xref: /linux/arch/s390/kernel/time.c (revision bc46b7cbc58c4cb562b6a45a1fbc7b8e7b23df58)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *    Time of day based timer functions.
4  *
5  *  S390 version
6  *    Copyright IBM Corp. 1999, 2008
7  *    Author(s): Hartmut Penner (hp@de.ibm.com),
8  *               Martin Schwidefsky (schwidefsky@de.ibm.com),
9  *               Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10  *
11  *  Derived from "arch/i386/kernel/time.c"
12  *    Copyright (C) 1991, 1992, 1995  Linus Torvalds
13  */
14 
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <linux/uaccess.h>
43 #include <vdso/vsyscall.h>
44 #include <vdso/clocksource.h>
45 #include <vdso/helpers.h>
46 #include <asm/facility.h>
47 #include <asm/delay.h>
48 #include <asm/div64.h>
49 #include <asm/vdso.h>
50 #include <asm/irq.h>
51 #include <asm/irq_regs.h>
52 #include <asm/vtimer.h>
53 #include <asm/stp.h>
54 #include <asm/cio.h>
55 #include "entry.h"
56 
57 union tod_clock __bootdata_preserved(tod_clock_base);
58 EXPORT_SYMBOL_GPL(tod_clock_base);
59 
60 u64 __bootdata_preserved(clock_comparator_max);
61 EXPORT_SYMBOL_GPL(clock_comparator_max);
62 
63 static DEFINE_PER_CPU(struct clock_event_device, comparators);
64 
65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
66 EXPORT_SYMBOL(s390_epoch_delta_notifier);
67 
68 unsigned char ptff_function_mask[16];
69 
70 static unsigned long lpar_offset;
71 static unsigned long initial_leap_seconds;
72 
73 /*
74  * Get time offsets with PTFF
75  */
time_early_init(void)76 void __init time_early_init(void)
77 {
78 	struct ptff_qto qto;
79 	struct ptff_qui qui;
80 
81 	vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod;
82 
83 	if (!test_facility(28))
84 		return;
85 
86 	ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
87 
88 	/* get LPAR offset */
89 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
90 		lpar_offset = qto.tod_epoch_difference;
91 
92 	/* get initial leap seconds */
93 	if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
94 		initial_leap_seconds = (unsigned long)
95 			((long) qui.old_leap * 4096000000L);
96 }
97 
sched_clock_noinstr(void)98 unsigned long long noinstr sched_clock_noinstr(void)
99 {
100 	return tod_to_ns(__get_tod_clock_monotonic());
101 }
102 
103 /*
104  * Scheduler clock - returns current time in nanosec units.
105  */
sched_clock(void)106 unsigned long long notrace sched_clock(void)
107 {
108 	return tod_to_ns(get_tod_clock_monotonic());
109 }
110 NOKPROBE_SYMBOL(sched_clock);
111 
ext_to_timespec64(union tod_clock * clk,struct timespec64 * xt)112 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
113 {
114 	unsigned long rem, sec, nsec;
115 
116 	sec = clk->us;
117 	rem = do_div(sec, 1000000);
118 	nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
119 	xt->tv_sec = sec;
120 	xt->tv_nsec = nsec;
121 }
122 
clock_comparator_work(void)123 void clock_comparator_work(void)
124 {
125 	struct clock_event_device *cd;
126 
127 	get_lowcore()->clock_comparator = clock_comparator_max;
128 	cd = this_cpu_ptr(&comparators);
129 	cd->event_handler(cd);
130 }
131 
s390_next_event(unsigned long delta,struct clock_event_device * evt)132 static int s390_next_event(unsigned long delta,
133 			   struct clock_event_device *evt)
134 {
135 	get_lowcore()->clock_comparator = get_tod_clock() + delta;
136 	set_clock_comparator(get_lowcore()->clock_comparator);
137 	return 0;
138 }
139 
140 /*
141  * Set up lowcore and control register of the current cpu to
142  * enable TOD clock and clock comparator interrupts.
143  */
init_cpu_timer(void)144 void init_cpu_timer(void)
145 {
146 	struct clock_event_device *cd;
147 	int cpu;
148 
149 	get_lowcore()->clock_comparator = clock_comparator_max;
150 	set_clock_comparator(get_lowcore()->clock_comparator);
151 
152 	cpu = smp_processor_id();
153 	cd = &per_cpu(comparators, cpu);
154 	cd->name		= "comparator";
155 	cd->features		= CLOCK_EVT_FEAT_ONESHOT;
156 	cd->mult		= 16777;
157 	cd->shift		= 12;
158 	cd->min_delta_ns	= 1;
159 	cd->min_delta_ticks	= 1;
160 	cd->max_delta_ns	= LONG_MAX;
161 	cd->max_delta_ticks	= ULONG_MAX;
162 	cd->rating		= 400;
163 	cd->cpumask		= cpumask_of(cpu);
164 	cd->set_next_event	= s390_next_event;
165 
166 	clockevents_register_device(cd);
167 
168 	/* Enable clock comparator timer interrupt. */
169 	local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
170 
171 	/* Always allow the timing alert external interrupt. */
172 	local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
173 }
174 
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)175 static void clock_comparator_interrupt(struct ext_code ext_code,
176 				       unsigned int param32,
177 				       unsigned long param64)
178 {
179 	inc_irq_stat(IRQEXT_CLK);
180 	if (get_lowcore()->clock_comparator == clock_comparator_max)
181 		set_clock_comparator(get_lowcore()->clock_comparator);
182 }
183 
184 static void stp_timing_alert(struct stp_irq_parm *);
185 
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)186 static void timing_alert_interrupt(struct ext_code ext_code,
187 				   unsigned int param32, unsigned long param64)
188 {
189 	inc_irq_stat(IRQEXT_TLA);
190 	if (param32 & 0x00038000)
191 		stp_timing_alert((struct stp_irq_parm *) &param32);
192 }
193 
194 static void stp_reset(void);
195 
read_persistent_clock64(struct timespec64 * ts)196 void read_persistent_clock64(struct timespec64 *ts)
197 {
198 	union tod_clock clk;
199 	u64 delta;
200 
201 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
202 	store_tod_clock_ext(&clk);
203 	clk.eitod -= delta;
204 	ext_to_timespec64(&clk, ts);
205 }
206 
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)207 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
208 						 struct timespec64 *boot_offset)
209 {
210 	struct timespec64 boot_time;
211 	union tod_clock clk;
212 	u64 delta;
213 
214 	delta = initial_leap_seconds + TOD_UNIX_EPOCH;
215 	clk = tod_clock_base;
216 	clk.eitod -= delta;
217 	ext_to_timespec64(&clk, &boot_time);
218 
219 	read_persistent_clock64(wall_time);
220 	*boot_offset = timespec64_sub(*wall_time, boot_time);
221 }
222 
read_tod_clock(struct clocksource * cs)223 static u64 read_tod_clock(struct clocksource *cs)
224 {
225 	return get_tod_clock_monotonic();
226 }
227 
228 static struct clocksource clocksource_tod = {
229 	.name		= "tod",
230 	.rating		= 400,
231 	.read		= read_tod_clock,
232 	.mask		= CLOCKSOURCE_MASK(64),
233 	.mult		= 4096000,
234 	.shift		= 24,
235 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
236 	.vdso_clock_mode = VDSO_CLOCKMODE_TOD,
237 	.id		= CSID_S390_TOD,
238 };
239 
clocksource_default_clock(void)240 struct clocksource * __init clocksource_default_clock(void)
241 {
242 	return &clocksource_tod;
243 }
244 
245 /*
246  * Initialize the TOD clock and the CPU timer of
247  * the boot cpu.
248  */
time_init(void)249 void __init time_init(void)
250 {
251 	/* Reset time synchronization interfaces. */
252 	stp_reset();
253 
254 	/* request the clock comparator external interrupt */
255 	if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
256 		panic("Couldn't request external interrupt 0x1004");
257 
258 	/* request the timing alert external interrupt */
259 	if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
260 		panic("Couldn't request external interrupt 0x1406");
261 
262 	if (__clocksource_register(&clocksource_tod) != 0)
263 		panic("Could not register TOD clock source");
264 
265 	/* Enable TOD clock interrupts on the boot cpu. */
266 	init_cpu_timer();
267 
268 	/* Enable cpu timer interrupts on the boot cpu. */
269 	vtime_init();
270 }
271 
272 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
273 static DEFINE_MUTEX(stp_mutex);
274 static unsigned long clock_sync_flags;
275 
276 #define CLOCK_SYNC_HAS_STP		0
277 #define CLOCK_SYNC_STP			1
278 #define CLOCK_SYNC_STPINFO_VALID	2
279 
280 /*
281  * The get_clock function for the physical clock. It will get the current
282  * TOD clock, subtract the LPAR offset and write the result to *clock.
283  * The function returns 0 if the clock is in sync with the external time
284  * source. If the clock mode is local it will return -EOPNOTSUPP and
285  * -EAGAIN if the clock is not in sync with the external reference.
286  */
get_phys_clock(unsigned long * clock)287 int get_phys_clock(unsigned long *clock)
288 {
289 	atomic_t *sw_ptr;
290 	unsigned int sw0, sw1;
291 
292 	sw_ptr = &get_cpu_var(clock_sync_word);
293 	sw0 = atomic_read(sw_ptr);
294 	*clock = get_tod_clock() - lpar_offset;
295 	sw1 = atomic_read(sw_ptr);
296 	put_cpu_var(clock_sync_word);
297 	if (sw0 == sw1 && (sw0 & 0x80000000U))
298 		/* Success: time is in sync. */
299 		return 0;
300 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
301 		return -EOPNOTSUPP;
302 	if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
303 		return -EACCES;
304 	return -EAGAIN;
305 }
306 EXPORT_SYMBOL(get_phys_clock);
307 
308 /*
309  * Make get_phys_clock() return -EAGAIN.
310  */
disable_sync_clock(void * dummy)311 static void disable_sync_clock(void *dummy)
312 {
313 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
314 	/*
315 	 * Clear the in-sync bit 2^31. All get_phys_clock calls will
316 	 * fail until the sync bit is turned back on. In addition
317 	 * increase the "sequence" counter to avoid the race of an
318 	 * stp event and the complete recovery against get_phys_clock.
319 	 */
320 	atomic_andnot(0x80000000, sw_ptr);
321 	atomic_inc(sw_ptr);
322 }
323 
324 /*
325  * Make get_phys_clock() return 0 again.
326  * Needs to be called from a context disabled for preemption.
327  */
enable_sync_clock(void)328 static void enable_sync_clock(void)
329 {
330 	atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
331 	atomic_or(0x80000000, sw_ptr);
332 }
333 
334 /*
335  * Function to check if the clock is in sync.
336  */
check_sync_clock(void)337 static inline int check_sync_clock(void)
338 {
339 	atomic_t *sw_ptr;
340 	int rc;
341 
342 	sw_ptr = &get_cpu_var(clock_sync_word);
343 	rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
344 	put_cpu_var(clock_sync_word);
345 	return rc;
346 }
347 
348 /*
349  * Apply clock delta to the global data structures.
350  * This is called once on the CPU that performed the clock sync.
351  */
clock_sync_global(long delta)352 static void clock_sync_global(long delta)
353 {
354 	struct ptff_qto qto;
355 
356 	/* Fixup the monotonic sched clock. */
357 	tod_clock_base.eitod += delta;
358 	vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod;
359 	/* Update LPAR offset. */
360 	if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
361 		lpar_offset = qto.tod_epoch_difference;
362 	/* Call the TOD clock change notifier. */
363 	atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
364 }
365 
366 /*
367  * Apply clock delta to the per-CPU data structures of this CPU.
368  * This is called for each online CPU after the call to clock_sync_global.
369  */
clock_sync_local(long delta)370 static void clock_sync_local(long delta)
371 {
372 	/* Add the delta to the clock comparator. */
373 	if (get_lowcore()->clock_comparator != clock_comparator_max) {
374 		get_lowcore()->clock_comparator += delta;
375 		set_clock_comparator(get_lowcore()->clock_comparator);
376 	}
377 	/* Adjust the last_update_clock time-stamp. */
378 	get_lowcore()->last_update_clock += delta;
379 }
380 
381 /* Single threaded workqueue used for stp sync events */
382 static struct workqueue_struct *time_sync_wq;
383 
time_init_wq(void)384 static void __init time_init_wq(void)
385 {
386 	if (time_sync_wq)
387 		return;
388 	time_sync_wq = create_singlethread_workqueue("timesync");
389 }
390 
391 struct clock_sync_data {
392 	atomic_t cpus;
393 	int in_sync;
394 	long clock_delta;
395 };
396 
397 /*
398  * Server Time Protocol (STP) code.
399  */
400 static bool stp_online = true;
401 static struct stp_sstpi stp_info;
402 static void *stp_page;
403 
404 static void stp_work_fn(struct work_struct *work);
405 static DECLARE_WORK(stp_work, stp_work_fn);
406 static struct timer_list stp_timer;
407 
early_parse_stp(char * p)408 static int __init early_parse_stp(char *p)
409 {
410 	return kstrtobool(p, &stp_online);
411 }
412 early_param("stp", early_parse_stp);
413 
414 /*
415  * Reset STP attachment.
416  */
stp_reset(void)417 static void __init stp_reset(void)
418 {
419 	int rc;
420 
421 	stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
422 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
423 	if (rc == 0)
424 		set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
425 	else if (stp_online) {
426 		free_page((unsigned long) stp_page);
427 		stp_page = NULL;
428 		stp_online = false;
429 	}
430 }
431 
stp_enabled(void)432 bool stp_enabled(void)
433 {
434 	return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online;
435 }
436 EXPORT_SYMBOL(stp_enabled);
437 
stp_timeout(struct timer_list * unused)438 static void stp_timeout(struct timer_list *unused)
439 {
440 	queue_work(time_sync_wq, &stp_work);
441 }
442 
stp_init(void)443 static int __init stp_init(void)
444 {
445 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
446 		return 0;
447 	timer_setup(&stp_timer, stp_timeout, 0);
448 	time_init_wq();
449 	if (!stp_online)
450 		return 0;
451 	queue_work(time_sync_wq, &stp_work);
452 	return 0;
453 }
454 
455 arch_initcall(stp_init);
456 
457 /*
458  * STP timing alert. There are three causes:
459  * 1) timing status change
460  * 2) link availability change
461  * 3) time control parameter change
462  * In all three cases we are only interested in the clock source state.
463  * If a STP clock source is now available use it.
464  */
stp_timing_alert(struct stp_irq_parm * intparm)465 static void stp_timing_alert(struct stp_irq_parm *intparm)
466 {
467 	if (intparm->tsc || intparm->lac || intparm->tcpc)
468 		queue_work(time_sync_wq, &stp_work);
469 }
470 
471 /*
472  * STP sync check machine check. This is called when the timing state
473  * changes from the synchronized state to the unsynchronized state.
474  * After a STP sync check the clock is not in sync. The machine check
475  * is broadcasted to all cpus at the same time.
476  */
stp_sync_check(void)477 int stp_sync_check(void)
478 {
479 	disable_sync_clock(NULL);
480 	return 1;
481 }
482 
483 /*
484  * STP island condition machine check. This is called when an attached
485  * server  attempts to communicate over an STP link and the servers
486  * have matching CTN ids and have a valid stratum-1 configuration
487  * but the configurations do not match.
488  */
stp_island_check(void)489 int stp_island_check(void)
490 {
491 	disable_sync_clock(NULL);
492 	return 1;
493 }
494 
stp_queue_work(void)495 void stp_queue_work(void)
496 {
497 	queue_work(time_sync_wq, &stp_work);
498 }
499 
__store_stpinfo(void)500 static int __store_stpinfo(void)
501 {
502 	int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
503 
504 	if (rc)
505 		clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
506 	else
507 		set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
508 	return rc;
509 }
510 
stpinfo_valid(void)511 static int stpinfo_valid(void)
512 {
513 	return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
514 }
515 
stp_sync_clock(void * data)516 static int stp_sync_clock(void *data)
517 {
518 	struct clock_sync_data *sync = data;
519 	long clock_delta, flags;
520 	static int first;
521 	int rc;
522 
523 	enable_sync_clock();
524 	if (xchg(&first, 1) == 0) {
525 		/* Wait until all other cpus entered the sync function. */
526 		while (atomic_read(&sync->cpus) != 0)
527 			cpu_relax();
528 		rc = 0;
529 		if (stp_info.todoff || stp_info.tmd != 2) {
530 			flags = vdso_update_begin();
531 			rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
532 					&clock_delta);
533 			if (rc == 0) {
534 				sync->clock_delta = clock_delta;
535 				clock_sync_global(clock_delta);
536 				rc = __store_stpinfo();
537 				if (rc == 0 && stp_info.tmd != 2)
538 					rc = -EAGAIN;
539 			}
540 			vdso_update_end(flags);
541 		}
542 		sync->in_sync = rc ? -EAGAIN : 1;
543 		xchg(&first, 0);
544 	} else {
545 		/* Slave */
546 		atomic_dec(&sync->cpus);
547 		/* Wait for in_sync to be set. */
548 		while (READ_ONCE(sync->in_sync) == 0)
549 			;
550 	}
551 	if (sync->in_sync != 1)
552 		/* Didn't work. Clear per-cpu in sync bit again. */
553 		disable_sync_clock(NULL);
554 	/* Apply clock delta to per-CPU fields of this CPU. */
555 	clock_sync_local(sync->clock_delta);
556 
557 	return 0;
558 }
559 
560 /*
561  * STP work. Check for the STP state and take over the clock
562  * synchronization if the STP clock source is usable.
563  */
stp_work_fn(struct work_struct * work)564 static void stp_work_fn(struct work_struct *work)
565 {
566 	struct clock_sync_data stp_sync;
567 	int rc;
568 
569 	/* prevent multiple execution. */
570 	mutex_lock(&stp_mutex);
571 
572 	if (!stp_online) {
573 		chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
574 		timer_delete_sync(&stp_timer);
575 		goto out_unlock;
576 	}
577 
578 	rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
579 	if (rc)
580 		goto out_unlock;
581 
582 	rc = __store_stpinfo();
583 	if (rc || stp_info.c == 0)
584 		goto out_unlock;
585 
586 	/* Skip synchronization if the clock is already in sync. */
587 	if (!check_sync_clock()) {
588 		memset(&stp_sync, 0, sizeof(stp_sync));
589 		cpus_read_lock();
590 		atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
591 		stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
592 		cpus_read_unlock();
593 	}
594 
595 	if (!check_sync_clock())
596 		/*
597 		 * There is a usable clock but the synchronization failed.
598 		 * Retry after a second.
599 		 */
600 		mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
601 
602 out_unlock:
603 	mutex_unlock(&stp_mutex);
604 }
605 
606 /*
607  * STP subsys sysfs interface functions
608  */
609 static const struct bus_type stp_subsys = {
610 	.name		= "stp",
611 	.dev_name	= "stp",
612 };
613 
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)614 static ssize_t ctn_id_show(struct device *dev,
615 				struct device_attribute *attr,
616 				char *buf)
617 {
618 	ssize_t ret = -ENODATA;
619 
620 	mutex_lock(&stp_mutex);
621 	if (stpinfo_valid())
622 		ret = sysfs_emit(buf, "%016lx\n",
623 				 *(unsigned long *)stp_info.ctnid);
624 	mutex_unlock(&stp_mutex);
625 	return ret;
626 }
627 
628 static DEVICE_ATTR_RO(ctn_id);
629 
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)630 static ssize_t ctn_type_show(struct device *dev,
631 				struct device_attribute *attr,
632 				char *buf)
633 {
634 	ssize_t ret = -ENODATA;
635 
636 	mutex_lock(&stp_mutex);
637 	if (stpinfo_valid())
638 		ret = sysfs_emit(buf, "%i\n", stp_info.ctn);
639 	mutex_unlock(&stp_mutex);
640 	return ret;
641 }
642 
643 static DEVICE_ATTR_RO(ctn_type);
644 
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)645 static ssize_t dst_offset_show(struct device *dev,
646 				   struct device_attribute *attr,
647 				   char *buf)
648 {
649 	ssize_t ret = -ENODATA;
650 
651 	mutex_lock(&stp_mutex);
652 	if (stpinfo_valid() && (stp_info.vbits & 0x2000))
653 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto);
654 	mutex_unlock(&stp_mutex);
655 	return ret;
656 }
657 
658 static DEVICE_ATTR_RO(dst_offset);
659 
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)660 static ssize_t leap_seconds_show(struct device *dev,
661 					struct device_attribute *attr,
662 					char *buf)
663 {
664 	ssize_t ret = -ENODATA;
665 
666 	mutex_lock(&stp_mutex);
667 	if (stpinfo_valid() && (stp_info.vbits & 0x8000))
668 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps);
669 	mutex_unlock(&stp_mutex);
670 	return ret;
671 }
672 
673 static DEVICE_ATTR_RO(leap_seconds);
674 
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)675 static ssize_t leap_seconds_scheduled_show(struct device *dev,
676 						struct device_attribute *attr,
677 						char *buf)
678 {
679 	struct stp_stzi stzi;
680 	ssize_t ret;
681 
682 	mutex_lock(&stp_mutex);
683 	if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
684 		mutex_unlock(&stp_mutex);
685 		return -ENODATA;
686 	}
687 
688 	ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
689 	mutex_unlock(&stp_mutex);
690 	if (ret < 0)
691 		return ret;
692 
693 	if (!stzi.lsoib.p)
694 		return sysfs_emit(buf, "0,0\n");
695 
696 	return sysfs_emit(buf, "%lu,%d\n",
697 			  tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
698 			  stzi.lsoib.nlso - stzi.lsoib.also);
699 }
700 
701 static DEVICE_ATTR_RO(leap_seconds_scheduled);
702 
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)703 static ssize_t stratum_show(struct device *dev,
704 				struct device_attribute *attr,
705 				char *buf)
706 {
707 	ssize_t ret = -ENODATA;
708 
709 	mutex_lock(&stp_mutex);
710 	if (stpinfo_valid())
711 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum);
712 	mutex_unlock(&stp_mutex);
713 	return ret;
714 }
715 
716 static DEVICE_ATTR_RO(stratum);
717 
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)718 static ssize_t time_offset_show(struct device *dev,
719 				struct device_attribute *attr,
720 				char *buf)
721 {
722 	ssize_t ret = -ENODATA;
723 
724 	mutex_lock(&stp_mutex);
725 	if (stpinfo_valid() && (stp_info.vbits & 0x0800))
726 		ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto);
727 	mutex_unlock(&stp_mutex);
728 	return ret;
729 }
730 
731 static DEVICE_ATTR_RO(time_offset);
732 
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)733 static ssize_t time_zone_offset_show(struct device *dev,
734 				struct device_attribute *attr,
735 				char *buf)
736 {
737 	ssize_t ret = -ENODATA;
738 
739 	mutex_lock(&stp_mutex);
740 	if (stpinfo_valid() && (stp_info.vbits & 0x4000))
741 		ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo);
742 	mutex_unlock(&stp_mutex);
743 	return ret;
744 }
745 
746 static DEVICE_ATTR_RO(time_zone_offset);
747 
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t timing_mode_show(struct device *dev,
749 				struct device_attribute *attr,
750 				char *buf)
751 {
752 	ssize_t ret = -ENODATA;
753 
754 	mutex_lock(&stp_mutex);
755 	if (stpinfo_valid())
756 		ret = sysfs_emit(buf, "%i\n", stp_info.tmd);
757 	mutex_unlock(&stp_mutex);
758 	return ret;
759 }
760 
761 static DEVICE_ATTR_RO(timing_mode);
762 
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t timing_state_show(struct device *dev,
764 				struct device_attribute *attr,
765 				char *buf)
766 {
767 	ssize_t ret = -ENODATA;
768 
769 	mutex_lock(&stp_mutex);
770 	if (stpinfo_valid())
771 		ret = sysfs_emit(buf, "%i\n", stp_info.tst);
772 	mutex_unlock(&stp_mutex);
773 	return ret;
774 }
775 
776 static DEVICE_ATTR_RO(timing_state);
777 
online_show(struct device * dev,struct device_attribute * attr,char * buf)778 static ssize_t online_show(struct device *dev,
779 				struct device_attribute *attr,
780 				char *buf)
781 {
782 	return sysfs_emit(buf, "%i\n", stp_online);
783 }
784 
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)785 static ssize_t online_store(struct device *dev,
786 				struct device_attribute *attr,
787 				const char *buf, size_t count)
788 {
789 	unsigned int value;
790 
791 	value = simple_strtoul(buf, NULL, 0);
792 	if (value != 0 && value != 1)
793 		return -EINVAL;
794 	if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
795 		return -EOPNOTSUPP;
796 	mutex_lock(&stp_mutex);
797 	stp_online = value;
798 	if (stp_online)
799 		set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
800 	else
801 		clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
802 	queue_work(time_sync_wq, &stp_work);
803 	mutex_unlock(&stp_mutex);
804 	return count;
805 }
806 
807 /*
808  * Can't use DEVICE_ATTR because the attribute should be named
809  * stp/online but dev_attr_online already exists in this file ..
810  */
811 static DEVICE_ATTR_RW(online);
812 
813 static struct attribute *stp_dev_attrs[] = {
814 	&dev_attr_ctn_id.attr,
815 	&dev_attr_ctn_type.attr,
816 	&dev_attr_dst_offset.attr,
817 	&dev_attr_leap_seconds.attr,
818 	&dev_attr_online.attr,
819 	&dev_attr_leap_seconds_scheduled.attr,
820 	&dev_attr_stratum.attr,
821 	&dev_attr_time_offset.attr,
822 	&dev_attr_time_zone_offset.attr,
823 	&dev_attr_timing_mode.attr,
824 	&dev_attr_timing_state.attr,
825 	NULL
826 };
827 ATTRIBUTE_GROUPS(stp_dev);
828 
stp_init_sysfs(void)829 static int __init stp_init_sysfs(void)
830 {
831 	return subsys_system_register(&stp_subsys, stp_dev_groups);
832 }
833 
834 device_initcall(stp_init_sysfs);
835