1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable within RCU read section),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 static int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 static const struct ctl_table module_sysctl_table[] = {
133 {
134 .procname = "modprobe",
135 .data = &modprobe_path,
136 .maxlen = KMOD_PATH_LEN,
137 .mode = 0644,
138 .proc_handler = proc_dostring,
139 },
140 {
141 .procname = "modules_disabled",
142 .data = &modules_disabled,
143 .maxlen = sizeof(int),
144 .mode = 0644,
145 /* only handle a transition from default "0" to "1" */
146 .proc_handler = proc_dointvec_minmax,
147 .extra1 = SYSCTL_ONE,
148 .extra2 = SYSCTL_ONE,
149 },
150 };
151
init_module_sysctl(void)152 static int __init init_module_sysctl(void)
153 {
154 register_sysctl_init("kernel", module_sysctl_table);
155 return 0;
156 }
157
158 subsys_initcall(init_module_sysctl);
159
160 /* Waiting for a module to finish initializing? */
161 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
162
163 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
164
register_module_notifier(struct notifier_block * nb)165 int register_module_notifier(struct notifier_block *nb)
166 {
167 return blocking_notifier_chain_register(&module_notify_list, nb);
168 }
169 EXPORT_SYMBOL(register_module_notifier);
170
unregister_module_notifier(struct notifier_block * nb)171 int unregister_module_notifier(struct notifier_block *nb)
172 {
173 return blocking_notifier_chain_unregister(&module_notify_list, nb);
174 }
175 EXPORT_SYMBOL(unregister_module_notifier);
176
177 /*
178 * We require a truly strong try_module_get(): 0 means success.
179 * Otherwise an error is returned due to ongoing or failed
180 * initialization etc.
181 */
strong_try_module_get(struct module * mod)182 static inline int strong_try_module_get(struct module *mod)
183 {
184 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
185 if (mod && mod->state == MODULE_STATE_COMING)
186 return -EBUSY;
187 if (try_module_get(mod))
188 return 0;
189 else
190 return -ENOENT;
191 }
192
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)193 static inline void add_taint_module(struct module *mod, unsigned flag,
194 enum lockdep_ok lockdep_ok)
195 {
196 add_taint(flag, lockdep_ok);
197 set_bit(flag, &mod->taints);
198 }
199
200 /*
201 * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule.
202 */
mod_strncmp(const char * str_a,const char * str_b,size_t n)203 static int mod_strncmp(const char *str_a, const char *str_b, size_t n)
204 {
205 for (int i = 0; i < n; i++) {
206 char a = str_a[i];
207 char b = str_b[i];
208 int d;
209
210 if (a == '-') a = '_';
211 if (b == '-') b = '_';
212
213 d = a - b;
214 if (d)
215 return d;
216
217 if (!a)
218 break;
219 }
220
221 return 0;
222 }
223
224 /*
225 * A thread that wants to hold a reference to a module only while it
226 * is running can call this to safely exit.
227 */
__module_put_and_kthread_exit(struct module * mod,long code)228 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
229 {
230 module_put(mod);
231 kthread_exit(code);
232 }
233 EXPORT_SYMBOL(__module_put_and_kthread_exit);
234
235 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)236 static unsigned int find_sec(const struct load_info *info, const char *name)
237 {
238 unsigned int i;
239
240 for (i = 1; i < info->hdr->e_shnum; i++) {
241 Elf_Shdr *shdr = &info->sechdrs[i];
242 /* Alloc bit cleared means "ignore it." */
243 if ((shdr->sh_flags & SHF_ALLOC)
244 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
245 return i;
246 }
247 return 0;
248 }
249
250 /**
251 * find_any_unique_sec() - Find a unique section index by name
252 * @info: Load info for the module to scan
253 * @name: Name of the section we're looking for
254 *
255 * Locates a unique section by name. Ignores SHF_ALLOC.
256 *
257 * Return: Section index if found uniquely, zero if absent, negative count
258 * of total instances if multiple were found.
259 */
find_any_unique_sec(const struct load_info * info,const char * name)260 static int find_any_unique_sec(const struct load_info *info, const char *name)
261 {
262 unsigned int idx;
263 unsigned int count = 0;
264 int i;
265
266 for (i = 1; i < info->hdr->e_shnum; i++) {
267 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
268 name) == 0) {
269 count++;
270 idx = i;
271 }
272 }
273 if (count == 1) {
274 return idx;
275 } else if (count == 0) {
276 return 0;
277 } else {
278 return -count;
279 }
280 }
281
282 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)283 static void *section_addr(const struct load_info *info, const char *name)
284 {
285 /* Section 0 has sh_addr 0. */
286 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
287 }
288
289 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)290 static void *section_objs(const struct load_info *info,
291 const char *name,
292 size_t object_size,
293 unsigned int *num)
294 {
295 unsigned int sec = find_sec(info, name);
296
297 /* Section 0 has sh_addr 0 and sh_size 0. */
298 *num = info->sechdrs[sec].sh_size / object_size;
299 return (void *)info->sechdrs[sec].sh_addr;
300 }
301
302 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)303 static unsigned int find_any_sec(const struct load_info *info, const char *name)
304 {
305 unsigned int i;
306
307 for (i = 1; i < info->hdr->e_shnum; i++) {
308 Elf_Shdr *shdr = &info->sechdrs[i];
309 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
310 return i;
311 }
312 return 0;
313 }
314
315 /*
316 * Find a module section, or NULL. Fill in number of "objects" in section.
317 * Ignores SHF_ALLOC flag.
318 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)319 static __maybe_unused void *any_section_objs(const struct load_info *info,
320 const char *name,
321 size_t object_size,
322 unsigned int *num)
323 {
324 unsigned int sec = find_any_sec(info, name);
325
326 /* Section 0 has sh_addr 0 and sh_size 0. */
327 *num = info->sechdrs[sec].sh_size / object_size;
328 return (void *)info->sechdrs[sec].sh_addr;
329 }
330
331 #ifndef CONFIG_MODVERSIONS
332 #define symversion(base, idx) NULL
333 #else
334 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
335 #endif
336
kernel_symbol_name(const struct kernel_symbol * sym)337 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
338 {
339 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
340 return offset_to_ptr(&sym->name_offset);
341 #else
342 return sym->name;
343 #endif
344 }
345
kernel_symbol_namespace(const struct kernel_symbol * sym)346 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
347 {
348 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
349 if (!sym->namespace_offset)
350 return NULL;
351 return offset_to_ptr(&sym->namespace_offset);
352 #else
353 return sym->namespace;
354 #endif
355 }
356
cmp_name(const void * name,const void * sym)357 int cmp_name(const void *name, const void *sym)
358 {
359 return strcmp(name, kernel_symbol_name(sym));
360 }
361
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)362 static bool find_exported_symbol_in_section(const struct symsearch *syms,
363 struct module *owner,
364 struct find_symbol_arg *fsa)
365 {
366 struct kernel_symbol *sym;
367
368 if (!fsa->gplok && syms->license == GPL_ONLY)
369 return false;
370
371 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
372 sizeof(struct kernel_symbol), cmp_name);
373 if (!sym)
374 return false;
375
376 fsa->owner = owner;
377 fsa->crc = symversion(syms->crcs, sym - syms->start);
378 fsa->sym = sym;
379 fsa->license = syms->license;
380
381 return true;
382 }
383
384 /*
385 * Find an exported symbol and return it, along with, (optional) crc and
386 * (optional) module which owns it. Needs RCU or module_mutex.
387 */
find_symbol(struct find_symbol_arg * fsa)388 bool find_symbol(struct find_symbol_arg *fsa)
389 {
390 static const struct symsearch arr[] = {
391 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
392 NOT_GPL_ONLY },
393 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
394 __start___kcrctab_gpl,
395 GPL_ONLY },
396 };
397 struct module *mod;
398 unsigned int i;
399
400 for (i = 0; i < ARRAY_SIZE(arr); i++)
401 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
402 return true;
403
404 list_for_each_entry_rcu(mod, &modules, list,
405 lockdep_is_held(&module_mutex)) {
406 struct symsearch arr[] = {
407 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
408 NOT_GPL_ONLY },
409 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
410 mod->gpl_crcs,
411 GPL_ONLY },
412 };
413
414 if (mod->state == MODULE_STATE_UNFORMED)
415 continue;
416
417 for (i = 0; i < ARRAY_SIZE(arr); i++)
418 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
419 return true;
420 }
421
422 pr_debug("Failed to find symbol %s\n", fsa->name);
423 return false;
424 }
425
426 /*
427 * Search for module by name: must hold module_mutex (or RCU for read-only
428 * access).
429 */
find_module_all(const char * name,size_t len,bool even_unformed)430 struct module *find_module_all(const char *name, size_t len,
431 bool even_unformed)
432 {
433 struct module *mod;
434
435 list_for_each_entry_rcu(mod, &modules, list,
436 lockdep_is_held(&module_mutex)) {
437 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
438 continue;
439 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
440 return mod;
441 }
442 return NULL;
443 }
444
find_module(const char * name)445 struct module *find_module(const char *name)
446 {
447 return find_module_all(name, strlen(name), false);
448 }
449
450 #ifdef CONFIG_SMP
451
mod_percpu(struct module * mod)452 static inline void __percpu *mod_percpu(struct module *mod)
453 {
454 return mod->percpu;
455 }
456
percpu_modalloc(struct module * mod,struct load_info * info)457 static int percpu_modalloc(struct module *mod, struct load_info *info)
458 {
459 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
460 unsigned long align = pcpusec->sh_addralign;
461
462 if (!pcpusec->sh_size)
463 return 0;
464
465 if (align > PAGE_SIZE) {
466 pr_warn("%s: per-cpu alignment %li > %li\n",
467 mod->name, align, PAGE_SIZE);
468 align = PAGE_SIZE;
469 }
470
471 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
472 if (!mod->percpu) {
473 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
474 mod->name, (unsigned long)pcpusec->sh_size);
475 return -ENOMEM;
476 }
477 mod->percpu_size = pcpusec->sh_size;
478 return 0;
479 }
480
percpu_modfree(struct module * mod)481 static void percpu_modfree(struct module *mod)
482 {
483 free_percpu(mod->percpu);
484 }
485
find_pcpusec(struct load_info * info)486 static unsigned int find_pcpusec(struct load_info *info)
487 {
488 return find_sec(info, ".data..percpu");
489 }
490
percpu_modcopy(struct module * mod,const void * from,unsigned long size)491 static void percpu_modcopy(struct module *mod,
492 const void *from, unsigned long size)
493 {
494 int cpu;
495
496 for_each_possible_cpu(cpu)
497 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
498 }
499
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)500 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
501 {
502 struct module *mod;
503 unsigned int cpu;
504
505 guard(rcu)();
506 list_for_each_entry_rcu(mod, &modules, list) {
507 if (mod->state == MODULE_STATE_UNFORMED)
508 continue;
509 if (!mod->percpu_size)
510 continue;
511 for_each_possible_cpu(cpu) {
512 void *start = per_cpu_ptr(mod->percpu, cpu);
513 void *va = (void *)addr;
514
515 if (va >= start && va < start + mod->percpu_size) {
516 if (can_addr) {
517 *can_addr = (unsigned long) (va - start);
518 *can_addr += (unsigned long)
519 per_cpu_ptr(mod->percpu,
520 get_boot_cpu_id());
521 }
522 return true;
523 }
524 }
525 }
526 return false;
527 }
528
529 /**
530 * is_module_percpu_address() - test whether address is from module static percpu
531 * @addr: address to test
532 *
533 * Test whether @addr belongs to module static percpu area.
534 *
535 * Return: %true if @addr is from module static percpu area
536 */
is_module_percpu_address(unsigned long addr)537 bool is_module_percpu_address(unsigned long addr)
538 {
539 return __is_module_percpu_address(addr, NULL);
540 }
541
542 #else /* ... !CONFIG_SMP */
543
mod_percpu(struct module * mod)544 static inline void __percpu *mod_percpu(struct module *mod)
545 {
546 return NULL;
547 }
percpu_modalloc(struct module * mod,struct load_info * info)548 static int percpu_modalloc(struct module *mod, struct load_info *info)
549 {
550 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
551 if (info->sechdrs[info->index.pcpu].sh_size != 0)
552 return -ENOMEM;
553 return 0;
554 }
percpu_modfree(struct module * mod)555 static inline void percpu_modfree(struct module *mod)
556 {
557 }
find_pcpusec(struct load_info * info)558 static unsigned int find_pcpusec(struct load_info *info)
559 {
560 return 0;
561 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)562 static inline void percpu_modcopy(struct module *mod,
563 const void *from, unsigned long size)
564 {
565 /* pcpusec should be 0, and size of that section should be 0. */
566 BUG_ON(size != 0);
567 }
is_module_percpu_address(unsigned long addr)568 bool is_module_percpu_address(unsigned long addr)
569 {
570 return false;
571 }
572
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)573 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
574 {
575 return false;
576 }
577
578 #endif /* CONFIG_SMP */
579
580 #define MODINFO_ATTR(field) \
581 static void setup_modinfo_##field(struct module *mod, const char *s) \
582 { \
583 mod->field = kstrdup(s, GFP_KERNEL); \
584 } \
585 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
586 struct module_kobject *mk, char *buffer) \
587 { \
588 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
589 } \
590 static int modinfo_##field##_exists(struct module *mod) \
591 { \
592 return mod->field != NULL; \
593 } \
594 static void free_modinfo_##field(struct module *mod) \
595 { \
596 kfree(mod->field); \
597 mod->field = NULL; \
598 } \
599 static const struct module_attribute modinfo_##field = { \
600 .attr = { .name = __stringify(field), .mode = 0444 }, \
601 .show = show_modinfo_##field, \
602 .setup = setup_modinfo_##field, \
603 .test = modinfo_##field##_exists, \
604 .free = free_modinfo_##field, \
605 };
606
607 MODINFO_ATTR(version);
608 MODINFO_ATTR(srcversion);
609
610 static struct {
611 char name[MODULE_NAME_LEN];
612 char taints[MODULE_FLAGS_BUF_SIZE];
613 } last_unloaded_module;
614
615 #ifdef CONFIG_MODULE_UNLOAD
616
617 EXPORT_TRACEPOINT_SYMBOL(module_get);
618
619 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
620 #define MODULE_REF_BASE 1
621
622 /* Init the unload section of the module. */
module_unload_init(struct module * mod)623 static int module_unload_init(struct module *mod)
624 {
625 /*
626 * Initialize reference counter to MODULE_REF_BASE.
627 * refcnt == 0 means module is going.
628 */
629 atomic_set(&mod->refcnt, MODULE_REF_BASE);
630
631 INIT_LIST_HEAD(&mod->source_list);
632 INIT_LIST_HEAD(&mod->target_list);
633
634 /* Hold reference count during initialization. */
635 atomic_inc(&mod->refcnt);
636
637 return 0;
638 }
639
640 /* Does a already use b? */
already_uses(struct module * a,struct module * b)641 static int already_uses(struct module *a, struct module *b)
642 {
643 struct module_use *use;
644
645 list_for_each_entry(use, &b->source_list, source_list) {
646 if (use->source == a)
647 return 1;
648 }
649 pr_debug("%s does not use %s!\n", a->name, b->name);
650 return 0;
651 }
652
653 /*
654 * Module a uses b
655 * - we add 'a' as a "source", 'b' as a "target" of module use
656 * - the module_use is added to the list of 'b' sources (so
657 * 'b' can walk the list to see who sourced them), and of 'a'
658 * targets (so 'a' can see what modules it targets).
659 */
add_module_usage(struct module * a,struct module * b)660 static int add_module_usage(struct module *a, struct module *b)
661 {
662 struct module_use *use;
663
664 pr_debug("Allocating new usage for %s.\n", a->name);
665 use = kmalloc(sizeof(*use), GFP_ATOMIC);
666 if (!use)
667 return -ENOMEM;
668
669 use->source = a;
670 use->target = b;
671 list_add(&use->source_list, &b->source_list);
672 list_add(&use->target_list, &a->target_list);
673 return 0;
674 }
675
676 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)677 static int ref_module(struct module *a, struct module *b)
678 {
679 int err;
680
681 if (b == NULL || already_uses(a, b))
682 return 0;
683
684 /* If module isn't available, we fail. */
685 err = strong_try_module_get(b);
686 if (err)
687 return err;
688
689 err = add_module_usage(a, b);
690 if (err) {
691 module_put(b);
692 return err;
693 }
694 return 0;
695 }
696
697 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)698 static void module_unload_free(struct module *mod)
699 {
700 struct module_use *use, *tmp;
701
702 mutex_lock(&module_mutex);
703 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
704 struct module *i = use->target;
705 pr_debug("%s unusing %s\n", mod->name, i->name);
706 module_put(i);
707 list_del(&use->source_list);
708 list_del(&use->target_list);
709 kfree(use);
710 }
711 mutex_unlock(&module_mutex);
712 }
713
714 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)715 static inline int try_force_unload(unsigned int flags)
716 {
717 int ret = (flags & O_TRUNC);
718 if (ret)
719 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
720 return ret;
721 }
722 #else
try_force_unload(unsigned int flags)723 static inline int try_force_unload(unsigned int flags)
724 {
725 return 0;
726 }
727 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
728
729 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)730 static int try_release_module_ref(struct module *mod)
731 {
732 int ret;
733
734 /* Try to decrement refcnt which we set at loading */
735 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
736 BUG_ON(ret < 0);
737 if (ret)
738 /* Someone can put this right now, recover with checking */
739 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
740
741 return ret;
742 }
743
try_stop_module(struct module * mod,int flags,int * forced)744 static int try_stop_module(struct module *mod, int flags, int *forced)
745 {
746 /* If it's not unused, quit unless we're forcing. */
747 if (try_release_module_ref(mod) != 0) {
748 *forced = try_force_unload(flags);
749 if (!(*forced))
750 return -EWOULDBLOCK;
751 }
752
753 /* Mark it as dying. */
754 mod->state = MODULE_STATE_GOING;
755
756 return 0;
757 }
758
759 /**
760 * module_refcount() - return the refcount or -1 if unloading
761 * @mod: the module we're checking
762 *
763 * Return:
764 * -1 if the module is in the process of unloading
765 * otherwise the number of references in the kernel to the module
766 */
module_refcount(struct module * mod)767 int module_refcount(struct module *mod)
768 {
769 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
770 }
771 EXPORT_SYMBOL(module_refcount);
772
773 /* This exists whether we can unload or not */
774 static void free_module(struct module *mod);
775
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)776 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
777 unsigned int, flags)
778 {
779 struct module *mod;
780 char name[MODULE_NAME_LEN];
781 char buf[MODULE_FLAGS_BUF_SIZE];
782 int ret, len, forced = 0;
783
784 if (!capable(CAP_SYS_MODULE) || modules_disabled)
785 return -EPERM;
786
787 len = strncpy_from_user(name, name_user, MODULE_NAME_LEN);
788 if (len == 0 || len == MODULE_NAME_LEN)
789 return -ENOENT;
790 if (len < 0)
791 return len;
792
793 audit_log_kern_module(name);
794
795 if (mutex_lock_interruptible(&module_mutex) != 0)
796 return -EINTR;
797
798 mod = find_module(name);
799 if (!mod) {
800 ret = -ENOENT;
801 goto out;
802 }
803
804 if (!list_empty(&mod->source_list)) {
805 /* Other modules depend on us: get rid of them first. */
806 ret = -EWOULDBLOCK;
807 goto out;
808 }
809
810 /* Doing init or already dying? */
811 if (mod->state != MODULE_STATE_LIVE) {
812 /* FIXME: if (force), slam module count damn the torpedoes */
813 pr_debug("%s already dying\n", mod->name);
814 ret = -EBUSY;
815 goto out;
816 }
817
818 /* If it has an init func, it must have an exit func to unload */
819 if (mod->init && !mod->exit) {
820 forced = try_force_unload(flags);
821 if (!forced) {
822 /* This module can't be removed */
823 ret = -EBUSY;
824 goto out;
825 }
826 }
827
828 ret = try_stop_module(mod, flags, &forced);
829 if (ret != 0)
830 goto out;
831
832 mutex_unlock(&module_mutex);
833 /* Final destruction now no one is using it. */
834 if (mod->exit != NULL)
835 mod->exit();
836 blocking_notifier_call_chain(&module_notify_list,
837 MODULE_STATE_GOING, mod);
838 klp_module_going(mod);
839 ftrace_release_mod(mod);
840
841 async_synchronize_full();
842
843 /* Store the name and taints of the last unloaded module for diagnostic purposes */
844 strscpy(last_unloaded_module.name, mod->name);
845 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
846
847 free_module(mod);
848 /* someone could wait for the module in add_unformed_module() */
849 wake_up_all(&module_wq);
850 return 0;
851 out:
852 mutex_unlock(&module_mutex);
853 return ret;
854 }
855
__symbol_put(const char * symbol)856 void __symbol_put(const char *symbol)
857 {
858 struct find_symbol_arg fsa = {
859 .name = symbol,
860 .gplok = true,
861 };
862
863 guard(rcu)();
864 BUG_ON(!find_symbol(&fsa));
865 module_put(fsa.owner);
866 }
867 EXPORT_SYMBOL(__symbol_put);
868
869 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)870 void symbol_put_addr(void *addr)
871 {
872 struct module *modaddr;
873 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
874
875 if (core_kernel_text(a))
876 return;
877
878 /*
879 * Even though we hold a reference on the module; we still need to
880 * RCU read section in order to safely traverse the data structure.
881 */
882 guard(rcu)();
883 modaddr = __module_text_address(a);
884 BUG_ON(!modaddr);
885 module_put(modaddr);
886 }
887 EXPORT_SYMBOL_GPL(symbol_put_addr);
888
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)889 static ssize_t show_refcnt(const struct module_attribute *mattr,
890 struct module_kobject *mk, char *buffer)
891 {
892 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
893 }
894
895 static const struct module_attribute modinfo_refcnt =
896 __ATTR(refcnt, 0444, show_refcnt, NULL);
897
__module_get(struct module * module)898 void __module_get(struct module *module)
899 {
900 if (module) {
901 atomic_inc(&module->refcnt);
902 trace_module_get(module, _RET_IP_);
903 }
904 }
905 EXPORT_SYMBOL(__module_get);
906
try_module_get(struct module * module)907 bool try_module_get(struct module *module)
908 {
909 bool ret = true;
910
911 if (module) {
912 /* Note: here, we can fail to get a reference */
913 if (likely(module_is_live(module) &&
914 atomic_inc_not_zero(&module->refcnt) != 0))
915 trace_module_get(module, _RET_IP_);
916 else
917 ret = false;
918 }
919 return ret;
920 }
921 EXPORT_SYMBOL(try_module_get);
922
module_put(struct module * module)923 void module_put(struct module *module)
924 {
925 int ret;
926
927 if (module) {
928 ret = atomic_dec_if_positive(&module->refcnt);
929 WARN_ON(ret < 0); /* Failed to put refcount */
930 trace_module_put(module, _RET_IP_);
931 }
932 }
933 EXPORT_SYMBOL(module_put);
934
935 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)936 static inline void module_unload_free(struct module *mod)
937 {
938 }
939
ref_module(struct module * a,struct module * b)940 static int ref_module(struct module *a, struct module *b)
941 {
942 return strong_try_module_get(b);
943 }
944
module_unload_init(struct module * mod)945 static inline int module_unload_init(struct module *mod)
946 {
947 return 0;
948 }
949 #endif /* CONFIG_MODULE_UNLOAD */
950
module_flags_taint(unsigned long taints,char * buf)951 size_t module_flags_taint(unsigned long taints, char *buf)
952 {
953 size_t l = 0;
954 int i;
955
956 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
957 if (taint_flags[i].module && test_bit(i, &taints))
958 buf[l++] = taint_flags[i].c_true;
959 }
960
961 return l;
962 }
963
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)964 static ssize_t show_initstate(const struct module_attribute *mattr,
965 struct module_kobject *mk, char *buffer)
966 {
967 const char *state = "unknown";
968
969 switch (mk->mod->state) {
970 case MODULE_STATE_LIVE:
971 state = "live";
972 break;
973 case MODULE_STATE_COMING:
974 state = "coming";
975 break;
976 case MODULE_STATE_GOING:
977 state = "going";
978 break;
979 default:
980 BUG();
981 }
982 return sprintf(buffer, "%s\n", state);
983 }
984
985 static const struct module_attribute modinfo_initstate =
986 __ATTR(initstate, 0444, show_initstate, NULL);
987
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)988 static ssize_t store_uevent(const struct module_attribute *mattr,
989 struct module_kobject *mk,
990 const char *buffer, size_t count)
991 {
992 int rc;
993
994 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
995 return rc ? rc : count;
996 }
997
998 const struct module_attribute module_uevent =
999 __ATTR(uevent, 0200, NULL, store_uevent);
1000
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1001 static ssize_t show_coresize(const struct module_attribute *mattr,
1002 struct module_kobject *mk, char *buffer)
1003 {
1004 unsigned int size = mk->mod->mem[MOD_TEXT].size;
1005
1006 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
1007 for_class_mod_mem_type(type, core_data)
1008 size += mk->mod->mem[type].size;
1009 }
1010 return sprintf(buffer, "%u\n", size);
1011 }
1012
1013 static const struct module_attribute modinfo_coresize =
1014 __ATTR(coresize, 0444, show_coresize, NULL);
1015
1016 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1017 static ssize_t show_datasize(const struct module_attribute *mattr,
1018 struct module_kobject *mk, char *buffer)
1019 {
1020 unsigned int size = 0;
1021
1022 for_class_mod_mem_type(type, core_data)
1023 size += mk->mod->mem[type].size;
1024 return sprintf(buffer, "%u\n", size);
1025 }
1026
1027 static const struct module_attribute modinfo_datasize =
1028 __ATTR(datasize, 0444, show_datasize, NULL);
1029 #endif
1030
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1031 static ssize_t show_initsize(const struct module_attribute *mattr,
1032 struct module_kobject *mk, char *buffer)
1033 {
1034 unsigned int size = 0;
1035
1036 for_class_mod_mem_type(type, init)
1037 size += mk->mod->mem[type].size;
1038 return sprintf(buffer, "%u\n", size);
1039 }
1040
1041 static const struct module_attribute modinfo_initsize =
1042 __ATTR(initsize, 0444, show_initsize, NULL);
1043
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1044 static ssize_t show_taint(const struct module_attribute *mattr,
1045 struct module_kobject *mk, char *buffer)
1046 {
1047 size_t l;
1048
1049 l = module_flags_taint(mk->mod->taints, buffer);
1050 buffer[l++] = '\n';
1051 return l;
1052 }
1053
1054 static const struct module_attribute modinfo_taint =
1055 __ATTR(taint, 0444, show_taint, NULL);
1056
1057 const struct module_attribute *const modinfo_attrs[] = {
1058 &module_uevent,
1059 &modinfo_version,
1060 &modinfo_srcversion,
1061 &modinfo_initstate,
1062 &modinfo_coresize,
1063 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1064 &modinfo_datasize,
1065 #endif
1066 &modinfo_initsize,
1067 &modinfo_taint,
1068 #ifdef CONFIG_MODULE_UNLOAD
1069 &modinfo_refcnt,
1070 #endif
1071 NULL,
1072 };
1073
1074 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1075
1076 static const char vermagic[] = VERMAGIC_STRING;
1077
try_to_force_load(struct module * mod,const char * reason)1078 int try_to_force_load(struct module *mod, const char *reason)
1079 {
1080 #ifdef CONFIG_MODULE_FORCE_LOAD
1081 if (!test_taint(TAINT_FORCED_MODULE))
1082 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1083 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1084 return 0;
1085 #else
1086 return -ENOEXEC;
1087 #endif
1088 }
1089
1090 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1091 char *module_next_tag_pair(char *string, unsigned long *secsize)
1092 {
1093 /* Skip non-zero chars */
1094 while (string[0]) {
1095 string++;
1096 if ((*secsize)-- <= 1)
1097 return NULL;
1098 }
1099
1100 /* Skip any zero padding. */
1101 while (!string[0]) {
1102 string++;
1103 if ((*secsize)-- <= 1)
1104 return NULL;
1105 }
1106 return string;
1107 }
1108
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1109 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1110 char *prev)
1111 {
1112 char *p;
1113 unsigned int taglen = strlen(tag);
1114 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1115 unsigned long size = infosec->sh_size;
1116
1117 /*
1118 * get_modinfo() calls made before rewrite_section_headers()
1119 * must use sh_offset, as sh_addr isn't set!
1120 */
1121 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1122
1123 if (prev) {
1124 size -= prev - modinfo;
1125 modinfo = module_next_tag_pair(prev, &size);
1126 }
1127
1128 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1129 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1130 return p + taglen + 1;
1131 }
1132 return NULL;
1133 }
1134
get_modinfo(const struct load_info * info,const char * tag)1135 static char *get_modinfo(const struct load_info *info, const char *tag)
1136 {
1137 return get_next_modinfo(info, tag, NULL);
1138 }
1139
1140 /**
1141 * verify_module_namespace() - does @modname have access to this symbol's @namespace
1142 * @namespace: export symbol namespace
1143 * @modname: module name
1144 *
1145 * If @namespace is prefixed with "module:" to indicate it is a module namespace
1146 * then test if @modname matches any of the comma separated patterns.
1147 *
1148 * The patterns only support tail-glob.
1149 */
verify_module_namespace(const char * namespace,const char * modname)1150 static bool verify_module_namespace(const char *namespace, const char *modname)
1151 {
1152 size_t len, modlen = strlen(modname);
1153 const char *prefix = "module:";
1154 const char *sep;
1155 bool glob;
1156
1157 if (!strstarts(namespace, prefix))
1158 return false;
1159
1160 for (namespace += strlen(prefix); *namespace; namespace = sep) {
1161 sep = strchrnul(namespace, ',');
1162 len = sep - namespace;
1163
1164 glob = false;
1165 if (sep[-1] == '*') {
1166 len--;
1167 glob = true;
1168 }
1169
1170 if (*sep)
1171 sep++;
1172
1173 if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen))
1174 return true;
1175 }
1176
1177 return false;
1178 }
1179
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1180 static int verify_namespace_is_imported(const struct load_info *info,
1181 const struct kernel_symbol *sym,
1182 struct module *mod)
1183 {
1184 const char *namespace;
1185 char *imported_namespace;
1186
1187 namespace = kernel_symbol_namespace(sym);
1188 if (namespace && namespace[0]) {
1189
1190 if (verify_module_namespace(namespace, mod->name))
1191 return 0;
1192
1193 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1194 if (strcmp(namespace, imported_namespace) == 0)
1195 return 0;
1196 }
1197 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1198 pr_warn(
1199 #else
1200 pr_err(
1201 #endif
1202 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1203 mod->name, kernel_symbol_name(sym), namespace);
1204 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1205 return -EINVAL;
1206 #endif
1207 }
1208 return 0;
1209 }
1210
inherit_taint(struct module * mod,struct module * owner,const char * name)1211 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1212 {
1213 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1214 return true;
1215
1216 if (mod->using_gplonly_symbols) {
1217 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1218 mod->name, name, owner->name);
1219 return false;
1220 }
1221
1222 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1223 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1224 mod->name, name, owner->name);
1225 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1226 }
1227 return true;
1228 }
1229
1230 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1231 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1232 const struct load_info *info,
1233 const char *name,
1234 char ownername[])
1235 {
1236 struct find_symbol_arg fsa = {
1237 .name = name,
1238 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1239 .warn = true,
1240 };
1241 int err;
1242
1243 /*
1244 * The module_mutex should not be a heavily contended lock;
1245 * if we get the occasional sleep here, we'll go an extra iteration
1246 * in the wait_event_interruptible(), which is harmless.
1247 */
1248 sched_annotate_sleep();
1249 mutex_lock(&module_mutex);
1250 if (!find_symbol(&fsa))
1251 goto unlock;
1252
1253 if (fsa.license == GPL_ONLY)
1254 mod->using_gplonly_symbols = true;
1255
1256 if (!inherit_taint(mod, fsa.owner, name)) {
1257 fsa.sym = NULL;
1258 goto getname;
1259 }
1260
1261 if (!check_version(info, name, mod, fsa.crc)) {
1262 fsa.sym = ERR_PTR(-EINVAL);
1263 goto getname;
1264 }
1265
1266 err = verify_namespace_is_imported(info, fsa.sym, mod);
1267 if (err) {
1268 fsa.sym = ERR_PTR(err);
1269 goto getname;
1270 }
1271
1272 err = ref_module(mod, fsa.owner);
1273 if (err) {
1274 fsa.sym = ERR_PTR(err);
1275 goto getname;
1276 }
1277
1278 getname:
1279 /* We must make copy under the lock if we failed to get ref. */
1280 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1281 unlock:
1282 mutex_unlock(&module_mutex);
1283 return fsa.sym;
1284 }
1285
1286 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1287 resolve_symbol_wait(struct module *mod,
1288 const struct load_info *info,
1289 const char *name)
1290 {
1291 const struct kernel_symbol *ksym;
1292 char owner[MODULE_NAME_LEN];
1293
1294 if (wait_event_interruptible_timeout(module_wq,
1295 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1296 || PTR_ERR(ksym) != -EBUSY,
1297 30 * HZ) <= 0) {
1298 pr_warn("%s: gave up waiting for init of module %s.\n",
1299 mod->name, owner);
1300 }
1301 return ksym;
1302 }
1303
module_arch_cleanup(struct module * mod)1304 void __weak module_arch_cleanup(struct module *mod)
1305 {
1306 }
1307
module_arch_freeing_init(struct module * mod)1308 void __weak module_arch_freeing_init(struct module *mod)
1309 {
1310 }
1311
module_memory_alloc(struct module * mod,enum mod_mem_type type)1312 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1313 {
1314 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1315 enum execmem_type execmem_type;
1316 void *ptr;
1317
1318 mod->mem[type].size = size;
1319
1320 if (mod_mem_type_is_data(type))
1321 execmem_type = EXECMEM_MODULE_DATA;
1322 else
1323 execmem_type = EXECMEM_MODULE_TEXT;
1324
1325 ptr = execmem_alloc(execmem_type, size);
1326 if (!ptr)
1327 return -ENOMEM;
1328
1329 if (execmem_is_rox(execmem_type)) {
1330 int err = execmem_make_temp_rw(ptr, size);
1331
1332 if (err) {
1333 execmem_free(ptr);
1334 return -ENOMEM;
1335 }
1336
1337 mod->mem[type].is_rox = true;
1338 }
1339
1340 /*
1341 * The pointer to these blocks of memory are stored on the module
1342 * structure and we keep that around so long as the module is
1343 * around. We only free that memory when we unload the module.
1344 * Just mark them as not being a leak then. The .init* ELF
1345 * sections *do* get freed after boot so we *could* treat them
1346 * slightly differently with kmemleak_ignore() and only grey
1347 * them out as they work as typical memory allocations which
1348 * *do* eventually get freed, but let's just keep things simple
1349 * and avoid *any* false positives.
1350 */
1351 if (!mod->mem[type].is_rox)
1352 kmemleak_not_leak(ptr);
1353
1354 memset(ptr, 0, size);
1355 mod->mem[type].base = ptr;
1356
1357 return 0;
1358 }
1359
module_memory_restore_rox(struct module * mod)1360 static void module_memory_restore_rox(struct module *mod)
1361 {
1362 for_class_mod_mem_type(type, text) {
1363 struct module_memory *mem = &mod->mem[type];
1364
1365 if (mem->is_rox)
1366 execmem_restore_rox(mem->base, mem->size);
1367 }
1368 }
1369
module_memory_free(struct module * mod,enum mod_mem_type type)1370 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1371 {
1372 struct module_memory *mem = &mod->mem[type];
1373
1374 execmem_free(mem->base);
1375 }
1376
free_mod_mem(struct module * mod)1377 static void free_mod_mem(struct module *mod)
1378 {
1379 for_each_mod_mem_type(type) {
1380 struct module_memory *mod_mem = &mod->mem[type];
1381
1382 if (type == MOD_DATA)
1383 continue;
1384
1385 /* Free lock-classes; relies on the preceding sync_rcu(). */
1386 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1387 if (mod_mem->size)
1388 module_memory_free(mod, type);
1389 }
1390
1391 /* MOD_DATA hosts mod, so free it at last */
1392 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1393 module_memory_free(mod, MOD_DATA);
1394 }
1395
1396 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1397 static void free_module(struct module *mod)
1398 {
1399 trace_module_free(mod);
1400
1401 codetag_unload_module(mod);
1402
1403 mod_sysfs_teardown(mod);
1404
1405 /*
1406 * We leave it in list to prevent duplicate loads, but make sure
1407 * that noone uses it while it's being deconstructed.
1408 */
1409 mutex_lock(&module_mutex);
1410 mod->state = MODULE_STATE_UNFORMED;
1411 mutex_unlock(&module_mutex);
1412
1413 /* Arch-specific cleanup. */
1414 module_arch_cleanup(mod);
1415
1416 /* Module unload stuff */
1417 module_unload_free(mod);
1418
1419 /* Free any allocated parameters. */
1420 destroy_params(mod->kp, mod->num_kp);
1421
1422 if (is_livepatch_module(mod))
1423 free_module_elf(mod);
1424
1425 /* Now we can delete it from the lists */
1426 mutex_lock(&module_mutex);
1427 /* Unlink carefully: kallsyms could be walking list. */
1428 list_del_rcu(&mod->list);
1429 mod_tree_remove(mod);
1430 /* Remove this module from bug list, this uses list_del_rcu */
1431 module_bug_cleanup(mod);
1432 /* Wait for RCU synchronizing before releasing mod->list and buglist. */
1433 synchronize_rcu();
1434 if (try_add_tainted_module(mod))
1435 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1436 mod->name);
1437 mutex_unlock(&module_mutex);
1438
1439 /* This may be empty, but that's OK */
1440 module_arch_freeing_init(mod);
1441 kfree(mod->args);
1442 percpu_modfree(mod);
1443
1444 free_mod_mem(mod);
1445 }
1446
__symbol_get(const char * symbol)1447 void *__symbol_get(const char *symbol)
1448 {
1449 struct find_symbol_arg fsa = {
1450 .name = symbol,
1451 .gplok = true,
1452 .warn = true,
1453 };
1454
1455 scoped_guard(rcu) {
1456 if (!find_symbol(&fsa))
1457 return NULL;
1458 if (fsa.license != GPL_ONLY) {
1459 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1460 symbol);
1461 return NULL;
1462 }
1463 if (strong_try_module_get(fsa.owner))
1464 return NULL;
1465 }
1466 return (void *)kernel_symbol_value(fsa.sym);
1467 }
1468 EXPORT_SYMBOL_GPL(__symbol_get);
1469
1470 /*
1471 * Ensure that an exported symbol [global namespace] does not already exist
1472 * in the kernel or in some other module's exported symbol table.
1473 *
1474 * You must hold the module_mutex.
1475 */
verify_exported_symbols(struct module * mod)1476 static int verify_exported_symbols(struct module *mod)
1477 {
1478 unsigned int i;
1479 const struct kernel_symbol *s;
1480 struct {
1481 const struct kernel_symbol *sym;
1482 unsigned int num;
1483 } arr[] = {
1484 { mod->syms, mod->num_syms },
1485 { mod->gpl_syms, mod->num_gpl_syms },
1486 };
1487
1488 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1489 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1490 struct find_symbol_arg fsa = {
1491 .name = kernel_symbol_name(s),
1492 .gplok = true,
1493 };
1494 if (find_symbol(&fsa)) {
1495 pr_err("%s: exports duplicate symbol %s"
1496 " (owned by %s)\n",
1497 mod->name, kernel_symbol_name(s),
1498 module_name(fsa.owner));
1499 return -ENOEXEC;
1500 }
1501 }
1502 }
1503 return 0;
1504 }
1505
ignore_undef_symbol(Elf_Half emachine,const char * name)1506 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1507 {
1508 /*
1509 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1510 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1511 * i386 has a similar problem but may not deserve a fix.
1512 *
1513 * If we ever have to ignore many symbols, consider refactoring the code to
1514 * only warn if referenced by a relocation.
1515 */
1516 if (emachine == EM_386 || emachine == EM_X86_64)
1517 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1518 return false;
1519 }
1520
1521 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1522 static int simplify_symbols(struct module *mod, const struct load_info *info)
1523 {
1524 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1525 Elf_Sym *sym = (void *)symsec->sh_addr;
1526 unsigned long secbase;
1527 unsigned int i;
1528 int ret = 0;
1529 const struct kernel_symbol *ksym;
1530
1531 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1532 const char *name = info->strtab + sym[i].st_name;
1533
1534 switch (sym[i].st_shndx) {
1535 case SHN_COMMON:
1536 /* Ignore common symbols */
1537 if (!strncmp(name, "__gnu_lto", 9))
1538 break;
1539
1540 /*
1541 * We compiled with -fno-common. These are not
1542 * supposed to happen.
1543 */
1544 pr_debug("Common symbol: %s\n", name);
1545 pr_warn("%s: please compile with -fno-common\n",
1546 mod->name);
1547 ret = -ENOEXEC;
1548 break;
1549
1550 case SHN_ABS:
1551 /* Don't need to do anything */
1552 pr_debug("Absolute symbol: 0x%08lx %s\n",
1553 (long)sym[i].st_value, name);
1554 break;
1555
1556 case SHN_LIVEPATCH:
1557 /* Livepatch symbols are resolved by livepatch */
1558 break;
1559
1560 case SHN_UNDEF:
1561 ksym = resolve_symbol_wait(mod, info, name);
1562 /* Ok if resolved. */
1563 if (ksym && !IS_ERR(ksym)) {
1564 sym[i].st_value = kernel_symbol_value(ksym);
1565 break;
1566 }
1567
1568 /* Ok if weak or ignored. */
1569 if (!ksym &&
1570 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1571 ignore_undef_symbol(info->hdr->e_machine, name)))
1572 break;
1573
1574 ret = PTR_ERR(ksym) ?: -ENOENT;
1575 pr_warn("%s: Unknown symbol %s (err %d)\n",
1576 mod->name, name, ret);
1577 break;
1578
1579 default:
1580 /* Divert to percpu allocation if a percpu var. */
1581 if (sym[i].st_shndx == info->index.pcpu)
1582 secbase = (unsigned long)mod_percpu(mod);
1583 else
1584 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1585 sym[i].st_value += secbase;
1586 break;
1587 }
1588 }
1589
1590 return ret;
1591 }
1592
apply_relocations(struct module * mod,const struct load_info * info)1593 static int apply_relocations(struct module *mod, const struct load_info *info)
1594 {
1595 unsigned int i;
1596 int err = 0;
1597
1598 /* Now do relocations. */
1599 for (i = 1; i < info->hdr->e_shnum; i++) {
1600 unsigned int infosec = info->sechdrs[i].sh_info;
1601
1602 /* Not a valid relocation section? */
1603 if (infosec >= info->hdr->e_shnum)
1604 continue;
1605
1606 /*
1607 * Don't bother with non-allocated sections.
1608 * An exception is the percpu section, which has separate allocations
1609 * for individual CPUs. We relocate the percpu section in the initial
1610 * ELF template and subsequently copy it to the per-CPU destinations.
1611 */
1612 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) &&
1613 (!infosec || infosec != info->index.pcpu))
1614 continue;
1615
1616 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1617 err = klp_apply_section_relocs(mod, info->sechdrs,
1618 info->secstrings,
1619 info->strtab,
1620 info->index.sym, i,
1621 NULL);
1622 else if (info->sechdrs[i].sh_type == SHT_REL)
1623 err = apply_relocate(info->sechdrs, info->strtab,
1624 info->index.sym, i, mod);
1625 else if (info->sechdrs[i].sh_type == SHT_RELA)
1626 err = apply_relocate_add(info->sechdrs, info->strtab,
1627 info->index.sym, i, mod);
1628 if (err < 0)
1629 break;
1630 }
1631 return err;
1632 }
1633
1634 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1635 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1636 unsigned int section)
1637 {
1638 /* default implementation just returns zero */
1639 return 0;
1640 }
1641
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1642 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1643 Elf_Shdr *sechdr, unsigned int section)
1644 {
1645 long offset;
1646 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1647
1648 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1649 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1650 mod->mem[type].size = offset + sechdr->sh_size;
1651
1652 WARN_ON_ONCE(offset & mask);
1653 return offset | mask;
1654 }
1655
module_init_layout_section(const char * sname)1656 bool module_init_layout_section(const char *sname)
1657 {
1658 #ifndef CONFIG_MODULE_UNLOAD
1659 if (module_exit_section(sname))
1660 return true;
1661 #endif
1662 return module_init_section(sname);
1663 }
1664
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1665 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1666 {
1667 unsigned int m, i;
1668
1669 /*
1670 * { Mask of required section header flags,
1671 * Mask of excluded section header flags }
1672 */
1673 static const unsigned long masks[][2] = {
1674 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1675 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1676 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1677 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1678 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1679 };
1680 static const int core_m_to_mem_type[] = {
1681 MOD_TEXT,
1682 MOD_RODATA,
1683 MOD_RO_AFTER_INIT,
1684 MOD_DATA,
1685 MOD_DATA,
1686 };
1687 static const int init_m_to_mem_type[] = {
1688 MOD_INIT_TEXT,
1689 MOD_INIT_RODATA,
1690 MOD_INVALID,
1691 MOD_INIT_DATA,
1692 MOD_INIT_DATA,
1693 };
1694
1695 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1696 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1697
1698 for (i = 0; i < info->hdr->e_shnum; ++i) {
1699 Elf_Shdr *s = &info->sechdrs[i];
1700 const char *sname = info->secstrings + s->sh_name;
1701
1702 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1703 || (s->sh_flags & masks[m][1])
1704 || s->sh_entsize != ~0UL
1705 || is_init != module_init_layout_section(sname))
1706 continue;
1707
1708 if (WARN_ON_ONCE(type == MOD_INVALID))
1709 continue;
1710
1711 /*
1712 * Do not allocate codetag memory as we load it into
1713 * preallocated contiguous memory.
1714 */
1715 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1716 /*
1717 * s->sh_entsize won't be used but populate the
1718 * type field to avoid confusion.
1719 */
1720 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1721 << SH_ENTSIZE_TYPE_SHIFT;
1722 continue;
1723 }
1724
1725 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1726 pr_debug("\t%s\n", sname);
1727 }
1728 }
1729 }
1730
1731 /*
1732 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1733 * might -- code, read-only data, read-write data, small data. Tally
1734 * sizes, and place the offsets into sh_entsize fields: high bit means it
1735 * belongs in init.
1736 */
layout_sections(struct module * mod,struct load_info * info)1737 static void layout_sections(struct module *mod, struct load_info *info)
1738 {
1739 unsigned int i;
1740
1741 for (i = 0; i < info->hdr->e_shnum; i++)
1742 info->sechdrs[i].sh_entsize = ~0UL;
1743
1744 pr_debug("Core section allocation order for %s:\n", mod->name);
1745 __layout_sections(mod, info, false);
1746
1747 pr_debug("Init section allocation order for %s:\n", mod->name);
1748 __layout_sections(mod, info, true);
1749 }
1750
module_license_taint_check(struct module * mod,const char * license)1751 static void module_license_taint_check(struct module *mod, const char *license)
1752 {
1753 if (!license)
1754 license = "unspecified";
1755
1756 if (!license_is_gpl_compatible(license)) {
1757 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1758 pr_warn("%s: module license '%s' taints kernel.\n",
1759 mod->name, license);
1760 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1761 LOCKDEP_NOW_UNRELIABLE);
1762 }
1763 }
1764
setup_modinfo(struct module * mod,struct load_info * info)1765 static int setup_modinfo(struct module *mod, struct load_info *info)
1766 {
1767 const struct module_attribute *attr;
1768 char *imported_namespace;
1769 int i;
1770
1771 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1772 if (attr->setup)
1773 attr->setup(mod, get_modinfo(info, attr->attr.name));
1774 }
1775
1776 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1777 /*
1778 * 'module:' prefixed namespaces are implicit, disallow
1779 * explicit imports.
1780 */
1781 if (strstarts(imported_namespace, "module:")) {
1782 pr_err("%s: module tries to import module namespace: %s\n",
1783 mod->name, imported_namespace);
1784 return -EPERM;
1785 }
1786 }
1787
1788 return 0;
1789 }
1790
free_modinfo(struct module * mod)1791 static void free_modinfo(struct module *mod)
1792 {
1793 const struct module_attribute *attr;
1794 int i;
1795
1796 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1797 if (attr->free)
1798 attr->free(mod);
1799 }
1800 }
1801
module_init_section(const char * name)1802 bool __weak module_init_section(const char *name)
1803 {
1804 return strstarts(name, ".init");
1805 }
1806
module_exit_section(const char * name)1807 bool __weak module_exit_section(const char *name)
1808 {
1809 return strstarts(name, ".exit");
1810 }
1811
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1812 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1813 {
1814 #if defined(CONFIG_64BIT)
1815 unsigned long long secend;
1816 #else
1817 unsigned long secend;
1818 #endif
1819
1820 /*
1821 * Check for both overflow and offset/size being
1822 * too large.
1823 */
1824 secend = shdr->sh_offset + shdr->sh_size;
1825 if (secend < shdr->sh_offset || secend > info->len)
1826 return -ENOEXEC;
1827
1828 return 0;
1829 }
1830
1831 /**
1832 * elf_validity_ehdr() - Checks an ELF header for module validity
1833 * @info: Load info containing the ELF header to check
1834 *
1835 * Checks whether an ELF header could belong to a valid module. Checks:
1836 *
1837 * * ELF header is within the data the user provided
1838 * * ELF magic is present
1839 * * It is relocatable (not final linked, not core file, etc.)
1840 * * The header's machine type matches what the architecture expects.
1841 * * Optional arch-specific hook for other properties
1842 * - module_elf_check_arch() is currently only used by PPC to check
1843 * ELF ABI version, but may be used by others in the future.
1844 *
1845 * Return: %0 if valid, %-ENOEXEC on failure.
1846 */
elf_validity_ehdr(const struct load_info * info)1847 static int elf_validity_ehdr(const struct load_info *info)
1848 {
1849 if (info->len < sizeof(*(info->hdr))) {
1850 pr_err("Invalid ELF header len %lu\n", info->len);
1851 return -ENOEXEC;
1852 }
1853 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1854 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1855 return -ENOEXEC;
1856 }
1857 if (info->hdr->e_type != ET_REL) {
1858 pr_err("Invalid ELF header type: %u != %u\n",
1859 info->hdr->e_type, ET_REL);
1860 return -ENOEXEC;
1861 }
1862 if (!elf_check_arch(info->hdr)) {
1863 pr_err("Invalid architecture in ELF header: %u\n",
1864 info->hdr->e_machine);
1865 return -ENOEXEC;
1866 }
1867 if (!module_elf_check_arch(info->hdr)) {
1868 pr_err("Invalid module architecture in ELF header: %u\n",
1869 info->hdr->e_machine);
1870 return -ENOEXEC;
1871 }
1872 return 0;
1873 }
1874
1875 /**
1876 * elf_validity_cache_sechdrs() - Cache section headers if valid
1877 * @info: Load info to compute section headers from
1878 *
1879 * Checks:
1880 *
1881 * * ELF header is valid (see elf_validity_ehdr())
1882 * * Section headers are the size we expect
1883 * * Section array fits in the user provided data
1884 * * Section index 0 is NULL
1885 * * Section contents are inbounds
1886 *
1887 * Then updates @info with a &load_info->sechdrs pointer if valid.
1888 *
1889 * Return: %0 if valid, negative error code if validation failed.
1890 */
elf_validity_cache_sechdrs(struct load_info * info)1891 static int elf_validity_cache_sechdrs(struct load_info *info)
1892 {
1893 Elf_Shdr *sechdrs;
1894 Elf_Shdr *shdr;
1895 int i;
1896 int err;
1897
1898 err = elf_validity_ehdr(info);
1899 if (err < 0)
1900 return err;
1901
1902 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1903 pr_err("Invalid ELF section header size\n");
1904 return -ENOEXEC;
1905 }
1906
1907 /*
1908 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1909 * known and small. So e_shnum * sizeof(Elf_Shdr)
1910 * will not overflow unsigned long on any platform.
1911 */
1912 if (info->hdr->e_shoff >= info->len
1913 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1914 info->len - info->hdr->e_shoff)) {
1915 pr_err("Invalid ELF section header overflow\n");
1916 return -ENOEXEC;
1917 }
1918
1919 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1920
1921 /*
1922 * The code assumes that section 0 has a length of zero and
1923 * an addr of zero, so check for it.
1924 */
1925 if (sechdrs[0].sh_type != SHT_NULL
1926 || sechdrs[0].sh_size != 0
1927 || sechdrs[0].sh_addr != 0) {
1928 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1929 sechdrs[0].sh_type);
1930 return -ENOEXEC;
1931 }
1932
1933 /* Validate contents are inbounds */
1934 for (i = 1; i < info->hdr->e_shnum; i++) {
1935 shdr = &sechdrs[i];
1936 switch (shdr->sh_type) {
1937 case SHT_NULL:
1938 case SHT_NOBITS:
1939 /* No contents, offset/size don't mean anything */
1940 continue;
1941 default:
1942 err = validate_section_offset(info, shdr);
1943 if (err < 0) {
1944 pr_err("Invalid ELF section in module (section %u type %u)\n",
1945 i, shdr->sh_type);
1946 return err;
1947 }
1948 }
1949 }
1950
1951 info->sechdrs = sechdrs;
1952
1953 return 0;
1954 }
1955
1956 /**
1957 * elf_validity_cache_secstrings() - Caches section names if valid
1958 * @info: Load info to cache section names from. Must have valid sechdrs.
1959 *
1960 * Specifically checks:
1961 *
1962 * * Section name table index is inbounds of section headers
1963 * * Section name table is not empty
1964 * * Section name table is NUL terminated
1965 * * All section name offsets are inbounds of the section
1966 *
1967 * Then updates @info with a &load_info->secstrings pointer if valid.
1968 *
1969 * Return: %0 if valid, negative error code if validation failed.
1970 */
elf_validity_cache_secstrings(struct load_info * info)1971 static int elf_validity_cache_secstrings(struct load_info *info)
1972 {
1973 Elf_Shdr *strhdr, *shdr;
1974 char *secstrings;
1975 int i;
1976
1977 /*
1978 * Verify if the section name table index is valid.
1979 */
1980 if (info->hdr->e_shstrndx == SHN_UNDEF
1981 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1982 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1983 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1984 info->hdr->e_shnum);
1985 return -ENOEXEC;
1986 }
1987
1988 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1989
1990 /*
1991 * The section name table must be NUL-terminated, as required
1992 * by the spec. This makes strcmp and pr_* calls that access
1993 * strings in the section safe.
1994 */
1995 secstrings = (void *)info->hdr + strhdr->sh_offset;
1996 if (strhdr->sh_size == 0) {
1997 pr_err("empty section name table\n");
1998 return -ENOEXEC;
1999 }
2000 if (secstrings[strhdr->sh_size - 1] != '\0') {
2001 pr_err("ELF Spec violation: section name table isn't null terminated\n");
2002 return -ENOEXEC;
2003 }
2004
2005 for (i = 0; i < info->hdr->e_shnum; i++) {
2006 shdr = &info->sechdrs[i];
2007 /* SHT_NULL means sh_name has an undefined value */
2008 if (shdr->sh_type == SHT_NULL)
2009 continue;
2010 if (shdr->sh_name >= strhdr->sh_size) {
2011 pr_err("Invalid ELF section name in module (section %u type %u)\n",
2012 i, shdr->sh_type);
2013 return -ENOEXEC;
2014 }
2015 }
2016
2017 info->secstrings = secstrings;
2018 return 0;
2019 }
2020
2021 /**
2022 * elf_validity_cache_index_info() - Validate and cache modinfo section
2023 * @info: Load info to populate the modinfo index on.
2024 * Must have &load_info->sechdrs and &load_info->secstrings populated
2025 *
2026 * Checks that if there is a .modinfo section, it is unique.
2027 * Then, it caches its index in &load_info->index.info.
2028 * Finally, it tries to populate the name to improve error messages.
2029 *
2030 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
2031 */
elf_validity_cache_index_info(struct load_info * info)2032 static int elf_validity_cache_index_info(struct load_info *info)
2033 {
2034 int info_idx;
2035
2036 info_idx = find_any_unique_sec(info, ".modinfo");
2037
2038 if (info_idx == 0)
2039 /* Early return, no .modinfo */
2040 return 0;
2041
2042 if (info_idx < 0) {
2043 pr_err("Only one .modinfo section must exist.\n");
2044 return -ENOEXEC;
2045 }
2046
2047 info->index.info = info_idx;
2048 /* Try to find a name early so we can log errors with a module name */
2049 info->name = get_modinfo(info, "name");
2050
2051 return 0;
2052 }
2053
2054 /**
2055 * elf_validity_cache_index_mod() - Validates and caches this_module section
2056 * @info: Load info to cache this_module on.
2057 * Must have &load_info->sechdrs and &load_info->secstrings populated
2058 *
2059 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
2060 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
2061 * to &__this_module properly. The kernel's modpost declares it on each
2062 * modules's *.mod.c file. If the struct module of the kernel changes a full
2063 * kernel rebuild is required.
2064 *
2065 * We have a few expectations for this special section, this function
2066 * validates all this for us:
2067 *
2068 * * The section has contents
2069 * * The section is unique
2070 * * We expect the kernel to always have to allocate it: SHF_ALLOC
2071 * * The section size must match the kernel's run time's struct module
2072 * size
2073 *
2074 * If all checks pass, the index will be cached in &load_info->index.mod
2075 *
2076 * Return: %0 on validation success, %-ENOEXEC on failure
2077 */
elf_validity_cache_index_mod(struct load_info * info)2078 static int elf_validity_cache_index_mod(struct load_info *info)
2079 {
2080 Elf_Shdr *shdr;
2081 int mod_idx;
2082
2083 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
2084 if (mod_idx <= 0) {
2085 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
2086 info->name ?: "(missing .modinfo section or name field)");
2087 return -ENOEXEC;
2088 }
2089
2090 shdr = &info->sechdrs[mod_idx];
2091
2092 if (shdr->sh_type == SHT_NOBITS) {
2093 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
2094 info->name ?: "(missing .modinfo section or name field)");
2095 return -ENOEXEC;
2096 }
2097
2098 if (!(shdr->sh_flags & SHF_ALLOC)) {
2099 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2100 info->name ?: "(missing .modinfo section or name field)");
2101 return -ENOEXEC;
2102 }
2103
2104 if (shdr->sh_size != sizeof(struct module)) {
2105 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2106 info->name ?: "(missing .modinfo section or name field)");
2107 return -ENOEXEC;
2108 }
2109
2110 info->index.mod = mod_idx;
2111
2112 return 0;
2113 }
2114
2115 /**
2116 * elf_validity_cache_index_sym() - Validate and cache symtab index
2117 * @info: Load info to cache symtab index in.
2118 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2119 *
2120 * Checks that there is exactly one symbol table, then caches its index in
2121 * &load_info->index.sym.
2122 *
2123 * Return: %0 if valid, %-ENOEXEC on failure.
2124 */
elf_validity_cache_index_sym(struct load_info * info)2125 static int elf_validity_cache_index_sym(struct load_info *info)
2126 {
2127 unsigned int sym_idx;
2128 unsigned int num_sym_secs = 0;
2129 int i;
2130
2131 for (i = 1; i < info->hdr->e_shnum; i++) {
2132 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2133 num_sym_secs++;
2134 sym_idx = i;
2135 }
2136 }
2137
2138 if (num_sym_secs != 1) {
2139 pr_warn("%s: module has no symbols (stripped?)\n",
2140 info->name ?: "(missing .modinfo section or name field)");
2141 return -ENOEXEC;
2142 }
2143
2144 info->index.sym = sym_idx;
2145
2146 return 0;
2147 }
2148
2149 /**
2150 * elf_validity_cache_index_str() - Validate and cache strtab index
2151 * @info: Load info to cache strtab index in.
2152 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2153 * Must have &load_info->index.sym populated.
2154 *
2155 * Looks at the symbol table's associated string table, makes sure it is
2156 * in-bounds, and caches it.
2157 *
2158 * Return: %0 if valid, %-ENOEXEC on failure.
2159 */
elf_validity_cache_index_str(struct load_info * info)2160 static int elf_validity_cache_index_str(struct load_info *info)
2161 {
2162 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2163
2164 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2165 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2166 str_idx, str_idx, info->hdr->e_shnum);
2167 return -ENOEXEC;
2168 }
2169
2170 info->index.str = str_idx;
2171 return 0;
2172 }
2173
2174 /**
2175 * elf_validity_cache_index_versions() - Validate and cache version indices
2176 * @info: Load info to cache version indices in.
2177 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2178 * @flags: Load flags, relevant to suppress version loading, see
2179 * uapi/linux/module.h
2180 *
2181 * If we're ignoring modversions based on @flags, zero all version indices
2182 * and return validity. Othewrise check:
2183 *
2184 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2185 * * There is a name present for every crc
2186 *
2187 * Then populate:
2188 *
2189 * * &load_info->index.vers
2190 * * &load_info->index.vers_ext_crc
2191 * * &load_info->index.vers_ext_names
2192 *
2193 * if present.
2194 *
2195 * Return: %0 if valid, %-ENOEXEC on failure.
2196 */
elf_validity_cache_index_versions(struct load_info * info,int flags)2197 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2198 {
2199 unsigned int vers_ext_crc;
2200 unsigned int vers_ext_name;
2201 size_t crc_count;
2202 size_t remaining_len;
2203 size_t name_size;
2204 char *name;
2205
2206 /* If modversions were suppressed, pretend we didn't find any */
2207 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2208 info->index.vers = 0;
2209 info->index.vers_ext_crc = 0;
2210 info->index.vers_ext_name = 0;
2211 return 0;
2212 }
2213
2214 vers_ext_crc = find_sec(info, "__version_ext_crcs");
2215 vers_ext_name = find_sec(info, "__version_ext_names");
2216
2217 /* If we have one field, we must have the other */
2218 if (!!vers_ext_crc != !!vers_ext_name) {
2219 pr_err("extended version crc+name presence does not match");
2220 return -ENOEXEC;
2221 }
2222
2223 /*
2224 * If we have extended version information, we should have the same
2225 * number of entries in every section.
2226 */
2227 if (vers_ext_crc) {
2228 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2229 name = (void *)info->hdr +
2230 info->sechdrs[vers_ext_name].sh_offset;
2231 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2232
2233 while (crc_count--) {
2234 name_size = strnlen(name, remaining_len) + 1;
2235 if (name_size > remaining_len) {
2236 pr_err("more extended version crcs than names");
2237 return -ENOEXEC;
2238 }
2239 remaining_len -= name_size;
2240 name += name_size;
2241 }
2242 }
2243
2244 info->index.vers = find_sec(info, "__versions");
2245 info->index.vers_ext_crc = vers_ext_crc;
2246 info->index.vers_ext_name = vers_ext_name;
2247 return 0;
2248 }
2249
2250 /**
2251 * elf_validity_cache_index() - Resolve, validate, cache section indices
2252 * @info: Load info to read from and update.
2253 * &load_info->sechdrs and &load_info->secstrings must be populated.
2254 * @flags: Load flags, relevant to suppress version loading, see
2255 * uapi/linux/module.h
2256 *
2257 * Populates &load_info->index, validating as it goes.
2258 * See child functions for per-field validation:
2259 *
2260 * * elf_validity_cache_index_info()
2261 * * elf_validity_cache_index_mod()
2262 * * elf_validity_cache_index_sym()
2263 * * elf_validity_cache_index_str()
2264 * * elf_validity_cache_index_versions()
2265 *
2266 * If CONFIG_SMP is enabled, load the percpu section by name with no
2267 * validation.
2268 *
2269 * Return: 0 on success, negative error code if an index failed validation.
2270 */
elf_validity_cache_index(struct load_info * info,int flags)2271 static int elf_validity_cache_index(struct load_info *info, int flags)
2272 {
2273 int err;
2274
2275 err = elf_validity_cache_index_info(info);
2276 if (err < 0)
2277 return err;
2278 err = elf_validity_cache_index_mod(info);
2279 if (err < 0)
2280 return err;
2281 err = elf_validity_cache_index_sym(info);
2282 if (err < 0)
2283 return err;
2284 err = elf_validity_cache_index_str(info);
2285 if (err < 0)
2286 return err;
2287 err = elf_validity_cache_index_versions(info, flags);
2288 if (err < 0)
2289 return err;
2290
2291 info->index.pcpu = find_pcpusec(info);
2292
2293 return 0;
2294 }
2295
2296 /**
2297 * elf_validity_cache_strtab() - Validate and cache symbol string table
2298 * @info: Load info to read from and update.
2299 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2300 * Must have &load_info->index populated.
2301 *
2302 * Checks:
2303 *
2304 * * The string table is not empty.
2305 * * The string table starts and ends with NUL (required by ELF spec).
2306 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2307 * string table.
2308 *
2309 * And caches the pointer as &load_info->strtab in @info.
2310 *
2311 * Return: 0 on success, negative error code if a check failed.
2312 */
elf_validity_cache_strtab(struct load_info * info)2313 static int elf_validity_cache_strtab(struct load_info *info)
2314 {
2315 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2316 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2317 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2318 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2319 int i;
2320
2321 if (str_shdr->sh_size == 0) {
2322 pr_err("empty symbol string table\n");
2323 return -ENOEXEC;
2324 }
2325 if (strtab[0] != '\0') {
2326 pr_err("symbol string table missing leading NUL\n");
2327 return -ENOEXEC;
2328 }
2329 if (strtab[str_shdr->sh_size - 1] != '\0') {
2330 pr_err("symbol string table isn't NUL terminated\n");
2331 return -ENOEXEC;
2332 }
2333
2334 /*
2335 * Now that we know strtab is correctly structured, check symbol
2336 * starts are inbounds before they're used later.
2337 */
2338 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2339 if (syms[i].st_name >= str_shdr->sh_size) {
2340 pr_err("symbol name out of bounds in string table");
2341 return -ENOEXEC;
2342 }
2343 }
2344
2345 info->strtab = strtab;
2346 return 0;
2347 }
2348
2349 /*
2350 * Check userspace passed ELF module against our expectations, and cache
2351 * useful variables for further processing as we go.
2352 *
2353 * This does basic validity checks against section offsets and sizes, the
2354 * section name string table, and the indices used for it (sh_name).
2355 *
2356 * As a last step, since we're already checking the ELF sections we cache
2357 * useful variables which will be used later for our convenience:
2358 *
2359 * o pointers to section headers
2360 * o cache the modinfo symbol section
2361 * o cache the string symbol section
2362 * o cache the module section
2363 *
2364 * As a last step we set info->mod to the temporary copy of the module in
2365 * info->hdr. The final one will be allocated in move_module(). Any
2366 * modifications we make to our copy of the module will be carried over
2367 * to the final minted module.
2368 */
elf_validity_cache_copy(struct load_info * info,int flags)2369 static int elf_validity_cache_copy(struct load_info *info, int flags)
2370 {
2371 int err;
2372
2373 err = elf_validity_cache_sechdrs(info);
2374 if (err < 0)
2375 return err;
2376 err = elf_validity_cache_secstrings(info);
2377 if (err < 0)
2378 return err;
2379 err = elf_validity_cache_index(info, flags);
2380 if (err < 0)
2381 return err;
2382 err = elf_validity_cache_strtab(info);
2383 if (err < 0)
2384 return err;
2385
2386 /* This is temporary: point mod into copy of data. */
2387 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2388
2389 /*
2390 * If we didn't load the .modinfo 'name' field earlier, fall back to
2391 * on-disk struct mod 'name' field.
2392 */
2393 if (!info->name)
2394 info->name = info->mod->name;
2395
2396 return 0;
2397 }
2398
2399 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2400
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2401 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2402 {
2403 do {
2404 unsigned long n = min(len, COPY_CHUNK_SIZE);
2405
2406 if (copy_from_user(dst, usrc, n) != 0)
2407 return -EFAULT;
2408 cond_resched();
2409 dst += n;
2410 usrc += n;
2411 len -= n;
2412 } while (len);
2413 return 0;
2414 }
2415
check_modinfo_livepatch(struct module * mod,struct load_info * info)2416 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2417 {
2418 if (!get_modinfo(info, "livepatch"))
2419 /* Nothing more to do */
2420 return 0;
2421
2422 if (set_livepatch_module(mod))
2423 return 0;
2424
2425 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2426 mod->name);
2427 return -ENOEXEC;
2428 }
2429
check_modinfo_retpoline(struct module * mod,struct load_info * info)2430 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2431 {
2432 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2433 return;
2434
2435 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2436 mod->name);
2437 }
2438
2439 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2440 static int copy_module_from_user(const void __user *umod, unsigned long len,
2441 struct load_info *info)
2442 {
2443 int err;
2444
2445 info->len = len;
2446 if (info->len < sizeof(*(info->hdr)))
2447 return -ENOEXEC;
2448
2449 err = security_kernel_load_data(LOADING_MODULE, true);
2450 if (err)
2451 return err;
2452
2453 /* Suck in entire file: we'll want most of it. */
2454 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2455 if (!info->hdr)
2456 return -ENOMEM;
2457
2458 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2459 err = -EFAULT;
2460 goto out;
2461 }
2462
2463 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2464 LOADING_MODULE, "init_module");
2465 out:
2466 if (err)
2467 vfree(info->hdr);
2468
2469 return err;
2470 }
2471
free_copy(struct load_info * info,int flags)2472 static void free_copy(struct load_info *info, int flags)
2473 {
2474 if (flags & MODULE_INIT_COMPRESSED_FILE)
2475 module_decompress_cleanup(info);
2476 else
2477 vfree(info->hdr);
2478 }
2479
rewrite_section_headers(struct load_info * info,int flags)2480 static int rewrite_section_headers(struct load_info *info, int flags)
2481 {
2482 unsigned int i;
2483
2484 /* This should always be true, but let's be sure. */
2485 info->sechdrs[0].sh_addr = 0;
2486
2487 for (i = 1; i < info->hdr->e_shnum; i++) {
2488 Elf_Shdr *shdr = &info->sechdrs[i];
2489
2490 /*
2491 * Mark all sections sh_addr with their address in the
2492 * temporary image.
2493 */
2494 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2495
2496 }
2497
2498 /* Track but don't keep modinfo and version sections. */
2499 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2500 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2501 ~(unsigned long)SHF_ALLOC;
2502 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2503 ~(unsigned long)SHF_ALLOC;
2504 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2505
2506 return 0;
2507 }
2508
2509 static const char *const module_license_offenders[] = {
2510 /* driverloader was caught wrongly pretending to be under GPL */
2511 "driverloader",
2512
2513 /* lve claims to be GPL but upstream won't provide source */
2514 "lve",
2515 };
2516
2517 /*
2518 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2519 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2520 {
2521 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2522 size_t i;
2523
2524 if (!get_modinfo(info, "intree")) {
2525 if (!test_taint(TAINT_OOT_MODULE))
2526 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2527 mod->name);
2528 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2529 }
2530
2531 check_modinfo_retpoline(mod, info);
2532
2533 if (get_modinfo(info, "staging")) {
2534 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2535 pr_warn("%s: module is from the staging directory, the quality "
2536 "is unknown, you have been warned.\n", mod->name);
2537 }
2538
2539 if (is_livepatch_module(mod)) {
2540 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2541 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2542 mod->name);
2543 }
2544
2545 module_license_taint_check(mod, get_modinfo(info, "license"));
2546
2547 if (get_modinfo(info, "test")) {
2548 if (!test_taint(TAINT_TEST))
2549 pr_warn("%s: loading test module taints kernel.\n",
2550 mod->name);
2551 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2552 }
2553 #ifdef CONFIG_MODULE_SIG
2554 mod->sig_ok = info->sig_ok;
2555 if (!mod->sig_ok) {
2556 pr_notice_once("%s: module verification failed: signature "
2557 "and/or required key missing - tainting "
2558 "kernel\n", mod->name);
2559 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2560 }
2561 #endif
2562
2563 /*
2564 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2565 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2566 * using GPL-only symbols it needs.
2567 */
2568 if (strcmp(mod->name, "ndiswrapper") == 0)
2569 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2570
2571 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2572 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2573 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2574 LOCKDEP_NOW_UNRELIABLE);
2575 }
2576
2577 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2578 pr_warn("%s: module license taints kernel.\n", mod->name);
2579
2580 }
2581
check_modinfo(struct module * mod,struct load_info * info,int flags)2582 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2583 {
2584 const char *modmagic = get_modinfo(info, "vermagic");
2585 int err;
2586
2587 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2588 modmagic = NULL;
2589
2590 /* This is allowed: modprobe --force will invalidate it. */
2591 if (!modmagic) {
2592 err = try_to_force_load(mod, "bad vermagic");
2593 if (err)
2594 return err;
2595 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2596 pr_err("%s: version magic '%s' should be '%s'\n",
2597 info->name, modmagic, vermagic);
2598 return -ENOEXEC;
2599 }
2600
2601 err = check_modinfo_livepatch(mod, info);
2602 if (err)
2603 return err;
2604
2605 return 0;
2606 }
2607
find_module_sections(struct module * mod,struct load_info * info)2608 static int find_module_sections(struct module *mod, struct load_info *info)
2609 {
2610 mod->kp = section_objs(info, "__param",
2611 sizeof(*mod->kp), &mod->num_kp);
2612 mod->syms = section_objs(info, "__ksymtab",
2613 sizeof(*mod->syms), &mod->num_syms);
2614 mod->crcs = section_addr(info, "__kcrctab");
2615 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2616 sizeof(*mod->gpl_syms),
2617 &mod->num_gpl_syms);
2618 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2619
2620 #ifdef CONFIG_CONSTRUCTORS
2621 mod->ctors = section_objs(info, ".ctors",
2622 sizeof(*mod->ctors), &mod->num_ctors);
2623 if (!mod->ctors)
2624 mod->ctors = section_objs(info, ".init_array",
2625 sizeof(*mod->ctors), &mod->num_ctors);
2626 else if (find_sec(info, ".init_array")) {
2627 /*
2628 * This shouldn't happen with same compiler and binutils
2629 * building all parts of the module.
2630 */
2631 pr_warn("%s: has both .ctors and .init_array.\n",
2632 mod->name);
2633 return -EINVAL;
2634 }
2635 #endif
2636
2637 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2638 &mod->noinstr_text_size);
2639
2640 #ifdef CONFIG_TRACEPOINTS
2641 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2642 sizeof(*mod->tracepoints_ptrs),
2643 &mod->num_tracepoints);
2644 #endif
2645 #ifdef CONFIG_TREE_SRCU
2646 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2647 sizeof(*mod->srcu_struct_ptrs),
2648 &mod->num_srcu_structs);
2649 #endif
2650 #ifdef CONFIG_BPF_EVENTS
2651 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2652 sizeof(*mod->bpf_raw_events),
2653 &mod->num_bpf_raw_events);
2654 #endif
2655 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2656 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2657 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2658 &mod->btf_base_data_size);
2659 #endif
2660 #ifdef CONFIG_JUMP_LABEL
2661 mod->jump_entries = section_objs(info, "__jump_table",
2662 sizeof(*mod->jump_entries),
2663 &mod->num_jump_entries);
2664 #endif
2665 #ifdef CONFIG_EVENT_TRACING
2666 mod->trace_events = section_objs(info, "_ftrace_events",
2667 sizeof(*mod->trace_events),
2668 &mod->num_trace_events);
2669 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2670 sizeof(*mod->trace_evals),
2671 &mod->num_trace_evals);
2672 #endif
2673 #ifdef CONFIG_TRACING
2674 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2675 sizeof(*mod->trace_bprintk_fmt_start),
2676 &mod->num_trace_bprintk_fmt);
2677 #endif
2678 #ifdef CONFIG_DYNAMIC_FTRACE
2679 /* sechdrs[0].sh_size is always zero */
2680 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2681 sizeof(*mod->ftrace_callsites),
2682 &mod->num_ftrace_callsites);
2683 #endif
2684 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2685 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2686 sizeof(*mod->ei_funcs),
2687 &mod->num_ei_funcs);
2688 #endif
2689 #ifdef CONFIG_KPROBES
2690 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2691 &mod->kprobes_text_size);
2692 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2693 sizeof(unsigned long),
2694 &mod->num_kprobe_blacklist);
2695 #endif
2696 #ifdef CONFIG_PRINTK_INDEX
2697 mod->printk_index_start = section_objs(info, ".printk_index",
2698 sizeof(*mod->printk_index_start),
2699 &mod->printk_index_size);
2700 #endif
2701 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2702 mod->static_call_sites = section_objs(info, ".static_call_sites",
2703 sizeof(*mod->static_call_sites),
2704 &mod->num_static_call_sites);
2705 #endif
2706 #if IS_ENABLED(CONFIG_KUNIT)
2707 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2708 sizeof(*mod->kunit_suites),
2709 &mod->num_kunit_suites);
2710 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2711 sizeof(*mod->kunit_init_suites),
2712 &mod->num_kunit_init_suites);
2713 #endif
2714
2715 mod->extable = section_objs(info, "__ex_table",
2716 sizeof(*mod->extable), &mod->num_exentries);
2717
2718 if (section_addr(info, "__obsparm"))
2719 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2720
2721 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2722 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2723 sizeof(*mod->dyndbg_info.descs),
2724 &mod->dyndbg_info.num_descs);
2725 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2726 sizeof(*mod->dyndbg_info.classes),
2727 &mod->dyndbg_info.num_classes);
2728 #endif
2729
2730 return 0;
2731 }
2732
move_module(struct module * mod,struct load_info * info)2733 static int move_module(struct module *mod, struct load_info *info)
2734 {
2735 int i, ret;
2736 enum mod_mem_type t = MOD_MEM_NUM_TYPES;
2737 bool codetag_section_found = false;
2738
2739 for_each_mod_mem_type(type) {
2740 if (!mod->mem[type].size) {
2741 mod->mem[type].base = NULL;
2742 continue;
2743 }
2744
2745 ret = module_memory_alloc(mod, type);
2746 if (ret) {
2747 t = type;
2748 goto out_err;
2749 }
2750 }
2751
2752 /* Transfer each section which specifies SHF_ALLOC */
2753 pr_debug("Final section addresses for %s:\n", mod->name);
2754 for (i = 0; i < info->hdr->e_shnum; i++) {
2755 void *dest;
2756 Elf_Shdr *shdr = &info->sechdrs[i];
2757 const char *sname;
2758
2759 if (!(shdr->sh_flags & SHF_ALLOC))
2760 continue;
2761
2762 sname = info->secstrings + shdr->sh_name;
2763 /*
2764 * Load codetag sections separately as they might still be used
2765 * after module unload.
2766 */
2767 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2768 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2769 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2770 if (WARN_ON(!dest)) {
2771 ret = -EINVAL;
2772 goto out_err;
2773 }
2774 if (IS_ERR(dest)) {
2775 ret = PTR_ERR(dest);
2776 goto out_err;
2777 }
2778 codetag_section_found = true;
2779 } else {
2780 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2781 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2782
2783 dest = mod->mem[type].base + offset;
2784 }
2785
2786 if (shdr->sh_type != SHT_NOBITS) {
2787 /*
2788 * Our ELF checker already validated this, but let's
2789 * be pedantic and make the goal clearer. We actually
2790 * end up copying over all modifications made to the
2791 * userspace copy of the entire struct module.
2792 */
2793 if (i == info->index.mod &&
2794 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2795 ret = -ENOEXEC;
2796 goto out_err;
2797 }
2798 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2799 }
2800 /*
2801 * Update the userspace copy's ELF section address to point to
2802 * our newly allocated memory as a pure convenience so that
2803 * users of info can keep taking advantage and using the newly
2804 * minted official memory area.
2805 */
2806 shdr->sh_addr = (unsigned long)dest;
2807 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2808 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2809 }
2810
2811 return 0;
2812 out_err:
2813 module_memory_restore_rox(mod);
2814 while (t--)
2815 module_memory_free(mod, t);
2816 if (codetag_section_found)
2817 codetag_free_module_sections(mod);
2818
2819 return ret;
2820 }
2821
check_export_symbol_versions(struct module * mod)2822 static int check_export_symbol_versions(struct module *mod)
2823 {
2824 #ifdef CONFIG_MODVERSIONS
2825 if ((mod->num_syms && !mod->crcs) ||
2826 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2827 return try_to_force_load(mod,
2828 "no versions for exported symbols");
2829 }
2830 #endif
2831 return 0;
2832 }
2833
flush_module_icache(const struct module * mod)2834 static void flush_module_icache(const struct module *mod)
2835 {
2836 /*
2837 * Flush the instruction cache, since we've played with text.
2838 * Do it before processing of module parameters, so the module
2839 * can provide parameter accessor functions of its own.
2840 */
2841 for_each_mod_mem_type(type) {
2842 const struct module_memory *mod_mem = &mod->mem[type];
2843
2844 if (mod_mem->size) {
2845 flush_icache_range((unsigned long)mod_mem->base,
2846 (unsigned long)mod_mem->base + mod_mem->size);
2847 }
2848 }
2849 }
2850
module_elf_check_arch(Elf_Ehdr * hdr)2851 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2852 {
2853 return true;
2854 }
2855
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2856 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2857 Elf_Shdr *sechdrs,
2858 char *secstrings,
2859 struct module *mod)
2860 {
2861 return 0;
2862 }
2863
2864 /* module_blacklist is a comma-separated list of module names */
2865 static char *module_blacklist;
blacklisted(const char * module_name)2866 static bool blacklisted(const char *module_name)
2867 {
2868 const char *p;
2869 size_t len;
2870
2871 if (!module_blacklist)
2872 return false;
2873
2874 for (p = module_blacklist; *p; p += len) {
2875 len = strcspn(p, ",");
2876 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2877 return true;
2878 if (p[len] == ',')
2879 len++;
2880 }
2881 return false;
2882 }
2883 core_param(module_blacklist, module_blacklist, charp, 0400);
2884
layout_and_allocate(struct load_info * info,int flags)2885 static struct module *layout_and_allocate(struct load_info *info, int flags)
2886 {
2887 struct module *mod;
2888 int err;
2889
2890 /* Allow arches to frob section contents and sizes. */
2891 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2892 info->secstrings, info->mod);
2893 if (err < 0)
2894 return ERR_PTR(err);
2895
2896 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2897 info->secstrings, info->mod);
2898 if (err < 0)
2899 return ERR_PTR(err);
2900
2901 /* We will do a special allocation for per-cpu sections later. */
2902 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2903
2904 /*
2905 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can
2906 * put them in the right place.
2907 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2908 */
2909 module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings);
2910
2911 /*
2912 * Determine total sizes, and put offsets in sh_entsize. For now
2913 * this is done generically; there doesn't appear to be any
2914 * special cases for the architectures.
2915 */
2916 layout_sections(info->mod, info);
2917 layout_symtab(info->mod, info);
2918
2919 /* Allocate and move to the final place */
2920 err = move_module(info->mod, info);
2921 if (err)
2922 return ERR_PTR(err);
2923
2924 /* Module has been copied to its final place now: return it. */
2925 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2926 kmemleak_load_module(mod, info);
2927 codetag_module_replaced(info->mod, mod);
2928
2929 return mod;
2930 }
2931
2932 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2933 static void module_deallocate(struct module *mod, struct load_info *info)
2934 {
2935 percpu_modfree(mod);
2936 module_arch_freeing_init(mod);
2937 codetag_free_module_sections(mod);
2938
2939 free_mod_mem(mod);
2940 }
2941
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2942 int __weak module_finalize(const Elf_Ehdr *hdr,
2943 const Elf_Shdr *sechdrs,
2944 struct module *me)
2945 {
2946 return 0;
2947 }
2948
post_relocation(struct module * mod,const struct load_info * info)2949 static int post_relocation(struct module *mod, const struct load_info *info)
2950 {
2951 /* Sort exception table now relocations are done. */
2952 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2953
2954 /* Copy relocated percpu area over. */
2955 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2956 info->sechdrs[info->index.pcpu].sh_size);
2957
2958 /* Setup kallsyms-specific fields. */
2959 add_kallsyms(mod, info);
2960
2961 /* Arch-specific module finalizing. */
2962 return module_finalize(info->hdr, info->sechdrs, mod);
2963 }
2964
2965 /* Call module constructors. */
do_mod_ctors(struct module * mod)2966 static void do_mod_ctors(struct module *mod)
2967 {
2968 #ifdef CONFIG_CONSTRUCTORS
2969 unsigned long i;
2970
2971 for (i = 0; i < mod->num_ctors; i++)
2972 mod->ctors[i]();
2973 #endif
2974 }
2975
2976 /* For freeing module_init on success, in case kallsyms traversing */
2977 struct mod_initfree {
2978 struct llist_node node;
2979 void *init_text;
2980 void *init_data;
2981 void *init_rodata;
2982 };
2983
do_free_init(struct work_struct * w)2984 static void do_free_init(struct work_struct *w)
2985 {
2986 struct llist_node *pos, *n, *list;
2987 struct mod_initfree *initfree;
2988
2989 list = llist_del_all(&init_free_list);
2990
2991 synchronize_rcu();
2992
2993 llist_for_each_safe(pos, n, list) {
2994 initfree = container_of(pos, struct mod_initfree, node);
2995 execmem_free(initfree->init_text);
2996 execmem_free(initfree->init_data);
2997 execmem_free(initfree->init_rodata);
2998 kfree(initfree);
2999 }
3000 }
3001
flush_module_init_free_work(void)3002 void flush_module_init_free_work(void)
3003 {
3004 flush_work(&init_free_wq);
3005 }
3006
3007 #undef MODULE_PARAM_PREFIX
3008 #define MODULE_PARAM_PREFIX "module."
3009 /* Default value for module->async_probe_requested */
3010 static bool async_probe;
3011 module_param(async_probe, bool, 0644);
3012
3013 /*
3014 * This is where the real work happens.
3015 *
3016 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3017 * helper command 'lx-symbols'.
3018 */
do_init_module(struct module * mod)3019 static noinline int do_init_module(struct module *mod)
3020 {
3021 int ret = 0;
3022 struct mod_initfree *freeinit;
3023 #if defined(CONFIG_MODULE_STATS)
3024 unsigned int text_size = 0, total_size = 0;
3025
3026 for_each_mod_mem_type(type) {
3027 const struct module_memory *mod_mem = &mod->mem[type];
3028 if (mod_mem->size) {
3029 total_size += mod_mem->size;
3030 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
3031 text_size += mod_mem->size;
3032 }
3033 }
3034 #endif
3035
3036 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3037 if (!freeinit) {
3038 ret = -ENOMEM;
3039 goto fail;
3040 }
3041 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
3042 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
3043 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
3044
3045 do_mod_ctors(mod);
3046 /* Start the module */
3047 if (mod->init != NULL)
3048 ret = do_one_initcall(mod->init);
3049 if (ret < 0) {
3050 goto fail_free_freeinit;
3051 }
3052 if (ret > 0) {
3053 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3054 "follow 0/-E convention\n"
3055 "%s: loading module anyway...\n",
3056 __func__, mod->name, ret, __func__);
3057 dump_stack();
3058 }
3059
3060 /* Now it's a first class citizen! */
3061 mod->state = MODULE_STATE_LIVE;
3062 blocking_notifier_call_chain(&module_notify_list,
3063 MODULE_STATE_LIVE, mod);
3064
3065 /* Delay uevent until module has finished its init routine */
3066 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3067
3068 /*
3069 * We need to finish all async code before the module init sequence
3070 * is done. This has potential to deadlock if synchronous module
3071 * loading is requested from async (which is not allowed!).
3072 *
3073 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3074 * request_module() from async workers") for more details.
3075 */
3076 if (!mod->async_probe_requested)
3077 async_synchronize_full();
3078
3079 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3080 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3081 mutex_lock(&module_mutex);
3082 /* Drop initial reference. */
3083 module_put(mod);
3084 trim_init_extable(mod);
3085 #ifdef CONFIG_KALLSYMS
3086 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3087 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3088 #endif
3089 ret = module_enable_rodata_ro_after_init(mod);
3090 if (ret)
3091 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3092 "ro_after_init data might still be writable\n",
3093 mod->name, ret);
3094
3095 mod_tree_remove_init(mod);
3096 module_arch_freeing_init(mod);
3097 for_class_mod_mem_type(type, init) {
3098 mod->mem[type].base = NULL;
3099 mod->mem[type].size = 0;
3100 }
3101
3102 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3103 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3104 mod->btf_data = NULL;
3105 mod->btf_base_data = NULL;
3106 #endif
3107 /*
3108 * We want to free module_init, but be aware that kallsyms may be
3109 * walking this within an RCU read section. In all the failure paths, we
3110 * call synchronize_rcu(), but we don't want to slow down the success
3111 * path. execmem_free() cannot be called in an interrupt, so do the
3112 * work and call synchronize_rcu() in a work queue.
3113 *
3114 * Note that execmem_alloc() on most architectures creates W+X page
3115 * mappings which won't be cleaned up until do_free_init() runs. Any
3116 * code such as mark_rodata_ro() which depends on those mappings to
3117 * be cleaned up needs to sync with the queued work by invoking
3118 * flush_module_init_free_work().
3119 */
3120 if (llist_add(&freeinit->node, &init_free_list))
3121 schedule_work(&init_free_wq);
3122
3123 mutex_unlock(&module_mutex);
3124 wake_up_all(&module_wq);
3125
3126 mod_stat_add_long(text_size, &total_text_size);
3127 mod_stat_add_long(total_size, &total_mod_size);
3128
3129 mod_stat_inc(&modcount);
3130
3131 return 0;
3132
3133 fail_free_freeinit:
3134 kfree(freeinit);
3135 fail:
3136 /* Try to protect us from buggy refcounters. */
3137 mod->state = MODULE_STATE_GOING;
3138 synchronize_rcu();
3139 module_put(mod);
3140 blocking_notifier_call_chain(&module_notify_list,
3141 MODULE_STATE_GOING, mod);
3142 klp_module_going(mod);
3143 ftrace_release_mod(mod);
3144 free_module(mod);
3145 wake_up_all(&module_wq);
3146
3147 return ret;
3148 }
3149
may_init_module(void)3150 static int may_init_module(void)
3151 {
3152 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3153 return -EPERM;
3154
3155 return 0;
3156 }
3157
3158 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3159 static bool finished_loading(const char *name)
3160 {
3161 struct module *mod;
3162 bool ret;
3163
3164 /*
3165 * The module_mutex should not be a heavily contended lock;
3166 * if we get the occasional sleep here, we'll go an extra iteration
3167 * in the wait_event_interruptible(), which is harmless.
3168 */
3169 sched_annotate_sleep();
3170 mutex_lock(&module_mutex);
3171 mod = find_module_all(name, strlen(name), true);
3172 ret = !mod || mod->state == MODULE_STATE_LIVE
3173 || mod->state == MODULE_STATE_GOING;
3174 mutex_unlock(&module_mutex);
3175
3176 return ret;
3177 }
3178
3179 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3180 static int module_patient_check_exists(const char *name,
3181 enum fail_dup_mod_reason reason)
3182 {
3183 struct module *old;
3184 int err = 0;
3185
3186 old = find_module_all(name, strlen(name), true);
3187 if (old == NULL)
3188 return 0;
3189
3190 if (old->state == MODULE_STATE_COMING ||
3191 old->state == MODULE_STATE_UNFORMED) {
3192 /* Wait in case it fails to load. */
3193 mutex_unlock(&module_mutex);
3194 err = wait_event_interruptible(module_wq,
3195 finished_loading(name));
3196 mutex_lock(&module_mutex);
3197 if (err)
3198 return err;
3199
3200 /* The module might have gone in the meantime. */
3201 old = find_module_all(name, strlen(name), true);
3202 }
3203
3204 if (try_add_failed_module(name, reason))
3205 pr_warn("Could not add fail-tracking for module: %s\n", name);
3206
3207 /*
3208 * We are here only when the same module was being loaded. Do
3209 * not try to load it again right now. It prevents long delays
3210 * caused by serialized module load failures. It might happen
3211 * when more devices of the same type trigger load of
3212 * a particular module.
3213 */
3214 if (old && old->state == MODULE_STATE_LIVE)
3215 return -EEXIST;
3216 return -EBUSY;
3217 }
3218
3219 /*
3220 * We try to place it in the list now to make sure it's unique before
3221 * we dedicate too many resources. In particular, temporary percpu
3222 * memory exhaustion.
3223 */
add_unformed_module(struct module * mod)3224 static int add_unformed_module(struct module *mod)
3225 {
3226 int err;
3227
3228 mod->state = MODULE_STATE_UNFORMED;
3229
3230 mutex_lock(&module_mutex);
3231 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3232 if (err)
3233 goto out;
3234
3235 mod_update_bounds(mod);
3236 list_add_rcu(&mod->list, &modules);
3237 mod_tree_insert(mod);
3238 err = 0;
3239
3240 out:
3241 mutex_unlock(&module_mutex);
3242 return err;
3243 }
3244
complete_formation(struct module * mod,struct load_info * info)3245 static int complete_formation(struct module *mod, struct load_info *info)
3246 {
3247 int err;
3248
3249 mutex_lock(&module_mutex);
3250
3251 /* Find duplicate symbols (must be called under lock). */
3252 err = verify_exported_symbols(mod);
3253 if (err < 0)
3254 goto out;
3255
3256 /* These rely on module_mutex for list integrity. */
3257 module_bug_finalize(info->hdr, info->sechdrs, mod);
3258 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3259
3260 err = module_enable_rodata_ro(mod);
3261 if (err)
3262 goto out_strict_rwx;
3263 err = module_enable_data_nx(mod);
3264 if (err)
3265 goto out_strict_rwx;
3266 err = module_enable_text_rox(mod);
3267 if (err)
3268 goto out_strict_rwx;
3269
3270 /*
3271 * Mark state as coming so strong_try_module_get() ignores us,
3272 * but kallsyms etc. can see us.
3273 */
3274 mod->state = MODULE_STATE_COMING;
3275 mutex_unlock(&module_mutex);
3276
3277 return 0;
3278
3279 out_strict_rwx:
3280 module_bug_cleanup(mod);
3281 out:
3282 mutex_unlock(&module_mutex);
3283 return err;
3284 }
3285
prepare_coming_module(struct module * mod)3286 static int prepare_coming_module(struct module *mod)
3287 {
3288 int err;
3289
3290 ftrace_module_enable(mod);
3291 err = klp_module_coming(mod);
3292 if (err)
3293 return err;
3294
3295 err = blocking_notifier_call_chain_robust(&module_notify_list,
3296 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3297 err = notifier_to_errno(err);
3298 if (err)
3299 klp_module_going(mod);
3300
3301 return err;
3302 }
3303
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3304 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3305 void *arg)
3306 {
3307 struct module *mod = arg;
3308 int ret;
3309
3310 if (strcmp(param, "async_probe") == 0) {
3311 if (kstrtobool(val, &mod->async_probe_requested))
3312 mod->async_probe_requested = true;
3313 return 0;
3314 }
3315
3316 /* Check for magic 'dyndbg' arg */
3317 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3318 if (ret != 0)
3319 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3320 return 0;
3321 }
3322
3323 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)3324 static int early_mod_check(struct load_info *info, int flags)
3325 {
3326 int err;
3327
3328 /*
3329 * Now that we know we have the correct module name, check
3330 * if it's blacklisted.
3331 */
3332 if (blacklisted(info->name)) {
3333 pr_err("Module %s is blacklisted\n", info->name);
3334 return -EPERM;
3335 }
3336
3337 err = rewrite_section_headers(info, flags);
3338 if (err)
3339 return err;
3340
3341 /* Check module struct version now, before we try to use module. */
3342 if (!check_modstruct_version(info, info->mod))
3343 return -ENOEXEC;
3344
3345 err = check_modinfo(info->mod, info, flags);
3346 if (err)
3347 return err;
3348
3349 mutex_lock(&module_mutex);
3350 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3351 mutex_unlock(&module_mutex);
3352
3353 return err;
3354 }
3355
3356 /*
3357 * Allocate and load the module: note that size of section 0 is always
3358 * zero, and we rely on this for optional sections.
3359 */
load_module(struct load_info * info,const char __user * uargs,int flags)3360 static int load_module(struct load_info *info, const char __user *uargs,
3361 int flags)
3362 {
3363 struct module *mod;
3364 bool module_allocated = false;
3365 long err = 0;
3366 char *after_dashes;
3367
3368 /*
3369 * Do the signature check (if any) first. All that
3370 * the signature check needs is info->len, it does
3371 * not need any of the section info. That can be
3372 * set up later. This will minimize the chances
3373 * of a corrupt module causing problems before
3374 * we even get to the signature check.
3375 *
3376 * The check will also adjust info->len by stripping
3377 * off the sig length at the end of the module, making
3378 * checks against info->len more correct.
3379 */
3380 err = module_sig_check(info, flags);
3381 if (err)
3382 goto free_copy;
3383
3384 /*
3385 * Do basic sanity checks against the ELF header and
3386 * sections. Cache useful sections and set the
3387 * info->mod to the userspace passed struct module.
3388 */
3389 err = elf_validity_cache_copy(info, flags);
3390 if (err)
3391 goto free_copy;
3392
3393 err = early_mod_check(info, flags);
3394 if (err)
3395 goto free_copy;
3396
3397 /* Figure out module layout, and allocate all the memory. */
3398 mod = layout_and_allocate(info, flags);
3399 if (IS_ERR(mod)) {
3400 err = PTR_ERR(mod);
3401 goto free_copy;
3402 }
3403
3404 module_allocated = true;
3405
3406 audit_log_kern_module(info->name);
3407
3408 /* Reserve our place in the list. */
3409 err = add_unformed_module(mod);
3410 if (err)
3411 goto free_module;
3412
3413 /*
3414 * We are tainting your kernel if your module gets into
3415 * the modules linked list somehow.
3416 */
3417 module_augment_kernel_taints(mod, info);
3418
3419 /* To avoid stressing percpu allocator, do this once we're unique. */
3420 err = percpu_modalloc(mod, info);
3421 if (err)
3422 goto unlink_mod;
3423
3424 /* Now module is in final location, initialize linked lists, etc. */
3425 err = module_unload_init(mod);
3426 if (err)
3427 goto unlink_mod;
3428
3429 init_param_lock(mod);
3430
3431 /*
3432 * Now we've got everything in the final locations, we can
3433 * find optional sections.
3434 */
3435 err = find_module_sections(mod, info);
3436 if (err)
3437 goto free_unload;
3438
3439 err = check_export_symbol_versions(mod);
3440 if (err)
3441 goto free_unload;
3442
3443 /* Set up MODINFO_ATTR fields */
3444 err = setup_modinfo(mod, info);
3445 if (err)
3446 goto free_modinfo;
3447
3448 /* Fix up syms, so that st_value is a pointer to location. */
3449 err = simplify_symbols(mod, info);
3450 if (err < 0)
3451 goto free_modinfo;
3452
3453 err = apply_relocations(mod, info);
3454 if (err < 0)
3455 goto free_modinfo;
3456
3457 err = post_relocation(mod, info);
3458 if (err < 0)
3459 goto free_modinfo;
3460
3461 flush_module_icache(mod);
3462
3463 /* Now copy in args */
3464 mod->args = strndup_user(uargs, ~0UL >> 1);
3465 if (IS_ERR(mod->args)) {
3466 err = PTR_ERR(mod->args);
3467 goto free_arch_cleanup;
3468 }
3469
3470 init_build_id(mod, info);
3471
3472 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3473 ftrace_module_init(mod);
3474
3475 /* Finally it's fully formed, ready to start executing. */
3476 err = complete_formation(mod, info);
3477 if (err)
3478 goto ddebug_cleanup;
3479
3480 err = prepare_coming_module(mod);
3481 if (err)
3482 goto bug_cleanup;
3483
3484 mod->async_probe_requested = async_probe;
3485
3486 /* Module is ready to execute: parsing args may do that. */
3487 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3488 -32768, 32767, mod,
3489 unknown_module_param_cb);
3490 if (IS_ERR(after_dashes)) {
3491 err = PTR_ERR(after_dashes);
3492 goto coming_cleanup;
3493 } else if (after_dashes) {
3494 pr_warn("%s: parameters '%s' after `--' ignored\n",
3495 mod->name, after_dashes);
3496 }
3497
3498 /* Link in to sysfs. */
3499 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3500 if (err < 0)
3501 goto coming_cleanup;
3502
3503 if (is_livepatch_module(mod)) {
3504 err = copy_module_elf(mod, info);
3505 if (err < 0)
3506 goto sysfs_cleanup;
3507 }
3508
3509 if (codetag_load_module(mod))
3510 goto sysfs_cleanup;
3511
3512 /* Get rid of temporary copy. */
3513 free_copy(info, flags);
3514
3515 /* Done! */
3516 trace_module_load(mod);
3517
3518 return do_init_module(mod);
3519
3520 sysfs_cleanup:
3521 mod_sysfs_teardown(mod);
3522 coming_cleanup:
3523 mod->state = MODULE_STATE_GOING;
3524 destroy_params(mod->kp, mod->num_kp);
3525 blocking_notifier_call_chain(&module_notify_list,
3526 MODULE_STATE_GOING, mod);
3527 klp_module_going(mod);
3528 bug_cleanup:
3529 mod->state = MODULE_STATE_GOING;
3530 /* module_bug_cleanup needs module_mutex protection */
3531 mutex_lock(&module_mutex);
3532 module_bug_cleanup(mod);
3533 mutex_unlock(&module_mutex);
3534
3535 ddebug_cleanup:
3536 ftrace_release_mod(mod);
3537 synchronize_rcu();
3538 kfree(mod->args);
3539 free_arch_cleanup:
3540 module_arch_cleanup(mod);
3541 free_modinfo:
3542 free_modinfo(mod);
3543 free_unload:
3544 module_unload_free(mod);
3545 unlink_mod:
3546 mutex_lock(&module_mutex);
3547 /* Unlink carefully: kallsyms could be walking list. */
3548 list_del_rcu(&mod->list);
3549 mod_tree_remove(mod);
3550 wake_up_all(&module_wq);
3551 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3552 synchronize_rcu();
3553 mutex_unlock(&module_mutex);
3554 free_module:
3555 mod_stat_bump_invalid(info, flags);
3556 /* Free lock-classes; relies on the preceding sync_rcu() */
3557 for_class_mod_mem_type(type, core_data) {
3558 lockdep_free_key_range(mod->mem[type].base,
3559 mod->mem[type].size);
3560 }
3561
3562 module_memory_restore_rox(mod);
3563 module_deallocate(mod, info);
3564 free_copy:
3565 /*
3566 * The info->len is always set. We distinguish between
3567 * failures once the proper module was allocated and
3568 * before that.
3569 */
3570 if (!module_allocated) {
3571 audit_log_kern_module(info->name ? info->name : "?");
3572 mod_stat_bump_becoming(info, flags);
3573 }
3574 free_copy(info, flags);
3575 return err;
3576 }
3577
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3578 SYSCALL_DEFINE3(init_module, void __user *, umod,
3579 unsigned long, len, const char __user *, uargs)
3580 {
3581 int err;
3582 struct load_info info = { };
3583
3584 err = may_init_module();
3585 if (err)
3586 return err;
3587
3588 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3589 umod, len, uargs);
3590
3591 err = copy_module_from_user(umod, len, &info);
3592 if (err) {
3593 mod_stat_inc(&failed_kreads);
3594 mod_stat_add_long(len, &invalid_kread_bytes);
3595 return err;
3596 }
3597
3598 return load_module(&info, uargs, 0);
3599 }
3600
3601 struct idempotent {
3602 const void *cookie;
3603 struct hlist_node entry;
3604 struct completion complete;
3605 int ret;
3606 };
3607
3608 #define IDEM_HASH_BITS 8
3609 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3610 static DEFINE_SPINLOCK(idem_lock);
3611
idempotent(struct idempotent * u,const void * cookie)3612 static bool idempotent(struct idempotent *u, const void *cookie)
3613 {
3614 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3615 struct hlist_head *head = idem_hash + hash;
3616 struct idempotent *existing;
3617 bool first;
3618
3619 u->ret = -EINTR;
3620 u->cookie = cookie;
3621 init_completion(&u->complete);
3622
3623 spin_lock(&idem_lock);
3624 first = true;
3625 hlist_for_each_entry(existing, head, entry) {
3626 if (existing->cookie != cookie)
3627 continue;
3628 first = false;
3629 break;
3630 }
3631 hlist_add_head(&u->entry, idem_hash + hash);
3632 spin_unlock(&idem_lock);
3633
3634 return !first;
3635 }
3636
3637 /*
3638 * We were the first one with 'cookie' on the list, and we ended
3639 * up completing the operation. We now need to walk the list,
3640 * remove everybody - which includes ourselves - fill in the return
3641 * value, and then complete the operation.
3642 */
idempotent_complete(struct idempotent * u,int ret)3643 static int idempotent_complete(struct idempotent *u, int ret)
3644 {
3645 const void *cookie = u->cookie;
3646 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3647 struct hlist_head *head = idem_hash + hash;
3648 struct hlist_node *next;
3649 struct idempotent *pos;
3650
3651 spin_lock(&idem_lock);
3652 hlist_for_each_entry_safe(pos, next, head, entry) {
3653 if (pos->cookie != cookie)
3654 continue;
3655 hlist_del_init(&pos->entry);
3656 pos->ret = ret;
3657 complete(&pos->complete);
3658 }
3659 spin_unlock(&idem_lock);
3660 return ret;
3661 }
3662
3663 /*
3664 * Wait for the idempotent worker.
3665 *
3666 * If we get interrupted, we need to remove ourselves from the
3667 * the idempotent list, and the completion may still come in.
3668 *
3669 * The 'idem_lock' protects against the race, and 'idem.ret' was
3670 * initialized to -EINTR and is thus always the right return
3671 * value even if the idempotent work then completes between
3672 * the wait_for_completion and the cleanup.
3673 */
idempotent_wait_for_completion(struct idempotent * u)3674 static int idempotent_wait_for_completion(struct idempotent *u)
3675 {
3676 if (wait_for_completion_interruptible(&u->complete)) {
3677 spin_lock(&idem_lock);
3678 if (!hlist_unhashed(&u->entry))
3679 hlist_del(&u->entry);
3680 spin_unlock(&idem_lock);
3681 }
3682 return u->ret;
3683 }
3684
init_module_from_file(struct file * f,const char __user * uargs,int flags)3685 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3686 {
3687 struct load_info info = { };
3688 void *buf = NULL;
3689 int len;
3690
3691 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3692 if (len < 0) {
3693 mod_stat_inc(&failed_kreads);
3694 return len;
3695 }
3696
3697 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3698 int err = module_decompress(&info, buf, len);
3699 vfree(buf); /* compressed data is no longer needed */
3700 if (err) {
3701 mod_stat_inc(&failed_decompress);
3702 mod_stat_add_long(len, &invalid_decompress_bytes);
3703 return err;
3704 }
3705 } else {
3706 info.hdr = buf;
3707 info.len = len;
3708 }
3709
3710 return load_module(&info, uargs, flags);
3711 }
3712
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3713 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3714 {
3715 struct idempotent idem;
3716
3717 if (!(f->f_mode & FMODE_READ))
3718 return -EBADF;
3719
3720 /* Are we the winners of the race and get to do this? */
3721 if (!idempotent(&idem, file_inode(f))) {
3722 int ret = init_module_from_file(f, uargs, flags);
3723 return idempotent_complete(&idem, ret);
3724 }
3725
3726 /*
3727 * Somebody else won the race and is loading the module.
3728 */
3729 return idempotent_wait_for_completion(&idem);
3730 }
3731
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3732 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3733 {
3734 int err = may_init_module();
3735 if (err)
3736 return err;
3737
3738 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3739
3740 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3741 |MODULE_INIT_IGNORE_VERMAGIC
3742 |MODULE_INIT_COMPRESSED_FILE))
3743 return -EINVAL;
3744
3745 CLASS(fd, f)(fd);
3746 if (fd_empty(f))
3747 return -EBADF;
3748 return idempotent_init_module(fd_file(f), uargs, flags);
3749 }
3750
3751 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3752 char *module_flags(struct module *mod, char *buf, bool show_state)
3753 {
3754 int bx = 0;
3755
3756 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3757 if (!mod->taints && !show_state)
3758 goto out;
3759 if (mod->taints ||
3760 mod->state == MODULE_STATE_GOING ||
3761 mod->state == MODULE_STATE_COMING) {
3762 buf[bx++] = '(';
3763 bx += module_flags_taint(mod->taints, buf + bx);
3764 /* Show a - for module-is-being-unloaded */
3765 if (mod->state == MODULE_STATE_GOING && show_state)
3766 buf[bx++] = '-';
3767 /* Show a + for module-is-being-loaded */
3768 if (mod->state == MODULE_STATE_COMING && show_state)
3769 buf[bx++] = '+';
3770 buf[bx++] = ')';
3771 }
3772 out:
3773 buf[bx] = '\0';
3774
3775 return buf;
3776 }
3777
3778 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3779 const struct exception_table_entry *search_module_extables(unsigned long addr)
3780 {
3781 struct module *mod;
3782
3783 guard(rcu)();
3784 mod = __module_address(addr);
3785 if (!mod)
3786 return NULL;
3787
3788 if (!mod->num_exentries)
3789 return NULL;
3790 /*
3791 * The address passed here belongs to a module that is currently
3792 * invoked (we are running inside it). Therefore its module::refcnt
3793 * needs already be >0 to ensure that it is not removed at this stage.
3794 * All other user need to invoke this function within a RCU read
3795 * section.
3796 */
3797 return search_extable(mod->extable, mod->num_exentries, addr);
3798 }
3799
3800 /**
3801 * is_module_address() - is this address inside a module?
3802 * @addr: the address to check.
3803 *
3804 * See is_module_text_address() if you simply want to see if the address
3805 * is code (not data).
3806 */
is_module_address(unsigned long addr)3807 bool is_module_address(unsigned long addr)
3808 {
3809 guard(rcu)();
3810 return __module_address(addr) != NULL;
3811 }
3812
3813 /**
3814 * __module_address() - get the module which contains an address.
3815 * @addr: the address.
3816 *
3817 * Must be called within RCU read section or module mutex held so that
3818 * module doesn't get freed during this.
3819 */
__module_address(unsigned long addr)3820 struct module *__module_address(unsigned long addr)
3821 {
3822 struct module *mod;
3823
3824 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3825 goto lookup;
3826
3827 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3828 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3829 goto lookup;
3830 #endif
3831
3832 return NULL;
3833
3834 lookup:
3835 mod = mod_find(addr, &mod_tree);
3836 if (mod) {
3837 BUG_ON(!within_module(addr, mod));
3838 if (mod->state == MODULE_STATE_UNFORMED)
3839 mod = NULL;
3840 }
3841 return mod;
3842 }
3843
3844 /**
3845 * is_module_text_address() - is this address inside module code?
3846 * @addr: the address to check.
3847 *
3848 * See is_module_address() if you simply want to see if the address is
3849 * anywhere in a module. See kernel_text_address() for testing if an
3850 * address corresponds to kernel or module code.
3851 */
is_module_text_address(unsigned long addr)3852 bool is_module_text_address(unsigned long addr)
3853 {
3854 guard(rcu)();
3855 return __module_text_address(addr) != NULL;
3856 }
3857
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3858 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3859 {
3860 struct module *mod;
3861
3862 guard(rcu)();
3863 list_for_each_entry_rcu(mod, &modules, list) {
3864 if (mod->state == MODULE_STATE_UNFORMED)
3865 continue;
3866 if (func(mod, data))
3867 break;
3868 }
3869 }
3870
3871 /**
3872 * __module_text_address() - get the module whose code contains an address.
3873 * @addr: the address.
3874 *
3875 * Must be called within RCU read section or module mutex held so that
3876 * module doesn't get freed during this.
3877 */
__module_text_address(unsigned long addr)3878 struct module *__module_text_address(unsigned long addr)
3879 {
3880 struct module *mod = __module_address(addr);
3881 if (mod) {
3882 /* Make sure it's within the text section. */
3883 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3884 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3885 mod = NULL;
3886 }
3887 return mod;
3888 }
3889
3890 /* Don't grab lock, we're oopsing. */
print_modules(void)3891 void print_modules(void)
3892 {
3893 struct module *mod;
3894 char buf[MODULE_FLAGS_BUF_SIZE];
3895
3896 printk(KERN_DEFAULT "Modules linked in:");
3897 /* Most callers should already have preempt disabled, but make sure */
3898 guard(rcu)();
3899 list_for_each_entry_rcu(mod, &modules, list) {
3900 if (mod->state == MODULE_STATE_UNFORMED)
3901 continue;
3902 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3903 }
3904
3905 print_unloaded_tainted_modules();
3906 if (last_unloaded_module.name[0])
3907 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3908 last_unloaded_module.taints);
3909 pr_cont("\n");
3910 }
3911
3912 #ifdef CONFIG_MODULE_DEBUGFS
3913 struct dentry *mod_debugfs_root;
3914
module_debugfs_init(void)3915 static int module_debugfs_init(void)
3916 {
3917 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3918 return 0;
3919 }
3920 module_init(module_debugfs_init);
3921 #endif
3922