1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203 }
204
205 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)206 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209 {
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233 }
234
svm_range_dma_unmap_dev(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)235 void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237 {
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251 }
252
svm_range_dma_unmap(struct svm_range * prange)253 void svm_range_dma_unmap(struct svm_range *prange)
254 {
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, 0, prange->npages);
276 }
277 }
278
svm_range_free(struct svm_range * prange,bool do_unmap)279 static void svm_range_free(struct svm_range *prange, bool do_unmap)
280 {
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(&prange->lock);
307 mutex_destroy(&prange->migrate_mutex);
308 kfree(prange);
309 }
310
311 static void
svm_range_set_default_attributes(struct svm_range_list * svms,int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)312 svm_range_set_default_attributes(struct svm_range_list *svms, int32_t *location,
313 int32_t *prefetch_loc, uint8_t *granularity,
314 uint32_t *flags)
315 {
316 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
318 *granularity = svms->default_granularity;
319 *flags =
320 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
321 }
322
323 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)324 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
325 uint64_t last, bool update_mem_usage)
326 {
327 uint64_t size = last - start + 1;
328 struct svm_range *prange;
329 struct kfd_process *p;
330
331 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
332 if (!prange)
333 return NULL;
334
335 p = container_of(svms, struct kfd_process, svms);
336 if (!p->xnack_enabled && update_mem_usage &&
337 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
338 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
339 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
340 kfree(prange);
341 return NULL;
342 }
343 prange->npages = size;
344 prange->svms = svms;
345 prange->start = start;
346 prange->last = last;
347 INIT_LIST_HEAD(&prange->list);
348 INIT_LIST_HEAD(&prange->update_list);
349 INIT_LIST_HEAD(&prange->svm_bo_list);
350 INIT_LIST_HEAD(&prange->deferred_list);
351 INIT_LIST_HEAD(&prange->child_list);
352 atomic_set(&prange->invalid, 0);
353 prange->validate_timestamp = 0;
354 prange->vram_pages = 0;
355 mutex_init(&prange->migrate_mutex);
356 mutex_init(&prange->lock);
357
358 if (p->xnack_enabled)
359 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
360 MAX_GPU_INSTANCE);
361
362 svm_range_set_default_attributes(svms, &prange->preferred_loc,
363 &prange->prefetch_loc,
364 &prange->granularity, &prange->flags);
365
366 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
367
368 return prange;
369 }
370
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)371 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
372 {
373 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
374 return false;
375
376 return true;
377 }
378
svm_range_bo_release(struct kref * kref)379 static void svm_range_bo_release(struct kref *kref)
380 {
381 struct svm_range_bo *svm_bo;
382
383 svm_bo = container_of(kref, struct svm_range_bo, kref);
384 pr_debug("svm_bo 0x%p\n", svm_bo);
385
386 spin_lock(&svm_bo->list_lock);
387 while (!list_empty(&svm_bo->range_list)) {
388 struct svm_range *prange =
389 list_first_entry(&svm_bo->range_list,
390 struct svm_range, svm_bo_list);
391 /* list_del_init tells a concurrent svm_range_vram_node_new when
392 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
393 */
394 list_del_init(&prange->svm_bo_list);
395 spin_unlock(&svm_bo->list_lock);
396
397 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
398 prange->start, prange->last);
399 mutex_lock(&prange->lock);
400 prange->svm_bo = NULL;
401 /* prange should not hold vram page now */
402 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
403 mutex_unlock(&prange->lock);
404
405 spin_lock(&svm_bo->list_lock);
406 }
407 spin_unlock(&svm_bo->list_lock);
408
409 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
410 struct kfd_process_device *pdd;
411 struct kfd_process *p;
412 struct mm_struct *mm;
413
414 mm = svm_bo->eviction_fence->mm;
415 /*
416 * The forked child process takes svm_bo device pages ref, svm_bo could be
417 * released after parent process is gone.
418 */
419 p = kfd_lookup_process_by_mm(mm);
420 if (p) {
421 pdd = kfd_get_process_device_data(svm_bo->node, p);
422 if (pdd)
423 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
424 kfd_unref_process(p);
425 }
426 mmput(mm);
427 }
428
429 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
430 /* We're not in the eviction worker. Signal the fence. */
431 dma_fence_signal(&svm_bo->eviction_fence->base);
432 dma_fence_put(&svm_bo->eviction_fence->base);
433 amdgpu_bo_unref(&svm_bo->bo);
434 kfree(svm_bo);
435 }
436
svm_range_bo_wq_release(struct work_struct * work)437 static void svm_range_bo_wq_release(struct work_struct *work)
438 {
439 struct svm_range_bo *svm_bo;
440
441 svm_bo = container_of(work, struct svm_range_bo, release_work);
442 svm_range_bo_release(&svm_bo->kref);
443 }
444
svm_range_bo_release_async(struct kref * kref)445 static void svm_range_bo_release_async(struct kref *kref)
446 {
447 struct svm_range_bo *svm_bo;
448
449 svm_bo = container_of(kref, struct svm_range_bo, kref);
450 pr_debug("svm_bo 0x%p\n", svm_bo);
451 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
452 schedule_work(&svm_bo->release_work);
453 }
454
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)455 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
456 {
457 kref_put(&svm_bo->kref, svm_range_bo_release_async);
458 }
459
svm_range_bo_unref(struct svm_range_bo * svm_bo)460 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
461 {
462 if (svm_bo)
463 kref_put(&svm_bo->kref, svm_range_bo_release);
464 }
465
466 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)467 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
468 {
469 mutex_lock(&prange->lock);
470 if (!prange->svm_bo) {
471 mutex_unlock(&prange->lock);
472 return false;
473 }
474 if (prange->ttm_res) {
475 /* We still have a reference, all is well */
476 mutex_unlock(&prange->lock);
477 return true;
478 }
479 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
480 /*
481 * Migrate from GPU to GPU, remove range from source svm_bo->node
482 * range list, and return false to allocate svm_bo from destination
483 * node.
484 */
485 if (prange->svm_bo->node != node) {
486 mutex_unlock(&prange->lock);
487
488 spin_lock(&prange->svm_bo->list_lock);
489 list_del_init(&prange->svm_bo_list);
490 spin_unlock(&prange->svm_bo->list_lock);
491
492 svm_range_bo_unref(prange->svm_bo);
493 return false;
494 }
495 if (READ_ONCE(prange->svm_bo->evicting)) {
496 struct dma_fence *f;
497 struct svm_range_bo *svm_bo;
498 /* The BO is getting evicted,
499 * we need to get a new one
500 */
501 mutex_unlock(&prange->lock);
502 svm_bo = prange->svm_bo;
503 f = dma_fence_get(&svm_bo->eviction_fence->base);
504 svm_range_bo_unref(prange->svm_bo);
505 /* wait for the fence to avoid long spin-loop
506 * at list_empty_careful
507 */
508 dma_fence_wait(f, false);
509 dma_fence_put(f);
510 } else {
511 /* The BO was still around and we got
512 * a new reference to it
513 */
514 mutex_unlock(&prange->lock);
515 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
516 prange->svms, prange->start, prange->last);
517
518 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
519 return true;
520 }
521
522 } else {
523 mutex_unlock(&prange->lock);
524 }
525
526 /* We need a new svm_bo. Spin-loop to wait for concurrent
527 * svm_range_bo_release to finish removing this range from
528 * its range list and set prange->svm_bo to null. After this,
529 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
530 */
531 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
532 cond_resched();
533
534 return false;
535 }
536
svm_range_bo_new(void)537 static struct svm_range_bo *svm_range_bo_new(void)
538 {
539 struct svm_range_bo *svm_bo;
540
541 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
542 if (!svm_bo)
543 return NULL;
544
545 kref_init(&svm_bo->kref);
546 INIT_LIST_HEAD(&svm_bo->range_list);
547 spin_lock_init(&svm_bo->list_lock);
548
549 return svm_bo;
550 }
551
552 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)553 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
554 bool clear)
555 {
556 struct kfd_process_device *pdd;
557 struct amdgpu_bo_param bp;
558 struct svm_range_bo *svm_bo;
559 struct amdgpu_bo_user *ubo;
560 struct amdgpu_bo *bo;
561 struct kfd_process *p;
562 struct mm_struct *mm;
563 int r;
564
565 p = container_of(prange->svms, struct kfd_process, svms);
566 pr_debug("process pid: %d svms 0x%p [0x%lx 0x%lx]\n",
567 p->lead_thread->pid, prange->svms,
568 prange->start, prange->last);
569
570 if (svm_range_validate_svm_bo(node, prange))
571 return 0;
572
573 svm_bo = svm_range_bo_new();
574 if (!svm_bo) {
575 pr_debug("failed to alloc svm bo\n");
576 return -ENOMEM;
577 }
578 mm = get_task_mm(p->lead_thread);
579 if (!mm) {
580 pr_debug("failed to get mm\n");
581 kfree(svm_bo);
582 return -ESRCH;
583 }
584 svm_bo->node = node;
585 svm_bo->eviction_fence =
586 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
587 mm,
588 svm_bo);
589 mmput(mm);
590 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
591 svm_bo->evicting = 0;
592 memset(&bp, 0, sizeof(bp));
593 bp.size = prange->npages * PAGE_SIZE;
594 bp.byte_align = PAGE_SIZE;
595 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
596 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
597 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
598 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
599 bp.type = ttm_bo_type_device;
600 bp.resv = NULL;
601 if (node->xcp)
602 bp.xcp_id_plus1 = node->xcp->id + 1;
603
604 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
605 if (r) {
606 pr_debug("failed %d to create bo\n", r);
607 goto create_bo_failed;
608 }
609 bo = &ubo->bo;
610
611 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
612 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
613 bp.xcp_id_plus1 - 1);
614
615 r = amdgpu_bo_reserve(bo, true);
616 if (r) {
617 pr_debug("failed %d to reserve bo\n", r);
618 goto reserve_bo_failed;
619 }
620
621 if (clear) {
622 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
623 if (r) {
624 pr_debug("failed %d to sync bo\n", r);
625 amdgpu_bo_unreserve(bo);
626 goto reserve_bo_failed;
627 }
628 }
629
630 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
631 if (r) {
632 pr_debug("failed %d to reserve bo\n", r);
633 amdgpu_bo_unreserve(bo);
634 goto reserve_bo_failed;
635 }
636 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
637
638 amdgpu_bo_unreserve(bo);
639
640 svm_bo->bo = bo;
641 prange->svm_bo = svm_bo;
642 prange->ttm_res = bo->tbo.resource;
643 prange->offset = 0;
644
645 spin_lock(&svm_bo->list_lock);
646 list_add(&prange->svm_bo_list, &svm_bo->range_list);
647 spin_unlock(&svm_bo->list_lock);
648
649 pdd = svm_range_get_pdd_by_node(prange, node);
650 if (pdd)
651 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
652
653 return 0;
654
655 reserve_bo_failed:
656 amdgpu_bo_unref(&bo);
657 create_bo_failed:
658 dma_fence_put(&svm_bo->eviction_fence->base);
659 kfree(svm_bo);
660 prange->ttm_res = NULL;
661
662 return r;
663 }
664
svm_range_vram_node_free(struct svm_range * prange)665 void svm_range_vram_node_free(struct svm_range *prange)
666 {
667 /* serialize prange->svm_bo unref */
668 mutex_lock(&prange->lock);
669 /* prange->svm_bo has not been unref */
670 if (prange->ttm_res) {
671 prange->ttm_res = NULL;
672 mutex_unlock(&prange->lock);
673 svm_range_bo_unref(prange->svm_bo);
674 } else
675 mutex_unlock(&prange->lock);
676 }
677
678 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)679 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
680 {
681 struct kfd_process *p;
682 struct kfd_process_device *pdd;
683
684 p = container_of(prange->svms, struct kfd_process, svms);
685 pdd = kfd_process_device_data_by_id(p, gpu_id);
686 if (!pdd) {
687 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
688 return NULL;
689 }
690
691 return pdd->dev;
692 }
693
694 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)695 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
696 {
697 struct kfd_process *p;
698
699 p = container_of(prange->svms, struct kfd_process, svms);
700
701 return kfd_get_process_device_data(node, p);
702 }
703
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)704 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
705 {
706 struct ttm_operation_ctx ctx = { false, false };
707
708 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
709
710 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
711 }
712
713 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)714 svm_range_check_attr(struct kfd_process *p,
715 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
716 {
717 uint32_t i;
718
719 for (i = 0; i < nattr; i++) {
720 uint32_t val = attrs[i].value;
721 int gpuidx = MAX_GPU_INSTANCE;
722
723 switch (attrs[i].type) {
724 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
725 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
726 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
727 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
728 break;
729 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
730 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
731 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
732 break;
733 case KFD_IOCTL_SVM_ATTR_ACCESS:
734 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
735 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
736 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
737 break;
738 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
739 break;
740 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
741 break;
742 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
743 break;
744 default:
745 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
746 return -EINVAL;
747 }
748
749 if (gpuidx < 0) {
750 pr_debug("no GPU 0x%x found\n", val);
751 return -EINVAL;
752 } else if (gpuidx < MAX_GPU_INSTANCE &&
753 !test_bit(gpuidx, p->svms.bitmap_supported)) {
754 pr_debug("GPU 0x%x not supported\n", val);
755 return -EINVAL;
756 }
757 }
758
759 return 0;
760 }
761
762 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)763 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
764 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
765 bool *update_mapping)
766 {
767 uint32_t i;
768 int gpuidx;
769
770 for (i = 0; i < nattr; i++) {
771 switch (attrs[i].type) {
772 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
773 prange->preferred_loc = attrs[i].value;
774 break;
775 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
776 prange->prefetch_loc = attrs[i].value;
777 break;
778 case KFD_IOCTL_SVM_ATTR_ACCESS:
779 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
780 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
781 if (!p->xnack_enabled)
782 *update_mapping = true;
783
784 gpuidx = kfd_process_gpuidx_from_gpuid(p,
785 attrs[i].value);
786 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
787 bitmap_clear(prange->bitmap_access, gpuidx, 1);
788 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
789 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
790 bitmap_set(prange->bitmap_access, gpuidx, 1);
791 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
792 } else {
793 bitmap_clear(prange->bitmap_access, gpuidx, 1);
794 bitmap_set(prange->bitmap_aip, gpuidx, 1);
795 }
796 break;
797 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
798 *update_mapping = true;
799 prange->flags |= attrs[i].value;
800 break;
801 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
802 *update_mapping = true;
803 prange->flags &= ~attrs[i].value;
804 break;
805 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
806 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
807 break;
808 default:
809 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
810 }
811 }
812 }
813
814 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)815 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
816 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
817 {
818 uint32_t i;
819 int gpuidx;
820
821 for (i = 0; i < nattr; i++) {
822 switch (attrs[i].type) {
823 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
824 if (prange->preferred_loc != attrs[i].value)
825 return false;
826 break;
827 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
828 /* Prefetch should always trigger a migration even
829 * if the value of the attribute didn't change.
830 */
831 return false;
832 case KFD_IOCTL_SVM_ATTR_ACCESS:
833 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
834 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
835 gpuidx = kfd_process_gpuidx_from_gpuid(p,
836 attrs[i].value);
837 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
838 if (test_bit(gpuidx, prange->bitmap_access) ||
839 test_bit(gpuidx, prange->bitmap_aip))
840 return false;
841 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
842 if (!test_bit(gpuidx, prange->bitmap_access))
843 return false;
844 } else {
845 if (!test_bit(gpuidx, prange->bitmap_aip))
846 return false;
847 }
848 break;
849 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
850 if ((prange->flags & attrs[i].value) != attrs[i].value)
851 return false;
852 break;
853 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
854 if ((prange->flags & attrs[i].value) != 0)
855 return false;
856 break;
857 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
858 if (prange->granularity != attrs[i].value)
859 return false;
860 break;
861 default:
862 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
863 }
864 }
865
866 return true;
867 }
868
869 /**
870 * svm_range_debug_dump - print all range information from svms
871 * @svms: svm range list header
872 *
873 * debug output svm range start, end, prefetch location from svms
874 * interval tree and link list
875 *
876 * Context: The caller must hold svms->lock
877 */
svm_range_debug_dump(struct svm_range_list * svms)878 static void svm_range_debug_dump(struct svm_range_list *svms)
879 {
880 struct interval_tree_node *node;
881 struct svm_range *prange;
882
883 pr_debug("dump svms 0x%p list\n", svms);
884 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
885
886 list_for_each_entry(prange, &svms->list, list) {
887 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
888 prange, prange->start, prange->npages,
889 prange->start + prange->npages - 1,
890 prange->actual_loc);
891 }
892
893 pr_debug("dump svms 0x%p interval tree\n", svms);
894 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
895 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
896 while (node) {
897 prange = container_of(node, struct svm_range, it_node);
898 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
899 prange, prange->start, prange->npages,
900 prange->start + prange->npages - 1,
901 prange->actual_loc);
902 node = interval_tree_iter_next(node, 0, ~0ULL);
903 }
904 }
905
906 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset,uint64_t * vram_pages)907 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
908 uint64_t offset, uint64_t *vram_pages)
909 {
910 unsigned char *src = (unsigned char *)psrc + offset;
911 unsigned char *dst;
912 uint64_t i;
913
914 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
915 if (!dst)
916 return NULL;
917
918 if (!vram_pages) {
919 memcpy(dst, src, num_elements * size);
920 return (void *)dst;
921 }
922
923 *vram_pages = 0;
924 for (i = 0; i < num_elements; i++) {
925 dma_addr_t *temp;
926 temp = (dma_addr_t *)dst + i;
927 *temp = *((dma_addr_t *)src + i);
928 if (*temp&SVM_RANGE_VRAM_DOMAIN)
929 (*vram_pages)++;
930 }
931
932 return (void *)dst;
933 }
934
935 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)936 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
937 {
938 int i;
939
940 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
941 if (!src->dma_addr[i])
942 continue;
943 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
944 sizeof(*src->dma_addr[i]), src->npages, 0, NULL);
945 if (!dst->dma_addr[i])
946 return -ENOMEM;
947 }
948
949 return 0;
950 }
951
952 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n,uint64_t * new_vram_pages)953 svm_range_split_array(void *ppnew, void *ppold, size_t size,
954 uint64_t old_start, uint64_t old_n,
955 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
956 {
957 unsigned char *new, *old, *pold;
958 uint64_t d;
959
960 if (!ppold)
961 return 0;
962 pold = *(unsigned char **)ppold;
963 if (!pold)
964 return 0;
965
966 d = (new_start - old_start) * size;
967 /* get dma addr array for new range and calculte its vram page number */
968 new = svm_range_copy_array(pold, size, new_n, d, new_vram_pages);
969 if (!new)
970 return -ENOMEM;
971 d = (new_start == old_start) ? new_n * size : 0;
972 old = svm_range_copy_array(pold, size, old_n, d, NULL);
973 if (!old) {
974 kvfree(new);
975 return -ENOMEM;
976 }
977 kvfree(pold);
978 *(void **)ppold = old;
979 *(void **)ppnew = new;
980
981 return 0;
982 }
983
984 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)985 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
986 uint64_t start, uint64_t last)
987 {
988 uint64_t npages = last - start + 1;
989 int i, r;
990
991 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
992 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
993 sizeof(*old->dma_addr[i]), old->start,
994 npages, new->start, new->npages,
995 old->actual_loc ? &new->vram_pages : NULL);
996 if (r)
997 return r;
998 }
999 if (old->actual_loc)
1000 old->vram_pages -= new->vram_pages;
1001
1002 return 0;
1003 }
1004
1005 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1006 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
1007 uint64_t start, uint64_t last)
1008 {
1009 uint64_t npages = last - start + 1;
1010
1011 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
1012 new->svms, new, new->start, start, last);
1013
1014 if (new->start == old->start) {
1015 new->offset = old->offset;
1016 old->offset += new->npages;
1017 } else {
1018 new->offset = old->offset + npages;
1019 }
1020
1021 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1022 new->ttm_res = old->ttm_res;
1023
1024 spin_lock(&new->svm_bo->list_lock);
1025 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
1026 spin_unlock(&new->svm_bo->list_lock);
1027
1028 return 0;
1029 }
1030
1031 /**
1032 * svm_range_split_adjust - split range and adjust
1033 *
1034 * @new: new range
1035 * @old: the old range
1036 * @start: the old range adjust to start address in pages
1037 * @last: the old range adjust to last address in pages
1038 *
1039 * Copy system memory dma_addr or vram ttm_res in old range to new
1040 * range from new_start up to size new->npages, the remaining old range is from
1041 * start to last
1042 *
1043 * Return:
1044 * 0 - OK, -ENOMEM - out of memory
1045 */
1046 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1047 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1048 uint64_t start, uint64_t last)
1049 {
1050 int r;
1051
1052 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1053 new->svms, new->start, old->start, old->last, start, last);
1054
1055 if (new->start < old->start ||
1056 new->last > old->last) {
1057 WARN_ONCE(1, "invalid new range start or last\n");
1058 return -EINVAL;
1059 }
1060
1061 r = svm_range_split_pages(new, old, start, last);
1062 if (r)
1063 return r;
1064
1065 if (old->actual_loc && old->ttm_res) {
1066 r = svm_range_split_nodes(new, old, start, last);
1067 if (r)
1068 return r;
1069 }
1070
1071 old->npages = last - start + 1;
1072 old->start = start;
1073 old->last = last;
1074 new->flags = old->flags;
1075 new->preferred_loc = old->preferred_loc;
1076 new->prefetch_loc = old->prefetch_loc;
1077 new->actual_loc = old->actual_loc;
1078 new->granularity = old->granularity;
1079 new->mapped_to_gpu = old->mapped_to_gpu;
1080 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1081 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1082 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
1083
1084 return 0;
1085 }
1086
1087 /**
1088 * svm_range_split - split a range in 2 ranges
1089 *
1090 * @prange: the svm range to split
1091 * @start: the remaining range start address in pages
1092 * @last: the remaining range last address in pages
1093 * @new: the result new range generated
1094 *
1095 * Two cases only:
1096 * case 1: if start == prange->start
1097 * prange ==> prange[start, last]
1098 * new range [last + 1, prange->last]
1099 *
1100 * case 2: if last == prange->last
1101 * prange ==> prange[start, last]
1102 * new range [prange->start, start - 1]
1103 *
1104 * Return:
1105 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1106 */
1107 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1108 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1109 struct svm_range **new)
1110 {
1111 uint64_t old_start = prange->start;
1112 uint64_t old_last = prange->last;
1113 struct svm_range_list *svms;
1114 int r = 0;
1115
1116 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1117 old_start, old_last, start, last);
1118
1119 if (old_start != start && old_last != last)
1120 return -EINVAL;
1121 if (start < old_start || last > old_last)
1122 return -EINVAL;
1123
1124 svms = prange->svms;
1125 if (old_start == start)
1126 *new = svm_range_new(svms, last + 1, old_last, false);
1127 else
1128 *new = svm_range_new(svms, old_start, start - 1, false);
1129 if (!*new)
1130 return -ENOMEM;
1131
1132 r = svm_range_split_adjust(*new, prange, start, last);
1133 if (r) {
1134 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1135 r, old_start, old_last, start, last);
1136 svm_range_free(*new, false);
1137 *new = NULL;
1138 }
1139
1140 return r;
1141 }
1142
1143 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list,struct list_head * remap_list)1144 svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1145 struct list_head *insert_list, struct list_head *remap_list)
1146 {
1147 struct svm_range *tail = NULL;
1148 int r = svm_range_split(prange, prange->start, new_last, &tail);
1149
1150 if (!r) {
1151 list_add(&tail->list, insert_list);
1152 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1153 list_add(&tail->update_list, remap_list);
1154 }
1155 return r;
1156 }
1157
1158 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list,struct list_head * remap_list)1159 svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1160 struct list_head *insert_list, struct list_head *remap_list)
1161 {
1162 struct svm_range *head = NULL;
1163 int r = svm_range_split(prange, new_start, prange->last, &head);
1164
1165 if (!r) {
1166 list_add(&head->list, insert_list);
1167 if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1168 list_add(&head->update_list, remap_list);
1169 }
1170 return r;
1171 }
1172
1173 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1174 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1175 {
1176 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1177 pchild, pchild->start, pchild->last, prange, op);
1178
1179 pchild->work_item.mm = NULL;
1180 pchild->work_item.op = op;
1181 list_add_tail(&pchild->child_list, &prange->child_list);
1182 }
1183
1184 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1185 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1186 {
1187 return (node_a->adev == node_b->adev ||
1188 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1189 }
1190
1191 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct amdgpu_vm * vm,struct svm_range * prange,int domain)1192 svm_range_get_pte_flags(struct kfd_node *node, struct amdgpu_vm *vm,
1193 struct svm_range *prange, int domain)
1194 {
1195 struct kfd_node *bo_node;
1196 uint32_t flags = prange->flags;
1197 uint32_t mapping_flags = 0;
1198 uint32_t gc_ip_version = KFD_GC_VERSION(node);
1199 uint64_t pte_flags;
1200 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1201 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1202 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1203 unsigned int mtype_local;
1204
1205 if (domain == SVM_RANGE_VRAM_DOMAIN)
1206 bo_node = prange->svm_bo->node;
1207
1208 switch (gc_ip_version) {
1209 case IP_VERSION(9, 4, 1):
1210 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1211 if (bo_node == node) {
1212 mapping_flags |= coherent ?
1213 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1214 } else {
1215 mapping_flags |= coherent ?
1216 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1217 if (svm_nodes_in_same_hive(node, bo_node))
1218 snoop = true;
1219 }
1220 } else {
1221 mapping_flags |= coherent ?
1222 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1223 }
1224 break;
1225 case IP_VERSION(9, 4, 2):
1226 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1227 if (bo_node == node) {
1228 mapping_flags |= coherent ?
1229 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1230 if (node->adev->gmc.xgmi.connected_to_cpu)
1231 snoop = true;
1232 } else {
1233 mapping_flags |= coherent ?
1234 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 if (svm_nodes_in_same_hive(node, bo_node))
1236 snoop = true;
1237 }
1238 } else {
1239 mapping_flags |= coherent ?
1240 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 }
1242 break;
1243 case IP_VERSION(9, 4, 3):
1244 case IP_VERSION(9, 4, 4):
1245 case IP_VERSION(9, 5, 0):
1246 if (ext_coherent)
1247 mtype_local = AMDGPU_VM_MTYPE_CC;
1248 else
1249 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1250 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1251 snoop = true;
1252 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1253 /* local HBM region close to partition */
1254 if (bo_node->adev == node->adev &&
1255 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1256 mapping_flags |= mtype_local;
1257 /* local HBM region far from partition or remote XGMI GPU
1258 * with regular system scope coherence
1259 */
1260 else if (svm_nodes_in_same_hive(bo_node, node) && !ext_coherent)
1261 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1262 /* PCIe P2P on GPUs pre-9.5.0 */
1263 else if (gc_ip_version < IP_VERSION(9, 5, 0) &&
1264 !svm_nodes_in_same_hive(bo_node, node))
1265 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1266 /* Other remote memory */
1267 else
1268 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1269 /* system memory accessed by the APU */
1270 } else if (node->adev->flags & AMD_IS_APU) {
1271 /* On NUMA systems, locality is determined per-page
1272 * in amdgpu_gmc_override_vm_pte_flags
1273 */
1274 if (num_possible_nodes() <= 1)
1275 mapping_flags |= mtype_local;
1276 else
1277 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1278 /* system memory accessed by the dGPU */
1279 } else {
1280 if (gc_ip_version < IP_VERSION(9, 5, 0) || ext_coherent)
1281 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1282 else
1283 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1284 }
1285 break;
1286 case IP_VERSION(12, 0, 0):
1287 case IP_VERSION(12, 0, 1):
1288 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1289 break;
1290 default:
1291 mapping_flags |= coherent ?
1292 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1293 }
1294
1295 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1296 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1297
1298 pte_flags = AMDGPU_PTE_VALID;
1299 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1300 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1301 if (gc_ip_version >= IP_VERSION(12, 0, 0))
1302 pte_flags |= AMDGPU_PTE_IS_PTE;
1303
1304 amdgpu_gmc_get_vm_pte(node->adev, vm, NULL, mapping_flags, &pte_flags);
1305 pte_flags |= AMDGPU_PTE_READABLE;
1306 if (!(flags & KFD_IOCTL_SVM_FLAG_GPU_RO))
1307 pte_flags |= AMDGPU_PTE_WRITEABLE;
1308 return pte_flags;
1309 }
1310
1311 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1312 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1313 uint64_t start, uint64_t last,
1314 struct dma_fence **fence)
1315 {
1316 uint64_t init_pte_value = 0;
1317
1318 pr_debug("[0x%llx 0x%llx]\n", start, last);
1319
1320 return amdgpu_vm_update_range(adev, vm, false, true, true, false, NULL, start,
1321 last, init_pte_value, 0, 0, NULL, NULL,
1322 fence);
1323 }
1324
1325 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1326 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1327 unsigned long last, uint32_t trigger)
1328 {
1329 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1330 struct kfd_process_device *pdd;
1331 struct dma_fence *fence = NULL;
1332 struct kfd_process *p;
1333 uint32_t gpuidx;
1334 int r = 0;
1335
1336 if (!prange->mapped_to_gpu) {
1337 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1338 prange, prange->start, prange->last);
1339 return 0;
1340 }
1341
1342 if (prange->start == start && prange->last == last) {
1343 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1344 prange->mapped_to_gpu = false;
1345 }
1346
1347 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1348 MAX_GPU_INSTANCE);
1349 p = container_of(prange->svms, struct kfd_process, svms);
1350
1351 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1352 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1353 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1354 if (!pdd) {
1355 pr_debug("failed to find device idx %d\n", gpuidx);
1356 return -EINVAL;
1357 }
1358
1359 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1360 start, last, trigger);
1361
1362 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1363 drm_priv_to_vm(pdd->drm_priv),
1364 start, last, &fence);
1365 if (r)
1366 break;
1367
1368 if (fence) {
1369 r = dma_fence_wait(fence, false);
1370 dma_fence_put(fence);
1371 fence = NULL;
1372 if (r)
1373 break;
1374 }
1375 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1376 }
1377
1378 return r;
1379 }
1380
1381 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1382 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1383 unsigned long offset, unsigned long npages, bool readonly,
1384 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1385 struct dma_fence **fence, bool flush_tlb)
1386 {
1387 struct amdgpu_device *adev = pdd->dev->adev;
1388 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1389 uint64_t pte_flags;
1390 unsigned long last_start;
1391 int last_domain;
1392 int r = 0;
1393 int64_t i, j;
1394
1395 last_start = prange->start + offset;
1396
1397 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1398 last_start, last_start + npages - 1, readonly);
1399
1400 for (i = offset; i < offset + npages; i++) {
1401 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1402 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1403
1404 /* Collect all pages in the same address range and memory domain
1405 * that can be mapped with a single call to update mapping.
1406 */
1407 if (i < offset + npages - 1 &&
1408 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1409 continue;
1410
1411 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1412 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1413
1414 pte_flags = svm_range_get_pte_flags(pdd->dev, vm, prange, last_domain);
1415 if (readonly)
1416 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1417
1418 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1419 prange->svms, last_start, prange->start + i,
1420 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1421 pte_flags);
1422
1423 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1424 * different memory partition based on fpfn/lpfn, we should use
1425 * same vm_manager.vram_base_offset regardless memory partition.
1426 */
1427 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, true,
1428 NULL, last_start, prange->start + i,
1429 pte_flags,
1430 (last_start - prange->start) << PAGE_SHIFT,
1431 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1432 NULL, dma_addr, &vm->last_update);
1433
1434 for (j = last_start - prange->start; j <= i; j++)
1435 dma_addr[j] |= last_domain;
1436
1437 if (r) {
1438 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1439 goto out;
1440 }
1441 last_start = prange->start + i + 1;
1442 }
1443
1444 r = amdgpu_vm_update_pdes(adev, vm, false);
1445 if (r) {
1446 pr_debug("failed %d to update directories 0x%lx\n", r,
1447 prange->start);
1448 goto out;
1449 }
1450
1451 if (fence)
1452 *fence = dma_fence_get(vm->last_update);
1453
1454 out:
1455 return r;
1456 }
1457
1458 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1459 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1460 unsigned long npages, bool readonly,
1461 unsigned long *bitmap, bool wait, bool flush_tlb)
1462 {
1463 struct kfd_process_device *pdd;
1464 struct amdgpu_device *bo_adev = NULL;
1465 struct kfd_process *p;
1466 struct dma_fence *fence = NULL;
1467 uint32_t gpuidx;
1468 int r = 0;
1469
1470 if (prange->svm_bo && prange->ttm_res)
1471 bo_adev = prange->svm_bo->node->adev;
1472
1473 p = container_of(prange->svms, struct kfd_process, svms);
1474 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1475 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1476 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1477 if (!pdd) {
1478 pr_debug("failed to find device idx %d\n", gpuidx);
1479 return -EINVAL;
1480 }
1481
1482 pdd = kfd_bind_process_to_device(pdd->dev, p);
1483 if (IS_ERR(pdd))
1484 return -EINVAL;
1485
1486 if (bo_adev && pdd->dev->adev != bo_adev &&
1487 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1488 pr_debug("cannot map to device idx %d\n", gpuidx);
1489 continue;
1490 }
1491
1492 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1493 prange->dma_addr[gpuidx],
1494 bo_adev, wait ? &fence : NULL,
1495 flush_tlb);
1496 if (r)
1497 break;
1498
1499 if (fence) {
1500 r = dma_fence_wait(fence, false);
1501 dma_fence_put(fence);
1502 fence = NULL;
1503 if (r) {
1504 pr_debug("failed %d to dma fence wait\n", r);
1505 break;
1506 }
1507 }
1508
1509 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1510 }
1511
1512 return r;
1513 }
1514
1515 struct svm_validate_context {
1516 struct kfd_process *process;
1517 struct svm_range *prange;
1518 bool intr;
1519 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1520 struct drm_exec exec;
1521 };
1522
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1523 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1524 {
1525 struct kfd_process_device *pdd;
1526 struct amdgpu_vm *vm;
1527 uint32_t gpuidx;
1528 int r;
1529
1530 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, 0);
1531 drm_exec_until_all_locked(&ctx->exec) {
1532 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1533 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1534 if (!pdd) {
1535 pr_debug("failed to find device idx %d\n", gpuidx);
1536 r = -EINVAL;
1537 goto unreserve_out;
1538 }
1539 vm = drm_priv_to_vm(pdd->drm_priv);
1540
1541 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1542 drm_exec_retry_on_contention(&ctx->exec);
1543 if (unlikely(r)) {
1544 pr_debug("failed %d to reserve bo\n", r);
1545 goto unreserve_out;
1546 }
1547 }
1548 }
1549
1550 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1551 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1552 if (!pdd) {
1553 pr_debug("failed to find device idx %d\n", gpuidx);
1554 r = -EINVAL;
1555 goto unreserve_out;
1556 }
1557
1558 r = amdgpu_vm_validate(pdd->dev->adev,
1559 drm_priv_to_vm(pdd->drm_priv), NULL,
1560 svm_range_bo_validate, NULL);
1561 if (r) {
1562 pr_debug("failed %d validate pt bos\n", r);
1563 goto unreserve_out;
1564 }
1565 }
1566
1567 return 0;
1568
1569 unreserve_out:
1570 drm_exec_fini(&ctx->exec);
1571 return r;
1572 }
1573
svm_range_unreserve_bos(struct svm_validate_context * ctx)1574 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1575 {
1576 drm_exec_fini(&ctx->exec);
1577 }
1578
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1579 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1580 {
1581 struct kfd_process_device *pdd;
1582
1583 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1584 if (!pdd)
1585 return NULL;
1586
1587 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1588 }
1589
1590 /*
1591 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1592 *
1593 * To prevent concurrent destruction or change of range attributes, the
1594 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1595 * because that would block concurrent evictions and lead to deadlocks. To
1596 * serialize concurrent migrations or validations of the same range, the
1597 * prange->migrate_mutex must be held.
1598 *
1599 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1600 * eviction fence.
1601 *
1602 * The following sequence ensures race-free validation and GPU mapping:
1603 *
1604 * 1. Reserve page table (and SVM BO if range is in VRAM)
1605 * 2. hmm_range_fault to get page addresses (if system memory)
1606 * 3. DMA-map pages (if system memory)
1607 * 4-a. Take notifier lock
1608 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1609 * 4-c. Check that the range was not split or otherwise invalidated
1610 * 4-d. Update GPU page table
1611 * 4.e. Release notifier lock
1612 * 5. Release page table (and SVM BO) reservation
1613 */
svm_range_validate_and_map(struct mm_struct * mm,unsigned long map_start,unsigned long map_last,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1614 static int svm_range_validate_and_map(struct mm_struct *mm,
1615 unsigned long map_start, unsigned long map_last,
1616 struct svm_range *prange, int32_t gpuidx,
1617 bool intr, bool wait, bool flush_tlb)
1618 {
1619 struct svm_validate_context *ctx;
1620 unsigned long start, end, addr;
1621 struct kfd_process *p;
1622 void *owner;
1623 int32_t idx;
1624 int r = 0;
1625
1626 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1627 if (!ctx)
1628 return -ENOMEM;
1629 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1630 ctx->prange = prange;
1631 ctx->intr = intr;
1632
1633 if (gpuidx < MAX_GPU_INSTANCE) {
1634 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1635 bitmap_set(ctx->bitmap, gpuidx, 1);
1636 } else if (ctx->process->xnack_enabled) {
1637 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1638
1639 /* If prefetch range to GPU, or GPU retry fault migrate range to
1640 * GPU, which has ACCESS attribute to the range, create mapping
1641 * on that GPU.
1642 */
1643 if (prange->actual_loc) {
1644 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1645 prange->actual_loc);
1646 if (gpuidx < 0) {
1647 WARN_ONCE(1, "failed get device by id 0x%x\n",
1648 prange->actual_loc);
1649 r = -EINVAL;
1650 goto free_ctx;
1651 }
1652 if (test_bit(gpuidx, prange->bitmap_access))
1653 bitmap_set(ctx->bitmap, gpuidx, 1);
1654 }
1655
1656 /*
1657 * If prange is already mapped or with always mapped flag,
1658 * update mapping on GPUs with ACCESS attribute
1659 */
1660 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1661 if (prange->mapped_to_gpu ||
1662 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1663 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1664 }
1665 } else {
1666 bitmap_or(ctx->bitmap, prange->bitmap_access,
1667 prange->bitmap_aip, MAX_GPU_INSTANCE);
1668 }
1669
1670 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1671 r = 0;
1672 goto free_ctx;
1673 }
1674
1675 if (prange->actual_loc && !prange->ttm_res) {
1676 /* This should never happen. actual_loc gets set by
1677 * svm_migrate_ram_to_vram after allocating a BO.
1678 */
1679 WARN_ONCE(1, "VRAM BO missing during validation\n");
1680 r = -EINVAL;
1681 goto free_ctx;
1682 }
1683
1684 r = svm_range_reserve_bos(ctx, intr);
1685 if (r)
1686 goto free_ctx;
1687
1688 p = container_of(prange->svms, struct kfd_process, svms);
1689 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1690 MAX_GPU_INSTANCE));
1691 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1692 if (kfd_svm_page_owner(p, idx) != owner) {
1693 owner = NULL;
1694 break;
1695 }
1696 }
1697
1698 start = map_start << PAGE_SHIFT;
1699 end = (map_last + 1) << PAGE_SHIFT;
1700 for (addr = start; !r && addr < end; ) {
1701 struct hmm_range *hmm_range = NULL;
1702 unsigned long map_start_vma;
1703 unsigned long map_last_vma;
1704 struct vm_area_struct *vma;
1705 unsigned long next = 0;
1706 unsigned long offset;
1707 unsigned long npages;
1708 bool readonly;
1709
1710 vma = vma_lookup(mm, addr);
1711 if (vma) {
1712 readonly = !(vma->vm_flags & VM_WRITE);
1713
1714 next = min(vma->vm_end, end);
1715 npages = (next - addr) >> PAGE_SHIFT;
1716 /* HMM requires at least READ permissions. If provided with PROT_NONE,
1717 * unmap the memory. If it's not already mapped, this is a no-op
1718 * If PROT_WRITE is provided without READ, warn first then unmap
1719 */
1720 if (!(vma->vm_flags & VM_READ)) {
1721 unsigned long e, s;
1722
1723 svm_range_lock(prange);
1724 if (vma->vm_flags & VM_WRITE)
1725 pr_debug("VM_WRITE without VM_READ is not supported");
1726 s = max(start, prange->start);
1727 e = min(end, prange->last);
1728 if (e >= s)
1729 r = svm_range_unmap_from_gpus(prange, s, e,
1730 KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU);
1731 svm_range_unlock(prange);
1732 /* If unmap returns non-zero, we'll bail on the next for loop
1733 * iteration, so just leave r and continue
1734 */
1735 addr = next;
1736 continue;
1737 }
1738
1739 WRITE_ONCE(p->svms.faulting_task, current);
1740 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1741 readonly, owner,
1742 &hmm_range);
1743 WRITE_ONCE(p->svms.faulting_task, NULL);
1744 if (r)
1745 pr_debug("failed %d to get svm range pages\n", r);
1746 } else {
1747 r = -EFAULT;
1748 }
1749
1750 if (!r) {
1751 offset = (addr >> PAGE_SHIFT) - prange->start;
1752 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1753 hmm_range->hmm_pfns);
1754 if (r)
1755 pr_debug("failed %d to dma map range\n", r);
1756 }
1757
1758 svm_range_lock(prange);
1759
1760 /* Free backing memory of hmm_range if it was initialized
1761 * Overrride return value to TRY AGAIN only if prior returns
1762 * were successful
1763 */
1764 if (hmm_range && amdgpu_hmm_range_get_pages_done(hmm_range) && !r) {
1765 pr_debug("hmm update the range, need validate again\n");
1766 r = -EAGAIN;
1767 }
1768
1769 if (!r && !list_empty(&prange->child_list)) {
1770 pr_debug("range split by unmap in parallel, validate again\n");
1771 r = -EAGAIN;
1772 }
1773
1774 if (!r) {
1775 map_start_vma = max(map_start, prange->start + offset);
1776 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1777 if (map_start_vma <= map_last_vma) {
1778 offset = map_start_vma - prange->start;
1779 npages = map_last_vma - map_start_vma + 1;
1780 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1781 ctx->bitmap, wait, flush_tlb);
1782 }
1783 }
1784
1785 if (!r && next == end)
1786 prange->mapped_to_gpu = true;
1787
1788 svm_range_unlock(prange);
1789
1790 addr = next;
1791 }
1792
1793 svm_range_unreserve_bos(ctx);
1794 if (!r)
1795 prange->validate_timestamp = ktime_get_boottime();
1796
1797 free_ctx:
1798 kfree(ctx);
1799
1800 return r;
1801 }
1802
1803 /**
1804 * svm_range_list_lock_and_flush_work - flush pending deferred work
1805 *
1806 * @svms: the svm range list
1807 * @mm: the mm structure
1808 *
1809 * Context: Returns with mmap write lock held, pending deferred work flushed
1810 *
1811 */
1812 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1813 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1814 struct mm_struct *mm)
1815 {
1816 retry_flush_work:
1817 flush_work(&svms->deferred_list_work);
1818 mmap_write_lock(mm);
1819
1820 if (list_empty(&svms->deferred_range_list))
1821 return;
1822 mmap_write_unlock(mm);
1823 pr_debug("retry flush\n");
1824 goto retry_flush_work;
1825 }
1826
svm_range_restore_work(struct work_struct * work)1827 static void svm_range_restore_work(struct work_struct *work)
1828 {
1829 struct delayed_work *dwork = to_delayed_work(work);
1830 struct amdkfd_process_info *process_info;
1831 struct svm_range_list *svms;
1832 struct svm_range *prange;
1833 struct kfd_process *p;
1834 struct mm_struct *mm;
1835 int evicted_ranges;
1836 int invalid;
1837 int r;
1838
1839 svms = container_of(dwork, struct svm_range_list, restore_work);
1840 evicted_ranges = atomic_read(&svms->evicted_ranges);
1841 if (!evicted_ranges)
1842 return;
1843
1844 pr_debug("restore svm ranges\n");
1845
1846 p = container_of(svms, struct kfd_process, svms);
1847 process_info = p->kgd_process_info;
1848
1849 /* Keep mm reference when svm_range_validate_and_map ranges */
1850 mm = get_task_mm(p->lead_thread);
1851 if (!mm) {
1852 pr_debug("svms 0x%p process mm gone\n", svms);
1853 return;
1854 }
1855
1856 mutex_lock(&process_info->lock);
1857 svm_range_list_lock_and_flush_work(svms, mm);
1858 mutex_lock(&svms->lock);
1859
1860 evicted_ranges = atomic_read(&svms->evicted_ranges);
1861
1862 list_for_each_entry(prange, &svms->list, list) {
1863 invalid = atomic_read(&prange->invalid);
1864 if (!invalid)
1865 continue;
1866
1867 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1868 prange->svms, prange, prange->start, prange->last,
1869 invalid);
1870
1871 /*
1872 * If range is migrating, wait for migration is done.
1873 */
1874 mutex_lock(&prange->migrate_mutex);
1875
1876 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
1877 MAX_GPU_INSTANCE, false, true, false);
1878 if (r)
1879 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1880 prange->start);
1881
1882 mutex_unlock(&prange->migrate_mutex);
1883 if (r)
1884 goto out_reschedule;
1885
1886 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1887 goto out_reschedule;
1888 }
1889
1890 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1891 evicted_ranges)
1892 goto out_reschedule;
1893
1894 evicted_ranges = 0;
1895
1896 r = kgd2kfd_resume_mm(mm);
1897 if (r) {
1898 /* No recovery from this failure. Probably the CP is
1899 * hanging. No point trying again.
1900 */
1901 pr_debug("failed %d to resume KFD\n", r);
1902 }
1903
1904 pr_debug("restore svm ranges successfully\n");
1905
1906 out_reschedule:
1907 mutex_unlock(&svms->lock);
1908 mmap_write_unlock(mm);
1909 mutex_unlock(&process_info->lock);
1910
1911 /* If validation failed, reschedule another attempt */
1912 if (evicted_ranges) {
1913 pr_debug("reschedule to restore svm range\n");
1914 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1915 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1916
1917 kfd_smi_event_queue_restore_rescheduled(mm);
1918 }
1919 mmput(mm);
1920 }
1921
1922 /**
1923 * svm_range_evict - evict svm range
1924 * @prange: svm range structure
1925 * @mm: current process mm_struct
1926 * @start: starting process queue number
1927 * @last: last process queue number
1928 * @event: mmu notifier event when range is evicted or migrated
1929 *
1930 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1931 * return to let CPU evict the buffer and proceed CPU pagetable update.
1932 *
1933 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1934 * If invalidation happens while restore work is running, restore work will
1935 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1936 * the queues.
1937 */
1938 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1939 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1940 unsigned long start, unsigned long last,
1941 enum mmu_notifier_event event)
1942 {
1943 struct svm_range_list *svms = prange->svms;
1944 struct svm_range *pchild;
1945 struct kfd_process *p;
1946 int r = 0;
1947
1948 p = container_of(svms, struct kfd_process, svms);
1949
1950 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1951 svms, prange->start, prange->last, start, last);
1952
1953 if (!p->xnack_enabled ||
1954 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1955 int evicted_ranges;
1956 bool mapped = prange->mapped_to_gpu;
1957
1958 list_for_each_entry(pchild, &prange->child_list, child_list) {
1959 if (!pchild->mapped_to_gpu)
1960 continue;
1961 mapped = true;
1962 mutex_lock_nested(&pchild->lock, 1);
1963 if (pchild->start <= last && pchild->last >= start) {
1964 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1965 pchild->start, pchild->last);
1966 atomic_inc(&pchild->invalid);
1967 }
1968 mutex_unlock(&pchild->lock);
1969 }
1970
1971 if (!mapped)
1972 return r;
1973
1974 if (prange->start <= last && prange->last >= start)
1975 atomic_inc(&prange->invalid);
1976
1977 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1978 if (evicted_ranges != 1)
1979 return r;
1980
1981 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1982 prange->svms, prange->start, prange->last);
1983
1984 /* First eviction, stop the queues */
1985 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1986 if (r)
1987 pr_debug("failed to quiesce KFD\n");
1988
1989 pr_debug("schedule to restore svm %p ranges\n", svms);
1990 queue_delayed_work(system_freezable_wq, &svms->restore_work,
1991 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1992 } else {
1993 unsigned long s, l;
1994 uint32_t trigger;
1995
1996 if (event == MMU_NOTIFY_MIGRATE)
1997 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1998 else
1999 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
2000
2001 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
2002 prange->svms, start, last);
2003 list_for_each_entry(pchild, &prange->child_list, child_list) {
2004 mutex_lock_nested(&pchild->lock, 1);
2005 s = max(start, pchild->start);
2006 l = min(last, pchild->last);
2007 if (l >= s)
2008 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2009 mutex_unlock(&pchild->lock);
2010 }
2011 s = max(start, prange->start);
2012 l = min(last, prange->last);
2013 if (l >= s)
2014 svm_range_unmap_from_gpus(prange, s, l, trigger);
2015 }
2016
2017 return r;
2018 }
2019
svm_range_clone(struct svm_range * old)2020 static struct svm_range *svm_range_clone(struct svm_range *old)
2021 {
2022 struct svm_range *new;
2023
2024 new = svm_range_new(old->svms, old->start, old->last, false);
2025 if (!new)
2026 return NULL;
2027 if (svm_range_copy_dma_addrs(new, old)) {
2028 svm_range_free(new, false);
2029 return NULL;
2030 }
2031 if (old->svm_bo) {
2032 new->ttm_res = old->ttm_res;
2033 new->offset = old->offset;
2034 new->svm_bo = svm_range_bo_ref(old->svm_bo);
2035 spin_lock(&new->svm_bo->list_lock);
2036 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2037 spin_unlock(&new->svm_bo->list_lock);
2038 }
2039 new->flags = old->flags;
2040 new->preferred_loc = old->preferred_loc;
2041 new->prefetch_loc = old->prefetch_loc;
2042 new->actual_loc = old->actual_loc;
2043 new->granularity = old->granularity;
2044 new->mapped_to_gpu = old->mapped_to_gpu;
2045 new->vram_pages = old->vram_pages;
2046 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2047 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2048 atomic_set(&new->queue_refcount, atomic_read(&old->queue_refcount));
2049
2050 return new;
2051 }
2052
svm_range_set_max_pages(struct amdgpu_device * adev)2053 void svm_range_set_max_pages(struct amdgpu_device *adev)
2054 {
2055 uint64_t max_pages;
2056 uint64_t pages, _pages;
2057 uint64_t min_pages = 0;
2058 int i, id;
2059
2060 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2061 if (adev->kfd.dev->nodes[i]->xcp)
2062 id = adev->kfd.dev->nodes[i]->xcp->id;
2063 else
2064 id = -1;
2065 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2066 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2067 pages = rounddown_pow_of_two(pages);
2068 min_pages = min_not_zero(min_pages, pages);
2069 }
2070
2071 do {
2072 max_pages = READ_ONCE(max_svm_range_pages);
2073 _pages = min_not_zero(max_pages, min_pages);
2074 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2075 }
2076
2077 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2078 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2079 uint64_t max_pages, struct list_head *insert_list,
2080 struct list_head *update_list)
2081 {
2082 struct svm_range *prange;
2083 uint64_t l;
2084
2085 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2086 max_pages, start, last);
2087
2088 while (last >= start) {
2089 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2090
2091 prange = svm_range_new(svms, start, l, true);
2092 if (!prange)
2093 return -ENOMEM;
2094 list_add(&prange->list, insert_list);
2095 list_add(&prange->update_list, update_list);
2096
2097 start = l + 1;
2098 }
2099 return 0;
2100 }
2101
2102 /**
2103 * svm_range_add - add svm range and handle overlap
2104 * @p: the range add to this process svms
2105 * @start: page size aligned
2106 * @size: page size aligned
2107 * @nattr: number of attributes
2108 * @attrs: array of attributes
2109 * @update_list: output, the ranges need validate and update GPU mapping
2110 * @insert_list: output, the ranges need insert to svms
2111 * @remove_list: output, the ranges are replaced and need remove from svms
2112 * @remap_list: output, remap unaligned svm ranges
2113 *
2114 * Check if the virtual address range has overlap with any existing ranges,
2115 * split partly overlapping ranges and add new ranges in the gaps. All changes
2116 * should be applied to the range_list and interval tree transactionally. If
2117 * any range split or allocation fails, the entire update fails. Therefore any
2118 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2119 * unchanged.
2120 *
2121 * If the transaction succeeds, the caller can update and insert clones and
2122 * new ranges, then free the originals.
2123 *
2124 * Otherwise the caller can free the clones and new ranges, while the old
2125 * svm_ranges remain unchanged.
2126 *
2127 * Context: Process context, caller must hold svms->lock
2128 *
2129 * Return:
2130 * 0 - OK, otherwise error code
2131 */
2132 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list,struct list_head * remap_list)2133 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2134 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2135 struct list_head *update_list, struct list_head *insert_list,
2136 struct list_head *remove_list, struct list_head *remap_list)
2137 {
2138 unsigned long last = start + size - 1UL;
2139 struct svm_range_list *svms = &p->svms;
2140 struct interval_tree_node *node;
2141 struct svm_range *prange;
2142 struct svm_range *tmp;
2143 struct list_head new_list;
2144 int r = 0;
2145
2146 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2147
2148 INIT_LIST_HEAD(update_list);
2149 INIT_LIST_HEAD(insert_list);
2150 INIT_LIST_HEAD(remove_list);
2151 INIT_LIST_HEAD(&new_list);
2152 INIT_LIST_HEAD(remap_list);
2153
2154 node = interval_tree_iter_first(&svms->objects, start, last);
2155 while (node) {
2156 struct interval_tree_node *next;
2157 unsigned long next_start;
2158
2159 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2160 node->last);
2161
2162 prange = container_of(node, struct svm_range, it_node);
2163 next = interval_tree_iter_next(node, start, last);
2164 next_start = min(node->last, last) + 1;
2165
2166 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2167 prange->mapped_to_gpu) {
2168 /* nothing to do */
2169 } else if (node->start < start || node->last > last) {
2170 /* node intersects the update range and its attributes
2171 * will change. Clone and split it, apply updates only
2172 * to the overlapping part
2173 */
2174 struct svm_range *old = prange;
2175
2176 prange = svm_range_clone(old);
2177 if (!prange) {
2178 r = -ENOMEM;
2179 goto out;
2180 }
2181
2182 list_add(&old->update_list, remove_list);
2183 list_add(&prange->list, insert_list);
2184 list_add(&prange->update_list, update_list);
2185
2186 if (node->start < start) {
2187 pr_debug("change old range start\n");
2188 r = svm_range_split_head(prange, start,
2189 insert_list, remap_list);
2190 if (r)
2191 goto out;
2192 }
2193 if (node->last > last) {
2194 pr_debug("change old range last\n");
2195 r = svm_range_split_tail(prange, last,
2196 insert_list, remap_list);
2197 if (r)
2198 goto out;
2199 }
2200 } else {
2201 /* The node is contained within start..last,
2202 * just update it
2203 */
2204 list_add(&prange->update_list, update_list);
2205 }
2206
2207 /* insert a new node if needed */
2208 if (node->start > start) {
2209 r = svm_range_split_new(svms, start, node->start - 1,
2210 READ_ONCE(max_svm_range_pages),
2211 &new_list, update_list);
2212 if (r)
2213 goto out;
2214 }
2215
2216 node = next;
2217 start = next_start;
2218 }
2219
2220 /* add a final range at the end if needed */
2221 if (start <= last)
2222 r = svm_range_split_new(svms, start, last,
2223 READ_ONCE(max_svm_range_pages),
2224 &new_list, update_list);
2225
2226 out:
2227 if (r) {
2228 list_for_each_entry_safe(prange, tmp, insert_list, list)
2229 svm_range_free(prange, false);
2230 list_for_each_entry_safe(prange, tmp, &new_list, list)
2231 svm_range_free(prange, true);
2232 } else {
2233 list_splice(&new_list, insert_list);
2234 }
2235
2236 return r;
2237 }
2238
2239 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2240 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2241 struct svm_range *prange)
2242 {
2243 unsigned long start;
2244 unsigned long last;
2245
2246 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2247 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2248
2249 if (prange->start == start && prange->last == last)
2250 return;
2251
2252 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2253 prange->svms, prange, start, last, prange->start,
2254 prange->last);
2255
2256 if (start != 0 && last != 0) {
2257 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2258 svm_range_remove_notifier(prange);
2259 }
2260 prange->it_node.start = prange->start;
2261 prange->it_node.last = prange->last;
2262
2263 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2264 svm_range_add_notifier_locked(mm, prange);
2265 }
2266
2267 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2268 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2269 struct mm_struct *mm)
2270 {
2271 switch (prange->work_item.op) {
2272 case SVM_OP_NULL:
2273 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2274 svms, prange, prange->start, prange->last);
2275 break;
2276 case SVM_OP_UNMAP_RANGE:
2277 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2278 svms, prange, prange->start, prange->last);
2279 svm_range_unlink(prange);
2280 svm_range_remove_notifier(prange);
2281 svm_range_free(prange, true);
2282 break;
2283 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2284 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2285 svms, prange, prange->start, prange->last);
2286 svm_range_update_notifier_and_interval_tree(mm, prange);
2287 break;
2288 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2289 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2290 svms, prange, prange->start, prange->last);
2291 svm_range_update_notifier_and_interval_tree(mm, prange);
2292 /* TODO: implement deferred validation and mapping */
2293 break;
2294 case SVM_OP_ADD_RANGE:
2295 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2296 prange->start, prange->last);
2297 svm_range_add_to_svms(prange);
2298 svm_range_add_notifier_locked(mm, prange);
2299 break;
2300 case SVM_OP_ADD_RANGE_AND_MAP:
2301 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2302 prange, prange->start, prange->last);
2303 svm_range_add_to_svms(prange);
2304 svm_range_add_notifier_locked(mm, prange);
2305 /* TODO: implement deferred validation and mapping */
2306 break;
2307 default:
2308 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2309 prange->work_item.op);
2310 }
2311 }
2312
svm_range_drain_retry_fault(struct svm_range_list * svms)2313 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2314 {
2315 struct kfd_process_device *pdd;
2316 struct kfd_process *p;
2317 uint32_t i;
2318
2319 p = container_of(svms, struct kfd_process, svms);
2320
2321 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2322 pdd = p->pdds[i];
2323 if (!pdd)
2324 continue;
2325
2326 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2327
2328 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2329 pdd->dev->adev->irq.retry_cam_enabled ?
2330 &pdd->dev->adev->irq.ih :
2331 &pdd->dev->adev->irq.ih1);
2332
2333 if (pdd->dev->adev->irq.retry_cam_enabled)
2334 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2335 &pdd->dev->adev->irq.ih_soft);
2336
2337
2338 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2339 }
2340 }
2341
svm_range_deferred_list_work(struct work_struct * work)2342 static void svm_range_deferred_list_work(struct work_struct *work)
2343 {
2344 struct svm_range_list *svms;
2345 struct svm_range *prange;
2346 struct mm_struct *mm;
2347
2348 svms = container_of(work, struct svm_range_list, deferred_list_work);
2349 pr_debug("enter svms 0x%p\n", svms);
2350
2351 spin_lock(&svms->deferred_list_lock);
2352 while (!list_empty(&svms->deferred_range_list)) {
2353 prange = list_first_entry(&svms->deferred_range_list,
2354 struct svm_range, deferred_list);
2355 spin_unlock(&svms->deferred_list_lock);
2356
2357 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2358 prange->start, prange->last, prange->work_item.op);
2359
2360 mm = prange->work_item.mm;
2361
2362 mmap_write_lock(mm);
2363
2364 /* Remove from deferred_list must be inside mmap write lock, for
2365 * two race cases:
2366 * 1. unmap_from_cpu may change work_item.op and add the range
2367 * to deferred_list again, cause use after free bug.
2368 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2369 * lock and continue because deferred_list is empty, but
2370 * deferred_list work is actually waiting for mmap lock.
2371 */
2372 spin_lock(&svms->deferred_list_lock);
2373 list_del_init(&prange->deferred_list);
2374 spin_unlock(&svms->deferred_list_lock);
2375
2376 mutex_lock(&svms->lock);
2377 mutex_lock(&prange->migrate_mutex);
2378 while (!list_empty(&prange->child_list)) {
2379 struct svm_range *pchild;
2380
2381 pchild = list_first_entry(&prange->child_list,
2382 struct svm_range, child_list);
2383 pr_debug("child prange 0x%p op %d\n", pchild,
2384 pchild->work_item.op);
2385 list_del_init(&pchild->child_list);
2386 svm_range_handle_list_op(svms, pchild, mm);
2387 }
2388 mutex_unlock(&prange->migrate_mutex);
2389
2390 svm_range_handle_list_op(svms, prange, mm);
2391 mutex_unlock(&svms->lock);
2392 mmap_write_unlock(mm);
2393
2394 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2395 * last mm refcount, schedule release work to avoid circular locking
2396 */
2397 mmput_async(mm);
2398
2399 spin_lock(&svms->deferred_list_lock);
2400 }
2401 spin_unlock(&svms->deferred_list_lock);
2402 pr_debug("exit svms 0x%p\n", svms);
2403 }
2404
2405 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2406 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2407 struct mm_struct *mm, enum svm_work_list_ops op)
2408 {
2409 spin_lock(&svms->deferred_list_lock);
2410 /* if prange is on the deferred list */
2411 if (!list_empty(&prange->deferred_list)) {
2412 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2413 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2414 if (op != SVM_OP_NULL &&
2415 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2416 prange->work_item.op = op;
2417 } else {
2418 /* Pairs with mmput in deferred_list_work.
2419 * If process is exiting and mm is gone, don't update mmu notifier.
2420 */
2421 if (mmget_not_zero(mm)) {
2422 prange->work_item.mm = mm;
2423 prange->work_item.op = op;
2424 list_add_tail(&prange->deferred_list,
2425 &prange->svms->deferred_range_list);
2426 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2427 prange, prange->start, prange->last, op);
2428 }
2429 }
2430 spin_unlock(&svms->deferred_list_lock);
2431 }
2432
schedule_deferred_list_work(struct svm_range_list * svms)2433 void schedule_deferred_list_work(struct svm_range_list *svms)
2434 {
2435 spin_lock(&svms->deferred_list_lock);
2436 if (!list_empty(&svms->deferred_range_list))
2437 schedule_work(&svms->deferred_list_work);
2438 spin_unlock(&svms->deferred_list_lock);
2439 }
2440
2441 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2442 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2443 unsigned long last)
2444 {
2445 struct svm_range *head;
2446 struct svm_range *tail;
2447
2448 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2449 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2450 prange->start, prange->last);
2451 return;
2452 }
2453 if (start > prange->last || last < prange->start)
2454 return;
2455
2456 head = tail = prange;
2457 if (start > prange->start)
2458 svm_range_split(prange, prange->start, start - 1, &tail);
2459 if (last < tail->last)
2460 svm_range_split(tail, last + 1, tail->last, &head);
2461
2462 if (head != prange && tail != prange) {
2463 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2464 svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2465 } else if (tail != prange) {
2466 svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2467 } else if (head != prange) {
2468 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2469 } else if (parent != prange) {
2470 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2471 }
2472 }
2473
2474 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2475 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2476 unsigned long start, unsigned long last)
2477 {
2478 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2479 struct svm_range_list *svms;
2480 struct svm_range *pchild;
2481 struct kfd_process *p;
2482 unsigned long s, l;
2483 bool unmap_parent;
2484 uint32_t i;
2485
2486 if (atomic_read(&prange->queue_refcount)) {
2487 int r;
2488
2489 pr_warn("Freeing queue vital buffer 0x%lx, queue evicted\n",
2490 prange->start << PAGE_SHIFT);
2491 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
2492 if (r)
2493 pr_debug("failed %d to quiesce KFD queues\n", r);
2494 }
2495
2496 p = kfd_lookup_process_by_mm(mm);
2497 if (!p)
2498 return;
2499 svms = &p->svms;
2500
2501 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2502 prange, prange->start, prange->last, start, last);
2503
2504 /* calculate time stamps that are used to decide which page faults need be
2505 * dropped or handled before unmap pages from gpu vm
2506 */
2507 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2508 struct kfd_process_device *pdd;
2509 struct amdgpu_device *adev;
2510 struct amdgpu_ih_ring *ih;
2511 uint32_t checkpoint_wptr;
2512
2513 pdd = p->pdds[i];
2514 if (!pdd)
2515 continue;
2516
2517 adev = pdd->dev->adev;
2518
2519 /* Check and drain ih1 ring if cam not available */
2520 if (adev->irq.ih1.ring_size) {
2521 ih = &adev->irq.ih1;
2522 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2523 if (ih->rptr != checkpoint_wptr) {
2524 svms->checkpoint_ts[i] =
2525 amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2526 continue;
2527 }
2528 }
2529
2530 /* check if dev->irq.ih_soft is not empty */
2531 ih = &adev->irq.ih_soft;
2532 checkpoint_wptr = amdgpu_ih_get_wptr(adev, ih);
2533 if (ih->rptr != checkpoint_wptr)
2534 svms->checkpoint_ts[i] = amdgpu_ih_decode_iv_ts(adev, ih, checkpoint_wptr, -1);
2535 }
2536
2537 unmap_parent = start <= prange->start && last >= prange->last;
2538
2539 list_for_each_entry(pchild, &prange->child_list, child_list) {
2540 mutex_lock_nested(&pchild->lock, 1);
2541 s = max(start, pchild->start);
2542 l = min(last, pchild->last);
2543 if (l >= s)
2544 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2545 svm_range_unmap_split(prange, pchild, start, last);
2546 mutex_unlock(&pchild->lock);
2547 }
2548 s = max(start, prange->start);
2549 l = min(last, prange->last);
2550 if (l >= s)
2551 svm_range_unmap_from_gpus(prange, s, l, trigger);
2552 svm_range_unmap_split(prange, prange, start, last);
2553
2554 if (unmap_parent)
2555 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2556 else
2557 svm_range_add_list_work(svms, prange, mm,
2558 SVM_OP_UPDATE_RANGE_NOTIFIER);
2559 schedule_deferred_list_work(svms);
2560
2561 kfd_unref_process(p);
2562 }
2563
2564 /**
2565 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2566 * @mni: mmu_interval_notifier struct
2567 * @range: mmu_notifier_range struct
2568 * @cur_seq: value to pass to mmu_interval_set_seq()
2569 *
2570 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2571 * is from migration, or CPU page invalidation callback.
2572 *
2573 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2574 * work thread, and split prange if only part of prange is unmapped.
2575 *
2576 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2577 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2578 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2579 * update GPU mapping to recover.
2580 *
2581 * Context: mmap lock, notifier_invalidate_start lock are held
2582 * for invalidate event, prange lock is held if this is from migration
2583 */
2584 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2585 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2586 const struct mmu_notifier_range *range,
2587 unsigned long cur_seq)
2588 {
2589 struct svm_range *prange;
2590 unsigned long start;
2591 unsigned long last;
2592
2593 if (range->event == MMU_NOTIFY_RELEASE)
2594 return true;
2595
2596 start = mni->interval_tree.start;
2597 last = mni->interval_tree.last;
2598 start = max(start, range->start) >> PAGE_SHIFT;
2599 last = min(last, range->end - 1) >> PAGE_SHIFT;
2600 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2601 start, last, range->start >> PAGE_SHIFT,
2602 (range->end - 1) >> PAGE_SHIFT,
2603 mni->interval_tree.start >> PAGE_SHIFT,
2604 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2605
2606 prange = container_of(mni, struct svm_range, notifier);
2607
2608 svm_range_lock(prange);
2609 mmu_interval_set_seq(mni, cur_seq);
2610
2611 switch (range->event) {
2612 case MMU_NOTIFY_UNMAP:
2613 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2614 break;
2615 default:
2616 svm_range_evict(prange, mni->mm, start, last, range->event);
2617 break;
2618 }
2619
2620 svm_range_unlock(prange);
2621
2622 return true;
2623 }
2624
2625 /**
2626 * svm_range_from_addr - find svm range from fault address
2627 * @svms: svm range list header
2628 * @addr: address to search range interval tree, in pages
2629 * @parent: parent range if range is on child list
2630 *
2631 * Context: The caller must hold svms->lock
2632 *
2633 * Return: the svm_range found or NULL
2634 */
2635 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2636 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2637 struct svm_range **parent)
2638 {
2639 struct interval_tree_node *node;
2640 struct svm_range *prange;
2641 struct svm_range *pchild;
2642
2643 node = interval_tree_iter_first(&svms->objects, addr, addr);
2644 if (!node)
2645 return NULL;
2646
2647 prange = container_of(node, struct svm_range, it_node);
2648 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2649 addr, prange->start, prange->last, node->start, node->last);
2650
2651 if (addr >= prange->start && addr <= prange->last) {
2652 if (parent)
2653 *parent = prange;
2654 return prange;
2655 }
2656 list_for_each_entry(pchild, &prange->child_list, child_list)
2657 if (addr >= pchild->start && addr <= pchild->last) {
2658 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2659 addr, pchild->start, pchild->last);
2660 if (parent)
2661 *parent = prange;
2662 return pchild;
2663 }
2664
2665 return NULL;
2666 }
2667
2668 /* svm_range_best_restore_location - decide the best fault restore location
2669 * @prange: svm range structure
2670 * @adev: the GPU on which vm fault happened
2671 *
2672 * This is only called when xnack is on, to decide the best location to restore
2673 * the range mapping after GPU vm fault. Caller uses the best location to do
2674 * migration if actual loc is not best location, then update GPU page table
2675 * mapping to the best location.
2676 *
2677 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2678 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2679 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2680 * if range actual loc is cpu, best_loc is cpu
2681 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2682 * range actual loc.
2683 * Otherwise, GPU no access, best_loc is -1.
2684 *
2685 * Return:
2686 * -1 means vm fault GPU no access
2687 * 0 for CPU or GPU id
2688 */
2689 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2690 svm_range_best_restore_location(struct svm_range *prange,
2691 struct kfd_node *node,
2692 int32_t *gpuidx)
2693 {
2694 struct kfd_node *bo_node, *preferred_node;
2695 struct kfd_process *p;
2696 uint32_t gpuid;
2697 int r;
2698
2699 p = container_of(prange->svms, struct kfd_process, svms);
2700
2701 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2702 if (r < 0) {
2703 pr_debug("failed to get gpuid from kgd\n");
2704 return -1;
2705 }
2706
2707 if (node->adev->apu_prefer_gtt)
2708 return 0;
2709
2710 if (prange->preferred_loc == gpuid ||
2711 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2712 return prange->preferred_loc;
2713 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2714 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2715 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2716 return prange->preferred_loc;
2717 /* fall through */
2718 }
2719
2720 if (test_bit(*gpuidx, prange->bitmap_access))
2721 return gpuid;
2722
2723 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2724 if (!prange->actual_loc)
2725 return 0;
2726
2727 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2728 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2729 return prange->actual_loc;
2730 else
2731 return 0;
2732 }
2733
2734 return -1;
2735 }
2736
2737 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2738 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2739 unsigned long *start, unsigned long *last,
2740 bool *is_heap_stack)
2741 {
2742 struct vm_area_struct *vma;
2743 struct interval_tree_node *node;
2744 struct rb_node *rb_node;
2745 unsigned long start_limit, end_limit;
2746
2747 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2748 if (!vma) {
2749 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2750 return -EFAULT;
2751 }
2752
2753 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2754
2755 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2756 (unsigned long)ALIGN_DOWN(addr, 1UL << p->svms.default_granularity));
2757 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2758 (unsigned long)ALIGN(addr + 1, 1UL << p->svms.default_granularity));
2759
2760 /* First range that starts after the fault address */
2761 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2762 if (node) {
2763 end_limit = min(end_limit, node->start);
2764 /* Last range that ends before the fault address */
2765 rb_node = rb_prev(&node->rb);
2766 } else {
2767 /* Last range must end before addr because
2768 * there was no range after addr
2769 */
2770 rb_node = rb_last(&p->svms.objects.rb_root);
2771 }
2772 if (rb_node) {
2773 node = container_of(rb_node, struct interval_tree_node, rb);
2774 if (node->last >= addr) {
2775 WARN(1, "Overlap with prev node and page fault addr\n");
2776 return -EFAULT;
2777 }
2778 start_limit = max(start_limit, node->last + 1);
2779 }
2780
2781 *start = start_limit;
2782 *last = end_limit - 1;
2783
2784 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2785 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2786 *start, *last, *is_heap_stack);
2787
2788 return 0;
2789 }
2790
2791 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2792 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2793 uint64_t *bo_s, uint64_t *bo_l)
2794 {
2795 struct amdgpu_bo_va_mapping *mapping;
2796 struct interval_tree_node *node;
2797 struct amdgpu_bo *bo = NULL;
2798 unsigned long userptr;
2799 uint32_t i;
2800 int r;
2801
2802 for (i = 0; i < p->n_pdds; i++) {
2803 struct amdgpu_vm *vm;
2804
2805 if (!p->pdds[i]->drm_priv)
2806 continue;
2807
2808 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2809 r = amdgpu_bo_reserve(vm->root.bo, false);
2810 if (r)
2811 return r;
2812
2813 /* Check userptr by searching entire vm->va interval tree */
2814 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2815 while (node) {
2816 mapping = container_of((struct rb_node *)node,
2817 struct amdgpu_bo_va_mapping, rb);
2818 bo = mapping->bo_va->base.bo;
2819
2820 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2821 start << PAGE_SHIFT,
2822 last << PAGE_SHIFT,
2823 &userptr)) {
2824 node = interval_tree_iter_next(node, 0, ~0ULL);
2825 continue;
2826 }
2827
2828 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2829 start, last);
2830 if (bo_s && bo_l) {
2831 *bo_s = userptr >> PAGE_SHIFT;
2832 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2833 }
2834 amdgpu_bo_unreserve(vm->root.bo);
2835 return -EADDRINUSE;
2836 }
2837 amdgpu_bo_unreserve(vm->root.bo);
2838 }
2839 return 0;
2840 }
2841
2842 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2843 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2844 struct kfd_process *p,
2845 struct mm_struct *mm,
2846 int64_t addr)
2847 {
2848 struct svm_range *prange = NULL;
2849 unsigned long start, last;
2850 uint32_t gpuid, gpuidx;
2851 bool is_heap_stack;
2852 uint64_t bo_s = 0;
2853 uint64_t bo_l = 0;
2854 int r;
2855
2856 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2857 &is_heap_stack))
2858 return NULL;
2859
2860 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2861 if (r != -EADDRINUSE)
2862 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2863
2864 if (r == -EADDRINUSE) {
2865 if (addr >= bo_s && addr <= bo_l)
2866 return NULL;
2867
2868 /* Create one page svm range if 2MB range overlapping */
2869 start = addr;
2870 last = addr;
2871 }
2872
2873 prange = svm_range_new(&p->svms, start, last, true);
2874 if (!prange) {
2875 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2876 return NULL;
2877 }
2878 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2879 pr_debug("failed to get gpuid from kgd\n");
2880 svm_range_free(prange, true);
2881 return NULL;
2882 }
2883
2884 if (is_heap_stack)
2885 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2886
2887 svm_range_add_to_svms(prange);
2888 svm_range_add_notifier_locked(mm, prange);
2889
2890 return prange;
2891 }
2892
2893 /* svm_range_skip_recover - decide if prange can be recovered
2894 * @prange: svm range structure
2895 *
2896 * GPU vm retry fault handle skip recover the range for cases:
2897 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2898 * deferred list work will drain the stale fault before free the prange.
2899 * 2. prange is on deferred list to add interval notifier after split, or
2900 * 3. prange is child range, it is split from parent prange, recover later
2901 * after interval notifier is added.
2902 *
2903 * Return: true to skip recover, false to recover
2904 */
svm_range_skip_recover(struct svm_range * prange)2905 static bool svm_range_skip_recover(struct svm_range *prange)
2906 {
2907 struct svm_range_list *svms = prange->svms;
2908
2909 spin_lock(&svms->deferred_list_lock);
2910 if (list_empty(&prange->deferred_list) &&
2911 list_empty(&prange->child_list)) {
2912 spin_unlock(&svms->deferred_list_lock);
2913 return false;
2914 }
2915 spin_unlock(&svms->deferred_list_lock);
2916
2917 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2918 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2919 svms, prange, prange->start, prange->last);
2920 return true;
2921 }
2922 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2923 prange->work_item.op == SVM_OP_ADD_RANGE) {
2924 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2925 svms, prange, prange->start, prange->last);
2926 return true;
2927 }
2928 return false;
2929 }
2930
2931 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2932 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2933 int32_t gpuidx)
2934 {
2935 struct kfd_process_device *pdd;
2936
2937 /* fault is on different page of same range
2938 * or fault is skipped to recover later
2939 * or fault is on invalid virtual address
2940 */
2941 if (gpuidx == MAX_GPU_INSTANCE) {
2942 uint32_t gpuid;
2943 int r;
2944
2945 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2946 if (r < 0)
2947 return;
2948 }
2949
2950 /* fault is recovered
2951 * or fault cannot recover because GPU no access on the range
2952 */
2953 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2954 if (pdd)
2955 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2956 }
2957
2958 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2959 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2960 {
2961 unsigned long requested = VM_READ;
2962
2963 if (write_fault)
2964 requested |= VM_WRITE;
2965
2966 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2967 vma->vm_flags);
2968 return (vma->vm_flags & requested) == requested;
2969 }
2970
2971 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,uint64_t ts,bool write_fault)2972 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2973 uint32_t vmid, uint32_t node_id,
2974 uint64_t addr, uint64_t ts, bool write_fault)
2975 {
2976 unsigned long start, last, size;
2977 struct mm_struct *mm = NULL;
2978 struct svm_range_list *svms;
2979 struct svm_range *prange;
2980 struct kfd_process *p;
2981 ktime_t timestamp = ktime_get_boottime();
2982 struct kfd_node *node;
2983 int32_t best_loc;
2984 int32_t gpuid, gpuidx = MAX_GPU_INSTANCE;
2985 bool write_locked = false;
2986 struct vm_area_struct *vma;
2987 bool migration = false;
2988 int r = 0;
2989
2990 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2991 pr_debug("device does not support SVM\n");
2992 return -EFAULT;
2993 }
2994
2995 p = kfd_lookup_process_by_pasid(pasid, NULL);
2996 if (!p) {
2997 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2998 return 0;
2999 }
3000 svms = &p->svms;
3001
3002 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
3003
3004 if (atomic_read(&svms->drain_pagefaults)) {
3005 pr_debug("page fault handling disabled, drop fault 0x%llx\n", addr);
3006 r = 0;
3007 goto out;
3008 }
3009
3010 node = kfd_node_by_irq_ids(adev, node_id, vmid);
3011 if (!node) {
3012 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
3013 vmid);
3014 r = -EFAULT;
3015 goto out;
3016 }
3017
3018 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
3019 pr_debug("failed to get gpuid/gpuidex for node_id: %d\n", node_id);
3020 r = -EFAULT;
3021 goto out;
3022 }
3023
3024 if (!p->xnack_enabled) {
3025 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
3026 r = -EFAULT;
3027 goto out;
3028 }
3029
3030 /* p->lead_thread is available as kfd_process_wq_release flush the work
3031 * before releasing task ref.
3032 */
3033 mm = get_task_mm(p->lead_thread);
3034 if (!mm) {
3035 pr_debug("svms 0x%p failed to get mm\n", svms);
3036 r = 0;
3037 goto out;
3038 }
3039
3040 mmap_read_lock(mm);
3041 retry_write_locked:
3042 mutex_lock(&svms->lock);
3043
3044 /* check if this page fault time stamp is before svms->checkpoint_ts */
3045 if (svms->checkpoint_ts[gpuidx] != 0) {
3046 if (amdgpu_ih_ts_after_or_equal(ts, svms->checkpoint_ts[gpuidx])) {
3047 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
3048 if (write_locked)
3049 mmap_write_downgrade(mm);
3050 r = -EAGAIN;
3051 goto out_unlock_svms;
3052 } else {
3053 /* ts is after svms->checkpoint_ts now, reset svms->checkpoint_ts
3054 * to zero to avoid following ts wrap around give wrong comparing
3055 */
3056 svms->checkpoint_ts[gpuidx] = 0;
3057 }
3058 }
3059
3060 prange = svm_range_from_addr(svms, addr, NULL);
3061 if (!prange) {
3062 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
3063 svms, addr);
3064 if (!write_locked) {
3065 /* Need the write lock to create new range with MMU notifier.
3066 * Also flush pending deferred work to make sure the interval
3067 * tree is up to date before we add a new range
3068 */
3069 mutex_unlock(&svms->lock);
3070 mmap_read_unlock(mm);
3071 mmap_write_lock(mm);
3072 write_locked = true;
3073 goto retry_write_locked;
3074 }
3075 prange = svm_range_create_unregistered_range(node, p, mm, addr);
3076 if (!prange) {
3077 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
3078 svms, addr);
3079 mmap_write_downgrade(mm);
3080 r = -EFAULT;
3081 goto out_unlock_svms;
3082 }
3083 }
3084 if (write_locked)
3085 mmap_write_downgrade(mm);
3086
3087 mutex_lock(&prange->migrate_mutex);
3088
3089 if (svm_range_skip_recover(prange)) {
3090 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3091 r = 0;
3092 goto out_unlock_range;
3093 }
3094
3095 /* skip duplicate vm fault on different pages of same range */
3096 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3097 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3098 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3099 svms, prange->start, prange->last);
3100 r = 0;
3101 goto out_unlock_range;
3102 }
3103
3104 /* __do_munmap removed VMA, return success as we are handling stale
3105 * retry fault.
3106 */
3107 vma = vma_lookup(mm, addr << PAGE_SHIFT);
3108 if (!vma) {
3109 pr_debug("address 0x%llx VMA is removed\n", addr);
3110 r = 0;
3111 goto out_unlock_range;
3112 }
3113
3114 if (!svm_fault_allowed(vma, write_fault)) {
3115 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3116 write_fault ? "write" : "read");
3117 r = -EPERM;
3118 goto out_unlock_range;
3119 }
3120
3121 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3122 if (best_loc == -1) {
3123 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3124 svms, prange->start, prange->last);
3125 r = -EACCES;
3126 goto out_unlock_range;
3127 }
3128
3129 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3130 svms, prange->start, prange->last, best_loc,
3131 prange->actual_loc);
3132
3133 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3134 write_fault, timestamp);
3135
3136 /* Align migration range start and size to granularity size */
3137 size = 1UL << prange->granularity;
3138 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3139 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3140 if (prange->actual_loc != 0 || best_loc != 0) {
3141 if (best_loc) {
3142 r = svm_migrate_to_vram(prange, best_loc, start, last,
3143 mm, KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3144 if (r) {
3145 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3146 r, addr);
3147 /* Fallback to system memory if migration to
3148 * VRAM failed
3149 */
3150 if (prange->actual_loc && prange->actual_loc != best_loc)
3151 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3152 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3153 else
3154 r = 0;
3155 }
3156 } else {
3157 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3158 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3159 }
3160 if (r) {
3161 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3162 r, svms, start, last);
3163 goto out_migrate_fail;
3164 } else {
3165 migration = true;
3166 }
3167 }
3168
3169 r = svm_range_validate_and_map(mm, start, last, prange, gpuidx, false,
3170 false, false);
3171 if (r)
3172 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3173 r, svms, start, last);
3174
3175 out_migrate_fail:
3176 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3177 migration);
3178
3179 out_unlock_range:
3180 mutex_unlock(&prange->migrate_mutex);
3181 out_unlock_svms:
3182 mutex_unlock(&svms->lock);
3183 mmap_read_unlock(mm);
3184
3185 if (r != -EAGAIN)
3186 svm_range_count_fault(node, p, gpuidx);
3187
3188 mmput(mm);
3189 out:
3190 kfd_unref_process(p);
3191
3192 if (r == -EAGAIN) {
3193 pr_debug("recover vm fault later\n");
3194 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3195 r = 0;
3196 }
3197 return r;
3198 }
3199
3200 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3201 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3202 {
3203 struct svm_range *prange, *pchild;
3204 uint64_t reserved_size = 0;
3205 uint64_t size;
3206 int r = 0;
3207
3208 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3209
3210 mutex_lock(&p->svms.lock);
3211
3212 list_for_each_entry(prange, &p->svms.list, list) {
3213 svm_range_lock(prange);
3214 list_for_each_entry(pchild, &prange->child_list, child_list) {
3215 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3216 if (xnack_enabled) {
3217 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3218 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3219 } else {
3220 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3221 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3222 if (r)
3223 goto out_unlock;
3224 reserved_size += size;
3225 }
3226 }
3227
3228 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3229 if (xnack_enabled) {
3230 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3231 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3232 } else {
3233 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3234 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3235 if (r)
3236 goto out_unlock;
3237 reserved_size += size;
3238 }
3239 out_unlock:
3240 svm_range_unlock(prange);
3241 if (r)
3242 break;
3243 }
3244
3245 if (r)
3246 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3247 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3248 else
3249 /* Change xnack mode must be inside svms lock, to avoid race with
3250 * svm_range_deferred_list_work unreserve memory in parallel.
3251 */
3252 p->xnack_enabled = xnack_enabled;
3253
3254 mutex_unlock(&p->svms.lock);
3255 return r;
3256 }
3257
svm_range_list_fini(struct kfd_process * p)3258 void svm_range_list_fini(struct kfd_process *p)
3259 {
3260 struct svm_range *prange;
3261 struct svm_range *next;
3262
3263 pr_debug("process pid %d svms 0x%p\n", p->lead_thread->pid,
3264 &p->svms);
3265
3266 cancel_delayed_work_sync(&p->svms.restore_work);
3267
3268 /* Ensure list work is finished before process is destroyed */
3269 flush_work(&p->svms.deferred_list_work);
3270
3271 /*
3272 * Ensure no retry fault comes in afterwards, as page fault handler will
3273 * not find kfd process and take mm lock to recover fault.
3274 * stop kfd page fault handing, then wait pending page faults got drained
3275 */
3276 atomic_set(&p->svms.drain_pagefaults, 1);
3277 svm_range_drain_retry_fault(&p->svms);
3278
3279 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3280 svm_range_unlink(prange);
3281 svm_range_remove_notifier(prange);
3282 svm_range_free(prange, true);
3283 }
3284
3285 mutex_destroy(&p->svms.lock);
3286
3287 pr_debug("process pid %d svms 0x%p done\n",
3288 p->lead_thread->pid, &p->svms);
3289 }
3290
svm_range_list_init(struct kfd_process * p)3291 int svm_range_list_init(struct kfd_process *p)
3292 {
3293 struct svm_range_list *svms = &p->svms;
3294 int i;
3295
3296 svms->objects = RB_ROOT_CACHED;
3297 mutex_init(&svms->lock);
3298 INIT_LIST_HEAD(&svms->list);
3299 atomic_set(&svms->evicted_ranges, 0);
3300 atomic_set(&svms->drain_pagefaults, 0);
3301 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3302 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3303 INIT_LIST_HEAD(&svms->deferred_range_list);
3304 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3305 spin_lock_init(&svms->deferred_list_lock);
3306
3307 for (i = 0; i < p->n_pdds; i++)
3308 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3309 bitmap_set(svms->bitmap_supported, i, 1);
3310
3311 /* Value of default granularity cannot exceed 0x1B, the
3312 * number of pages supported by a 4-level paging table
3313 */
3314 svms->default_granularity = min_t(u8, amdgpu_svm_default_granularity, 0x1B);
3315 pr_debug("Default SVM Granularity to use: %d\n", svms->default_granularity);
3316
3317 return 0;
3318 }
3319
3320 /**
3321 * svm_range_check_vm - check if virtual address range mapped already
3322 * @p: current kfd_process
3323 * @start: range start address, in pages
3324 * @last: range last address, in pages
3325 * @bo_s: mapping start address in pages if address range already mapped
3326 * @bo_l: mapping last address in pages if address range already mapped
3327 *
3328 * The purpose is to avoid virtual address ranges already allocated by
3329 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3330 * It looks for each pdd in the kfd_process.
3331 *
3332 * Context: Process context
3333 *
3334 * Return 0 - OK, if the range is not mapped.
3335 * Otherwise error code:
3336 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3337 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3338 * a signal. Release all buffer reservations and return to user-space.
3339 */
3340 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3341 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3342 uint64_t *bo_s, uint64_t *bo_l)
3343 {
3344 struct amdgpu_bo_va_mapping *mapping;
3345 struct interval_tree_node *node;
3346 uint32_t i;
3347 int r;
3348
3349 for (i = 0; i < p->n_pdds; i++) {
3350 struct amdgpu_vm *vm;
3351
3352 if (!p->pdds[i]->drm_priv)
3353 continue;
3354
3355 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3356 r = amdgpu_bo_reserve(vm->root.bo, false);
3357 if (r)
3358 return r;
3359
3360 node = interval_tree_iter_first(&vm->va, start, last);
3361 if (node) {
3362 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3363 start, last);
3364 mapping = container_of((struct rb_node *)node,
3365 struct amdgpu_bo_va_mapping, rb);
3366 if (bo_s && bo_l) {
3367 *bo_s = mapping->start;
3368 *bo_l = mapping->last;
3369 }
3370 amdgpu_bo_unreserve(vm->root.bo);
3371 return -EADDRINUSE;
3372 }
3373 amdgpu_bo_unreserve(vm->root.bo);
3374 }
3375
3376 return 0;
3377 }
3378
3379 /**
3380 * svm_range_is_valid - check if virtual address range is valid
3381 * @p: current kfd_process
3382 * @start: range start address, in pages
3383 * @size: range size, in pages
3384 *
3385 * Valid virtual address range means it belongs to one or more VMAs
3386 *
3387 * Context: Process context
3388 *
3389 * Return:
3390 * 0 - OK, otherwise error code
3391 */
3392 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3393 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3394 {
3395 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3396 struct vm_area_struct *vma;
3397 unsigned long end;
3398 unsigned long start_unchg = start;
3399
3400 start <<= PAGE_SHIFT;
3401 end = start + (size << PAGE_SHIFT);
3402 do {
3403 vma = vma_lookup(p->mm, start);
3404 if (!vma || (vma->vm_flags & device_vma))
3405 return -EFAULT;
3406 start = min(end, vma->vm_end);
3407 } while (start < end);
3408
3409 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3410 NULL);
3411 }
3412
3413 /**
3414 * svm_range_best_prefetch_location - decide the best prefetch location
3415 * @prange: svm range structure
3416 *
3417 * For xnack off:
3418 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3419 * can be CPU or GPU.
3420 *
3421 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3422 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3423 * the best prefetch location is always CPU, because GPU can not have coherent
3424 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3425 *
3426 * For xnack on:
3427 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3428 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3429 *
3430 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3431 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3432 * prefetch location is always CPU.
3433 *
3434 * Context: Process context
3435 *
3436 * Return:
3437 * 0 for CPU or GPU id
3438 */
3439 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3440 svm_range_best_prefetch_location(struct svm_range *prange)
3441 {
3442 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3443 uint32_t best_loc = prange->prefetch_loc;
3444 struct kfd_process_device *pdd;
3445 struct kfd_node *bo_node;
3446 struct kfd_process *p;
3447 uint32_t gpuidx;
3448
3449 p = container_of(prange->svms, struct kfd_process, svms);
3450
3451 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3452 goto out;
3453
3454 bo_node = svm_range_get_node_by_id(prange, best_loc);
3455 if (!bo_node) {
3456 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3457 best_loc = 0;
3458 goto out;
3459 }
3460
3461 if (bo_node->adev->apu_prefer_gtt) {
3462 best_loc = 0;
3463 goto out;
3464 }
3465
3466 if (p->xnack_enabled)
3467 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3468 else
3469 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3470 MAX_GPU_INSTANCE);
3471
3472 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3473 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3474 if (!pdd) {
3475 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3476 continue;
3477 }
3478
3479 if (pdd->dev->adev == bo_node->adev)
3480 continue;
3481
3482 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3483 best_loc = 0;
3484 break;
3485 }
3486 }
3487
3488 out:
3489 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3490 p->xnack_enabled, &p->svms, prange->start, prange->last,
3491 best_loc);
3492
3493 return best_loc;
3494 }
3495
3496 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3497 * @mm: current process mm_struct
3498 * @prange: svm range structure
3499 * @migrated: output, true if migration is triggered
3500 *
3501 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3502 * from ram to vram.
3503 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3504 * from vram to ram.
3505 *
3506 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3507 * and restore work:
3508 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3509 * stops all queues, schedule restore work
3510 * 2. svm_range_restore_work wait for migration is done by
3511 * a. svm_range_validate_vram takes prange->migrate_mutex
3512 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3513 * 3. restore work update mappings of GPU, resume all queues.
3514 *
3515 * Context: Process context
3516 *
3517 * Return:
3518 * 0 - OK, otherwise - error code of migration
3519 */
3520 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3521 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3522 bool *migrated)
3523 {
3524 uint32_t best_loc;
3525 int r = 0;
3526
3527 *migrated = false;
3528 best_loc = svm_range_best_prefetch_location(prange);
3529
3530 /* when best_loc is a gpu node and same as prange->actual_loc
3531 * we still need do migration as prange->actual_loc !=0 does
3532 * not mean all pages in prange are vram. hmm migrate will pick
3533 * up right pages during migration.
3534 */
3535 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3536 (best_loc == 0 && prange->actual_loc == 0))
3537 return 0;
3538
3539 if (!best_loc) {
3540 r = svm_migrate_vram_to_ram(prange, mm, prange->start, prange->last,
3541 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3542 *migrated = !r;
3543 return r;
3544 }
3545
3546 r = svm_migrate_to_vram(prange, best_loc, prange->start, prange->last,
3547 mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3548 *migrated = !r;
3549
3550 return 0;
3551 }
3552
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3553 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3554 {
3555 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3556 * signaled yet and we're under the protection of the fence->lock.
3557 * After the fence is signaled in svm_range_bo_release, we cannot get
3558 * here any more.
3559 *
3560 * Reference is dropped in svm_range_evict_svm_bo_worker.
3561 */
3562 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3563 WRITE_ONCE(fence->svm_bo->evicting, 1);
3564 schedule_work(&fence->svm_bo->eviction_work);
3565 }
3566
3567 return 0;
3568 }
3569
svm_range_evict_svm_bo_worker(struct work_struct * work)3570 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3571 {
3572 struct svm_range_bo *svm_bo;
3573 struct mm_struct *mm;
3574 int r = 0;
3575
3576 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3577
3578 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3579 mm = svm_bo->eviction_fence->mm;
3580 } else {
3581 svm_range_bo_unref(svm_bo);
3582 return;
3583 }
3584
3585 mmap_read_lock(mm);
3586 spin_lock(&svm_bo->list_lock);
3587 while (!list_empty(&svm_bo->range_list) && !r) {
3588 struct svm_range *prange =
3589 list_first_entry(&svm_bo->range_list,
3590 struct svm_range, svm_bo_list);
3591 int retries = 3;
3592
3593 list_del_init(&prange->svm_bo_list);
3594 spin_unlock(&svm_bo->list_lock);
3595
3596 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3597 prange->start, prange->last);
3598
3599 mutex_lock(&prange->migrate_mutex);
3600 do {
3601 /* migrate all vram pages in this prange to sys ram
3602 * after that prange->actual_loc should be zero
3603 */
3604 r = svm_migrate_vram_to_ram(prange, mm,
3605 prange->start, prange->last,
3606 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3607 } while (!r && prange->actual_loc && --retries);
3608
3609 if (!r && prange->actual_loc)
3610 pr_info_once("Migration failed during eviction");
3611
3612 if (!prange->actual_loc) {
3613 mutex_lock(&prange->lock);
3614 prange->svm_bo = NULL;
3615 mutex_unlock(&prange->lock);
3616 }
3617 mutex_unlock(&prange->migrate_mutex);
3618
3619 spin_lock(&svm_bo->list_lock);
3620 }
3621 spin_unlock(&svm_bo->list_lock);
3622 mmap_read_unlock(mm);
3623 mmput(mm);
3624
3625 dma_fence_signal(&svm_bo->eviction_fence->base);
3626
3627 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3628 * has been called in svm_migrate_vram_to_ram
3629 */
3630 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3631 svm_range_bo_unref(svm_bo);
3632 }
3633
3634 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3635 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3636 uint64_t start, uint64_t size, uint32_t nattr,
3637 struct kfd_ioctl_svm_attribute *attrs)
3638 {
3639 struct amdkfd_process_info *process_info = p->kgd_process_info;
3640 struct list_head update_list;
3641 struct list_head insert_list;
3642 struct list_head remove_list;
3643 struct list_head remap_list;
3644 struct svm_range_list *svms;
3645 struct svm_range *prange;
3646 struct svm_range *next;
3647 bool update_mapping = false;
3648 bool flush_tlb;
3649 int r, ret = 0;
3650
3651 pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3652 p->lead_thread->pid, &p->svms, start, start + size - 1, size);
3653
3654 r = svm_range_check_attr(p, nattr, attrs);
3655 if (r)
3656 return r;
3657
3658 svms = &p->svms;
3659
3660 mutex_lock(&process_info->lock);
3661
3662 svm_range_list_lock_and_flush_work(svms, mm);
3663
3664 r = svm_range_is_valid(p, start, size);
3665 if (r) {
3666 pr_debug("invalid range r=%d\n", r);
3667 mmap_write_unlock(mm);
3668 goto out;
3669 }
3670
3671 mutex_lock(&svms->lock);
3672
3673 /* Add new range and split existing ranges as needed */
3674 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3675 &insert_list, &remove_list, &remap_list);
3676 if (r) {
3677 mutex_unlock(&svms->lock);
3678 mmap_write_unlock(mm);
3679 goto out;
3680 }
3681 /* Apply changes as a transaction */
3682 list_for_each_entry_safe(prange, next, &insert_list, list) {
3683 svm_range_add_to_svms(prange);
3684 svm_range_add_notifier_locked(mm, prange);
3685 }
3686 list_for_each_entry(prange, &update_list, update_list) {
3687 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3688 /* TODO: unmap ranges from GPU that lost access */
3689 }
3690 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3691 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3692 prange->svms, prange, prange->start,
3693 prange->last);
3694 svm_range_unlink(prange);
3695 svm_range_remove_notifier(prange);
3696 svm_range_free(prange, false);
3697 }
3698
3699 mmap_write_downgrade(mm);
3700 /* Trigger migrations and revalidate and map to GPUs as needed. If
3701 * this fails we may be left with partially completed actions. There
3702 * is no clean way of rolling back to the previous state in such a
3703 * case because the rollback wouldn't be guaranteed to work either.
3704 */
3705 list_for_each_entry(prange, &update_list, update_list) {
3706 bool migrated;
3707
3708 mutex_lock(&prange->migrate_mutex);
3709
3710 r = svm_range_trigger_migration(mm, prange, &migrated);
3711 if (r)
3712 goto out_unlock_range;
3713
3714 if (migrated && (!p->xnack_enabled ||
3715 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3716 prange->mapped_to_gpu) {
3717 pr_debug("restore_work will update mappings of GPUs\n");
3718 mutex_unlock(&prange->migrate_mutex);
3719 continue;
3720 }
3721
3722 if (!migrated && !update_mapping) {
3723 mutex_unlock(&prange->migrate_mutex);
3724 continue;
3725 }
3726
3727 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3728
3729 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3730 MAX_GPU_INSTANCE, true, true, flush_tlb);
3731 if (r)
3732 pr_debug("failed %d to map svm range\n", r);
3733
3734 out_unlock_range:
3735 mutex_unlock(&prange->migrate_mutex);
3736 if (r)
3737 ret = r;
3738 }
3739
3740 list_for_each_entry(prange, &remap_list, update_list) {
3741 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3742 prange, prange->start, prange->last);
3743 mutex_lock(&prange->migrate_mutex);
3744 r = svm_range_validate_and_map(mm, prange->start, prange->last, prange,
3745 MAX_GPU_INSTANCE, true, true, prange->mapped_to_gpu);
3746 if (r)
3747 pr_debug("failed %d on remap svm range\n", r);
3748 mutex_unlock(&prange->migrate_mutex);
3749 if (r)
3750 ret = r;
3751 }
3752
3753 dynamic_svm_range_dump(svms);
3754
3755 mutex_unlock(&svms->lock);
3756 mmap_read_unlock(mm);
3757 out:
3758 mutex_unlock(&process_info->lock);
3759
3760 pr_debug("process pid %d svms 0x%p [0x%llx 0x%llx] done, r=%d\n",
3761 p->lead_thread->pid, &p->svms, start, start + size - 1, r);
3762
3763 return ret ? ret : r;
3764 }
3765
3766 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3767 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3768 uint64_t start, uint64_t size, uint32_t nattr,
3769 struct kfd_ioctl_svm_attribute *attrs)
3770 {
3771 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3772 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3773 bool get_preferred_loc = false;
3774 bool get_prefetch_loc = false;
3775 bool get_granularity = false;
3776 bool get_accessible = false;
3777 bool get_flags = false;
3778 uint64_t last = start + size - 1UL;
3779 uint8_t granularity = 0xff;
3780 struct interval_tree_node *node;
3781 struct svm_range_list *svms;
3782 struct svm_range *prange;
3783 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3784 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3785 uint32_t flags_and = 0xffffffff;
3786 uint32_t flags_or = 0;
3787 int gpuidx;
3788 uint32_t i;
3789 int r = 0;
3790
3791 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3792 start + size - 1, nattr);
3793
3794 /* Flush pending deferred work to avoid racing with deferred actions from
3795 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3796 * can still race with get_attr because we don't hold the mmap lock. But that
3797 * would be a race condition in the application anyway, and undefined
3798 * behaviour is acceptable in that case.
3799 */
3800 flush_work(&p->svms.deferred_list_work);
3801
3802 mmap_read_lock(mm);
3803 r = svm_range_is_valid(p, start, size);
3804 mmap_read_unlock(mm);
3805 if (r) {
3806 pr_debug("invalid range r=%d\n", r);
3807 return r;
3808 }
3809
3810 for (i = 0; i < nattr; i++) {
3811 switch (attrs[i].type) {
3812 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3813 get_preferred_loc = true;
3814 break;
3815 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3816 get_prefetch_loc = true;
3817 break;
3818 case KFD_IOCTL_SVM_ATTR_ACCESS:
3819 get_accessible = true;
3820 break;
3821 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3822 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3823 get_flags = true;
3824 break;
3825 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3826 get_granularity = true;
3827 break;
3828 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3829 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3830 fallthrough;
3831 default:
3832 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3833 return -EINVAL;
3834 }
3835 }
3836
3837 svms = &p->svms;
3838
3839 mutex_lock(&svms->lock);
3840
3841 node = interval_tree_iter_first(&svms->objects, start, last);
3842 if (!node) {
3843 pr_debug("range attrs not found return default values\n");
3844 svm_range_set_default_attributes(svms, &location, &prefetch_loc,
3845 &granularity, &flags_and);
3846 flags_or = flags_and;
3847 if (p->xnack_enabled)
3848 bitmap_copy(bitmap_access, svms->bitmap_supported,
3849 MAX_GPU_INSTANCE);
3850 else
3851 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3852 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3853 goto fill_values;
3854 }
3855 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3856 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3857
3858 while (node) {
3859 struct interval_tree_node *next;
3860
3861 prange = container_of(node, struct svm_range, it_node);
3862 next = interval_tree_iter_next(node, start, last);
3863
3864 if (get_preferred_loc) {
3865 if (prange->preferred_loc ==
3866 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3867 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3868 location != prange->preferred_loc)) {
3869 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3870 get_preferred_loc = false;
3871 } else {
3872 location = prange->preferred_loc;
3873 }
3874 }
3875 if (get_prefetch_loc) {
3876 if (prange->prefetch_loc ==
3877 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3878 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3879 prefetch_loc != prange->prefetch_loc)) {
3880 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3881 get_prefetch_loc = false;
3882 } else {
3883 prefetch_loc = prange->prefetch_loc;
3884 }
3885 }
3886 if (get_accessible) {
3887 bitmap_and(bitmap_access, bitmap_access,
3888 prange->bitmap_access, MAX_GPU_INSTANCE);
3889 bitmap_and(bitmap_aip, bitmap_aip,
3890 prange->bitmap_aip, MAX_GPU_INSTANCE);
3891 }
3892 if (get_flags) {
3893 flags_and &= prange->flags;
3894 flags_or |= prange->flags;
3895 }
3896
3897 if (get_granularity && prange->granularity < granularity)
3898 granularity = prange->granularity;
3899
3900 node = next;
3901 }
3902 fill_values:
3903 mutex_unlock(&svms->lock);
3904
3905 for (i = 0; i < nattr; i++) {
3906 switch (attrs[i].type) {
3907 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3908 attrs[i].value = location;
3909 break;
3910 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3911 attrs[i].value = prefetch_loc;
3912 break;
3913 case KFD_IOCTL_SVM_ATTR_ACCESS:
3914 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3915 attrs[i].value);
3916 if (gpuidx < 0) {
3917 pr_debug("invalid gpuid %x\n", attrs[i].value);
3918 return -EINVAL;
3919 }
3920 if (test_bit(gpuidx, bitmap_access))
3921 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3922 else if (test_bit(gpuidx, bitmap_aip))
3923 attrs[i].type =
3924 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3925 else
3926 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3927 break;
3928 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3929 attrs[i].value = flags_and;
3930 break;
3931 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3932 attrs[i].value = ~flags_or;
3933 break;
3934 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3935 attrs[i].value = (uint32_t)granularity;
3936 break;
3937 }
3938 }
3939
3940 return 0;
3941 }
3942
kfd_criu_resume_svm(struct kfd_process * p)3943 int kfd_criu_resume_svm(struct kfd_process *p)
3944 {
3945 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3946 int nattr_common = 4, nattr_accessibility = 1;
3947 struct criu_svm_metadata *criu_svm_md = NULL;
3948 struct svm_range_list *svms = &p->svms;
3949 struct criu_svm_metadata *next = NULL;
3950 uint32_t set_flags = 0xffffffff;
3951 int i, j, num_attrs, ret = 0;
3952 uint64_t set_attr_size;
3953 struct mm_struct *mm;
3954
3955 if (list_empty(&svms->criu_svm_metadata_list)) {
3956 pr_debug("No SVM data from CRIU restore stage 2\n");
3957 return ret;
3958 }
3959
3960 mm = get_task_mm(p->lead_thread);
3961 if (!mm) {
3962 pr_err("failed to get mm for the target process\n");
3963 return -ESRCH;
3964 }
3965
3966 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3967
3968 i = j = 0;
3969 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3970 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3971 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3972
3973 for (j = 0; j < num_attrs; j++) {
3974 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3975 i, j, criu_svm_md->data.attrs[j].type,
3976 i, j, criu_svm_md->data.attrs[j].value);
3977 switch (criu_svm_md->data.attrs[j].type) {
3978 /* During Checkpoint operation, the query for
3979 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3980 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3981 * not used by the range which was checkpointed. Care
3982 * must be taken to not restore with an invalid value
3983 * otherwise the gpuidx value will be invalid and
3984 * set_attr would eventually fail so just replace those
3985 * with another dummy attribute such as
3986 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3987 */
3988 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3989 if (criu_svm_md->data.attrs[j].value ==
3990 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3991 criu_svm_md->data.attrs[j].type =
3992 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3993 criu_svm_md->data.attrs[j].value = 0;
3994 }
3995 break;
3996 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3997 set_flags = criu_svm_md->data.attrs[j].value;
3998 break;
3999 default:
4000 break;
4001 }
4002 }
4003
4004 /* CLR_FLAGS is not available via get_attr during checkpoint but
4005 * it needs to be inserted before restoring the ranges so
4006 * allocate extra space for it before calling set_attr
4007 */
4008 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4009 (num_attrs + 1);
4010 set_attr_new = krealloc(set_attr, set_attr_size,
4011 GFP_KERNEL);
4012 if (!set_attr_new) {
4013 ret = -ENOMEM;
4014 goto exit;
4015 }
4016 set_attr = set_attr_new;
4017
4018 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
4019 sizeof(struct kfd_ioctl_svm_attribute));
4020 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
4021 set_attr[num_attrs].value = ~set_flags;
4022
4023 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
4024 criu_svm_md->data.size, num_attrs + 1,
4025 set_attr);
4026 if (ret) {
4027 pr_err("CRIU: failed to set range attributes\n");
4028 goto exit;
4029 }
4030
4031 i++;
4032 }
4033 exit:
4034 kfree(set_attr);
4035 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
4036 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
4037 criu_svm_md->data.start_addr);
4038 kfree(criu_svm_md);
4039 }
4040
4041 mmput(mm);
4042 return ret;
4043
4044 }
4045
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)4046 int kfd_criu_restore_svm(struct kfd_process *p,
4047 uint8_t __user *user_priv_ptr,
4048 uint64_t *priv_data_offset,
4049 uint64_t max_priv_data_size)
4050 {
4051 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
4052 int nattr_common = 4, nattr_accessibility = 1;
4053 struct criu_svm_metadata *criu_svm_md = NULL;
4054 struct svm_range_list *svms = &p->svms;
4055 uint32_t num_devices;
4056 int ret = 0;
4057
4058 num_devices = p->n_pdds;
4059 /* Handle one SVM range object at a time, also the number of gpus are
4060 * assumed to be same on the restore node, checking must be done while
4061 * evaluating the topology earlier
4062 */
4063
4064 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
4065 (nattr_common + nattr_accessibility * num_devices);
4066 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
4067
4068 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4069 svm_attrs_size;
4070
4071 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
4072 if (!criu_svm_md) {
4073 pr_err("failed to allocate memory to store svm metadata\n");
4074 return -ENOMEM;
4075 }
4076 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
4077 ret = -EINVAL;
4078 goto exit;
4079 }
4080
4081 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
4082 svm_priv_data_size);
4083 if (ret) {
4084 ret = -EFAULT;
4085 goto exit;
4086 }
4087 *priv_data_offset += svm_priv_data_size;
4088
4089 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
4090
4091 return 0;
4092
4093
4094 exit:
4095 kfree(criu_svm_md);
4096 return ret;
4097 }
4098
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)4099 void svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
4100 uint64_t *svm_priv_data_size)
4101 {
4102 uint64_t total_size, accessibility_size, common_attr_size;
4103 int nattr_common = 4, nattr_accessibility = 1;
4104 int num_devices = p->n_pdds;
4105 struct svm_range_list *svms;
4106 struct svm_range *prange;
4107 uint32_t count = 0;
4108
4109 *svm_priv_data_size = 0;
4110
4111 svms = &p->svms;
4112
4113 mutex_lock(&svms->lock);
4114 list_for_each_entry(prange, &svms->list, list) {
4115 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
4116 prange, prange->start, prange->npages,
4117 prange->start + prange->npages - 1);
4118 count++;
4119 }
4120 mutex_unlock(&svms->lock);
4121
4122 *num_svm_ranges = count;
4123 /* Only the accessbility attributes need to be queried for all the gpus
4124 * individually, remaining ones are spanned across the entire process
4125 * regardless of the various gpu nodes. Of the remaining attributes,
4126 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4127 *
4128 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4129 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4130 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4131 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4132 *
4133 * ** ACCESSBILITY ATTRIBUTES **
4134 * (Considered as one, type is altered during query, value is gpuid)
4135 * KFD_IOCTL_SVM_ATTR_ACCESS
4136 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4137 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4138 */
4139 if (*num_svm_ranges > 0) {
4140 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4141 nattr_common;
4142 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4143 nattr_accessibility * num_devices;
4144
4145 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4146 common_attr_size + accessibility_size;
4147
4148 *svm_priv_data_size = *num_svm_ranges * total_size;
4149 }
4150
4151 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4152 *svm_priv_data_size);
4153 }
4154
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4155 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4156 uint8_t __user *user_priv_data,
4157 uint64_t *priv_data_offset)
4158 {
4159 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4160 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4161 uint64_t svm_priv_data_size, query_attr_size = 0;
4162 int index, nattr_common = 4, ret = 0;
4163 struct svm_range_list *svms;
4164 int num_devices = p->n_pdds;
4165 struct svm_range *prange;
4166 struct mm_struct *mm;
4167
4168 svms = &p->svms;
4169
4170 mm = get_task_mm(p->lead_thread);
4171 if (!mm) {
4172 pr_err("failed to get mm for the target process\n");
4173 return -ESRCH;
4174 }
4175
4176 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4177 (nattr_common + num_devices);
4178
4179 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4180 if (!query_attr) {
4181 ret = -ENOMEM;
4182 goto exit;
4183 }
4184
4185 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4186 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4187 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4188 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4189
4190 for (index = 0; index < num_devices; index++) {
4191 struct kfd_process_device *pdd = p->pdds[index];
4192
4193 query_attr[index + nattr_common].type =
4194 KFD_IOCTL_SVM_ATTR_ACCESS;
4195 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4196 }
4197
4198 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4199
4200 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4201 if (!svm_priv) {
4202 ret = -ENOMEM;
4203 goto exit_query;
4204 }
4205
4206 index = 0;
4207 list_for_each_entry(prange, &svms->list, list) {
4208
4209 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4210 svm_priv->start_addr = prange->start;
4211 svm_priv->size = prange->npages;
4212 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4213 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4214 prange, prange->start, prange->npages,
4215 prange->start + prange->npages - 1,
4216 prange->npages * PAGE_SIZE);
4217
4218 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4219 svm_priv->size,
4220 (nattr_common + num_devices),
4221 svm_priv->attrs);
4222 if (ret) {
4223 pr_err("CRIU: failed to obtain range attributes\n");
4224 goto exit_priv;
4225 }
4226
4227 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4228 svm_priv_data_size)) {
4229 pr_err("Failed to copy svm priv to user\n");
4230 ret = -EFAULT;
4231 goto exit_priv;
4232 }
4233
4234 *priv_data_offset += svm_priv_data_size;
4235
4236 }
4237
4238
4239 exit_priv:
4240 kfree(svm_priv);
4241 exit_query:
4242 kfree(query_attr);
4243 exit:
4244 mmput(mm);
4245 return ret;
4246 }
4247
4248 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4249 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4250 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4251 {
4252 struct mm_struct *mm = current->mm;
4253 int r;
4254
4255 start >>= PAGE_SHIFT;
4256 size >>= PAGE_SHIFT;
4257
4258 switch (op) {
4259 case KFD_IOCTL_SVM_OP_SET_ATTR:
4260 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4261 break;
4262 case KFD_IOCTL_SVM_OP_GET_ATTR:
4263 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4264 break;
4265 default:
4266 r = -EINVAL;
4267 break;
4268 }
4269
4270 return r;
4271 }
4272