1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/clockchips.h>
40 #include <linux/gfp.h>
41 #include <linux/kprobes.h>
42 #include <linux/uaccess.h>
43 #include <vdso/vsyscall.h>
44 #include <vdso/clocksource.h>
45 #include <vdso/helpers.h>
46 #include <asm/facility.h>
47 #include <asm/delay.h>
48 #include <asm/div64.h>
49 #include <asm/vdso.h>
50 #include <asm/irq.h>
51 #include <asm/irq_regs.h>
52 #include <asm/vtimer.h>
53 #include <asm/stp.h>
54 #include <asm/cio.h>
55 #include "entry.h"
56
57 union tod_clock __bootdata_preserved(tod_clock_base);
58 EXPORT_SYMBOL_GPL(tod_clock_base);
59
60 u64 __bootdata_preserved(clock_comparator_max);
61 EXPORT_SYMBOL_GPL(clock_comparator_max);
62
63 static DEFINE_PER_CPU(struct clock_event_device, comparators);
64
65 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
66 EXPORT_SYMBOL(s390_epoch_delta_notifier);
67
68 unsigned char ptff_function_mask[16];
69
70 static unsigned long lpar_offset;
71 static unsigned long initial_leap_seconds;
72
73 /*
74 * Get time offsets with PTFF
75 */
time_early_init(void)76 void __init time_early_init(void)
77 {
78 struct ptff_qto qto;
79 struct ptff_qui qui;
80
81 vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod;
82
83 if (!test_facility(28))
84 return;
85
86 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
87
88 /* get LPAR offset */
89 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
90 lpar_offset = qto.tod_epoch_difference;
91
92 /* get initial leap seconds */
93 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
94 initial_leap_seconds = (unsigned long)
95 ((long) qui.old_leap * 4096000000L);
96 }
97
sched_clock_noinstr(void)98 unsigned long long noinstr sched_clock_noinstr(void)
99 {
100 return tod_to_ns(__get_tod_clock_monotonic());
101 }
102
103 /*
104 * Scheduler clock - returns current time in nanosec units.
105 */
sched_clock(void)106 unsigned long long notrace sched_clock(void)
107 {
108 return tod_to_ns(get_tod_clock_monotonic());
109 }
110 NOKPROBE_SYMBOL(sched_clock);
111
ext_to_timespec64(union tod_clock * clk,struct timespec64 * xt)112 static void ext_to_timespec64(union tod_clock *clk, struct timespec64 *xt)
113 {
114 unsigned long rem, sec, nsec;
115
116 sec = clk->us;
117 rem = do_div(sec, 1000000);
118 nsec = ((clk->sus + (rem << 12)) * 125) >> 9;
119 xt->tv_sec = sec;
120 xt->tv_nsec = nsec;
121 }
122
clock_comparator_work(void)123 void clock_comparator_work(void)
124 {
125 struct clock_event_device *cd;
126
127 get_lowcore()->clock_comparator = clock_comparator_max;
128 cd = this_cpu_ptr(&comparators);
129 cd->event_handler(cd);
130 }
131
s390_next_event(unsigned long delta,struct clock_event_device * evt)132 static int s390_next_event(unsigned long delta,
133 struct clock_event_device *evt)
134 {
135 get_lowcore()->clock_comparator = get_tod_clock() + delta;
136 set_clock_comparator(get_lowcore()->clock_comparator);
137 return 0;
138 }
139
140 /*
141 * Set up lowcore and control register of the current cpu to
142 * enable TOD clock and clock comparator interrupts.
143 */
init_cpu_timer(void)144 void init_cpu_timer(void)
145 {
146 struct clock_event_device *cd;
147 int cpu;
148
149 get_lowcore()->clock_comparator = clock_comparator_max;
150 set_clock_comparator(get_lowcore()->clock_comparator);
151
152 cpu = smp_processor_id();
153 cd = &per_cpu(comparators, cpu);
154 cd->name = "comparator";
155 cd->features = CLOCK_EVT_FEAT_ONESHOT;
156 cd->mult = 16777;
157 cd->shift = 12;
158 cd->min_delta_ns = 1;
159 cd->min_delta_ticks = 1;
160 cd->max_delta_ns = LONG_MAX;
161 cd->max_delta_ticks = ULONG_MAX;
162 cd->rating = 400;
163 cd->cpumask = cpumask_of(cpu);
164 cd->set_next_event = s390_next_event;
165
166 clockevents_register_device(cd);
167
168 /* Enable clock comparator timer interrupt. */
169 local_ctl_set_bit(0, CR0_CLOCK_COMPARATOR_SUBMASK_BIT);
170
171 /* Always allow the timing alert external interrupt. */
172 local_ctl_set_bit(0, CR0_ETR_SUBMASK_BIT);
173 }
174
clock_comparator_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)175 static void clock_comparator_interrupt(struct ext_code ext_code,
176 unsigned int param32,
177 unsigned long param64)
178 {
179 inc_irq_stat(IRQEXT_CLK);
180 if (get_lowcore()->clock_comparator == clock_comparator_max)
181 set_clock_comparator(get_lowcore()->clock_comparator);
182 }
183
184 static void stp_timing_alert(struct stp_irq_parm *);
185
timing_alert_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)186 static void timing_alert_interrupt(struct ext_code ext_code,
187 unsigned int param32, unsigned long param64)
188 {
189 inc_irq_stat(IRQEXT_TLA);
190 if (param32 & 0x00038000)
191 stp_timing_alert((struct stp_irq_parm *) ¶m32);
192 }
193
194 static void stp_reset(void);
195
read_persistent_clock64(struct timespec64 * ts)196 void read_persistent_clock64(struct timespec64 *ts)
197 {
198 union tod_clock clk;
199 u64 delta;
200
201 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
202 store_tod_clock_ext(&clk);
203 clk.eitod -= delta;
204 ext_to_timespec64(&clk, ts);
205 }
206
read_persistent_wall_and_boot_offset(struct timespec64 * wall_time,struct timespec64 * boot_offset)207 void __init read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
208 struct timespec64 *boot_offset)
209 {
210 struct timespec64 boot_time;
211 union tod_clock clk;
212 u64 delta;
213
214 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
215 clk = tod_clock_base;
216 clk.eitod -= delta;
217 ext_to_timespec64(&clk, &boot_time);
218
219 read_persistent_clock64(wall_time);
220 *boot_offset = timespec64_sub(*wall_time, boot_time);
221 }
222
read_tod_clock(struct clocksource * cs)223 static u64 read_tod_clock(struct clocksource *cs)
224 {
225 return get_tod_clock_monotonic();
226 }
227
228 static struct clocksource clocksource_tod = {
229 .name = "tod",
230 .rating = 400,
231 .read = read_tod_clock,
232 .mask = CLOCKSOURCE_MASK(64),
233 .mult = 4096000,
234 .shift = 24,
235 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
236 .vdso_clock_mode = VDSO_CLOCKMODE_TOD,
237 .id = CSID_S390_TOD,
238 };
239
clocksource_default_clock(void)240 struct clocksource * __init clocksource_default_clock(void)
241 {
242 return &clocksource_tod;
243 }
244
245 /*
246 * Initialize the TOD clock and the CPU timer of
247 * the boot cpu.
248 */
time_init(void)249 void __init time_init(void)
250 {
251 /* Reset time synchronization interfaces. */
252 stp_reset();
253
254 /* request the clock comparator external interrupt */
255 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
256 panic("Couldn't request external interrupt 0x1004");
257
258 /* request the timing alert external interrupt */
259 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
260 panic("Couldn't request external interrupt 0x1406");
261
262 if (__clocksource_register(&clocksource_tod) != 0)
263 panic("Could not register TOD clock source");
264
265 /* Enable TOD clock interrupts on the boot cpu. */
266 init_cpu_timer();
267
268 /* Enable cpu timer interrupts on the boot cpu. */
269 vtime_init();
270 }
271
272 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
273 static DEFINE_MUTEX(stp_mutex);
274 static unsigned long clock_sync_flags;
275
276 #define CLOCK_SYNC_HAS_STP 0
277 #define CLOCK_SYNC_STP 1
278 #define CLOCK_SYNC_STPINFO_VALID 2
279
280 /*
281 * The get_clock function for the physical clock. It will get the current
282 * TOD clock, subtract the LPAR offset and write the result to *clock.
283 * The function returns 0 if the clock is in sync with the external time
284 * source. If the clock mode is local it will return -EOPNOTSUPP and
285 * -EAGAIN if the clock is not in sync with the external reference.
286 */
get_phys_clock(unsigned long * clock)287 int get_phys_clock(unsigned long *clock)
288 {
289 atomic_t *sw_ptr;
290 unsigned int sw0, sw1;
291
292 sw_ptr = &get_cpu_var(clock_sync_word);
293 sw0 = atomic_read(sw_ptr);
294 *clock = get_tod_clock() - lpar_offset;
295 sw1 = atomic_read(sw_ptr);
296 put_cpu_var(clock_sync_word);
297 if (sw0 == sw1 && (sw0 & 0x80000000U))
298 /* Success: time is in sync. */
299 return 0;
300 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
301 return -EOPNOTSUPP;
302 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
303 return -EACCES;
304 return -EAGAIN;
305 }
306 EXPORT_SYMBOL(get_phys_clock);
307
308 /*
309 * Make get_phys_clock() return -EAGAIN.
310 */
disable_sync_clock(void * dummy)311 static void disable_sync_clock(void *dummy)
312 {
313 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
314 /*
315 * Clear the in-sync bit 2^31. All get_phys_clock calls will
316 * fail until the sync bit is turned back on. In addition
317 * increase the "sequence" counter to avoid the race of an
318 * stp event and the complete recovery against get_phys_clock.
319 */
320 atomic_andnot(0x80000000, sw_ptr);
321 atomic_inc(sw_ptr);
322 }
323
324 /*
325 * Make get_phys_clock() return 0 again.
326 * Needs to be called from a context disabled for preemption.
327 */
enable_sync_clock(void)328 static void enable_sync_clock(void)
329 {
330 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
331 atomic_or(0x80000000, sw_ptr);
332 }
333
334 /*
335 * Function to check if the clock is in sync.
336 */
check_sync_clock(void)337 static inline int check_sync_clock(void)
338 {
339 atomic_t *sw_ptr;
340 int rc;
341
342 sw_ptr = &get_cpu_var(clock_sync_word);
343 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
344 put_cpu_var(clock_sync_word);
345 return rc;
346 }
347
348 /*
349 * Apply clock delta to the global data structures.
350 * This is called once on the CPU that performed the clock sync.
351 */
clock_sync_global(long delta)352 static void clock_sync_global(long delta)
353 {
354 struct ptff_qto qto;
355
356 /* Fixup the monotonic sched clock. */
357 tod_clock_base.eitod += delta;
358 vdso_k_time_data->arch_data.tod_delta = tod_clock_base.tod;
359 /* Update LPAR offset. */
360 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
361 lpar_offset = qto.tod_epoch_difference;
362 /* Call the TOD clock change notifier. */
363 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
364 }
365
366 /*
367 * Apply clock delta to the per-CPU data structures of this CPU.
368 * This is called for each online CPU after the call to clock_sync_global.
369 */
clock_sync_local(long delta)370 static void clock_sync_local(long delta)
371 {
372 /* Add the delta to the clock comparator. */
373 if (get_lowcore()->clock_comparator != clock_comparator_max) {
374 get_lowcore()->clock_comparator += delta;
375 set_clock_comparator(get_lowcore()->clock_comparator);
376 }
377 /* Adjust the last_update_clock time-stamp. */
378 get_lowcore()->last_update_clock += delta;
379 }
380
381 /* Single threaded workqueue used for stp sync events */
382 static struct workqueue_struct *time_sync_wq;
383
time_init_wq(void)384 static void __init time_init_wq(void)
385 {
386 if (time_sync_wq)
387 return;
388 time_sync_wq = create_singlethread_workqueue("timesync");
389 }
390
391 struct clock_sync_data {
392 atomic_t cpus;
393 int in_sync;
394 long clock_delta;
395 };
396
397 /*
398 * Server Time Protocol (STP) code.
399 */
400 static bool stp_online = true;
401 static struct stp_sstpi stp_info;
402 static void *stp_page;
403
404 static void stp_work_fn(struct work_struct *work);
405 static DECLARE_WORK(stp_work, stp_work_fn);
406 static struct timer_list stp_timer;
407
early_parse_stp(char * p)408 static int __init early_parse_stp(char *p)
409 {
410 return kstrtobool(p, &stp_online);
411 }
412 early_param("stp", early_parse_stp);
413
414 /*
415 * Reset STP attachment.
416 */
stp_reset(void)417 static void __init stp_reset(void)
418 {
419 int rc;
420
421 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
422 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
423 if (rc == 0)
424 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
425 else if (stp_online) {
426 free_page((unsigned long) stp_page);
427 stp_page = NULL;
428 stp_online = false;
429 }
430 }
431
stp_enabled(void)432 bool stp_enabled(void)
433 {
434 return test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags) && stp_online;
435 }
436 EXPORT_SYMBOL(stp_enabled);
437
stp_timeout(struct timer_list * unused)438 static void stp_timeout(struct timer_list *unused)
439 {
440 queue_work(time_sync_wq, &stp_work);
441 }
442
stp_init(void)443 static int __init stp_init(void)
444 {
445 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
446 return 0;
447 timer_setup(&stp_timer, stp_timeout, 0);
448 time_init_wq();
449 if (!stp_online)
450 return 0;
451 queue_work(time_sync_wq, &stp_work);
452 return 0;
453 }
454
455 arch_initcall(stp_init);
456
457 /*
458 * STP timing alert. There are three causes:
459 * 1) timing status change
460 * 2) link availability change
461 * 3) time control parameter change
462 * In all three cases we are only interested in the clock source state.
463 * If a STP clock source is now available use it.
464 */
stp_timing_alert(struct stp_irq_parm * intparm)465 static void stp_timing_alert(struct stp_irq_parm *intparm)
466 {
467 if (intparm->tsc || intparm->lac || intparm->tcpc)
468 queue_work(time_sync_wq, &stp_work);
469 }
470
471 /*
472 * STP sync check machine check. This is called when the timing state
473 * changes from the synchronized state to the unsynchronized state.
474 * After a STP sync check the clock is not in sync. The machine check
475 * is broadcasted to all cpus at the same time.
476 */
stp_sync_check(void)477 int stp_sync_check(void)
478 {
479 disable_sync_clock(NULL);
480 return 1;
481 }
482
483 /*
484 * STP island condition machine check. This is called when an attached
485 * server attempts to communicate over an STP link and the servers
486 * have matching CTN ids and have a valid stratum-1 configuration
487 * but the configurations do not match.
488 */
stp_island_check(void)489 int stp_island_check(void)
490 {
491 disable_sync_clock(NULL);
492 return 1;
493 }
494
stp_queue_work(void)495 void stp_queue_work(void)
496 {
497 queue_work(time_sync_wq, &stp_work);
498 }
499
__store_stpinfo(void)500 static int __store_stpinfo(void)
501 {
502 int rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
503
504 if (rc)
505 clear_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
506 else
507 set_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
508 return rc;
509 }
510
stpinfo_valid(void)511 static int stpinfo_valid(void)
512 {
513 return stp_online && test_bit(CLOCK_SYNC_STPINFO_VALID, &clock_sync_flags);
514 }
515
stp_sync_clock(void * data)516 static int stp_sync_clock(void *data)
517 {
518 struct clock_sync_data *sync = data;
519 long clock_delta, flags;
520 static int first;
521 int rc;
522
523 enable_sync_clock();
524 if (xchg(&first, 1) == 0) {
525 /* Wait until all other cpus entered the sync function. */
526 while (atomic_read(&sync->cpus) != 0)
527 cpu_relax();
528 rc = 0;
529 if (stp_info.todoff || stp_info.tmd != 2) {
530 flags = vdso_update_begin();
531 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
532 &clock_delta);
533 if (rc == 0) {
534 sync->clock_delta = clock_delta;
535 clock_sync_global(clock_delta);
536 rc = __store_stpinfo();
537 if (rc == 0 && stp_info.tmd != 2)
538 rc = -EAGAIN;
539 }
540 vdso_update_end(flags);
541 }
542 sync->in_sync = rc ? -EAGAIN : 1;
543 xchg(&first, 0);
544 } else {
545 /* Slave */
546 atomic_dec(&sync->cpus);
547 /* Wait for in_sync to be set. */
548 while (READ_ONCE(sync->in_sync) == 0)
549 ;
550 }
551 if (sync->in_sync != 1)
552 /* Didn't work. Clear per-cpu in sync bit again. */
553 disable_sync_clock(NULL);
554 /* Apply clock delta to per-CPU fields of this CPU. */
555 clock_sync_local(sync->clock_delta);
556
557 return 0;
558 }
559
560 /*
561 * STP work. Check for the STP state and take over the clock
562 * synchronization if the STP clock source is usable.
563 */
stp_work_fn(struct work_struct * work)564 static void stp_work_fn(struct work_struct *work)
565 {
566 struct clock_sync_data stp_sync;
567 int rc;
568
569 /* prevent multiple execution. */
570 mutex_lock(&stp_mutex);
571
572 if (!stp_online) {
573 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
574 timer_delete_sync(&stp_timer);
575 goto out_unlock;
576 }
577
578 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xf0e0, NULL);
579 if (rc)
580 goto out_unlock;
581
582 rc = __store_stpinfo();
583 if (rc || stp_info.c == 0)
584 goto out_unlock;
585
586 /* Skip synchronization if the clock is already in sync. */
587 if (!check_sync_clock()) {
588 memset(&stp_sync, 0, sizeof(stp_sync));
589 cpus_read_lock();
590 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
591 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
592 cpus_read_unlock();
593 }
594
595 if (!check_sync_clock())
596 /*
597 * There is a usable clock but the synchronization failed.
598 * Retry after a second.
599 */
600 mod_timer(&stp_timer, jiffies + msecs_to_jiffies(MSEC_PER_SEC));
601
602 out_unlock:
603 mutex_unlock(&stp_mutex);
604 }
605
606 /*
607 * STP subsys sysfs interface functions
608 */
609 static const struct bus_type stp_subsys = {
610 .name = "stp",
611 .dev_name = "stp",
612 };
613
ctn_id_show(struct device * dev,struct device_attribute * attr,char * buf)614 static ssize_t ctn_id_show(struct device *dev,
615 struct device_attribute *attr,
616 char *buf)
617 {
618 ssize_t ret = -ENODATA;
619
620 mutex_lock(&stp_mutex);
621 if (stpinfo_valid())
622 ret = sysfs_emit(buf, "%016lx\n",
623 *(unsigned long *)stp_info.ctnid);
624 mutex_unlock(&stp_mutex);
625 return ret;
626 }
627
628 static DEVICE_ATTR_RO(ctn_id);
629
ctn_type_show(struct device * dev,struct device_attribute * attr,char * buf)630 static ssize_t ctn_type_show(struct device *dev,
631 struct device_attribute *attr,
632 char *buf)
633 {
634 ssize_t ret = -ENODATA;
635
636 mutex_lock(&stp_mutex);
637 if (stpinfo_valid())
638 ret = sysfs_emit(buf, "%i\n", stp_info.ctn);
639 mutex_unlock(&stp_mutex);
640 return ret;
641 }
642
643 static DEVICE_ATTR_RO(ctn_type);
644
dst_offset_show(struct device * dev,struct device_attribute * attr,char * buf)645 static ssize_t dst_offset_show(struct device *dev,
646 struct device_attribute *attr,
647 char *buf)
648 {
649 ssize_t ret = -ENODATA;
650
651 mutex_lock(&stp_mutex);
652 if (stpinfo_valid() && (stp_info.vbits & 0x2000))
653 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.dsto);
654 mutex_unlock(&stp_mutex);
655 return ret;
656 }
657
658 static DEVICE_ATTR_RO(dst_offset);
659
leap_seconds_show(struct device * dev,struct device_attribute * attr,char * buf)660 static ssize_t leap_seconds_show(struct device *dev,
661 struct device_attribute *attr,
662 char *buf)
663 {
664 ssize_t ret = -ENODATA;
665
666 mutex_lock(&stp_mutex);
667 if (stpinfo_valid() && (stp_info.vbits & 0x8000))
668 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.leaps);
669 mutex_unlock(&stp_mutex);
670 return ret;
671 }
672
673 static DEVICE_ATTR_RO(leap_seconds);
674
leap_seconds_scheduled_show(struct device * dev,struct device_attribute * attr,char * buf)675 static ssize_t leap_seconds_scheduled_show(struct device *dev,
676 struct device_attribute *attr,
677 char *buf)
678 {
679 struct stp_stzi stzi;
680 ssize_t ret;
681
682 mutex_lock(&stp_mutex);
683 if (!stpinfo_valid() || !(stp_info.vbits & 0x8000) || !stp_info.lu) {
684 mutex_unlock(&stp_mutex);
685 return -ENODATA;
686 }
687
688 ret = chsc_stzi(stp_page, &stzi, sizeof(stzi));
689 mutex_unlock(&stp_mutex);
690 if (ret < 0)
691 return ret;
692
693 if (!stzi.lsoib.p)
694 return sysfs_emit(buf, "0,0\n");
695
696 return sysfs_emit(buf, "%lu,%d\n",
697 tod_to_ns(stzi.lsoib.nlsout - TOD_UNIX_EPOCH) / NSEC_PER_SEC,
698 stzi.lsoib.nlso - stzi.lsoib.also);
699 }
700
701 static DEVICE_ATTR_RO(leap_seconds_scheduled);
702
stratum_show(struct device * dev,struct device_attribute * attr,char * buf)703 static ssize_t stratum_show(struct device *dev,
704 struct device_attribute *attr,
705 char *buf)
706 {
707 ssize_t ret = -ENODATA;
708
709 mutex_lock(&stp_mutex);
710 if (stpinfo_valid())
711 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.stratum);
712 mutex_unlock(&stp_mutex);
713 return ret;
714 }
715
716 static DEVICE_ATTR_RO(stratum);
717
time_offset_show(struct device * dev,struct device_attribute * attr,char * buf)718 static ssize_t time_offset_show(struct device *dev,
719 struct device_attribute *attr,
720 char *buf)
721 {
722 ssize_t ret = -ENODATA;
723
724 mutex_lock(&stp_mutex);
725 if (stpinfo_valid() && (stp_info.vbits & 0x0800))
726 ret = sysfs_emit(buf, "%i\n", (int)stp_info.tto);
727 mutex_unlock(&stp_mutex);
728 return ret;
729 }
730
731 static DEVICE_ATTR_RO(time_offset);
732
time_zone_offset_show(struct device * dev,struct device_attribute * attr,char * buf)733 static ssize_t time_zone_offset_show(struct device *dev,
734 struct device_attribute *attr,
735 char *buf)
736 {
737 ssize_t ret = -ENODATA;
738
739 mutex_lock(&stp_mutex);
740 if (stpinfo_valid() && (stp_info.vbits & 0x4000))
741 ret = sysfs_emit(buf, "%i\n", (int)(s16)stp_info.tzo);
742 mutex_unlock(&stp_mutex);
743 return ret;
744 }
745
746 static DEVICE_ATTR_RO(time_zone_offset);
747
timing_mode_show(struct device * dev,struct device_attribute * attr,char * buf)748 static ssize_t timing_mode_show(struct device *dev,
749 struct device_attribute *attr,
750 char *buf)
751 {
752 ssize_t ret = -ENODATA;
753
754 mutex_lock(&stp_mutex);
755 if (stpinfo_valid())
756 ret = sysfs_emit(buf, "%i\n", stp_info.tmd);
757 mutex_unlock(&stp_mutex);
758 return ret;
759 }
760
761 static DEVICE_ATTR_RO(timing_mode);
762
timing_state_show(struct device * dev,struct device_attribute * attr,char * buf)763 static ssize_t timing_state_show(struct device *dev,
764 struct device_attribute *attr,
765 char *buf)
766 {
767 ssize_t ret = -ENODATA;
768
769 mutex_lock(&stp_mutex);
770 if (stpinfo_valid())
771 ret = sysfs_emit(buf, "%i\n", stp_info.tst);
772 mutex_unlock(&stp_mutex);
773 return ret;
774 }
775
776 static DEVICE_ATTR_RO(timing_state);
777
online_show(struct device * dev,struct device_attribute * attr,char * buf)778 static ssize_t online_show(struct device *dev,
779 struct device_attribute *attr,
780 char *buf)
781 {
782 return sysfs_emit(buf, "%i\n", stp_online);
783 }
784
online_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)785 static ssize_t online_store(struct device *dev,
786 struct device_attribute *attr,
787 const char *buf, size_t count)
788 {
789 unsigned int value;
790
791 value = simple_strtoul(buf, NULL, 0);
792 if (value != 0 && value != 1)
793 return -EINVAL;
794 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
795 return -EOPNOTSUPP;
796 mutex_lock(&stp_mutex);
797 stp_online = value;
798 if (stp_online)
799 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
800 else
801 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
802 queue_work(time_sync_wq, &stp_work);
803 mutex_unlock(&stp_mutex);
804 return count;
805 }
806
807 /*
808 * Can't use DEVICE_ATTR because the attribute should be named
809 * stp/online but dev_attr_online already exists in this file ..
810 */
811 static DEVICE_ATTR_RW(online);
812
813 static struct attribute *stp_dev_attrs[] = {
814 &dev_attr_ctn_id.attr,
815 &dev_attr_ctn_type.attr,
816 &dev_attr_dst_offset.attr,
817 &dev_attr_leap_seconds.attr,
818 &dev_attr_online.attr,
819 &dev_attr_leap_seconds_scheduled.attr,
820 &dev_attr_stratum.attr,
821 &dev_attr_time_offset.attr,
822 &dev_attr_time_zone_offset.attr,
823 &dev_attr_timing_mode.attr,
824 &dev_attr_timing_state.attr,
825 NULL
826 };
827 ATTRIBUTE_GROUPS(stp_dev);
828
stp_init_sysfs(void)829 static int __init stp_init_sysfs(void)
830 {
831 return subsys_system_register(&stp_subsys, stp_dev_groups);
832 }
833
834 device_initcall(stp_init_sysfs);
835