int ret = 0;
2121 
2122 	might_sleep();
2123 
2124 	if (resp && !resp_len)
2125 		return -EINVAL;
2126 
2127 	if (resp && resp_len && *resp_len == 0)
2128 		return -EINVAL;
2129 
2130 	treq = kmemdup(req, req_len, GFP_KERNEL);
2131 	if (!treq)
2132 		return -ENOMEM;
2133 
2134 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2135 	ret = dma_mapping_error(ar->dev, req_paddr);
2136 	if (ret) {
2137 		ret = -EIO;
2138 		goto err_dma;
2139 	}
2140 
2141 	if (resp && resp_len) {
2142 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2143 		if (!tresp) {
2144 			ret = -ENOMEM;
2145 			goto err_req;
2146 		}
2147 
2148 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2149 					    DMA_FROM_DEVICE);
2150 		ret = dma_mapping_error(ar->dev, resp_paddr);
2151 		if (ret) {
2152 			ret = -EIO;
2153 			goto err_req;
2154 		}
2155 
2156 		xfer.wait_for_resp = true;
2157 		xfer.resp_len = 0;
2158 
2159 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2160 	}
2161 
2162 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2163 	if (ret)
2164 		goto err_resp;
2165 
2166 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2167 	if (ret) {
2168 		dma_addr_t unused_buffer;
2169 		unsigned int unused_nbytes;
2170 		unsigned int unused_id;
2171 
2172 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2173 					   &unused_nbytes, &unused_id);
2174 	} else {
2175 		/* non-zero means we did not time out */
2176 		ret = 0;
2177 	}
2178 
2179 err_resp:
2180 	if (resp) {
2181 		dma_addr_t unused_buffer;
2182 
2183 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2184 		dma_unmap_single(ar->dev, resp_paddr,
2185 				 *resp_len, DMA_FROM_DEVICE);
2186 	}
2187 err_req:
2188 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2189 
2190 	if (ret == 0 && resp_len) {
2191 		*resp_len = min(*resp_len, xfer.resp_len);
2192 		memcpy(resp, tresp, *resp_len);
2193 	}
2194 err_dma:
2195 	kfree(treq);
2196 	kfree(tresp);
2197 
2198 	return ret;
2199 }
2200 
ath10k_pci_bmi_send_done(struct ath10k_ce_pipe * ce_state)2201 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2202 {
2203 	struct bmi_xfer *xfer;
2204 
2205 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2206 		return;
2207 
2208 	xfer->tx_done = true;
2209 }
2210 
ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe * ce_state)2211 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2212 {
2213 	struct ath10k *ar = ce_state->ar;
2214 	struct bmi_xfer *xfer;
2215 	unsigned int nbytes;
2216 
2217 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2218 					  &nbytes))
2219 		return;
2220 
2221 	if (WARN_ON_ONCE(!xfer))
2222 		return;
2223 
2224 	if (!xfer->wait_for_resp) {
2225 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2226 		return;
2227 	}
2228 
2229 	xfer->resp_len = nbytes;
2230 	xfer->rx_done = true;
2231 }
2232 
ath10k_pci_bmi_wait(struct ath10k * ar,struct ath10k_ce_pipe * tx_pipe,struct ath10k_ce_pipe * rx_pipe,struct bmi_xfer * xfer)2233 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2234 			       struct ath10k_ce_pipe *tx_pipe,
2235 			       struct ath10k_ce_pipe *rx_pipe,
2236 			       struct bmi_xfer *xfer)
2237 {
2238 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2239 	unsigned long started = jiffies;
2240 	unsigned long dur;
2241 	int ret;
2242 
2243 	while (time_before_eq(jiffies, timeout)) {
2244 		ath10k_pci_bmi_send_done(tx_pipe);
2245 		ath10k_pci_bmi_recv_data(rx_pipe);
2246 
2247 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2248 			ret = 0;
2249 			goto out;
2250 		}
2251 
2252 		schedule();
2253 	}
2254 
2255 	ret = -ETIMEDOUT;
2256 
2257 out:
2258 	dur = jiffies - started;
2259 	if (dur > HZ)
2260 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2261 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2262 			   dur, HZ, ret);
2263 	return ret;
2264 }
2265 
2266 /*
2267  * Send an interrupt to the device to wake up the Target CPU
2268  * so it has an opportunity to notice any changed state.
2269  */
ath10k_pci_wake_target_cpu(struct ath10k * ar)2270 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2271 {
2272 	u32 addr, val;
2273 
2274 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2275 	val = ath10k_pci_read32(ar, addr);
2276 	val |= CORE_CTRL_CPU_INTR_MASK;
2277 	ath10k_pci_write32(ar, addr, val);
2278 
2279 	return 0;
2280 }
2281 
ath10k_pci_get_num_banks(struct ath10k * ar)2282 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2283 {
2284 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2285 
2286 	switch (ar_pci->pdev->device) {
2287 	case QCA988X_2_0_DEVICE_ID_UBNT:
2288 	case QCA988X_2_0_DEVICE_ID:
2289 	case QCA99X0_2_0_DEVICE_ID:
2290 	case QCA9888_2_0_DEVICE_ID:
2291 	case QCA9984_1_0_DEVICE_ID:
2292 	case QCA9887_1_0_DEVICE_ID:
2293 		return 1;
2294 	case QCA6164_2_1_DEVICE_ID:
2295 	case QCA6174_2_1_DEVICE_ID:
2296 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2297 		case QCA6174_HW_1_0_CHIP_ID_REV:
2298 		case QCA6174_HW_1_1_CHIP_ID_REV:
2299 		case QCA6174_HW_2_1_CHIP_ID_REV:
2300 		case QCA6174_HW_2_2_CHIP_ID_REV:
2301 			return 3;
2302 		case QCA6174_HW_1_3_CHIP_ID_REV:
2303 			return 2;
2304 		case QCA6174_HW_3_0_CHIP_ID_REV:
2305 		case QCA6174_HW_3_1_CHIP_ID_REV:
2306 		case QCA6174_HW_3_2_CHIP_ID_REV:
2307 			return 9;
2308 		}
2309 		break;
2310 	case QCA9377_1_0_DEVICE_ID:
2311 		return 9;
2312 	}
2313 
2314 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2315 	return 1;
2316 }
2317 
ath10k_bus_get_num_banks(struct ath10k * ar)2318 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2319 {
2320 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2321 
2322 	return ce->bus_ops->get_num_banks(ar);
2323 }
2324 
ath10k_pci_init_config(struct ath10k * ar)2325 int ath10k_pci_init_config(struct ath10k *ar)
2326 {
2327 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2328 	u32 interconnect_targ_addr;
2329 	u32 pcie_state_targ_addr = 0;
2330 	u32 pipe_cfg_targ_addr = 0;
2331 	u32 svc_to_pipe_map = 0;
2332 	u32 pcie_config_flags = 0;
2333 	u32 ealloc_value;
2334 	u32 ealloc_targ_addr;
2335 	u32 flag2_value;
2336 	u32 flag2_targ_addr;
2337 	int ret = 0;
2338 
2339 	/* Download to Target the CE Config and the service-to-CE map */
2340 	interconnect_targ_addr =
2341 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2342 
2343 	/* Supply Target-side CE configuration */
2344 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2345 				     &pcie_state_targ_addr);
2346 	if (ret != 0) {
2347 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2348 		return ret;
2349 	}
2350 
2351 	if (pcie_state_targ_addr == 0) {
2352 		ret = -EIO;
2353 		ath10k_err(ar, "Invalid pcie state addr\n");
2354 		return ret;
2355 	}
2356 
2357 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2358 					  offsetof(struct pcie_state,
2359 						   pipe_cfg_addr)),
2360 				     &pipe_cfg_targ_addr);
2361 	if (ret != 0) {
2362 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2363 		return ret;
2364 	}
2365 
2366 	if (pipe_cfg_targ_addr == 0) {
2367 		ret = -EIO;
2368 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2369 		return ret;
2370 	}
2371 
2372 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2373 					ar_pci->pipe_config,
2374 					sizeof(struct ce_pipe_config) *
2375 					NUM_TARGET_CE_CONFIG_WLAN);
2376 
2377 	if (ret != 0) {
2378 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2379 		return ret;
2380 	}
2381 
2382 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2383 					  offsetof(struct pcie_state,
2384 						   svc_to_pipe_map)),
2385 				     &svc_to_pipe_map);
2386 	if (ret != 0) {
2387 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2388 		return ret;
2389 	}
2390 
2391 	if (svc_to_pipe_map == 0) {
2392 		ret = -EIO;
2393 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2394 		return ret;
2395 	}
2396 
2397 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2398 					ar_pci->serv_to_pipe,
2399 					sizeof(pci_target_service_to_ce_map_wlan));
2400 	if (ret != 0) {
2401 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2402 		return ret;
2403 	}
2404 
2405 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2406 					  offsetof(struct pcie_state,
2407 						   config_flags)),
2408 				     &pcie_config_flags);
2409 	if (ret != 0) {
2410 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2411 		return ret;
2412 	}
2413 
2414 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2415 
2416 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2417 					   offsetof(struct pcie_state,
2418 						    config_flags)),
2419 				      pcie_config_flags);
2420 	if (ret != 0) {
2421 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2422 		return ret;
2423 	}
2424 
2425 	/* configure early allocation */
2426 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2427 
2428 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2429 	if (ret != 0) {
2430 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2431 		return ret;
2432 	}
2433 
2434 	/* first bank is switched to IRAM */
2435 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2436 			 HI_EARLY_ALLOC_MAGIC_MASK);
2437 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2438 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2439 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2440 
2441 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2442 	if (ret != 0) {
2443 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2444 		return ret;
2445 	}
2446 
2447 	/* Tell Target to proceed with initialization */
2448 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2449 
2450 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2451 	if (ret != 0) {
2452 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2453 		return ret;
2454 	}
2455 
2456 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2457 
2458 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2459 	if (ret != 0) {
2460 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2461 		return ret;
2462 	}
2463 
2464 	return 0;
2465 }
2466 
ath10k_pci_override_ce_config(struct ath10k * ar)2467 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2468 {
2469 	struct ce_attr *attr;
2470 	struct ce_pipe_config *config;
2471 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2472 
2473 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2474 	 * since it is currently used for other feature.
2475 	 */
2476 
2477 	/* Override Host's Copy Engine 5 configuration */
2478 	attr = &ar_pci->attr[5];
2479 	attr->src_sz_max = 0;
2480 	attr->dest_nentries = 0;
2481 
2482 	/* Override Target firmware's Copy Engine configuration */
2483 	config = &ar_pci->pipe_config[5];
2484 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2485 	config->nbytes_max = __cpu_to_le32(2048);
2486 
2487 	/* Map from service/endpoint to Copy Engine */
2488 	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2489 }
2490 
ath10k_pci_alloc_pipes(struct ath10k * ar)2491 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2492 {
2493 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2494 	struct ath10k_pci_pipe *pipe;
2495 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2496 	int i, ret;
2497 
2498 	for (i = 0; i < CE_COUNT; i++) {
2499 		pipe = &ar_pci->pipe_info[i];
2500 		pipe->ce_hdl = &ce->ce_states[i];
2501 		pipe->pipe_num = i;
2502 		pipe->hif_ce_state = ar;
2503 
2504 		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2505 		if (ret) {
2506 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2507 				   i, ret);
2508 			return ret;
2509 		}
2510 
2511 		/* Last CE is Diagnostic Window */
2512 		if (i == CE_DIAG_PIPE) {
2513 			ar_pci->ce_diag = pipe->ce_hdl;
2514 			continue;
2515 		}
2516 
2517 		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2518 	}
2519 
2520 	return 0;
2521 }
2522 
ath10k_pci_free_pipes(struct ath10k * ar)2523 void ath10k_pci_free_pipes(struct ath10k *ar)
2524 {
2525 	int i;
2526 
2527 	for (i = 0; i < CE_COUNT; i++)
2528 		ath10k_ce_free_pipe(ar, i);
2529 }
2530 
ath10k_pci_init_pipes(struct ath10k * ar)2531 int ath10k_pci_init_pipes(struct ath10k *ar)
2532 {
2533 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2534 	int i, ret;
2535 
2536 	for (i = 0; i < CE_COUNT; i++) {
2537 		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2538 		if (ret) {
2539 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2540 				   i, ret);
2541 			return ret;
2542 		}
2543 	}
2544 
2545 	return 0;
2546 }
2547 
ath10k_pci_has_fw_crashed(struct ath10k * ar)2548 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2549 {
2550 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2551 	       FW_IND_EVENT_PENDING;
2552 }
2553 
ath10k_pci_fw_crashed_clear(struct ath10k * ar)2554 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2555 {
2556 	u32 val;
2557 
2558 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2559 	val &= ~FW_IND_EVENT_PENDING;
2560 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2561 }
2562 
ath10k_pci_has_device_gone(struct ath10k * ar)2563 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2564 {
2565 	u32 val;
2566 
2567 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2568 	return (val == 0xffffffff);
2569 }
2570 
2571 /* this function effectively clears target memory controller assert line */
ath10k_pci_warm_reset_si0(struct ath10k * ar)2572 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2573 {
2574 	u32 val;
2575 
2576 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2577 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2578 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2579 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2580 
2581 	msleep(10);
2582 
2583 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2584 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2585 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2586 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2587 
2588 	msleep(10);
2589 }
2590 
ath10k_pci_warm_reset_cpu(struct ath10k * ar)2591 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2592 {
2593 	u32 val;
2594 
2595 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2596 
2597 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2598 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2599 			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2600 }
2601 
ath10k_pci_warm_reset_ce(struct ath10k * ar)2602 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2603 {
2604 	u32 val;
2605 
2606 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2607 
2608 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2609 			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2610 	msleep(10);
2611 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2612 			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2613 }
2614 
ath10k_pci_warm_reset_clear_lf(struct ath10k * ar)2615 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2616 {
2617 	u32 val;
2618 
2619 	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2620 	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2621 			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2622 }
2623 
ath10k_pci_warm_reset(struct ath10k * ar)2624 static int ath10k_pci_warm_reset(struct ath10k *ar)
2625 {
2626 	int ret;
2627 
2628 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2629 
2630 	spin_lock_bh(&ar->data_lock);
2631 	ar->stats.fw_warm_reset_counter++;
2632 	spin_unlock_bh(&ar->data_lock);
2633 
2634 	ath10k_pci_irq_disable(ar);
2635 
2636 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2637 	 * were to access copy engine while host performs copy engine reset
2638 	 * then it is possible for the device to confuse pci-e controller to
2639 	 * the point of bringing host system to a complete stop (i.e. hang).
2640 	 */
2641 	ath10k_pci_warm_reset_si0(ar);
2642 	ath10k_pci_warm_reset_cpu(ar);
2643 	ath10k_pci_init_pipes(ar);
2644 	ath10k_pci_wait_for_target_init(ar);
2645 
2646 	ath10k_pci_warm_reset_clear_lf(ar);
2647 	ath10k_pci_warm_reset_ce(ar);
2648 	ath10k_pci_warm_reset_cpu(ar);
2649 	ath10k_pci_init_pipes(ar);
2650 
2651 	ret = ath10k_pci_wait_for_target_init(ar);
2652 	if (ret) {
2653 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2654 		return ret;
2655 	}
2656 
2657 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2658 
2659 	return 0;
2660 }
2661 
ath10k_pci_qca99x0_soft_chip_reset(struct ath10k * ar)2662 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2663 {
2664 	ath10k_pci_irq_disable(ar);
2665 	return ath10k_pci_qca99x0_chip_reset(ar);
2666 }
2667 
ath10k_pci_safe_chip_reset(struct ath10k * ar)2668 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2669 {
2670 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2671 
2672 	if (!ar_pci->pci_soft_reset)
2673 		return -EOPNOTSUPP;
2674 
2675 	return ar_pci->pci_soft_reset(ar);
2676 }
2677 
ath10k_pci_qca988x_chip_reset(struct ath10k * ar)2678 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2679 {
2680 	int i, ret;
2681 	u32 val;
2682 
2683 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2684 
2685 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2686 	 * It is thus preferred to use warm reset which is safer but may not be
2687 	 * able to recover the device from all possible fail scenarios.
2688 	 *
2689 	 * Warm reset doesn't always work on first try so attempt it a few
2690 	 * times before giving up.
2691 	 */
2692 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2693 		ret = ath10k_pci_warm_reset(ar);
2694 		if (ret) {
2695 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2696 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2697 				    ret);
2698 			continue;
2699 		}
2700 
2701 		/* FIXME: Sometimes copy engine doesn't recover after warm
2702 		 * reset. In most cases this needs cold reset. In some of these
2703 		 * cases the device is in such a state that a cold reset may
2704 		 * lock up the host.
2705 		 *
2706 		 * Reading any host interest register via copy engine is
2707 		 * sufficient to verify if device is capable of booting
2708 		 * firmware blob.
2709 		 */
2710 		ret = ath10k_pci_init_pipes(ar);
2711 		if (ret) {
2712 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2713 				    ret);
2714 			continue;
2715 		}
2716 
2717 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2718 					     &val);
2719 		if (ret) {
2720 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2721 				    ret);
2722 			continue;
2723 		}
2724 
2725 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2726 		return 0;
2727 	}
2728 
2729 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2730 		ath10k_warn(ar, "refusing cold reset as requested\n");
2731 		return -EPERM;
2732 	}
2733 
2734 	ret = ath10k_pci_cold_reset(ar);
2735 	if (ret) {
2736 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2737 		return ret;
2738 	}
2739 
2740 	ret = ath10k_pci_wait_for_target_init(ar);
2741 	if (ret) {
2742 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2743 			    ret);
2744 		return ret;
2745 	}
2746 
2747 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2748 
2749 	return 0;
2750 }
2751 
ath10k_pci_qca6174_chip_reset(struct ath10k * ar)2752 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2753 {
2754 	int ret;
2755 
2756 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2757 
2758 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2759 
2760 	ret = ath10k_pci_cold_reset(ar);
2761 	if (ret) {
2762 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2763 		return ret;
2764 	}
2765 
2766 	ret = ath10k_pci_wait_for_target_init(ar);
2767 	if (ret) {
2768 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2769 			    ret);
2770 		return ret;
2771 	}
2772 
2773 	ret = ath10k_pci_warm_reset(ar);
2774 	if (ret) {
2775 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2776 		return ret;
2777 	}
2778 
2779 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2780 
2781 	return 0;
2782 }
2783 
ath10k_pci_qca99x0_chip_reset(struct ath10k * ar)2784 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2785 {
2786 	int ret;
2787 
2788 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2789 
2790 	ret = ath10k_pci_cold_reset(ar);
2791 	if (ret) {
2792 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2793 		return ret;
2794 	}
2795 
2796 	ret = ath10k_pci_wait_for_target_init(ar);
2797 	if (ret) {
2798 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2799 			    ret);
2800 		return ret;
2801 	}
2802 
2803 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2804 
2805 	return 0;
2806 }
2807 
ath10k_pci_chip_reset(struct ath10k * ar)2808 static int ath10k_pci_chip_reset(struct ath10k *ar)
2809 {
2810 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2811 
2812 	if (WARN_ON(!ar_pci->pci_hard_reset))
2813 		return -EOPNOTSUPP;
2814 
2815 	return ar_pci->pci_hard_reset(ar);
2816 }
2817 
ath10k_pci_hif_power_up(struct ath10k * ar,enum ath10k_firmware_mode fw_mode)2818 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2819 				   enum ath10k_firmware_mode fw_mode)
2820 {
2821 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2822 	int ret;
2823 
2824 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2825 
2826 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2827 				  &ar_pci->link_ctl);
2828 	pcie_capability_clear_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2829 				   PCI_EXP_LNKCTL_ASPMC);
2830 
2831 	/*
2832 	 * Bring the target up cleanly.
2833 	 *
2834 	 * The target may be in an undefined state with an AUX-powered Target
2835 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2836 	 * restarted (without unloading the driver) then the Target is left
2837 	 * (aux) powered and running. On a subsequent driver load, the Target
2838 	 * is in an unexpected state. We try to catch that here in order to
2839 	 * reset the Target and retry the probe.
2840 	 */
2841 	ret = ath10k_pci_chip_reset(ar);
2842 	if (ret) {
2843 		if (ath10k_pci_has_fw_crashed(ar)) {
2844 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2845 			ath10k_pci_fw_crashed_clear(ar);
2846 			ath10k_pci_fw_crashed_dump(ar);
2847 		}
2848 
2849 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2850 		goto err_sleep;
2851 	}
2852 
2853 	ret = ath10k_pci_init_pipes(ar);
2854 	if (ret) {
2855 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2856 		goto err_sleep;
2857 	}
2858 
2859 	ret = ath10k_pci_init_config(ar);
2860 	if (ret) {
2861 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2862 		goto err_ce;
2863 	}
2864 
2865 	ret = ath10k_pci_wake_target_cpu(ar);
2866 	if (ret) {
2867 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2868 		goto err_ce;
2869 	}
2870 
2871 	return 0;
2872 
2873 err_ce:
2874 	ath10k_pci_ce_deinit(ar);
2875 
2876 err_sleep:
2877 	return ret;
2878 }
2879 
ath10k_pci_hif_power_down(struct ath10k * ar)2880 void ath10k_pci_hif_power_down(struct ath10k *ar)
2881 {
2882 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2883 
2884 	/* Currently hif_power_up performs effectively a reset and hif_stop
2885 	 * resets the chip as well so there's no point in resetting here.
2886 	 */
2887 }
2888 
ath10k_pci_hif_suspend(struct ath10k * ar)2889 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2890 {
2891 	/* Nothing to do; the important stuff is in the driver suspend. */
2892 	return 0;
2893 }
2894 
ath10k_pci_suspend(struct ath10k * ar)2895 static int ath10k_pci_suspend(struct ath10k *ar)
2896 {
2897 	/* The grace timer can still be counting down and ar->ps_awake be true.
2898 	 * It is known that the device may be asleep after resuming regardless
2899 	 * of the SoC powersave state before suspending. Hence make sure the
2900 	 * device is asleep before proceeding.
2901 	 */
2902 	ath10k_pci_sleep_sync(ar);
2903 
2904 	return 0;
2905 }
2906 
ath10k_pci_hif_resume(struct ath10k * ar)2907 static int ath10k_pci_hif_resume(struct ath10k *ar)
2908 {
2909 	/* Nothing to do; the important stuff is in the driver resume. */
2910 	return 0;
2911 }
2912 
ath10k_pci_resume(struct ath10k * ar)2913 static int ath10k_pci_resume(struct ath10k *ar)
2914 {
2915 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2916 	struct pci_dev *pdev = ar_pci->pdev;
2917 	u32 val;
2918 	int ret = 0;
2919 
2920 	ret = ath10k_pci_force_wake(ar);
2921 	if (ret) {
2922 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
2923 		return ret;
2924 	}
2925 
2926 	/* Suspend/Resume resets the PCI configuration space, so we have to
2927 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
2928 	 * from interfering with C3 CPU state. pci_restore_state won't help
2929 	 * here since it only restores the first 64 bytes pci config header.
2930 	 */
2931 	pci_read_config_dword(pdev, 0x40, &val);
2932 	if ((val & 0x0000ff00) != 0)
2933 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
2934 
2935 	return ret;
2936 }
2937 
ath10k_pci_validate_cal(void * data,size_t size)2938 static bool ath10k_pci_validate_cal(void *data, size_t size)
2939 {
2940 	__le16 *cal_words = data;
2941 	u16 checksum = 0;
2942 	size_t i;
2943 
2944 	if (size % 2 != 0)
2945 		return false;
2946 
2947 	for (i = 0; i < size / 2; i++)
2948 		checksum ^= le16_to_cpu(cal_words[i]);
2949 
2950 	return checksum == 0xffff;
2951 }
2952 
ath10k_pci_enable_eeprom(struct ath10k * ar)2953 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
2954 {
2955 	/* Enable SI clock */
2956 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
2957 
2958 	/* Configure GPIOs for I2C operation */
2959 	ath10k_pci_write32(ar,
2960 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2961 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
2962 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
2963 			      GPIO_PIN0_CONFIG) |
2964 			   SM(1, GPIO_PIN0_PAD_PULL));
2965 
2966 	ath10k_pci_write32(ar,
2967 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
2968 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
2969 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
2970 			   SM(1, GPIO_PIN0_PAD_PULL));
2971 
2972 	ath10k_pci_write32(ar,
2973 			   GPIO_BASE_ADDRESS +
2974 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
2975 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
2976 
2977 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
2978 	ath10k_pci_write32(ar,
2979 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
2980 			   SM(1, SI_CONFIG_ERR_INT) |
2981 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
2982 			   SM(1, SI_CONFIG_I2C) |
2983 			   SM(1, SI_CONFIG_POS_SAMPLE) |
2984 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
2985 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
2986 			   SM(8, SI_CONFIG_DIVIDER));
2987 }
2988 
ath10k_pci_read_eeprom(struct ath10k * ar,u16 addr,u8 * out)2989 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
2990 {
2991 	u32 reg;
2992 	int wait_limit;
2993 
2994 	/* set device select byte and for the read operation */
2995 	reg = QCA9887_EEPROM_SELECT_READ |
2996 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
2997 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
2998 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
2999 
3000 	/* write transmit data, transfer length, and START bit */
3001 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3002 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3003 			   SM(4, SI_CS_TX_CNT));
3004 
3005 	/* wait max 1 sec */
3006 	wait_limit = 100000;
3007 
3008 	/* wait for SI_CS_DONE_INT */
3009 	do {
3010 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3011 		if (MS(reg, SI_CS_DONE_INT))
3012 			break;
3013 
3014 		wait_limit--;
3015 		udelay(10);
3016 	} while (wait_limit > 0);
3017 
3018 	if (!MS(reg, SI_CS_DONE_INT)) {
3019 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3020 			   addr);
3021 		return -ETIMEDOUT;
3022 	}
3023 
3024 	/* clear SI_CS_DONE_INT */
3025 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3026 
3027 	if (MS(reg, SI_CS_DONE_ERR)) {
3028 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3029 		return -EIO;
3030 	}
3031 
3032 	/* extract receive data */
3033 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3034 	*out = reg;
3035 
3036 	return 0;
3037 }
3038 
ath10k_pci_hif_fetch_cal_eeprom(struct ath10k * ar,void ** data,size_t * data_len)3039 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3040 					   size_t *data_len)
3041 {
3042 	u8 *caldata = NULL;
3043 	size_t calsize, i;
3044 	int ret;
3045 
3046 	if (!QCA_REV_9887(ar))
3047 		return -EOPNOTSUPP;
3048 
3049 	calsize = ar->hw_params.cal_data_len;
3050 	caldata = kmalloc(calsize, GFP_KERNEL);
3051 	if (!caldata)
3052 		return -ENOMEM;
3053 
3054 	ath10k_pci_enable_eeprom(ar);
3055 
3056 	for (i = 0; i < calsize; i++) {
3057 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3058 		if (ret)
3059 			goto err_free;
3060 	}
3061 
3062 	if (!ath10k_pci_validate_cal(caldata, calsize))
3063 		goto err_free;
3064 
3065 	*data = caldata;
3066 	*data_len = calsize;
3067 
3068 	return 0;
3069 
3070 err_free:
3071 	kfree(caldata);
3072 
3073 	return -EINVAL;
3074 }
3075 
3076 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3077 	.tx_sg			= ath10k_pci_hif_tx_sg,
3078 	.diag_read		= ath10k_pci_hif_diag_read,
3079 	.diag_write		= ath10k_pci_diag_write_mem,
3080 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3081 	.start			= ath10k_pci_hif_start,
3082 	.stop			= ath10k_pci_hif_stop,
3083 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3084 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3085 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3086 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3087 	.power_up		= ath10k_pci_hif_power_up,
3088 	.power_down		= ath10k_pci_hif_power_down,
3089 	.read32			= ath10k_pci_read32,
3090 	.write32		= ath10k_pci_write32,
3091 	.suspend		= ath10k_pci_hif_suspend,
3092 	.resume			= ath10k_pci_hif_resume,
3093 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3094 };
3095 
3096 /*
3097  * Top-level interrupt handler for all PCI interrupts from a Target.
3098  * When a block of MSI interrupts is allocated, this top-level handler
3099  * is not used; instead, we directly call the correct sub-handler.
3100  */
ath10k_pci_interrupt_handler(int irq,void * arg)3101 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3102 {
3103 	struct ath10k *ar = arg;
3104 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3105 	int ret;
3106 
3107 	if (ath10k_pci_has_device_gone(ar))
3108 		return IRQ_NONE;
3109 
3110 	ret = ath10k_pci_force_wake(ar);
3111 	if (ret) {
3112 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3113 		return IRQ_NONE;
3114 	}
3115 
3116 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_INTX) &&
3117 	    !ath10k_pci_irq_pending(ar))
3118 		return IRQ_NONE;
3119 
3120 	ath10k_pci_disable_and_clear_intx_irq(ar);
3121 	ath10k_pci_irq_msi_fw_mask(ar);
3122 	napi_schedule(&ar->napi);
3123 
3124 	return IRQ_HANDLED;
3125 }
3126 
ath10k_pci_napi_poll(struct napi_struct * ctx,int budget)3127 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3128 {
3129 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3130 	int done = 0;
3131 
3132 	if (ath10k_pci_has_fw_crashed(ar)) {
3133 		ath10k_pci_fw_crashed_clear(ar);
3134 		ath10k_pci_fw_crashed_dump(ar);
3135 		napi_complete(ctx);
3136 		return done;
3137 	}
3138 
3139 	ath10k_ce_per_engine_service_any(ar);
3140 
3141 	done = ath10k_htt_txrx_compl_task(ar, budget);
3142 
3143 	if (done < budget) {
3144 		napi_complete_done(ctx, done);
3145 		/* In case of MSI, it is possible that interrupts are received
3146 		 * while NAPI poll is inprogress. So pending interrupts that are
3147 		 * received after processing all copy engine pipes by NAPI poll
3148 		 * will not be handled again. This is causing failure to
3149 		 * complete boot sequence in x86 platform. So before enabling
3150 		 * interrupts safer to check for pending interrupts for
3151 		 * immediate servicing.
3152 		 */
3153 		if (ath10k_ce_interrupt_summary(ar)) {
3154 			napi_schedule(ctx);
3155 			goto out;
3156 		}
3157 		ath10k_pci_enable_intx_irq(ar);
3158 		ath10k_pci_irq_msi_fw_unmask(ar);
3159 	}
3160 
3161 out:
3162 	return done;
3163 }
3164 
ath10k_pci_request_irq_msi(struct ath10k * ar)3165 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3166 {
3167 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3168 	int ret;
3169 
3170 	ret = request_irq(ar_pci->pdev->irq,
3171 			  ath10k_pci_interrupt_handler,
3172 			  IRQF_SHARED, "ath10k_pci", ar);
3173 	if (ret) {
3174 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3175 			    ar_pci->pdev->irq, ret);
3176 		return ret;
3177 	}
3178 
3179 	return 0;
3180 }
3181 
ath10k_pci_request_irq_intx(struct ath10k * ar)3182 static int ath10k_pci_request_irq_intx(struct ath10k *ar)
3183 {
3184 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3185 	int ret;
3186 
3187 	ret = request_irq(ar_pci->pdev->irq,
3188 			  ath10k_pci_interrupt_handler,
3189 			  IRQF_SHARED, "ath10k_pci", ar);
3190 	if (ret) {
3191 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3192 			    ar_pci->pdev->irq, ret);
3193 		return ret;
3194 	}
3195 
3196 	return 0;
3197 }
3198 
ath10k_pci_request_irq(struct ath10k * ar)3199 static int ath10k_pci_request_irq(struct ath10k *ar)
3200 {
3201 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3202 
3203 	switch (ar_pci->oper_irq_mode) {
3204 	case ATH10K_PCI_IRQ_INTX:
3205 		return ath10k_pci_request_irq_intx(ar);
3206 	case ATH10K_PCI_IRQ_MSI:
3207 		return ath10k_pci_request_irq_msi(ar);
3208 	default:
3209 		return -EINVAL;
3210 	}
3211 }
3212 
ath10k_pci_free_irq(struct ath10k * ar)3213 static void ath10k_pci_free_irq(struct ath10k *ar)
3214 {
3215 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3216 
3217 	free_irq(ar_pci->pdev->irq, ar);
3218 }
3219 
ath10k_pci_init_napi(struct ath10k * ar)3220 void ath10k_pci_init_napi(struct ath10k *ar)
3221 {
3222 	netif_napi_add(ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3223 }
3224 
ath10k_pci_init_irq(struct ath10k * ar)3225 static int ath10k_pci_init_irq(struct ath10k *ar)
3226 {
3227 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3228 	int ret;
3229 
3230 	ath10k_pci_init_napi(ar);
3231 
3232 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3233 		ath10k_info(ar, "limiting irq mode to: %d\n",
3234 			    ath10k_pci_irq_mode);
3235 
3236 	/* Try MSI */
3237 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_INTX) {
3238 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3239 		ret = pci_enable_msi(ar_pci->pdev);
3240 		if (ret == 0)
3241 			return 0;
3242 
3243 		/* MHI failed, try legacy irq next */
3244 	}
3245 
3246 	/* Try legacy irq
3247 	 *
3248 	 * A potential race occurs here: The CORE_BASE write
3249 	 * depends on target correctly decoding AXI address but
3250 	 * host won't know when target writes BAR to CORE_CTRL.
3251 	 * This write might get lost if target has NOT written BAR.
3252 	 * For now, fix the race by repeating the write in below
3253 	 * synchronization checking.
3254 	 */
3255 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_INTX;
3256 
3257 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3258 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3259 
3260 	return 0;
3261 }
3262 
ath10k_pci_deinit_irq_intx(struct ath10k * ar)3263 static void ath10k_pci_deinit_irq_intx(struct ath10k *ar)
3264 {
3265 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3266 			   0);
3267 }
3268 
ath10k_pci_deinit_irq(struct ath10k * ar)3269 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3270 {
3271 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3272 
3273 	switch (ar_pci->oper_irq_mode) {
3274 	case ATH10K_PCI_IRQ_INTX:
3275 		ath10k_pci_deinit_irq_intx(ar);
3276 		break;
3277 	default:
3278 		pci_disable_msi(ar_pci->pdev);
3279 		break;
3280 	}
3281 
3282 	return 0;
3283 }
3284 
ath10k_pci_wait_for_target_init(struct ath10k * ar)3285 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3286 {
3287 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3288 	unsigned long timeout;
3289 	u32 val;
3290 
3291 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3292 
3293 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3294 
3295 	do {
3296 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3297 
3298 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3299 			   val);
3300 
3301 		/* target should never return this */
3302 		if (val == 0xffffffff)
3303 			continue;
3304 
3305 		/* the device has crashed so don't bother trying anymore */
3306 		if (val & FW_IND_EVENT_PENDING)
3307 			break;
3308 
3309 		if (val & FW_IND_INITIALIZED)
3310 			break;
3311 
3312 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_INTX)
3313 			/* Fix potential race by repeating CORE_BASE writes */
3314 			ath10k_pci_enable_intx_irq(ar);
3315 
3316 		mdelay(10);
3317 	} while (time_before(jiffies, timeout));
3318 
3319 	ath10k_pci_disable_and_clear_intx_irq(ar);
3320 	ath10k_pci_irq_msi_fw_mask(ar);
3321 
3322 	if (val == 0xffffffff) {
3323 		ath10k_err(ar, "failed to read device register, device is gone\n");
3324 		return -EIO;
3325 	}
3326 
3327 	if (val & FW_IND_EVENT_PENDING) {
3328 		ath10k_warn(ar, "device has crashed during init\n");
3329 		return -ECOMM;
3330 	}
3331 
3332 	if (!(val & FW_IND_INITIALIZED)) {
3333 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3334 			   val);
3335 		return -ETIMEDOUT;
3336 	}
3337 
3338 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3339 	return 0;
3340 }
3341 
ath10k_pci_cold_reset(struct ath10k * ar)3342 static int ath10k_pci_cold_reset(struct ath10k *ar)
3343 {
3344 	u32 val;
3345 
3346 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3347 
3348 	spin_lock_bh(&ar->data_lock);
3349 
3350 	ar->stats.fw_cold_reset_counter++;
3351 
3352 	spin_unlock_bh(&ar->data_lock);
3353 
3354 	/* Put Target, including PCIe, into RESET. */
3355 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3356 	val |= 1;
3357 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3358 
3359 	/* After writing into SOC_GLOBAL_RESET to put device into
3360 	 * reset and pulling out of reset pcie may not be stable
3361 	 * for any immediate pcie register access and cause bus error,
3362 	 * add delay before any pcie access request to fix this issue.
3363 	 */
3364 	msleep(20);
3365 
3366 	/* Pull Target, including PCIe, out of RESET. */
3367 	val &= ~1;
3368 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3369 
3370 	msleep(20);
3371 
3372 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3373 
3374 	return 0;
3375 }
3376 
ath10k_pci_claim(struct ath10k * ar)3377 static int ath10k_pci_claim(struct ath10k *ar)
3378 {
3379 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3380 	struct pci_dev *pdev = ar_pci->pdev;
3381 	int ret;
3382 
3383 	pci_set_drvdata(pdev, ar);
3384 
3385 	ret = pci_enable_device(pdev);
3386 	if (ret) {
3387 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3388 		return ret;
3389 	}
3390 
3391 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3392 	if (ret) {
3393 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3394 			   ret);
3395 		goto err_device;
3396 	}
3397 
3398 	/* Target expects 32 bit DMA. Enforce it. */
3399 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3400 	if (ret) {
3401 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3402 		goto err_region;
3403 	}
3404 
3405 	pci_set_master(pdev);
3406 
3407 	/* Arrange for access to Target SoC registers. */
3408 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3409 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3410 	if (!ar_pci->mem) {
3411 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3412 		ret = -EIO;
3413 		goto err_region;
3414 	}
3415 
3416 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem);
3417 	return 0;
3418 
3419 err_region:
3420 	pci_release_region(pdev, BAR_NUM);
3421 
3422 err_device:
3423 	pci_disable_device(pdev);
3424 
3425 	return ret;
3426 }
3427 
ath10k_pci_release(struct ath10k * ar)3428 static void ath10k_pci_release(struct ath10k *ar)
3429 {
3430 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3431 	struct pci_dev *pdev = ar_pci->pdev;
3432 
3433 	pci_iounmap(pdev, ar_pci->mem);
3434 	pci_release_region(pdev, BAR_NUM);
3435 	pci_disable_device(pdev);
3436 }
3437 
ath10k_pci_chip_is_supported(u32 dev_id,u32 chip_id)3438 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3439 {
3440 	const struct ath10k_pci_supp_chip *supp_chip;
3441 	int i;
3442 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3443 
3444 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3445 		supp_chip = &ath10k_pci_supp_chips[i];
3446 
3447 		if (supp_chip->dev_id == dev_id &&
3448 		    supp_chip->rev_id == rev_id)
3449 			return true;
3450 	}
3451 
3452 	return false;
3453 }
3454 
ath10k_pci_setup_resource(struct ath10k * ar)3455 int ath10k_pci_setup_resource(struct ath10k *ar)
3456 {
3457 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3458 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3459 	int ret;
3460 
3461 	spin_lock_init(&ce->ce_lock);
3462 	spin_lock_init(&ar_pci->ps_lock);
3463 	mutex_init(&ar_pci->ce_diag_mutex);
3464 
3465 	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3466 
3467 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3468 
3469 	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3470 			       sizeof(pci_host_ce_config_wlan),
3471 			       GFP_KERNEL);
3472 	if (!ar_pci->attr)
3473 		return -ENOMEM;
3474 
3475 	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3476 				      sizeof(pci_target_ce_config_wlan),
3477 				      GFP_KERNEL);
3478 	if (!ar_pci->pipe_config) {
3479 		ret = -ENOMEM;
3480 		goto err_free_attr;
3481 	}
3482 
3483 	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3484 				       sizeof(pci_target_service_to_ce_map_wlan),
3485 				       GFP_KERNEL);
3486 	if (!ar_pci->serv_to_pipe) {
3487 		ret = -ENOMEM;
3488 		goto err_free_pipe_config;
3489 	}
3490 
3491 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3492 		ath10k_pci_override_ce_config(ar);
3493 
3494 	ret = ath10k_pci_alloc_pipes(ar);
3495 	if (ret) {
3496 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3497 			   ret);
3498 		goto err_free_serv_to_pipe;
3499 	}
3500 
3501 	return 0;
3502 
3503 err_free_serv_to_pipe:
3504 	kfree(ar_pci->serv_to_pipe);
3505 err_free_pipe_config:
3506 	kfree(ar_pci->pipe_config);
3507 err_free_attr:
3508 	kfree(ar_pci->attr);
3509 	return ret;
3510 }
3511 
ath10k_pci_release_resource(struct ath10k * ar)3512 void ath10k_pci_release_resource(struct ath10k *ar)
3513 {
3514 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3515 
3516 	ath10k_pci_rx_retry_sync(ar);
3517 	netif_napi_del(&ar->napi);
3518 	ath10k_pci_ce_deinit(ar);
3519 	ath10k_pci_free_pipes(ar);
3520 	kfree(ar_pci->attr);
3521 	kfree(ar_pci->pipe_config);
3522 	kfree(ar_pci->serv_to_pipe);
3523 }
3524 
3525 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3526 	.read32		= ath10k_bus_pci_read32,
3527 	.write32	= ath10k_bus_pci_write32,
3528 	.get_num_banks	= ath10k_pci_get_num_banks,
3529 };
3530 
ath10k_pci_probe(struct pci_dev * pdev,const struct pci_device_id * pci_dev)3531 static int ath10k_pci_probe(struct pci_dev *pdev,
3532 			    const struct pci_device_id *pci_dev)
3533 {
3534 	int ret = 0;
3535 	struct ath10k *ar;
3536 	struct ath10k_pci *ar_pci;
3537 	enum ath10k_hw_rev hw_rev;
3538 	struct ath10k_bus_params bus_params = {};
3539 	bool pci_ps, is_qca988x = false;
3540 	int (*pci_soft_reset)(struct ath10k *ar);
3541 	int (*pci_hard_reset)(struct ath10k *ar);
3542 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3543 
3544 	switch (pci_dev->device) {
3545 	case QCA988X_2_0_DEVICE_ID_UBNT:
3546 	case QCA988X_2_0_DEVICE_ID:
3547 		hw_rev = ATH10K_HW_QCA988X;
3548 		pci_ps = false;
3549 		is_qca988x = true;
3550 		pci_soft_reset = ath10k_pci_warm_reset;
3551 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3552 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3553 		break;
3554 	case QCA9887_1_0_DEVICE_ID:
3555 		hw_rev = ATH10K_HW_QCA9887;
3556 		pci_ps = false;
3557 		pci_soft_reset = ath10k_pci_warm_reset;
3558 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3559 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3560 		break;
3561 	case QCA6164_2_1_DEVICE_ID:
3562 	case QCA6174_2_1_DEVICE_ID:
3563 		hw_rev = ATH10K_HW_QCA6174;
3564 		pci_ps = true;
3565 		pci_soft_reset = ath10k_pci_warm_reset;
3566 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3567 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3568 		break;
3569 	case QCA99X0_2_0_DEVICE_ID:
3570 		hw_rev = ATH10K_HW_QCA99X0;
3571 		pci_ps = false;
3572 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3573 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3574 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3575 		break;
3576 	case QCA9984_1_0_DEVICE_ID:
3577 		hw_rev = ATH10K_HW_QCA9984;
3578 		pci_ps = false;
3579 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3580 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3581 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3582 		break;
3583 	case QCA9888_2_0_DEVICE_ID:
3584 		hw_rev = ATH10K_HW_QCA9888;
3585 		pci_ps = false;
3586 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3587 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3588 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3589 		break;
3590 	case QCA9377_1_0_DEVICE_ID:
3591 		hw_rev = ATH10K_HW_QCA9377;
3592 		pci_ps = true;
3593 		pci_soft_reset = ath10k_pci_warm_reset;
3594 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3595 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3596 		break;
3597 	default:
3598 		WARN_ON(1);
3599 		return -EOPNOTSUPP;
3600 	}
3601 
3602 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3603 				hw_rev, &ath10k_pci_hif_ops);
3604 	if (!ar) {
3605 		dev_err(&pdev->dev, "failed to allocate core\n");
3606 		return -ENOMEM;
3607 	}
3608 
3609 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3610 		   pdev->vendor, pdev->device,
3611 		   pdev->subsystem_vendor, pdev->subsystem_device);
3612 
3613 	ar_pci = ath10k_pci_priv(ar);
3614 	ar_pci->pdev = pdev;
3615 	ar_pci->dev = &pdev->dev;
3616 	ar_pci->ar = ar;
3617 	ar->dev_id = pci_dev->device;
3618 	ar_pci->pci_ps = pci_ps;
3619 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3620 	ar_pci->pci_soft_reset = pci_soft_reset;
3621 	ar_pci->pci_hard_reset = pci_hard_reset;
3622 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3623 	ar->ce_priv = &ar_pci->ce;
3624 
3625 	ar->id.vendor = pdev->vendor;
3626 	ar->id.device = pdev->device;
3627 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3628 	ar->id.subsystem_device = pdev->subsystem_device;
3629 
3630 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3631 
3632 	ret = ath10k_pci_setup_resource(ar);
3633 	if (ret) {
3634 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3635 		goto err_core_destroy;
3636 	}
3637 
3638 	ret = ath10k_pci_claim(ar);
3639 	if (ret) {
3640 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3641 		goto err_free_pipes;
3642 	}
3643 
3644 	ret = ath10k_pci_force_wake(ar);
3645 	if (ret) {
3646 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3647 		goto err_sleep;
3648 	}
3649 
3650 	ath10k_pci_ce_deinit(ar);
3651 	ath10k_pci_irq_disable(ar);
3652 
3653 	ret = ath10k_pci_init_irq(ar);
3654 	if (ret) {
3655 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3656 		goto err_sleep;
3657 	}
3658 
3659 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3660 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3661 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3662 
3663 	ret = ath10k_pci_request_irq(ar);
3664 	if (ret) {
3665 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3666 		goto err_deinit_irq;
3667 	}
3668 
3669 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3670 	bus_params.link_can_suspend = true;
3671 	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3672 	 * fall off the bus during chip_reset. These chips have the same pci
3673 	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3674 	 */
3675 	if (is_qca988x) {
3676 		bus_params.chip_id =
3677 			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3678 		if (bus_params.chip_id != 0xffffffff) {
3679 			if (!ath10k_pci_chip_is_supported(pdev->device,
3680 							  bus_params.chip_id)) {
3681 				ret = -ENODEV;
3682 				goto err_unsupported;
3683 			}
3684 		}
3685 	}
3686 
3687 	ret = ath10k_pci_chip_reset(ar);
3688 	if (ret) {
3689 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3690 		goto err_free_irq;
3691 	}
3692 
3693 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3694 	if (bus_params.chip_id == 0xffffffff) {
3695 		ret = -ENODEV;
3696 		goto err_unsupported;
3697 	}
3698 
3699 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3700 		ret = -ENODEV;
3701 		goto err_unsupported;
3702 	}
3703 
3704 	ret = ath10k_core_register(ar, &bus_params);
3705 	if (ret) {
3706 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3707 		goto err_free_irq;
3708 	}
3709 
3710 	return 0;
3711 
3712 err_unsupported:
3713 	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3714 		   pdev->device, bus_params.chip_id);
3715 
3716 err_free_irq:
3717 	ath10k_pci_free_irq(ar);
3718 
3719 err_deinit_irq:
3720 	ath10k_pci_release_resource(ar);
3721 
3722 err_sleep:
3723 	ath10k_pci_sleep_sync(ar);
3724 	ath10k_pci_release(ar);
3725 
3726 err_free_pipes:
3727 	ath10k_pci_free_pipes(ar);
3728 
3729 err_core_destroy:
3730 	ath10k_core_destroy(ar);
3731 
3732 	return ret;
3733 }
3734 
ath10k_pci_remove(struct pci_dev * pdev)3735 static void ath10k_pci_remove(struct pci_dev *pdev)
3736 {
3737 	struct ath10k *ar = pci_get_drvdata(pdev);
3738 
3739 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3740 
3741 	if (!ar)
3742 		return;
3743 
3744 	ath10k_core_unregister(ar);
3745 	ath10k_pci_free_irq(ar);
3746 	ath10k_pci_deinit_irq(ar);
3747 	ath10k_pci_release_resource(ar);
3748 	ath10k_pci_sleep_sync(ar);
3749 	ath10k_pci_release(ar);
3750 	ath10k_core_destroy(ar);
3751 }
3752 
3753 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3754 
ath10k_pci_pm_suspend(struct device * dev)3755 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3756 {
3757 	struct ath10k *ar = dev_get_drvdata(dev);
3758 	int ret;
3759 
3760 	ret = ath10k_pci_suspend(ar);
3761 	if (ret)
3762 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3763 
3764 	return ret;
3765 }
3766 
ath10k_pci_pm_resume(struct device * dev)3767 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3768 {
3769 	struct ath10k *ar = dev_get_drvdata(dev);
3770 	int ret;
3771 
3772 	ret = ath10k_pci_resume(ar);
3773 	if (ret)
3774 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3775 
3776 	return ret;
3777 }
3778 
3779 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3780 			 ath10k_pci_pm_suspend,
3781 			 ath10k_pci_pm_resume);
3782 
3783 static struct pci_driver ath10k_pci_driver = {
3784 	.name = "ath10k_pci",
3785 	.id_table = ath10k_pci_id_table,
3786 	.probe = ath10k_pci_probe,
3787 	.remove = ath10k_pci_remove,
3788 #ifdef CONFIG_PM
3789 	.driver.pm = &ath10k_pci_pm_ops,
3790 #endif
3791 };
3792 
ath10k_pci_init(void)3793 static int __init ath10k_pci_init(void)
3794 {
3795 	int ret1, ret2;
3796 
3797 	ret1 = pci_register_driver(&ath10k_pci_driver);
3798 	if (ret1)
3799 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3800 		       ret1);
3801 
3802 	ret2 = ath10k_ahb_init();
3803 	if (ret2)
3804 		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3805 
3806 	if (ret1 && ret2)
3807 		return ret1;
3808 
3809 	/* registered to at least one bus */
3810 	return 0;
3811 }
3812 module_init(ath10k_pci_init);
3813 
ath10k_pci_exit(void)3814 static void __exit ath10k_pci_exit(void)
3815 {
3816 	pci_unregister_driver(&ath10k_pci_driver);
3817 	ath10k_ahb_exit();
3818 }
3819 
3820 module_exit(ath10k_pci_exit);
3821 
3822 MODULE_AUTHOR("Qualcomm Atheros");
3823 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros PCIe/AHB 802.11ac WLAN devices");
3824 MODULE_LICENSE("Dual BSD/GPL");
3825 
3826 /* QCA988x 2.0 firmware files */
3827 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3828 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3829 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3830 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3831 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3832 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3833 
3834 /* QCA9887 1.0 firmware files */
3835 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3836 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3837 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3838 
3839 /* QCA6174 2.1 firmware files */
3840 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3841 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3842 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3843 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3844 
3845 /* QCA6174 3.1 firmware files */
3846 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3847 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3848 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3849 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3850 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3851 
3852 /* QCA9377 1.0 firmware files */
3853 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3854 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3855 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_BOARD_DATA_FILE);
3856