xref: /linux/net/sched/sch_taprio.c (revision 37816488247ddddbc3de113c78c83572274b1e2e)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 /* net/sched/sch_taprio.c	 Time Aware Priority Scheduler
4  *
5  * Authors:	Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8 
9 #include <linux/ethtool.h>
10 #include <linux/ethtool_netlink.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/skbuff.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/time.h>
23 #include <net/gso.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/pkt_cls.h>
27 #include <net/sch_generic.h>
28 #include <net/sock.h>
29 #include <net/tcp.h>
30 
31 #define TAPRIO_STAT_NOT_SET	(~0ULL)
32 
33 #include "sch_mqprio_lib.h"
34 
35 static LIST_HEAD(taprio_list);
36 static struct static_key_false taprio_have_broken_mqprio;
37 static struct static_key_false taprio_have_working_mqprio;
38 
39 #define TAPRIO_ALL_GATES_OPEN -1
40 
41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
43 #define TAPRIO_SUPPORTED_FLAGS \
44 	(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
45 #define TAPRIO_FLAGS_INVALID U32_MAX
46 /* Minimum value for picos_per_byte to ensure non-zero duration
47  * for minimum-sized Ethernet frames (ETH_ZLEN = 60).
48  * 60 * 17 > PSEC_PER_NSEC (1000)
49  */
50 #define TAPRIO_PICOS_PER_BYTE_MIN 17
51 
52 struct sched_entry {
53 	/* Durations between this GCL entry and the GCL entry where the
54 	 * respective traffic class gate closes
55 	 */
56 	u64 gate_duration[TC_MAX_QUEUE];
57 	atomic_t budget[TC_MAX_QUEUE];
58 	/* The qdisc makes some effort so that no packet leaves
59 	 * after this time
60 	 */
61 	ktime_t gate_close_time[TC_MAX_QUEUE];
62 	struct list_head list;
63 	/* Used to calculate when to advance the schedule */
64 	ktime_t end_time;
65 	ktime_t next_txtime;
66 	int index;
67 	u32 gate_mask;
68 	u32 interval;
69 	u8 command;
70 };
71 
72 struct sched_gate_list {
73 	/* Longest non-zero contiguous gate durations per traffic class,
74 	 * or 0 if a traffic class gate never opens during the schedule.
75 	 */
76 	u64 max_open_gate_duration[TC_MAX_QUEUE];
77 	u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
78 	u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
79 	struct rcu_head rcu;
80 	struct list_head entries;
81 	size_t num_entries;
82 	ktime_t cycle_end_time;
83 	s64 cycle_time;
84 	s64 cycle_time_extension;
85 	s64 base_time;
86 };
87 
88 struct taprio_sched {
89 	struct Qdisc **qdiscs;
90 	struct Qdisc *root;
91 	u32 flags;
92 	enum tk_offsets tk_offset;
93 	int clockid;
94 	bool offloaded;
95 	bool detected_mqprio;
96 	bool broken_mqprio;
97 	atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
98 				    * speeds it's sub-nanoseconds per byte
99 				    */
100 
101 	/* Protects the update side of the RCU protected current_entry */
102 	spinlock_t current_entry_lock;
103 	struct sched_entry __rcu *current_entry;
104 	struct sched_gate_list __rcu *oper_sched;
105 	struct sched_gate_list __rcu *admin_sched;
106 	struct hrtimer advance_timer;
107 	struct list_head taprio_list;
108 	int cur_txq[TC_MAX_QUEUE];
109 	u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
110 	u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
111 	u32 txtime_delay;
112 };
113 
114 struct __tc_taprio_qopt_offload {
115 	refcount_t users;
116 	struct tc_taprio_qopt_offload offload;
117 };
118 
taprio_calculate_gate_durations(struct taprio_sched * q,struct sched_gate_list * sched)119 static void taprio_calculate_gate_durations(struct taprio_sched *q,
120 					    struct sched_gate_list *sched)
121 {
122 	struct net_device *dev = qdisc_dev(q->root);
123 	int num_tc = netdev_get_num_tc(dev);
124 	struct sched_entry *entry, *cur;
125 	int tc;
126 
127 	list_for_each_entry(entry, &sched->entries, list) {
128 		u32 gates_still_open = entry->gate_mask;
129 
130 		/* For each traffic class, calculate each open gate duration,
131 		 * starting at this schedule entry and ending at the schedule
132 		 * entry containing a gate close event for that TC.
133 		 */
134 		cur = entry;
135 
136 		do {
137 			if (!gates_still_open)
138 				break;
139 
140 			for (tc = 0; tc < num_tc; tc++) {
141 				if (!(gates_still_open & BIT(tc)))
142 					continue;
143 
144 				if (cur->gate_mask & BIT(tc))
145 					entry->gate_duration[tc] += cur->interval;
146 				else
147 					gates_still_open &= ~BIT(tc);
148 			}
149 
150 			cur = list_next_entry_circular(cur, &sched->entries, list);
151 		} while (cur != entry);
152 
153 		/* Keep track of the maximum gate duration for each traffic
154 		 * class, taking care to not confuse a traffic class which is
155 		 * temporarily closed with one that is always closed.
156 		 */
157 		for (tc = 0; tc < num_tc; tc++)
158 			if (entry->gate_duration[tc] &&
159 			    sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
160 				sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
161 	}
162 }
163 
taprio_entry_allows_tx(ktime_t skb_end_time,struct sched_entry * entry,int tc)164 static bool taprio_entry_allows_tx(ktime_t skb_end_time,
165 				   struct sched_entry *entry, int tc)
166 {
167 	return ktime_before(skb_end_time, entry->gate_close_time[tc]);
168 }
169 
sched_base_time(const struct sched_gate_list * sched)170 static ktime_t sched_base_time(const struct sched_gate_list *sched)
171 {
172 	if (!sched)
173 		return KTIME_MAX;
174 
175 	return ns_to_ktime(sched->base_time);
176 }
177 
taprio_mono_to_any(const struct taprio_sched * q,ktime_t mono)178 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
179 {
180 	/* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
181 	enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
182 
183 	switch (tk_offset) {
184 	case TK_OFFS_MAX:
185 		return mono;
186 	default:
187 		return ktime_mono_to_any(mono, tk_offset);
188 	}
189 }
190 
taprio_get_time(const struct taprio_sched * q)191 static ktime_t taprio_get_time(const struct taprio_sched *q)
192 {
193 	return taprio_mono_to_any(q, ktime_get());
194 }
195 
taprio_free_sched_cb(struct rcu_head * head)196 static void taprio_free_sched_cb(struct rcu_head *head)
197 {
198 	struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
199 	struct sched_entry *entry, *n;
200 
201 	list_for_each_entry_safe(entry, n, &sched->entries, list) {
202 		list_del(&entry->list);
203 		kfree(entry);
204 	}
205 
206 	kfree(sched);
207 }
208 
switch_schedules(struct taprio_sched * q,struct sched_gate_list ** admin,struct sched_gate_list ** oper)209 static void switch_schedules(struct taprio_sched *q,
210 			     struct sched_gate_list **admin,
211 			     struct sched_gate_list **oper)
212 {
213 	rcu_assign_pointer(q->oper_sched, *admin);
214 	rcu_assign_pointer(q->admin_sched, NULL);
215 
216 	if (*oper)
217 		call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
218 
219 	*oper = *admin;
220 	*admin = NULL;
221 }
222 
223 /* Get how much time has been already elapsed in the current cycle. */
get_cycle_time_elapsed(struct sched_gate_list * sched,ktime_t time)224 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
225 {
226 	ktime_t time_since_sched_start;
227 	s32 time_elapsed;
228 
229 	time_since_sched_start = ktime_sub(time, sched->base_time);
230 	div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
231 
232 	return time_elapsed;
233 }
234 
get_interval_end_time(struct sched_gate_list * sched,struct sched_gate_list * admin,struct sched_entry * entry,ktime_t intv_start)235 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
236 				     struct sched_gate_list *admin,
237 				     struct sched_entry *entry,
238 				     ktime_t intv_start)
239 {
240 	s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
241 	ktime_t intv_end, cycle_ext_end, cycle_end;
242 
243 	cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
244 	intv_end = ktime_add_ns(intv_start, entry->interval);
245 	cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
246 
247 	if (ktime_before(intv_end, cycle_end))
248 		return intv_end;
249 	else if (admin && admin != sched &&
250 		 ktime_after(admin->base_time, cycle_end) &&
251 		 ktime_before(admin->base_time, cycle_ext_end))
252 		return admin->base_time;
253 	else
254 		return cycle_end;
255 }
256 
length_to_duration(struct taprio_sched * q,int len)257 static int length_to_duration(struct taprio_sched *q, int len)
258 {
259 	return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
260 }
261 
duration_to_length(struct taprio_sched * q,u64 duration)262 static int duration_to_length(struct taprio_sched *q, u64 duration)
263 {
264 	return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
265 }
266 
267 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
268  * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
269  * the maximum open gate durations at the given link speed.
270  */
taprio_update_queue_max_sdu(struct taprio_sched * q,struct sched_gate_list * sched,struct qdisc_size_table * stab)271 static void taprio_update_queue_max_sdu(struct taprio_sched *q,
272 					struct sched_gate_list *sched,
273 					struct qdisc_size_table *stab)
274 {
275 	struct net_device *dev = qdisc_dev(q->root);
276 	int num_tc = netdev_get_num_tc(dev);
277 	u32 max_sdu_from_user;
278 	u32 max_sdu_dynamic;
279 	u32 max_sdu;
280 	int tc;
281 
282 	for (tc = 0; tc < num_tc; tc++) {
283 		max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
284 
285 		/* TC gate never closes => keep the queueMaxSDU
286 		 * selected by the user
287 		 */
288 		if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
289 			max_sdu_dynamic = U32_MAX;
290 		} else {
291 			u32 max_frm_len;
292 
293 			max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
294 			/* Compensate for L1 overhead from size table,
295 			 * but don't let the frame size go negative
296 			 */
297 			if (stab) {
298 				max_frm_len -= stab->szopts.overhead;
299 				max_frm_len = max_t(int, max_frm_len,
300 						    dev->hard_header_len + 1);
301 			}
302 			max_sdu_dynamic = max_frm_len - dev->hard_header_len;
303 			if (max_sdu_dynamic > dev->max_mtu)
304 				max_sdu_dynamic = U32_MAX;
305 		}
306 
307 		max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
308 
309 		if (max_sdu != U32_MAX) {
310 			sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
311 			sched->max_sdu[tc] = max_sdu;
312 		} else {
313 			sched->max_frm_len[tc] = U32_MAX; /* never oversized */
314 			sched->max_sdu[tc] = 0;
315 		}
316 	}
317 }
318 
319 /* Returns the entry corresponding to next available interval. If
320  * validate_interval is set, it only validates whether the timestamp occurs
321  * when the gate corresponding to the skb's traffic class is open.
322  */
find_entry_to_transmit(struct sk_buff * skb,struct Qdisc * sch,struct sched_gate_list * sched,struct sched_gate_list * admin,ktime_t time,ktime_t * interval_start,ktime_t * interval_end,bool validate_interval)323 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
324 						  struct Qdisc *sch,
325 						  struct sched_gate_list *sched,
326 						  struct sched_gate_list *admin,
327 						  ktime_t time,
328 						  ktime_t *interval_start,
329 						  ktime_t *interval_end,
330 						  bool validate_interval)
331 {
332 	ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
333 	ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
334 	struct sched_entry *entry = NULL, *entry_found = NULL;
335 	struct taprio_sched *q = qdisc_priv(sch);
336 	struct net_device *dev = qdisc_dev(sch);
337 	bool entry_available = false;
338 	s32 cycle_elapsed;
339 	int tc, n;
340 
341 	tc = netdev_get_prio_tc_map(dev, skb->priority);
342 	packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
343 
344 	*interval_start = 0;
345 	*interval_end = 0;
346 
347 	if (!sched)
348 		return NULL;
349 
350 	cycle = sched->cycle_time;
351 	cycle_elapsed = get_cycle_time_elapsed(sched, time);
352 	curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
353 	cycle_end = ktime_add_ns(curr_intv_end, cycle);
354 
355 	list_for_each_entry(entry, &sched->entries, list) {
356 		curr_intv_start = curr_intv_end;
357 		curr_intv_end = get_interval_end_time(sched, admin, entry,
358 						      curr_intv_start);
359 
360 		if (ktime_after(curr_intv_start, cycle_end))
361 			break;
362 
363 		if (!(entry->gate_mask & BIT(tc)) ||
364 		    packet_transmit_time > entry->interval)
365 			continue;
366 
367 		txtime = entry->next_txtime;
368 
369 		if (ktime_before(txtime, time) || validate_interval) {
370 			transmit_end_time = ktime_add_ns(time, packet_transmit_time);
371 			if ((ktime_before(curr_intv_start, time) &&
372 			     ktime_before(transmit_end_time, curr_intv_end)) ||
373 			    (ktime_after(curr_intv_start, time) && !validate_interval)) {
374 				entry_found = entry;
375 				*interval_start = curr_intv_start;
376 				*interval_end = curr_intv_end;
377 				break;
378 			} else if (!entry_available && !validate_interval) {
379 				/* Here, we are just trying to find out the
380 				 * first available interval in the next cycle.
381 				 */
382 				entry_available = true;
383 				entry_found = entry;
384 				*interval_start = ktime_add_ns(curr_intv_start, cycle);
385 				*interval_end = ktime_add_ns(curr_intv_end, cycle);
386 			}
387 		} else if (ktime_before(txtime, earliest_txtime) &&
388 			   !entry_available) {
389 			earliest_txtime = txtime;
390 			entry_found = entry;
391 			n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
392 			*interval_start = ktime_add(curr_intv_start, n * cycle);
393 			*interval_end = ktime_add(curr_intv_end, n * cycle);
394 		}
395 	}
396 
397 	return entry_found;
398 }
399 
is_valid_interval(struct sk_buff * skb,struct Qdisc * sch)400 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
401 {
402 	struct taprio_sched *q = qdisc_priv(sch);
403 	struct sched_gate_list *sched, *admin;
404 	ktime_t interval_start, interval_end;
405 	struct sched_entry *entry;
406 
407 	rcu_read_lock();
408 	sched = rcu_dereference(q->oper_sched);
409 	admin = rcu_dereference(q->admin_sched);
410 
411 	entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
412 				       &interval_start, &interval_end, true);
413 	rcu_read_unlock();
414 
415 	return entry;
416 }
417 
418 /* This returns the tstamp value set by TCP in terms of the set clock. */
get_tcp_tstamp(struct taprio_sched * q,struct sk_buff * skb)419 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
420 {
421 	unsigned int offset = skb_network_offset(skb);
422 	const struct ipv6hdr *ipv6h;
423 	const struct iphdr *iph;
424 	struct ipv6hdr _ipv6h;
425 
426 	ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
427 	if (!ipv6h)
428 		return 0;
429 
430 	if (ipv6h->version == 4) {
431 		iph = (struct iphdr *)ipv6h;
432 		offset += iph->ihl * 4;
433 
434 		/* special-case 6in4 tunnelling, as that is a common way to get
435 		 * v6 connectivity in the home
436 		 */
437 		if (iph->protocol == IPPROTO_IPV6) {
438 			ipv6h = skb_header_pointer(skb, offset,
439 						   sizeof(_ipv6h), &_ipv6h);
440 
441 			if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
442 				return 0;
443 		} else if (iph->protocol != IPPROTO_TCP) {
444 			return 0;
445 		}
446 	} else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
447 		return 0;
448 	}
449 
450 	return taprio_mono_to_any(q, skb->skb_mstamp_ns);
451 }
452 
453 /* There are a few scenarios where we will have to modify the txtime from
454  * what is read from next_txtime in sched_entry. They are:
455  * 1. If txtime is in the past,
456  *    a. The gate for the traffic class is currently open and packet can be
457  *       transmitted before it closes, schedule the packet right away.
458  *    b. If the gate corresponding to the traffic class is going to open later
459  *       in the cycle, set the txtime of packet to the interval start.
460  * 2. If txtime is in the future, there are packets corresponding to the
461  *    current traffic class waiting to be transmitted. So, the following
462  *    possibilities exist:
463  *    a. We can transmit the packet before the window containing the txtime
464  *       closes.
465  *    b. The window might close before the transmission can be completed
466  *       successfully. So, schedule the packet in the next open window.
467  */
get_packet_txtime(struct sk_buff * skb,struct Qdisc * sch)468 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
469 {
470 	ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
471 	struct taprio_sched *q = qdisc_priv(sch);
472 	struct sched_gate_list *sched, *admin;
473 	ktime_t minimum_time, now, txtime;
474 	int len, packet_transmit_time;
475 	struct sched_entry *entry;
476 	bool sched_changed;
477 
478 	now = taprio_get_time(q);
479 	minimum_time = ktime_add_ns(now, q->txtime_delay);
480 
481 	tcp_tstamp = get_tcp_tstamp(q, skb);
482 	minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
483 
484 	rcu_read_lock();
485 	admin = rcu_dereference(q->admin_sched);
486 	sched = rcu_dereference(q->oper_sched);
487 	if (admin && ktime_after(minimum_time, admin->base_time))
488 		switch_schedules(q, &admin, &sched);
489 
490 	/* Until the schedule starts, all the queues are open */
491 	if (!sched || ktime_before(minimum_time, sched->base_time)) {
492 		txtime = minimum_time;
493 		goto done;
494 	}
495 
496 	len = qdisc_pkt_len(skb);
497 	packet_transmit_time = length_to_duration(q, len);
498 
499 	do {
500 		sched_changed = false;
501 
502 		entry = find_entry_to_transmit(skb, sch, sched, admin,
503 					       minimum_time,
504 					       &interval_start, &interval_end,
505 					       false);
506 		if (!entry) {
507 			txtime = 0;
508 			goto done;
509 		}
510 
511 		txtime = entry->next_txtime;
512 		txtime = max_t(ktime_t, txtime, minimum_time);
513 		txtime = max_t(ktime_t, txtime, interval_start);
514 
515 		if (admin && admin != sched &&
516 		    ktime_after(txtime, admin->base_time)) {
517 			sched = admin;
518 			sched_changed = true;
519 			continue;
520 		}
521 
522 		transmit_end_time = ktime_add(txtime, packet_transmit_time);
523 		minimum_time = transmit_end_time;
524 
525 		/* Update the txtime of current entry to the next time it's
526 		 * interval starts.
527 		 */
528 		if (ktime_after(transmit_end_time, interval_end))
529 			entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
530 	} while (sched_changed || ktime_after(transmit_end_time, interval_end));
531 
532 	entry->next_txtime = transmit_end_time;
533 
534 done:
535 	rcu_read_unlock();
536 	return txtime;
537 }
538 
539 /* Devices with full offload are expected to honor this in hardware */
taprio_skb_exceeds_queue_max_sdu(struct Qdisc * sch,struct sk_buff * skb)540 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
541 					     struct sk_buff *skb)
542 {
543 	struct taprio_sched *q = qdisc_priv(sch);
544 	struct net_device *dev = qdisc_dev(sch);
545 	struct sched_gate_list *sched;
546 	int prio = skb->priority;
547 	bool exceeds = false;
548 	u8 tc;
549 
550 	tc = netdev_get_prio_tc_map(dev, prio);
551 
552 	rcu_read_lock();
553 	sched = rcu_dereference(q->oper_sched);
554 	if (sched && skb->len > sched->max_frm_len[tc])
555 		exceeds = true;
556 	rcu_read_unlock();
557 
558 	return exceeds;
559 }
560 
taprio_enqueue_one(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)561 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
562 			      struct Qdisc *child, struct sk_buff **to_free)
563 {
564 	struct taprio_sched *q = qdisc_priv(sch);
565 
566 	/* sk_flags are only safe to use on full sockets. */
567 	if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
568 		if (!is_valid_interval(skb, sch))
569 			return qdisc_drop(skb, sch, to_free);
570 	} else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
571 		skb->tstamp = get_packet_txtime(skb, sch);
572 		if (!skb->tstamp)
573 			return qdisc_drop(skb, sch, to_free);
574 	}
575 
576 	qdisc_qstats_backlog_inc(sch, skb);
577 	sch->q.qlen++;
578 
579 	return qdisc_enqueue(skb, child, to_free);
580 }
581 
taprio_enqueue_segmented(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)582 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
583 				    struct Qdisc *child,
584 				    struct sk_buff **to_free)
585 {
586 	unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
587 	netdev_features_t features = netif_skb_features(skb);
588 	struct sk_buff *segs, *nskb;
589 	int ret;
590 
591 	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
592 	if (IS_ERR_OR_NULL(segs))
593 		return qdisc_drop(skb, sch, to_free);
594 
595 	skb_list_walk_safe(segs, segs, nskb) {
596 		skb_mark_not_on_list(segs);
597 		qdisc_skb_cb(segs)->pkt_len = segs->len;
598 		slen += segs->len;
599 
600 		/* FIXME: we should be segmenting to a smaller size
601 		 * rather than dropping these
602 		 */
603 		if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
604 			ret = qdisc_drop(segs, sch, to_free);
605 		else
606 			ret = taprio_enqueue_one(segs, sch, child, to_free);
607 
608 		if (ret != NET_XMIT_SUCCESS) {
609 			if (net_xmit_drop_count(ret))
610 				qdisc_qstats_drop(sch);
611 		} else {
612 			numsegs++;
613 		}
614 	}
615 
616 	if (numsegs > 1)
617 		qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
618 	consume_skb(skb);
619 
620 	return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
621 }
622 
623 /* Will not be called in the full offload case, since the TX queues are
624  * attached to the Qdisc created using qdisc_create_dflt()
625  */
taprio_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)626 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
627 			  struct sk_buff **to_free)
628 {
629 	struct taprio_sched *q = qdisc_priv(sch);
630 	struct Qdisc *child;
631 	int queue;
632 
633 	queue = skb_get_queue_mapping(skb);
634 
635 	child = q->qdiscs[queue];
636 	if (unlikely(!child))
637 		return qdisc_drop(skb, sch, to_free);
638 
639 	if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
640 		/* Large packets might not be transmitted when the transmission
641 		 * duration exceeds any configured interval. Therefore, segment
642 		 * the skb into smaller chunks. Drivers with full offload are
643 		 * expected to handle this in hardware.
644 		 */
645 		if (skb_is_gso(skb))
646 			return taprio_enqueue_segmented(skb, sch, child,
647 							to_free);
648 
649 		return qdisc_drop(skb, sch, to_free);
650 	}
651 
652 	return taprio_enqueue_one(skb, sch, child, to_free);
653 }
654 
taprio_peek(struct Qdisc * sch)655 static struct sk_buff *taprio_peek(struct Qdisc *sch)
656 {
657 	WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
658 	return NULL;
659 }
660 
taprio_set_budgets(struct taprio_sched * q,struct sched_gate_list * sched,struct sched_entry * entry)661 static void taprio_set_budgets(struct taprio_sched *q,
662 			       struct sched_gate_list *sched,
663 			       struct sched_entry *entry)
664 {
665 	struct net_device *dev = qdisc_dev(q->root);
666 	int num_tc = netdev_get_num_tc(dev);
667 	int tc, budget;
668 
669 	for (tc = 0; tc < num_tc; tc++) {
670 		/* Traffic classes which never close have infinite budget */
671 		if (entry->gate_duration[tc] == sched->cycle_time)
672 			budget = INT_MAX;
673 		else
674 			budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
675 					   atomic64_read(&q->picos_per_byte));
676 
677 		atomic_set(&entry->budget[tc], budget);
678 	}
679 }
680 
681 /* When an skb is sent, it consumes from the budget of all traffic classes */
taprio_update_budgets(struct sched_entry * entry,size_t len,int tc_consumed,int num_tc)682 static int taprio_update_budgets(struct sched_entry *entry, size_t len,
683 				 int tc_consumed, int num_tc)
684 {
685 	int tc, budget, new_budget = 0;
686 
687 	for (tc = 0; tc < num_tc; tc++) {
688 		budget = atomic_read(&entry->budget[tc]);
689 		/* Don't consume from infinite budget */
690 		if (budget == INT_MAX) {
691 			if (tc == tc_consumed)
692 				new_budget = budget;
693 			continue;
694 		}
695 
696 		if (tc == tc_consumed)
697 			new_budget = atomic_sub_return(len, &entry->budget[tc]);
698 		else
699 			atomic_sub(len, &entry->budget[tc]);
700 	}
701 
702 	return new_budget;
703 }
704 
taprio_dequeue_from_txq(struct Qdisc * sch,int txq,struct sched_entry * entry,u32 gate_mask)705 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
706 					       struct sched_entry *entry,
707 					       u32 gate_mask)
708 {
709 	struct taprio_sched *q = qdisc_priv(sch);
710 	struct net_device *dev = qdisc_dev(sch);
711 	struct Qdisc *child = q->qdiscs[txq];
712 	int num_tc = netdev_get_num_tc(dev);
713 	struct sk_buff *skb;
714 	ktime_t guard;
715 	int prio;
716 	int len;
717 	u8 tc;
718 
719 	if (unlikely(!child))
720 		return NULL;
721 
722 	if (TXTIME_ASSIST_IS_ENABLED(q->flags))
723 		goto skip_peek_checks;
724 
725 	skb = child->ops->peek(child);
726 	if (!skb)
727 		return NULL;
728 
729 	prio = skb->priority;
730 	tc = netdev_get_prio_tc_map(dev, prio);
731 
732 	if (!(gate_mask & BIT(tc)))
733 		return NULL;
734 
735 	len = qdisc_pkt_len(skb);
736 	guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
737 
738 	/* In the case that there's no gate entry, there's no
739 	 * guard band ...
740 	 */
741 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
742 	    !taprio_entry_allows_tx(guard, entry, tc))
743 		return NULL;
744 
745 	/* ... and no budget. */
746 	if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
747 	    taprio_update_budgets(entry, len, tc, num_tc) < 0)
748 		return NULL;
749 
750 skip_peek_checks:
751 	skb = child->ops->dequeue(child);
752 	if (unlikely(!skb))
753 		return NULL;
754 
755 	qdisc_bstats_update(sch, skb);
756 	qdisc_qstats_backlog_dec(sch, skb);
757 	sch->q.qlen--;
758 
759 	return skb;
760 }
761 
taprio_next_tc_txq(struct net_device * dev,int tc,int * txq)762 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
763 {
764 	int offset = dev->tc_to_txq[tc].offset;
765 	int count = dev->tc_to_txq[tc].count;
766 
767 	(*txq)++;
768 	if (*txq == offset + count)
769 		*txq = offset;
770 }
771 
772 /* Prioritize higher traffic classes, and select among TXQs belonging to the
773  * same TC using round robin
774  */
taprio_dequeue_tc_priority(struct Qdisc * sch,struct sched_entry * entry,u32 gate_mask)775 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
776 						  struct sched_entry *entry,
777 						  u32 gate_mask)
778 {
779 	struct taprio_sched *q = qdisc_priv(sch);
780 	struct net_device *dev = qdisc_dev(sch);
781 	int num_tc = netdev_get_num_tc(dev);
782 	struct sk_buff *skb;
783 	int tc;
784 
785 	for (tc = num_tc - 1; tc >= 0; tc--) {
786 		int first_txq = q->cur_txq[tc];
787 
788 		if (!(gate_mask & BIT(tc)))
789 			continue;
790 
791 		do {
792 			skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
793 						      entry, gate_mask);
794 
795 			taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
796 
797 			if (q->cur_txq[tc] >= dev->num_tx_queues)
798 				q->cur_txq[tc] = first_txq;
799 
800 			if (skb)
801 				return skb;
802 		} while (q->cur_txq[tc] != first_txq);
803 	}
804 
805 	return NULL;
806 }
807 
808 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
809  * class other than to determine whether the gate is open or not
810  */
taprio_dequeue_txq_priority(struct Qdisc * sch,struct sched_entry * entry,u32 gate_mask)811 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
812 						   struct sched_entry *entry,
813 						   u32 gate_mask)
814 {
815 	struct net_device *dev = qdisc_dev(sch);
816 	struct sk_buff *skb;
817 	int i;
818 
819 	for (i = 0; i < dev->num_tx_queues; i++) {
820 		skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
821 		if (skb)
822 			return skb;
823 	}
824 
825 	return NULL;
826 }
827 
828 /* Will not be called in the full offload case, since the TX queues are
829  * attached to the Qdisc created using qdisc_create_dflt()
830  */
taprio_dequeue(struct Qdisc * sch)831 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
832 {
833 	struct taprio_sched *q = qdisc_priv(sch);
834 	struct sk_buff *skb = NULL;
835 	struct sched_entry *entry;
836 	u32 gate_mask;
837 
838 	rcu_read_lock();
839 	entry = rcu_dereference(q->current_entry);
840 	/* if there's no entry, it means that the schedule didn't
841 	 * start yet, so force all gates to be open, this is in
842 	 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
843 	 * "AdminGateStates"
844 	 */
845 	gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
846 	if (!gate_mask)
847 		goto done;
848 
849 	if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
850 	    !static_branch_likely(&taprio_have_working_mqprio)) {
851 		/* Single NIC kind which is broken */
852 		skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
853 	} else if (static_branch_likely(&taprio_have_working_mqprio) &&
854 		   !static_branch_unlikely(&taprio_have_broken_mqprio)) {
855 		/* Single NIC kind which prioritizes properly */
856 		skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
857 	} else {
858 		/* Mixed NIC kinds present in system, need dynamic testing */
859 		if (q->broken_mqprio)
860 			skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
861 		else
862 			skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
863 	}
864 
865 done:
866 	rcu_read_unlock();
867 
868 	return skb;
869 }
870 
should_restart_cycle(const struct sched_gate_list * oper,const struct sched_entry * entry)871 static bool should_restart_cycle(const struct sched_gate_list *oper,
872 				 const struct sched_entry *entry)
873 {
874 	if (list_is_last(&entry->list, &oper->entries))
875 		return true;
876 
877 	if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
878 		return true;
879 
880 	return false;
881 }
882 
should_change_schedules(const struct sched_gate_list * admin,const struct sched_gate_list * oper,ktime_t end_time)883 static bool should_change_schedules(const struct sched_gate_list *admin,
884 				    const struct sched_gate_list *oper,
885 				    ktime_t end_time)
886 {
887 	ktime_t next_base_time, extension_time;
888 
889 	if (!admin)
890 		return false;
891 
892 	next_base_time = sched_base_time(admin);
893 
894 	/* This is the simple case, the end_time would fall after
895 	 * the next schedule base_time.
896 	 */
897 	if (ktime_compare(next_base_time, end_time) <= 0)
898 		return true;
899 
900 	/* This is the cycle_time_extension case, if the end_time
901 	 * plus the amount that can be extended would fall after the
902 	 * next schedule base_time, we can extend the current schedule
903 	 * for that amount.
904 	 */
905 	extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
906 
907 	/* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
908 	 * how precisely the extension should be made. So after
909 	 * conformance testing, this logic may change.
910 	 */
911 	if (ktime_compare(next_base_time, extension_time) <= 0)
912 		return true;
913 
914 	return false;
915 }
916 
advance_sched(struct hrtimer * timer)917 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
918 {
919 	struct taprio_sched *q = container_of(timer, struct taprio_sched,
920 					      advance_timer);
921 	struct net_device *dev = qdisc_dev(q->root);
922 	struct sched_gate_list *oper, *admin;
923 	int num_tc = netdev_get_num_tc(dev);
924 	struct sched_entry *entry, *next;
925 	struct Qdisc *sch = q->root;
926 	ktime_t end_time;
927 	int tc;
928 
929 	spin_lock(&q->current_entry_lock);
930 	entry = rcu_dereference_protected(q->current_entry,
931 					  lockdep_is_held(&q->current_entry_lock));
932 	oper = rcu_dereference_protected(q->oper_sched,
933 					 lockdep_is_held(&q->current_entry_lock));
934 	admin = rcu_dereference_protected(q->admin_sched,
935 					  lockdep_is_held(&q->current_entry_lock));
936 
937 	if (!oper)
938 		switch_schedules(q, &admin, &oper);
939 
940 	/* This can happen in two cases: 1. this is the very first run
941 	 * of this function (i.e. we weren't running any schedule
942 	 * previously); 2. The previous schedule just ended. The first
943 	 * entry of all schedules are pre-calculated during the
944 	 * schedule initialization.
945 	 */
946 	if (unlikely(!entry || entry->end_time == oper->base_time)) {
947 		next = list_first_entry(&oper->entries, struct sched_entry,
948 					list);
949 		end_time = next->end_time;
950 		goto first_run;
951 	}
952 
953 	if (should_restart_cycle(oper, entry)) {
954 		next = list_first_entry(&oper->entries, struct sched_entry,
955 					list);
956 		oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
957 						    oper->cycle_time);
958 	} else {
959 		next = list_next_entry(entry, list);
960 	}
961 
962 	end_time = ktime_add_ns(entry->end_time, next->interval);
963 	end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
964 
965 	for (tc = 0; tc < num_tc; tc++) {
966 		if (next->gate_duration[tc] == oper->cycle_time)
967 			next->gate_close_time[tc] = KTIME_MAX;
968 		else
969 			next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
970 								 next->gate_duration[tc]);
971 	}
972 
973 	if (should_change_schedules(admin, oper, end_time)) {
974 		/* Set things so the next time this runs, the new
975 		 * schedule runs.
976 		 */
977 		end_time = sched_base_time(admin);
978 		switch_schedules(q, &admin, &oper);
979 	}
980 
981 	next->end_time = end_time;
982 	taprio_set_budgets(q, oper, next);
983 
984 first_run:
985 	rcu_assign_pointer(q->current_entry, next);
986 	spin_unlock(&q->current_entry_lock);
987 
988 	hrtimer_set_expires(&q->advance_timer, end_time);
989 
990 	rcu_read_lock();
991 	__netif_schedule(sch);
992 	rcu_read_unlock();
993 
994 	return HRTIMER_RESTART;
995 }
996 
997 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
998 	[TCA_TAPRIO_SCHED_ENTRY_INDEX]	   = { .type = NLA_U32 },
999 	[TCA_TAPRIO_SCHED_ENTRY_CMD]	   = { .type = NLA_U8 },
1000 	[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
1001 	[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
1002 };
1003 
1004 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1005 	[TCA_TAPRIO_TC_ENTRY_INDEX]	   = NLA_POLICY_MAX(NLA_U32,
1006 							    TC_QOPT_MAX_QUEUE - 1),
1007 	[TCA_TAPRIO_TC_ENTRY_MAX_SDU]	   = { .type = NLA_U32 },
1008 	[TCA_TAPRIO_TC_ENTRY_FP]	   = NLA_POLICY_RANGE(NLA_U32,
1009 							      TC_FP_EXPRESS,
1010 							      TC_FP_PREEMPTIBLE),
1011 };
1012 
1013 static const struct netlink_range_validation_signed taprio_cycle_time_range = {
1014 	.min = 0,
1015 	.max = INT_MAX,
1016 };
1017 
1018 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1019 	[TCA_TAPRIO_ATTR_PRIOMAP]	       = {
1020 		.len = sizeof(struct tc_mqprio_qopt)
1021 	},
1022 	[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
1023 	[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
1024 	[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
1025 	[TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
1026 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           =
1027 		NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
1028 	[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1029 	[TCA_TAPRIO_ATTR_FLAGS]                      =
1030 		NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS),
1031 	[TCA_TAPRIO_ATTR_TXTIME_DELAY]		     = { .type = NLA_U32 },
1032 	[TCA_TAPRIO_ATTR_TC_ENTRY]		     = { .type = NLA_NESTED },
1033 };
1034 
fill_sched_entry(struct taprio_sched * q,struct nlattr ** tb,struct sched_entry * entry,struct netlink_ext_ack * extack)1035 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1036 			    struct sched_entry *entry,
1037 			    struct netlink_ext_ack *extack)
1038 {
1039 	int min_duration = length_to_duration(q, ETH_ZLEN);
1040 	u32 interval = 0;
1041 
1042 	if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1043 		entry->command = nla_get_u8(
1044 			tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1045 
1046 	if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1047 		entry->gate_mask = nla_get_u32(
1048 			tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1049 
1050 	if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1051 		interval = nla_get_u32(
1052 			tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1053 
1054 	/* The interval should allow at least the minimum ethernet
1055 	 * frame to go out.
1056 	 */
1057 	if (interval < min_duration) {
1058 		NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1059 		return -EINVAL;
1060 	}
1061 
1062 	entry->interval = interval;
1063 
1064 	return 0;
1065 }
1066 
parse_sched_entry(struct taprio_sched * q,struct nlattr * n,struct sched_entry * entry,int index,struct netlink_ext_ack * extack)1067 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1068 			     struct sched_entry *entry, int index,
1069 			     struct netlink_ext_ack *extack)
1070 {
1071 	struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1072 	int err;
1073 
1074 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1075 					  entry_policy, NULL);
1076 	if (err < 0) {
1077 		NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1078 		return -EINVAL;
1079 	}
1080 
1081 	entry->index = index;
1082 
1083 	return fill_sched_entry(q, tb, entry, extack);
1084 }
1085 
parse_sched_list(struct taprio_sched * q,struct nlattr * list,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1086 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1087 			    struct sched_gate_list *sched,
1088 			    struct netlink_ext_ack *extack)
1089 {
1090 	struct nlattr *n;
1091 	int err, rem;
1092 	int i = 0;
1093 
1094 	if (!list)
1095 		return -EINVAL;
1096 
1097 	nla_for_each_nested(n, list, rem) {
1098 		struct sched_entry *entry;
1099 
1100 		if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1101 			NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1102 			continue;
1103 		}
1104 
1105 		entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1106 		if (!entry) {
1107 			NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1108 			return -ENOMEM;
1109 		}
1110 
1111 		err = parse_sched_entry(q, n, entry, i, extack);
1112 		if (err < 0) {
1113 			kfree(entry);
1114 			return err;
1115 		}
1116 
1117 		list_add_tail(&entry->list, &sched->entries);
1118 		i++;
1119 	}
1120 
1121 	sched->num_entries = i;
1122 
1123 	return i;
1124 }
1125 
parse_taprio_schedule(struct taprio_sched * q,struct nlattr ** tb,struct sched_gate_list * new,struct netlink_ext_ack * extack)1126 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1127 				 struct sched_gate_list *new,
1128 				 struct netlink_ext_ack *extack)
1129 {
1130 	int err = 0;
1131 
1132 	if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1133 		NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1134 		return -ENOTSUPP;
1135 	}
1136 
1137 	if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1138 		new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1139 
1140 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1141 		new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1142 
1143 	if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1144 		new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1145 
1146 	if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1147 		err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1148 				       new, extack);
1149 	if (err < 0)
1150 		return err;
1151 
1152 	if (!new->cycle_time) {
1153 		struct sched_entry *entry;
1154 		ktime_t cycle = 0;
1155 
1156 		list_for_each_entry(entry, &new->entries, list)
1157 			cycle = ktime_add_ns(cycle, entry->interval);
1158 
1159 		if (cycle < 0 || cycle > INT_MAX) {
1160 			NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
1161 			return -EINVAL;
1162 		}
1163 
1164 		new->cycle_time = cycle;
1165 	}
1166 
1167 	if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) {
1168 		NL_SET_ERR_MSG(extack, "'cycle_time' is too small");
1169 		return -EINVAL;
1170 	}
1171 
1172 	taprio_calculate_gate_durations(q, new);
1173 
1174 	return 0;
1175 }
1176 
taprio_parse_mqprio_opt(struct net_device * dev,struct tc_mqprio_qopt * qopt,struct netlink_ext_ack * extack,u32 taprio_flags)1177 static int taprio_parse_mqprio_opt(struct net_device *dev,
1178 				   struct tc_mqprio_qopt *qopt,
1179 				   struct netlink_ext_ack *extack,
1180 				   u32 taprio_flags)
1181 {
1182 	bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1183 
1184 	if (!qopt) {
1185 		if (!dev->num_tc) {
1186 			NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1187 			return -EINVAL;
1188 		}
1189 		return 0;
1190 	}
1191 
1192 	/* taprio imposes that traffic classes map 1:n to tx queues */
1193 	if (qopt->num_tc > dev->num_tx_queues) {
1194 		NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1195 		return -EINVAL;
1196 	}
1197 
1198 	/* For some reason, in txtime-assist mode, we allow TXQ ranges for
1199 	 * different TCs to overlap, and just validate the TXQ ranges.
1200 	 */
1201 	return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1202 				    extack);
1203 }
1204 
taprio_get_start_time(struct Qdisc * sch,struct sched_gate_list * sched,ktime_t * start)1205 static int taprio_get_start_time(struct Qdisc *sch,
1206 				 struct sched_gate_list *sched,
1207 				 ktime_t *start)
1208 {
1209 	struct taprio_sched *q = qdisc_priv(sch);
1210 	ktime_t now, base, cycle;
1211 	s64 n;
1212 
1213 	base = sched_base_time(sched);
1214 	now = taprio_get_time(q);
1215 
1216 	if (ktime_after(base, now)) {
1217 		*start = base;
1218 		return 0;
1219 	}
1220 
1221 	cycle = sched->cycle_time;
1222 
1223 	/* The qdisc is expected to have at least one sched_entry.  Moreover,
1224 	 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1225 	 * something went really wrong. In that case, we should warn about this
1226 	 * inconsistent state and return error.
1227 	 */
1228 	if (WARN_ON(!cycle))
1229 		return -EFAULT;
1230 
1231 	/* Schedule the start time for the beginning of the next
1232 	 * cycle.
1233 	 */
1234 	n = div64_s64(ktime_sub_ns(now, base), cycle);
1235 	*start = ktime_add_ns(base, (n + 1) * cycle);
1236 	return 0;
1237 }
1238 
setup_first_end_time(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1239 static void setup_first_end_time(struct taprio_sched *q,
1240 				 struct sched_gate_list *sched, ktime_t base)
1241 {
1242 	struct net_device *dev = qdisc_dev(q->root);
1243 	int num_tc = netdev_get_num_tc(dev);
1244 	struct sched_entry *first;
1245 	ktime_t cycle;
1246 	int tc;
1247 
1248 	first = list_first_entry(&sched->entries,
1249 				 struct sched_entry, list);
1250 
1251 	cycle = sched->cycle_time;
1252 
1253 	/* FIXME: find a better place to do this */
1254 	sched->cycle_end_time = ktime_add_ns(base, cycle);
1255 
1256 	first->end_time = ktime_add_ns(base, first->interval);
1257 	taprio_set_budgets(q, sched, first);
1258 
1259 	for (tc = 0; tc < num_tc; tc++) {
1260 		if (first->gate_duration[tc] == sched->cycle_time)
1261 			first->gate_close_time[tc] = KTIME_MAX;
1262 		else
1263 			first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1264 	}
1265 
1266 	rcu_assign_pointer(q->current_entry, NULL);
1267 }
1268 
taprio_start_sched(struct Qdisc * sch,ktime_t start,struct sched_gate_list * new)1269 static void taprio_start_sched(struct Qdisc *sch,
1270 			       ktime_t start, struct sched_gate_list *new)
1271 {
1272 	struct taprio_sched *q = qdisc_priv(sch);
1273 	ktime_t expires;
1274 
1275 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1276 		return;
1277 
1278 	expires = hrtimer_get_expires(&q->advance_timer);
1279 	if (expires == 0)
1280 		expires = KTIME_MAX;
1281 
1282 	/* If the new schedule starts before the next expiration, we
1283 	 * reprogram it to the earliest one, so we change the admin
1284 	 * schedule to the operational one at the right time.
1285 	 */
1286 	start = min_t(ktime_t, start, expires);
1287 
1288 	hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1289 }
1290 
taprio_set_picos_per_byte(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1291 static void taprio_set_picos_per_byte(struct net_device *dev,
1292 				      struct taprio_sched *q,
1293 				      struct netlink_ext_ack *extack)
1294 {
1295 	struct ethtool_link_ksettings ecmd;
1296 	int speed = SPEED_10;
1297 	int picos_per_byte;
1298 	int err;
1299 
1300 	err = __ethtool_get_link_ksettings(dev, &ecmd);
1301 	if (err < 0)
1302 		goto skip;
1303 
1304 	if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1305 		speed = ecmd.base.speed;
1306 
1307 skip:
1308 	picos_per_byte = (USEC_PER_SEC * 8) / speed;
1309 	if (picos_per_byte < TAPRIO_PICOS_PER_BYTE_MIN) {
1310 		if (!extack)
1311 			pr_warn("Link speed %d is too high. Schedule may be inaccurate.\n",
1312 				speed);
1313 		NL_SET_ERR_MSG_FMT_MOD(extack,
1314 				       "Link speed %d is too high. Schedule may be inaccurate.",
1315 				       speed);
1316 		picos_per_byte = TAPRIO_PICOS_PER_BYTE_MIN;
1317 	}
1318 
1319 	atomic64_set(&q->picos_per_byte, picos_per_byte);
1320 	netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1321 		   dev->name, (long long)atomic64_read(&q->picos_per_byte),
1322 		   ecmd.base.speed);
1323 }
1324 
taprio_dev_notifier(struct notifier_block * nb,unsigned long event,void * ptr)1325 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1326 			       void *ptr)
1327 {
1328 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1329 	struct sched_gate_list *oper, *admin;
1330 	struct qdisc_size_table *stab;
1331 	struct taprio_sched *q;
1332 
1333 	ASSERT_RTNL();
1334 
1335 	if (event != NETDEV_UP && event != NETDEV_CHANGE)
1336 		return NOTIFY_DONE;
1337 
1338 	list_for_each_entry(q, &taprio_list, taprio_list) {
1339 		if (dev != qdisc_dev(q->root))
1340 			continue;
1341 
1342 		taprio_set_picos_per_byte(dev, q, NULL);
1343 
1344 		stab = rtnl_dereference(q->root->stab);
1345 
1346 		rcu_read_lock();
1347 		oper = rcu_dereference(q->oper_sched);
1348 		if (oper)
1349 			taprio_update_queue_max_sdu(q, oper, stab);
1350 
1351 		admin = rcu_dereference(q->admin_sched);
1352 		if (admin)
1353 			taprio_update_queue_max_sdu(q, admin, stab);
1354 		rcu_read_unlock();
1355 
1356 		break;
1357 	}
1358 
1359 	return NOTIFY_DONE;
1360 }
1361 
setup_txtime(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1362 static void setup_txtime(struct taprio_sched *q,
1363 			 struct sched_gate_list *sched, ktime_t base)
1364 {
1365 	struct sched_entry *entry;
1366 	u64 interval = 0;
1367 
1368 	list_for_each_entry(entry, &sched->entries, list) {
1369 		entry->next_txtime = ktime_add_ns(base, interval);
1370 		interval += entry->interval;
1371 	}
1372 }
1373 
taprio_offload_alloc(int num_entries)1374 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1375 {
1376 	struct __tc_taprio_qopt_offload *__offload;
1377 
1378 	__offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1379 			    GFP_KERNEL);
1380 	if (!__offload)
1381 		return NULL;
1382 
1383 	refcount_set(&__offload->users, 1);
1384 
1385 	return &__offload->offload;
1386 }
1387 
taprio_offload_get(struct tc_taprio_qopt_offload * offload)1388 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1389 						  *offload)
1390 {
1391 	struct __tc_taprio_qopt_offload *__offload;
1392 
1393 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1394 				 offload);
1395 
1396 	refcount_inc(&__offload->users);
1397 
1398 	return offload;
1399 }
1400 EXPORT_SYMBOL_GPL(taprio_offload_get);
1401 
taprio_offload_free(struct tc_taprio_qopt_offload * offload)1402 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1403 {
1404 	struct __tc_taprio_qopt_offload *__offload;
1405 
1406 	__offload = container_of(offload, struct __tc_taprio_qopt_offload,
1407 				 offload);
1408 
1409 	if (!refcount_dec_and_test(&__offload->users))
1410 		return;
1411 
1412 	kfree(__offload);
1413 }
1414 EXPORT_SYMBOL_GPL(taprio_offload_free);
1415 
1416 /* The function will only serve to keep the pointers to the "oper" and "admin"
1417  * schedules valid in relation to their base times, so when calling dump() the
1418  * users looks at the right schedules.
1419  * When using full offload, the admin configuration is promoted to oper at the
1420  * base_time in the PHC time domain.  But because the system time is not
1421  * necessarily in sync with that, we can't just trigger a hrtimer to call
1422  * switch_schedules at the right hardware time.
1423  * At the moment we call this by hand right away from taprio, but in the future
1424  * it will be useful to create a mechanism for drivers to notify taprio of the
1425  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1426  * This is left as TODO.
1427  */
taprio_offload_config_changed(struct taprio_sched * q)1428 static void taprio_offload_config_changed(struct taprio_sched *q)
1429 {
1430 	struct sched_gate_list *oper, *admin;
1431 
1432 	oper = rtnl_dereference(q->oper_sched);
1433 	admin = rtnl_dereference(q->admin_sched);
1434 
1435 	switch_schedules(q, &admin, &oper);
1436 }
1437 
tc_map_to_queue_mask(struct net_device * dev,u32 tc_mask)1438 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1439 {
1440 	u32 i, queue_mask = 0;
1441 
1442 	for (i = 0; i < dev->num_tc; i++) {
1443 		u32 offset, count;
1444 
1445 		if (!(tc_mask & BIT(i)))
1446 			continue;
1447 
1448 		offset = dev->tc_to_txq[i].offset;
1449 		count = dev->tc_to_txq[i].count;
1450 
1451 		queue_mask |= GENMASK(offset + count - 1, offset);
1452 	}
1453 
1454 	return queue_mask;
1455 }
1456 
taprio_sched_to_offload(struct net_device * dev,struct sched_gate_list * sched,struct tc_taprio_qopt_offload * offload,const struct tc_taprio_caps * caps)1457 static void taprio_sched_to_offload(struct net_device *dev,
1458 				    struct sched_gate_list *sched,
1459 				    struct tc_taprio_qopt_offload *offload,
1460 				    const struct tc_taprio_caps *caps)
1461 {
1462 	struct sched_entry *entry;
1463 	int i = 0;
1464 
1465 	offload->base_time = sched->base_time;
1466 	offload->cycle_time = sched->cycle_time;
1467 	offload->cycle_time_extension = sched->cycle_time_extension;
1468 
1469 	list_for_each_entry(entry, &sched->entries, list) {
1470 		struct tc_taprio_sched_entry *e = &offload->entries[i];
1471 
1472 		e->command = entry->command;
1473 		e->interval = entry->interval;
1474 		if (caps->gate_mask_per_txq)
1475 			e->gate_mask = tc_map_to_queue_mask(dev,
1476 							    entry->gate_mask);
1477 		else
1478 			e->gate_mask = entry->gate_mask;
1479 
1480 		i++;
1481 	}
1482 
1483 	offload->num_entries = i;
1484 }
1485 
taprio_detect_broken_mqprio(struct taprio_sched * q)1486 static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1487 {
1488 	struct net_device *dev = qdisc_dev(q->root);
1489 	struct tc_taprio_caps caps;
1490 
1491 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1492 				 &caps, sizeof(caps));
1493 
1494 	q->broken_mqprio = caps.broken_mqprio;
1495 	if (q->broken_mqprio)
1496 		static_branch_inc(&taprio_have_broken_mqprio);
1497 	else
1498 		static_branch_inc(&taprio_have_working_mqprio);
1499 
1500 	q->detected_mqprio = true;
1501 }
1502 
taprio_cleanup_broken_mqprio(struct taprio_sched * q)1503 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1504 {
1505 	if (!q->detected_mqprio)
1506 		return;
1507 
1508 	if (q->broken_mqprio)
1509 		static_branch_dec(&taprio_have_broken_mqprio);
1510 	else
1511 		static_branch_dec(&taprio_have_working_mqprio);
1512 }
1513 
taprio_enable_offload(struct net_device * dev,struct taprio_sched * q,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1514 static int taprio_enable_offload(struct net_device *dev,
1515 				 struct taprio_sched *q,
1516 				 struct sched_gate_list *sched,
1517 				 struct netlink_ext_ack *extack)
1518 {
1519 	const struct net_device_ops *ops = dev->netdev_ops;
1520 	struct tc_taprio_qopt_offload *offload;
1521 	struct tc_taprio_caps caps;
1522 	int tc, err = 0;
1523 
1524 	if (!ops->ndo_setup_tc) {
1525 		NL_SET_ERR_MSG(extack,
1526 			       "Device does not support taprio offload");
1527 		return -EOPNOTSUPP;
1528 	}
1529 
1530 	qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1531 				 &caps, sizeof(caps));
1532 
1533 	if (!caps.supports_queue_max_sdu) {
1534 		for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1535 			if (q->max_sdu[tc]) {
1536 				NL_SET_ERR_MSG_MOD(extack,
1537 						   "Device does not handle queueMaxSDU");
1538 				return -EOPNOTSUPP;
1539 			}
1540 		}
1541 	}
1542 
1543 	offload = taprio_offload_alloc(sched->num_entries);
1544 	if (!offload) {
1545 		NL_SET_ERR_MSG(extack,
1546 			       "Not enough memory for enabling offload mode");
1547 		return -ENOMEM;
1548 	}
1549 	offload->cmd = TAPRIO_CMD_REPLACE;
1550 	offload->extack = extack;
1551 	mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1552 	offload->mqprio.extack = extack;
1553 	taprio_sched_to_offload(dev, sched, offload, &caps);
1554 	mqprio_fp_to_offload(q->fp, &offload->mqprio);
1555 
1556 	for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1557 		offload->max_sdu[tc] = q->max_sdu[tc];
1558 
1559 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1560 	if (err < 0) {
1561 		NL_SET_ERR_MSG_WEAK(extack,
1562 				    "Device failed to setup taprio offload");
1563 		goto done;
1564 	}
1565 
1566 	q->offloaded = true;
1567 
1568 done:
1569 	/* The offload structure may linger around via a reference taken by the
1570 	 * device driver, so clear up the netlink extack pointer so that the
1571 	 * driver isn't tempted to dereference data which stopped being valid
1572 	 */
1573 	offload->extack = NULL;
1574 	offload->mqprio.extack = NULL;
1575 	taprio_offload_free(offload);
1576 
1577 	return err;
1578 }
1579 
taprio_disable_offload(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1580 static int taprio_disable_offload(struct net_device *dev,
1581 				  struct taprio_sched *q,
1582 				  struct netlink_ext_ack *extack)
1583 {
1584 	const struct net_device_ops *ops = dev->netdev_ops;
1585 	struct tc_taprio_qopt_offload *offload;
1586 	int err;
1587 
1588 	if (!q->offloaded)
1589 		return 0;
1590 
1591 	offload = taprio_offload_alloc(0);
1592 	if (!offload) {
1593 		NL_SET_ERR_MSG(extack,
1594 			       "Not enough memory to disable offload mode");
1595 		return -ENOMEM;
1596 	}
1597 	offload->cmd = TAPRIO_CMD_DESTROY;
1598 
1599 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1600 	if (err < 0) {
1601 		NL_SET_ERR_MSG(extack,
1602 			       "Device failed to disable offload");
1603 		goto out;
1604 	}
1605 
1606 	q->offloaded = false;
1607 
1608 out:
1609 	taprio_offload_free(offload);
1610 
1611 	return err;
1612 }
1613 
1614 /* If full offload is enabled, the only possible clockid is the net device's
1615  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1616  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1617  * in sync with the specified clockid via a user space daemon such as phc2sys.
1618  * For both software taprio and txtime-assist, the clockid is used for the
1619  * hrtimer that advances the schedule and hence mandatory.
1620  */
taprio_parse_clockid(struct Qdisc * sch,struct nlattr ** tb,struct netlink_ext_ack * extack)1621 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1622 				struct netlink_ext_ack *extack)
1623 {
1624 	struct taprio_sched *q = qdisc_priv(sch);
1625 	struct net_device *dev = qdisc_dev(sch);
1626 	int err = -EINVAL;
1627 
1628 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1629 		const struct ethtool_ops *ops = dev->ethtool_ops;
1630 		struct kernel_ethtool_ts_info info = {
1631 			.cmd = ETHTOOL_GET_TS_INFO,
1632 			.phc_index = -1,
1633 		};
1634 
1635 		if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1636 			NL_SET_ERR_MSG(extack,
1637 				       "The 'clockid' cannot be specified for full offload");
1638 			goto out;
1639 		}
1640 
1641 		if (ops && ops->get_ts_info)
1642 			err = ops->get_ts_info(dev, &info);
1643 
1644 		if (err || info.phc_index < 0) {
1645 			NL_SET_ERR_MSG(extack,
1646 				       "Device does not have a PTP clock");
1647 			err = -ENOTSUPP;
1648 			goto out;
1649 		}
1650 	} else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1651 		int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1652 		enum tk_offsets tk_offset;
1653 
1654 		/* We only support static clockids and we don't allow
1655 		 * for it to be modified after the first init.
1656 		 */
1657 		if (clockid < 0 ||
1658 		    (q->clockid != -1 && q->clockid != clockid)) {
1659 			NL_SET_ERR_MSG(extack,
1660 				       "Changing the 'clockid' of a running schedule is not supported");
1661 			err = -ENOTSUPP;
1662 			goto out;
1663 		}
1664 
1665 		switch (clockid) {
1666 		case CLOCK_REALTIME:
1667 			tk_offset = TK_OFFS_REAL;
1668 			break;
1669 		case CLOCK_MONOTONIC:
1670 			tk_offset = TK_OFFS_MAX;
1671 			break;
1672 		case CLOCK_BOOTTIME:
1673 			tk_offset = TK_OFFS_BOOT;
1674 			break;
1675 		case CLOCK_TAI:
1676 			tk_offset = TK_OFFS_TAI;
1677 			break;
1678 		default:
1679 			NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1680 			err = -EINVAL;
1681 			goto out;
1682 		}
1683 		/* This pairs with READ_ONCE() in taprio_mono_to_any */
1684 		WRITE_ONCE(q->tk_offset, tk_offset);
1685 
1686 		q->clockid = clockid;
1687 	} else {
1688 		NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1689 		goto out;
1690 	}
1691 
1692 	/* Everything went ok, return success. */
1693 	err = 0;
1694 
1695 out:
1696 	return err;
1697 }
1698 
taprio_parse_tc_entry(struct Qdisc * sch,struct nlattr * opt,u32 max_sdu[TC_QOPT_MAX_QUEUE],u32 fp[TC_QOPT_MAX_QUEUE],unsigned long * seen_tcs,struct netlink_ext_ack * extack)1699 static int taprio_parse_tc_entry(struct Qdisc *sch,
1700 				 struct nlattr *opt,
1701 				 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1702 				 u32 fp[TC_QOPT_MAX_QUEUE],
1703 				 unsigned long *seen_tcs,
1704 				 struct netlink_ext_ack *extack)
1705 {
1706 	struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1707 	struct net_device *dev = qdisc_dev(sch);
1708 	int err, tc;
1709 	u32 val;
1710 
1711 	err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1712 			       taprio_tc_policy, extack);
1713 	if (err < 0)
1714 		return err;
1715 
1716 	if (NL_REQ_ATTR_CHECK(extack, opt, tb, TCA_TAPRIO_TC_ENTRY_INDEX)) {
1717 		NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1718 		return -EINVAL;
1719 	}
1720 
1721 	tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1722 	if (*seen_tcs & BIT(tc)) {
1723 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_TC_ENTRY_INDEX],
1724 				    "Duplicate tc entry");
1725 		return -EINVAL;
1726 	}
1727 
1728 	*seen_tcs |= BIT(tc);
1729 
1730 	if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1731 		val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1732 		if (val > dev->max_mtu) {
1733 			NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1734 			return -ERANGE;
1735 		}
1736 
1737 		max_sdu[tc] = val;
1738 	}
1739 
1740 	if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1741 		fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1742 
1743 	return 0;
1744 }
1745 
taprio_parse_tc_entries(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1746 static int taprio_parse_tc_entries(struct Qdisc *sch,
1747 				   struct nlattr *opt,
1748 				   struct netlink_ext_ack *extack)
1749 {
1750 	struct taprio_sched *q = qdisc_priv(sch);
1751 	struct net_device *dev = qdisc_dev(sch);
1752 	u32 max_sdu[TC_QOPT_MAX_QUEUE];
1753 	bool have_preemption = false;
1754 	unsigned long seen_tcs = 0;
1755 	u32 fp[TC_QOPT_MAX_QUEUE];
1756 	struct nlattr *n;
1757 	int tc, rem;
1758 	int err = 0;
1759 
1760 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1761 		max_sdu[tc] = q->max_sdu[tc];
1762 		fp[tc] = q->fp[tc];
1763 	}
1764 
1765 	nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) {
1766 		err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1767 					    extack);
1768 		if (err)
1769 			return err;
1770 	}
1771 
1772 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1773 		q->max_sdu[tc] = max_sdu[tc];
1774 		q->fp[tc] = fp[tc];
1775 		if (fp[tc] != TC_FP_EXPRESS)
1776 			have_preemption = true;
1777 	}
1778 
1779 	if (have_preemption) {
1780 		if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1781 			NL_SET_ERR_MSG(extack,
1782 				       "Preemption only supported with full offload");
1783 			return -EOPNOTSUPP;
1784 		}
1785 
1786 		if (!ethtool_dev_mm_supported(dev)) {
1787 			NL_SET_ERR_MSG(extack,
1788 				       "Device does not support preemption");
1789 			return -EOPNOTSUPP;
1790 		}
1791 	}
1792 
1793 	return err;
1794 }
1795 
taprio_mqprio_cmp(const struct net_device * dev,const struct tc_mqprio_qopt * mqprio)1796 static int taprio_mqprio_cmp(const struct net_device *dev,
1797 			     const struct tc_mqprio_qopt *mqprio)
1798 {
1799 	int i;
1800 
1801 	if (!mqprio || mqprio->num_tc != dev->num_tc)
1802 		return -1;
1803 
1804 	for (i = 0; i < mqprio->num_tc; i++)
1805 		if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1806 		    dev->tc_to_txq[i].offset != mqprio->offset[i])
1807 			return -1;
1808 
1809 	for (i = 0; i <= TC_BITMASK; i++)
1810 		if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1811 			return -1;
1812 
1813 	return 0;
1814 }
1815 
taprio_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1816 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1817 			 struct netlink_ext_ack *extack)
1818 {
1819 	struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1820 	struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1821 	struct sched_gate_list *oper, *admin, *new_admin;
1822 	struct taprio_sched *q = qdisc_priv(sch);
1823 	struct net_device *dev = qdisc_dev(sch);
1824 	struct tc_mqprio_qopt *mqprio = NULL;
1825 	unsigned long flags;
1826 	u32 taprio_flags;
1827 	ktime_t start;
1828 	int i, err;
1829 
1830 	err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1831 					  taprio_policy, extack);
1832 	if (err < 0)
1833 		return err;
1834 
1835 	if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1836 		mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1837 
1838 	/* The semantics of the 'flags' argument in relation to 'change()'
1839 	 * requests, are interpreted following two rules (which are applied in
1840 	 * this order): (1) an omitted 'flags' argument is interpreted as
1841 	 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1842 	 * changed.
1843 	 */
1844 	taprio_flags = nla_get_u32_default(tb[TCA_TAPRIO_ATTR_FLAGS], 0);
1845 
1846 	/* txtime-assist and full offload are mutually exclusive */
1847 	if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
1848 	    (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) {
1849 		NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS],
1850 				    "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive");
1851 		return -EINVAL;
1852 	}
1853 
1854 	if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) {
1855 		NL_SET_ERR_MSG_MOD(extack,
1856 				   "Changing 'flags' of a running schedule is not supported");
1857 		return -EOPNOTSUPP;
1858 	}
1859 	q->flags = taprio_flags;
1860 
1861 	/* Needed for length_to_duration() during netlink attribute parsing */
1862 	taprio_set_picos_per_byte(dev, q, extack);
1863 
1864 	err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1865 	if (err < 0)
1866 		return err;
1867 
1868 	err = taprio_parse_tc_entries(sch, opt, extack);
1869 	if (err)
1870 		return err;
1871 
1872 	new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1873 	if (!new_admin) {
1874 		NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1875 		return -ENOMEM;
1876 	}
1877 	INIT_LIST_HEAD(&new_admin->entries);
1878 
1879 	oper = rtnl_dereference(q->oper_sched);
1880 	admin = rtnl_dereference(q->admin_sched);
1881 
1882 	/* no changes - no new mqprio settings */
1883 	if (!taprio_mqprio_cmp(dev, mqprio))
1884 		mqprio = NULL;
1885 
1886 	if (mqprio && (oper || admin)) {
1887 		NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1888 		err = -ENOTSUPP;
1889 		goto free_sched;
1890 	}
1891 
1892 	if (mqprio) {
1893 		err = netdev_set_num_tc(dev, mqprio->num_tc);
1894 		if (err)
1895 			goto free_sched;
1896 		for (i = 0; i < mqprio->num_tc; i++) {
1897 			netdev_set_tc_queue(dev, i,
1898 					    mqprio->count[i],
1899 					    mqprio->offset[i]);
1900 			q->cur_txq[i] = mqprio->offset[i];
1901 		}
1902 
1903 		/* Always use supplied priority mappings */
1904 		for (i = 0; i <= TC_BITMASK; i++)
1905 			netdev_set_prio_tc_map(dev, i,
1906 					       mqprio->prio_tc_map[i]);
1907 	}
1908 
1909 	err = parse_taprio_schedule(q, tb, new_admin, extack);
1910 	if (err < 0)
1911 		goto free_sched;
1912 
1913 	if (new_admin->num_entries == 0) {
1914 		NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1915 		err = -EINVAL;
1916 		goto free_sched;
1917 	}
1918 
1919 	err = taprio_parse_clockid(sch, tb, extack);
1920 	if (err < 0)
1921 		goto free_sched;
1922 
1923 	taprio_update_queue_max_sdu(q, new_admin, stab);
1924 
1925 	if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1926 		err = taprio_enable_offload(dev, q, new_admin, extack);
1927 	else
1928 		err = taprio_disable_offload(dev, q, extack);
1929 	if (err)
1930 		goto free_sched;
1931 
1932 	/* Protects against enqueue()/dequeue() */
1933 	spin_lock_bh(qdisc_lock(sch));
1934 
1935 	if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1936 		if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1937 			NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1938 			err = -EINVAL;
1939 			goto unlock;
1940 		}
1941 
1942 		q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1943 	}
1944 
1945 	if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1946 	    !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1947 	    !hrtimer_active(&q->advance_timer)) {
1948 		hrtimer_setup(&q->advance_timer, advance_sched, q->clockid, HRTIMER_MODE_ABS);
1949 	}
1950 
1951 	err = taprio_get_start_time(sch, new_admin, &start);
1952 	if (err < 0) {
1953 		NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1954 		goto unlock;
1955 	}
1956 
1957 	setup_txtime(q, new_admin, start);
1958 
1959 	if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1960 		if (!oper) {
1961 			rcu_assign_pointer(q->oper_sched, new_admin);
1962 			err = 0;
1963 			new_admin = NULL;
1964 			goto unlock;
1965 		}
1966 
1967 		/* Not going to race against advance_sched(), but still */
1968 		admin = rcu_replace_pointer(q->admin_sched, new_admin,
1969 					    lockdep_rtnl_is_held());
1970 		if (admin)
1971 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1972 	} else {
1973 		setup_first_end_time(q, new_admin, start);
1974 
1975 		/* Protects against advance_sched() */
1976 		spin_lock_irqsave(&q->current_entry_lock, flags);
1977 
1978 		taprio_start_sched(sch, start, new_admin);
1979 
1980 		admin = rcu_replace_pointer(q->admin_sched, new_admin,
1981 					    lockdep_rtnl_is_held());
1982 		if (admin)
1983 			call_rcu(&admin->rcu, taprio_free_sched_cb);
1984 
1985 		spin_unlock_irqrestore(&q->current_entry_lock, flags);
1986 
1987 		if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1988 			taprio_offload_config_changed(q);
1989 	}
1990 
1991 	new_admin = NULL;
1992 	err = 0;
1993 
1994 	if (!stab)
1995 		NL_SET_ERR_MSG_MOD(extack,
1996 				   "Size table not specified, frame length estimations may be inaccurate");
1997 
1998 unlock:
1999 	spin_unlock_bh(qdisc_lock(sch));
2000 
2001 free_sched:
2002 	if (new_admin)
2003 		call_rcu(&new_admin->rcu, taprio_free_sched_cb);
2004 
2005 	return err;
2006 }
2007 
taprio_reset(struct Qdisc * sch)2008 static void taprio_reset(struct Qdisc *sch)
2009 {
2010 	struct taprio_sched *q = qdisc_priv(sch);
2011 	struct net_device *dev = qdisc_dev(sch);
2012 	int i;
2013 
2014 	hrtimer_cancel(&q->advance_timer);
2015 
2016 	if (q->qdiscs) {
2017 		for (i = 0; i < dev->num_tx_queues; i++)
2018 			if (q->qdiscs[i])
2019 				qdisc_reset(q->qdiscs[i]);
2020 	}
2021 }
2022 
taprio_destroy(struct Qdisc * sch)2023 static void taprio_destroy(struct Qdisc *sch)
2024 {
2025 	struct taprio_sched *q = qdisc_priv(sch);
2026 	struct net_device *dev = qdisc_dev(sch);
2027 	struct sched_gate_list *oper, *admin;
2028 	unsigned int i;
2029 
2030 	list_del(&q->taprio_list);
2031 
2032 	/* Note that taprio_reset() might not be called if an error
2033 	 * happens in qdisc_create(), after taprio_init() has been called.
2034 	 */
2035 	hrtimer_cancel(&q->advance_timer);
2036 	qdisc_synchronize(sch);
2037 
2038 	taprio_disable_offload(dev, q, NULL);
2039 
2040 	if (q->qdiscs) {
2041 		for (i = 0; i < dev->num_tx_queues; i++)
2042 			qdisc_put(q->qdiscs[i]);
2043 
2044 		kfree(q->qdiscs);
2045 	}
2046 	q->qdiscs = NULL;
2047 
2048 	netdev_reset_tc(dev);
2049 
2050 	oper = rtnl_dereference(q->oper_sched);
2051 	admin = rtnl_dereference(q->admin_sched);
2052 
2053 	if (oper)
2054 		call_rcu(&oper->rcu, taprio_free_sched_cb);
2055 
2056 	if (admin)
2057 		call_rcu(&admin->rcu, taprio_free_sched_cb);
2058 
2059 	taprio_cleanup_broken_mqprio(q);
2060 }
2061 
taprio_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2062 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2063 		       struct netlink_ext_ack *extack)
2064 {
2065 	struct taprio_sched *q = qdisc_priv(sch);
2066 	struct net_device *dev = qdisc_dev(sch);
2067 	int i, tc;
2068 
2069 	spin_lock_init(&q->current_entry_lock);
2070 
2071 	hrtimer_setup(&q->advance_timer, advance_sched, CLOCK_TAI, HRTIMER_MODE_ABS);
2072 
2073 	q->root = sch;
2074 
2075 	/* We only support static clockids. Use an invalid value as default
2076 	 * and get the valid one on taprio_change().
2077 	 */
2078 	q->clockid = -1;
2079 	q->flags = TAPRIO_FLAGS_INVALID;
2080 
2081 	list_add(&q->taprio_list, &taprio_list);
2082 
2083 	if (sch->parent != TC_H_ROOT) {
2084 		NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2085 		return -EOPNOTSUPP;
2086 	}
2087 
2088 	if (!netif_is_multiqueue(dev)) {
2089 		NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2090 		return -EOPNOTSUPP;
2091 	}
2092 
2093 	q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
2094 			    GFP_KERNEL);
2095 	if (!q->qdiscs)
2096 		return -ENOMEM;
2097 
2098 	if (!opt)
2099 		return -EINVAL;
2100 
2101 	for (i = 0; i < dev->num_tx_queues; i++) {
2102 		struct netdev_queue *dev_queue;
2103 		struct Qdisc *qdisc;
2104 
2105 		dev_queue = netdev_get_tx_queue(dev, i);
2106 		qdisc = qdisc_create_dflt(dev_queue,
2107 					  &pfifo_qdisc_ops,
2108 					  TC_H_MAKE(TC_H_MAJ(sch->handle),
2109 						    TC_H_MIN(i + 1)),
2110 					  extack);
2111 		if (!qdisc)
2112 			return -ENOMEM;
2113 
2114 		if (i < dev->real_num_tx_queues)
2115 			qdisc_hash_add(qdisc, false);
2116 
2117 		q->qdiscs[i] = qdisc;
2118 	}
2119 
2120 	for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2121 		q->fp[tc] = TC_FP_EXPRESS;
2122 
2123 	taprio_detect_broken_mqprio(q);
2124 
2125 	return taprio_change(sch, opt, extack);
2126 }
2127 
taprio_attach(struct Qdisc * sch)2128 static void taprio_attach(struct Qdisc *sch)
2129 {
2130 	struct taprio_sched *q = qdisc_priv(sch);
2131 	struct net_device *dev = qdisc_dev(sch);
2132 	unsigned int ntx;
2133 
2134 	/* Attach underlying qdisc */
2135 	for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2136 		struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
2137 		struct Qdisc *old, *dev_queue_qdisc;
2138 
2139 		if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2140 			struct Qdisc *qdisc = q->qdiscs[ntx];
2141 
2142 			/* In offload mode, the root taprio qdisc is bypassed
2143 			 * and the netdev TX queues see the children directly
2144 			 */
2145 			qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2146 			dev_queue_qdisc = qdisc;
2147 		} else {
2148 			/* In software mode, attach the root taprio qdisc
2149 			 * to all netdev TX queues, so that dev_qdisc_enqueue()
2150 			 * goes through taprio_enqueue().
2151 			 */
2152 			dev_queue_qdisc = sch;
2153 		}
2154 		old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
2155 		/* The qdisc's refcount requires to be elevated once
2156 		 * for each netdev TX queue it is grafted onto
2157 		 */
2158 		qdisc_refcount_inc(dev_queue_qdisc);
2159 		if (old)
2160 			qdisc_put(old);
2161 	}
2162 }
2163 
taprio_queue_get(struct Qdisc * sch,unsigned long cl)2164 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2165 					     unsigned long cl)
2166 {
2167 	struct net_device *dev = qdisc_dev(sch);
2168 	unsigned long ntx = cl - 1;
2169 
2170 	if (ntx >= dev->num_tx_queues)
2171 		return NULL;
2172 
2173 	return netdev_get_tx_queue(dev, ntx);
2174 }
2175 
taprio_graft(struct Qdisc * sch,unsigned long cl,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)2176 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2177 			struct Qdisc *new, struct Qdisc **old,
2178 			struct netlink_ext_ack *extack)
2179 {
2180 	struct taprio_sched *q = qdisc_priv(sch);
2181 	struct net_device *dev = qdisc_dev(sch);
2182 	struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2183 
2184 	if (!dev_queue)
2185 		return -EINVAL;
2186 
2187 	if (dev->flags & IFF_UP)
2188 		dev_deactivate(dev);
2189 
2190 	/* In offload mode, the child Qdisc is directly attached to the netdev
2191 	 * TX queue, and thus, we need to keep its refcount elevated in order
2192 	 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
2193 	 * However, save the reference to the new qdisc in the private array in
2194 	 * both software and offload cases, to have an up-to-date reference to
2195 	 * our children.
2196 	 */
2197 	*old = q->qdiscs[cl - 1];
2198 	if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2199 		WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
2200 		if (new)
2201 			qdisc_refcount_inc(new);
2202 		if (*old)
2203 			qdisc_put(*old);
2204 	}
2205 
2206 	q->qdiscs[cl - 1] = new;
2207 	if (new)
2208 		new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2209 
2210 	if (dev->flags & IFF_UP)
2211 		dev_activate(dev);
2212 
2213 	return 0;
2214 }
2215 
dump_entry(struct sk_buff * msg,const struct sched_entry * entry)2216 static int dump_entry(struct sk_buff *msg,
2217 		      const struct sched_entry *entry)
2218 {
2219 	struct nlattr *item;
2220 
2221 	item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2222 	if (!item)
2223 		return -ENOSPC;
2224 
2225 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2226 		goto nla_put_failure;
2227 
2228 	if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2229 		goto nla_put_failure;
2230 
2231 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2232 			entry->gate_mask))
2233 		goto nla_put_failure;
2234 
2235 	if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2236 			entry->interval))
2237 		goto nla_put_failure;
2238 
2239 	return nla_nest_end(msg, item);
2240 
2241 nla_put_failure:
2242 	nla_nest_cancel(msg, item);
2243 	return -1;
2244 }
2245 
dump_schedule(struct sk_buff * msg,const struct sched_gate_list * root)2246 static int dump_schedule(struct sk_buff *msg,
2247 			 const struct sched_gate_list *root)
2248 {
2249 	struct nlattr *entry_list;
2250 	struct sched_entry *entry;
2251 
2252 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2253 			root->base_time, TCA_TAPRIO_PAD))
2254 		return -1;
2255 
2256 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2257 			root->cycle_time, TCA_TAPRIO_PAD))
2258 		return -1;
2259 
2260 	if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2261 			root->cycle_time_extension, TCA_TAPRIO_PAD))
2262 		return -1;
2263 
2264 	entry_list = nla_nest_start_noflag(msg,
2265 					   TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2266 	if (!entry_list)
2267 		goto error_nest;
2268 
2269 	list_for_each_entry(entry, &root->entries, list) {
2270 		if (dump_entry(msg, entry) < 0)
2271 			goto error_nest;
2272 	}
2273 
2274 	nla_nest_end(msg, entry_list);
2275 	return 0;
2276 
2277 error_nest:
2278 	nla_nest_cancel(msg, entry_list);
2279 	return -1;
2280 }
2281 
taprio_dump_tc_entries(struct sk_buff * skb,struct taprio_sched * q,struct sched_gate_list * sched)2282 static int taprio_dump_tc_entries(struct sk_buff *skb,
2283 				  struct taprio_sched *q,
2284 				  struct sched_gate_list *sched)
2285 {
2286 	struct nlattr *n;
2287 	int tc;
2288 
2289 	for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2290 		n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2291 		if (!n)
2292 			return -EMSGSIZE;
2293 
2294 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2295 			goto nla_put_failure;
2296 
2297 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2298 				sched->max_sdu[tc]))
2299 			goto nla_put_failure;
2300 
2301 		if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2302 			goto nla_put_failure;
2303 
2304 		nla_nest_end(skb, n);
2305 	}
2306 
2307 	return 0;
2308 
2309 nla_put_failure:
2310 	nla_nest_cancel(skb, n);
2311 	return -EMSGSIZE;
2312 }
2313 
taprio_put_stat(struct sk_buff * skb,u64 val,u16 attrtype)2314 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
2315 {
2316 	if (val == TAPRIO_STAT_NOT_SET)
2317 		return 0;
2318 	if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
2319 		return -EMSGSIZE;
2320 	return 0;
2321 }
2322 
taprio_dump_xstats(struct Qdisc * sch,struct gnet_dump * d,struct tc_taprio_qopt_offload * offload,struct tc_taprio_qopt_stats * stats)2323 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
2324 			      struct tc_taprio_qopt_offload *offload,
2325 			      struct tc_taprio_qopt_stats *stats)
2326 {
2327 	struct net_device *dev = qdisc_dev(sch);
2328 	const struct net_device_ops *ops;
2329 	struct sk_buff *skb = d->skb;
2330 	struct nlattr *xstats;
2331 	int err;
2332 
2333 	ops = qdisc_dev(sch)->netdev_ops;
2334 
2335 	/* FIXME I could use qdisc_offload_dump_helper(), but that messes
2336 	 * with sch->flags depending on whether the device reports taprio
2337 	 * stats, and I'm not sure whether that's a good idea, considering
2338 	 * that stats are optional to the offload itself
2339 	 */
2340 	if (!ops->ndo_setup_tc)
2341 		return 0;
2342 
2343 	memset(stats, 0xff, sizeof(*stats));
2344 
2345 	err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
2346 	if (err == -EOPNOTSUPP)
2347 		return 0;
2348 	if (err)
2349 		return err;
2350 
2351 	xstats = nla_nest_start(skb, TCA_STATS_APP);
2352 	if (!xstats)
2353 		goto err;
2354 
2355 	if (taprio_put_stat(skb, stats->window_drops,
2356 			    TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
2357 	    taprio_put_stat(skb, stats->tx_overruns,
2358 			    TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
2359 		goto err_cancel;
2360 
2361 	nla_nest_end(skb, xstats);
2362 
2363 	return 0;
2364 
2365 err_cancel:
2366 	nla_nest_cancel(skb, xstats);
2367 err:
2368 	return -EMSGSIZE;
2369 }
2370 
taprio_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2371 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2372 {
2373 	struct tc_taprio_qopt_offload offload = {
2374 		.cmd = TAPRIO_CMD_STATS,
2375 	};
2376 
2377 	return taprio_dump_xstats(sch, d, &offload, &offload.stats);
2378 }
2379 
taprio_dump(struct Qdisc * sch,struct sk_buff * skb)2380 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2381 {
2382 	struct taprio_sched *q = qdisc_priv(sch);
2383 	struct net_device *dev = qdisc_dev(sch);
2384 	struct sched_gate_list *oper, *admin;
2385 	struct tc_mqprio_qopt opt = { 0 };
2386 	struct nlattr *nest, *sched_nest;
2387 
2388 	mqprio_qopt_reconstruct(dev, &opt);
2389 
2390 	nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2391 	if (!nest)
2392 		goto start_error;
2393 
2394 	if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2395 		goto options_error;
2396 
2397 	if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2398 	    nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2399 		goto options_error;
2400 
2401 	if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2402 		goto options_error;
2403 
2404 	if (q->txtime_delay &&
2405 	    nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2406 		goto options_error;
2407 
2408 	rcu_read_lock();
2409 
2410 	oper = rtnl_dereference(q->oper_sched);
2411 	admin = rtnl_dereference(q->admin_sched);
2412 
2413 	if (oper && taprio_dump_tc_entries(skb, q, oper))
2414 		goto options_error_rcu;
2415 
2416 	if (oper && dump_schedule(skb, oper))
2417 		goto options_error_rcu;
2418 
2419 	if (!admin)
2420 		goto done;
2421 
2422 	sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2423 	if (!sched_nest)
2424 		goto options_error_rcu;
2425 
2426 	if (dump_schedule(skb, admin))
2427 		goto admin_error;
2428 
2429 	nla_nest_end(skb, sched_nest);
2430 
2431 done:
2432 	rcu_read_unlock();
2433 	return nla_nest_end(skb, nest);
2434 
2435 admin_error:
2436 	nla_nest_cancel(skb, sched_nest);
2437 
2438 options_error_rcu:
2439 	rcu_read_unlock();
2440 
2441 options_error:
2442 	nla_nest_cancel(skb, nest);
2443 
2444 start_error:
2445 	return -ENOSPC;
2446 }
2447 
taprio_leaf(struct Qdisc * sch,unsigned long cl)2448 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2449 {
2450 	struct taprio_sched *q = qdisc_priv(sch);
2451 	struct net_device *dev = qdisc_dev(sch);
2452 	unsigned int ntx = cl - 1;
2453 
2454 	if (ntx >= dev->num_tx_queues)
2455 		return NULL;
2456 
2457 	return q->qdiscs[ntx];
2458 }
2459 
taprio_find(struct Qdisc * sch,u32 classid)2460 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2461 {
2462 	unsigned int ntx = TC_H_MIN(classid);
2463 
2464 	if (!taprio_queue_get(sch, ntx))
2465 		return 0;
2466 	return ntx;
2467 }
2468 
taprio_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2469 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2470 			     struct sk_buff *skb, struct tcmsg *tcm)
2471 {
2472 	struct Qdisc *child = taprio_leaf(sch, cl);
2473 
2474 	tcm->tcm_parent = TC_H_ROOT;
2475 	tcm->tcm_handle |= TC_H_MIN(cl);
2476 	tcm->tcm_info = child->handle;
2477 
2478 	return 0;
2479 }
2480 
taprio_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)2481 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2482 				   struct gnet_dump *d)
2483 	__releases(d->lock)
2484 	__acquires(d->lock)
2485 {
2486 	struct Qdisc *child = taprio_leaf(sch, cl);
2487 	struct tc_taprio_qopt_offload offload = {
2488 		.cmd = TAPRIO_CMD_QUEUE_STATS,
2489 		.queue_stats = {
2490 			.queue = cl - 1,
2491 		},
2492 	};
2493 
2494 	if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
2495 	    qdisc_qstats_copy(d, child) < 0)
2496 		return -1;
2497 
2498 	return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
2499 }
2500 
taprio_walk(struct Qdisc * sch,struct qdisc_walker * arg)2501 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2502 {
2503 	struct net_device *dev = qdisc_dev(sch);
2504 	unsigned long ntx;
2505 
2506 	if (arg->stop)
2507 		return;
2508 
2509 	arg->count = arg->skip;
2510 	for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2511 		if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2512 			break;
2513 	}
2514 }
2515 
taprio_select_queue(struct Qdisc * sch,struct tcmsg * tcm)2516 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2517 						struct tcmsg *tcm)
2518 {
2519 	return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2520 }
2521 
2522 static const struct Qdisc_class_ops taprio_class_ops = {
2523 	.graft		= taprio_graft,
2524 	.leaf		= taprio_leaf,
2525 	.find		= taprio_find,
2526 	.walk		= taprio_walk,
2527 	.dump		= taprio_dump_class,
2528 	.dump_stats	= taprio_dump_class_stats,
2529 	.select_queue	= taprio_select_queue,
2530 };
2531 
2532 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2533 	.cl_ops		= &taprio_class_ops,
2534 	.id		= "taprio",
2535 	.priv_size	= sizeof(struct taprio_sched),
2536 	.init		= taprio_init,
2537 	.change		= taprio_change,
2538 	.destroy	= taprio_destroy,
2539 	.reset		= taprio_reset,
2540 	.attach		= taprio_attach,
2541 	.peek		= taprio_peek,
2542 	.dequeue	= taprio_dequeue,
2543 	.enqueue	= taprio_enqueue,
2544 	.dump		= taprio_dump,
2545 	.dump_stats	= taprio_dump_stats,
2546 	.owner		= THIS_MODULE,
2547 };
2548 MODULE_ALIAS_NET_SCH("taprio");
2549 
2550 static struct notifier_block taprio_device_notifier = {
2551 	.notifier_call = taprio_dev_notifier,
2552 };
2553 
taprio_module_init(void)2554 static int __init taprio_module_init(void)
2555 {
2556 	int err = register_netdevice_notifier(&taprio_device_notifier);
2557 
2558 	if (err)
2559 		return err;
2560 
2561 	return register_qdisc(&taprio_qdisc_ops);
2562 }
2563 
taprio_module_exit(void)2564 static void __exit taprio_module_exit(void)
2565 {
2566 	unregister_qdisc(&taprio_qdisc_ops);
2567 	unregister_netdevice_notifier(&taprio_device_notifier);
2568 }
2569 
2570 module_init(taprio_module_init);
2571 module_exit(taprio_module_exit);
2572 MODULE_LICENSE("GPL");
2573 MODULE_DESCRIPTION("Time Aware Priority qdisc");
2574