xref: /linux/mm/swapfile.c (revision 1110ce6a1e34fe1fdc1bfe4ad52405f327d5083b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
46 
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
50 #include "internal.h"
51 #include "swap.h"
52 
53 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
54 				 unsigned char);
55 static void free_swap_count_continuations(struct swap_info_struct *);
56 static void swap_entry_range_free(struct swap_info_struct *si,
57 				  struct swap_cluster_info *ci,
58 				  swp_entry_t entry, unsigned int nr_pages);
59 static void swap_range_alloc(struct swap_info_struct *si,
60 			     unsigned int nr_entries);
61 static bool folio_swapcache_freeable(struct folio *folio);
62 static struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
63 					      unsigned long offset);
64 static inline void unlock_cluster(struct swap_cluster_info *ci);
65 
66 static DEFINE_SPINLOCK(swap_lock);
67 static unsigned int nr_swapfiles;
68 atomic_long_t nr_swap_pages;
69 /*
70  * Some modules use swappable objects and may try to swap them out under
71  * memory pressure (via the shrinker). Before doing so, they may wish to
72  * check to see if any swap space is available.
73  */
74 EXPORT_SYMBOL_GPL(nr_swap_pages);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages;
77 static int least_priority = -1;
78 unsigned long swapfile_maximum_size;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported;
81 #endif	/* CONFIG_MIGRATION */
82 
83 static const char Bad_file[] = "Bad swap file entry ";
84 static const char Unused_file[] = "Unused swap file entry ";
85 static const char Bad_offset[] = "Bad swap offset entry ";
86 static const char Unused_offset[] = "Unused swap offset entry ";
87 
88 /*
89  * all active swap_info_structs
90  * protected with swap_lock, and ordered by priority.
91  */
92 static PLIST_HEAD(swap_active_head);
93 
94 /*
95  * all available (active, not full) swap_info_structs
96  * protected with swap_avail_lock, ordered by priority.
97  * This is used by folio_alloc_swap() instead of swap_active_head
98  * because swap_active_head includes all swap_info_structs,
99  * but folio_alloc_swap() doesn't need to look at full ones.
100  * This uses its own lock instead of swap_lock because when a
101  * swap_info_struct changes between not-full/full, it needs to
102  * add/remove itself to/from this list, but the swap_info_struct->lock
103  * is held and the locking order requires swap_lock to be taken
104  * before any swap_info_struct->lock.
105  */
106 static struct plist_head *swap_avail_heads;
107 static DEFINE_SPINLOCK(swap_avail_lock);
108 
109 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
110 
111 static DEFINE_MUTEX(swapon_mutex);
112 
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event = ATOMIC_INIT(0);
116 
117 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
118 
swap_type_to_swap_info(int type)119 static struct swap_info_struct *swap_type_to_swap_info(int type)
120 {
121 	if (type >= MAX_SWAPFILES)
122 		return NULL;
123 
124 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
125 }
126 
swap_count(unsigned char ent)127 static inline unsigned char swap_count(unsigned char ent)
128 {
129 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
130 }
131 
132 /*
133  * Use the second highest bit of inuse_pages counter as the indicator
134  * if one swap device is on the available plist, so the atomic can
135  * still be updated arithmetically while having special data embedded.
136  *
137  * inuse_pages counter is the only thing indicating if a device should
138  * be on avail_lists or not (except swapon / swapoff). By embedding the
139  * off-list bit in the atomic counter, updates no longer need any lock
140  * to check the list status.
141  *
142  * This bit will be set if the device is not on the plist and not
143  * usable, will be cleared if the device is on the plist.
144  */
145 #define SWAP_USAGE_OFFLIST_BIT (1UL << (BITS_PER_TYPE(atomic_t) - 2))
146 #define SWAP_USAGE_COUNTER_MASK (~SWAP_USAGE_OFFLIST_BIT)
swap_usage_in_pages(struct swap_info_struct * si)147 static long swap_usage_in_pages(struct swap_info_struct *si)
148 {
149 	return atomic_long_read(&si->inuse_pages) & SWAP_USAGE_COUNTER_MASK;
150 }
151 
152 /* Reclaim the swap entry anyway if possible */
153 #define TTRS_ANYWAY		0x1
154 /*
155  * Reclaim the swap entry if there are no more mappings of the
156  * corresponding page
157  */
158 #define TTRS_UNMAPPED		0x2
159 /* Reclaim the swap entry if swap is getting full */
160 #define TTRS_FULL		0x4
161 /* Reclaim directly, bypass the slot cache and don't touch device lock */
162 #define TTRS_DIRECT		0x8
163 
swap_is_has_cache(struct swap_info_struct * si,unsigned long offset,int nr_pages)164 static bool swap_is_has_cache(struct swap_info_struct *si,
165 			      unsigned long offset, int nr_pages)
166 {
167 	unsigned char *map = si->swap_map + offset;
168 	unsigned char *map_end = map + nr_pages;
169 
170 	do {
171 		VM_BUG_ON(!(*map & SWAP_HAS_CACHE));
172 		if (*map != SWAP_HAS_CACHE)
173 			return false;
174 	} while (++map < map_end);
175 
176 	return true;
177 }
178 
swap_is_last_map(struct swap_info_struct * si,unsigned long offset,int nr_pages,bool * has_cache)179 static bool swap_is_last_map(struct swap_info_struct *si,
180 		unsigned long offset, int nr_pages, bool *has_cache)
181 {
182 	unsigned char *map = si->swap_map + offset;
183 	unsigned char *map_end = map + nr_pages;
184 	unsigned char count = *map;
185 
186 	if (swap_count(count) != 1)
187 		return false;
188 
189 	while (++map < map_end) {
190 		if (*map != count)
191 			return false;
192 	}
193 
194 	*has_cache = !!(count & SWAP_HAS_CACHE);
195 	return true;
196 }
197 
198 /*
199  * returns number of pages in the folio that backs the swap entry. If positive,
200  * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
201  * folio was associated with the swap entry.
202  */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)203 static int __try_to_reclaim_swap(struct swap_info_struct *si,
204 				 unsigned long offset, unsigned long flags)
205 {
206 	swp_entry_t entry = swp_entry(si->type, offset);
207 	struct address_space *address_space = swap_address_space(entry);
208 	struct swap_cluster_info *ci;
209 	struct folio *folio;
210 	int ret, nr_pages;
211 	bool need_reclaim;
212 
213 	folio = filemap_get_folio(address_space, swap_cache_index(entry));
214 	if (IS_ERR(folio))
215 		return 0;
216 
217 	nr_pages = folio_nr_pages(folio);
218 	ret = -nr_pages;
219 
220 	/*
221 	 * When this function is called from scan_swap_map_slots() and it's
222 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
223 	 * here. We have to use trylock for avoiding deadlock. This is a special
224 	 * case and you should use folio_free_swap() with explicit folio_lock()
225 	 * in usual operations.
226 	 */
227 	if (!folio_trylock(folio))
228 		goto out;
229 
230 	/* offset could point to the middle of a large folio */
231 	entry = folio->swap;
232 	offset = swp_offset(entry);
233 
234 	need_reclaim = ((flags & TTRS_ANYWAY) ||
235 			((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
236 			((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)));
237 	if (!need_reclaim || !folio_swapcache_freeable(folio))
238 		goto out_unlock;
239 
240 	/*
241 	 * It's safe to delete the folio from swap cache only if the folio's
242 	 * swap_map is HAS_CACHE only, which means the slots have no page table
243 	 * reference or pending writeback, and can't be allocated to others.
244 	 */
245 	ci = lock_cluster(si, offset);
246 	need_reclaim = swap_is_has_cache(si, offset, nr_pages);
247 	unlock_cluster(ci);
248 	if (!need_reclaim)
249 		goto out_unlock;
250 
251 	if (!(flags & TTRS_DIRECT)) {
252 		/* Free through slot cache */
253 		delete_from_swap_cache(folio);
254 		folio_set_dirty(folio);
255 		ret = nr_pages;
256 		goto out_unlock;
257 	}
258 
259 	xa_lock_irq(&address_space->i_pages);
260 	__delete_from_swap_cache(folio, entry, NULL);
261 	xa_unlock_irq(&address_space->i_pages);
262 	folio_ref_sub(folio, nr_pages);
263 	folio_set_dirty(folio);
264 
265 	ci = lock_cluster(si, offset);
266 	swap_entry_range_free(si, ci, entry, nr_pages);
267 	unlock_cluster(ci);
268 	ret = nr_pages;
269 out_unlock:
270 	folio_unlock(folio);
271 out:
272 	folio_put(folio);
273 	return ret;
274 }
275 
first_se(struct swap_info_struct * sis)276 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
277 {
278 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
279 	return rb_entry(rb, struct swap_extent, rb_node);
280 }
281 
next_se(struct swap_extent * se)282 static inline struct swap_extent *next_se(struct swap_extent *se)
283 {
284 	struct rb_node *rb = rb_next(&se->rb_node);
285 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
286 }
287 
288 /*
289  * swapon tell device that all the old swap contents can be discarded,
290  * to allow the swap device to optimize its wear-levelling.
291  */
discard_swap(struct swap_info_struct * si)292 static int discard_swap(struct swap_info_struct *si)
293 {
294 	struct swap_extent *se;
295 	sector_t start_block;
296 	sector_t nr_blocks;
297 	int err = 0;
298 
299 	/* Do not discard the swap header page! */
300 	se = first_se(si);
301 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
302 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
303 	if (nr_blocks) {
304 		err = blkdev_issue_discard(si->bdev, start_block,
305 				nr_blocks, GFP_KERNEL);
306 		if (err)
307 			return err;
308 		cond_resched();
309 	}
310 
311 	for (se = next_se(se); se; se = next_se(se)) {
312 		start_block = se->start_block << (PAGE_SHIFT - 9);
313 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
314 
315 		err = blkdev_issue_discard(si->bdev, start_block,
316 				nr_blocks, GFP_KERNEL);
317 		if (err)
318 			break;
319 
320 		cond_resched();
321 	}
322 	return err;		/* That will often be -EOPNOTSUPP */
323 }
324 
325 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)326 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
327 {
328 	struct swap_extent *se;
329 	struct rb_node *rb;
330 
331 	rb = sis->swap_extent_root.rb_node;
332 	while (rb) {
333 		se = rb_entry(rb, struct swap_extent, rb_node);
334 		if (offset < se->start_page)
335 			rb = rb->rb_left;
336 		else if (offset >= se->start_page + se->nr_pages)
337 			rb = rb->rb_right;
338 		else
339 			return se;
340 	}
341 	/* It *must* be present */
342 	BUG();
343 }
344 
swap_folio_sector(struct folio * folio)345 sector_t swap_folio_sector(struct folio *folio)
346 {
347 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
348 	struct swap_extent *se;
349 	sector_t sector;
350 	pgoff_t offset;
351 
352 	offset = swp_offset(folio->swap);
353 	se = offset_to_swap_extent(sis, offset);
354 	sector = se->start_block + (offset - se->start_page);
355 	return sector << (PAGE_SHIFT - 9);
356 }
357 
358 /*
359  * swap allocation tell device that a cluster of swap can now be discarded,
360  * to allow the swap device to optimize its wear-levelling.
361  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)362 static void discard_swap_cluster(struct swap_info_struct *si,
363 				 pgoff_t start_page, pgoff_t nr_pages)
364 {
365 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
366 
367 	while (nr_pages) {
368 		pgoff_t offset = start_page - se->start_page;
369 		sector_t start_block = se->start_block + offset;
370 		sector_t nr_blocks = se->nr_pages - offset;
371 
372 		if (nr_blocks > nr_pages)
373 			nr_blocks = nr_pages;
374 		start_page += nr_blocks;
375 		nr_pages -= nr_blocks;
376 
377 		start_block <<= PAGE_SHIFT - 9;
378 		nr_blocks <<= PAGE_SHIFT - 9;
379 		if (blkdev_issue_discard(si->bdev, start_block,
380 					nr_blocks, GFP_NOIO))
381 			break;
382 
383 		se = next_se(se);
384 	}
385 }
386 
387 #ifdef CONFIG_THP_SWAP
388 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
389 
390 #define swap_entry_order(order)	(order)
391 #else
392 #define SWAPFILE_CLUSTER	256
393 
394 /*
395  * Define swap_entry_order() as constant to let compiler to optimize
396  * out some code if !CONFIG_THP_SWAP
397  */
398 #define swap_entry_order(order)	0
399 #endif
400 #define LATENCY_LIMIT		256
401 
cluster_is_empty(struct swap_cluster_info * info)402 static inline bool cluster_is_empty(struct swap_cluster_info *info)
403 {
404 	return info->count == 0;
405 }
406 
cluster_is_discard(struct swap_cluster_info * info)407 static inline bool cluster_is_discard(struct swap_cluster_info *info)
408 {
409 	return info->flags == CLUSTER_FLAG_DISCARD;
410 }
411 
cluster_is_usable(struct swap_cluster_info * ci,int order)412 static inline bool cluster_is_usable(struct swap_cluster_info *ci, int order)
413 {
414 	if (unlikely(ci->flags > CLUSTER_FLAG_USABLE))
415 		return false;
416 	if (!order)
417 		return true;
418 	return cluster_is_empty(ci) || order == ci->order;
419 }
420 
cluster_index(struct swap_info_struct * si,struct swap_cluster_info * ci)421 static inline unsigned int cluster_index(struct swap_info_struct *si,
422 					 struct swap_cluster_info *ci)
423 {
424 	return ci - si->cluster_info;
425 }
426 
offset_to_cluster(struct swap_info_struct * si,unsigned long offset)427 static inline struct swap_cluster_info *offset_to_cluster(struct swap_info_struct *si,
428 							  unsigned long offset)
429 {
430 	return &si->cluster_info[offset / SWAPFILE_CLUSTER];
431 }
432 
cluster_offset(struct swap_info_struct * si,struct swap_cluster_info * ci)433 static inline unsigned int cluster_offset(struct swap_info_struct *si,
434 					  struct swap_cluster_info *ci)
435 {
436 	return cluster_index(si, ci) * SWAPFILE_CLUSTER;
437 }
438 
lock_cluster(struct swap_info_struct * si,unsigned long offset)439 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
440 						     unsigned long offset)
441 {
442 	struct swap_cluster_info *ci;
443 
444 	ci = offset_to_cluster(si, offset);
445 	spin_lock(&ci->lock);
446 
447 	return ci;
448 }
449 
unlock_cluster(struct swap_cluster_info * ci)450 static inline void unlock_cluster(struct swap_cluster_info *ci)
451 {
452 	spin_unlock(&ci->lock);
453 }
454 
move_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,struct list_head * list,enum swap_cluster_flags new_flags)455 static void move_cluster(struct swap_info_struct *si,
456 			 struct swap_cluster_info *ci, struct list_head *list,
457 			 enum swap_cluster_flags new_flags)
458 {
459 	VM_WARN_ON(ci->flags == new_flags);
460 
461 	BUILD_BUG_ON(1 << sizeof(ci->flags) * BITS_PER_BYTE < CLUSTER_FLAG_MAX);
462 	lockdep_assert_held(&ci->lock);
463 
464 	spin_lock(&si->lock);
465 	if (ci->flags == CLUSTER_FLAG_NONE)
466 		list_add_tail(&ci->list, list);
467 	else
468 		list_move_tail(&ci->list, list);
469 	spin_unlock(&si->lock);
470 
471 	if (ci->flags == CLUSTER_FLAG_FRAG)
472 		atomic_long_dec(&si->frag_cluster_nr[ci->order]);
473 	else if (new_flags == CLUSTER_FLAG_FRAG)
474 		atomic_long_inc(&si->frag_cluster_nr[ci->order]);
475 	ci->flags = new_flags;
476 }
477 
478 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,struct swap_cluster_info * ci)479 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
480 		struct swap_cluster_info *ci)
481 {
482 	unsigned int idx = cluster_index(si, ci);
483 	/*
484 	 * If scan_swap_map_slots() can't find a free cluster, it will check
485 	 * si->swap_map directly. To make sure the discarding cluster isn't
486 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
487 	 * It will be cleared after discard
488 	 */
489 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
490 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
491 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
492 	move_cluster(si, ci, &si->discard_clusters, CLUSTER_FLAG_DISCARD);
493 	schedule_work(&si->discard_work);
494 }
495 
__free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)496 static void __free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
497 {
498 	lockdep_assert_held(&ci->lock);
499 	move_cluster(si, ci, &si->free_clusters, CLUSTER_FLAG_FREE);
500 	ci->order = 0;
501 }
502 
503 /*
504  * Isolate and lock the first cluster that is not contented on a list,
505  * clean its flag before taken off-list. Cluster flag must be in sync
506  * with list status, so cluster updaters can always know the cluster
507  * list status without touching si lock.
508  *
509  * Note it's possible that all clusters on a list are contented so
510  * this returns NULL for an non-empty list.
511  */
isolate_lock_cluster(struct swap_info_struct * si,struct list_head * list)512 static struct swap_cluster_info *isolate_lock_cluster(
513 		struct swap_info_struct *si, struct list_head *list)
514 {
515 	struct swap_cluster_info *ci, *ret = NULL;
516 
517 	spin_lock(&si->lock);
518 
519 	if (unlikely(!(si->flags & SWP_WRITEOK)))
520 		goto out;
521 
522 	list_for_each_entry(ci, list, list) {
523 		if (!spin_trylock(&ci->lock))
524 			continue;
525 
526 		/* We may only isolate and clear flags of following lists */
527 		VM_BUG_ON(!ci->flags);
528 		VM_BUG_ON(ci->flags > CLUSTER_FLAG_USABLE &&
529 			  ci->flags != CLUSTER_FLAG_FULL);
530 
531 		list_del(&ci->list);
532 		ci->flags = CLUSTER_FLAG_NONE;
533 		ret = ci;
534 		break;
535 	}
536 out:
537 	spin_unlock(&si->lock);
538 
539 	return ret;
540 }
541 
542 /*
543  * Doing discard actually. After a cluster discard is finished, the cluster
544  * will be added to free cluster list. Discard cluster is a bit special as
545  * they don't participate in allocation or reclaim, so clusters marked as
546  * CLUSTER_FLAG_DISCARD must remain off-list or on discard list.
547  */
swap_do_scheduled_discard(struct swap_info_struct * si)548 static bool swap_do_scheduled_discard(struct swap_info_struct *si)
549 {
550 	struct swap_cluster_info *ci;
551 	bool ret = false;
552 	unsigned int idx;
553 
554 	spin_lock(&si->lock);
555 	while (!list_empty(&si->discard_clusters)) {
556 		ci = list_first_entry(&si->discard_clusters, struct swap_cluster_info, list);
557 		/*
558 		 * Delete the cluster from list to prepare for discard, but keep
559 		 * the CLUSTER_FLAG_DISCARD flag, there could be percpu_cluster
560 		 * pointing to it, or ran into by relocate_cluster.
561 		 */
562 		list_del(&ci->list);
563 		idx = cluster_index(si, ci);
564 		spin_unlock(&si->lock);
565 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
566 				SWAPFILE_CLUSTER);
567 
568 		spin_lock(&ci->lock);
569 		/*
570 		 * Discard is done, clear its flags as it's off-list, then
571 		 * return the cluster to allocation list.
572 		 */
573 		ci->flags = CLUSTER_FLAG_NONE;
574 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
575 				0, SWAPFILE_CLUSTER);
576 		__free_cluster(si, ci);
577 		spin_unlock(&ci->lock);
578 		ret = true;
579 		spin_lock(&si->lock);
580 	}
581 	spin_unlock(&si->lock);
582 	return ret;
583 }
584 
swap_discard_work(struct work_struct * work)585 static void swap_discard_work(struct work_struct *work)
586 {
587 	struct swap_info_struct *si;
588 
589 	si = container_of(work, struct swap_info_struct, discard_work);
590 
591 	swap_do_scheduled_discard(si);
592 }
593 
swap_users_ref_free(struct percpu_ref * ref)594 static void swap_users_ref_free(struct percpu_ref *ref)
595 {
596 	struct swap_info_struct *si;
597 
598 	si = container_of(ref, struct swap_info_struct, users);
599 	complete(&si->comp);
600 }
601 
602 /*
603  * Must be called after freeing if ci->count == 0, moves the cluster to free
604  * or discard list.
605  */
free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)606 static void free_cluster(struct swap_info_struct *si, struct swap_cluster_info *ci)
607 {
608 	VM_BUG_ON(ci->count != 0);
609 	VM_BUG_ON(ci->flags == CLUSTER_FLAG_FREE);
610 	lockdep_assert_held(&ci->lock);
611 
612 	/*
613 	 * If the swap is discardable, prepare discard the cluster
614 	 * instead of free it immediately. The cluster will be freed
615 	 * after discard.
616 	 */
617 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
618 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
619 		swap_cluster_schedule_discard(si, ci);
620 		return;
621 	}
622 
623 	__free_cluster(si, ci);
624 }
625 
626 /*
627  * Must be called after freeing if ci->count != 0, moves the cluster to
628  * nonfull list.
629  */
partial_free_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)630 static void partial_free_cluster(struct swap_info_struct *si,
631 				 struct swap_cluster_info *ci)
632 {
633 	VM_BUG_ON(!ci->count || ci->count == SWAPFILE_CLUSTER);
634 	lockdep_assert_held(&ci->lock);
635 
636 	if (ci->flags != CLUSTER_FLAG_NONFULL)
637 		move_cluster(si, ci, &si->nonfull_clusters[ci->order],
638 			     CLUSTER_FLAG_NONFULL);
639 }
640 
641 /*
642  * Must be called after allocation, moves the cluster to full or frag list.
643  * Note: allocation doesn't acquire si lock, and may drop the ci lock for
644  * reclaim, so the cluster could be any where when called.
645  */
relocate_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci)646 static void relocate_cluster(struct swap_info_struct *si,
647 			     struct swap_cluster_info *ci)
648 {
649 	lockdep_assert_held(&ci->lock);
650 
651 	/* Discard cluster must remain off-list or on discard list */
652 	if (cluster_is_discard(ci))
653 		return;
654 
655 	if (!ci->count) {
656 		if (ci->flags != CLUSTER_FLAG_FREE)
657 			free_cluster(si, ci);
658 	} else if (ci->count != SWAPFILE_CLUSTER) {
659 		if (ci->flags != CLUSTER_FLAG_FRAG)
660 			move_cluster(si, ci, &si->frag_clusters[ci->order],
661 				     CLUSTER_FLAG_FRAG);
662 	} else {
663 		if (ci->flags != CLUSTER_FLAG_FULL)
664 			move_cluster(si, ci, &si->full_clusters,
665 				     CLUSTER_FLAG_FULL);
666 	}
667 }
668 
669 /*
670  * The cluster corresponding to page_nr will be used. The cluster will not be
671  * added to free cluster list and its usage counter will be increased by 1.
672  * Only used for initialization.
673  */
inc_cluster_info_page(struct swap_info_struct * si,struct swap_cluster_info * cluster_info,unsigned long page_nr)674 static void inc_cluster_info_page(struct swap_info_struct *si,
675 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
676 {
677 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
678 	struct swap_cluster_info *ci;
679 
680 	ci = cluster_info + idx;
681 	ci->count++;
682 
683 	VM_BUG_ON(ci->count > SWAPFILE_CLUSTER);
684 	VM_BUG_ON(ci->flags);
685 }
686 
cluster_reclaim_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned long end)687 static bool cluster_reclaim_range(struct swap_info_struct *si,
688 				  struct swap_cluster_info *ci,
689 				  unsigned long start, unsigned long end)
690 {
691 	unsigned char *map = si->swap_map;
692 	unsigned long offset = start;
693 	int nr_reclaim;
694 
695 	spin_unlock(&ci->lock);
696 	do {
697 		switch (READ_ONCE(map[offset])) {
698 		case 0:
699 			offset++;
700 			break;
701 		case SWAP_HAS_CACHE:
702 			nr_reclaim = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY | TTRS_DIRECT);
703 			if (nr_reclaim > 0)
704 				offset += nr_reclaim;
705 			else
706 				goto out;
707 			break;
708 		default:
709 			goto out;
710 		}
711 	} while (offset < end);
712 out:
713 	spin_lock(&ci->lock);
714 	/*
715 	 * Recheck the range no matter reclaim succeeded or not, the slot
716 	 * could have been be freed while we are not holding the lock.
717 	 */
718 	for (offset = start; offset < end; offset++)
719 		if (READ_ONCE(map[offset]))
720 			return false;
721 
722 	return true;
723 }
724 
cluster_scan_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long start,unsigned int nr_pages,bool * need_reclaim)725 static bool cluster_scan_range(struct swap_info_struct *si,
726 			       struct swap_cluster_info *ci,
727 			       unsigned long start, unsigned int nr_pages,
728 			       bool *need_reclaim)
729 {
730 	unsigned long offset, end = start + nr_pages;
731 	unsigned char *map = si->swap_map;
732 
733 	for (offset = start; offset < end; offset++) {
734 		switch (READ_ONCE(map[offset])) {
735 		case 0:
736 			continue;
737 		case SWAP_HAS_CACHE:
738 			if (!vm_swap_full())
739 				return false;
740 			*need_reclaim = true;
741 			continue;
742 		default:
743 			return false;
744 		}
745 	}
746 
747 	return true;
748 }
749 
cluster_alloc_range(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned int start,unsigned char usage,unsigned int order)750 static bool cluster_alloc_range(struct swap_info_struct *si, struct swap_cluster_info *ci,
751 				unsigned int start, unsigned char usage,
752 				unsigned int order)
753 {
754 	unsigned int nr_pages = 1 << order;
755 
756 	lockdep_assert_held(&ci->lock);
757 
758 	if (!(si->flags & SWP_WRITEOK))
759 		return false;
760 
761 	/*
762 	 * The first allocation in a cluster makes the
763 	 * cluster exclusive to this order
764 	 */
765 	if (cluster_is_empty(ci))
766 		ci->order = order;
767 
768 	memset(si->swap_map + start, usage, nr_pages);
769 	swap_range_alloc(si, nr_pages);
770 	ci->count += nr_pages;
771 
772 	return true;
773 }
774 
775 /* Try use a new cluster for current CPU and allocate from it. */
alloc_swap_scan_cluster(struct swap_info_struct * si,struct swap_cluster_info * ci,unsigned long offset,unsigned int order,unsigned char usage)776 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct *si,
777 					    struct swap_cluster_info *ci,
778 					    unsigned long offset,
779 					    unsigned int order,
780 					    unsigned char usage)
781 {
782 	unsigned int next = SWAP_ENTRY_INVALID, found = SWAP_ENTRY_INVALID;
783 	unsigned long start = ALIGN_DOWN(offset, SWAPFILE_CLUSTER);
784 	unsigned long end = min(start + SWAPFILE_CLUSTER, si->max);
785 	unsigned int nr_pages = 1 << order;
786 	bool need_reclaim, ret;
787 
788 	lockdep_assert_held(&ci->lock);
789 
790 	if (end < nr_pages || ci->count + nr_pages > SWAPFILE_CLUSTER)
791 		goto out;
792 
793 	for (end -= nr_pages; offset <= end; offset += nr_pages) {
794 		need_reclaim = false;
795 		if (!cluster_scan_range(si, ci, offset, nr_pages, &need_reclaim))
796 			continue;
797 		if (need_reclaim) {
798 			ret = cluster_reclaim_range(si, ci, offset, offset + nr_pages);
799 			/*
800 			 * Reclaim drops ci->lock and cluster could be used
801 			 * by another order. Not checking flag as off-list
802 			 * cluster has no flag set, and change of list
803 			 * won't cause fragmentation.
804 			 */
805 			if (!cluster_is_usable(ci, order))
806 				goto out;
807 			if (cluster_is_empty(ci))
808 				offset = start;
809 			/* Reclaim failed but cluster is usable, try next */
810 			if (!ret)
811 				continue;
812 		}
813 		if (!cluster_alloc_range(si, ci, offset, usage, order))
814 			break;
815 		found = offset;
816 		offset += nr_pages;
817 		if (ci->count < SWAPFILE_CLUSTER && offset <= end)
818 			next = offset;
819 		break;
820 	}
821 out:
822 	relocate_cluster(si, ci);
823 	unlock_cluster(ci);
824 	if (si->flags & SWP_SOLIDSTATE)
825 		__this_cpu_write(si->percpu_cluster->next[order], next);
826 	else
827 		si->global_cluster->next[order] = next;
828 	return found;
829 }
830 
831 /* Return true if reclaimed a whole cluster */
swap_reclaim_full_clusters(struct swap_info_struct * si,bool force)832 static void swap_reclaim_full_clusters(struct swap_info_struct *si, bool force)
833 {
834 	long to_scan = 1;
835 	unsigned long offset, end;
836 	struct swap_cluster_info *ci;
837 	unsigned char *map = si->swap_map;
838 	int nr_reclaim;
839 
840 	if (force)
841 		to_scan = swap_usage_in_pages(si) / SWAPFILE_CLUSTER;
842 
843 	while ((ci = isolate_lock_cluster(si, &si->full_clusters))) {
844 		offset = cluster_offset(si, ci);
845 		end = min(si->max, offset + SWAPFILE_CLUSTER);
846 		to_scan--;
847 
848 		while (offset < end) {
849 			if (READ_ONCE(map[offset]) == SWAP_HAS_CACHE) {
850 				spin_unlock(&ci->lock);
851 				nr_reclaim = __try_to_reclaim_swap(si, offset,
852 								   TTRS_ANYWAY | TTRS_DIRECT);
853 				spin_lock(&ci->lock);
854 				if (nr_reclaim) {
855 					offset += abs(nr_reclaim);
856 					continue;
857 				}
858 			}
859 			offset++;
860 		}
861 
862 		/* in case no swap cache is reclaimed */
863 		if (ci->flags == CLUSTER_FLAG_NONE)
864 			relocate_cluster(si, ci);
865 
866 		unlock_cluster(ci);
867 		if (to_scan <= 0)
868 			break;
869 	}
870 }
871 
swap_reclaim_work(struct work_struct * work)872 static void swap_reclaim_work(struct work_struct *work)
873 {
874 	struct swap_info_struct *si;
875 
876 	si = container_of(work, struct swap_info_struct, reclaim_work);
877 
878 	swap_reclaim_full_clusters(si, true);
879 }
880 
881 /*
882  * Try to get swap entries with specified order from current cpu's swap entry
883  * pool (a cluster). This might involve allocating a new cluster for current CPU
884  * too.
885  */
cluster_alloc_swap_entry(struct swap_info_struct * si,int order,unsigned char usage)886 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct *si, int order,
887 					      unsigned char usage)
888 {
889 	struct swap_cluster_info *ci;
890 	unsigned int offset, found = 0;
891 
892 	if (si->flags & SWP_SOLIDSTATE) {
893 		/* Fast path using per CPU cluster */
894 		local_lock(&si->percpu_cluster->lock);
895 		offset = __this_cpu_read(si->percpu_cluster->next[order]);
896 	} else {
897 		/* Serialize HDD SWAP allocation for each device. */
898 		spin_lock(&si->global_cluster_lock);
899 		offset = si->global_cluster->next[order];
900 	}
901 
902 	if (offset) {
903 		ci = lock_cluster(si, offset);
904 		/* Cluster could have been used by another order */
905 		if (cluster_is_usable(ci, order)) {
906 			if (cluster_is_empty(ci))
907 				offset = cluster_offset(si, ci);
908 			found = alloc_swap_scan_cluster(si, ci, offset,
909 							order, usage);
910 		} else {
911 			unlock_cluster(ci);
912 		}
913 		if (found)
914 			goto done;
915 	}
916 
917 new_cluster:
918 	ci = isolate_lock_cluster(si, &si->free_clusters);
919 	if (ci) {
920 		found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
921 						order, usage);
922 		if (found)
923 			goto done;
924 	}
925 
926 	/* Try reclaim from full clusters if free clusters list is drained */
927 	if (vm_swap_full())
928 		swap_reclaim_full_clusters(si, false);
929 
930 	if (order < PMD_ORDER) {
931 		unsigned int frags = 0, frags_existing;
932 
933 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[order]))) {
934 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
935 							order, usage);
936 			if (found)
937 				goto done;
938 			/* Clusters failed to allocate are moved to frag_clusters */
939 			frags++;
940 		}
941 
942 		frags_existing = atomic_long_read(&si->frag_cluster_nr[order]);
943 		while (frags < frags_existing &&
944 		       (ci = isolate_lock_cluster(si, &si->frag_clusters[order]))) {
945 			atomic_long_dec(&si->frag_cluster_nr[order]);
946 			/*
947 			 * Rotate the frag list to iterate, they were all
948 			 * failing high order allocation or moved here due to
949 			 * per-CPU usage, but they could contain newly released
950 			 * reclaimable (eg. lazy-freed swap cache) slots.
951 			 */
952 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
953 							order, usage);
954 			if (found)
955 				goto done;
956 			frags++;
957 		}
958 	}
959 
960 	/*
961 	 * We don't have free cluster but have some clusters in
962 	 * discarding, do discard now and reclaim them, then
963 	 * reread cluster_next_cpu since we dropped si->lock
964 	 */
965 	if ((si->flags & SWP_PAGE_DISCARD) && swap_do_scheduled_discard(si))
966 		goto new_cluster;
967 
968 	if (order)
969 		goto done;
970 
971 	/* Order 0 stealing from higher order */
972 	for (int o = 1; o < SWAP_NR_ORDERS; o++) {
973 		/*
974 		 * Clusters here have at least one usable slots and can't fail order 0
975 		 * allocation, but reclaim may drop si->lock and race with another user.
976 		 */
977 		while ((ci = isolate_lock_cluster(si, &si->frag_clusters[o]))) {
978 			atomic_long_dec(&si->frag_cluster_nr[o]);
979 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
980 							0, usage);
981 			if (found)
982 				goto done;
983 		}
984 
985 		while ((ci = isolate_lock_cluster(si, &si->nonfull_clusters[o]))) {
986 			found = alloc_swap_scan_cluster(si, ci, cluster_offset(si, ci),
987 							0, usage);
988 			if (found)
989 				goto done;
990 		}
991 	}
992 done:
993 	if (si->flags & SWP_SOLIDSTATE)
994 		local_unlock(&si->percpu_cluster->lock);
995 	else
996 		spin_unlock(&si->global_cluster_lock);
997 	return found;
998 }
999 
1000 /* SWAP_USAGE_OFFLIST_BIT can only be set by this helper. */
del_from_avail_list(struct swap_info_struct * si,bool swapoff)1001 static void del_from_avail_list(struct swap_info_struct *si, bool swapoff)
1002 {
1003 	int nid;
1004 	unsigned long pages;
1005 
1006 	spin_lock(&swap_avail_lock);
1007 
1008 	if (swapoff) {
1009 		/*
1010 		 * Forcefully remove it. Clear the SWP_WRITEOK flags for
1011 		 * swapoff here so it's synchronized by both si->lock and
1012 		 * swap_avail_lock, to ensure the result can be seen by
1013 		 * add_to_avail_list.
1014 		 */
1015 		lockdep_assert_held(&si->lock);
1016 		si->flags &= ~SWP_WRITEOK;
1017 		atomic_long_or(SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1018 	} else {
1019 		/*
1020 		 * If not called by swapoff, take it off-list only if it's
1021 		 * full and SWAP_USAGE_OFFLIST_BIT is not set (strictly
1022 		 * si->inuse_pages == pages), any concurrent slot freeing,
1023 		 * or device already removed from plist by someone else
1024 		 * will make this return false.
1025 		 */
1026 		pages = si->pages;
1027 		if (!atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1028 					     pages | SWAP_USAGE_OFFLIST_BIT))
1029 			goto skip;
1030 	}
1031 
1032 	for_each_node(nid)
1033 		plist_del(&si->avail_lists[nid], &swap_avail_heads[nid]);
1034 
1035 skip:
1036 	spin_unlock(&swap_avail_lock);
1037 }
1038 
1039 /* SWAP_USAGE_OFFLIST_BIT can only be cleared by this helper. */
add_to_avail_list(struct swap_info_struct * si,bool swapon)1040 static void add_to_avail_list(struct swap_info_struct *si, bool swapon)
1041 {
1042 	int nid;
1043 	long val;
1044 	unsigned long pages;
1045 
1046 	spin_lock(&swap_avail_lock);
1047 
1048 	/* Corresponding to SWP_WRITEOK clearing in del_from_avail_list */
1049 	if (swapon) {
1050 		lockdep_assert_held(&si->lock);
1051 		si->flags |= SWP_WRITEOK;
1052 	} else {
1053 		if (!(READ_ONCE(si->flags) & SWP_WRITEOK))
1054 			goto skip;
1055 	}
1056 
1057 	if (!(atomic_long_read(&si->inuse_pages) & SWAP_USAGE_OFFLIST_BIT))
1058 		goto skip;
1059 
1060 	val = atomic_long_fetch_and_relaxed(~SWAP_USAGE_OFFLIST_BIT, &si->inuse_pages);
1061 
1062 	/*
1063 	 * When device is full and device is on the plist, only one updater will
1064 	 * see (inuse_pages == si->pages) and will call del_from_avail_list. If
1065 	 * that updater happen to be here, just skip adding.
1066 	 */
1067 	pages = si->pages;
1068 	if (val == pages) {
1069 		/* Just like the cmpxchg in del_from_avail_list */
1070 		if (atomic_long_try_cmpxchg(&si->inuse_pages, &pages,
1071 					    pages | SWAP_USAGE_OFFLIST_BIT))
1072 			goto skip;
1073 	}
1074 
1075 	for_each_node(nid)
1076 		plist_add(&si->avail_lists[nid], &swap_avail_heads[nid]);
1077 
1078 skip:
1079 	spin_unlock(&swap_avail_lock);
1080 }
1081 
1082 /*
1083  * swap_usage_add / swap_usage_sub of each slot are serialized by ci->lock
1084  * within each cluster, so the total contribution to the global counter should
1085  * always be positive and cannot exceed the total number of usable slots.
1086  */
swap_usage_add(struct swap_info_struct * si,unsigned int nr_entries)1087 static bool swap_usage_add(struct swap_info_struct *si, unsigned int nr_entries)
1088 {
1089 	long val = atomic_long_add_return_relaxed(nr_entries, &si->inuse_pages);
1090 
1091 	/*
1092 	 * If device is full, and SWAP_USAGE_OFFLIST_BIT is not set,
1093 	 * remove it from the plist.
1094 	 */
1095 	if (unlikely(val == si->pages)) {
1096 		del_from_avail_list(si, false);
1097 		return true;
1098 	}
1099 
1100 	return false;
1101 }
1102 
swap_usage_sub(struct swap_info_struct * si,unsigned int nr_entries)1103 static void swap_usage_sub(struct swap_info_struct *si, unsigned int nr_entries)
1104 {
1105 	long val = atomic_long_sub_return_relaxed(nr_entries, &si->inuse_pages);
1106 
1107 	/*
1108 	 * If device is not full, and SWAP_USAGE_OFFLIST_BIT is set,
1109 	 * remove it from the plist.
1110 	 */
1111 	if (unlikely(val & SWAP_USAGE_OFFLIST_BIT))
1112 		add_to_avail_list(si, false);
1113 }
1114 
swap_range_alloc(struct swap_info_struct * si,unsigned int nr_entries)1115 static void swap_range_alloc(struct swap_info_struct *si,
1116 			     unsigned int nr_entries)
1117 {
1118 	if (swap_usage_add(si, nr_entries)) {
1119 		if (vm_swap_full())
1120 			schedule_work(&si->reclaim_work);
1121 	}
1122 }
1123 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)1124 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
1125 			    unsigned int nr_entries)
1126 {
1127 	unsigned long begin = offset;
1128 	unsigned long end = offset + nr_entries - 1;
1129 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
1130 	unsigned int i;
1131 
1132 	/*
1133 	 * Use atomic clear_bit operations only on zeromap instead of non-atomic
1134 	 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
1135 	 */
1136 	for (i = 0; i < nr_entries; i++) {
1137 		clear_bit(offset + i, si->zeromap);
1138 		zswap_invalidate(swp_entry(si->type, offset + i));
1139 	}
1140 
1141 	if (si->flags & SWP_BLKDEV)
1142 		swap_slot_free_notify =
1143 			si->bdev->bd_disk->fops->swap_slot_free_notify;
1144 	else
1145 		swap_slot_free_notify = NULL;
1146 	while (offset <= end) {
1147 		arch_swap_invalidate_page(si->type, offset);
1148 		if (swap_slot_free_notify)
1149 			swap_slot_free_notify(si->bdev, offset);
1150 		offset++;
1151 	}
1152 	clear_shadow_from_swap_cache(si->type, begin, end);
1153 
1154 	/*
1155 	 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
1156 	 * only after the above cleanups are done.
1157 	 */
1158 	smp_wmb();
1159 	atomic_long_add(nr_entries, &nr_swap_pages);
1160 	swap_usage_sub(si, nr_entries);
1161 }
1162 
cluster_alloc_swap(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[],int order)1163 static int cluster_alloc_swap(struct swap_info_struct *si,
1164 			     unsigned char usage, int nr,
1165 			     swp_entry_t slots[], int order)
1166 {
1167 	int n_ret = 0;
1168 
1169 	while (n_ret < nr) {
1170 		unsigned long offset = cluster_alloc_swap_entry(si, order, usage);
1171 
1172 		if (!offset)
1173 			break;
1174 		slots[n_ret++] = swp_entry(si->type, offset);
1175 	}
1176 
1177 	return n_ret;
1178 }
1179 
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[],int order)1180 static int scan_swap_map_slots(struct swap_info_struct *si,
1181 			       unsigned char usage, int nr,
1182 			       swp_entry_t slots[], int order)
1183 {
1184 	unsigned int nr_pages = 1 << order;
1185 
1186 	/*
1187 	 * We try to cluster swap pages by allocating them sequentially
1188 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
1189 	 * way, however, we resort to first-free allocation, starting
1190 	 * a new cluster.  This prevents us from scattering swap pages
1191 	 * all over the entire swap partition, so that we reduce
1192 	 * overall disk seek times between swap pages.  -- sct
1193 	 * But we do now try to find an empty cluster.  -Andrea
1194 	 * And we let swap pages go all over an SSD partition.  Hugh
1195 	 */
1196 	if (order > 0) {
1197 		/*
1198 		 * Should not even be attempting large allocations when huge
1199 		 * page swap is disabled.  Warn and fail the allocation.
1200 		 */
1201 		if (!IS_ENABLED(CONFIG_THP_SWAP) ||
1202 		    nr_pages > SWAPFILE_CLUSTER) {
1203 			VM_WARN_ON_ONCE(1);
1204 			return 0;
1205 		}
1206 
1207 		/*
1208 		 * Swapfile is not block device so unable
1209 		 * to allocate large entries.
1210 		 */
1211 		if (!(si->flags & SWP_BLKDEV))
1212 			return 0;
1213 	}
1214 
1215 	return cluster_alloc_swap(si, usage, nr, slots, order);
1216 }
1217 
get_swap_device_info(struct swap_info_struct * si)1218 static bool get_swap_device_info(struct swap_info_struct *si)
1219 {
1220 	if (!percpu_ref_tryget_live(&si->users))
1221 		return false;
1222 	/*
1223 	 * Guarantee the si->users are checked before accessing other
1224 	 * fields of swap_info_struct, and si->flags (SWP_WRITEOK) is
1225 	 * up to dated.
1226 	 *
1227 	 * Paired with the spin_unlock() after setup_swap_info() in
1228 	 * enable_swap_info(), and smp_wmb() in swapoff.
1229 	 */
1230 	smp_rmb();
1231 	return true;
1232 }
1233 
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_order)1234 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_order)
1235 {
1236 	int order = swap_entry_order(entry_order);
1237 	unsigned long size = 1 << order;
1238 	struct swap_info_struct *si, *next;
1239 	long avail_pgs;
1240 	int n_ret = 0;
1241 	int node;
1242 
1243 	spin_lock(&swap_avail_lock);
1244 
1245 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1246 	if (avail_pgs <= 0) {
1247 		spin_unlock(&swap_avail_lock);
1248 		goto noswap;
1249 	}
1250 
1251 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1252 
1253 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1254 
1255 start_over:
1256 	node = numa_node_id();
1257 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1258 		/* requeue si to after same-priority siblings */
1259 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1260 		spin_unlock(&swap_avail_lock);
1261 		if (get_swap_device_info(si)) {
1262 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1263 					n_goal, swp_entries, order);
1264 			put_swap_device(si);
1265 			if (n_ret || size > 1)
1266 				goto check_out;
1267 		}
1268 
1269 		spin_lock(&swap_avail_lock);
1270 		/*
1271 		 * if we got here, it's likely that si was almost full before,
1272 		 * and since scan_swap_map_slots() can drop the si->lock,
1273 		 * multiple callers probably all tried to get a page from the
1274 		 * same si and it filled up before we could get one; or, the si
1275 		 * filled up between us dropping swap_avail_lock and taking
1276 		 * si->lock. Since we dropped the swap_avail_lock, the
1277 		 * swap_avail_head list may have been modified; so if next is
1278 		 * still in the swap_avail_head list then try it, otherwise
1279 		 * start over if we have not gotten any slots.
1280 		 */
1281 		if (plist_node_empty(&next->avail_lists[node]))
1282 			goto start_over;
1283 	}
1284 
1285 	spin_unlock(&swap_avail_lock);
1286 
1287 check_out:
1288 	if (n_ret < n_goal)
1289 		atomic_long_add((long)(n_goal - n_ret) * size,
1290 				&nr_swap_pages);
1291 noswap:
1292 	return n_ret;
1293 }
1294 
_swap_info_get(swp_entry_t entry)1295 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1296 {
1297 	struct swap_info_struct *si;
1298 	unsigned long offset;
1299 
1300 	if (!entry.val)
1301 		goto out;
1302 	si = swp_swap_info(entry);
1303 	if (!si)
1304 		goto bad_nofile;
1305 	if (data_race(!(si->flags & SWP_USED)))
1306 		goto bad_device;
1307 	offset = swp_offset(entry);
1308 	if (offset >= si->max)
1309 		goto bad_offset;
1310 	if (data_race(!si->swap_map[swp_offset(entry)]))
1311 		goto bad_free;
1312 	return si;
1313 
1314 bad_free:
1315 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1316 	goto out;
1317 bad_offset:
1318 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1319 	goto out;
1320 bad_device:
1321 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1322 	goto out;
1323 bad_nofile:
1324 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1325 out:
1326 	return NULL;
1327 }
1328 
__swap_entry_free_locked(struct swap_info_struct * si,unsigned long offset,unsigned char usage)1329 static unsigned char __swap_entry_free_locked(struct swap_info_struct *si,
1330 					      unsigned long offset,
1331 					      unsigned char usage)
1332 {
1333 	unsigned char count;
1334 	unsigned char has_cache;
1335 
1336 	count = si->swap_map[offset];
1337 
1338 	has_cache = count & SWAP_HAS_CACHE;
1339 	count &= ~SWAP_HAS_CACHE;
1340 
1341 	if (usage == SWAP_HAS_CACHE) {
1342 		VM_BUG_ON(!has_cache);
1343 		has_cache = 0;
1344 	} else if (count == SWAP_MAP_SHMEM) {
1345 		/*
1346 		 * Or we could insist on shmem.c using a special
1347 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1348 		 */
1349 		count = 0;
1350 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1351 		if (count == COUNT_CONTINUED) {
1352 			if (swap_count_continued(si, offset, count))
1353 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1354 			else
1355 				count = SWAP_MAP_MAX;
1356 		} else
1357 			count--;
1358 	}
1359 
1360 	usage = count | has_cache;
1361 	if (usage)
1362 		WRITE_ONCE(si->swap_map[offset], usage);
1363 	else
1364 		WRITE_ONCE(si->swap_map[offset], SWAP_HAS_CACHE);
1365 
1366 	return usage;
1367 }
1368 
1369 /*
1370  * When we get a swap entry, if there aren't some other ways to
1371  * prevent swapoff, such as the folio in swap cache is locked, RCU
1372  * reader side is locked, etc., the swap entry may become invalid
1373  * because of swapoff.  Then, we need to enclose all swap related
1374  * functions with get_swap_device() and put_swap_device(), unless the
1375  * swap functions call get/put_swap_device() by themselves.
1376  *
1377  * RCU reader side lock (including any spinlock) is sufficient to
1378  * prevent swapoff, because synchronize_rcu() is called in swapoff()
1379  * before freeing data structures.
1380  *
1381  * Check whether swap entry is valid in the swap device.  If so,
1382  * return pointer to swap_info_struct, and keep the swap entry valid
1383  * via preventing the swap device from being swapoff, until
1384  * put_swap_device() is called.  Otherwise return NULL.
1385  *
1386  * Notice that swapoff or swapoff+swapon can still happen before the
1387  * percpu_ref_tryget_live() in get_swap_device() or after the
1388  * percpu_ref_put() in put_swap_device() if there isn't any other way
1389  * to prevent swapoff.  The caller must be prepared for that.  For
1390  * example, the following situation is possible.
1391  *
1392  *   CPU1				CPU2
1393  *   do_swap_page()
1394  *     ...				swapoff+swapon
1395  *     __read_swap_cache_async()
1396  *       swapcache_prepare()
1397  *         __swap_duplicate()
1398  *           // check swap_map
1399  *     // verify PTE not changed
1400  *
1401  * In __swap_duplicate(), the swap_map need to be checked before
1402  * changing partly because the specified swap entry may be for another
1403  * swap device which has been swapoff.  And in do_swap_page(), after
1404  * the page is read from the swap device, the PTE is verified not
1405  * changed with the page table locked to check whether the swap device
1406  * has been swapoff or swapoff+swapon.
1407  */
get_swap_device(swp_entry_t entry)1408 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1409 {
1410 	struct swap_info_struct *si;
1411 	unsigned long offset;
1412 
1413 	if (!entry.val)
1414 		goto out;
1415 	si = swp_swap_info(entry);
1416 	if (!si)
1417 		goto bad_nofile;
1418 	if (!get_swap_device_info(si))
1419 		goto out;
1420 	offset = swp_offset(entry);
1421 	if (offset >= si->max)
1422 		goto put_out;
1423 
1424 	return si;
1425 bad_nofile:
1426 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1427 out:
1428 	return NULL;
1429 put_out:
1430 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1431 	percpu_ref_put(&si->users);
1432 	return NULL;
1433 }
1434 
__swap_entry_free(struct swap_info_struct * si,swp_entry_t entry)1435 static unsigned char __swap_entry_free(struct swap_info_struct *si,
1436 				       swp_entry_t entry)
1437 {
1438 	struct swap_cluster_info *ci;
1439 	unsigned long offset = swp_offset(entry);
1440 	unsigned char usage;
1441 
1442 	ci = lock_cluster(si, offset);
1443 	usage = __swap_entry_free_locked(si, offset, 1);
1444 	if (!usage)
1445 		swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
1446 	unlock_cluster(ci);
1447 
1448 	return usage;
1449 }
1450 
__swap_entries_free(struct swap_info_struct * si,swp_entry_t entry,int nr)1451 static bool __swap_entries_free(struct swap_info_struct *si,
1452 		swp_entry_t entry, int nr)
1453 {
1454 	unsigned long offset = swp_offset(entry);
1455 	unsigned int type = swp_type(entry);
1456 	struct swap_cluster_info *ci;
1457 	bool has_cache = false;
1458 	unsigned char count;
1459 	int i;
1460 
1461 	if (nr <= 1 || swap_count(data_race(si->swap_map[offset])) != 1)
1462 		goto fallback;
1463 	/* cross into another cluster */
1464 	if (nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER)
1465 		goto fallback;
1466 
1467 	ci = lock_cluster(si, offset);
1468 	if (!swap_is_last_map(si, offset, nr, &has_cache)) {
1469 		unlock_cluster(ci);
1470 		goto fallback;
1471 	}
1472 	for (i = 0; i < nr; i++)
1473 		WRITE_ONCE(si->swap_map[offset + i], SWAP_HAS_CACHE);
1474 	if (!has_cache)
1475 		swap_entry_range_free(si, ci, entry, nr);
1476 	unlock_cluster(ci);
1477 
1478 	return has_cache;
1479 
1480 fallback:
1481 	for (i = 0; i < nr; i++) {
1482 		if (data_race(si->swap_map[offset + i])) {
1483 			count = __swap_entry_free(si, swp_entry(type, offset + i));
1484 			if (count == SWAP_HAS_CACHE)
1485 				has_cache = true;
1486 		} else {
1487 			WARN_ON_ONCE(1);
1488 		}
1489 	}
1490 	return has_cache;
1491 }
1492 
1493 /*
1494  * Drop the last HAS_CACHE flag of swap entries, caller have to
1495  * ensure all entries belong to the same cgroup.
1496  */
swap_entry_range_free(struct swap_info_struct * si,struct swap_cluster_info * ci,swp_entry_t entry,unsigned int nr_pages)1497 static void swap_entry_range_free(struct swap_info_struct *si,
1498 				  struct swap_cluster_info *ci,
1499 				  swp_entry_t entry, unsigned int nr_pages)
1500 {
1501 	unsigned long offset = swp_offset(entry);
1502 	unsigned char *map = si->swap_map + offset;
1503 	unsigned char *map_end = map + nr_pages;
1504 
1505 	/* It should never free entries across different clusters */
1506 	VM_BUG_ON(ci != offset_to_cluster(si, offset + nr_pages - 1));
1507 	VM_BUG_ON(cluster_is_empty(ci));
1508 	VM_BUG_ON(ci->count < nr_pages);
1509 
1510 	ci->count -= nr_pages;
1511 	do {
1512 		VM_BUG_ON(*map != SWAP_HAS_CACHE);
1513 		*map = 0;
1514 	} while (++map < map_end);
1515 
1516 	mem_cgroup_uncharge_swap(entry, nr_pages);
1517 	swap_range_free(si, offset, nr_pages);
1518 
1519 	if (!ci->count)
1520 		free_cluster(si, ci);
1521 	else
1522 		partial_free_cluster(si, ci);
1523 }
1524 
cluster_swap_free_nr(struct swap_info_struct * si,unsigned long offset,int nr_pages,unsigned char usage)1525 static void cluster_swap_free_nr(struct swap_info_struct *si,
1526 		unsigned long offset, int nr_pages,
1527 		unsigned char usage)
1528 {
1529 	struct swap_cluster_info *ci;
1530 	unsigned long end = offset + nr_pages;
1531 
1532 	ci = lock_cluster(si, offset);
1533 	do {
1534 		if (!__swap_entry_free_locked(si, offset, usage))
1535 			swap_entry_range_free(si, ci, swp_entry(si->type, offset), 1);
1536 	} while (++offset < end);
1537 	unlock_cluster(ci);
1538 }
1539 
1540 /*
1541  * Caller has made sure that the swap device corresponding to entry
1542  * is still around or has not been recycled.
1543  */
swap_free_nr(swp_entry_t entry,int nr_pages)1544 void swap_free_nr(swp_entry_t entry, int nr_pages)
1545 {
1546 	int nr;
1547 	struct swap_info_struct *sis;
1548 	unsigned long offset = swp_offset(entry);
1549 
1550 	sis = _swap_info_get(entry);
1551 	if (!sis)
1552 		return;
1553 
1554 	while (nr_pages) {
1555 		nr = min_t(int, nr_pages, SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
1556 		cluster_swap_free_nr(sis, offset, nr, 1);
1557 		offset += nr;
1558 		nr_pages -= nr;
1559 	}
1560 }
1561 
1562 /*
1563  * Called after dropping swapcache to decrease refcnt to swap entries.
1564  */
put_swap_folio(struct folio * folio,swp_entry_t entry)1565 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1566 {
1567 	unsigned long offset = swp_offset(entry);
1568 	struct swap_cluster_info *ci;
1569 	struct swap_info_struct *si;
1570 	int size = 1 << swap_entry_order(folio_order(folio));
1571 
1572 	si = _swap_info_get(entry);
1573 	if (!si)
1574 		return;
1575 
1576 	ci = lock_cluster(si, offset);
1577 	if (swap_is_has_cache(si, offset, size))
1578 		swap_entry_range_free(si, ci, entry, size);
1579 	else {
1580 		for (int i = 0; i < size; i++, entry.val++) {
1581 			if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE))
1582 				swap_entry_range_free(si, ci, entry, 1);
1583 		}
1584 	}
1585 	unlock_cluster(ci);
1586 }
1587 
swapcache_free_entries(swp_entry_t * entries,int n)1588 void swapcache_free_entries(swp_entry_t *entries, int n)
1589 {
1590 	int i;
1591 	struct swap_cluster_info *ci;
1592 	struct swap_info_struct *si = NULL;
1593 
1594 	if (n <= 0)
1595 		return;
1596 
1597 	for (i = 0; i < n; ++i) {
1598 		si = _swap_info_get(entries[i]);
1599 		if (si) {
1600 			ci = lock_cluster(si, swp_offset(entries[i]));
1601 			swap_entry_range_free(si, ci, entries[i], 1);
1602 			unlock_cluster(ci);
1603 		}
1604 	}
1605 }
1606 
__swap_count(swp_entry_t entry)1607 int __swap_count(swp_entry_t entry)
1608 {
1609 	struct swap_info_struct *si = swp_swap_info(entry);
1610 	pgoff_t offset = swp_offset(entry);
1611 
1612 	return swap_count(si->swap_map[offset]);
1613 }
1614 
1615 /*
1616  * How many references to @entry are currently swapped out?
1617  * This does not give an exact answer when swap count is continued,
1618  * but does include the high COUNT_CONTINUED flag to allow for that.
1619  */
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1620 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1621 {
1622 	pgoff_t offset = swp_offset(entry);
1623 	struct swap_cluster_info *ci;
1624 	int count;
1625 
1626 	ci = lock_cluster(si, offset);
1627 	count = swap_count(si->swap_map[offset]);
1628 	unlock_cluster(ci);
1629 	return count;
1630 }
1631 
1632 /*
1633  * How many references to @entry are currently swapped out?
1634  * This considers COUNT_CONTINUED so it returns exact answer.
1635  */
swp_swapcount(swp_entry_t entry)1636 int swp_swapcount(swp_entry_t entry)
1637 {
1638 	int count, tmp_count, n;
1639 	struct swap_info_struct *si;
1640 	struct swap_cluster_info *ci;
1641 	struct page *page;
1642 	pgoff_t offset;
1643 	unsigned char *map;
1644 
1645 	si = _swap_info_get(entry);
1646 	if (!si)
1647 		return 0;
1648 
1649 	offset = swp_offset(entry);
1650 
1651 	ci = lock_cluster(si, offset);
1652 
1653 	count = swap_count(si->swap_map[offset]);
1654 	if (!(count & COUNT_CONTINUED))
1655 		goto out;
1656 
1657 	count &= ~COUNT_CONTINUED;
1658 	n = SWAP_MAP_MAX + 1;
1659 
1660 	page = vmalloc_to_page(si->swap_map + offset);
1661 	offset &= ~PAGE_MASK;
1662 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1663 
1664 	do {
1665 		page = list_next_entry(page, lru);
1666 		map = kmap_local_page(page);
1667 		tmp_count = map[offset];
1668 		kunmap_local(map);
1669 
1670 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1671 		n *= (SWAP_CONT_MAX + 1);
1672 	} while (tmp_count & COUNT_CONTINUED);
1673 out:
1674 	unlock_cluster(ci);
1675 	return count;
1676 }
1677 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry,int order)1678 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1679 					 swp_entry_t entry, int order)
1680 {
1681 	struct swap_cluster_info *ci;
1682 	unsigned char *map = si->swap_map;
1683 	unsigned int nr_pages = 1 << order;
1684 	unsigned long roffset = swp_offset(entry);
1685 	unsigned long offset = round_down(roffset, nr_pages);
1686 	int i;
1687 	bool ret = false;
1688 
1689 	ci = lock_cluster(si, offset);
1690 	if (nr_pages == 1) {
1691 		if (swap_count(map[roffset]))
1692 			ret = true;
1693 		goto unlock_out;
1694 	}
1695 	for (i = 0; i < nr_pages; i++) {
1696 		if (swap_count(map[offset + i])) {
1697 			ret = true;
1698 			break;
1699 		}
1700 	}
1701 unlock_out:
1702 	unlock_cluster(ci);
1703 	return ret;
1704 }
1705 
folio_swapped(struct folio * folio)1706 static bool folio_swapped(struct folio *folio)
1707 {
1708 	swp_entry_t entry = folio->swap;
1709 	struct swap_info_struct *si = _swap_info_get(entry);
1710 
1711 	if (!si)
1712 		return false;
1713 
1714 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1715 		return swap_swapcount(si, entry) != 0;
1716 
1717 	return swap_page_trans_huge_swapped(si, entry, folio_order(folio));
1718 }
1719 
folio_swapcache_freeable(struct folio * folio)1720 static bool folio_swapcache_freeable(struct folio *folio)
1721 {
1722 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1723 
1724 	if (!folio_test_swapcache(folio))
1725 		return false;
1726 	if (folio_test_writeback(folio))
1727 		return false;
1728 
1729 	/*
1730 	 * Once hibernation has begun to create its image of memory,
1731 	 * there's a danger that one of the calls to folio_free_swap()
1732 	 * - most probably a call from __try_to_reclaim_swap() while
1733 	 * hibernation is allocating its own swap pages for the image,
1734 	 * but conceivably even a call from memory reclaim - will free
1735 	 * the swap from a folio which has already been recorded in the
1736 	 * image as a clean swapcache folio, and then reuse its swap for
1737 	 * another page of the image.  On waking from hibernation, the
1738 	 * original folio might be freed under memory pressure, then
1739 	 * later read back in from swap, now with the wrong data.
1740 	 *
1741 	 * Hibernation suspends storage while it is writing the image
1742 	 * to disk so check that here.
1743 	 */
1744 	if (pm_suspended_storage())
1745 		return false;
1746 
1747 	return true;
1748 }
1749 
1750 /**
1751  * folio_free_swap() - Free the swap space used for this folio.
1752  * @folio: The folio to remove.
1753  *
1754  * If swap is getting full, or if there are no more mappings of this folio,
1755  * then call folio_free_swap to free its swap space.
1756  *
1757  * Return: true if we were able to release the swap space.
1758  */
folio_free_swap(struct folio * folio)1759 bool folio_free_swap(struct folio *folio)
1760 {
1761 	if (!folio_swapcache_freeable(folio))
1762 		return false;
1763 	if (folio_swapped(folio))
1764 		return false;
1765 
1766 	delete_from_swap_cache(folio);
1767 	folio_set_dirty(folio);
1768 	return true;
1769 }
1770 
1771 /**
1772  * free_swap_and_cache_nr() - Release reference on range of swap entries and
1773  *                            reclaim their cache if no more references remain.
1774  * @entry: First entry of range.
1775  * @nr: Number of entries in range.
1776  *
1777  * For each swap entry in the contiguous range, release a reference. If any swap
1778  * entries become free, try to reclaim their underlying folios, if present. The
1779  * offset range is defined by [entry.offset, entry.offset + nr).
1780  */
free_swap_and_cache_nr(swp_entry_t entry,int nr)1781 void free_swap_and_cache_nr(swp_entry_t entry, int nr)
1782 {
1783 	const unsigned long start_offset = swp_offset(entry);
1784 	const unsigned long end_offset = start_offset + nr;
1785 	struct swap_info_struct *si;
1786 	bool any_only_cache = false;
1787 	unsigned long offset;
1788 
1789 	if (non_swap_entry(entry))
1790 		return;
1791 
1792 	si = get_swap_device(entry);
1793 	if (!si)
1794 		return;
1795 
1796 	if (WARN_ON(end_offset > si->max))
1797 		goto out;
1798 
1799 	/*
1800 	 * First free all entries in the range.
1801 	 */
1802 	any_only_cache = __swap_entries_free(si, entry, nr);
1803 
1804 	/*
1805 	 * Short-circuit the below loop if none of the entries had their
1806 	 * reference drop to zero.
1807 	 */
1808 	if (!any_only_cache)
1809 		goto out;
1810 
1811 	/*
1812 	 * Now go back over the range trying to reclaim the swap cache. This is
1813 	 * more efficient for large folios because we will only try to reclaim
1814 	 * the swap once per folio in the common case. If we do
1815 	 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1816 	 * latter will get a reference and lock the folio for every individual
1817 	 * page but will only succeed once the swap slot for every subpage is
1818 	 * zero.
1819 	 */
1820 	for (offset = start_offset; offset < end_offset; offset += nr) {
1821 		nr = 1;
1822 		if (READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
1823 			/*
1824 			 * Folios are always naturally aligned in swap so
1825 			 * advance forward to the next boundary. Zero means no
1826 			 * folio was found for the swap entry, so advance by 1
1827 			 * in this case. Negative value means folio was found
1828 			 * but could not be reclaimed. Here we can still advance
1829 			 * to the next boundary.
1830 			 */
1831 			nr = __try_to_reclaim_swap(si, offset,
1832 						   TTRS_UNMAPPED | TTRS_FULL);
1833 			if (nr == 0)
1834 				nr = 1;
1835 			else if (nr < 0)
1836 				nr = -nr;
1837 			nr = ALIGN(offset + 1, nr) - offset;
1838 		}
1839 	}
1840 
1841 out:
1842 	put_swap_device(si);
1843 }
1844 
1845 #ifdef CONFIG_HIBERNATION
1846 
get_swap_page_of_type(int type)1847 swp_entry_t get_swap_page_of_type(int type)
1848 {
1849 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1850 	swp_entry_t entry = {0};
1851 
1852 	if (!si)
1853 		goto fail;
1854 
1855 	/* This is called for allocating swap entry, not cache */
1856 	if (get_swap_device_info(si)) {
1857 		if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry, 0))
1858 			atomic_long_dec(&nr_swap_pages);
1859 		put_swap_device(si);
1860 	}
1861 fail:
1862 	return entry;
1863 }
1864 
1865 /*
1866  * Find the swap type that corresponds to given device (if any).
1867  *
1868  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1869  * from 0, in which the swap header is expected to be located.
1870  *
1871  * This is needed for the suspend to disk (aka swsusp).
1872  */
swap_type_of(dev_t device,sector_t offset)1873 int swap_type_of(dev_t device, sector_t offset)
1874 {
1875 	int type;
1876 
1877 	if (!device)
1878 		return -1;
1879 
1880 	spin_lock(&swap_lock);
1881 	for (type = 0; type < nr_swapfiles; type++) {
1882 		struct swap_info_struct *sis = swap_info[type];
1883 
1884 		if (!(sis->flags & SWP_WRITEOK))
1885 			continue;
1886 
1887 		if (device == sis->bdev->bd_dev) {
1888 			struct swap_extent *se = first_se(sis);
1889 
1890 			if (se->start_block == offset) {
1891 				spin_unlock(&swap_lock);
1892 				return type;
1893 			}
1894 		}
1895 	}
1896 	spin_unlock(&swap_lock);
1897 	return -ENODEV;
1898 }
1899 
find_first_swap(dev_t * device)1900 int find_first_swap(dev_t *device)
1901 {
1902 	int type;
1903 
1904 	spin_lock(&swap_lock);
1905 	for (type = 0; type < nr_swapfiles; type++) {
1906 		struct swap_info_struct *sis = swap_info[type];
1907 
1908 		if (!(sis->flags & SWP_WRITEOK))
1909 			continue;
1910 		*device = sis->bdev->bd_dev;
1911 		spin_unlock(&swap_lock);
1912 		return type;
1913 	}
1914 	spin_unlock(&swap_lock);
1915 	return -ENODEV;
1916 }
1917 
1918 /*
1919  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1920  * corresponding to given index in swap_info (swap type).
1921  */
swapdev_block(int type,pgoff_t offset)1922 sector_t swapdev_block(int type, pgoff_t offset)
1923 {
1924 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1925 	struct swap_extent *se;
1926 
1927 	if (!si || !(si->flags & SWP_WRITEOK))
1928 		return 0;
1929 	se = offset_to_swap_extent(si, offset);
1930 	return se->start_block + (offset - se->start_page);
1931 }
1932 
1933 /*
1934  * Return either the total number of swap pages of given type, or the number
1935  * of free pages of that type (depending on @free)
1936  *
1937  * This is needed for software suspend
1938  */
count_swap_pages(int type,int free)1939 unsigned int count_swap_pages(int type, int free)
1940 {
1941 	unsigned int n = 0;
1942 
1943 	spin_lock(&swap_lock);
1944 	if ((unsigned int)type < nr_swapfiles) {
1945 		struct swap_info_struct *sis = swap_info[type];
1946 
1947 		spin_lock(&sis->lock);
1948 		if (sis->flags & SWP_WRITEOK) {
1949 			n = sis->pages;
1950 			if (free)
1951 				n -= swap_usage_in_pages(sis);
1952 		}
1953 		spin_unlock(&sis->lock);
1954 	}
1955 	spin_unlock(&swap_lock);
1956 	return n;
1957 }
1958 #endif /* CONFIG_HIBERNATION */
1959 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1960 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1961 {
1962 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1963 }
1964 
1965 /*
1966  * No need to decide whether this PTE shares the swap entry with others,
1967  * just let do_wp_page work it out if a write is requested later - to
1968  * force COW, vm_page_prot omits write permission from any private vma.
1969  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct folio * folio)1970 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1971 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1972 {
1973 	struct page *page;
1974 	struct folio *swapcache;
1975 	spinlock_t *ptl;
1976 	pte_t *pte, new_pte, old_pte;
1977 	bool hwpoisoned = false;
1978 	int ret = 1;
1979 
1980 	swapcache = folio;
1981 	folio = ksm_might_need_to_copy(folio, vma, addr);
1982 	if (unlikely(!folio))
1983 		return -ENOMEM;
1984 	else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
1985 		hwpoisoned = true;
1986 		folio = swapcache;
1987 	}
1988 
1989 	page = folio_file_page(folio, swp_offset(entry));
1990 	if (PageHWPoison(page))
1991 		hwpoisoned = true;
1992 
1993 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1994 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1995 						swp_entry_to_pte(entry)))) {
1996 		ret = 0;
1997 		goto out;
1998 	}
1999 
2000 	old_pte = ptep_get(pte);
2001 
2002 	if (unlikely(hwpoisoned || !folio_test_uptodate(folio))) {
2003 		swp_entry_t swp_entry;
2004 
2005 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2006 		if (hwpoisoned) {
2007 			swp_entry = make_hwpoison_entry(page);
2008 		} else {
2009 			swp_entry = make_poisoned_swp_entry();
2010 		}
2011 		new_pte = swp_entry_to_pte(swp_entry);
2012 		ret = 0;
2013 		goto setpte;
2014 	}
2015 
2016 	/*
2017 	 * Some architectures may have to restore extra metadata to the page
2018 	 * when reading from swap. This metadata may be indexed by swap entry
2019 	 * so this must be called before swap_free().
2020 	 */
2021 	arch_swap_restore(folio_swap(entry, folio), folio);
2022 
2023 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
2024 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
2025 	folio_get(folio);
2026 	if (folio == swapcache) {
2027 		rmap_t rmap_flags = RMAP_NONE;
2028 
2029 		/*
2030 		 * See do_swap_page(): writeback would be problematic.
2031 		 * However, we do a folio_wait_writeback() just before this
2032 		 * call and have the folio locked.
2033 		 */
2034 		VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
2035 		if (pte_swp_exclusive(old_pte))
2036 			rmap_flags |= RMAP_EXCLUSIVE;
2037 		/*
2038 		 * We currently only expect small !anon folios, which are either
2039 		 * fully exclusive or fully shared. If we ever get large folios
2040 		 * here, we have to be careful.
2041 		 */
2042 		if (!folio_test_anon(folio)) {
2043 			VM_WARN_ON_ONCE(folio_test_large(folio));
2044 			VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
2045 			folio_add_new_anon_rmap(folio, vma, addr, rmap_flags);
2046 		} else {
2047 			folio_add_anon_rmap_pte(folio, page, vma, addr, rmap_flags);
2048 		}
2049 	} else { /* ksm created a completely new copy */
2050 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
2051 		folio_add_lru_vma(folio, vma);
2052 	}
2053 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
2054 	if (pte_swp_soft_dirty(old_pte))
2055 		new_pte = pte_mksoft_dirty(new_pte);
2056 	if (pte_swp_uffd_wp(old_pte))
2057 		new_pte = pte_mkuffd_wp(new_pte);
2058 setpte:
2059 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
2060 	swap_free(entry);
2061 out:
2062 	if (pte)
2063 		pte_unmap_unlock(pte, ptl);
2064 	if (folio != swapcache) {
2065 		folio_unlock(folio);
2066 		folio_put(folio);
2067 	}
2068 	return ret;
2069 }
2070 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type)2071 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
2072 			unsigned long addr, unsigned long end,
2073 			unsigned int type)
2074 {
2075 	pte_t *pte = NULL;
2076 	struct swap_info_struct *si;
2077 
2078 	si = swap_info[type];
2079 	do {
2080 		struct folio *folio;
2081 		unsigned long offset;
2082 		unsigned char swp_count;
2083 		swp_entry_t entry;
2084 		int ret;
2085 		pte_t ptent;
2086 
2087 		if (!pte++) {
2088 			pte = pte_offset_map(pmd, addr);
2089 			if (!pte)
2090 				break;
2091 		}
2092 
2093 		ptent = ptep_get_lockless(pte);
2094 
2095 		if (!is_swap_pte(ptent))
2096 			continue;
2097 
2098 		entry = pte_to_swp_entry(ptent);
2099 		if (swp_type(entry) != type)
2100 			continue;
2101 
2102 		offset = swp_offset(entry);
2103 		pte_unmap(pte);
2104 		pte = NULL;
2105 
2106 		folio = swap_cache_get_folio(entry, vma, addr);
2107 		if (!folio) {
2108 			struct vm_fault vmf = {
2109 				.vma = vma,
2110 				.address = addr,
2111 				.real_address = addr,
2112 				.pmd = pmd,
2113 			};
2114 
2115 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2116 						&vmf);
2117 		}
2118 		if (!folio) {
2119 			swp_count = READ_ONCE(si->swap_map[offset]);
2120 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
2121 				continue;
2122 			return -ENOMEM;
2123 		}
2124 
2125 		folio_lock(folio);
2126 		folio_wait_writeback(folio);
2127 		ret = unuse_pte(vma, pmd, addr, entry, folio);
2128 		if (ret < 0) {
2129 			folio_unlock(folio);
2130 			folio_put(folio);
2131 			return ret;
2132 		}
2133 
2134 		folio_free_swap(folio);
2135 		folio_unlock(folio);
2136 		folio_put(folio);
2137 	} while (addr += PAGE_SIZE, addr != end);
2138 
2139 	if (pte)
2140 		pte_unmap(pte);
2141 	return 0;
2142 }
2143 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type)2144 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2145 				unsigned long addr, unsigned long end,
2146 				unsigned int type)
2147 {
2148 	pmd_t *pmd;
2149 	unsigned long next;
2150 	int ret;
2151 
2152 	pmd = pmd_offset(pud, addr);
2153 	do {
2154 		cond_resched();
2155 		next = pmd_addr_end(addr, end);
2156 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2157 		if (ret)
2158 			return ret;
2159 	} while (pmd++, addr = next, addr != end);
2160 	return 0;
2161 }
2162 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type)2163 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2164 				unsigned long addr, unsigned long end,
2165 				unsigned int type)
2166 {
2167 	pud_t *pud;
2168 	unsigned long next;
2169 	int ret;
2170 
2171 	pud = pud_offset(p4d, addr);
2172 	do {
2173 		next = pud_addr_end(addr, end);
2174 		if (pud_none_or_clear_bad(pud))
2175 			continue;
2176 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2177 		if (ret)
2178 			return ret;
2179 	} while (pud++, addr = next, addr != end);
2180 	return 0;
2181 }
2182 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type)2183 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2184 				unsigned long addr, unsigned long end,
2185 				unsigned int type)
2186 {
2187 	p4d_t *p4d;
2188 	unsigned long next;
2189 	int ret;
2190 
2191 	p4d = p4d_offset(pgd, addr);
2192 	do {
2193 		next = p4d_addr_end(addr, end);
2194 		if (p4d_none_or_clear_bad(p4d))
2195 			continue;
2196 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2197 		if (ret)
2198 			return ret;
2199 	} while (p4d++, addr = next, addr != end);
2200 	return 0;
2201 }
2202 
unuse_vma(struct vm_area_struct * vma,unsigned int type)2203 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2204 {
2205 	pgd_t *pgd;
2206 	unsigned long addr, end, next;
2207 	int ret;
2208 
2209 	addr = vma->vm_start;
2210 	end = vma->vm_end;
2211 
2212 	pgd = pgd_offset(vma->vm_mm, addr);
2213 	do {
2214 		next = pgd_addr_end(addr, end);
2215 		if (pgd_none_or_clear_bad(pgd))
2216 			continue;
2217 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2218 		if (ret)
2219 			return ret;
2220 	} while (pgd++, addr = next, addr != end);
2221 	return 0;
2222 }
2223 
unuse_mm(struct mm_struct * mm,unsigned int type)2224 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2225 {
2226 	struct vm_area_struct *vma;
2227 	int ret = 0;
2228 	VMA_ITERATOR(vmi, mm, 0);
2229 
2230 	mmap_read_lock(mm);
2231 	for_each_vma(vmi, vma) {
2232 		if (vma->anon_vma && !is_vm_hugetlb_page(vma)) {
2233 			ret = unuse_vma(vma, type);
2234 			if (ret)
2235 				break;
2236 		}
2237 
2238 		cond_resched();
2239 	}
2240 	mmap_read_unlock(mm);
2241 	return ret;
2242 }
2243 
2244 /*
2245  * Scan swap_map from current position to next entry still in use.
2246  * Return 0 if there are no inuse entries after prev till end of
2247  * the map.
2248  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev)2249 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2250 					unsigned int prev)
2251 {
2252 	unsigned int i;
2253 	unsigned char count;
2254 
2255 	/*
2256 	 * No need for swap_lock here: we're just looking
2257 	 * for whether an entry is in use, not modifying it; false
2258 	 * hits are okay, and sys_swapoff() has already prevented new
2259 	 * allocations from this area (while holding swap_lock).
2260 	 */
2261 	for (i = prev + 1; i < si->max; i++) {
2262 		count = READ_ONCE(si->swap_map[i]);
2263 		if (count && swap_count(count) != SWAP_MAP_BAD)
2264 			break;
2265 		if ((i % LATENCY_LIMIT) == 0)
2266 			cond_resched();
2267 	}
2268 
2269 	if (i == si->max)
2270 		i = 0;
2271 
2272 	return i;
2273 }
2274 
try_to_unuse(unsigned int type)2275 static int try_to_unuse(unsigned int type)
2276 {
2277 	struct mm_struct *prev_mm;
2278 	struct mm_struct *mm;
2279 	struct list_head *p;
2280 	int retval = 0;
2281 	struct swap_info_struct *si = swap_info[type];
2282 	struct folio *folio;
2283 	swp_entry_t entry;
2284 	unsigned int i;
2285 
2286 	if (!swap_usage_in_pages(si))
2287 		goto success;
2288 
2289 retry:
2290 	retval = shmem_unuse(type);
2291 	if (retval)
2292 		return retval;
2293 
2294 	prev_mm = &init_mm;
2295 	mmget(prev_mm);
2296 
2297 	spin_lock(&mmlist_lock);
2298 	p = &init_mm.mmlist;
2299 	while (swap_usage_in_pages(si) &&
2300 	       !signal_pending(current) &&
2301 	       (p = p->next) != &init_mm.mmlist) {
2302 
2303 		mm = list_entry(p, struct mm_struct, mmlist);
2304 		if (!mmget_not_zero(mm))
2305 			continue;
2306 		spin_unlock(&mmlist_lock);
2307 		mmput(prev_mm);
2308 		prev_mm = mm;
2309 		retval = unuse_mm(mm, type);
2310 		if (retval) {
2311 			mmput(prev_mm);
2312 			return retval;
2313 		}
2314 
2315 		/*
2316 		 * Make sure that we aren't completely killing
2317 		 * interactive performance.
2318 		 */
2319 		cond_resched();
2320 		spin_lock(&mmlist_lock);
2321 	}
2322 	spin_unlock(&mmlist_lock);
2323 
2324 	mmput(prev_mm);
2325 
2326 	i = 0;
2327 	while (swap_usage_in_pages(si) &&
2328 	       !signal_pending(current) &&
2329 	       (i = find_next_to_unuse(si, i)) != 0) {
2330 
2331 		entry = swp_entry(type, i);
2332 		folio = filemap_get_folio(swap_address_space(entry), swap_cache_index(entry));
2333 		if (IS_ERR(folio))
2334 			continue;
2335 
2336 		/*
2337 		 * It is conceivable that a racing task removed this folio from
2338 		 * swap cache just before we acquired the page lock. The folio
2339 		 * might even be back in swap cache on another swap area. But
2340 		 * that is okay, folio_free_swap() only removes stale folios.
2341 		 */
2342 		folio_lock(folio);
2343 		folio_wait_writeback(folio);
2344 		folio_free_swap(folio);
2345 		folio_unlock(folio);
2346 		folio_put(folio);
2347 	}
2348 
2349 	/*
2350 	 * Lets check again to see if there are still swap entries in the map.
2351 	 * If yes, we would need to do retry the unuse logic again.
2352 	 * Under global memory pressure, swap entries can be reinserted back
2353 	 * into process space after the mmlist loop above passes over them.
2354 	 *
2355 	 * Limit the number of retries? No: when mmget_not_zero()
2356 	 * above fails, that mm is likely to be freeing swap from
2357 	 * exit_mmap(), which proceeds at its own independent pace;
2358 	 * and even shmem_writepage() could have been preempted after
2359 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2360 	 * and robust (though cpu-intensive) just to keep retrying.
2361 	 */
2362 	if (swap_usage_in_pages(si)) {
2363 		if (!signal_pending(current))
2364 			goto retry;
2365 		return -EINTR;
2366 	}
2367 
2368 success:
2369 	/*
2370 	 * Make sure that further cleanups after try_to_unuse() returns happen
2371 	 * after swap_range_free() reduces si->inuse_pages to 0.
2372 	 */
2373 	smp_mb();
2374 	return 0;
2375 }
2376 
2377 /*
2378  * After a successful try_to_unuse, if no swap is now in use, we know
2379  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2380  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2381  * added to the mmlist just after page_duplicate - before would be racy.
2382  */
drain_mmlist(void)2383 static void drain_mmlist(void)
2384 {
2385 	struct list_head *p, *next;
2386 	unsigned int type;
2387 
2388 	for (type = 0; type < nr_swapfiles; type++)
2389 		if (swap_usage_in_pages(swap_info[type]))
2390 			return;
2391 	spin_lock(&mmlist_lock);
2392 	list_for_each_safe(p, next, &init_mm.mmlist)
2393 		list_del_init(p);
2394 	spin_unlock(&mmlist_lock);
2395 }
2396 
2397 /*
2398  * Free all of a swapdev's extent information
2399  */
destroy_swap_extents(struct swap_info_struct * sis)2400 static void destroy_swap_extents(struct swap_info_struct *sis)
2401 {
2402 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2403 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2404 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2405 
2406 		rb_erase(rb, &sis->swap_extent_root);
2407 		kfree(se);
2408 	}
2409 
2410 	if (sis->flags & SWP_ACTIVATED) {
2411 		struct file *swap_file = sis->swap_file;
2412 		struct address_space *mapping = swap_file->f_mapping;
2413 
2414 		sis->flags &= ~SWP_ACTIVATED;
2415 		if (mapping->a_ops->swap_deactivate)
2416 			mapping->a_ops->swap_deactivate(swap_file);
2417 	}
2418 }
2419 
2420 /*
2421  * Add a block range (and the corresponding page range) into this swapdev's
2422  * extent tree.
2423  *
2424  * This function rather assumes that it is called in ascending page order.
2425  */
2426 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2427 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2428 		unsigned long nr_pages, sector_t start_block)
2429 {
2430 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2431 	struct swap_extent *se;
2432 	struct swap_extent *new_se;
2433 
2434 	/*
2435 	 * place the new node at the right most since the
2436 	 * function is called in ascending page order.
2437 	 */
2438 	while (*link) {
2439 		parent = *link;
2440 		link = &parent->rb_right;
2441 	}
2442 
2443 	if (parent) {
2444 		se = rb_entry(parent, struct swap_extent, rb_node);
2445 		BUG_ON(se->start_page + se->nr_pages != start_page);
2446 		if (se->start_block + se->nr_pages == start_block) {
2447 			/* Merge it */
2448 			se->nr_pages += nr_pages;
2449 			return 0;
2450 		}
2451 	}
2452 
2453 	/* No merge, insert a new extent. */
2454 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2455 	if (new_se == NULL)
2456 		return -ENOMEM;
2457 	new_se->start_page = start_page;
2458 	new_se->nr_pages = nr_pages;
2459 	new_se->start_block = start_block;
2460 
2461 	rb_link_node(&new_se->rb_node, parent, link);
2462 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2463 	return 1;
2464 }
2465 EXPORT_SYMBOL_GPL(add_swap_extent);
2466 
2467 /*
2468  * A `swap extent' is a simple thing which maps a contiguous range of pages
2469  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2470  * built at swapon time and is then used at swap_writepage/swap_read_folio
2471  * time for locating where on disk a page belongs.
2472  *
2473  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2474  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2475  * swap files identically.
2476  *
2477  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2478  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2479  * swapfiles are handled *identically* after swapon time.
2480  *
2481  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2482  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2483  * blocks are found which do not fall within the PAGE_SIZE alignment
2484  * requirements, they are simply tossed out - we will never use those blocks
2485  * for swapping.
2486  *
2487  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2488  * prevents users from writing to the swap device, which will corrupt memory.
2489  *
2490  * The amount of disk space which a single swap extent represents varies.
2491  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2492  * extents in the rbtree. - akpm.
2493  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2494 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2495 {
2496 	struct file *swap_file = sis->swap_file;
2497 	struct address_space *mapping = swap_file->f_mapping;
2498 	struct inode *inode = mapping->host;
2499 	int ret;
2500 
2501 	if (S_ISBLK(inode->i_mode)) {
2502 		ret = add_swap_extent(sis, 0, sis->max, 0);
2503 		*span = sis->pages;
2504 		return ret;
2505 	}
2506 
2507 	if (mapping->a_ops->swap_activate) {
2508 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2509 		if (ret < 0)
2510 			return ret;
2511 		sis->flags |= SWP_ACTIVATED;
2512 		if ((sis->flags & SWP_FS_OPS) &&
2513 		    sio_pool_init() != 0) {
2514 			destroy_swap_extents(sis);
2515 			return -ENOMEM;
2516 		}
2517 		return ret;
2518 	}
2519 
2520 	return generic_swapfile_activate(sis, swap_file, span);
2521 }
2522 
swap_node(struct swap_info_struct * si)2523 static int swap_node(struct swap_info_struct *si)
2524 {
2525 	struct block_device *bdev;
2526 
2527 	if (si->bdev)
2528 		bdev = si->bdev;
2529 	else
2530 		bdev = si->swap_file->f_inode->i_sb->s_bdev;
2531 
2532 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2533 }
2534 
setup_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2535 static void setup_swap_info(struct swap_info_struct *si, int prio,
2536 			    unsigned char *swap_map,
2537 			    struct swap_cluster_info *cluster_info,
2538 			    unsigned long *zeromap)
2539 {
2540 	int i;
2541 
2542 	if (prio >= 0)
2543 		si->prio = prio;
2544 	else
2545 		si->prio = --least_priority;
2546 	/*
2547 	 * the plist prio is negated because plist ordering is
2548 	 * low-to-high, while swap ordering is high-to-low
2549 	 */
2550 	si->list.prio = -si->prio;
2551 	for_each_node(i) {
2552 		if (si->prio >= 0)
2553 			si->avail_lists[i].prio = -si->prio;
2554 		else {
2555 			if (swap_node(si) == i)
2556 				si->avail_lists[i].prio = 1;
2557 			else
2558 				si->avail_lists[i].prio = -si->prio;
2559 		}
2560 	}
2561 	si->swap_map = swap_map;
2562 	si->cluster_info = cluster_info;
2563 	si->zeromap = zeromap;
2564 }
2565 
_enable_swap_info(struct swap_info_struct * si)2566 static void _enable_swap_info(struct swap_info_struct *si)
2567 {
2568 	atomic_long_add(si->pages, &nr_swap_pages);
2569 	total_swap_pages += si->pages;
2570 
2571 	assert_spin_locked(&swap_lock);
2572 	/*
2573 	 * both lists are plists, and thus priority ordered.
2574 	 * swap_active_head needs to be priority ordered for swapoff(),
2575 	 * which on removal of any swap_info_struct with an auto-assigned
2576 	 * (i.e. negative) priority increments the auto-assigned priority
2577 	 * of any lower-priority swap_info_structs.
2578 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2579 	 * which allocates swap pages from the highest available priority
2580 	 * swap_info_struct.
2581 	 */
2582 	plist_add(&si->list, &swap_active_head);
2583 
2584 	/* Add back to available list */
2585 	add_to_avail_list(si, true);
2586 }
2587 
enable_swap_info(struct swap_info_struct * si,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * zeromap)2588 static void enable_swap_info(struct swap_info_struct *si, int prio,
2589 				unsigned char *swap_map,
2590 				struct swap_cluster_info *cluster_info,
2591 				unsigned long *zeromap)
2592 {
2593 	spin_lock(&swap_lock);
2594 	spin_lock(&si->lock);
2595 	setup_swap_info(si, prio, swap_map, cluster_info, zeromap);
2596 	spin_unlock(&si->lock);
2597 	spin_unlock(&swap_lock);
2598 	/*
2599 	 * Finished initializing swap device, now it's safe to reference it.
2600 	 */
2601 	percpu_ref_resurrect(&si->users);
2602 	spin_lock(&swap_lock);
2603 	spin_lock(&si->lock);
2604 	_enable_swap_info(si);
2605 	spin_unlock(&si->lock);
2606 	spin_unlock(&swap_lock);
2607 }
2608 
reinsert_swap_info(struct swap_info_struct * si)2609 static void reinsert_swap_info(struct swap_info_struct *si)
2610 {
2611 	spin_lock(&swap_lock);
2612 	spin_lock(&si->lock);
2613 	setup_swap_info(si, si->prio, si->swap_map, si->cluster_info, si->zeromap);
2614 	_enable_swap_info(si);
2615 	spin_unlock(&si->lock);
2616 	spin_unlock(&swap_lock);
2617 }
2618 
__has_usable_swap(void)2619 static bool __has_usable_swap(void)
2620 {
2621 	return !plist_head_empty(&swap_active_head);
2622 }
2623 
has_usable_swap(void)2624 bool has_usable_swap(void)
2625 {
2626 	bool ret;
2627 
2628 	spin_lock(&swap_lock);
2629 	ret = __has_usable_swap();
2630 	spin_unlock(&swap_lock);
2631 	return ret;
2632 }
2633 
2634 /*
2635  * Called after clearing SWP_WRITEOK, ensures cluster_alloc_range
2636  * see the updated flags, so there will be no more allocations.
2637  */
wait_for_allocation(struct swap_info_struct * si)2638 static void wait_for_allocation(struct swap_info_struct *si)
2639 {
2640 	unsigned long offset;
2641 	unsigned long end = ALIGN(si->max, SWAPFILE_CLUSTER);
2642 	struct swap_cluster_info *ci;
2643 
2644 	BUG_ON(si->flags & SWP_WRITEOK);
2645 
2646 	for (offset = 0; offset < end; offset += SWAPFILE_CLUSTER) {
2647 		ci = lock_cluster(si, offset);
2648 		unlock_cluster(ci);
2649 	}
2650 }
2651 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2652 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2653 {
2654 	struct swap_info_struct *p = NULL;
2655 	unsigned char *swap_map;
2656 	unsigned long *zeromap;
2657 	struct swap_cluster_info *cluster_info;
2658 	struct file *swap_file, *victim;
2659 	struct address_space *mapping;
2660 	struct inode *inode;
2661 	struct filename *pathname;
2662 	int err, found = 0;
2663 
2664 	if (!capable(CAP_SYS_ADMIN))
2665 		return -EPERM;
2666 
2667 	BUG_ON(!current->mm);
2668 
2669 	pathname = getname(specialfile);
2670 	if (IS_ERR(pathname))
2671 		return PTR_ERR(pathname);
2672 
2673 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2674 	err = PTR_ERR(victim);
2675 	if (IS_ERR(victim))
2676 		goto out;
2677 
2678 	mapping = victim->f_mapping;
2679 	spin_lock(&swap_lock);
2680 	plist_for_each_entry(p, &swap_active_head, list) {
2681 		if (p->flags & SWP_WRITEOK) {
2682 			if (p->swap_file->f_mapping == mapping) {
2683 				found = 1;
2684 				break;
2685 			}
2686 		}
2687 	}
2688 	if (!found) {
2689 		err = -EINVAL;
2690 		spin_unlock(&swap_lock);
2691 		goto out_dput;
2692 	}
2693 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2694 		vm_unacct_memory(p->pages);
2695 	else {
2696 		err = -ENOMEM;
2697 		spin_unlock(&swap_lock);
2698 		goto out_dput;
2699 	}
2700 	spin_lock(&p->lock);
2701 	del_from_avail_list(p, true);
2702 	if (p->prio < 0) {
2703 		struct swap_info_struct *si = p;
2704 		int nid;
2705 
2706 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2707 			si->prio++;
2708 			si->list.prio--;
2709 			for_each_node(nid) {
2710 				if (si->avail_lists[nid].prio != 1)
2711 					si->avail_lists[nid].prio--;
2712 			}
2713 		}
2714 		least_priority++;
2715 	}
2716 	plist_del(&p->list, &swap_active_head);
2717 	atomic_long_sub(p->pages, &nr_swap_pages);
2718 	total_swap_pages -= p->pages;
2719 	spin_unlock(&p->lock);
2720 	spin_unlock(&swap_lock);
2721 
2722 	wait_for_allocation(p);
2723 
2724 	disable_swap_slots_cache_lock();
2725 
2726 	set_current_oom_origin();
2727 	err = try_to_unuse(p->type);
2728 	clear_current_oom_origin();
2729 
2730 	if (err) {
2731 		/* re-insert swap space back into swap_list */
2732 		reinsert_swap_info(p);
2733 		reenable_swap_slots_cache_unlock();
2734 		goto out_dput;
2735 	}
2736 
2737 	reenable_swap_slots_cache_unlock();
2738 
2739 	/*
2740 	 * Wait for swap operations protected by get/put_swap_device()
2741 	 * to complete.  Because of synchronize_rcu() here, all swap
2742 	 * operations protected by RCU reader side lock (including any
2743 	 * spinlock) will be waited too.  This makes it easy to
2744 	 * prevent folio_test_swapcache() and the following swap cache
2745 	 * operations from racing with swapoff.
2746 	 */
2747 	percpu_ref_kill(&p->users);
2748 	synchronize_rcu();
2749 	wait_for_completion(&p->comp);
2750 
2751 	flush_work(&p->discard_work);
2752 	flush_work(&p->reclaim_work);
2753 
2754 	destroy_swap_extents(p);
2755 	if (p->flags & SWP_CONTINUED)
2756 		free_swap_count_continuations(p);
2757 
2758 	if (!p->bdev || !bdev_nonrot(p->bdev))
2759 		atomic_dec(&nr_rotate_swap);
2760 
2761 	mutex_lock(&swapon_mutex);
2762 	spin_lock(&swap_lock);
2763 	spin_lock(&p->lock);
2764 	drain_mmlist();
2765 
2766 	swap_file = p->swap_file;
2767 	p->swap_file = NULL;
2768 	p->max = 0;
2769 	swap_map = p->swap_map;
2770 	p->swap_map = NULL;
2771 	zeromap = p->zeromap;
2772 	p->zeromap = NULL;
2773 	cluster_info = p->cluster_info;
2774 	p->cluster_info = NULL;
2775 	spin_unlock(&p->lock);
2776 	spin_unlock(&swap_lock);
2777 	arch_swap_invalidate_area(p->type);
2778 	zswap_swapoff(p->type);
2779 	mutex_unlock(&swapon_mutex);
2780 	free_percpu(p->percpu_cluster);
2781 	p->percpu_cluster = NULL;
2782 	kfree(p->global_cluster);
2783 	p->global_cluster = NULL;
2784 	vfree(swap_map);
2785 	kvfree(zeromap);
2786 	kvfree(cluster_info);
2787 	/* Destroy swap account information */
2788 	swap_cgroup_swapoff(p->type);
2789 	exit_swap_address_space(p->type);
2790 
2791 	inode = mapping->host;
2792 
2793 	inode_lock(inode);
2794 	inode->i_flags &= ~S_SWAPFILE;
2795 	inode_unlock(inode);
2796 	filp_close(swap_file, NULL);
2797 
2798 	/*
2799 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2800 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2801 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2802 	 */
2803 	spin_lock(&swap_lock);
2804 	p->flags = 0;
2805 	spin_unlock(&swap_lock);
2806 
2807 	err = 0;
2808 	atomic_inc(&proc_poll_event);
2809 	wake_up_interruptible(&proc_poll_wait);
2810 
2811 out_dput:
2812 	filp_close(victim, NULL);
2813 out:
2814 	putname(pathname);
2815 	return err;
2816 }
2817 
2818 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2819 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2820 {
2821 	struct seq_file *seq = file->private_data;
2822 
2823 	poll_wait(file, &proc_poll_wait, wait);
2824 
2825 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2826 		seq->poll_event = atomic_read(&proc_poll_event);
2827 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2828 	}
2829 
2830 	return EPOLLIN | EPOLLRDNORM;
2831 }
2832 
2833 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2834 static void *swap_start(struct seq_file *swap, loff_t *pos)
2835 {
2836 	struct swap_info_struct *si;
2837 	int type;
2838 	loff_t l = *pos;
2839 
2840 	mutex_lock(&swapon_mutex);
2841 
2842 	if (!l)
2843 		return SEQ_START_TOKEN;
2844 
2845 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2846 		if (!(si->flags & SWP_USED) || !si->swap_map)
2847 			continue;
2848 		if (!--l)
2849 			return si;
2850 	}
2851 
2852 	return NULL;
2853 }
2854 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2855 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2856 {
2857 	struct swap_info_struct *si = v;
2858 	int type;
2859 
2860 	if (v == SEQ_START_TOKEN)
2861 		type = 0;
2862 	else
2863 		type = si->type + 1;
2864 
2865 	++(*pos);
2866 	for (; (si = swap_type_to_swap_info(type)); type++) {
2867 		if (!(si->flags & SWP_USED) || !si->swap_map)
2868 			continue;
2869 		return si;
2870 	}
2871 
2872 	return NULL;
2873 }
2874 
swap_stop(struct seq_file * swap,void * v)2875 static void swap_stop(struct seq_file *swap, void *v)
2876 {
2877 	mutex_unlock(&swapon_mutex);
2878 }
2879 
swap_show(struct seq_file * swap,void * v)2880 static int swap_show(struct seq_file *swap, void *v)
2881 {
2882 	struct swap_info_struct *si = v;
2883 	struct file *file;
2884 	int len;
2885 	unsigned long bytes, inuse;
2886 
2887 	if (si == SEQ_START_TOKEN) {
2888 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2889 		return 0;
2890 	}
2891 
2892 	bytes = K(si->pages);
2893 	inuse = K(swap_usage_in_pages(si));
2894 
2895 	file = si->swap_file;
2896 	len = seq_file_path(swap, file, " \t\n\\");
2897 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2898 			len < 40 ? 40 - len : 1, " ",
2899 			S_ISBLK(file_inode(file)->i_mode) ?
2900 				"partition" : "file\t",
2901 			bytes, bytes < 10000000 ? "\t" : "",
2902 			inuse, inuse < 10000000 ? "\t" : "",
2903 			si->prio);
2904 	return 0;
2905 }
2906 
2907 static const struct seq_operations swaps_op = {
2908 	.start =	swap_start,
2909 	.next =		swap_next,
2910 	.stop =		swap_stop,
2911 	.show =		swap_show
2912 };
2913 
swaps_open(struct inode * inode,struct file * file)2914 static int swaps_open(struct inode *inode, struct file *file)
2915 {
2916 	struct seq_file *seq;
2917 	int ret;
2918 
2919 	ret = seq_open(file, &swaps_op);
2920 	if (ret)
2921 		return ret;
2922 
2923 	seq = file->private_data;
2924 	seq->poll_event = atomic_read(&proc_poll_event);
2925 	return 0;
2926 }
2927 
2928 static const struct proc_ops swaps_proc_ops = {
2929 	.proc_flags	= PROC_ENTRY_PERMANENT,
2930 	.proc_open	= swaps_open,
2931 	.proc_read	= seq_read,
2932 	.proc_lseek	= seq_lseek,
2933 	.proc_release	= seq_release,
2934 	.proc_poll	= swaps_poll,
2935 };
2936 
procswaps_init(void)2937 static int __init procswaps_init(void)
2938 {
2939 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2940 	return 0;
2941 }
2942 __initcall(procswaps_init);
2943 #endif /* CONFIG_PROC_FS */
2944 
2945 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2946 static int __init max_swapfiles_check(void)
2947 {
2948 	MAX_SWAPFILES_CHECK();
2949 	return 0;
2950 }
2951 late_initcall(max_swapfiles_check);
2952 #endif
2953 
alloc_swap_info(void)2954 static struct swap_info_struct *alloc_swap_info(void)
2955 {
2956 	struct swap_info_struct *p;
2957 	struct swap_info_struct *defer = NULL;
2958 	unsigned int type;
2959 	int i;
2960 
2961 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2962 	if (!p)
2963 		return ERR_PTR(-ENOMEM);
2964 
2965 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2966 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2967 		kvfree(p);
2968 		return ERR_PTR(-ENOMEM);
2969 	}
2970 
2971 	spin_lock(&swap_lock);
2972 	for (type = 0; type < nr_swapfiles; type++) {
2973 		if (!(swap_info[type]->flags & SWP_USED))
2974 			break;
2975 	}
2976 	if (type >= MAX_SWAPFILES) {
2977 		spin_unlock(&swap_lock);
2978 		percpu_ref_exit(&p->users);
2979 		kvfree(p);
2980 		return ERR_PTR(-EPERM);
2981 	}
2982 	if (type >= nr_swapfiles) {
2983 		p->type = type;
2984 		/*
2985 		 * Publish the swap_info_struct after initializing it.
2986 		 * Note that kvzalloc() above zeroes all its fields.
2987 		 */
2988 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2989 		nr_swapfiles++;
2990 	} else {
2991 		defer = p;
2992 		p = swap_info[type];
2993 		/*
2994 		 * Do not memset this entry: a racing procfs swap_next()
2995 		 * would be relying on p->type to remain valid.
2996 		 */
2997 	}
2998 	p->swap_extent_root = RB_ROOT;
2999 	plist_node_init(&p->list, 0);
3000 	for_each_node(i)
3001 		plist_node_init(&p->avail_lists[i], 0);
3002 	p->flags = SWP_USED;
3003 	spin_unlock(&swap_lock);
3004 	if (defer) {
3005 		percpu_ref_exit(&defer->users);
3006 		kvfree(defer);
3007 	}
3008 	spin_lock_init(&p->lock);
3009 	spin_lock_init(&p->cont_lock);
3010 	atomic_long_set(&p->inuse_pages, SWAP_USAGE_OFFLIST_BIT);
3011 	init_completion(&p->comp);
3012 
3013 	return p;
3014 }
3015 
claim_swapfile(struct swap_info_struct * si,struct inode * inode)3016 static int claim_swapfile(struct swap_info_struct *si, struct inode *inode)
3017 {
3018 	if (S_ISBLK(inode->i_mode)) {
3019 		si->bdev = I_BDEV(inode);
3020 		/*
3021 		 * Zoned block devices contain zones that have a sequential
3022 		 * write only restriction.  Hence zoned block devices are not
3023 		 * suitable for swapping.  Disallow them here.
3024 		 */
3025 		if (bdev_is_zoned(si->bdev))
3026 			return -EINVAL;
3027 		si->flags |= SWP_BLKDEV;
3028 	} else if (S_ISREG(inode->i_mode)) {
3029 		si->bdev = inode->i_sb->s_bdev;
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 
3036 /*
3037  * Find out how many pages are allowed for a single swap device. There
3038  * are two limiting factors:
3039  * 1) the number of bits for the swap offset in the swp_entry_t type, and
3040  * 2) the number of bits in the swap pte, as defined by the different
3041  * architectures.
3042  *
3043  * In order to find the largest possible bit mask, a swap entry with
3044  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3045  * decoded to a swp_entry_t again, and finally the swap offset is
3046  * extracted.
3047  *
3048  * This will mask all the bits from the initial ~0UL mask that can't
3049  * be encoded in either the swp_entry_t or the architecture definition
3050  * of a swap pte.
3051  */
generic_max_swapfile_size(void)3052 unsigned long generic_max_swapfile_size(void)
3053 {
3054 	return swp_offset(pte_to_swp_entry(
3055 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3056 }
3057 
3058 /* Can be overridden by an architecture for additional checks. */
arch_max_swapfile_size(void)3059 __weak unsigned long arch_max_swapfile_size(void)
3060 {
3061 	return generic_max_swapfile_size();
3062 }
3063 
read_swap_header(struct swap_info_struct * si,union swap_header * swap_header,struct inode * inode)3064 static unsigned long read_swap_header(struct swap_info_struct *si,
3065 					union swap_header *swap_header,
3066 					struct inode *inode)
3067 {
3068 	int i;
3069 	unsigned long maxpages;
3070 	unsigned long swapfilepages;
3071 	unsigned long last_page;
3072 
3073 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3074 		pr_err("Unable to find swap-space signature\n");
3075 		return 0;
3076 	}
3077 
3078 	/* swap partition endianness hack... */
3079 	if (swab32(swap_header->info.version) == 1) {
3080 		swab32s(&swap_header->info.version);
3081 		swab32s(&swap_header->info.last_page);
3082 		swab32s(&swap_header->info.nr_badpages);
3083 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3084 			return 0;
3085 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3086 			swab32s(&swap_header->info.badpages[i]);
3087 	}
3088 	/* Check the swap header's sub-version */
3089 	if (swap_header->info.version != 1) {
3090 		pr_warn("Unable to handle swap header version %d\n",
3091 			swap_header->info.version);
3092 		return 0;
3093 	}
3094 
3095 	maxpages = swapfile_maximum_size;
3096 	last_page = swap_header->info.last_page;
3097 	if (!last_page) {
3098 		pr_warn("Empty swap-file\n");
3099 		return 0;
3100 	}
3101 	if (last_page > maxpages) {
3102 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3103 			K(maxpages), K(last_page));
3104 	}
3105 	if (maxpages > last_page) {
3106 		maxpages = last_page + 1;
3107 		/* p->max is an unsigned int: don't overflow it */
3108 		if ((unsigned int)maxpages == 0)
3109 			maxpages = UINT_MAX;
3110 	}
3111 
3112 	if (!maxpages)
3113 		return 0;
3114 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3115 	if (swapfilepages && maxpages > swapfilepages) {
3116 		pr_warn("Swap area shorter than signature indicates\n");
3117 		return 0;
3118 	}
3119 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3120 		return 0;
3121 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3122 		return 0;
3123 
3124 	return maxpages;
3125 }
3126 
3127 #define SWAP_CLUSTER_INFO_COLS						\
3128 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3129 #define SWAP_CLUSTER_SPACE_COLS						\
3130 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3131 #define SWAP_CLUSTER_COLS						\
3132 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3133 
setup_swap_map_and_extents(struct swap_info_struct * si,union swap_header * swap_header,unsigned char * swap_map,unsigned long maxpages,sector_t * span)3134 static int setup_swap_map_and_extents(struct swap_info_struct *si,
3135 					union swap_header *swap_header,
3136 					unsigned char *swap_map,
3137 					unsigned long maxpages,
3138 					sector_t *span)
3139 {
3140 	unsigned int nr_good_pages;
3141 	unsigned long i;
3142 	int nr_extents;
3143 
3144 	nr_good_pages = maxpages - 1;	/* omit header page */
3145 
3146 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3147 		unsigned int page_nr = swap_header->info.badpages[i];
3148 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3149 			return -EINVAL;
3150 		if (page_nr < maxpages) {
3151 			swap_map[page_nr] = SWAP_MAP_BAD;
3152 			nr_good_pages--;
3153 		}
3154 	}
3155 
3156 	if (nr_good_pages) {
3157 		swap_map[0] = SWAP_MAP_BAD;
3158 		si->max = maxpages;
3159 		si->pages = nr_good_pages;
3160 		nr_extents = setup_swap_extents(si, span);
3161 		if (nr_extents < 0)
3162 			return nr_extents;
3163 		nr_good_pages = si->pages;
3164 	}
3165 	if (!nr_good_pages) {
3166 		pr_warn("Empty swap-file\n");
3167 		return -EINVAL;
3168 	}
3169 
3170 	return nr_extents;
3171 }
3172 
setup_clusters(struct swap_info_struct * si,union swap_header * swap_header,unsigned long maxpages)3173 static struct swap_cluster_info *setup_clusters(struct swap_info_struct *si,
3174 						union swap_header *swap_header,
3175 						unsigned long maxpages)
3176 {
3177 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3178 	struct swap_cluster_info *cluster_info;
3179 	unsigned long i, j, k, idx;
3180 	int cpu, err = -ENOMEM;
3181 
3182 	cluster_info = kvcalloc(nr_clusters, sizeof(*cluster_info), GFP_KERNEL);
3183 	if (!cluster_info)
3184 		goto err;
3185 
3186 	for (i = 0; i < nr_clusters; i++)
3187 		spin_lock_init(&cluster_info[i].lock);
3188 
3189 	if (si->flags & SWP_SOLIDSTATE) {
3190 		si->percpu_cluster = alloc_percpu(struct percpu_cluster);
3191 		if (!si->percpu_cluster)
3192 			goto err_free;
3193 
3194 		for_each_possible_cpu(cpu) {
3195 			struct percpu_cluster *cluster;
3196 
3197 			cluster = per_cpu_ptr(si->percpu_cluster, cpu);
3198 			for (i = 0; i < SWAP_NR_ORDERS; i++)
3199 				cluster->next[i] = SWAP_ENTRY_INVALID;
3200 			local_lock_init(&cluster->lock);
3201 		}
3202 	} else {
3203 		si->global_cluster = kmalloc(sizeof(*si->global_cluster),
3204 				     GFP_KERNEL);
3205 		if (!si->global_cluster)
3206 			goto err_free;
3207 		for (i = 0; i < SWAP_NR_ORDERS; i++)
3208 			si->global_cluster->next[i] = SWAP_ENTRY_INVALID;
3209 		spin_lock_init(&si->global_cluster_lock);
3210 	}
3211 
3212 	/*
3213 	 * Mark unusable pages as unavailable. The clusters aren't
3214 	 * marked free yet, so no list operations are involved yet.
3215 	 *
3216 	 * See setup_swap_map_and_extents(): header page, bad pages,
3217 	 * and the EOF part of the last cluster.
3218 	 */
3219 	inc_cluster_info_page(si, cluster_info, 0);
3220 	for (i = 0; i < swap_header->info.nr_badpages; i++)
3221 		inc_cluster_info_page(si, cluster_info,
3222 				      swap_header->info.badpages[i]);
3223 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3224 		inc_cluster_info_page(si, cluster_info, i);
3225 
3226 	INIT_LIST_HEAD(&si->free_clusters);
3227 	INIT_LIST_HEAD(&si->full_clusters);
3228 	INIT_LIST_HEAD(&si->discard_clusters);
3229 
3230 	for (i = 0; i < SWAP_NR_ORDERS; i++) {
3231 		INIT_LIST_HEAD(&si->nonfull_clusters[i]);
3232 		INIT_LIST_HEAD(&si->frag_clusters[i]);
3233 		atomic_long_set(&si->frag_cluster_nr[i], 0);
3234 	}
3235 
3236 	/*
3237 	 * Reduce false cache line sharing between cluster_info and
3238 	 * sharing same address space.
3239 	 */
3240 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3241 		j = k % SWAP_CLUSTER_COLS;
3242 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3243 			struct swap_cluster_info *ci;
3244 			idx = i * SWAP_CLUSTER_COLS + j;
3245 			ci = cluster_info + idx;
3246 			if (idx >= nr_clusters)
3247 				continue;
3248 			if (ci->count) {
3249 				ci->flags = CLUSTER_FLAG_NONFULL;
3250 				list_add_tail(&ci->list, &si->nonfull_clusters[0]);
3251 				continue;
3252 			}
3253 			ci->flags = CLUSTER_FLAG_FREE;
3254 			list_add_tail(&ci->list, &si->free_clusters);
3255 		}
3256 	}
3257 
3258 	return cluster_info;
3259 
3260 err_free:
3261 	kvfree(cluster_info);
3262 err:
3263 	return ERR_PTR(err);
3264 }
3265 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3266 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3267 {
3268 	struct swap_info_struct *si;
3269 	struct filename *name;
3270 	struct file *swap_file = NULL;
3271 	struct address_space *mapping;
3272 	struct dentry *dentry;
3273 	int prio;
3274 	int error;
3275 	union swap_header *swap_header;
3276 	int nr_extents;
3277 	sector_t span;
3278 	unsigned long maxpages;
3279 	unsigned char *swap_map = NULL;
3280 	unsigned long *zeromap = NULL;
3281 	struct swap_cluster_info *cluster_info = NULL;
3282 	struct folio *folio = NULL;
3283 	struct inode *inode = NULL;
3284 	bool inced_nr_rotate_swap = false;
3285 
3286 	if (swap_flags & ~SWAP_FLAGS_VALID)
3287 		return -EINVAL;
3288 
3289 	if (!capable(CAP_SYS_ADMIN))
3290 		return -EPERM;
3291 
3292 	if (!swap_avail_heads)
3293 		return -ENOMEM;
3294 
3295 	si = alloc_swap_info();
3296 	if (IS_ERR(si))
3297 		return PTR_ERR(si);
3298 
3299 	INIT_WORK(&si->discard_work, swap_discard_work);
3300 	INIT_WORK(&si->reclaim_work, swap_reclaim_work);
3301 
3302 	name = getname(specialfile);
3303 	if (IS_ERR(name)) {
3304 		error = PTR_ERR(name);
3305 		name = NULL;
3306 		goto bad_swap;
3307 	}
3308 	swap_file = file_open_name(name, O_RDWR | O_LARGEFILE | O_EXCL, 0);
3309 	if (IS_ERR(swap_file)) {
3310 		error = PTR_ERR(swap_file);
3311 		swap_file = NULL;
3312 		goto bad_swap;
3313 	}
3314 
3315 	si->swap_file = swap_file;
3316 	mapping = swap_file->f_mapping;
3317 	dentry = swap_file->f_path.dentry;
3318 	inode = mapping->host;
3319 
3320 	error = claim_swapfile(si, inode);
3321 	if (unlikely(error))
3322 		goto bad_swap;
3323 
3324 	inode_lock(inode);
3325 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3326 		error = -ENOENT;
3327 		goto bad_swap_unlock_inode;
3328 	}
3329 	if (IS_SWAPFILE(inode)) {
3330 		error = -EBUSY;
3331 		goto bad_swap_unlock_inode;
3332 	}
3333 
3334 	/*
3335 	 * Read the swap header.
3336 	 */
3337 	if (!mapping->a_ops->read_folio) {
3338 		error = -EINVAL;
3339 		goto bad_swap_unlock_inode;
3340 	}
3341 	folio = read_mapping_folio(mapping, 0, swap_file);
3342 	if (IS_ERR(folio)) {
3343 		error = PTR_ERR(folio);
3344 		goto bad_swap_unlock_inode;
3345 	}
3346 	swap_header = kmap_local_folio(folio, 0);
3347 
3348 	maxpages = read_swap_header(si, swap_header, inode);
3349 	if (unlikely(!maxpages)) {
3350 		error = -EINVAL;
3351 		goto bad_swap_unlock_inode;
3352 	}
3353 
3354 	/* OK, set up the swap map and apply the bad block list */
3355 	swap_map = vzalloc(maxpages);
3356 	if (!swap_map) {
3357 		error = -ENOMEM;
3358 		goto bad_swap_unlock_inode;
3359 	}
3360 
3361 	error = swap_cgroup_swapon(si->type, maxpages);
3362 	if (error)
3363 		goto bad_swap_unlock_inode;
3364 
3365 	nr_extents = setup_swap_map_and_extents(si, swap_header, swap_map,
3366 						maxpages, &span);
3367 	if (unlikely(nr_extents < 0)) {
3368 		error = nr_extents;
3369 		goto bad_swap_unlock_inode;
3370 	}
3371 
3372 	/*
3373 	 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3374 	 * be above MAX_PAGE_ORDER incase of a large swap file.
3375 	 */
3376 	zeromap = kvmalloc_array(BITS_TO_LONGS(maxpages), sizeof(long),
3377 				    GFP_KERNEL | __GFP_ZERO);
3378 	if (!zeromap) {
3379 		error = -ENOMEM;
3380 		goto bad_swap_unlock_inode;
3381 	}
3382 
3383 	if (si->bdev && bdev_stable_writes(si->bdev))
3384 		si->flags |= SWP_STABLE_WRITES;
3385 
3386 	if (si->bdev && bdev_synchronous(si->bdev))
3387 		si->flags |= SWP_SYNCHRONOUS_IO;
3388 
3389 	if (si->bdev && bdev_nonrot(si->bdev)) {
3390 		si->flags |= SWP_SOLIDSTATE;
3391 	} else {
3392 		atomic_inc(&nr_rotate_swap);
3393 		inced_nr_rotate_swap = true;
3394 	}
3395 
3396 	cluster_info = setup_clusters(si, swap_header, maxpages);
3397 	if (IS_ERR(cluster_info)) {
3398 		error = PTR_ERR(cluster_info);
3399 		cluster_info = NULL;
3400 		goto bad_swap_unlock_inode;
3401 	}
3402 
3403 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3404 	    si->bdev && bdev_max_discard_sectors(si->bdev)) {
3405 		/*
3406 		 * When discard is enabled for swap with no particular
3407 		 * policy flagged, we set all swap discard flags here in
3408 		 * order to sustain backward compatibility with older
3409 		 * swapon(8) releases.
3410 		 */
3411 		si->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3412 			     SWP_PAGE_DISCARD);
3413 
3414 		/*
3415 		 * By flagging sys_swapon, a sysadmin can tell us to
3416 		 * either do single-time area discards only, or to just
3417 		 * perform discards for released swap page-clusters.
3418 		 * Now it's time to adjust the p->flags accordingly.
3419 		 */
3420 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3421 			si->flags &= ~SWP_PAGE_DISCARD;
3422 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3423 			si->flags &= ~SWP_AREA_DISCARD;
3424 
3425 		/* issue a swapon-time discard if it's still required */
3426 		if (si->flags & SWP_AREA_DISCARD) {
3427 			int err = discard_swap(si);
3428 			if (unlikely(err))
3429 				pr_err("swapon: discard_swap(%p): %d\n",
3430 					si, err);
3431 		}
3432 	}
3433 
3434 	error = init_swap_address_space(si->type, maxpages);
3435 	if (error)
3436 		goto bad_swap_unlock_inode;
3437 
3438 	error = zswap_swapon(si->type, maxpages);
3439 	if (error)
3440 		goto free_swap_address_space;
3441 
3442 	/*
3443 	 * Flush any pending IO and dirty mappings before we start using this
3444 	 * swap device.
3445 	 */
3446 	inode->i_flags |= S_SWAPFILE;
3447 	error = inode_drain_writes(inode);
3448 	if (error) {
3449 		inode->i_flags &= ~S_SWAPFILE;
3450 		goto free_swap_zswap;
3451 	}
3452 
3453 	mutex_lock(&swapon_mutex);
3454 	prio = -1;
3455 	if (swap_flags & SWAP_FLAG_PREFER)
3456 		prio =
3457 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3458 	enable_swap_info(si, prio, swap_map, cluster_info, zeromap);
3459 
3460 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3461 		K(si->pages), name->name, si->prio, nr_extents,
3462 		K((unsigned long long)span),
3463 		(si->flags & SWP_SOLIDSTATE) ? "SS" : "",
3464 		(si->flags & SWP_DISCARDABLE) ? "D" : "",
3465 		(si->flags & SWP_AREA_DISCARD) ? "s" : "",
3466 		(si->flags & SWP_PAGE_DISCARD) ? "c" : "");
3467 
3468 	mutex_unlock(&swapon_mutex);
3469 	atomic_inc(&proc_poll_event);
3470 	wake_up_interruptible(&proc_poll_wait);
3471 
3472 	error = 0;
3473 	goto out;
3474 free_swap_zswap:
3475 	zswap_swapoff(si->type);
3476 free_swap_address_space:
3477 	exit_swap_address_space(si->type);
3478 bad_swap_unlock_inode:
3479 	inode_unlock(inode);
3480 bad_swap:
3481 	free_percpu(si->percpu_cluster);
3482 	si->percpu_cluster = NULL;
3483 	kfree(si->global_cluster);
3484 	si->global_cluster = NULL;
3485 	inode = NULL;
3486 	destroy_swap_extents(si);
3487 	swap_cgroup_swapoff(si->type);
3488 	spin_lock(&swap_lock);
3489 	si->swap_file = NULL;
3490 	si->flags = 0;
3491 	spin_unlock(&swap_lock);
3492 	vfree(swap_map);
3493 	kvfree(zeromap);
3494 	kvfree(cluster_info);
3495 	if (inced_nr_rotate_swap)
3496 		atomic_dec(&nr_rotate_swap);
3497 	if (swap_file)
3498 		filp_close(swap_file, NULL);
3499 out:
3500 	if (!IS_ERR_OR_NULL(folio))
3501 		folio_release_kmap(folio, swap_header);
3502 	if (name)
3503 		putname(name);
3504 	if (inode)
3505 		inode_unlock(inode);
3506 	if (!error)
3507 		enable_swap_slots_cache();
3508 	return error;
3509 }
3510 
si_swapinfo(struct sysinfo * val)3511 void si_swapinfo(struct sysinfo *val)
3512 {
3513 	unsigned int type;
3514 	unsigned long nr_to_be_unused = 0;
3515 
3516 	spin_lock(&swap_lock);
3517 	for (type = 0; type < nr_swapfiles; type++) {
3518 		struct swap_info_struct *si = swap_info[type];
3519 
3520 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3521 			nr_to_be_unused += swap_usage_in_pages(si);
3522 	}
3523 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3524 	val->totalswap = total_swap_pages + nr_to_be_unused;
3525 	spin_unlock(&swap_lock);
3526 }
3527 
3528 /*
3529  * Verify that nr swap entries are valid and increment their swap map counts.
3530  *
3531  * Returns error code in following case.
3532  * - success -> 0
3533  * - swp_entry is invalid -> EINVAL
3534  * - swp_entry is migration entry -> EINVAL
3535  * - swap-cache reference is requested but there is already one. -> EEXIST
3536  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3537  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3538  */
__swap_duplicate(swp_entry_t entry,unsigned char usage,int nr)3539 static int __swap_duplicate(swp_entry_t entry, unsigned char usage, int nr)
3540 {
3541 	struct swap_info_struct *si;
3542 	struct swap_cluster_info *ci;
3543 	unsigned long offset;
3544 	unsigned char count;
3545 	unsigned char has_cache;
3546 	int err, i;
3547 
3548 	si = swp_swap_info(entry);
3549 	if (WARN_ON_ONCE(!si)) {
3550 		pr_err("%s%08lx\n", Bad_file, entry.val);
3551 		return -EINVAL;
3552 	}
3553 
3554 	offset = swp_offset(entry);
3555 	VM_WARN_ON(nr > SWAPFILE_CLUSTER - offset % SWAPFILE_CLUSTER);
3556 	VM_WARN_ON(usage == 1 && nr > 1);
3557 	ci = lock_cluster(si, offset);
3558 
3559 	err = 0;
3560 	for (i = 0; i < nr; i++) {
3561 		count = si->swap_map[offset + i];
3562 
3563 		/*
3564 		 * swapin_readahead() doesn't check if a swap entry is valid, so the
3565 		 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3566 		 */
3567 		if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3568 			err = -ENOENT;
3569 			goto unlock_out;
3570 		}
3571 
3572 		has_cache = count & SWAP_HAS_CACHE;
3573 		count &= ~SWAP_HAS_CACHE;
3574 
3575 		if (!count && !has_cache) {
3576 			err = -ENOENT;
3577 		} else if (usage == SWAP_HAS_CACHE) {
3578 			if (has_cache)
3579 				err = -EEXIST;
3580 		} else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) {
3581 			err = -EINVAL;
3582 		}
3583 
3584 		if (err)
3585 			goto unlock_out;
3586 	}
3587 
3588 	for (i = 0; i < nr; i++) {
3589 		count = si->swap_map[offset + i];
3590 		has_cache = count & SWAP_HAS_CACHE;
3591 		count &= ~SWAP_HAS_CACHE;
3592 
3593 		if (usage == SWAP_HAS_CACHE)
3594 			has_cache = SWAP_HAS_CACHE;
3595 		else if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3596 			count += usage;
3597 		else if (swap_count_continued(si, offset + i, count))
3598 			count = COUNT_CONTINUED;
3599 		else {
3600 			/*
3601 			 * Don't need to rollback changes, because if
3602 			 * usage == 1, there must be nr == 1.
3603 			 */
3604 			err = -ENOMEM;
3605 			goto unlock_out;
3606 		}
3607 
3608 		WRITE_ONCE(si->swap_map[offset + i], count | has_cache);
3609 	}
3610 
3611 unlock_out:
3612 	unlock_cluster(ci);
3613 	return err;
3614 }
3615 
3616 /*
3617  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3618  * (in which case its reference count is never incremented).
3619  */
swap_shmem_alloc(swp_entry_t entry,int nr)3620 void swap_shmem_alloc(swp_entry_t entry, int nr)
3621 {
3622 	__swap_duplicate(entry, SWAP_MAP_SHMEM, nr);
3623 }
3624 
3625 /*
3626  * Increase reference count of swap entry by 1.
3627  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3628  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3629  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3630  * might occur if a page table entry has got corrupted.
3631  */
swap_duplicate(swp_entry_t entry)3632 int swap_duplicate(swp_entry_t entry)
3633 {
3634 	int err = 0;
3635 
3636 	while (!err && __swap_duplicate(entry, 1, 1) == -ENOMEM)
3637 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3638 	return err;
3639 }
3640 
3641 /*
3642  * @entry: first swap entry from which we allocate nr swap cache.
3643  *
3644  * Called when allocating swap cache for existing swap entries,
3645  * This can return error codes. Returns 0 at success.
3646  * -EEXIST means there is a swap cache.
3647  * Note: return code is different from swap_duplicate().
3648  */
swapcache_prepare(swp_entry_t entry,int nr)3649 int swapcache_prepare(swp_entry_t entry, int nr)
3650 {
3651 	return __swap_duplicate(entry, SWAP_HAS_CACHE, nr);
3652 }
3653 
swapcache_clear(struct swap_info_struct * si,swp_entry_t entry,int nr)3654 void swapcache_clear(struct swap_info_struct *si, swp_entry_t entry, int nr)
3655 {
3656 	unsigned long offset = swp_offset(entry);
3657 
3658 	cluster_swap_free_nr(si, offset, nr, SWAP_HAS_CACHE);
3659 }
3660 
swp_swap_info(swp_entry_t entry)3661 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3662 {
3663 	return swap_type_to_swap_info(swp_type(entry));
3664 }
3665 
3666 /*
3667  * out-of-line methods to avoid include hell.
3668  */
swapcache_mapping(struct folio * folio)3669 struct address_space *swapcache_mapping(struct folio *folio)
3670 {
3671 	return swp_swap_info(folio->swap)->swap_file->f_mapping;
3672 }
3673 EXPORT_SYMBOL_GPL(swapcache_mapping);
3674 
__folio_swap_cache_index(struct folio * folio)3675 pgoff_t __folio_swap_cache_index(struct folio *folio)
3676 {
3677 	return swap_cache_index(folio->swap);
3678 }
3679 EXPORT_SYMBOL_GPL(__folio_swap_cache_index);
3680 
3681 /*
3682  * add_swap_count_continuation - called when a swap count is duplicated
3683  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3684  * page of the original vmalloc'ed swap_map, to hold the continuation count
3685  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3686  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3687  *
3688  * These continuation pages are seldom referenced: the common paths all work
3689  * on the original swap_map, only referring to a continuation page when the
3690  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3691  *
3692  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3693  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3694  * can be called after dropping locks.
3695  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3696 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3697 {
3698 	struct swap_info_struct *si;
3699 	struct swap_cluster_info *ci;
3700 	struct page *head;
3701 	struct page *page;
3702 	struct page *list_page;
3703 	pgoff_t offset;
3704 	unsigned char count;
3705 	int ret = 0;
3706 
3707 	/*
3708 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3709 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3710 	 */
3711 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3712 
3713 	si = get_swap_device(entry);
3714 	if (!si) {
3715 		/*
3716 		 * An acceptable race has occurred since the failing
3717 		 * __swap_duplicate(): the swap device may be swapoff
3718 		 */
3719 		goto outer;
3720 	}
3721 
3722 	offset = swp_offset(entry);
3723 
3724 	ci = lock_cluster(si, offset);
3725 
3726 	count = swap_count(si->swap_map[offset]);
3727 
3728 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3729 		/*
3730 		 * The higher the swap count, the more likely it is that tasks
3731 		 * will race to add swap count continuation: we need to avoid
3732 		 * over-provisioning.
3733 		 */
3734 		goto out;
3735 	}
3736 
3737 	if (!page) {
3738 		ret = -ENOMEM;
3739 		goto out;
3740 	}
3741 
3742 	head = vmalloc_to_page(si->swap_map + offset);
3743 	offset &= ~PAGE_MASK;
3744 
3745 	spin_lock(&si->cont_lock);
3746 	/*
3747 	 * Page allocation does not initialize the page's lru field,
3748 	 * but it does always reset its private field.
3749 	 */
3750 	if (!page_private(head)) {
3751 		BUG_ON(count & COUNT_CONTINUED);
3752 		INIT_LIST_HEAD(&head->lru);
3753 		set_page_private(head, SWP_CONTINUED);
3754 		si->flags |= SWP_CONTINUED;
3755 	}
3756 
3757 	list_for_each_entry(list_page, &head->lru, lru) {
3758 		unsigned char *map;
3759 
3760 		/*
3761 		 * If the previous map said no continuation, but we've found
3762 		 * a continuation page, free our allocation and use this one.
3763 		 */
3764 		if (!(count & COUNT_CONTINUED))
3765 			goto out_unlock_cont;
3766 
3767 		map = kmap_local_page(list_page) + offset;
3768 		count = *map;
3769 		kunmap_local(map);
3770 
3771 		/*
3772 		 * If this continuation count now has some space in it,
3773 		 * free our allocation and use this one.
3774 		 */
3775 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3776 			goto out_unlock_cont;
3777 	}
3778 
3779 	list_add_tail(&page->lru, &head->lru);
3780 	page = NULL;			/* now it's attached, don't free it */
3781 out_unlock_cont:
3782 	spin_unlock(&si->cont_lock);
3783 out:
3784 	unlock_cluster(ci);
3785 	put_swap_device(si);
3786 outer:
3787 	if (page)
3788 		__free_page(page);
3789 	return ret;
3790 }
3791 
3792 /*
3793  * swap_count_continued - when the original swap_map count is incremented
3794  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3795  * into, carry if so, or else fail until a new continuation page is allocated;
3796  * when the original swap_map count is decremented from 0 with continuation,
3797  * borrow from the continuation and report whether it still holds more.
3798  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3799  * lock.
3800  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3801 static bool swap_count_continued(struct swap_info_struct *si,
3802 				 pgoff_t offset, unsigned char count)
3803 {
3804 	struct page *head;
3805 	struct page *page;
3806 	unsigned char *map;
3807 	bool ret;
3808 
3809 	head = vmalloc_to_page(si->swap_map + offset);
3810 	if (page_private(head) != SWP_CONTINUED) {
3811 		BUG_ON(count & COUNT_CONTINUED);
3812 		return false;		/* need to add count continuation */
3813 	}
3814 
3815 	spin_lock(&si->cont_lock);
3816 	offset &= ~PAGE_MASK;
3817 	page = list_next_entry(head, lru);
3818 	map = kmap_local_page(page) + offset;
3819 
3820 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3821 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3822 
3823 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3824 		/*
3825 		 * Think of how you add 1 to 999
3826 		 */
3827 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3828 			kunmap_local(map);
3829 			page = list_next_entry(page, lru);
3830 			BUG_ON(page == head);
3831 			map = kmap_local_page(page) + offset;
3832 		}
3833 		if (*map == SWAP_CONT_MAX) {
3834 			kunmap_local(map);
3835 			page = list_next_entry(page, lru);
3836 			if (page == head) {
3837 				ret = false;	/* add count continuation */
3838 				goto out;
3839 			}
3840 			map = kmap_local_page(page) + offset;
3841 init_map:		*map = 0;		/* we didn't zero the page */
3842 		}
3843 		*map += 1;
3844 		kunmap_local(map);
3845 		while ((page = list_prev_entry(page, lru)) != head) {
3846 			map = kmap_local_page(page) + offset;
3847 			*map = COUNT_CONTINUED;
3848 			kunmap_local(map);
3849 		}
3850 		ret = true;			/* incremented */
3851 
3852 	} else {				/* decrementing */
3853 		/*
3854 		 * Think of how you subtract 1 from 1000
3855 		 */
3856 		BUG_ON(count != COUNT_CONTINUED);
3857 		while (*map == COUNT_CONTINUED) {
3858 			kunmap_local(map);
3859 			page = list_next_entry(page, lru);
3860 			BUG_ON(page == head);
3861 			map = kmap_local_page(page) + offset;
3862 		}
3863 		BUG_ON(*map == 0);
3864 		*map -= 1;
3865 		if (*map == 0)
3866 			count = 0;
3867 		kunmap_local(map);
3868 		while ((page = list_prev_entry(page, lru)) != head) {
3869 			map = kmap_local_page(page) + offset;
3870 			*map = SWAP_CONT_MAX | count;
3871 			count = COUNT_CONTINUED;
3872 			kunmap_local(map);
3873 		}
3874 		ret = count == COUNT_CONTINUED;
3875 	}
3876 out:
3877 	spin_unlock(&si->cont_lock);
3878 	return ret;
3879 }
3880 
3881 /*
3882  * free_swap_count_continuations - swapoff free all the continuation pages
3883  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3884  */
free_swap_count_continuations(struct swap_info_struct * si)3885 static void free_swap_count_continuations(struct swap_info_struct *si)
3886 {
3887 	pgoff_t offset;
3888 
3889 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3890 		struct page *head;
3891 		head = vmalloc_to_page(si->swap_map + offset);
3892 		if (page_private(head)) {
3893 			struct page *page, *next;
3894 
3895 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3896 				list_del(&page->lru);
3897 				__free_page(page);
3898 			}
3899 		}
3900 	}
3901 }
3902 
3903 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
__folio_throttle_swaprate(struct folio * folio,gfp_t gfp)3904 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3905 {
3906 	struct swap_info_struct *si, *next;
3907 	int nid = folio_nid(folio);
3908 
3909 	if (!(gfp & __GFP_IO))
3910 		return;
3911 
3912 	if (!__has_usable_swap())
3913 		return;
3914 
3915 	if (!blk_cgroup_congested())
3916 		return;
3917 
3918 	/*
3919 	 * We've already scheduled a throttle, avoid taking the global swap
3920 	 * lock.
3921 	 */
3922 	if (current->throttle_disk)
3923 		return;
3924 
3925 	spin_lock(&swap_avail_lock);
3926 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3927 				  avail_lists[nid]) {
3928 		if (si->bdev) {
3929 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3930 			break;
3931 		}
3932 	}
3933 	spin_unlock(&swap_avail_lock);
3934 }
3935 #endif
3936 
swapfile_init(void)3937 static int __init swapfile_init(void)
3938 {
3939 	int nid;
3940 
3941 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3942 					 GFP_KERNEL);
3943 	if (!swap_avail_heads) {
3944 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3945 		return -ENOMEM;
3946 	}
3947 
3948 	for_each_node(nid)
3949 		plist_head_init(&swap_avail_heads[nid]);
3950 
3951 	swapfile_maximum_size = arch_max_swapfile_size();
3952 
3953 #ifdef CONFIG_MIGRATION
3954 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3955 		swap_migration_ad_supported = true;
3956 #endif	/* CONFIG_MIGRATION */
3957 
3958 	return 0;
3959 }
3960 subsys_initcall(swapfile_init);
3961