1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler
4 *
5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
6 *
7 */
8
9 #include <linux/ethtool.h>
10 #include <linux/ethtool_netlink.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/string.h>
15 #include <linux/list.h>
16 #include <linux/errno.h>
17 #include <linux/skbuff.h>
18 #include <linux/math64.h>
19 #include <linux/module.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/time.h>
23 #include <net/gso.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
26 #include <net/pkt_cls.h>
27 #include <net/sch_generic.h>
28 #include <net/sock.h>
29 #include <net/tcp.h>
30
31 #define TAPRIO_STAT_NOT_SET (~0ULL)
32
33 #include "sch_mqprio_lib.h"
34
35 static LIST_HEAD(taprio_list);
36 static struct static_key_false taprio_have_broken_mqprio;
37 static struct static_key_false taprio_have_working_mqprio;
38
39 #define TAPRIO_ALL_GATES_OPEN -1
40
41 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
42 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
43 #define TAPRIO_SUPPORTED_FLAGS \
44 (TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST | TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
45 #define TAPRIO_FLAGS_INVALID U32_MAX
46 /* Minimum value for picos_per_byte to ensure non-zero duration
47 * for minimum-sized Ethernet frames (ETH_ZLEN = 60).
48 * 60 * 17 > PSEC_PER_NSEC (1000)
49 */
50 #define TAPRIO_PICOS_PER_BYTE_MIN 17
51
52 struct sched_entry {
53 /* Durations between this GCL entry and the GCL entry where the
54 * respective traffic class gate closes
55 */
56 u64 gate_duration[TC_MAX_QUEUE];
57 atomic_t budget[TC_MAX_QUEUE];
58 /* The qdisc makes some effort so that no packet leaves
59 * after this time
60 */
61 ktime_t gate_close_time[TC_MAX_QUEUE];
62 struct list_head list;
63 /* Used to calculate when to advance the schedule */
64 ktime_t end_time;
65 ktime_t next_txtime;
66 int index;
67 u32 gate_mask;
68 u32 interval;
69 u8 command;
70 };
71
72 struct sched_gate_list {
73 /* Longest non-zero contiguous gate durations per traffic class,
74 * or 0 if a traffic class gate never opens during the schedule.
75 */
76 u64 max_open_gate_duration[TC_MAX_QUEUE];
77 u32 max_frm_len[TC_MAX_QUEUE]; /* for the fast path */
78 u32 max_sdu[TC_MAX_QUEUE]; /* for dump */
79 struct rcu_head rcu;
80 struct list_head entries;
81 size_t num_entries;
82 ktime_t cycle_end_time;
83 s64 cycle_time;
84 s64 cycle_time_extension;
85 s64 base_time;
86 };
87
88 struct taprio_sched {
89 struct Qdisc **qdiscs;
90 struct Qdisc *root;
91 u32 flags;
92 enum tk_offsets tk_offset;
93 int clockid;
94 bool offloaded;
95 bool detected_mqprio;
96 bool broken_mqprio;
97 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
98 * speeds it's sub-nanoseconds per byte
99 */
100
101 /* Protects the update side of the RCU protected current_entry */
102 spinlock_t current_entry_lock;
103 struct sched_entry __rcu *current_entry;
104 struct sched_gate_list __rcu *oper_sched;
105 struct sched_gate_list __rcu *admin_sched;
106 struct hrtimer advance_timer;
107 struct list_head taprio_list;
108 int cur_txq[TC_MAX_QUEUE];
109 u32 max_sdu[TC_MAX_QUEUE]; /* save info from the user */
110 u32 fp[TC_QOPT_MAX_QUEUE]; /* only for dump and offloading */
111 u32 txtime_delay;
112 };
113
114 struct __tc_taprio_qopt_offload {
115 refcount_t users;
116 struct tc_taprio_qopt_offload offload;
117 };
118
taprio_calculate_gate_durations(struct taprio_sched * q,struct sched_gate_list * sched)119 static void taprio_calculate_gate_durations(struct taprio_sched *q,
120 struct sched_gate_list *sched)
121 {
122 struct net_device *dev = qdisc_dev(q->root);
123 int num_tc = netdev_get_num_tc(dev);
124 struct sched_entry *entry, *cur;
125 int tc;
126
127 list_for_each_entry(entry, &sched->entries, list) {
128 u32 gates_still_open = entry->gate_mask;
129
130 /* For each traffic class, calculate each open gate duration,
131 * starting at this schedule entry and ending at the schedule
132 * entry containing a gate close event for that TC.
133 */
134 cur = entry;
135
136 do {
137 if (!gates_still_open)
138 break;
139
140 for (tc = 0; tc < num_tc; tc++) {
141 if (!(gates_still_open & BIT(tc)))
142 continue;
143
144 if (cur->gate_mask & BIT(tc))
145 entry->gate_duration[tc] += cur->interval;
146 else
147 gates_still_open &= ~BIT(tc);
148 }
149
150 cur = list_next_entry_circular(cur, &sched->entries, list);
151 } while (cur != entry);
152
153 /* Keep track of the maximum gate duration for each traffic
154 * class, taking care to not confuse a traffic class which is
155 * temporarily closed with one that is always closed.
156 */
157 for (tc = 0; tc < num_tc; tc++)
158 if (entry->gate_duration[tc] &&
159 sched->max_open_gate_duration[tc] < entry->gate_duration[tc])
160 sched->max_open_gate_duration[tc] = entry->gate_duration[tc];
161 }
162 }
163
taprio_entry_allows_tx(ktime_t skb_end_time,struct sched_entry * entry,int tc)164 static bool taprio_entry_allows_tx(ktime_t skb_end_time,
165 struct sched_entry *entry, int tc)
166 {
167 return ktime_before(skb_end_time, entry->gate_close_time[tc]);
168 }
169
sched_base_time(const struct sched_gate_list * sched)170 static ktime_t sched_base_time(const struct sched_gate_list *sched)
171 {
172 if (!sched)
173 return KTIME_MAX;
174
175 return ns_to_ktime(sched->base_time);
176 }
177
taprio_mono_to_any(const struct taprio_sched * q,ktime_t mono)178 static ktime_t taprio_mono_to_any(const struct taprio_sched *q, ktime_t mono)
179 {
180 /* This pairs with WRITE_ONCE() in taprio_parse_clockid() */
181 enum tk_offsets tk_offset = READ_ONCE(q->tk_offset);
182
183 switch (tk_offset) {
184 case TK_OFFS_MAX:
185 return mono;
186 default:
187 return ktime_mono_to_any(mono, tk_offset);
188 }
189 }
190
taprio_get_time(const struct taprio_sched * q)191 static ktime_t taprio_get_time(const struct taprio_sched *q)
192 {
193 return taprio_mono_to_any(q, ktime_get());
194 }
195
taprio_free_sched_cb(struct rcu_head * head)196 static void taprio_free_sched_cb(struct rcu_head *head)
197 {
198 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
199 struct sched_entry *entry, *n;
200
201 list_for_each_entry_safe(entry, n, &sched->entries, list) {
202 list_del(&entry->list);
203 kfree(entry);
204 }
205
206 kfree(sched);
207 }
208
switch_schedules(struct taprio_sched * q,struct sched_gate_list ** admin,struct sched_gate_list ** oper)209 static void switch_schedules(struct taprio_sched *q,
210 struct sched_gate_list **admin,
211 struct sched_gate_list **oper)
212 {
213 rcu_assign_pointer(q->oper_sched, *admin);
214 rcu_assign_pointer(q->admin_sched, NULL);
215
216 if (*oper)
217 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
218
219 *oper = *admin;
220 *admin = NULL;
221 }
222
223 /* Get how much time has been already elapsed in the current cycle. */
get_cycle_time_elapsed(struct sched_gate_list * sched,ktime_t time)224 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
225 {
226 ktime_t time_since_sched_start;
227 s32 time_elapsed;
228
229 time_since_sched_start = ktime_sub(time, sched->base_time);
230 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
231
232 return time_elapsed;
233 }
234
get_interval_end_time(struct sched_gate_list * sched,struct sched_gate_list * admin,struct sched_entry * entry,ktime_t intv_start)235 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
236 struct sched_gate_list *admin,
237 struct sched_entry *entry,
238 ktime_t intv_start)
239 {
240 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
241 ktime_t intv_end, cycle_ext_end, cycle_end;
242
243 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
244 intv_end = ktime_add_ns(intv_start, entry->interval);
245 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
246
247 if (ktime_before(intv_end, cycle_end))
248 return intv_end;
249 else if (admin && admin != sched &&
250 ktime_after(admin->base_time, cycle_end) &&
251 ktime_before(admin->base_time, cycle_ext_end))
252 return admin->base_time;
253 else
254 return cycle_end;
255 }
256
length_to_duration(struct taprio_sched * q,int len)257 static int length_to_duration(struct taprio_sched *q, int len)
258 {
259 return div_u64(len * atomic64_read(&q->picos_per_byte), PSEC_PER_NSEC);
260 }
261
duration_to_length(struct taprio_sched * q,u64 duration)262 static int duration_to_length(struct taprio_sched *q, u64 duration)
263 {
264 return div_u64(duration * PSEC_PER_NSEC, atomic64_read(&q->picos_per_byte));
265 }
266
267 /* Sets sched->max_sdu[] and sched->max_frm_len[] to the minimum between the
268 * q->max_sdu[] requested by the user and the max_sdu dynamically determined by
269 * the maximum open gate durations at the given link speed.
270 */
taprio_update_queue_max_sdu(struct taprio_sched * q,struct sched_gate_list * sched,struct qdisc_size_table * stab)271 static void taprio_update_queue_max_sdu(struct taprio_sched *q,
272 struct sched_gate_list *sched,
273 struct qdisc_size_table *stab)
274 {
275 struct net_device *dev = qdisc_dev(q->root);
276 int num_tc = netdev_get_num_tc(dev);
277 u32 max_sdu_from_user;
278 u32 max_sdu_dynamic;
279 u32 max_sdu;
280 int tc;
281
282 for (tc = 0; tc < num_tc; tc++) {
283 max_sdu_from_user = q->max_sdu[tc] ?: U32_MAX;
284
285 /* TC gate never closes => keep the queueMaxSDU
286 * selected by the user
287 */
288 if (sched->max_open_gate_duration[tc] == sched->cycle_time) {
289 max_sdu_dynamic = U32_MAX;
290 } else {
291 u32 max_frm_len;
292
293 max_frm_len = duration_to_length(q, sched->max_open_gate_duration[tc]);
294 /* Compensate for L1 overhead from size table,
295 * but don't let the frame size go negative
296 */
297 if (stab) {
298 max_frm_len -= stab->szopts.overhead;
299 max_frm_len = max_t(int, max_frm_len,
300 dev->hard_header_len + 1);
301 }
302 max_sdu_dynamic = max_frm_len - dev->hard_header_len;
303 if (max_sdu_dynamic > dev->max_mtu)
304 max_sdu_dynamic = U32_MAX;
305 }
306
307 max_sdu = min(max_sdu_dynamic, max_sdu_from_user);
308
309 if (max_sdu != U32_MAX) {
310 sched->max_frm_len[tc] = max_sdu + dev->hard_header_len;
311 sched->max_sdu[tc] = max_sdu;
312 } else {
313 sched->max_frm_len[tc] = U32_MAX; /* never oversized */
314 sched->max_sdu[tc] = 0;
315 }
316 }
317 }
318
319 /* Returns the entry corresponding to next available interval. If
320 * validate_interval is set, it only validates whether the timestamp occurs
321 * when the gate corresponding to the skb's traffic class is open.
322 */
find_entry_to_transmit(struct sk_buff * skb,struct Qdisc * sch,struct sched_gate_list * sched,struct sched_gate_list * admin,ktime_t time,ktime_t * interval_start,ktime_t * interval_end,bool validate_interval)323 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
324 struct Qdisc *sch,
325 struct sched_gate_list *sched,
326 struct sched_gate_list *admin,
327 ktime_t time,
328 ktime_t *interval_start,
329 ktime_t *interval_end,
330 bool validate_interval)
331 {
332 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
333 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
334 struct sched_entry *entry = NULL, *entry_found = NULL;
335 struct taprio_sched *q = qdisc_priv(sch);
336 struct net_device *dev = qdisc_dev(sch);
337 bool entry_available = false;
338 s32 cycle_elapsed;
339 int tc, n;
340
341 tc = netdev_get_prio_tc_map(dev, skb->priority);
342 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
343
344 *interval_start = 0;
345 *interval_end = 0;
346
347 if (!sched)
348 return NULL;
349
350 cycle = sched->cycle_time;
351 cycle_elapsed = get_cycle_time_elapsed(sched, time);
352 curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
353 cycle_end = ktime_add_ns(curr_intv_end, cycle);
354
355 list_for_each_entry(entry, &sched->entries, list) {
356 curr_intv_start = curr_intv_end;
357 curr_intv_end = get_interval_end_time(sched, admin, entry,
358 curr_intv_start);
359
360 if (ktime_after(curr_intv_start, cycle_end))
361 break;
362
363 if (!(entry->gate_mask & BIT(tc)) ||
364 packet_transmit_time > entry->interval)
365 continue;
366
367 txtime = entry->next_txtime;
368
369 if (ktime_before(txtime, time) || validate_interval) {
370 transmit_end_time = ktime_add_ns(time, packet_transmit_time);
371 if ((ktime_before(curr_intv_start, time) &&
372 ktime_before(transmit_end_time, curr_intv_end)) ||
373 (ktime_after(curr_intv_start, time) && !validate_interval)) {
374 entry_found = entry;
375 *interval_start = curr_intv_start;
376 *interval_end = curr_intv_end;
377 break;
378 } else if (!entry_available && !validate_interval) {
379 /* Here, we are just trying to find out the
380 * first available interval in the next cycle.
381 */
382 entry_available = true;
383 entry_found = entry;
384 *interval_start = ktime_add_ns(curr_intv_start, cycle);
385 *interval_end = ktime_add_ns(curr_intv_end, cycle);
386 }
387 } else if (ktime_before(txtime, earliest_txtime) &&
388 !entry_available) {
389 earliest_txtime = txtime;
390 entry_found = entry;
391 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
392 *interval_start = ktime_add(curr_intv_start, n * cycle);
393 *interval_end = ktime_add(curr_intv_end, n * cycle);
394 }
395 }
396
397 return entry_found;
398 }
399
is_valid_interval(struct sk_buff * skb,struct Qdisc * sch)400 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
401 {
402 struct taprio_sched *q = qdisc_priv(sch);
403 struct sched_gate_list *sched, *admin;
404 ktime_t interval_start, interval_end;
405 struct sched_entry *entry;
406
407 rcu_read_lock();
408 sched = rcu_dereference(q->oper_sched);
409 admin = rcu_dereference(q->admin_sched);
410
411 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
412 &interval_start, &interval_end, true);
413 rcu_read_unlock();
414
415 return entry;
416 }
417
418 /* This returns the tstamp value set by TCP in terms of the set clock. */
get_tcp_tstamp(struct taprio_sched * q,struct sk_buff * skb)419 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
420 {
421 unsigned int offset = skb_network_offset(skb);
422 const struct ipv6hdr *ipv6h;
423 const struct iphdr *iph;
424 struct ipv6hdr _ipv6h;
425
426 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
427 if (!ipv6h)
428 return 0;
429
430 if (ipv6h->version == 4) {
431 iph = (struct iphdr *)ipv6h;
432 offset += iph->ihl * 4;
433
434 /* special-case 6in4 tunnelling, as that is a common way to get
435 * v6 connectivity in the home
436 */
437 if (iph->protocol == IPPROTO_IPV6) {
438 ipv6h = skb_header_pointer(skb, offset,
439 sizeof(_ipv6h), &_ipv6h);
440
441 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
442 return 0;
443 } else if (iph->protocol != IPPROTO_TCP) {
444 return 0;
445 }
446 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
447 return 0;
448 }
449
450 return taprio_mono_to_any(q, skb->skb_mstamp_ns);
451 }
452
453 /* There are a few scenarios where we will have to modify the txtime from
454 * what is read from next_txtime in sched_entry. They are:
455 * 1. If txtime is in the past,
456 * a. The gate for the traffic class is currently open and packet can be
457 * transmitted before it closes, schedule the packet right away.
458 * b. If the gate corresponding to the traffic class is going to open later
459 * in the cycle, set the txtime of packet to the interval start.
460 * 2. If txtime is in the future, there are packets corresponding to the
461 * current traffic class waiting to be transmitted. So, the following
462 * possibilities exist:
463 * a. We can transmit the packet before the window containing the txtime
464 * closes.
465 * b. The window might close before the transmission can be completed
466 * successfully. So, schedule the packet in the next open window.
467 */
get_packet_txtime(struct sk_buff * skb,struct Qdisc * sch)468 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
469 {
470 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
471 struct taprio_sched *q = qdisc_priv(sch);
472 struct sched_gate_list *sched, *admin;
473 ktime_t minimum_time, now, txtime;
474 int len, packet_transmit_time;
475 struct sched_entry *entry;
476 bool sched_changed;
477
478 now = taprio_get_time(q);
479 minimum_time = ktime_add_ns(now, q->txtime_delay);
480
481 tcp_tstamp = get_tcp_tstamp(q, skb);
482 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
483
484 rcu_read_lock();
485 admin = rcu_dereference(q->admin_sched);
486 sched = rcu_dereference(q->oper_sched);
487 if (admin && ktime_after(minimum_time, admin->base_time))
488 switch_schedules(q, &admin, &sched);
489
490 /* Until the schedule starts, all the queues are open */
491 if (!sched || ktime_before(minimum_time, sched->base_time)) {
492 txtime = minimum_time;
493 goto done;
494 }
495
496 len = qdisc_pkt_len(skb);
497 packet_transmit_time = length_to_duration(q, len);
498
499 do {
500 sched_changed = false;
501
502 entry = find_entry_to_transmit(skb, sch, sched, admin,
503 minimum_time,
504 &interval_start, &interval_end,
505 false);
506 if (!entry) {
507 txtime = 0;
508 goto done;
509 }
510
511 txtime = entry->next_txtime;
512 txtime = max_t(ktime_t, txtime, minimum_time);
513 txtime = max_t(ktime_t, txtime, interval_start);
514
515 if (admin && admin != sched &&
516 ktime_after(txtime, admin->base_time)) {
517 sched = admin;
518 sched_changed = true;
519 continue;
520 }
521
522 transmit_end_time = ktime_add(txtime, packet_transmit_time);
523 minimum_time = transmit_end_time;
524
525 /* Update the txtime of current entry to the next time it's
526 * interval starts.
527 */
528 if (ktime_after(transmit_end_time, interval_end))
529 entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
530 } while (sched_changed || ktime_after(transmit_end_time, interval_end));
531
532 entry->next_txtime = transmit_end_time;
533
534 done:
535 rcu_read_unlock();
536 return txtime;
537 }
538
539 /* Devices with full offload are expected to honor this in hardware */
taprio_skb_exceeds_queue_max_sdu(struct Qdisc * sch,struct sk_buff * skb)540 static bool taprio_skb_exceeds_queue_max_sdu(struct Qdisc *sch,
541 struct sk_buff *skb)
542 {
543 struct taprio_sched *q = qdisc_priv(sch);
544 struct net_device *dev = qdisc_dev(sch);
545 struct sched_gate_list *sched;
546 int prio = skb->priority;
547 bool exceeds = false;
548 u8 tc;
549
550 tc = netdev_get_prio_tc_map(dev, prio);
551
552 rcu_read_lock();
553 sched = rcu_dereference(q->oper_sched);
554 if (sched && skb->len > sched->max_frm_len[tc])
555 exceeds = true;
556 rcu_read_unlock();
557
558 return exceeds;
559 }
560
taprio_enqueue_one(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)561 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
562 struct Qdisc *child, struct sk_buff **to_free)
563 {
564 struct taprio_sched *q = qdisc_priv(sch);
565
566 /* sk_flags are only safe to use on full sockets. */
567 if (skb->sk && sk_fullsock(skb->sk) && sock_flag(skb->sk, SOCK_TXTIME)) {
568 if (!is_valid_interval(skb, sch))
569 return qdisc_drop(skb, sch, to_free);
570 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
571 skb->tstamp = get_packet_txtime(skb, sch);
572 if (!skb->tstamp)
573 return qdisc_drop(skb, sch, to_free);
574 }
575
576 qdisc_qstats_backlog_inc(sch, skb);
577 sch->q.qlen++;
578
579 return qdisc_enqueue(skb, child, to_free);
580 }
581
taprio_enqueue_segmented(struct sk_buff * skb,struct Qdisc * sch,struct Qdisc * child,struct sk_buff ** to_free)582 static int taprio_enqueue_segmented(struct sk_buff *skb, struct Qdisc *sch,
583 struct Qdisc *child,
584 struct sk_buff **to_free)
585 {
586 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
587 netdev_features_t features = netif_skb_features(skb);
588 struct sk_buff *segs, *nskb;
589 int ret;
590
591 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
592 if (IS_ERR_OR_NULL(segs))
593 return qdisc_drop(skb, sch, to_free);
594
595 skb_list_walk_safe(segs, segs, nskb) {
596 skb_mark_not_on_list(segs);
597 qdisc_skb_cb(segs)->pkt_len = segs->len;
598 slen += segs->len;
599
600 /* FIXME: we should be segmenting to a smaller size
601 * rather than dropping these
602 */
603 if (taprio_skb_exceeds_queue_max_sdu(sch, segs))
604 ret = qdisc_drop(segs, sch, to_free);
605 else
606 ret = taprio_enqueue_one(segs, sch, child, to_free);
607
608 if (ret != NET_XMIT_SUCCESS) {
609 if (net_xmit_drop_count(ret))
610 qdisc_qstats_drop(sch);
611 } else {
612 numsegs++;
613 }
614 }
615
616 if (numsegs > 1)
617 qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
618 consume_skb(skb);
619
620 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
621 }
622
623 /* Will not be called in the full offload case, since the TX queues are
624 * attached to the Qdisc created using qdisc_create_dflt()
625 */
taprio_enqueue(struct sk_buff * skb,struct Qdisc * sch,struct sk_buff ** to_free)626 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
627 struct sk_buff **to_free)
628 {
629 struct taprio_sched *q = qdisc_priv(sch);
630 struct Qdisc *child;
631 int queue;
632
633 queue = skb_get_queue_mapping(skb);
634
635 child = q->qdiscs[queue];
636 if (unlikely(!child))
637 return qdisc_drop(skb, sch, to_free);
638
639 if (taprio_skb_exceeds_queue_max_sdu(sch, skb)) {
640 /* Large packets might not be transmitted when the transmission
641 * duration exceeds any configured interval. Therefore, segment
642 * the skb into smaller chunks. Drivers with full offload are
643 * expected to handle this in hardware.
644 */
645 if (skb_is_gso(skb))
646 return taprio_enqueue_segmented(skb, sch, child,
647 to_free);
648
649 return qdisc_drop(skb, sch, to_free);
650 }
651
652 return taprio_enqueue_one(skb, sch, child, to_free);
653 }
654
taprio_peek(struct Qdisc * sch)655 static struct sk_buff *taprio_peek(struct Qdisc *sch)
656 {
657 WARN_ONCE(1, "taprio only supports operating as root qdisc, peek() not implemented");
658 return NULL;
659 }
660
taprio_set_budgets(struct taprio_sched * q,struct sched_gate_list * sched,struct sched_entry * entry)661 static void taprio_set_budgets(struct taprio_sched *q,
662 struct sched_gate_list *sched,
663 struct sched_entry *entry)
664 {
665 struct net_device *dev = qdisc_dev(q->root);
666 int num_tc = netdev_get_num_tc(dev);
667 int tc, budget;
668
669 for (tc = 0; tc < num_tc; tc++) {
670 /* Traffic classes which never close have infinite budget */
671 if (entry->gate_duration[tc] == sched->cycle_time)
672 budget = INT_MAX;
673 else
674 budget = div64_u64((u64)entry->gate_duration[tc] * PSEC_PER_NSEC,
675 atomic64_read(&q->picos_per_byte));
676
677 atomic_set(&entry->budget[tc], budget);
678 }
679 }
680
681 /* When an skb is sent, it consumes from the budget of all traffic classes */
taprio_update_budgets(struct sched_entry * entry,size_t len,int tc_consumed,int num_tc)682 static int taprio_update_budgets(struct sched_entry *entry, size_t len,
683 int tc_consumed, int num_tc)
684 {
685 int tc, budget, new_budget = 0;
686
687 for (tc = 0; tc < num_tc; tc++) {
688 budget = atomic_read(&entry->budget[tc]);
689 /* Don't consume from infinite budget */
690 if (budget == INT_MAX) {
691 if (tc == tc_consumed)
692 new_budget = budget;
693 continue;
694 }
695
696 if (tc == tc_consumed)
697 new_budget = atomic_sub_return(len, &entry->budget[tc]);
698 else
699 atomic_sub(len, &entry->budget[tc]);
700 }
701
702 return new_budget;
703 }
704
taprio_dequeue_from_txq(struct Qdisc * sch,int txq,struct sched_entry * entry,u32 gate_mask)705 static struct sk_buff *taprio_dequeue_from_txq(struct Qdisc *sch, int txq,
706 struct sched_entry *entry,
707 u32 gate_mask)
708 {
709 struct taprio_sched *q = qdisc_priv(sch);
710 struct net_device *dev = qdisc_dev(sch);
711 struct Qdisc *child = q->qdiscs[txq];
712 int num_tc = netdev_get_num_tc(dev);
713 struct sk_buff *skb;
714 ktime_t guard;
715 int prio;
716 int len;
717 u8 tc;
718
719 if (unlikely(!child))
720 return NULL;
721
722 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
723 goto skip_peek_checks;
724
725 skb = child->ops->peek(child);
726 if (!skb)
727 return NULL;
728
729 prio = skb->priority;
730 tc = netdev_get_prio_tc_map(dev, prio);
731
732 if (!(gate_mask & BIT(tc)))
733 return NULL;
734
735 len = qdisc_pkt_len(skb);
736 guard = ktime_add_ns(taprio_get_time(q), length_to_duration(q, len));
737
738 /* In the case that there's no gate entry, there's no
739 * guard band ...
740 */
741 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
742 !taprio_entry_allows_tx(guard, entry, tc))
743 return NULL;
744
745 /* ... and no budget. */
746 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
747 taprio_update_budgets(entry, len, tc, num_tc) < 0)
748 return NULL;
749
750 skip_peek_checks:
751 skb = child->ops->dequeue(child);
752 if (unlikely(!skb))
753 return NULL;
754
755 qdisc_bstats_update(sch, skb);
756 qdisc_qstats_backlog_dec(sch, skb);
757 sch->q.qlen--;
758
759 return skb;
760 }
761
taprio_next_tc_txq(struct net_device * dev,int tc,int * txq)762 static void taprio_next_tc_txq(struct net_device *dev, int tc, int *txq)
763 {
764 int offset = dev->tc_to_txq[tc].offset;
765 int count = dev->tc_to_txq[tc].count;
766
767 (*txq)++;
768 if (*txq == offset + count)
769 *txq = offset;
770 }
771
772 /* Prioritize higher traffic classes, and select among TXQs belonging to the
773 * same TC using round robin
774 */
taprio_dequeue_tc_priority(struct Qdisc * sch,struct sched_entry * entry,u32 gate_mask)775 static struct sk_buff *taprio_dequeue_tc_priority(struct Qdisc *sch,
776 struct sched_entry *entry,
777 u32 gate_mask)
778 {
779 struct taprio_sched *q = qdisc_priv(sch);
780 struct net_device *dev = qdisc_dev(sch);
781 int num_tc = netdev_get_num_tc(dev);
782 struct sk_buff *skb;
783 int tc;
784
785 for (tc = num_tc - 1; tc >= 0; tc--) {
786 int first_txq = q->cur_txq[tc];
787
788 if (!(gate_mask & BIT(tc)))
789 continue;
790
791 do {
792 skb = taprio_dequeue_from_txq(sch, q->cur_txq[tc],
793 entry, gate_mask);
794
795 taprio_next_tc_txq(dev, tc, &q->cur_txq[tc]);
796
797 if (q->cur_txq[tc] >= dev->num_tx_queues)
798 q->cur_txq[tc] = first_txq;
799
800 if (skb)
801 return skb;
802 } while (q->cur_txq[tc] != first_txq);
803 }
804
805 return NULL;
806 }
807
808 /* Broken way of prioritizing smaller TXQ indices and ignoring the traffic
809 * class other than to determine whether the gate is open or not
810 */
taprio_dequeue_txq_priority(struct Qdisc * sch,struct sched_entry * entry,u32 gate_mask)811 static struct sk_buff *taprio_dequeue_txq_priority(struct Qdisc *sch,
812 struct sched_entry *entry,
813 u32 gate_mask)
814 {
815 struct net_device *dev = qdisc_dev(sch);
816 struct sk_buff *skb;
817 int i;
818
819 for (i = 0; i < dev->num_tx_queues; i++) {
820 skb = taprio_dequeue_from_txq(sch, i, entry, gate_mask);
821 if (skb)
822 return skb;
823 }
824
825 return NULL;
826 }
827
828 /* Will not be called in the full offload case, since the TX queues are
829 * attached to the Qdisc created using qdisc_create_dflt()
830 */
taprio_dequeue(struct Qdisc * sch)831 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
832 {
833 struct taprio_sched *q = qdisc_priv(sch);
834 struct sk_buff *skb = NULL;
835 struct sched_entry *entry;
836 u32 gate_mask;
837
838 rcu_read_lock();
839 entry = rcu_dereference(q->current_entry);
840 /* if there's no entry, it means that the schedule didn't
841 * start yet, so force all gates to be open, this is in
842 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
843 * "AdminGateStates"
844 */
845 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
846 if (!gate_mask)
847 goto done;
848
849 if (static_branch_unlikely(&taprio_have_broken_mqprio) &&
850 !static_branch_likely(&taprio_have_working_mqprio)) {
851 /* Single NIC kind which is broken */
852 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
853 } else if (static_branch_likely(&taprio_have_working_mqprio) &&
854 !static_branch_unlikely(&taprio_have_broken_mqprio)) {
855 /* Single NIC kind which prioritizes properly */
856 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
857 } else {
858 /* Mixed NIC kinds present in system, need dynamic testing */
859 if (q->broken_mqprio)
860 skb = taprio_dequeue_txq_priority(sch, entry, gate_mask);
861 else
862 skb = taprio_dequeue_tc_priority(sch, entry, gate_mask);
863 }
864
865 done:
866 rcu_read_unlock();
867
868 return skb;
869 }
870
should_restart_cycle(const struct sched_gate_list * oper,const struct sched_entry * entry)871 static bool should_restart_cycle(const struct sched_gate_list *oper,
872 const struct sched_entry *entry)
873 {
874 if (list_is_last(&entry->list, &oper->entries))
875 return true;
876
877 if (ktime_compare(entry->end_time, oper->cycle_end_time) == 0)
878 return true;
879
880 return false;
881 }
882
should_change_schedules(const struct sched_gate_list * admin,const struct sched_gate_list * oper,ktime_t end_time)883 static bool should_change_schedules(const struct sched_gate_list *admin,
884 const struct sched_gate_list *oper,
885 ktime_t end_time)
886 {
887 ktime_t next_base_time, extension_time;
888
889 if (!admin)
890 return false;
891
892 next_base_time = sched_base_time(admin);
893
894 /* This is the simple case, the end_time would fall after
895 * the next schedule base_time.
896 */
897 if (ktime_compare(next_base_time, end_time) <= 0)
898 return true;
899
900 /* This is the cycle_time_extension case, if the end_time
901 * plus the amount that can be extended would fall after the
902 * next schedule base_time, we can extend the current schedule
903 * for that amount.
904 */
905 extension_time = ktime_add_ns(end_time, oper->cycle_time_extension);
906
907 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
908 * how precisely the extension should be made. So after
909 * conformance testing, this logic may change.
910 */
911 if (ktime_compare(next_base_time, extension_time) <= 0)
912 return true;
913
914 return false;
915 }
916
advance_sched(struct hrtimer * timer)917 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
918 {
919 struct taprio_sched *q = container_of(timer, struct taprio_sched,
920 advance_timer);
921 struct net_device *dev = qdisc_dev(q->root);
922 struct sched_gate_list *oper, *admin;
923 int num_tc = netdev_get_num_tc(dev);
924 struct sched_entry *entry, *next;
925 struct Qdisc *sch = q->root;
926 ktime_t end_time;
927 int tc;
928
929 spin_lock(&q->current_entry_lock);
930 entry = rcu_dereference_protected(q->current_entry,
931 lockdep_is_held(&q->current_entry_lock));
932 oper = rcu_dereference_protected(q->oper_sched,
933 lockdep_is_held(&q->current_entry_lock));
934 admin = rcu_dereference_protected(q->admin_sched,
935 lockdep_is_held(&q->current_entry_lock));
936
937 if (!oper)
938 switch_schedules(q, &admin, &oper);
939
940 /* This can happen in two cases: 1. this is the very first run
941 * of this function (i.e. we weren't running any schedule
942 * previously); 2. The previous schedule just ended. The first
943 * entry of all schedules are pre-calculated during the
944 * schedule initialization.
945 */
946 if (unlikely(!entry || entry->end_time == oper->base_time)) {
947 next = list_first_entry(&oper->entries, struct sched_entry,
948 list);
949 end_time = next->end_time;
950 goto first_run;
951 }
952
953 if (should_restart_cycle(oper, entry)) {
954 next = list_first_entry(&oper->entries, struct sched_entry,
955 list);
956 oper->cycle_end_time = ktime_add_ns(oper->cycle_end_time,
957 oper->cycle_time);
958 } else {
959 next = list_next_entry(entry, list);
960 }
961
962 end_time = ktime_add_ns(entry->end_time, next->interval);
963 end_time = min_t(ktime_t, end_time, oper->cycle_end_time);
964
965 for (tc = 0; tc < num_tc; tc++) {
966 if (next->gate_duration[tc] == oper->cycle_time)
967 next->gate_close_time[tc] = KTIME_MAX;
968 else
969 next->gate_close_time[tc] = ktime_add_ns(entry->end_time,
970 next->gate_duration[tc]);
971 }
972
973 if (should_change_schedules(admin, oper, end_time)) {
974 /* Set things so the next time this runs, the new
975 * schedule runs.
976 */
977 end_time = sched_base_time(admin);
978 switch_schedules(q, &admin, &oper);
979 }
980
981 next->end_time = end_time;
982 taprio_set_budgets(q, oper, next);
983
984 first_run:
985 rcu_assign_pointer(q->current_entry, next);
986 spin_unlock(&q->current_entry_lock);
987
988 hrtimer_set_expires(&q->advance_timer, end_time);
989
990 rcu_read_lock();
991 __netif_schedule(sch);
992 rcu_read_unlock();
993
994 return HRTIMER_RESTART;
995 }
996
997 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
998 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
999 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
1000 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
1001 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
1002 };
1003
1004 static const struct nla_policy taprio_tc_policy[TCA_TAPRIO_TC_ENTRY_MAX + 1] = {
1005 [TCA_TAPRIO_TC_ENTRY_INDEX] = NLA_POLICY_MAX(NLA_U32,
1006 TC_QOPT_MAX_QUEUE - 1),
1007 [TCA_TAPRIO_TC_ENTRY_MAX_SDU] = { .type = NLA_U32 },
1008 [TCA_TAPRIO_TC_ENTRY_FP] = NLA_POLICY_RANGE(NLA_U32,
1009 TC_FP_EXPRESS,
1010 TC_FP_PREEMPTIBLE),
1011 };
1012
1013 static const struct netlink_range_validation_signed taprio_cycle_time_range = {
1014 .min = 0,
1015 .max = INT_MAX,
1016 };
1017
1018 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
1019 [TCA_TAPRIO_ATTR_PRIOMAP] = {
1020 .len = sizeof(struct tc_mqprio_qopt)
1021 },
1022 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
1023 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
1024 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
1025 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
1026 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] =
1027 NLA_POLICY_FULL_RANGE_SIGNED(NLA_S64, &taprio_cycle_time_range),
1028 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
1029 [TCA_TAPRIO_ATTR_FLAGS] =
1030 NLA_POLICY_MASK(NLA_U32, TAPRIO_SUPPORTED_FLAGS),
1031 [TCA_TAPRIO_ATTR_TXTIME_DELAY] = { .type = NLA_U32 },
1032 [TCA_TAPRIO_ATTR_TC_ENTRY] = { .type = NLA_NESTED },
1033 };
1034
fill_sched_entry(struct taprio_sched * q,struct nlattr ** tb,struct sched_entry * entry,struct netlink_ext_ack * extack)1035 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
1036 struct sched_entry *entry,
1037 struct netlink_ext_ack *extack)
1038 {
1039 int min_duration = length_to_duration(q, ETH_ZLEN);
1040 u32 interval = 0;
1041
1042 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
1043 entry->command = nla_get_u8(
1044 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
1045
1046 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
1047 entry->gate_mask = nla_get_u32(
1048 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
1049
1050 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
1051 interval = nla_get_u32(
1052 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
1053
1054 /* The interval should allow at least the minimum ethernet
1055 * frame to go out.
1056 */
1057 if (interval < min_duration) {
1058 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
1059 return -EINVAL;
1060 }
1061
1062 entry->interval = interval;
1063
1064 return 0;
1065 }
1066
parse_sched_entry(struct taprio_sched * q,struct nlattr * n,struct sched_entry * entry,int index,struct netlink_ext_ack * extack)1067 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
1068 struct sched_entry *entry, int index,
1069 struct netlink_ext_ack *extack)
1070 {
1071 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
1072 int err;
1073
1074 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
1075 entry_policy, NULL);
1076 if (err < 0) {
1077 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
1078 return -EINVAL;
1079 }
1080
1081 entry->index = index;
1082
1083 return fill_sched_entry(q, tb, entry, extack);
1084 }
1085
parse_sched_list(struct taprio_sched * q,struct nlattr * list,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1086 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
1087 struct sched_gate_list *sched,
1088 struct netlink_ext_ack *extack)
1089 {
1090 struct nlattr *n;
1091 int err, rem;
1092 int i = 0;
1093
1094 if (!list)
1095 return -EINVAL;
1096
1097 nla_for_each_nested(n, list, rem) {
1098 struct sched_entry *entry;
1099
1100 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
1101 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
1102 continue;
1103 }
1104
1105 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
1106 if (!entry) {
1107 NL_SET_ERR_MSG(extack, "Not enough memory for entry");
1108 return -ENOMEM;
1109 }
1110
1111 err = parse_sched_entry(q, n, entry, i, extack);
1112 if (err < 0) {
1113 kfree(entry);
1114 return err;
1115 }
1116
1117 list_add_tail(&entry->list, &sched->entries);
1118 i++;
1119 }
1120
1121 sched->num_entries = i;
1122
1123 return i;
1124 }
1125
parse_taprio_schedule(struct taprio_sched * q,struct nlattr ** tb,struct sched_gate_list * new,struct netlink_ext_ack * extack)1126 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
1127 struct sched_gate_list *new,
1128 struct netlink_ext_ack *extack)
1129 {
1130 int err = 0;
1131
1132 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
1133 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
1134 return -ENOTSUPP;
1135 }
1136
1137 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
1138 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
1139
1140 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
1141 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
1142
1143 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
1144 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
1145
1146 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
1147 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
1148 new, extack);
1149 if (err < 0)
1150 return err;
1151
1152 if (!new->cycle_time) {
1153 struct sched_entry *entry;
1154 ktime_t cycle = 0;
1155
1156 list_for_each_entry(entry, &new->entries, list)
1157 cycle = ktime_add_ns(cycle, entry->interval);
1158
1159 if (cycle < 0 || cycle > INT_MAX) {
1160 NL_SET_ERR_MSG(extack, "'cycle_time' is too big");
1161 return -EINVAL;
1162 }
1163
1164 new->cycle_time = cycle;
1165 }
1166
1167 if (new->cycle_time < new->num_entries * length_to_duration(q, ETH_ZLEN)) {
1168 NL_SET_ERR_MSG(extack, "'cycle_time' is too small");
1169 return -EINVAL;
1170 }
1171
1172 taprio_calculate_gate_durations(q, new);
1173
1174 return 0;
1175 }
1176
taprio_parse_mqprio_opt(struct net_device * dev,struct tc_mqprio_qopt * qopt,struct netlink_ext_ack * extack,u32 taprio_flags)1177 static int taprio_parse_mqprio_opt(struct net_device *dev,
1178 struct tc_mqprio_qopt *qopt,
1179 struct netlink_ext_ack *extack,
1180 u32 taprio_flags)
1181 {
1182 bool allow_overlapping_txqs = TXTIME_ASSIST_IS_ENABLED(taprio_flags);
1183
1184 if (!qopt) {
1185 if (!dev->num_tc) {
1186 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
1187 return -EINVAL;
1188 }
1189 return 0;
1190 }
1191
1192 /* taprio imposes that traffic classes map 1:n to tx queues */
1193 if (qopt->num_tc > dev->num_tx_queues) {
1194 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
1195 return -EINVAL;
1196 }
1197
1198 /* For some reason, in txtime-assist mode, we allow TXQ ranges for
1199 * different TCs to overlap, and just validate the TXQ ranges.
1200 */
1201 return mqprio_validate_qopt(dev, qopt, true, allow_overlapping_txqs,
1202 extack);
1203 }
1204
taprio_get_start_time(struct Qdisc * sch,struct sched_gate_list * sched,ktime_t * start)1205 static int taprio_get_start_time(struct Qdisc *sch,
1206 struct sched_gate_list *sched,
1207 ktime_t *start)
1208 {
1209 struct taprio_sched *q = qdisc_priv(sch);
1210 ktime_t now, base, cycle;
1211 s64 n;
1212
1213 base = sched_base_time(sched);
1214 now = taprio_get_time(q);
1215
1216 if (ktime_after(base, now)) {
1217 *start = base;
1218 return 0;
1219 }
1220
1221 cycle = sched->cycle_time;
1222
1223 /* The qdisc is expected to have at least one sched_entry. Moreover,
1224 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1225 * something went really wrong. In that case, we should warn about this
1226 * inconsistent state and return error.
1227 */
1228 if (WARN_ON(!cycle))
1229 return -EFAULT;
1230
1231 /* Schedule the start time for the beginning of the next
1232 * cycle.
1233 */
1234 n = div64_s64(ktime_sub_ns(now, base), cycle);
1235 *start = ktime_add_ns(base, (n + 1) * cycle);
1236 return 0;
1237 }
1238
setup_first_end_time(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1239 static void setup_first_end_time(struct taprio_sched *q,
1240 struct sched_gate_list *sched, ktime_t base)
1241 {
1242 struct net_device *dev = qdisc_dev(q->root);
1243 int num_tc = netdev_get_num_tc(dev);
1244 struct sched_entry *first;
1245 ktime_t cycle;
1246 int tc;
1247
1248 first = list_first_entry(&sched->entries,
1249 struct sched_entry, list);
1250
1251 cycle = sched->cycle_time;
1252
1253 /* FIXME: find a better place to do this */
1254 sched->cycle_end_time = ktime_add_ns(base, cycle);
1255
1256 first->end_time = ktime_add_ns(base, first->interval);
1257 taprio_set_budgets(q, sched, first);
1258
1259 for (tc = 0; tc < num_tc; tc++) {
1260 if (first->gate_duration[tc] == sched->cycle_time)
1261 first->gate_close_time[tc] = KTIME_MAX;
1262 else
1263 first->gate_close_time[tc] = ktime_add_ns(base, first->gate_duration[tc]);
1264 }
1265
1266 rcu_assign_pointer(q->current_entry, NULL);
1267 }
1268
taprio_start_sched(struct Qdisc * sch,ktime_t start,struct sched_gate_list * new)1269 static void taprio_start_sched(struct Qdisc *sch,
1270 ktime_t start, struct sched_gate_list *new)
1271 {
1272 struct taprio_sched *q = qdisc_priv(sch);
1273 ktime_t expires;
1274
1275 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1276 return;
1277
1278 expires = hrtimer_get_expires(&q->advance_timer);
1279 if (expires == 0)
1280 expires = KTIME_MAX;
1281
1282 /* If the new schedule starts before the next expiration, we
1283 * reprogram it to the earliest one, so we change the admin
1284 * schedule to the operational one at the right time.
1285 */
1286 start = min_t(ktime_t, start, expires);
1287
1288 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1289 }
1290
taprio_set_picos_per_byte(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1291 static void taprio_set_picos_per_byte(struct net_device *dev,
1292 struct taprio_sched *q,
1293 struct netlink_ext_ack *extack)
1294 {
1295 struct ethtool_link_ksettings ecmd;
1296 int speed = SPEED_10;
1297 int picos_per_byte;
1298 int err;
1299
1300 err = __ethtool_get_link_ksettings(dev, &ecmd);
1301 if (err < 0)
1302 goto skip;
1303
1304 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1305 speed = ecmd.base.speed;
1306
1307 skip:
1308 picos_per_byte = (USEC_PER_SEC * 8) / speed;
1309 if (picos_per_byte < TAPRIO_PICOS_PER_BYTE_MIN) {
1310 if (!extack)
1311 pr_warn("Link speed %d is too high. Schedule may be inaccurate.\n",
1312 speed);
1313 NL_SET_ERR_MSG_FMT_MOD(extack,
1314 "Link speed %d is too high. Schedule may be inaccurate.",
1315 speed);
1316 picos_per_byte = TAPRIO_PICOS_PER_BYTE_MIN;
1317 }
1318
1319 atomic64_set(&q->picos_per_byte, picos_per_byte);
1320 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1321 dev->name, (long long)atomic64_read(&q->picos_per_byte),
1322 ecmd.base.speed);
1323 }
1324
taprio_dev_notifier(struct notifier_block * nb,unsigned long event,void * ptr)1325 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1326 void *ptr)
1327 {
1328 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1329 struct sched_gate_list *oper, *admin;
1330 struct qdisc_size_table *stab;
1331 struct taprio_sched *q;
1332
1333 ASSERT_RTNL();
1334
1335 if (event != NETDEV_UP && event != NETDEV_CHANGE)
1336 return NOTIFY_DONE;
1337
1338 list_for_each_entry(q, &taprio_list, taprio_list) {
1339 if (dev != qdisc_dev(q->root))
1340 continue;
1341
1342 taprio_set_picos_per_byte(dev, q, NULL);
1343
1344 stab = rtnl_dereference(q->root->stab);
1345
1346 rcu_read_lock();
1347 oper = rcu_dereference(q->oper_sched);
1348 if (oper)
1349 taprio_update_queue_max_sdu(q, oper, stab);
1350
1351 admin = rcu_dereference(q->admin_sched);
1352 if (admin)
1353 taprio_update_queue_max_sdu(q, admin, stab);
1354 rcu_read_unlock();
1355
1356 break;
1357 }
1358
1359 return NOTIFY_DONE;
1360 }
1361
setup_txtime(struct taprio_sched * q,struct sched_gate_list * sched,ktime_t base)1362 static void setup_txtime(struct taprio_sched *q,
1363 struct sched_gate_list *sched, ktime_t base)
1364 {
1365 struct sched_entry *entry;
1366 u64 interval = 0;
1367
1368 list_for_each_entry(entry, &sched->entries, list) {
1369 entry->next_txtime = ktime_add_ns(base, interval);
1370 interval += entry->interval;
1371 }
1372 }
1373
taprio_offload_alloc(int num_entries)1374 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1375 {
1376 struct __tc_taprio_qopt_offload *__offload;
1377
1378 __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1379 GFP_KERNEL);
1380 if (!__offload)
1381 return NULL;
1382
1383 refcount_set(&__offload->users, 1);
1384
1385 return &__offload->offload;
1386 }
1387
taprio_offload_get(struct tc_taprio_qopt_offload * offload)1388 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1389 *offload)
1390 {
1391 struct __tc_taprio_qopt_offload *__offload;
1392
1393 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1394 offload);
1395
1396 refcount_inc(&__offload->users);
1397
1398 return offload;
1399 }
1400 EXPORT_SYMBOL_GPL(taprio_offload_get);
1401
taprio_offload_free(struct tc_taprio_qopt_offload * offload)1402 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1403 {
1404 struct __tc_taprio_qopt_offload *__offload;
1405
1406 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1407 offload);
1408
1409 if (!refcount_dec_and_test(&__offload->users))
1410 return;
1411
1412 kfree(__offload);
1413 }
1414 EXPORT_SYMBOL_GPL(taprio_offload_free);
1415
1416 /* The function will only serve to keep the pointers to the "oper" and "admin"
1417 * schedules valid in relation to their base times, so when calling dump() the
1418 * users looks at the right schedules.
1419 * When using full offload, the admin configuration is promoted to oper at the
1420 * base_time in the PHC time domain. But because the system time is not
1421 * necessarily in sync with that, we can't just trigger a hrtimer to call
1422 * switch_schedules at the right hardware time.
1423 * At the moment we call this by hand right away from taprio, but in the future
1424 * it will be useful to create a mechanism for drivers to notify taprio of the
1425 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1426 * This is left as TODO.
1427 */
taprio_offload_config_changed(struct taprio_sched * q)1428 static void taprio_offload_config_changed(struct taprio_sched *q)
1429 {
1430 struct sched_gate_list *oper, *admin;
1431
1432 oper = rtnl_dereference(q->oper_sched);
1433 admin = rtnl_dereference(q->admin_sched);
1434
1435 switch_schedules(q, &admin, &oper);
1436 }
1437
tc_map_to_queue_mask(struct net_device * dev,u32 tc_mask)1438 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1439 {
1440 u32 i, queue_mask = 0;
1441
1442 for (i = 0; i < dev->num_tc; i++) {
1443 u32 offset, count;
1444
1445 if (!(tc_mask & BIT(i)))
1446 continue;
1447
1448 offset = dev->tc_to_txq[i].offset;
1449 count = dev->tc_to_txq[i].count;
1450
1451 queue_mask |= GENMASK(offset + count - 1, offset);
1452 }
1453
1454 return queue_mask;
1455 }
1456
taprio_sched_to_offload(struct net_device * dev,struct sched_gate_list * sched,struct tc_taprio_qopt_offload * offload,const struct tc_taprio_caps * caps)1457 static void taprio_sched_to_offload(struct net_device *dev,
1458 struct sched_gate_list *sched,
1459 struct tc_taprio_qopt_offload *offload,
1460 const struct tc_taprio_caps *caps)
1461 {
1462 struct sched_entry *entry;
1463 int i = 0;
1464
1465 offload->base_time = sched->base_time;
1466 offload->cycle_time = sched->cycle_time;
1467 offload->cycle_time_extension = sched->cycle_time_extension;
1468
1469 list_for_each_entry(entry, &sched->entries, list) {
1470 struct tc_taprio_sched_entry *e = &offload->entries[i];
1471
1472 e->command = entry->command;
1473 e->interval = entry->interval;
1474 if (caps->gate_mask_per_txq)
1475 e->gate_mask = tc_map_to_queue_mask(dev,
1476 entry->gate_mask);
1477 else
1478 e->gate_mask = entry->gate_mask;
1479
1480 i++;
1481 }
1482
1483 offload->num_entries = i;
1484 }
1485
taprio_detect_broken_mqprio(struct taprio_sched * q)1486 static void taprio_detect_broken_mqprio(struct taprio_sched *q)
1487 {
1488 struct net_device *dev = qdisc_dev(q->root);
1489 struct tc_taprio_caps caps;
1490
1491 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1492 &caps, sizeof(caps));
1493
1494 q->broken_mqprio = caps.broken_mqprio;
1495 if (q->broken_mqprio)
1496 static_branch_inc(&taprio_have_broken_mqprio);
1497 else
1498 static_branch_inc(&taprio_have_working_mqprio);
1499
1500 q->detected_mqprio = true;
1501 }
1502
taprio_cleanup_broken_mqprio(struct taprio_sched * q)1503 static void taprio_cleanup_broken_mqprio(struct taprio_sched *q)
1504 {
1505 if (!q->detected_mqprio)
1506 return;
1507
1508 if (q->broken_mqprio)
1509 static_branch_dec(&taprio_have_broken_mqprio);
1510 else
1511 static_branch_dec(&taprio_have_working_mqprio);
1512 }
1513
taprio_enable_offload(struct net_device * dev,struct taprio_sched * q,struct sched_gate_list * sched,struct netlink_ext_ack * extack)1514 static int taprio_enable_offload(struct net_device *dev,
1515 struct taprio_sched *q,
1516 struct sched_gate_list *sched,
1517 struct netlink_ext_ack *extack)
1518 {
1519 const struct net_device_ops *ops = dev->netdev_ops;
1520 struct tc_taprio_qopt_offload *offload;
1521 struct tc_taprio_caps caps;
1522 int tc, err = 0;
1523
1524 if (!ops->ndo_setup_tc) {
1525 NL_SET_ERR_MSG(extack,
1526 "Device does not support taprio offload");
1527 return -EOPNOTSUPP;
1528 }
1529
1530 qdisc_offload_query_caps(dev, TC_SETUP_QDISC_TAPRIO,
1531 &caps, sizeof(caps));
1532
1533 if (!caps.supports_queue_max_sdu) {
1534 for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
1535 if (q->max_sdu[tc]) {
1536 NL_SET_ERR_MSG_MOD(extack,
1537 "Device does not handle queueMaxSDU");
1538 return -EOPNOTSUPP;
1539 }
1540 }
1541 }
1542
1543 offload = taprio_offload_alloc(sched->num_entries);
1544 if (!offload) {
1545 NL_SET_ERR_MSG(extack,
1546 "Not enough memory for enabling offload mode");
1547 return -ENOMEM;
1548 }
1549 offload->cmd = TAPRIO_CMD_REPLACE;
1550 offload->extack = extack;
1551 mqprio_qopt_reconstruct(dev, &offload->mqprio.qopt);
1552 offload->mqprio.extack = extack;
1553 taprio_sched_to_offload(dev, sched, offload, &caps);
1554 mqprio_fp_to_offload(q->fp, &offload->mqprio);
1555
1556 for (tc = 0; tc < TC_MAX_QUEUE; tc++)
1557 offload->max_sdu[tc] = q->max_sdu[tc];
1558
1559 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1560 if (err < 0) {
1561 NL_SET_ERR_MSG_WEAK(extack,
1562 "Device failed to setup taprio offload");
1563 goto done;
1564 }
1565
1566 q->offloaded = true;
1567
1568 done:
1569 /* The offload structure may linger around via a reference taken by the
1570 * device driver, so clear up the netlink extack pointer so that the
1571 * driver isn't tempted to dereference data which stopped being valid
1572 */
1573 offload->extack = NULL;
1574 offload->mqprio.extack = NULL;
1575 taprio_offload_free(offload);
1576
1577 return err;
1578 }
1579
taprio_disable_offload(struct net_device * dev,struct taprio_sched * q,struct netlink_ext_ack * extack)1580 static int taprio_disable_offload(struct net_device *dev,
1581 struct taprio_sched *q,
1582 struct netlink_ext_ack *extack)
1583 {
1584 const struct net_device_ops *ops = dev->netdev_ops;
1585 struct tc_taprio_qopt_offload *offload;
1586 int err;
1587
1588 if (!q->offloaded)
1589 return 0;
1590
1591 offload = taprio_offload_alloc(0);
1592 if (!offload) {
1593 NL_SET_ERR_MSG(extack,
1594 "Not enough memory to disable offload mode");
1595 return -ENOMEM;
1596 }
1597 offload->cmd = TAPRIO_CMD_DESTROY;
1598
1599 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1600 if (err < 0) {
1601 NL_SET_ERR_MSG(extack,
1602 "Device failed to disable offload");
1603 goto out;
1604 }
1605
1606 q->offloaded = false;
1607
1608 out:
1609 taprio_offload_free(offload);
1610
1611 return err;
1612 }
1613
1614 /* If full offload is enabled, the only possible clockid is the net device's
1615 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1616 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1617 * in sync with the specified clockid via a user space daemon such as phc2sys.
1618 * For both software taprio and txtime-assist, the clockid is used for the
1619 * hrtimer that advances the schedule and hence mandatory.
1620 */
taprio_parse_clockid(struct Qdisc * sch,struct nlattr ** tb,struct netlink_ext_ack * extack)1621 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1622 struct netlink_ext_ack *extack)
1623 {
1624 struct taprio_sched *q = qdisc_priv(sch);
1625 struct net_device *dev = qdisc_dev(sch);
1626 int err = -EINVAL;
1627
1628 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1629 const struct ethtool_ops *ops = dev->ethtool_ops;
1630 struct kernel_ethtool_ts_info info = {
1631 .cmd = ETHTOOL_GET_TS_INFO,
1632 .phc_index = -1,
1633 };
1634
1635 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1636 NL_SET_ERR_MSG(extack,
1637 "The 'clockid' cannot be specified for full offload");
1638 goto out;
1639 }
1640
1641 if (ops && ops->get_ts_info)
1642 err = ops->get_ts_info(dev, &info);
1643
1644 if (err || info.phc_index < 0) {
1645 NL_SET_ERR_MSG(extack,
1646 "Device does not have a PTP clock");
1647 err = -ENOTSUPP;
1648 goto out;
1649 }
1650 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1651 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1652 enum tk_offsets tk_offset;
1653
1654 /* We only support static clockids and we don't allow
1655 * for it to be modified after the first init.
1656 */
1657 if (clockid < 0 ||
1658 (q->clockid != -1 && q->clockid != clockid)) {
1659 NL_SET_ERR_MSG(extack,
1660 "Changing the 'clockid' of a running schedule is not supported");
1661 err = -ENOTSUPP;
1662 goto out;
1663 }
1664
1665 switch (clockid) {
1666 case CLOCK_REALTIME:
1667 tk_offset = TK_OFFS_REAL;
1668 break;
1669 case CLOCK_MONOTONIC:
1670 tk_offset = TK_OFFS_MAX;
1671 break;
1672 case CLOCK_BOOTTIME:
1673 tk_offset = TK_OFFS_BOOT;
1674 break;
1675 case CLOCK_TAI:
1676 tk_offset = TK_OFFS_TAI;
1677 break;
1678 default:
1679 NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1680 err = -EINVAL;
1681 goto out;
1682 }
1683 /* This pairs with READ_ONCE() in taprio_mono_to_any */
1684 WRITE_ONCE(q->tk_offset, tk_offset);
1685
1686 q->clockid = clockid;
1687 } else {
1688 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1689 goto out;
1690 }
1691
1692 /* Everything went ok, return success. */
1693 err = 0;
1694
1695 out:
1696 return err;
1697 }
1698
taprio_parse_tc_entry(struct Qdisc * sch,struct nlattr * opt,u32 max_sdu[TC_QOPT_MAX_QUEUE],u32 fp[TC_QOPT_MAX_QUEUE],unsigned long * seen_tcs,struct netlink_ext_ack * extack)1699 static int taprio_parse_tc_entry(struct Qdisc *sch,
1700 struct nlattr *opt,
1701 u32 max_sdu[TC_QOPT_MAX_QUEUE],
1702 u32 fp[TC_QOPT_MAX_QUEUE],
1703 unsigned long *seen_tcs,
1704 struct netlink_ext_ack *extack)
1705 {
1706 struct nlattr *tb[TCA_TAPRIO_TC_ENTRY_MAX + 1] = { };
1707 struct net_device *dev = qdisc_dev(sch);
1708 int err, tc;
1709 u32 val;
1710
1711 err = nla_parse_nested(tb, TCA_TAPRIO_TC_ENTRY_MAX, opt,
1712 taprio_tc_policy, extack);
1713 if (err < 0)
1714 return err;
1715
1716 if (NL_REQ_ATTR_CHECK(extack, opt, tb, TCA_TAPRIO_TC_ENTRY_INDEX)) {
1717 NL_SET_ERR_MSG_MOD(extack, "TC entry index missing");
1718 return -EINVAL;
1719 }
1720
1721 tc = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_INDEX]);
1722 if (*seen_tcs & BIT(tc)) {
1723 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_TC_ENTRY_INDEX],
1724 "Duplicate tc entry");
1725 return -EINVAL;
1726 }
1727
1728 *seen_tcs |= BIT(tc);
1729
1730 if (tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]) {
1731 val = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_MAX_SDU]);
1732 if (val > dev->max_mtu) {
1733 NL_SET_ERR_MSG_MOD(extack, "TC max SDU exceeds device max MTU");
1734 return -ERANGE;
1735 }
1736
1737 max_sdu[tc] = val;
1738 }
1739
1740 if (tb[TCA_TAPRIO_TC_ENTRY_FP])
1741 fp[tc] = nla_get_u32(tb[TCA_TAPRIO_TC_ENTRY_FP]);
1742
1743 return 0;
1744 }
1745
taprio_parse_tc_entries(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1746 static int taprio_parse_tc_entries(struct Qdisc *sch,
1747 struct nlattr *opt,
1748 struct netlink_ext_ack *extack)
1749 {
1750 struct taprio_sched *q = qdisc_priv(sch);
1751 struct net_device *dev = qdisc_dev(sch);
1752 u32 max_sdu[TC_QOPT_MAX_QUEUE];
1753 bool have_preemption = false;
1754 unsigned long seen_tcs = 0;
1755 u32 fp[TC_QOPT_MAX_QUEUE];
1756 struct nlattr *n;
1757 int tc, rem;
1758 int err = 0;
1759
1760 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1761 max_sdu[tc] = q->max_sdu[tc];
1762 fp[tc] = q->fp[tc];
1763 }
1764
1765 nla_for_each_nested_type(n, TCA_TAPRIO_ATTR_TC_ENTRY, opt, rem) {
1766 err = taprio_parse_tc_entry(sch, n, max_sdu, fp, &seen_tcs,
1767 extack);
1768 if (err)
1769 return err;
1770 }
1771
1772 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++) {
1773 q->max_sdu[tc] = max_sdu[tc];
1774 q->fp[tc] = fp[tc];
1775 if (fp[tc] != TC_FP_EXPRESS)
1776 have_preemption = true;
1777 }
1778
1779 if (have_preemption) {
1780 if (!FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1781 NL_SET_ERR_MSG(extack,
1782 "Preemption only supported with full offload");
1783 return -EOPNOTSUPP;
1784 }
1785
1786 if (!ethtool_dev_mm_supported(dev)) {
1787 NL_SET_ERR_MSG(extack,
1788 "Device does not support preemption");
1789 return -EOPNOTSUPP;
1790 }
1791 }
1792
1793 return err;
1794 }
1795
taprio_mqprio_cmp(const struct net_device * dev,const struct tc_mqprio_qopt * mqprio)1796 static int taprio_mqprio_cmp(const struct net_device *dev,
1797 const struct tc_mqprio_qopt *mqprio)
1798 {
1799 int i;
1800
1801 if (!mqprio || mqprio->num_tc != dev->num_tc)
1802 return -1;
1803
1804 for (i = 0; i < mqprio->num_tc; i++)
1805 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1806 dev->tc_to_txq[i].offset != mqprio->offset[i])
1807 return -1;
1808
1809 for (i = 0; i <= TC_BITMASK; i++)
1810 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1811 return -1;
1812
1813 return 0;
1814 }
1815
taprio_change(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)1816 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1817 struct netlink_ext_ack *extack)
1818 {
1819 struct qdisc_size_table *stab = rtnl_dereference(sch->stab);
1820 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1821 struct sched_gate_list *oper, *admin, *new_admin;
1822 struct taprio_sched *q = qdisc_priv(sch);
1823 struct net_device *dev = qdisc_dev(sch);
1824 struct tc_mqprio_qopt *mqprio = NULL;
1825 unsigned long flags;
1826 u32 taprio_flags;
1827 ktime_t start;
1828 int i, err;
1829
1830 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1831 taprio_policy, extack);
1832 if (err < 0)
1833 return err;
1834
1835 if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1836 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1837
1838 /* The semantics of the 'flags' argument in relation to 'change()'
1839 * requests, are interpreted following two rules (which are applied in
1840 * this order): (1) an omitted 'flags' argument is interpreted as
1841 * zero; (2) the 'flags' of a "running" taprio instance cannot be
1842 * changed.
1843 */
1844 taprio_flags = nla_get_u32_default(tb[TCA_TAPRIO_ATTR_FLAGS], 0);
1845
1846 /* txtime-assist and full offload are mutually exclusive */
1847 if ((taprio_flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
1848 (taprio_flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)) {
1849 NL_SET_ERR_MSG_ATTR(extack, tb[TCA_TAPRIO_ATTR_FLAGS],
1850 "TXTIME_ASSIST and FULL_OFFLOAD are mutually exclusive");
1851 return -EINVAL;
1852 }
1853
1854 if (q->flags != TAPRIO_FLAGS_INVALID && q->flags != taprio_flags) {
1855 NL_SET_ERR_MSG_MOD(extack,
1856 "Changing 'flags' of a running schedule is not supported");
1857 return -EOPNOTSUPP;
1858 }
1859 q->flags = taprio_flags;
1860
1861 /* Needed for length_to_duration() during netlink attribute parsing */
1862 taprio_set_picos_per_byte(dev, q, extack);
1863
1864 err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1865 if (err < 0)
1866 return err;
1867
1868 err = taprio_parse_tc_entries(sch, opt, extack);
1869 if (err)
1870 return err;
1871
1872 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1873 if (!new_admin) {
1874 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1875 return -ENOMEM;
1876 }
1877 INIT_LIST_HEAD(&new_admin->entries);
1878
1879 oper = rtnl_dereference(q->oper_sched);
1880 admin = rtnl_dereference(q->admin_sched);
1881
1882 /* no changes - no new mqprio settings */
1883 if (!taprio_mqprio_cmp(dev, mqprio))
1884 mqprio = NULL;
1885
1886 if (mqprio && (oper || admin)) {
1887 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1888 err = -ENOTSUPP;
1889 goto free_sched;
1890 }
1891
1892 if (mqprio) {
1893 err = netdev_set_num_tc(dev, mqprio->num_tc);
1894 if (err)
1895 goto free_sched;
1896 for (i = 0; i < mqprio->num_tc; i++) {
1897 netdev_set_tc_queue(dev, i,
1898 mqprio->count[i],
1899 mqprio->offset[i]);
1900 q->cur_txq[i] = mqprio->offset[i];
1901 }
1902
1903 /* Always use supplied priority mappings */
1904 for (i = 0; i <= TC_BITMASK; i++)
1905 netdev_set_prio_tc_map(dev, i,
1906 mqprio->prio_tc_map[i]);
1907 }
1908
1909 err = parse_taprio_schedule(q, tb, new_admin, extack);
1910 if (err < 0)
1911 goto free_sched;
1912
1913 if (new_admin->num_entries == 0) {
1914 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1915 err = -EINVAL;
1916 goto free_sched;
1917 }
1918
1919 err = taprio_parse_clockid(sch, tb, extack);
1920 if (err < 0)
1921 goto free_sched;
1922
1923 taprio_update_queue_max_sdu(q, new_admin, stab);
1924
1925 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1926 err = taprio_enable_offload(dev, q, new_admin, extack);
1927 else
1928 err = taprio_disable_offload(dev, q, extack);
1929 if (err)
1930 goto free_sched;
1931
1932 /* Protects against enqueue()/dequeue() */
1933 spin_lock_bh(qdisc_lock(sch));
1934
1935 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1936 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1937 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1938 err = -EINVAL;
1939 goto unlock;
1940 }
1941
1942 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1943 }
1944
1945 if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1946 !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1947 !hrtimer_active(&q->advance_timer)) {
1948 hrtimer_setup(&q->advance_timer, advance_sched, q->clockid, HRTIMER_MODE_ABS);
1949 }
1950
1951 err = taprio_get_start_time(sch, new_admin, &start);
1952 if (err < 0) {
1953 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1954 goto unlock;
1955 }
1956
1957 setup_txtime(q, new_admin, start);
1958
1959 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1960 if (!oper) {
1961 rcu_assign_pointer(q->oper_sched, new_admin);
1962 err = 0;
1963 new_admin = NULL;
1964 goto unlock;
1965 }
1966
1967 /* Not going to race against advance_sched(), but still */
1968 admin = rcu_replace_pointer(q->admin_sched, new_admin,
1969 lockdep_rtnl_is_held());
1970 if (admin)
1971 call_rcu(&admin->rcu, taprio_free_sched_cb);
1972 } else {
1973 setup_first_end_time(q, new_admin, start);
1974
1975 /* Protects against advance_sched() */
1976 spin_lock_irqsave(&q->current_entry_lock, flags);
1977
1978 taprio_start_sched(sch, start, new_admin);
1979
1980 admin = rcu_replace_pointer(q->admin_sched, new_admin,
1981 lockdep_rtnl_is_held());
1982 if (admin)
1983 call_rcu(&admin->rcu, taprio_free_sched_cb);
1984
1985 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1986
1987 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1988 taprio_offload_config_changed(q);
1989 }
1990
1991 new_admin = NULL;
1992 err = 0;
1993
1994 if (!stab)
1995 NL_SET_ERR_MSG_MOD(extack,
1996 "Size table not specified, frame length estimations may be inaccurate");
1997
1998 unlock:
1999 spin_unlock_bh(qdisc_lock(sch));
2000
2001 free_sched:
2002 if (new_admin)
2003 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
2004
2005 return err;
2006 }
2007
taprio_reset(struct Qdisc * sch)2008 static void taprio_reset(struct Qdisc *sch)
2009 {
2010 struct taprio_sched *q = qdisc_priv(sch);
2011 struct net_device *dev = qdisc_dev(sch);
2012 int i;
2013
2014 hrtimer_cancel(&q->advance_timer);
2015
2016 if (q->qdiscs) {
2017 for (i = 0; i < dev->num_tx_queues; i++)
2018 if (q->qdiscs[i])
2019 qdisc_reset(q->qdiscs[i]);
2020 }
2021 }
2022
taprio_destroy(struct Qdisc * sch)2023 static void taprio_destroy(struct Qdisc *sch)
2024 {
2025 struct taprio_sched *q = qdisc_priv(sch);
2026 struct net_device *dev = qdisc_dev(sch);
2027 struct sched_gate_list *oper, *admin;
2028 unsigned int i;
2029
2030 list_del(&q->taprio_list);
2031
2032 /* Note that taprio_reset() might not be called if an error
2033 * happens in qdisc_create(), after taprio_init() has been called.
2034 */
2035 hrtimer_cancel(&q->advance_timer);
2036 qdisc_synchronize(sch);
2037
2038 taprio_disable_offload(dev, q, NULL);
2039
2040 if (q->qdiscs) {
2041 for (i = 0; i < dev->num_tx_queues; i++)
2042 qdisc_put(q->qdiscs[i]);
2043
2044 kfree(q->qdiscs);
2045 }
2046 q->qdiscs = NULL;
2047
2048 netdev_reset_tc(dev);
2049
2050 oper = rtnl_dereference(q->oper_sched);
2051 admin = rtnl_dereference(q->admin_sched);
2052
2053 if (oper)
2054 call_rcu(&oper->rcu, taprio_free_sched_cb);
2055
2056 if (admin)
2057 call_rcu(&admin->rcu, taprio_free_sched_cb);
2058
2059 taprio_cleanup_broken_mqprio(q);
2060 }
2061
taprio_init(struct Qdisc * sch,struct nlattr * opt,struct netlink_ext_ack * extack)2062 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
2063 struct netlink_ext_ack *extack)
2064 {
2065 struct taprio_sched *q = qdisc_priv(sch);
2066 struct net_device *dev = qdisc_dev(sch);
2067 int i, tc;
2068
2069 spin_lock_init(&q->current_entry_lock);
2070
2071 hrtimer_setup(&q->advance_timer, advance_sched, CLOCK_TAI, HRTIMER_MODE_ABS);
2072
2073 q->root = sch;
2074
2075 /* We only support static clockids. Use an invalid value as default
2076 * and get the valid one on taprio_change().
2077 */
2078 q->clockid = -1;
2079 q->flags = TAPRIO_FLAGS_INVALID;
2080
2081 list_add(&q->taprio_list, &taprio_list);
2082
2083 if (sch->parent != TC_H_ROOT) {
2084 NL_SET_ERR_MSG_MOD(extack, "Can only be attached as root qdisc");
2085 return -EOPNOTSUPP;
2086 }
2087
2088 if (!netif_is_multiqueue(dev)) {
2089 NL_SET_ERR_MSG_MOD(extack, "Multi-queue device is required");
2090 return -EOPNOTSUPP;
2091 }
2092
2093 q->qdiscs = kcalloc(dev->num_tx_queues, sizeof(q->qdiscs[0]),
2094 GFP_KERNEL);
2095 if (!q->qdiscs)
2096 return -ENOMEM;
2097
2098 if (!opt)
2099 return -EINVAL;
2100
2101 for (i = 0; i < dev->num_tx_queues; i++) {
2102 struct netdev_queue *dev_queue;
2103 struct Qdisc *qdisc;
2104
2105 dev_queue = netdev_get_tx_queue(dev, i);
2106 qdisc = qdisc_create_dflt(dev_queue,
2107 &pfifo_qdisc_ops,
2108 TC_H_MAKE(TC_H_MAJ(sch->handle),
2109 TC_H_MIN(i + 1)),
2110 extack);
2111 if (!qdisc)
2112 return -ENOMEM;
2113
2114 if (i < dev->real_num_tx_queues)
2115 qdisc_hash_add(qdisc, false);
2116
2117 q->qdiscs[i] = qdisc;
2118 }
2119
2120 for (tc = 0; tc < TC_QOPT_MAX_QUEUE; tc++)
2121 q->fp[tc] = TC_FP_EXPRESS;
2122
2123 taprio_detect_broken_mqprio(q);
2124
2125 return taprio_change(sch, opt, extack);
2126 }
2127
taprio_attach(struct Qdisc * sch)2128 static void taprio_attach(struct Qdisc *sch)
2129 {
2130 struct taprio_sched *q = qdisc_priv(sch);
2131 struct net_device *dev = qdisc_dev(sch);
2132 unsigned int ntx;
2133
2134 /* Attach underlying qdisc */
2135 for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
2136 struct netdev_queue *dev_queue = netdev_get_tx_queue(dev, ntx);
2137 struct Qdisc *old, *dev_queue_qdisc;
2138
2139 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2140 struct Qdisc *qdisc = q->qdiscs[ntx];
2141
2142 /* In offload mode, the root taprio qdisc is bypassed
2143 * and the netdev TX queues see the children directly
2144 */
2145 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2146 dev_queue_qdisc = qdisc;
2147 } else {
2148 /* In software mode, attach the root taprio qdisc
2149 * to all netdev TX queues, so that dev_qdisc_enqueue()
2150 * goes through taprio_enqueue().
2151 */
2152 dev_queue_qdisc = sch;
2153 }
2154 old = dev_graft_qdisc(dev_queue, dev_queue_qdisc);
2155 /* The qdisc's refcount requires to be elevated once
2156 * for each netdev TX queue it is grafted onto
2157 */
2158 qdisc_refcount_inc(dev_queue_qdisc);
2159 if (old)
2160 qdisc_put(old);
2161 }
2162 }
2163
taprio_queue_get(struct Qdisc * sch,unsigned long cl)2164 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
2165 unsigned long cl)
2166 {
2167 struct net_device *dev = qdisc_dev(sch);
2168 unsigned long ntx = cl - 1;
2169
2170 if (ntx >= dev->num_tx_queues)
2171 return NULL;
2172
2173 return netdev_get_tx_queue(dev, ntx);
2174 }
2175
taprio_graft(struct Qdisc * sch,unsigned long cl,struct Qdisc * new,struct Qdisc ** old,struct netlink_ext_ack * extack)2176 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
2177 struct Qdisc *new, struct Qdisc **old,
2178 struct netlink_ext_ack *extack)
2179 {
2180 struct taprio_sched *q = qdisc_priv(sch);
2181 struct net_device *dev = qdisc_dev(sch);
2182 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
2183
2184 if (!dev_queue)
2185 return -EINVAL;
2186
2187 if (dev->flags & IFF_UP)
2188 dev_deactivate(dev);
2189
2190 /* In offload mode, the child Qdisc is directly attached to the netdev
2191 * TX queue, and thus, we need to keep its refcount elevated in order
2192 * to counteract qdisc_graft()'s call to qdisc_put() once per TX queue.
2193 * However, save the reference to the new qdisc in the private array in
2194 * both software and offload cases, to have an up-to-date reference to
2195 * our children.
2196 */
2197 *old = q->qdiscs[cl - 1];
2198 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
2199 WARN_ON_ONCE(dev_graft_qdisc(dev_queue, new) != *old);
2200 if (new)
2201 qdisc_refcount_inc(new);
2202 if (*old)
2203 qdisc_put(*old);
2204 }
2205
2206 q->qdiscs[cl - 1] = new;
2207 if (new)
2208 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
2209
2210 if (dev->flags & IFF_UP)
2211 dev_activate(dev);
2212
2213 return 0;
2214 }
2215
dump_entry(struct sk_buff * msg,const struct sched_entry * entry)2216 static int dump_entry(struct sk_buff *msg,
2217 const struct sched_entry *entry)
2218 {
2219 struct nlattr *item;
2220
2221 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
2222 if (!item)
2223 return -ENOSPC;
2224
2225 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
2226 goto nla_put_failure;
2227
2228 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
2229 goto nla_put_failure;
2230
2231 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
2232 entry->gate_mask))
2233 goto nla_put_failure;
2234
2235 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
2236 entry->interval))
2237 goto nla_put_failure;
2238
2239 return nla_nest_end(msg, item);
2240
2241 nla_put_failure:
2242 nla_nest_cancel(msg, item);
2243 return -1;
2244 }
2245
dump_schedule(struct sk_buff * msg,const struct sched_gate_list * root)2246 static int dump_schedule(struct sk_buff *msg,
2247 const struct sched_gate_list *root)
2248 {
2249 struct nlattr *entry_list;
2250 struct sched_entry *entry;
2251
2252 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
2253 root->base_time, TCA_TAPRIO_PAD))
2254 return -1;
2255
2256 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
2257 root->cycle_time, TCA_TAPRIO_PAD))
2258 return -1;
2259
2260 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
2261 root->cycle_time_extension, TCA_TAPRIO_PAD))
2262 return -1;
2263
2264 entry_list = nla_nest_start_noflag(msg,
2265 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
2266 if (!entry_list)
2267 goto error_nest;
2268
2269 list_for_each_entry(entry, &root->entries, list) {
2270 if (dump_entry(msg, entry) < 0)
2271 goto error_nest;
2272 }
2273
2274 nla_nest_end(msg, entry_list);
2275 return 0;
2276
2277 error_nest:
2278 nla_nest_cancel(msg, entry_list);
2279 return -1;
2280 }
2281
taprio_dump_tc_entries(struct sk_buff * skb,struct taprio_sched * q,struct sched_gate_list * sched)2282 static int taprio_dump_tc_entries(struct sk_buff *skb,
2283 struct taprio_sched *q,
2284 struct sched_gate_list *sched)
2285 {
2286 struct nlattr *n;
2287 int tc;
2288
2289 for (tc = 0; tc < TC_MAX_QUEUE; tc++) {
2290 n = nla_nest_start(skb, TCA_TAPRIO_ATTR_TC_ENTRY);
2291 if (!n)
2292 return -EMSGSIZE;
2293
2294 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_INDEX, tc))
2295 goto nla_put_failure;
2296
2297 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_MAX_SDU,
2298 sched->max_sdu[tc]))
2299 goto nla_put_failure;
2300
2301 if (nla_put_u32(skb, TCA_TAPRIO_TC_ENTRY_FP, q->fp[tc]))
2302 goto nla_put_failure;
2303
2304 nla_nest_end(skb, n);
2305 }
2306
2307 return 0;
2308
2309 nla_put_failure:
2310 nla_nest_cancel(skb, n);
2311 return -EMSGSIZE;
2312 }
2313
taprio_put_stat(struct sk_buff * skb,u64 val,u16 attrtype)2314 static int taprio_put_stat(struct sk_buff *skb, u64 val, u16 attrtype)
2315 {
2316 if (val == TAPRIO_STAT_NOT_SET)
2317 return 0;
2318 if (nla_put_u64_64bit(skb, attrtype, val, TCA_TAPRIO_OFFLOAD_STATS_PAD))
2319 return -EMSGSIZE;
2320 return 0;
2321 }
2322
taprio_dump_xstats(struct Qdisc * sch,struct gnet_dump * d,struct tc_taprio_qopt_offload * offload,struct tc_taprio_qopt_stats * stats)2323 static int taprio_dump_xstats(struct Qdisc *sch, struct gnet_dump *d,
2324 struct tc_taprio_qopt_offload *offload,
2325 struct tc_taprio_qopt_stats *stats)
2326 {
2327 struct net_device *dev = qdisc_dev(sch);
2328 const struct net_device_ops *ops;
2329 struct sk_buff *skb = d->skb;
2330 struct nlattr *xstats;
2331 int err;
2332
2333 ops = qdisc_dev(sch)->netdev_ops;
2334
2335 /* FIXME I could use qdisc_offload_dump_helper(), but that messes
2336 * with sch->flags depending on whether the device reports taprio
2337 * stats, and I'm not sure whether that's a good idea, considering
2338 * that stats are optional to the offload itself
2339 */
2340 if (!ops->ndo_setup_tc)
2341 return 0;
2342
2343 memset(stats, 0xff, sizeof(*stats));
2344
2345 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
2346 if (err == -EOPNOTSUPP)
2347 return 0;
2348 if (err)
2349 return err;
2350
2351 xstats = nla_nest_start(skb, TCA_STATS_APP);
2352 if (!xstats)
2353 goto err;
2354
2355 if (taprio_put_stat(skb, stats->window_drops,
2356 TCA_TAPRIO_OFFLOAD_STATS_WINDOW_DROPS) ||
2357 taprio_put_stat(skb, stats->tx_overruns,
2358 TCA_TAPRIO_OFFLOAD_STATS_TX_OVERRUNS))
2359 goto err_cancel;
2360
2361 nla_nest_end(skb, xstats);
2362
2363 return 0;
2364
2365 err_cancel:
2366 nla_nest_cancel(skb, xstats);
2367 err:
2368 return -EMSGSIZE;
2369 }
2370
taprio_dump_stats(struct Qdisc * sch,struct gnet_dump * d)2371 static int taprio_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
2372 {
2373 struct tc_taprio_qopt_offload offload = {
2374 .cmd = TAPRIO_CMD_STATS,
2375 };
2376
2377 return taprio_dump_xstats(sch, d, &offload, &offload.stats);
2378 }
2379
taprio_dump(struct Qdisc * sch,struct sk_buff * skb)2380 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
2381 {
2382 struct taprio_sched *q = qdisc_priv(sch);
2383 struct net_device *dev = qdisc_dev(sch);
2384 struct sched_gate_list *oper, *admin;
2385 struct tc_mqprio_qopt opt = { 0 };
2386 struct nlattr *nest, *sched_nest;
2387
2388 mqprio_qopt_reconstruct(dev, &opt);
2389
2390 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
2391 if (!nest)
2392 goto start_error;
2393
2394 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
2395 goto options_error;
2396
2397 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
2398 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
2399 goto options_error;
2400
2401 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
2402 goto options_error;
2403
2404 if (q->txtime_delay &&
2405 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
2406 goto options_error;
2407
2408 rcu_read_lock();
2409
2410 oper = rtnl_dereference(q->oper_sched);
2411 admin = rtnl_dereference(q->admin_sched);
2412
2413 if (oper && taprio_dump_tc_entries(skb, q, oper))
2414 goto options_error_rcu;
2415
2416 if (oper && dump_schedule(skb, oper))
2417 goto options_error_rcu;
2418
2419 if (!admin)
2420 goto done;
2421
2422 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
2423 if (!sched_nest)
2424 goto options_error_rcu;
2425
2426 if (dump_schedule(skb, admin))
2427 goto admin_error;
2428
2429 nla_nest_end(skb, sched_nest);
2430
2431 done:
2432 rcu_read_unlock();
2433 return nla_nest_end(skb, nest);
2434
2435 admin_error:
2436 nla_nest_cancel(skb, sched_nest);
2437
2438 options_error_rcu:
2439 rcu_read_unlock();
2440
2441 options_error:
2442 nla_nest_cancel(skb, nest);
2443
2444 start_error:
2445 return -ENOSPC;
2446 }
2447
taprio_leaf(struct Qdisc * sch,unsigned long cl)2448 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
2449 {
2450 struct taprio_sched *q = qdisc_priv(sch);
2451 struct net_device *dev = qdisc_dev(sch);
2452 unsigned int ntx = cl - 1;
2453
2454 if (ntx >= dev->num_tx_queues)
2455 return NULL;
2456
2457 return q->qdiscs[ntx];
2458 }
2459
taprio_find(struct Qdisc * sch,u32 classid)2460 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
2461 {
2462 unsigned int ntx = TC_H_MIN(classid);
2463
2464 if (!taprio_queue_get(sch, ntx))
2465 return 0;
2466 return ntx;
2467 }
2468
taprio_dump_class(struct Qdisc * sch,unsigned long cl,struct sk_buff * skb,struct tcmsg * tcm)2469 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
2470 struct sk_buff *skb, struct tcmsg *tcm)
2471 {
2472 struct Qdisc *child = taprio_leaf(sch, cl);
2473
2474 tcm->tcm_parent = TC_H_ROOT;
2475 tcm->tcm_handle |= TC_H_MIN(cl);
2476 tcm->tcm_info = child->handle;
2477
2478 return 0;
2479 }
2480
taprio_dump_class_stats(struct Qdisc * sch,unsigned long cl,struct gnet_dump * d)2481 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
2482 struct gnet_dump *d)
2483 __releases(d->lock)
2484 __acquires(d->lock)
2485 {
2486 struct Qdisc *child = taprio_leaf(sch, cl);
2487 struct tc_taprio_qopt_offload offload = {
2488 .cmd = TAPRIO_CMD_QUEUE_STATS,
2489 .queue_stats = {
2490 .queue = cl - 1,
2491 },
2492 };
2493
2494 if (gnet_stats_copy_basic(d, NULL, &child->bstats, true) < 0 ||
2495 qdisc_qstats_copy(d, child) < 0)
2496 return -1;
2497
2498 return taprio_dump_xstats(sch, d, &offload, &offload.queue_stats.stats);
2499 }
2500
taprio_walk(struct Qdisc * sch,struct qdisc_walker * arg)2501 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
2502 {
2503 struct net_device *dev = qdisc_dev(sch);
2504 unsigned long ntx;
2505
2506 if (arg->stop)
2507 return;
2508
2509 arg->count = arg->skip;
2510 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
2511 if (!tc_qdisc_stats_dump(sch, ntx + 1, arg))
2512 break;
2513 }
2514 }
2515
taprio_select_queue(struct Qdisc * sch,struct tcmsg * tcm)2516 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2517 struct tcmsg *tcm)
2518 {
2519 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2520 }
2521
2522 static const struct Qdisc_class_ops taprio_class_ops = {
2523 .graft = taprio_graft,
2524 .leaf = taprio_leaf,
2525 .find = taprio_find,
2526 .walk = taprio_walk,
2527 .dump = taprio_dump_class,
2528 .dump_stats = taprio_dump_class_stats,
2529 .select_queue = taprio_select_queue,
2530 };
2531
2532 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2533 .cl_ops = &taprio_class_ops,
2534 .id = "taprio",
2535 .priv_size = sizeof(struct taprio_sched),
2536 .init = taprio_init,
2537 .change = taprio_change,
2538 .destroy = taprio_destroy,
2539 .reset = taprio_reset,
2540 .attach = taprio_attach,
2541 .peek = taprio_peek,
2542 .dequeue = taprio_dequeue,
2543 .enqueue = taprio_enqueue,
2544 .dump = taprio_dump,
2545 .dump_stats = taprio_dump_stats,
2546 .owner = THIS_MODULE,
2547 };
2548 MODULE_ALIAS_NET_SCH("taprio");
2549
2550 static struct notifier_block taprio_device_notifier = {
2551 .notifier_call = taprio_dev_notifier,
2552 };
2553
taprio_module_init(void)2554 static int __init taprio_module_init(void)
2555 {
2556 int err = register_netdevice_notifier(&taprio_device_notifier);
2557
2558 if (err)
2559 return err;
2560
2561 return register_qdisc(&taprio_qdisc_ops);
2562 }
2563
taprio_module_exit(void)2564 static void __exit taprio_module_exit(void)
2565 {
2566 unregister_qdisc(&taprio_qdisc_ops);
2567 unregister_netdevice_notifier(&taprio_device_notifier);
2568 }
2569
2570 module_init(taprio_module_init);
2571 module_exit(taprio_module_exit);
2572 MODULE_LICENSE("GPL");
2573 MODULE_DESCRIPTION("Time Aware Priority qdisc");
2574