1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/math64.h>
15 #include <linux/module.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/spi-nor.h>
18 #include <linux/mutex.h>
19 #include <linux/of_platform.h>
20 #include <linux/regulator/consumer.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/sizes.h>
23 #include <linux/slab.h>
24 #include <linux/spi/flash.h>
25
26 #include "core.h"
27
28 /* Define max times to check status register before we give up. */
29
30 /*
31 * For everything but full-chip erase; probably could be much smaller, but kept
32 * around for safety for now
33 */
34 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
35
36 /*
37 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
38 * for larger flash
39 */
40 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
41
42 #define SPI_NOR_MAX_ADDR_NBYTES 4
43
44 #define SPI_NOR_SRST_SLEEP_MIN 200
45 #define SPI_NOR_SRST_SLEEP_MAX 400
46
47 /**
48 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
49 * extension type.
50 * @nor: pointer to a 'struct spi_nor'
51 * @op: pointer to the 'struct spi_mem_op' whose properties
52 * need to be initialized.
53 *
54 * Right now, only "repeat" and "invert" are supported.
55 *
56 * Return: The opcode extension.
57 */
spi_nor_get_cmd_ext(const struct spi_nor * nor,const struct spi_mem_op * op)58 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
59 const struct spi_mem_op *op)
60 {
61 switch (nor->cmd_ext_type) {
62 case SPI_NOR_EXT_INVERT:
63 return ~op->cmd.opcode;
64
65 case SPI_NOR_EXT_REPEAT:
66 return op->cmd.opcode;
67
68 default:
69 dev_err(nor->dev, "Unknown command extension type\n");
70 return 0;
71 }
72 }
73
74 /**
75 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
76 * @nor: pointer to a 'struct spi_nor'
77 * @op: pointer to the 'struct spi_mem_op' whose properties
78 * need to be initialized.
79 * @proto: the protocol from which the properties need to be set.
80 */
spi_nor_spimem_setup_op(const struct spi_nor * nor,struct spi_mem_op * op,const enum spi_nor_protocol proto)81 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
82 struct spi_mem_op *op,
83 const enum spi_nor_protocol proto)
84 {
85 u8 ext;
86
87 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
88
89 if (op->addr.nbytes)
90 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
91
92 if (op->dummy.nbytes)
93 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
94
95 if (op->data.nbytes)
96 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
97
98 if (spi_nor_protocol_is_dtr(proto)) {
99 /*
100 * SPIMEM supports mixed DTR modes, but right now we can only
101 * have all phases either DTR or STR. IOW, SPIMEM can have
102 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
103 * phases to either DTR or STR.
104 */
105 op->cmd.dtr = true;
106 op->addr.dtr = true;
107 op->dummy.dtr = true;
108 op->data.dtr = true;
109
110 /* 2 bytes per clock cycle in DTR mode. */
111 op->dummy.nbytes *= 2;
112
113 ext = spi_nor_get_cmd_ext(nor, op);
114 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
115 op->cmd.nbytes = 2;
116 }
117
118 if (proto == SNOR_PROTO_8_8_8_DTR && nor->flags & SNOR_F_SWAP16)
119 op->data.swap16 = true;
120 }
121
122 /**
123 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
124 * transfer
125 * @nor: pointer to 'struct spi_nor'
126 * @op: pointer to 'struct spi_mem_op' template for transfer
127 *
128 * If we have to use the bounce buffer, the data field in @op will be updated.
129 *
130 * Return: true if the bounce buffer is needed, false if not
131 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)132 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
133 {
134 /* op->data.buf.in occupies the same memory as op->data.buf.out */
135 if (object_is_on_stack(op->data.buf.in) ||
136 !virt_addr_valid(op->data.buf.in)) {
137 if (op->data.nbytes > nor->bouncebuf_size)
138 op->data.nbytes = nor->bouncebuf_size;
139 op->data.buf.in = nor->bouncebuf;
140 return true;
141 }
142
143 return false;
144 }
145
146 /**
147 * spi_nor_spimem_exec_op() - execute a memory operation
148 * @nor: pointer to 'struct spi_nor'
149 * @op: pointer to 'struct spi_mem_op' template for transfer
150 *
151 * Return: 0 on success, -error otherwise.
152 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)153 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
154 {
155 int error;
156
157 error = spi_mem_adjust_op_size(nor->spimem, op);
158 if (error)
159 return error;
160
161 return spi_mem_exec_op(nor->spimem, op);
162 }
163
spi_nor_controller_ops_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,size_t len)164 int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
165 u8 *buf, size_t len)
166 {
167 if (spi_nor_protocol_is_dtr(nor->reg_proto))
168 return -EOPNOTSUPP;
169
170 return nor->controller_ops->read_reg(nor, opcode, buf, len);
171 }
172
spi_nor_controller_ops_write_reg(struct spi_nor * nor,u8 opcode,const u8 * buf,size_t len)173 int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
174 const u8 *buf, size_t len)
175 {
176 if (spi_nor_protocol_is_dtr(nor->reg_proto))
177 return -EOPNOTSUPP;
178
179 return nor->controller_ops->write_reg(nor, opcode, buf, len);
180 }
181
spi_nor_controller_ops_erase(struct spi_nor * nor,loff_t offs)182 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
183 {
184 if (spi_nor_protocol_is_dtr(nor->reg_proto))
185 return -EOPNOTSUPP;
186
187 return nor->controller_ops->erase(nor, offs);
188 }
189
190 /**
191 * spi_nor_spimem_read_data() - read data from flash's memory region via
192 * spi-mem
193 * @nor: pointer to 'struct spi_nor'
194 * @from: offset to read from
195 * @len: number of bytes to read
196 * @buf: pointer to dst buffer
197 *
198 * Return: number of bytes read successfully, -errno otherwise
199 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)200 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
201 size_t len, u8 *buf)
202 {
203 struct spi_mem_op op =
204 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
205 SPI_MEM_OP_ADDR(nor->addr_nbytes, from, 0),
206 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
207 SPI_MEM_OP_DATA_IN(len, buf, 0));
208 bool usebouncebuf;
209 ssize_t nbytes;
210 int error;
211
212 spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
213
214 /* convert the dummy cycles to the number of bytes */
215 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
216 if (spi_nor_protocol_is_dtr(nor->read_proto))
217 op.dummy.nbytes *= 2;
218
219 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
220
221 if (nor->dirmap.rdesc) {
222 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
223 op.data.nbytes, op.data.buf.in);
224 } else {
225 error = spi_nor_spimem_exec_op(nor, &op);
226 if (error)
227 return error;
228 nbytes = op.data.nbytes;
229 }
230
231 if (usebouncebuf && nbytes > 0)
232 memcpy(buf, op.data.buf.in, nbytes);
233
234 return nbytes;
235 }
236
237 /**
238 * spi_nor_read_data() - read data from flash memory
239 * @nor: pointer to 'struct spi_nor'
240 * @from: offset to read from
241 * @len: number of bytes to read
242 * @buf: pointer to dst buffer
243 *
244 * Return: number of bytes read successfully, -errno otherwise
245 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)246 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
247 {
248 if (nor->spimem)
249 return spi_nor_spimem_read_data(nor, from, len, buf);
250
251 return nor->controller_ops->read(nor, from, len, buf);
252 }
253
254 /**
255 * spi_nor_spimem_write_data() - write data to flash memory via
256 * spi-mem
257 * @nor: pointer to 'struct spi_nor'
258 * @to: offset to write to
259 * @len: number of bytes to write
260 * @buf: pointer to src buffer
261 *
262 * Return: number of bytes written successfully, -errno otherwise
263 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)264 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
265 size_t len, const u8 *buf)
266 {
267 struct spi_mem_op op =
268 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
269 SPI_MEM_OP_ADDR(nor->addr_nbytes, to, 0),
270 SPI_MEM_OP_NO_DUMMY,
271 SPI_MEM_OP_DATA_OUT(len, buf, 0));
272 ssize_t nbytes;
273 int error;
274
275 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
276 op.addr.nbytes = 0;
277
278 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
279
280 if (spi_nor_spimem_bounce(nor, &op))
281 memcpy(nor->bouncebuf, buf, op.data.nbytes);
282
283 if (nor->dirmap.wdesc) {
284 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
285 op.data.nbytes, op.data.buf.out);
286 } else {
287 error = spi_nor_spimem_exec_op(nor, &op);
288 if (error)
289 return error;
290 nbytes = op.data.nbytes;
291 }
292
293 return nbytes;
294 }
295
296 /**
297 * spi_nor_write_data() - write data to flash memory
298 * @nor: pointer to 'struct spi_nor'
299 * @to: offset to write to
300 * @len: number of bytes to write
301 * @buf: pointer to src buffer
302 *
303 * Return: number of bytes written successfully, -errno otherwise
304 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)305 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
306 const u8 *buf)
307 {
308 if (nor->spimem)
309 return spi_nor_spimem_write_data(nor, to, len, buf);
310
311 return nor->controller_ops->write(nor, to, len, buf);
312 }
313
314 /**
315 * spi_nor_read_any_reg() - read any register from flash memory, nonvolatile or
316 * volatile.
317 * @nor: pointer to 'struct spi_nor'.
318 * @op: SPI memory operation. op->data.buf must be DMA-able.
319 * @proto: SPI protocol to use for the register operation.
320 *
321 * Return: zero on success, -errno otherwise
322 */
spi_nor_read_any_reg(struct spi_nor * nor,struct spi_mem_op * op,enum spi_nor_protocol proto)323 int spi_nor_read_any_reg(struct spi_nor *nor, struct spi_mem_op *op,
324 enum spi_nor_protocol proto)
325 {
326 if (!nor->spimem)
327 return -EOPNOTSUPP;
328
329 spi_nor_spimem_setup_op(nor, op, proto);
330 return spi_nor_spimem_exec_op(nor, op);
331 }
332
333 /**
334 * spi_nor_write_any_volatile_reg() - write any volatile register to flash
335 * memory.
336 * @nor: pointer to 'struct spi_nor'
337 * @op: SPI memory operation. op->data.buf must be DMA-able.
338 * @proto: SPI protocol to use for the register operation.
339 *
340 * Writing volatile registers are instant according to some manufacturers
341 * (Cypress, Micron) and do not need any status polling.
342 *
343 * Return: zero on success, -errno otherwise
344 */
spi_nor_write_any_volatile_reg(struct spi_nor * nor,struct spi_mem_op * op,enum spi_nor_protocol proto)345 int spi_nor_write_any_volatile_reg(struct spi_nor *nor, struct spi_mem_op *op,
346 enum spi_nor_protocol proto)
347 {
348 int ret;
349
350 if (!nor->spimem)
351 return -EOPNOTSUPP;
352
353 ret = spi_nor_write_enable(nor);
354 if (ret)
355 return ret;
356 spi_nor_spimem_setup_op(nor, op, proto);
357 return spi_nor_spimem_exec_op(nor, op);
358 }
359
360 /**
361 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
362 * @nor: pointer to 'struct spi_nor'.
363 *
364 * Return: 0 on success, -errno otherwise.
365 */
spi_nor_write_enable(struct spi_nor * nor)366 int spi_nor_write_enable(struct spi_nor *nor)
367 {
368 int ret;
369
370 if (nor->spimem) {
371 struct spi_mem_op op = SPI_NOR_WREN_OP;
372
373 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
374
375 ret = spi_mem_exec_op(nor->spimem, &op);
376 } else {
377 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
378 NULL, 0);
379 }
380
381 if (ret)
382 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
383
384 return ret;
385 }
386
387 /**
388 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
389 * @nor: pointer to 'struct spi_nor'.
390 *
391 * Return: 0 on success, -errno otherwise.
392 */
spi_nor_write_disable(struct spi_nor * nor)393 int spi_nor_write_disable(struct spi_nor *nor)
394 {
395 int ret;
396
397 if (nor->spimem) {
398 struct spi_mem_op op = SPI_NOR_WRDI_OP;
399
400 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
401
402 ret = spi_mem_exec_op(nor->spimem, &op);
403 } else {
404 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
405 NULL, 0);
406 }
407
408 if (ret)
409 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
410
411 return ret;
412 }
413
414 /**
415 * spi_nor_read_id() - Read the JEDEC ID.
416 * @nor: pointer to 'struct spi_nor'.
417 * @naddr: number of address bytes to send. Can be zero if the operation
418 * does not need to send an address.
419 * @ndummy: number of dummy bytes to send after an opcode or address. Can
420 * be zero if the operation does not require dummy bytes.
421 * @id: pointer to a DMA-able buffer where the value of the JEDEC ID
422 * will be written.
423 * @proto: the SPI protocol for register operation.
424 *
425 * Return: 0 on success, -errno otherwise.
426 */
spi_nor_read_id(struct spi_nor * nor,u8 naddr,u8 ndummy,u8 * id,enum spi_nor_protocol proto)427 int spi_nor_read_id(struct spi_nor *nor, u8 naddr, u8 ndummy, u8 *id,
428 enum spi_nor_protocol proto)
429 {
430 int ret;
431
432 if (nor->spimem) {
433 struct spi_mem_op op =
434 SPI_NOR_READID_OP(naddr, ndummy, id, SPI_NOR_MAX_ID_LEN);
435
436 spi_nor_spimem_setup_op(nor, &op, proto);
437 ret = spi_mem_exec_op(nor->spimem, &op);
438 } else {
439 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
440 SPI_NOR_MAX_ID_LEN);
441 }
442 return ret;
443 }
444
445 /**
446 * spi_nor_read_sr() - Read the Status Register.
447 * @nor: pointer to 'struct spi_nor'.
448 * @sr: pointer to a DMA-able buffer where the value of the
449 * Status Register will be written. Should be at least 2 bytes.
450 *
451 * Return: 0 on success, -errno otherwise.
452 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)453 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
454 {
455 int ret;
456
457 if (nor->spimem) {
458 struct spi_mem_op op = SPI_NOR_RDSR_OP(sr);
459
460 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
461 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
462 op.dummy.nbytes = nor->params->rdsr_dummy;
463 /*
464 * We don't want to read only one byte in DTR mode. So,
465 * read 2 and then discard the second byte.
466 */
467 op.data.nbytes = 2;
468 }
469
470 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
471
472 ret = spi_mem_exec_op(nor->spimem, &op);
473 } else {
474 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
475 1);
476 }
477
478 if (ret)
479 dev_dbg(nor->dev, "error %d reading SR\n", ret);
480
481 return ret;
482 }
483
484 /**
485 * spi_nor_read_cr() - Read the Configuration Register using the
486 * SPINOR_OP_RDCR (35h) command.
487 * @nor: pointer to 'struct spi_nor'
488 * @cr: pointer to a DMA-able buffer where the value of the
489 * Configuration Register will be written.
490 *
491 * Return: 0 on success, -errno otherwise.
492 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)493 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
494 {
495 int ret;
496
497 if (nor->spimem) {
498 struct spi_mem_op op = SPI_NOR_RDCR_OP(cr);
499
500 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
501
502 ret = spi_mem_exec_op(nor->spimem, &op);
503 } else {
504 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
505 1);
506 }
507
508 if (ret)
509 dev_dbg(nor->dev, "error %d reading CR\n", ret);
510
511 return ret;
512 }
513
514 /**
515 * spi_nor_set_4byte_addr_mode_en4b_ex4b() - Enter/Exit 4-byte address mode
516 * using SPINOR_OP_EN4B/SPINOR_OP_EX4B. Typically used by
517 * Winbond and Macronix.
518 * @nor: pointer to 'struct spi_nor'.
519 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
520 * address mode.
521 *
522 * Return: 0 on success, -errno otherwise.
523 */
spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor * nor,bool enable)524 int spi_nor_set_4byte_addr_mode_en4b_ex4b(struct spi_nor *nor, bool enable)
525 {
526 int ret;
527
528 if (nor->spimem) {
529 struct spi_mem_op op = SPI_NOR_EN4B_EX4B_OP(enable);
530
531 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
532
533 ret = spi_mem_exec_op(nor->spimem, &op);
534 } else {
535 ret = spi_nor_controller_ops_write_reg(nor,
536 enable ? SPINOR_OP_EN4B :
537 SPINOR_OP_EX4B,
538 NULL, 0);
539 }
540
541 if (ret)
542 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
543
544 return ret;
545 }
546
547 /**
548 * spi_nor_set_4byte_addr_mode_wren_en4b_ex4b() - Set 4-byte address mode using
549 * SPINOR_OP_WREN followed by SPINOR_OP_EN4B or SPINOR_OP_EX4B. Typically used
550 * by ST and Micron flashes.
551 * @nor: pointer to 'struct spi_nor'.
552 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
553 * address mode.
554 *
555 * Return: 0 on success, -errno otherwise.
556 */
spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor * nor,bool enable)557 int spi_nor_set_4byte_addr_mode_wren_en4b_ex4b(struct spi_nor *nor, bool enable)
558 {
559 int ret;
560
561 ret = spi_nor_write_enable(nor);
562 if (ret)
563 return ret;
564
565 ret = spi_nor_set_4byte_addr_mode_en4b_ex4b(nor, enable);
566 if (ret)
567 return ret;
568
569 return spi_nor_write_disable(nor);
570 }
571
572 /**
573 * spi_nor_set_4byte_addr_mode_brwr() - Set 4-byte address mode using
574 * SPINOR_OP_BRWR. Typically used by Spansion flashes.
575 * @nor: pointer to 'struct spi_nor'.
576 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
577 * address mode.
578 *
579 * 8-bit volatile bank register used to define A[30:A24] bits. MSB (bit[7]) is
580 * used to enable/disable 4-byte address mode. When MSB is set to ‘1’, 4-byte
581 * address mode is active and A[30:24] bits are don’t care. Write instruction is
582 * SPINOR_OP_BRWR(17h) with 1 byte of data.
583 *
584 * Return: 0 on success, -errno otherwise.
585 */
spi_nor_set_4byte_addr_mode_brwr(struct spi_nor * nor,bool enable)586 int spi_nor_set_4byte_addr_mode_brwr(struct spi_nor *nor, bool enable)
587 {
588 int ret;
589
590 nor->bouncebuf[0] = enable << 7;
591
592 if (nor->spimem) {
593 struct spi_mem_op op = SPI_NOR_BRWR_OP(nor->bouncebuf);
594
595 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
596
597 ret = spi_mem_exec_op(nor->spimem, &op);
598 } else {
599 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
600 nor->bouncebuf, 1);
601 }
602
603 if (ret)
604 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
605
606 return ret;
607 }
608
609 /**
610 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
611 * for new commands.
612 * @nor: pointer to 'struct spi_nor'.
613 *
614 * Return: 1 if ready, 0 if not ready, -errno on errors.
615 */
spi_nor_sr_ready(struct spi_nor * nor)616 int spi_nor_sr_ready(struct spi_nor *nor)
617 {
618 int ret;
619
620 ret = spi_nor_read_sr(nor, nor->bouncebuf);
621 if (ret)
622 return ret;
623
624 return !(nor->bouncebuf[0] & SR_WIP);
625 }
626
627 /**
628 * spi_nor_use_parallel_locking() - Checks if RWW locking scheme shall be used
629 * @nor: pointer to 'struct spi_nor'.
630 *
631 * Return: true if parallel locking is enabled, false otherwise.
632 */
spi_nor_use_parallel_locking(struct spi_nor * nor)633 static bool spi_nor_use_parallel_locking(struct spi_nor *nor)
634 {
635 return nor->flags & SNOR_F_RWW;
636 }
637
638 /* Locking helpers for status read operations */
spi_nor_rww_start_rdst(struct spi_nor * nor)639 static int spi_nor_rww_start_rdst(struct spi_nor *nor)
640 {
641 struct spi_nor_rww *rww = &nor->rww;
642 int ret = -EAGAIN;
643
644 mutex_lock(&nor->lock);
645
646 if (rww->ongoing_io || rww->ongoing_rd)
647 goto busy;
648
649 rww->ongoing_io = true;
650 rww->ongoing_rd = true;
651 ret = 0;
652
653 busy:
654 mutex_unlock(&nor->lock);
655 return ret;
656 }
657
spi_nor_rww_end_rdst(struct spi_nor * nor)658 static void spi_nor_rww_end_rdst(struct spi_nor *nor)
659 {
660 struct spi_nor_rww *rww = &nor->rww;
661
662 mutex_lock(&nor->lock);
663
664 rww->ongoing_io = false;
665 rww->ongoing_rd = false;
666
667 mutex_unlock(&nor->lock);
668 }
669
spi_nor_lock_rdst(struct spi_nor * nor)670 static int spi_nor_lock_rdst(struct spi_nor *nor)
671 {
672 if (spi_nor_use_parallel_locking(nor))
673 return spi_nor_rww_start_rdst(nor);
674
675 return 0;
676 }
677
spi_nor_unlock_rdst(struct spi_nor * nor)678 static void spi_nor_unlock_rdst(struct spi_nor *nor)
679 {
680 if (spi_nor_use_parallel_locking(nor)) {
681 spi_nor_rww_end_rdst(nor);
682 wake_up(&nor->rww.wait);
683 }
684 }
685
686 /**
687 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
688 * @nor: pointer to 'struct spi_nor'.
689 *
690 * Return: 1 if ready, 0 if not ready, -errno on errors.
691 */
spi_nor_ready(struct spi_nor * nor)692 static int spi_nor_ready(struct spi_nor *nor)
693 {
694 int ret;
695
696 ret = spi_nor_lock_rdst(nor);
697 if (ret)
698 return 0;
699
700 /* Flashes might override the standard routine. */
701 if (nor->params->ready)
702 ret = nor->params->ready(nor);
703 else
704 ret = spi_nor_sr_ready(nor);
705
706 spi_nor_unlock_rdst(nor);
707
708 return ret;
709 }
710
711 /**
712 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
713 * Status Register until ready, or timeout occurs.
714 * @nor: pointer to "struct spi_nor".
715 * @timeout_jiffies: jiffies to wait until timeout.
716 *
717 * Return: 0 on success, -errno otherwise.
718 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)719 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
720 unsigned long timeout_jiffies)
721 {
722 unsigned long deadline;
723 int timeout = 0, ret;
724
725 deadline = jiffies + timeout_jiffies;
726
727 while (!timeout) {
728 if (time_after_eq(jiffies, deadline))
729 timeout = 1;
730
731 ret = spi_nor_ready(nor);
732 if (ret < 0)
733 return ret;
734 if (ret)
735 return 0;
736
737 cond_resched();
738 }
739
740 dev_dbg(nor->dev, "flash operation timed out\n");
741
742 return -ETIMEDOUT;
743 }
744
745 /**
746 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
747 * flash to be ready, or timeout occurs.
748 * @nor: pointer to "struct spi_nor".
749 *
750 * Return: 0 on success, -errno otherwise.
751 */
spi_nor_wait_till_ready(struct spi_nor * nor)752 int spi_nor_wait_till_ready(struct spi_nor *nor)
753 {
754 return spi_nor_wait_till_ready_with_timeout(nor,
755 DEFAULT_READY_WAIT_JIFFIES);
756 }
757
758 /**
759 * spi_nor_global_block_unlock() - Unlock Global Block Protection.
760 * @nor: pointer to 'struct spi_nor'.
761 *
762 * Return: 0 on success, -errno otherwise.
763 */
spi_nor_global_block_unlock(struct spi_nor * nor)764 int spi_nor_global_block_unlock(struct spi_nor *nor)
765 {
766 int ret;
767
768 ret = spi_nor_write_enable(nor);
769 if (ret)
770 return ret;
771
772 if (nor->spimem) {
773 struct spi_mem_op op = SPI_NOR_GBULK_OP;
774
775 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
776
777 ret = spi_mem_exec_op(nor->spimem, &op);
778 } else {
779 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
780 NULL, 0);
781 }
782
783 if (ret) {
784 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
785 return ret;
786 }
787
788 return spi_nor_wait_till_ready(nor);
789 }
790
791 /**
792 * spi_nor_write_sr() - Write the Status Register.
793 * @nor: pointer to 'struct spi_nor'.
794 * @sr: pointer to DMA-able buffer to write to the Status Register.
795 * @len: number of bytes to write to the Status Register.
796 *
797 * Return: 0 on success, -errno otherwise.
798 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)799 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
800 {
801 int ret;
802
803 ret = spi_nor_write_enable(nor);
804 if (ret)
805 return ret;
806
807 if (nor->spimem) {
808 struct spi_mem_op op = SPI_NOR_WRSR_OP(sr, len);
809
810 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
811
812 ret = spi_mem_exec_op(nor->spimem, &op);
813 } else {
814 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
815 len);
816 }
817
818 if (ret) {
819 dev_dbg(nor->dev, "error %d writing SR\n", ret);
820 return ret;
821 }
822
823 return spi_nor_wait_till_ready(nor);
824 }
825
826 /**
827 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
828 * ensure that the byte written match the received value.
829 * @nor: pointer to a 'struct spi_nor'.
830 * @sr1: byte value to be written to the Status Register.
831 *
832 * Return: 0 on success, -errno otherwise.
833 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)834 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
835 {
836 int ret;
837
838 nor->bouncebuf[0] = sr1;
839
840 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
841 if (ret)
842 return ret;
843
844 ret = spi_nor_read_sr(nor, nor->bouncebuf);
845 if (ret)
846 return ret;
847
848 if (nor->bouncebuf[0] != sr1) {
849 dev_dbg(nor->dev, "SR1: read back test failed\n");
850 return -EIO;
851 }
852
853 return 0;
854 }
855
856 /**
857 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
858 * Status Register 2 in one shot. Ensure that the byte written in the Status
859 * Register 1 match the received value, and that the 16-bit Write did not
860 * affect what was already in the Status Register 2.
861 * @nor: pointer to a 'struct spi_nor'.
862 * @sr1: byte value to be written to the Status Register 1.
863 *
864 * Return: 0 on success, -errno otherwise.
865 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)866 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
867 {
868 int ret;
869 u8 *sr_cr = nor->bouncebuf;
870 u8 cr_written;
871
872 /* Make sure we don't overwrite the contents of Status Register 2. */
873 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
874 ret = spi_nor_read_cr(nor, &sr_cr[1]);
875 if (ret)
876 return ret;
877 } else if (spi_nor_get_protocol_width(nor->read_proto) == 4 &&
878 spi_nor_get_protocol_width(nor->write_proto) == 4 &&
879 nor->params->quad_enable) {
880 /*
881 * If the Status Register 2 Read command (35h) is not
882 * supported, we should at least be sure we don't
883 * change the value of the SR2 Quad Enable bit.
884 *
885 * When the Quad Enable method is set and the buswidth is 4, we
886 * can safely assume that the value of the QE bit is one, as a
887 * consequence of the nor->params->quad_enable() call.
888 *
889 * According to the JESD216 revB standard, BFPT DWORDS[15],
890 * bits 22:20, the 16-bit Write Status (01h) command is
891 * available just for the cases in which the QE bit is
892 * described in SR2 at BIT(1).
893 */
894 sr_cr[1] = SR2_QUAD_EN_BIT1;
895 } else {
896 sr_cr[1] = 0;
897 }
898
899 sr_cr[0] = sr1;
900
901 ret = spi_nor_write_sr(nor, sr_cr, 2);
902 if (ret)
903 return ret;
904
905 ret = spi_nor_read_sr(nor, sr_cr);
906 if (ret)
907 return ret;
908
909 if (sr1 != sr_cr[0]) {
910 dev_dbg(nor->dev, "SR: Read back test failed\n");
911 return -EIO;
912 }
913
914 if (nor->flags & SNOR_F_NO_READ_CR)
915 return 0;
916
917 cr_written = sr_cr[1];
918
919 ret = spi_nor_read_cr(nor, &sr_cr[1]);
920 if (ret)
921 return ret;
922
923 if (cr_written != sr_cr[1]) {
924 dev_dbg(nor->dev, "CR: read back test failed\n");
925 return -EIO;
926 }
927
928 return 0;
929 }
930
931 /**
932 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
933 * Configuration Register in one shot. Ensure that the byte written in the
934 * Configuration Register match the received value, and that the 16-bit Write
935 * did not affect what was already in the Status Register 1.
936 * @nor: pointer to a 'struct spi_nor'.
937 * @cr: byte value to be written to the Configuration Register.
938 *
939 * Return: 0 on success, -errno otherwise.
940 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)941 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
942 {
943 int ret;
944 u8 *sr_cr = nor->bouncebuf;
945 u8 sr_written;
946
947 /* Keep the current value of the Status Register 1. */
948 ret = spi_nor_read_sr(nor, sr_cr);
949 if (ret)
950 return ret;
951
952 sr_cr[1] = cr;
953
954 ret = spi_nor_write_sr(nor, sr_cr, 2);
955 if (ret)
956 return ret;
957
958 sr_written = sr_cr[0];
959
960 ret = spi_nor_read_sr(nor, sr_cr);
961 if (ret)
962 return ret;
963
964 if (sr_written != sr_cr[0]) {
965 dev_dbg(nor->dev, "SR: Read back test failed\n");
966 return -EIO;
967 }
968
969 if (nor->flags & SNOR_F_NO_READ_CR)
970 return 0;
971
972 ret = spi_nor_read_cr(nor, &sr_cr[1]);
973 if (ret)
974 return ret;
975
976 if (cr != sr_cr[1]) {
977 dev_dbg(nor->dev, "CR: read back test failed\n");
978 return -EIO;
979 }
980
981 return 0;
982 }
983
984 /**
985 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
986 * the byte written match the received value without affecting other bits in the
987 * Status Register 1 and 2.
988 * @nor: pointer to a 'struct spi_nor'.
989 * @sr1: byte value to be written to the Status Register.
990 *
991 * Return: 0 on success, -errno otherwise.
992 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)993 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
994 {
995 if (nor->flags & SNOR_F_HAS_16BIT_SR)
996 return spi_nor_write_16bit_sr_and_check(nor, sr1);
997
998 return spi_nor_write_sr1_and_check(nor, sr1);
999 }
1000
1001 /**
1002 * spi_nor_write_sr2() - Write the Status Register 2 using the
1003 * SPINOR_OP_WRSR2 (3eh) command.
1004 * @nor: pointer to 'struct spi_nor'.
1005 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
1006 *
1007 * Return: 0 on success, -errno otherwise.
1008 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)1009 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1010 {
1011 int ret;
1012
1013 ret = spi_nor_write_enable(nor);
1014 if (ret)
1015 return ret;
1016
1017 if (nor->spimem) {
1018 struct spi_mem_op op = SPI_NOR_WRSR2_OP(sr2);
1019
1020 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1021
1022 ret = spi_mem_exec_op(nor->spimem, &op);
1023 } else {
1024 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1025 sr2, 1);
1026 }
1027
1028 if (ret) {
1029 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1030 return ret;
1031 }
1032
1033 return spi_nor_wait_till_ready(nor);
1034 }
1035
1036 /**
1037 * spi_nor_read_sr2() - Read the Status Register 2 using the
1038 * SPINOR_OP_RDSR2 (3fh) command.
1039 * @nor: pointer to 'struct spi_nor'.
1040 * @sr2: pointer to DMA-able buffer where the value of the
1041 * Status Register 2 will be written.
1042 *
1043 * Return: 0 on success, -errno otherwise.
1044 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)1045 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1046 {
1047 int ret;
1048
1049 if (nor->spimem) {
1050 struct spi_mem_op op = SPI_NOR_RDSR2_OP(sr2);
1051
1052 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1053
1054 ret = spi_mem_exec_op(nor->spimem, &op);
1055 } else {
1056 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1057 1);
1058 }
1059
1060 if (ret)
1061 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1062
1063 return ret;
1064 }
1065
1066 /**
1067 * spi_nor_erase_die() - Erase the entire die.
1068 * @nor: pointer to 'struct spi_nor'.
1069 * @addr: address of the die.
1070 * @die_size: size of the die.
1071 *
1072 * Return: 0 on success, -errno otherwise.
1073 */
spi_nor_erase_die(struct spi_nor * nor,loff_t addr,size_t die_size)1074 static int spi_nor_erase_die(struct spi_nor *nor, loff_t addr, size_t die_size)
1075 {
1076 bool multi_die = nor->mtd.size != die_size;
1077 int ret;
1078
1079 dev_dbg(nor->dev, " %lldKiB\n", (long long)(die_size >> 10));
1080
1081 if (nor->spimem) {
1082 struct spi_mem_op op =
1083 SPI_NOR_DIE_ERASE_OP(nor->params->die_erase_opcode,
1084 nor->addr_nbytes, addr, multi_die);
1085
1086 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1087
1088 ret = spi_mem_exec_op(nor->spimem, &op);
1089 } else {
1090 if (multi_die)
1091 return -EOPNOTSUPP;
1092
1093 ret = spi_nor_controller_ops_write_reg(nor,
1094 SPINOR_OP_CHIP_ERASE,
1095 NULL, 0);
1096 }
1097
1098 if (ret)
1099 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1100
1101 return ret;
1102 }
1103
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1104 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1105 {
1106 size_t i;
1107
1108 for (i = 0; i < size; i++)
1109 if (table[i][0] == opcode)
1110 return table[i][1];
1111
1112 /* No conversion found, keep input op code. */
1113 return opcode;
1114 }
1115
spi_nor_convert_3to4_read(u8 opcode)1116 u8 spi_nor_convert_3to4_read(u8 opcode)
1117 {
1118 static const u8 spi_nor_3to4_read[][2] = {
1119 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1120 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1121 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1122 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1123 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1124 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1125 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1126 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1127
1128 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1129 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1130 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1131 };
1132
1133 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1134 ARRAY_SIZE(spi_nor_3to4_read));
1135 }
1136
spi_nor_convert_3to4_program(u8 opcode)1137 static u8 spi_nor_convert_3to4_program(u8 opcode)
1138 {
1139 static const u8 spi_nor_3to4_program[][2] = {
1140 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1141 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1142 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1143 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1144 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1145 };
1146
1147 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1148 ARRAY_SIZE(spi_nor_3to4_program));
1149 }
1150
spi_nor_convert_3to4_erase(u8 opcode)1151 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1152 {
1153 static const u8 spi_nor_3to4_erase[][2] = {
1154 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1155 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1156 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1157 };
1158
1159 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1160 ARRAY_SIZE(spi_nor_3to4_erase));
1161 }
1162
spi_nor_has_uniform_erase(const struct spi_nor * nor)1163 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1164 {
1165 return !!nor->params->erase_map.uniform_region.erase_mask;
1166 }
1167
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1168 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1169 {
1170 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1171 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1172 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1173
1174 if (!spi_nor_has_uniform_erase(nor)) {
1175 struct spi_nor_erase_map *map = &nor->params->erase_map;
1176 struct spi_nor_erase_type *erase;
1177 int i;
1178
1179 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1180 erase = &map->erase_type[i];
1181 erase->opcode =
1182 spi_nor_convert_3to4_erase(erase->opcode);
1183 }
1184 }
1185 }
1186
spi_nor_prep(struct spi_nor * nor)1187 static int spi_nor_prep(struct spi_nor *nor)
1188 {
1189 int ret = 0;
1190
1191 if (nor->controller_ops && nor->controller_ops->prepare)
1192 ret = nor->controller_ops->prepare(nor);
1193
1194 return ret;
1195 }
1196
spi_nor_unprep(struct spi_nor * nor)1197 static void spi_nor_unprep(struct spi_nor *nor)
1198 {
1199 if (nor->controller_ops && nor->controller_ops->unprepare)
1200 nor->controller_ops->unprepare(nor);
1201 }
1202
spi_nor_offset_to_banks(u64 bank_size,loff_t start,size_t len,u8 * first,u8 * last)1203 static void spi_nor_offset_to_banks(u64 bank_size, loff_t start, size_t len,
1204 u8 *first, u8 *last)
1205 {
1206 /* This is currently safe, the number of banks being very small */
1207 *first = DIV_ROUND_DOWN_ULL(start, bank_size);
1208 *last = DIV_ROUND_DOWN_ULL(start + len - 1, bank_size);
1209 }
1210
1211 /* Generic helpers for internal locking and serialization */
spi_nor_rww_start_io(struct spi_nor * nor)1212 static bool spi_nor_rww_start_io(struct spi_nor *nor)
1213 {
1214 struct spi_nor_rww *rww = &nor->rww;
1215 bool start = false;
1216
1217 mutex_lock(&nor->lock);
1218
1219 if (rww->ongoing_io)
1220 goto busy;
1221
1222 rww->ongoing_io = true;
1223 start = true;
1224
1225 busy:
1226 mutex_unlock(&nor->lock);
1227 return start;
1228 }
1229
spi_nor_rww_end_io(struct spi_nor * nor)1230 static void spi_nor_rww_end_io(struct spi_nor *nor)
1231 {
1232 mutex_lock(&nor->lock);
1233 nor->rww.ongoing_io = false;
1234 mutex_unlock(&nor->lock);
1235 }
1236
spi_nor_lock_device(struct spi_nor * nor)1237 static int spi_nor_lock_device(struct spi_nor *nor)
1238 {
1239 if (!spi_nor_use_parallel_locking(nor))
1240 return 0;
1241
1242 return wait_event_killable(nor->rww.wait, spi_nor_rww_start_io(nor));
1243 }
1244
spi_nor_unlock_device(struct spi_nor * nor)1245 static void spi_nor_unlock_device(struct spi_nor *nor)
1246 {
1247 if (spi_nor_use_parallel_locking(nor)) {
1248 spi_nor_rww_end_io(nor);
1249 wake_up(&nor->rww.wait);
1250 }
1251 }
1252
1253 /* Generic helpers for internal locking and serialization */
spi_nor_rww_start_exclusive(struct spi_nor * nor)1254 static bool spi_nor_rww_start_exclusive(struct spi_nor *nor)
1255 {
1256 struct spi_nor_rww *rww = &nor->rww;
1257 bool start = false;
1258
1259 mutex_lock(&nor->lock);
1260
1261 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1262 goto busy;
1263
1264 rww->ongoing_io = true;
1265 rww->ongoing_rd = true;
1266 rww->ongoing_pe = true;
1267 start = true;
1268
1269 busy:
1270 mutex_unlock(&nor->lock);
1271 return start;
1272 }
1273
spi_nor_rww_end_exclusive(struct spi_nor * nor)1274 static void spi_nor_rww_end_exclusive(struct spi_nor *nor)
1275 {
1276 struct spi_nor_rww *rww = &nor->rww;
1277
1278 mutex_lock(&nor->lock);
1279 rww->ongoing_io = false;
1280 rww->ongoing_rd = false;
1281 rww->ongoing_pe = false;
1282 mutex_unlock(&nor->lock);
1283 }
1284
spi_nor_prep_and_lock(struct spi_nor * nor)1285 int spi_nor_prep_and_lock(struct spi_nor *nor)
1286 {
1287 int ret;
1288
1289 ret = spi_nor_prep(nor);
1290 if (ret)
1291 return ret;
1292
1293 if (!spi_nor_use_parallel_locking(nor))
1294 mutex_lock(&nor->lock);
1295 else
1296 ret = wait_event_killable(nor->rww.wait,
1297 spi_nor_rww_start_exclusive(nor));
1298
1299 return ret;
1300 }
1301
spi_nor_unlock_and_unprep(struct spi_nor * nor)1302 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1303 {
1304 if (!spi_nor_use_parallel_locking(nor)) {
1305 mutex_unlock(&nor->lock);
1306 } else {
1307 spi_nor_rww_end_exclusive(nor);
1308 wake_up(&nor->rww.wait);
1309 }
1310
1311 spi_nor_unprep(nor);
1312 }
1313
1314 /* Internal locking helpers for program and erase operations */
spi_nor_rww_start_pe(struct spi_nor * nor,loff_t start,size_t len)1315 static bool spi_nor_rww_start_pe(struct spi_nor *nor, loff_t start, size_t len)
1316 {
1317 struct spi_nor_rww *rww = &nor->rww;
1318 unsigned int used_banks = 0;
1319 bool started = false;
1320 u8 first, last;
1321 int bank;
1322
1323 mutex_lock(&nor->lock);
1324
1325 if (rww->ongoing_io || rww->ongoing_rd || rww->ongoing_pe)
1326 goto busy;
1327
1328 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1329 for (bank = first; bank <= last; bank++) {
1330 if (rww->used_banks & BIT(bank))
1331 goto busy;
1332
1333 used_banks |= BIT(bank);
1334 }
1335
1336 rww->used_banks |= used_banks;
1337 rww->ongoing_pe = true;
1338 started = true;
1339
1340 busy:
1341 mutex_unlock(&nor->lock);
1342 return started;
1343 }
1344
spi_nor_rww_end_pe(struct spi_nor * nor,loff_t start,size_t len)1345 static void spi_nor_rww_end_pe(struct spi_nor *nor, loff_t start, size_t len)
1346 {
1347 struct spi_nor_rww *rww = &nor->rww;
1348 u8 first, last;
1349 int bank;
1350
1351 mutex_lock(&nor->lock);
1352
1353 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1354 for (bank = first; bank <= last; bank++)
1355 rww->used_banks &= ~BIT(bank);
1356
1357 rww->ongoing_pe = false;
1358
1359 mutex_unlock(&nor->lock);
1360 }
1361
spi_nor_prep_and_lock_pe(struct spi_nor * nor,loff_t start,size_t len)1362 static int spi_nor_prep_and_lock_pe(struct spi_nor *nor, loff_t start, size_t len)
1363 {
1364 int ret;
1365
1366 ret = spi_nor_prep(nor);
1367 if (ret)
1368 return ret;
1369
1370 if (!spi_nor_use_parallel_locking(nor))
1371 mutex_lock(&nor->lock);
1372 else
1373 ret = wait_event_killable(nor->rww.wait,
1374 spi_nor_rww_start_pe(nor, start, len));
1375
1376 return ret;
1377 }
1378
spi_nor_unlock_and_unprep_pe(struct spi_nor * nor,loff_t start,size_t len)1379 static void spi_nor_unlock_and_unprep_pe(struct spi_nor *nor, loff_t start, size_t len)
1380 {
1381 if (!spi_nor_use_parallel_locking(nor)) {
1382 mutex_unlock(&nor->lock);
1383 } else {
1384 spi_nor_rww_end_pe(nor, start, len);
1385 wake_up(&nor->rww.wait);
1386 }
1387
1388 spi_nor_unprep(nor);
1389 }
1390
1391 /* Internal locking helpers for read operations */
spi_nor_rww_start_rd(struct spi_nor * nor,loff_t start,size_t len)1392 static bool spi_nor_rww_start_rd(struct spi_nor *nor, loff_t start, size_t len)
1393 {
1394 struct spi_nor_rww *rww = &nor->rww;
1395 unsigned int used_banks = 0;
1396 bool started = false;
1397 u8 first, last;
1398 int bank;
1399
1400 mutex_lock(&nor->lock);
1401
1402 if (rww->ongoing_io || rww->ongoing_rd)
1403 goto busy;
1404
1405 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1406 for (bank = first; bank <= last; bank++) {
1407 if (rww->used_banks & BIT(bank))
1408 goto busy;
1409
1410 used_banks |= BIT(bank);
1411 }
1412
1413 rww->used_banks |= used_banks;
1414 rww->ongoing_io = true;
1415 rww->ongoing_rd = true;
1416 started = true;
1417
1418 busy:
1419 mutex_unlock(&nor->lock);
1420 return started;
1421 }
1422
spi_nor_rww_end_rd(struct spi_nor * nor,loff_t start,size_t len)1423 static void spi_nor_rww_end_rd(struct spi_nor *nor, loff_t start, size_t len)
1424 {
1425 struct spi_nor_rww *rww = &nor->rww;
1426 u8 first, last;
1427 int bank;
1428
1429 mutex_lock(&nor->lock);
1430
1431 spi_nor_offset_to_banks(nor->params->bank_size, start, len, &first, &last);
1432 for (bank = first; bank <= last; bank++)
1433 nor->rww.used_banks &= ~BIT(bank);
1434
1435 rww->ongoing_io = false;
1436 rww->ongoing_rd = false;
1437
1438 mutex_unlock(&nor->lock);
1439 }
1440
spi_nor_prep_and_lock_rd(struct spi_nor * nor,loff_t start,size_t len)1441 static int spi_nor_prep_and_lock_rd(struct spi_nor *nor, loff_t start, size_t len)
1442 {
1443 int ret;
1444
1445 ret = spi_nor_prep(nor);
1446 if (ret)
1447 return ret;
1448
1449 if (!spi_nor_use_parallel_locking(nor))
1450 mutex_lock(&nor->lock);
1451 else
1452 ret = wait_event_killable(nor->rww.wait,
1453 spi_nor_rww_start_rd(nor, start, len));
1454
1455 return ret;
1456 }
1457
spi_nor_unlock_and_unprep_rd(struct spi_nor * nor,loff_t start,size_t len)1458 static void spi_nor_unlock_and_unprep_rd(struct spi_nor *nor, loff_t start, size_t len)
1459 {
1460 if (!spi_nor_use_parallel_locking(nor)) {
1461 mutex_unlock(&nor->lock);
1462 } else {
1463 spi_nor_rww_end_rd(nor, start, len);
1464 wake_up(&nor->rww.wait);
1465 }
1466
1467 spi_nor_unprep(nor);
1468 }
1469
1470 /*
1471 * Initiate the erasure of a single sector
1472 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1473 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1474 {
1475 int i;
1476
1477 if (nor->spimem) {
1478 struct spi_mem_op op =
1479 SPI_NOR_SECTOR_ERASE_OP(nor->erase_opcode,
1480 nor->addr_nbytes, addr);
1481
1482 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1483
1484 return spi_mem_exec_op(nor->spimem, &op);
1485 } else if (nor->controller_ops->erase) {
1486 return spi_nor_controller_ops_erase(nor, addr);
1487 }
1488
1489 /*
1490 * Default implementation, if driver doesn't have a specialized HW
1491 * control
1492 */
1493 for (i = nor->addr_nbytes - 1; i >= 0; i--) {
1494 nor->bouncebuf[i] = addr & 0xff;
1495 addr >>= 8;
1496 }
1497
1498 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1499 nor->bouncebuf, nor->addr_nbytes);
1500 }
1501
1502 /**
1503 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1504 * @erase: pointer to a structure that describes a SPI NOR erase type
1505 * @dividend: dividend value
1506 * @remainder: pointer to u32 remainder (will be updated)
1507 *
1508 * Return: the result of the division
1509 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1510 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1511 u64 dividend, u32 *remainder)
1512 {
1513 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1514 *remainder = (u32)dividend & erase->size_mask;
1515 return dividend >> erase->size_shift;
1516 }
1517
1518 /**
1519 * spi_nor_find_best_erase_type() - find the best erase type for the given
1520 * offset in the serial flash memory and the
1521 * number of bytes to erase. The region in
1522 * which the address fits is expected to be
1523 * provided.
1524 * @map: the erase map of the SPI NOR
1525 * @region: pointer to a structure that describes a SPI NOR erase region
1526 * @addr: offset in the serial flash memory
1527 * @len: number of bytes to erase
1528 *
1529 * Return: a pointer to the best fitted erase type, NULL otherwise.
1530 */
1531 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1532 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1533 const struct spi_nor_erase_region *region,
1534 u64 addr, u32 len)
1535 {
1536 const struct spi_nor_erase_type *erase;
1537 u32 rem;
1538 int i;
1539
1540 /*
1541 * Erase types are ordered by size, with the smallest erase type at
1542 * index 0.
1543 */
1544 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1545 /* Does the erase region support the tested erase type? */
1546 if (!(region->erase_mask & BIT(i)))
1547 continue;
1548
1549 erase = &map->erase_type[i];
1550 if (!erase->size)
1551 continue;
1552
1553 /* Alignment is not mandatory for overlaid regions */
1554 if (region->overlaid && region->size <= len)
1555 return erase;
1556
1557 /* Don't erase more than what the user has asked for. */
1558 if (erase->size > len)
1559 continue;
1560
1561 spi_nor_div_by_erase_size(erase, addr, &rem);
1562 if (!rem)
1563 return erase;
1564 }
1565
1566 return NULL;
1567 }
1568
1569 /**
1570 * spi_nor_init_erase_cmd() - initialize an erase command
1571 * @region: pointer to a structure that describes a SPI NOR erase region
1572 * @erase: pointer to a structure that describes a SPI NOR erase type
1573 *
1574 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1575 * otherwise.
1576 */
1577 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1578 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1579 const struct spi_nor_erase_type *erase)
1580 {
1581 struct spi_nor_erase_command *cmd;
1582
1583 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1584 if (!cmd)
1585 return ERR_PTR(-ENOMEM);
1586
1587 INIT_LIST_HEAD(&cmd->list);
1588 cmd->opcode = erase->opcode;
1589 cmd->count = 1;
1590
1591 if (region->overlaid)
1592 cmd->size = region->size;
1593 else
1594 cmd->size = erase->size;
1595
1596 return cmd;
1597 }
1598
1599 /**
1600 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1601 * @erase_list: list of erase commands
1602 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1603 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1604 {
1605 struct spi_nor_erase_command *cmd, *next;
1606
1607 list_for_each_entry_safe(cmd, next, erase_list, list) {
1608 list_del(&cmd->list);
1609 kfree(cmd);
1610 }
1611 }
1612
1613 /**
1614 * spi_nor_init_erase_cmd_list() - initialize erase command list
1615 * @nor: pointer to a 'struct spi_nor'
1616 * @erase_list: list of erase commands to be executed once we validate that the
1617 * erase can be performed
1618 * @addr: offset in the serial flash memory
1619 * @len: number of bytes to erase
1620 *
1621 * Builds the list of best fitted erase commands and verifies if the erase can
1622 * be performed.
1623 *
1624 * Return: 0 on success, -errno otherwise.
1625 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1626 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1627 struct list_head *erase_list,
1628 u64 addr, u32 len)
1629 {
1630 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1631 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1632 struct spi_nor_erase_region *region;
1633 struct spi_nor_erase_command *cmd = NULL;
1634 u64 region_end;
1635 unsigned int i;
1636 int ret = -EINVAL;
1637
1638 for (i = 0; i < map->n_regions && len; i++) {
1639 region = &map->regions[i];
1640 region_end = region->offset + region->size;
1641
1642 while (len && addr >= region->offset && addr < region_end) {
1643 erase = spi_nor_find_best_erase_type(map, region, addr,
1644 len);
1645 if (!erase)
1646 goto destroy_erase_cmd_list;
1647
1648 if (prev_erase != erase || erase->size != cmd->size ||
1649 region->overlaid) {
1650 cmd = spi_nor_init_erase_cmd(region, erase);
1651 if (IS_ERR(cmd)) {
1652 ret = PTR_ERR(cmd);
1653 goto destroy_erase_cmd_list;
1654 }
1655
1656 list_add_tail(&cmd->list, erase_list);
1657 } else {
1658 cmd->count++;
1659 }
1660
1661 len -= cmd->size;
1662 addr += cmd->size;
1663 prev_erase = erase;
1664 }
1665 }
1666
1667 return 0;
1668
1669 destroy_erase_cmd_list:
1670 spi_nor_destroy_erase_cmd_list(erase_list);
1671 return ret;
1672 }
1673
1674 /**
1675 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1676 * @nor: pointer to a 'struct spi_nor'
1677 * @addr: offset in the serial flash memory
1678 * @len: number of bytes to erase
1679 *
1680 * Build a list of best fitted erase commands and execute it once we validate
1681 * that the erase can be performed.
1682 *
1683 * Return: 0 on success, -errno otherwise.
1684 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1685 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1686 {
1687 LIST_HEAD(erase_list);
1688 struct spi_nor_erase_command *cmd, *next;
1689 int ret;
1690
1691 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1692 if (ret)
1693 return ret;
1694
1695 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1696 nor->erase_opcode = cmd->opcode;
1697 while (cmd->count) {
1698 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1699 cmd->size, cmd->opcode, cmd->count);
1700
1701 ret = spi_nor_lock_device(nor);
1702 if (ret)
1703 goto destroy_erase_cmd_list;
1704
1705 ret = spi_nor_write_enable(nor);
1706 if (ret) {
1707 spi_nor_unlock_device(nor);
1708 goto destroy_erase_cmd_list;
1709 }
1710
1711 ret = spi_nor_erase_sector(nor, addr);
1712 spi_nor_unlock_device(nor);
1713 if (ret)
1714 goto destroy_erase_cmd_list;
1715
1716 ret = spi_nor_wait_till_ready(nor);
1717 if (ret)
1718 goto destroy_erase_cmd_list;
1719
1720 addr += cmd->size;
1721 cmd->count--;
1722 }
1723 list_del(&cmd->list);
1724 kfree(cmd);
1725 }
1726
1727 return 0;
1728
1729 destroy_erase_cmd_list:
1730 spi_nor_destroy_erase_cmd_list(&erase_list);
1731 return ret;
1732 }
1733
spi_nor_erase_dice(struct spi_nor * nor,loff_t addr,size_t len,size_t die_size)1734 static int spi_nor_erase_dice(struct spi_nor *nor, loff_t addr,
1735 size_t len, size_t die_size)
1736 {
1737 unsigned long timeout;
1738 int ret;
1739
1740 /*
1741 * Scale the timeout linearly with the size of the flash, with
1742 * a minimum calibrated to an old 2MB flash. We could try to
1743 * pull these from CFI/SFDP, but these values should be good
1744 * enough for now.
1745 */
1746 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1747 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1748 (unsigned long)(nor->mtd.size / SZ_2M));
1749
1750 do {
1751 ret = spi_nor_lock_device(nor);
1752 if (ret)
1753 return ret;
1754
1755 ret = spi_nor_write_enable(nor);
1756 if (ret) {
1757 spi_nor_unlock_device(nor);
1758 return ret;
1759 }
1760
1761 ret = spi_nor_erase_die(nor, addr, die_size);
1762
1763 spi_nor_unlock_device(nor);
1764 if (ret)
1765 return ret;
1766
1767 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1768 if (ret)
1769 return ret;
1770
1771 addr += die_size;
1772 len -= die_size;
1773
1774 } while (len);
1775
1776 return 0;
1777 }
1778
1779 /*
1780 * Erase an address range on the nor chip. The address range may extend
1781 * one or more erase sectors. Return an error if there is a problem erasing.
1782 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1783 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1784 {
1785 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1786 u8 n_dice = nor->params->n_dice;
1787 bool multi_die_erase = false;
1788 u32 addr, len, rem;
1789 size_t die_size;
1790 int ret;
1791
1792 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1793 (long long)instr->len);
1794
1795 if (spi_nor_has_uniform_erase(nor)) {
1796 div_u64_rem(instr->len, mtd->erasesize, &rem);
1797 if (rem)
1798 return -EINVAL;
1799 }
1800
1801 addr = instr->addr;
1802 len = instr->len;
1803
1804 if (n_dice) {
1805 die_size = div_u64(mtd->size, n_dice);
1806 if (!(len & (die_size - 1)) && !(addr & (die_size - 1)))
1807 multi_die_erase = true;
1808 } else {
1809 die_size = mtd->size;
1810 }
1811
1812 ret = spi_nor_prep_and_lock_pe(nor, instr->addr, instr->len);
1813 if (ret)
1814 return ret;
1815
1816 /* chip (die) erase? */
1817 if ((len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) ||
1818 multi_die_erase) {
1819 ret = spi_nor_erase_dice(nor, addr, len, die_size);
1820 if (ret)
1821 goto erase_err;
1822
1823 /* REVISIT in some cases we could speed up erasing large regions
1824 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1825 * to use "small sector erase", but that's not always optimal.
1826 */
1827
1828 /* "sector"-at-a-time erase */
1829 } else if (spi_nor_has_uniform_erase(nor)) {
1830 while (len) {
1831 ret = spi_nor_lock_device(nor);
1832 if (ret)
1833 goto erase_err;
1834
1835 ret = spi_nor_write_enable(nor);
1836 if (ret) {
1837 spi_nor_unlock_device(nor);
1838 goto erase_err;
1839 }
1840
1841 ret = spi_nor_erase_sector(nor, addr);
1842 spi_nor_unlock_device(nor);
1843 if (ret)
1844 goto erase_err;
1845
1846 ret = spi_nor_wait_till_ready(nor);
1847 if (ret)
1848 goto erase_err;
1849
1850 addr += mtd->erasesize;
1851 len -= mtd->erasesize;
1852 }
1853
1854 /* erase multiple sectors */
1855 } else {
1856 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1857 if (ret)
1858 goto erase_err;
1859 }
1860
1861 ret = spi_nor_write_disable(nor);
1862
1863 erase_err:
1864 spi_nor_unlock_and_unprep_pe(nor, instr->addr, instr->len);
1865
1866 return ret;
1867 }
1868
1869 /**
1870 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1871 * Register 1.
1872 * @nor: pointer to a 'struct spi_nor'
1873 *
1874 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1875 *
1876 * Return: 0 on success, -errno otherwise.
1877 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1878 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1879 {
1880 int ret;
1881
1882 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1883 if (ret)
1884 return ret;
1885
1886 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1887 return 0;
1888
1889 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1890
1891 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1892 }
1893
1894 /**
1895 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1896 * Register 2.
1897 * @nor: pointer to a 'struct spi_nor'.
1898 *
1899 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1900 *
1901 * Return: 0 on success, -errno otherwise.
1902 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1903 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1904 {
1905 int ret;
1906
1907 if (nor->flags & SNOR_F_NO_READ_CR)
1908 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1909
1910 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1911 if (ret)
1912 return ret;
1913
1914 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1915 return 0;
1916
1917 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1918
1919 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1920 }
1921
1922 /**
1923 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1924 * @nor: pointer to a 'struct spi_nor'
1925 *
1926 * Set the Quad Enable (QE) bit in the Status Register 2.
1927 *
1928 * This is one of the procedures to set the QE bit described in the SFDP
1929 * (JESD216 rev B) specification but no manufacturer using this procedure has
1930 * been identified yet, hence the name of the function.
1931 *
1932 * Return: 0 on success, -errno otherwise.
1933 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1934 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1935 {
1936 u8 *sr2 = nor->bouncebuf;
1937 int ret;
1938 u8 sr2_written;
1939
1940 /* Check current Quad Enable bit value. */
1941 ret = spi_nor_read_sr2(nor, sr2);
1942 if (ret)
1943 return ret;
1944 if (*sr2 & SR2_QUAD_EN_BIT7)
1945 return 0;
1946
1947 /* Update the Quad Enable bit. */
1948 *sr2 |= SR2_QUAD_EN_BIT7;
1949
1950 ret = spi_nor_write_sr2(nor, sr2);
1951 if (ret)
1952 return ret;
1953
1954 sr2_written = *sr2;
1955
1956 /* Read back and check it. */
1957 ret = spi_nor_read_sr2(nor, sr2);
1958 if (ret)
1959 return ret;
1960
1961 if (*sr2 != sr2_written) {
1962 dev_dbg(nor->dev, "SR2: Read back test failed\n");
1963 return -EIO;
1964 }
1965
1966 return 0;
1967 }
1968
1969 static const struct spi_nor_manufacturer *manufacturers[] = {
1970 &spi_nor_atmel,
1971 &spi_nor_eon,
1972 &spi_nor_esmt,
1973 &spi_nor_everspin,
1974 &spi_nor_gigadevice,
1975 &spi_nor_intel,
1976 &spi_nor_issi,
1977 &spi_nor_macronix,
1978 &spi_nor_micron,
1979 &spi_nor_st,
1980 &spi_nor_spansion,
1981 &spi_nor_sst,
1982 &spi_nor_winbond,
1983 &spi_nor_xmc,
1984 };
1985
1986 static const struct flash_info spi_nor_generic_flash = {
1987 .name = "spi-nor-generic",
1988 };
1989
spi_nor_match_id(struct spi_nor * nor,const u8 * id)1990 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
1991 const u8 *id)
1992 {
1993 const struct flash_info *part;
1994 unsigned int i, j;
1995
1996 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1997 for (j = 0; j < manufacturers[i]->nparts; j++) {
1998 part = &manufacturers[i]->parts[j];
1999 if (part->id &&
2000 !memcmp(part->id->bytes, id, part->id->len)) {
2001 nor->manufacturer = manufacturers[i];
2002 return part;
2003 }
2004 }
2005 }
2006
2007 return NULL;
2008 }
2009
spi_nor_detect(struct spi_nor * nor)2010 static const struct flash_info *spi_nor_detect(struct spi_nor *nor)
2011 {
2012 const struct flash_info *info;
2013 u8 *id = nor->bouncebuf;
2014 int ret;
2015
2016 ret = spi_nor_read_id(nor, 0, 0, id, nor->reg_proto);
2017 if (ret) {
2018 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2019 return ERR_PTR(ret);
2020 }
2021
2022 /* Cache the complete flash ID. */
2023 nor->id = devm_kmemdup(nor->dev, id, SPI_NOR_MAX_ID_LEN, GFP_KERNEL);
2024 if (!nor->id)
2025 return ERR_PTR(-ENOMEM);
2026
2027 info = spi_nor_match_id(nor, id);
2028
2029 /* Fallback to a generic flash described only by its SFDP data. */
2030 if (!info) {
2031 ret = spi_nor_check_sfdp_signature(nor);
2032 if (!ret)
2033 info = &spi_nor_generic_flash;
2034 }
2035
2036 if (!info) {
2037 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2038 SPI_NOR_MAX_ID_LEN, id);
2039 return ERR_PTR(-ENODEV);
2040 }
2041 return info;
2042 }
2043
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2044 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2045 size_t *retlen, u_char *buf)
2046 {
2047 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2048 loff_t from_lock = from;
2049 size_t len_lock = len;
2050 ssize_t ret;
2051
2052 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2053
2054 ret = spi_nor_prep_and_lock_rd(nor, from_lock, len_lock);
2055 if (ret)
2056 return ret;
2057
2058 while (len) {
2059 loff_t addr = from;
2060
2061 ret = spi_nor_read_data(nor, addr, len, buf);
2062 if (ret == 0) {
2063 /* We shouldn't see 0-length reads */
2064 ret = -EIO;
2065 goto read_err;
2066 }
2067 if (ret < 0)
2068 goto read_err;
2069
2070 WARN_ON(ret > len);
2071 *retlen += ret;
2072 buf += ret;
2073 from += ret;
2074 len -= ret;
2075 }
2076 ret = 0;
2077
2078 read_err:
2079 spi_nor_unlock_and_unprep_rd(nor, from_lock, len_lock);
2080
2081 return ret;
2082 }
2083
2084 /*
2085 * Write an address range to the nor chip. Data must be written in
2086 * FLASH_PAGESIZE chunks. The address range may be any size provided
2087 * it is within the physical boundaries.
2088 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2089 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2090 size_t *retlen, const u_char *buf)
2091 {
2092 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2093 size_t i;
2094 ssize_t ret;
2095 u32 page_size = nor->params->page_size;
2096
2097 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2098
2099 ret = spi_nor_prep_and_lock_pe(nor, to, len);
2100 if (ret)
2101 return ret;
2102
2103 for (i = 0; i < len; ) {
2104 ssize_t written;
2105 loff_t addr = to + i;
2106 size_t page_offset = addr & (page_size - 1);
2107 /* the size of data remaining on the first page */
2108 size_t page_remain = min_t(size_t, page_size - page_offset, len - i);
2109
2110 ret = spi_nor_lock_device(nor);
2111 if (ret)
2112 goto write_err;
2113
2114 ret = spi_nor_write_enable(nor);
2115 if (ret) {
2116 spi_nor_unlock_device(nor);
2117 goto write_err;
2118 }
2119
2120 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2121 spi_nor_unlock_device(nor);
2122 if (ret < 0)
2123 goto write_err;
2124 written = ret;
2125
2126 ret = spi_nor_wait_till_ready(nor);
2127 if (ret)
2128 goto write_err;
2129 *retlen += written;
2130 i += written;
2131 }
2132
2133 write_err:
2134 spi_nor_unlock_and_unprep_pe(nor, to, len);
2135
2136 return ret;
2137 }
2138
spi_nor_check(struct spi_nor * nor)2139 static int spi_nor_check(struct spi_nor *nor)
2140 {
2141 if (!nor->dev ||
2142 (!nor->spimem && !nor->controller_ops) ||
2143 (!nor->spimem && nor->controller_ops &&
2144 (!nor->controller_ops->read ||
2145 !nor->controller_ops->write ||
2146 !nor->controller_ops->read_reg ||
2147 !nor->controller_ops->write_reg))) {
2148 pr_err("spi-nor: please fill all the necessary fields!\n");
2149 return -EINVAL;
2150 }
2151
2152 if (nor->spimem && nor->controller_ops) {
2153 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2154 return -EINVAL;
2155 }
2156
2157 return 0;
2158 }
2159
2160 void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2161 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2162 u8 num_mode_clocks,
2163 u8 num_wait_states,
2164 u8 opcode,
2165 enum spi_nor_protocol proto)
2166 {
2167 read->num_mode_clocks = num_mode_clocks;
2168 read->num_wait_states = num_wait_states;
2169 read->opcode = opcode;
2170 read->proto = proto;
2171 }
2172
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2173 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2174 enum spi_nor_protocol proto)
2175 {
2176 pp->opcode = opcode;
2177 pp->proto = proto;
2178 }
2179
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2180 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2181 {
2182 size_t i;
2183
2184 for (i = 0; i < size; i++)
2185 if (table[i][0] == (int)hwcaps)
2186 return table[i][1];
2187
2188 return -EINVAL;
2189 }
2190
spi_nor_hwcaps_read2cmd(u32 hwcaps)2191 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2192 {
2193 static const int hwcaps_read2cmd[][2] = {
2194 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2195 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2196 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2197 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2198 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2199 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2200 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2201 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2202 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2203 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2204 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2205 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2206 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2207 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2208 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2209 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
2210 };
2211
2212 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2213 ARRAY_SIZE(hwcaps_read2cmd));
2214 }
2215
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2216 int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2217 {
2218 static const int hwcaps_pp2cmd[][2] = {
2219 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2220 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2221 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2222 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2223 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2224 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2225 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2226 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
2227 };
2228
2229 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2230 ARRAY_SIZE(hwcaps_pp2cmd));
2231 }
2232
2233 /**
2234 * spi_nor_spimem_check_op - check if the operation is supported
2235 * by controller
2236 *@nor: pointer to a 'struct spi_nor'
2237 *@op: pointer to op template to be checked
2238 *
2239 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2240 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2241 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2242 struct spi_mem_op *op)
2243 {
2244 /*
2245 * First test with 4 address bytes. The opcode itself might
2246 * be a 3B addressing opcode but we don't care, because
2247 * SPI controller implementation should not check the opcode,
2248 * but just the sequence.
2249 */
2250 op->addr.nbytes = 4;
2251 if (!spi_mem_supports_op(nor->spimem, op)) {
2252 if (nor->params->size > SZ_16M)
2253 return -EOPNOTSUPP;
2254
2255 /* If flash size <= 16MB, 3 address bytes are sufficient */
2256 op->addr.nbytes = 3;
2257 if (!spi_mem_supports_op(nor->spimem, op))
2258 return -EOPNOTSUPP;
2259 }
2260
2261 return 0;
2262 }
2263
2264 /**
2265 * spi_nor_spimem_check_readop - check if the read op is supported
2266 * by controller
2267 *@nor: pointer to a 'struct spi_nor'
2268 *@read: pointer to op template to be checked
2269 *
2270 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2271 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2272 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2273 const struct spi_nor_read_command *read)
2274 {
2275 struct spi_mem_op op = SPI_NOR_READ_OP(read->opcode);
2276
2277 spi_nor_spimem_setup_op(nor, &op, read->proto);
2278
2279 /* convert the dummy cycles to the number of bytes */
2280 op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2281 op.dummy.buswidth / 8;
2282 if (spi_nor_protocol_is_dtr(nor->read_proto))
2283 op.dummy.nbytes *= 2;
2284
2285 return spi_nor_spimem_check_op(nor, &op);
2286 }
2287
2288 /**
2289 * spi_nor_spimem_check_pp - check if the page program op is supported
2290 * by controller
2291 *@nor: pointer to a 'struct spi_nor'
2292 *@pp: pointer to op template to be checked
2293 *
2294 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2295 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2296 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2297 const struct spi_nor_pp_command *pp)
2298 {
2299 struct spi_mem_op op = SPI_NOR_PP_OP(pp->opcode);
2300
2301 spi_nor_spimem_setup_op(nor, &op, pp->proto);
2302
2303 return spi_nor_spimem_check_op(nor, &op);
2304 }
2305
2306 /**
2307 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2308 * based on SPI controller capabilities
2309 * @nor: pointer to a 'struct spi_nor'
2310 * @hwcaps: pointer to resulting capabilities after adjusting
2311 * according to controller and flash's capability
2312 */
2313 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2314 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2315 {
2316 struct spi_nor_flash_parameter *params = nor->params;
2317 unsigned int cap;
2318
2319 /* X-X-X modes are not supported yet, mask them all. */
2320 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2321
2322 /*
2323 * If the reset line is broken, we do not want to enter a stateful
2324 * mode.
2325 */
2326 if (nor->flags & SNOR_F_BROKEN_RESET)
2327 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2328
2329 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2330 int rdidx, ppidx;
2331
2332 if (!(*hwcaps & BIT(cap)))
2333 continue;
2334
2335 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2336 if (rdidx >= 0 &&
2337 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2338 *hwcaps &= ~BIT(cap);
2339
2340 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2341 if (ppidx < 0)
2342 continue;
2343
2344 if (spi_nor_spimem_check_pp(nor,
2345 ¶ms->page_programs[ppidx]))
2346 *hwcaps &= ~BIT(cap);
2347 }
2348 }
2349
2350 /**
2351 * spi_nor_set_erase_type() - set a SPI NOR erase type
2352 * @erase: pointer to a structure that describes a SPI NOR erase type
2353 * @size: the size of the sector/block erased by the erase type
2354 * @opcode: the SPI command op code to erase the sector/block
2355 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2356 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2357 u8 opcode)
2358 {
2359 erase->size = size;
2360 erase->opcode = opcode;
2361 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2362 erase->size_shift = ffs(erase->size) - 1;
2363 erase->size_mask = (1 << erase->size_shift) - 1;
2364 }
2365
2366 /**
2367 * spi_nor_mask_erase_type() - mask out a SPI NOR erase type
2368 * @erase: pointer to a structure that describes a SPI NOR erase type
2369 */
spi_nor_mask_erase_type(struct spi_nor_erase_type * erase)2370 void spi_nor_mask_erase_type(struct spi_nor_erase_type *erase)
2371 {
2372 erase->size = 0;
2373 }
2374
2375 /**
2376 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2377 * @map: the erase map of the SPI NOR
2378 * @erase_mask: bitmask encoding erase types that can erase the entire
2379 * flash memory
2380 * @flash_size: the spi nor flash memory size
2381 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2382 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2383 u8 erase_mask, u64 flash_size)
2384 {
2385 map->uniform_region.offset = 0;
2386 map->uniform_region.size = flash_size;
2387 map->uniform_region.erase_mask = erase_mask;
2388 map->regions = &map->uniform_region;
2389 map->n_regions = 1;
2390 }
2391
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)2392 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2393 const struct sfdp_parameter_header *bfpt_header,
2394 const struct sfdp_bfpt *bfpt)
2395 {
2396 int ret;
2397
2398 if (nor->manufacturer && nor->manufacturer->fixups &&
2399 nor->manufacturer->fixups->post_bfpt) {
2400 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2401 bfpt);
2402 if (ret)
2403 return ret;
2404 }
2405
2406 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2407 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2408
2409 return 0;
2410 }
2411
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2412 static int spi_nor_select_read(struct spi_nor *nor,
2413 u32 shared_hwcaps)
2414 {
2415 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2416 const struct spi_nor_read_command *read;
2417
2418 if (best_match < 0)
2419 return -EINVAL;
2420
2421 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2422 if (cmd < 0)
2423 return -EINVAL;
2424
2425 read = &nor->params->reads[cmd];
2426 nor->read_opcode = read->opcode;
2427 nor->read_proto = read->proto;
2428
2429 /*
2430 * In the SPI NOR framework, we don't need to make the difference
2431 * between mode clock cycles and wait state clock cycles.
2432 * Indeed, the value of the mode clock cycles is used by a QSPI
2433 * flash memory to know whether it should enter or leave its 0-4-4
2434 * (Continuous Read / XIP) mode.
2435 * eXecution In Place is out of the scope of the mtd sub-system.
2436 * Hence we choose to merge both mode and wait state clock cycles
2437 * into the so called dummy clock cycles.
2438 */
2439 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2440 return 0;
2441 }
2442
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2443 static int spi_nor_select_pp(struct spi_nor *nor,
2444 u32 shared_hwcaps)
2445 {
2446 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2447 const struct spi_nor_pp_command *pp;
2448
2449 if (best_match < 0)
2450 return -EINVAL;
2451
2452 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2453 if (cmd < 0)
2454 return -EINVAL;
2455
2456 pp = &nor->params->page_programs[cmd];
2457 nor->program_opcode = pp->opcode;
2458 nor->write_proto = pp->proto;
2459 return 0;
2460 }
2461
2462 /**
2463 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2464 * @map: the erase map of the SPI NOR
2465 *
2466 * Once the optimum uniform sector erase command is found, disable all the
2467 * other.
2468 *
2469 * Return: pointer to erase type on success, NULL otherwise.
2470 */
2471 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map)2472 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map)
2473 {
2474 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2475 int i;
2476 u8 uniform_erase_type = map->uniform_region.erase_mask;
2477
2478 /*
2479 * Search for the biggest erase size, except for when compiled
2480 * to use 4k erases.
2481 */
2482 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2483 if (!(uniform_erase_type & BIT(i)))
2484 continue;
2485
2486 tested_erase = &map->erase_type[i];
2487
2488 /* Skip masked erase types. */
2489 if (!tested_erase->size)
2490 continue;
2491
2492 /*
2493 * If the current erase size is the 4k one, stop here,
2494 * we have found the right uniform Sector Erase command.
2495 */
2496 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_USE_4K_SECTORS) &&
2497 tested_erase->size == SZ_4K) {
2498 erase = tested_erase;
2499 break;
2500 }
2501
2502 /*
2503 * Otherwise, the current erase size is still a valid candidate.
2504 * Select the biggest valid candidate.
2505 */
2506 if (!erase && tested_erase->size)
2507 erase = tested_erase;
2508 /* keep iterating to find the wanted_size */
2509 }
2510
2511 if (!erase)
2512 return NULL;
2513
2514 /* Disable all other Sector Erase commands. */
2515 map->uniform_region.erase_mask = BIT(erase - map->erase_type);
2516 return erase;
2517 }
2518
spi_nor_select_erase(struct spi_nor * nor)2519 static int spi_nor_select_erase(struct spi_nor *nor)
2520 {
2521 struct spi_nor_erase_map *map = &nor->params->erase_map;
2522 const struct spi_nor_erase_type *erase = NULL;
2523 struct mtd_info *mtd = &nor->mtd;
2524 int i;
2525
2526 /*
2527 * The previous implementation handling Sector Erase commands assumed
2528 * that the SPI flash memory has an uniform layout then used only one
2529 * of the supported erase sizes for all Sector Erase commands.
2530 * So to be backward compatible, the new implementation also tries to
2531 * manage the SPI flash memory as uniform with a single erase sector
2532 * size, when possible.
2533 */
2534 if (spi_nor_has_uniform_erase(nor)) {
2535 erase = spi_nor_select_uniform_erase(map);
2536 if (!erase)
2537 return -EINVAL;
2538 nor->erase_opcode = erase->opcode;
2539 mtd->erasesize = erase->size;
2540 return 0;
2541 }
2542
2543 /*
2544 * For non-uniform SPI flash memory, set mtd->erasesize to the
2545 * maximum erase sector size. No need to set nor->erase_opcode.
2546 */
2547 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2548 if (map->erase_type[i].size) {
2549 erase = &map->erase_type[i];
2550 break;
2551 }
2552 }
2553
2554 if (!erase)
2555 return -EINVAL;
2556
2557 mtd->erasesize = erase->size;
2558 return 0;
2559 }
2560
spi_nor_set_addr_nbytes(struct spi_nor * nor)2561 static int spi_nor_set_addr_nbytes(struct spi_nor *nor)
2562 {
2563 if (nor->params->addr_nbytes) {
2564 nor->addr_nbytes = nor->params->addr_nbytes;
2565 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2566 /*
2567 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2568 * in this protocol an odd addr_nbytes cannot be used because
2569 * then the address phase would only span a cycle and a half.
2570 * Half a cycle would be left over. We would then have to start
2571 * the dummy phase in the middle of a cycle and so too the data
2572 * phase, and we will end the transaction with half a cycle left
2573 * over.
2574 *
2575 * Force all 8D-8D-8D flashes to use an addr_nbytes of 4 to
2576 * avoid this situation.
2577 */
2578 nor->addr_nbytes = 4;
2579 } else if (nor->info->addr_nbytes) {
2580 nor->addr_nbytes = nor->info->addr_nbytes;
2581 } else {
2582 nor->addr_nbytes = 3;
2583 }
2584
2585 if (nor->addr_nbytes == 3 && nor->params->size > 0x1000000) {
2586 /* enable 4-byte addressing if the device exceeds 16MiB */
2587 nor->addr_nbytes = 4;
2588 }
2589
2590 if (nor->addr_nbytes > SPI_NOR_MAX_ADDR_NBYTES) {
2591 dev_dbg(nor->dev, "The number of address bytes is too large: %u\n",
2592 nor->addr_nbytes);
2593 return -EINVAL;
2594 }
2595
2596 /* Set 4byte opcodes when possible. */
2597 if (nor->addr_nbytes == 4 && nor->flags & SNOR_F_4B_OPCODES &&
2598 !(nor->flags & SNOR_F_HAS_4BAIT))
2599 spi_nor_set_4byte_opcodes(nor);
2600
2601 return 0;
2602 }
2603
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2604 static int spi_nor_setup(struct spi_nor *nor,
2605 const struct spi_nor_hwcaps *hwcaps)
2606 {
2607 struct spi_nor_flash_parameter *params = nor->params;
2608 u32 ignored_mask, shared_mask;
2609 int err;
2610
2611 /*
2612 * Keep only the hardware capabilities supported by both the SPI
2613 * controller and the SPI flash memory.
2614 */
2615 shared_mask = hwcaps->mask & params->hwcaps.mask;
2616
2617 if (nor->spimem) {
2618 /*
2619 * When called from spi_nor_probe(), all caps are set and we
2620 * need to discard some of them based on what the SPI
2621 * controller actually supports (using spi_mem_supports_op()).
2622 */
2623 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2624 } else {
2625 /*
2626 * SPI n-n-n protocols are not supported when the SPI
2627 * controller directly implements the spi_nor interface.
2628 * Yet another reason to switch to spi-mem.
2629 */
2630 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2631 if (shared_mask & ignored_mask) {
2632 dev_dbg(nor->dev,
2633 "SPI n-n-n protocols are not supported.\n");
2634 shared_mask &= ~ignored_mask;
2635 }
2636 }
2637
2638 /* Select the (Fast) Read command. */
2639 err = spi_nor_select_read(nor, shared_mask);
2640 if (err) {
2641 dev_dbg(nor->dev,
2642 "can't select read settings supported by both the SPI controller and memory.\n");
2643 return err;
2644 }
2645
2646 /* Select the Page Program command. */
2647 err = spi_nor_select_pp(nor, shared_mask);
2648 if (err) {
2649 dev_dbg(nor->dev,
2650 "can't select write settings supported by both the SPI controller and memory.\n");
2651 return err;
2652 }
2653
2654 /* Select the Sector Erase command. */
2655 err = spi_nor_select_erase(nor);
2656 if (err) {
2657 dev_dbg(nor->dev,
2658 "can't select erase settings supported by both the SPI controller and memory.\n");
2659 return err;
2660 }
2661
2662 return spi_nor_set_addr_nbytes(nor);
2663 }
2664
2665 /**
2666 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2667 * settings based on MFR register and ->default_init() hook.
2668 * @nor: pointer to a 'struct spi_nor'.
2669 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2670 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2671 {
2672 if (nor->manufacturer && nor->manufacturer->fixups &&
2673 nor->manufacturer->fixups->default_init)
2674 nor->manufacturer->fixups->default_init(nor);
2675
2676 if (nor->info->fixups && nor->info->fixups->default_init)
2677 nor->info->fixups->default_init(nor);
2678 }
2679
2680 /**
2681 * spi_nor_no_sfdp_init_params() - Initialize the flash's parameters and
2682 * settings based on nor->info->sfdp_flags. This method should be called only by
2683 * flashes that do not define SFDP tables. If the flash supports SFDP but the
2684 * information is wrong and the settings from this function can not be retrieved
2685 * by parsing SFDP, one should instead use the fixup hooks and update the wrong
2686 * bits.
2687 * @nor: pointer to a 'struct spi_nor'.
2688 */
spi_nor_no_sfdp_init_params(struct spi_nor * nor)2689 static void spi_nor_no_sfdp_init_params(struct spi_nor *nor)
2690 {
2691 struct spi_nor_flash_parameter *params = nor->params;
2692 struct spi_nor_erase_map *map = ¶ms->erase_map;
2693 const struct flash_info *info = nor->info;
2694 const u8 no_sfdp_flags = info->no_sfdp_flags;
2695 u8 i, erase_mask;
2696
2697 if (no_sfdp_flags & SPI_NOR_DUAL_READ) {
2698 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2699 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2700 0, 8, SPINOR_OP_READ_1_1_2,
2701 SNOR_PROTO_1_1_2);
2702 }
2703
2704 if (no_sfdp_flags & SPI_NOR_QUAD_READ) {
2705 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2706 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2707 0, 8, SPINOR_OP_READ_1_1_4,
2708 SNOR_PROTO_1_1_4);
2709 }
2710
2711 if (no_sfdp_flags & SPI_NOR_OCTAL_READ) {
2712 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2713 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2714 0, 8, SPINOR_OP_READ_1_1_8,
2715 SNOR_PROTO_1_1_8);
2716 }
2717
2718 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_READ) {
2719 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2720 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2721 0, 20, SPINOR_OP_READ_FAST,
2722 SNOR_PROTO_8_8_8_DTR);
2723 }
2724
2725 if (no_sfdp_flags & SPI_NOR_OCTAL_DTR_PP) {
2726 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2727 /*
2728 * Since xSPI Page Program opcode is backward compatible with
2729 * Legacy SPI, use Legacy SPI opcode there as well.
2730 */
2731 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2732 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2733 }
2734
2735 /*
2736 * Sector Erase settings. Sort Erase Types in ascending order, with the
2737 * smallest erase size starting at BIT(0).
2738 */
2739 erase_mask = 0;
2740 i = 0;
2741 if (no_sfdp_flags & SECT_4K) {
2742 erase_mask |= BIT(i);
2743 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2744 SPINOR_OP_BE_4K);
2745 i++;
2746 }
2747 erase_mask |= BIT(i);
2748 spi_nor_set_erase_type(&map->erase_type[i],
2749 info->sector_size ?: SPI_NOR_DEFAULT_SECTOR_SIZE,
2750 SPINOR_OP_SE);
2751 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2752 }
2753
2754 /**
2755 * spi_nor_init_flags() - Initialize NOR flags for settings that are not defined
2756 * in the JESD216 SFDP standard, thus can not be retrieved when parsing SFDP.
2757 * @nor: pointer to a 'struct spi_nor'
2758 */
spi_nor_init_flags(struct spi_nor * nor)2759 static void spi_nor_init_flags(struct spi_nor *nor)
2760 {
2761 struct device_node *np = spi_nor_get_flash_node(nor);
2762 const u16 flags = nor->info->flags;
2763
2764 if (of_property_read_bool(np, "broken-flash-reset"))
2765 nor->flags |= SNOR_F_BROKEN_RESET;
2766
2767 if (of_property_read_bool(np, "no-wp"))
2768 nor->flags |= SNOR_F_NO_WP;
2769
2770 if (flags & SPI_NOR_SWP_IS_VOLATILE)
2771 nor->flags |= SNOR_F_SWP_IS_VOLATILE;
2772
2773 if (flags & SPI_NOR_HAS_LOCK)
2774 nor->flags |= SNOR_F_HAS_LOCK;
2775
2776 if (flags & SPI_NOR_HAS_TB) {
2777 nor->flags |= SNOR_F_HAS_SR_TB;
2778 if (flags & SPI_NOR_TB_SR_BIT6)
2779 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
2780 }
2781
2782 if (flags & SPI_NOR_4BIT_BP) {
2783 nor->flags |= SNOR_F_HAS_4BIT_BP;
2784 if (flags & SPI_NOR_BP3_SR_BIT6)
2785 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
2786 }
2787
2788 if (flags & SPI_NOR_RWW && nor->params->n_banks > 1 &&
2789 !nor->controller_ops)
2790 nor->flags |= SNOR_F_RWW;
2791 }
2792
2793 /**
2794 * spi_nor_init_fixup_flags() - Initialize NOR flags for settings that can not
2795 * be discovered by SFDP for this particular flash because the SFDP table that
2796 * indicates this support is not defined in the flash. In case the table for
2797 * this support is defined but has wrong values, one should instead use a
2798 * post_sfdp() hook to set the SNOR_F equivalent flag.
2799 * @nor: pointer to a 'struct spi_nor'
2800 */
spi_nor_init_fixup_flags(struct spi_nor * nor)2801 static void spi_nor_init_fixup_flags(struct spi_nor *nor)
2802 {
2803 const u8 fixup_flags = nor->info->fixup_flags;
2804
2805 if (fixup_flags & SPI_NOR_4B_OPCODES)
2806 nor->flags |= SNOR_F_4B_OPCODES;
2807
2808 if (fixup_flags & SPI_NOR_IO_MODE_EN_VOLATILE)
2809 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
2810 }
2811
2812 /**
2813 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2814 * @nor: pointer to a 'struct spi_nor'
2815 *
2816 * Used to initialize flash parameters that are not declared in the JESD216
2817 * SFDP standard, or where SFDP tables are not defined at all.
2818 * Will replace the spi_nor_manufacturer_init_params() method.
2819 */
spi_nor_late_init_params(struct spi_nor * nor)2820 static int spi_nor_late_init_params(struct spi_nor *nor)
2821 {
2822 struct spi_nor_flash_parameter *params = nor->params;
2823 int ret;
2824
2825 if (nor->manufacturer && nor->manufacturer->fixups &&
2826 nor->manufacturer->fixups->late_init) {
2827 ret = nor->manufacturer->fixups->late_init(nor);
2828 if (ret)
2829 return ret;
2830 }
2831
2832 /* Needed by some flashes late_init hooks. */
2833 spi_nor_init_flags(nor);
2834
2835 if (nor->info->fixups && nor->info->fixups->late_init) {
2836 ret = nor->info->fixups->late_init(nor);
2837 if (ret)
2838 return ret;
2839 }
2840
2841 if (!nor->params->die_erase_opcode)
2842 nor->params->die_erase_opcode = SPINOR_OP_CHIP_ERASE;
2843
2844 /* Default method kept for backward compatibility. */
2845 if (!params->set_4byte_addr_mode)
2846 params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr;
2847
2848 spi_nor_init_fixup_flags(nor);
2849
2850 /*
2851 * NOR protection support. When locking_ops are not provided, we pick
2852 * the default ones.
2853 */
2854 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2855 spi_nor_init_default_locking_ops(nor);
2856
2857 if (params->n_banks > 1)
2858 params->bank_size = div_u64(params->size, params->n_banks);
2859
2860 return 0;
2861 }
2862
2863 /**
2864 * spi_nor_sfdp_init_params_deprecated() - Deprecated way of initializing flash
2865 * parameters and settings based on JESD216 SFDP standard.
2866 * @nor: pointer to a 'struct spi_nor'.
2867 *
2868 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2869 * legacy flash parameters and settings will be restored.
2870 */
spi_nor_sfdp_init_params_deprecated(struct spi_nor * nor)2871 static void spi_nor_sfdp_init_params_deprecated(struct spi_nor *nor)
2872 {
2873 struct spi_nor_flash_parameter sfdp_params;
2874
2875 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2876
2877 if (spi_nor_parse_sfdp(nor)) {
2878 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2879 nor->flags &= ~SNOR_F_4B_OPCODES;
2880 }
2881 }
2882
2883 /**
2884 * spi_nor_init_params_deprecated() - Deprecated way of initializing flash
2885 * parameters and settings.
2886 * @nor: pointer to a 'struct spi_nor'.
2887 *
2888 * The method assumes that flash doesn't support SFDP so it initializes flash
2889 * parameters in spi_nor_no_sfdp_init_params() which later on can be overwritten
2890 * when parsing SFDP, if supported.
2891 */
spi_nor_init_params_deprecated(struct spi_nor * nor)2892 static void spi_nor_init_params_deprecated(struct spi_nor *nor)
2893 {
2894 spi_nor_no_sfdp_init_params(nor);
2895
2896 spi_nor_manufacturer_init_params(nor);
2897
2898 if (nor->info->no_sfdp_flags & (SPI_NOR_DUAL_READ |
2899 SPI_NOR_QUAD_READ |
2900 SPI_NOR_OCTAL_READ |
2901 SPI_NOR_OCTAL_DTR_READ))
2902 spi_nor_sfdp_init_params_deprecated(nor);
2903 }
2904
2905 /**
2906 * spi_nor_init_default_params() - Default initialization of flash parameters
2907 * and settings. Done for all flashes, regardless is they define SFDP tables
2908 * or not.
2909 * @nor: pointer to a 'struct spi_nor'.
2910 */
spi_nor_init_default_params(struct spi_nor * nor)2911 static void spi_nor_init_default_params(struct spi_nor *nor)
2912 {
2913 struct spi_nor_flash_parameter *params = nor->params;
2914 const struct flash_info *info = nor->info;
2915 struct device_node *np = spi_nor_get_flash_node(nor);
2916
2917 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2918 params->otp.org = info->otp;
2919
2920 /* Default to 16-bit Write Status (01h) Command */
2921 nor->flags |= SNOR_F_HAS_16BIT_SR;
2922
2923 /* Set SPI NOR sizes. */
2924 params->writesize = 1;
2925 params->size = info->size;
2926 params->bank_size = params->size;
2927 params->page_size = info->page_size ?: SPI_NOR_DEFAULT_PAGE_SIZE;
2928 params->n_banks = info->n_banks ?: SPI_NOR_DEFAULT_N_BANKS;
2929
2930 /* Default to Fast Read for non-DT and enable it if requested by DT. */
2931 if (!np || of_property_read_bool(np, "m25p,fast-read"))
2932 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2933
2934 /* (Fast) Read settings. */
2935 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2936 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2937 0, 0, SPINOR_OP_READ,
2938 SNOR_PROTO_1_1_1);
2939
2940 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2941 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2942 0, 8, SPINOR_OP_READ_FAST,
2943 SNOR_PROTO_1_1_1);
2944 /* Page Program settings. */
2945 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2946 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2947 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2948
2949 if (info->flags & SPI_NOR_QUAD_PP) {
2950 params->hwcaps.mask |= SNOR_HWCAPS_PP_1_1_4;
2951 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_1_1_4],
2952 SPINOR_OP_PP_1_1_4, SNOR_PROTO_1_1_4);
2953 }
2954 }
2955
2956 /**
2957 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2958 * @nor: pointer to a 'struct spi_nor'.
2959 *
2960 * The flash parameters and settings are initialized based on a sequence of
2961 * calls that are ordered by priority:
2962 *
2963 * 1/ Default flash parameters initialization. The initializations are done
2964 * based on nor->info data:
2965 * spi_nor_info_init_params()
2966 *
2967 * which can be overwritten by:
2968 * 2/ Manufacturer flash parameters initialization. The initializations are
2969 * done based on MFR register, or when the decisions can not be done solely
2970 * based on MFR, by using specific flash_info tweeks, ->default_init():
2971 * spi_nor_manufacturer_init_params()
2972 *
2973 * which can be overwritten by:
2974 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2975 * should be more accurate that the above.
2976 * spi_nor_parse_sfdp() or spi_nor_no_sfdp_init_params()
2977 *
2978 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2979 * the flash parameters and settings immediately after parsing the Basic
2980 * Flash Parameter Table.
2981 * spi_nor_post_sfdp_fixups() is called after the SFDP tables are parsed.
2982 * It is used to tweak various flash parameters when information provided
2983 * by the SFDP tables are wrong.
2984 *
2985 * which can be overwritten by:
2986 * 4/ Late flash parameters initialization, used to initialize flash
2987 * parameters that are not declared in the JESD216 SFDP standard, or where SFDP
2988 * tables are not defined at all.
2989 * spi_nor_late_init_params()
2990 *
2991 * Return: 0 on success, -errno otherwise.
2992 */
spi_nor_init_params(struct spi_nor * nor)2993 static int spi_nor_init_params(struct spi_nor *nor)
2994 {
2995 int ret;
2996
2997 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2998 if (!nor->params)
2999 return -ENOMEM;
3000
3001 spi_nor_init_default_params(nor);
3002
3003 if (spi_nor_needs_sfdp(nor)) {
3004 ret = spi_nor_parse_sfdp(nor);
3005 if (ret) {
3006 dev_err(nor->dev, "BFPT parsing failed. Please consider using SPI_NOR_SKIP_SFDP when declaring the flash\n");
3007 return ret;
3008 }
3009 } else if (nor->info->no_sfdp_flags & SPI_NOR_SKIP_SFDP) {
3010 spi_nor_no_sfdp_init_params(nor);
3011 } else {
3012 spi_nor_init_params_deprecated(nor);
3013 }
3014
3015 ret = spi_nor_late_init_params(nor);
3016 if (ret)
3017 return ret;
3018
3019 if (WARN_ON(!is_power_of_2(nor->params->page_size)))
3020 return -EINVAL;
3021
3022 return 0;
3023 }
3024
3025 /** spi_nor_set_octal_dtr() - enable or disable Octal DTR I/O.
3026 * @nor: pointer to a 'struct spi_nor'
3027 * @enable: whether to enable or disable Octal DTR
3028 *
3029 * Return: 0 on success, -errno otherwise.
3030 */
spi_nor_set_octal_dtr(struct spi_nor * nor,bool enable)3031 static int spi_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
3032 {
3033 int ret;
3034
3035 if (!nor->params->set_octal_dtr)
3036 return 0;
3037
3038 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
3039 nor->write_proto == SNOR_PROTO_8_8_8_DTR))
3040 return 0;
3041
3042 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
3043 return 0;
3044
3045 ret = nor->params->set_octal_dtr(nor, enable);
3046 if (ret)
3047 return ret;
3048
3049 if (enable)
3050 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
3051 else
3052 nor->reg_proto = SNOR_PROTO_1_1_1;
3053
3054 return 0;
3055 }
3056
3057 /**
3058 * spi_nor_quad_enable() - enable Quad I/O if needed.
3059 * @nor: pointer to a 'struct spi_nor'
3060 *
3061 * Return: 0 on success, -errno otherwise.
3062 */
spi_nor_quad_enable(struct spi_nor * nor)3063 static int spi_nor_quad_enable(struct spi_nor *nor)
3064 {
3065 if (!nor->params->quad_enable)
3066 return 0;
3067
3068 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3069 spi_nor_get_protocol_width(nor->write_proto) == 4))
3070 return 0;
3071
3072 return nor->params->quad_enable(nor);
3073 }
3074
3075 /**
3076 * spi_nor_set_4byte_addr_mode() - Set address mode.
3077 * @nor: pointer to a 'struct spi_nor'.
3078 * @enable: enable/disable 4 byte address mode.
3079 *
3080 * Return: 0 on success, -errno otherwise.
3081 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)3082 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
3083 {
3084 struct spi_nor_flash_parameter *params = nor->params;
3085 int ret;
3086
3087 if (enable) {
3088 /*
3089 * If the RESET# pin isn't hooked up properly, or the system
3090 * otherwise doesn't perform a reset command in the boot
3091 * sequence, it's impossible to 100% protect against unexpected
3092 * reboots (e.g., crashes). Warn the user (or hopefully, system
3093 * designer) that this is bad.
3094 */
3095 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3096 "enabling reset hack; may not recover from unexpected reboots\n");
3097 }
3098
3099 ret = params->set_4byte_addr_mode(nor, enable);
3100 if (ret && ret != -EOPNOTSUPP)
3101 return ret;
3102
3103 if (enable) {
3104 params->addr_nbytes = 4;
3105 params->addr_mode_nbytes = 4;
3106 } else {
3107 params->addr_nbytes = 3;
3108 params->addr_mode_nbytes = 3;
3109 }
3110
3111 return 0;
3112 }
3113
spi_nor_init(struct spi_nor * nor)3114 static int spi_nor_init(struct spi_nor *nor)
3115 {
3116 int err;
3117
3118 err = spi_nor_set_octal_dtr(nor, true);
3119 if (err) {
3120 dev_dbg(nor->dev, "octal mode not supported\n");
3121 return err;
3122 }
3123
3124 err = spi_nor_quad_enable(nor);
3125 if (err) {
3126 dev_dbg(nor->dev, "quad mode not supported\n");
3127 return err;
3128 }
3129
3130 /*
3131 * Some SPI NOR flashes are write protected by default after a power-on
3132 * reset cycle, in order to avoid inadvertent writes during power-up.
3133 * Backward compatibility imposes to unlock the entire flash memory
3134 * array at power-up by default. Depending on the kernel configuration
3135 * (1) do nothing, (2) always unlock the entire flash array or (3)
3136 * unlock the entire flash array only when the software write
3137 * protection bits are volatile. The latter is indicated by
3138 * SNOR_F_SWP_IS_VOLATILE.
3139 */
3140 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
3141 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
3142 nor->flags & SNOR_F_SWP_IS_VOLATILE))
3143 spi_nor_try_unlock_all(nor);
3144
3145 if (nor->addr_nbytes == 4 &&
3146 nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
3147 !(nor->flags & SNOR_F_4B_OPCODES))
3148 return spi_nor_set_4byte_addr_mode(nor, true);
3149
3150 return 0;
3151 }
3152
3153 /**
3154 * spi_nor_soft_reset() - Perform a software reset
3155 * @nor: pointer to 'struct spi_nor'
3156 *
3157 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
3158 * the device to its power-on-reset state. This is useful when the software has
3159 * made some changes to device (volatile) registers and needs to reset it before
3160 * shutting down, for example.
3161 *
3162 * Not every flash supports this sequence. The same set of opcodes might be used
3163 * for some other operation on a flash that does not support this. Support for
3164 * this sequence can be discovered via SFDP in the BFPT table.
3165 *
3166 * Return: 0 on success, -errno otherwise.
3167 */
spi_nor_soft_reset(struct spi_nor * nor)3168 static void spi_nor_soft_reset(struct spi_nor *nor)
3169 {
3170 struct spi_mem_op op;
3171 int ret;
3172
3173 op = (struct spi_mem_op)SPINOR_SRSTEN_OP;
3174
3175 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3176
3177 ret = spi_mem_exec_op(nor->spimem, &op);
3178 if (ret) {
3179 if (ret != -EOPNOTSUPP)
3180 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3181 return;
3182 }
3183
3184 op = (struct spi_mem_op)SPINOR_SRST_OP;
3185
3186 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
3187
3188 ret = spi_mem_exec_op(nor->spimem, &op);
3189 if (ret) {
3190 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
3191 return;
3192 }
3193
3194 /*
3195 * Software Reset is not instant, and the delay varies from flash to
3196 * flash. Looking at a few flashes, most range somewhere below 100
3197 * microseconds. So, sleep for a range of 200-400 us.
3198 */
3199 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
3200 }
3201
3202 /* mtd suspend handler */
spi_nor_suspend(struct mtd_info * mtd)3203 static int spi_nor_suspend(struct mtd_info *mtd)
3204 {
3205 struct spi_nor *nor = mtd_to_spi_nor(mtd);
3206 int ret;
3207
3208 /* Disable octal DTR mode if we enabled it. */
3209 ret = spi_nor_set_octal_dtr(nor, false);
3210 if (ret)
3211 dev_err(nor->dev, "suspend() failed\n");
3212
3213 return ret;
3214 }
3215
3216 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)3217 static void spi_nor_resume(struct mtd_info *mtd)
3218 {
3219 struct spi_nor *nor = mtd_to_spi_nor(mtd);
3220 struct device *dev = nor->dev;
3221 int ret;
3222
3223 /* re-initialize the nor chip */
3224 ret = spi_nor_init(nor);
3225 if (ret)
3226 dev_err(dev, "resume() failed\n");
3227 }
3228
spi_nor_get_device(struct mtd_info * mtd)3229 static int spi_nor_get_device(struct mtd_info *mtd)
3230 {
3231 struct mtd_info *master = mtd_get_master(mtd);
3232 struct spi_nor *nor = mtd_to_spi_nor(master);
3233 struct device *dev;
3234
3235 if (nor->spimem)
3236 dev = nor->spimem->spi->controller->dev.parent;
3237 else
3238 dev = nor->dev;
3239
3240 if (!try_module_get(dev->driver->owner))
3241 return -ENODEV;
3242
3243 return 0;
3244 }
3245
spi_nor_put_device(struct mtd_info * mtd)3246 static void spi_nor_put_device(struct mtd_info *mtd)
3247 {
3248 struct mtd_info *master = mtd_get_master(mtd);
3249 struct spi_nor *nor = mtd_to_spi_nor(master);
3250 struct device *dev;
3251
3252 if (nor->spimem)
3253 dev = nor->spimem->spi->controller->dev.parent;
3254 else
3255 dev = nor->dev;
3256
3257 module_put(dev->driver->owner);
3258 }
3259
spi_nor_restore(struct spi_nor * nor)3260 static void spi_nor_restore(struct spi_nor *nor)
3261 {
3262 int ret;
3263
3264 /* restore the addressing mode */
3265 if (nor->addr_nbytes == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3266 nor->flags & SNOR_F_BROKEN_RESET) {
3267 ret = spi_nor_set_4byte_addr_mode(nor, false);
3268 if (ret)
3269 /*
3270 * Do not stop the execution in the hope that the flash
3271 * will default to the 3-byte address mode after the
3272 * software reset.
3273 */
3274 dev_err(nor->dev, "Failed to exit 4-byte address mode, err = %d\n", ret);
3275 }
3276
3277 if (nor->flags & SNOR_F_SOFT_RESET)
3278 spi_nor_soft_reset(nor);
3279 }
3280
spi_nor_match_name(struct spi_nor * nor,const char * name)3281 static const struct flash_info *spi_nor_match_name(struct spi_nor *nor,
3282 const char *name)
3283 {
3284 unsigned int i, j;
3285
3286 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3287 for (j = 0; j < manufacturers[i]->nparts; j++) {
3288 if (manufacturers[i]->parts[j].name &&
3289 !strcmp(name, manufacturers[i]->parts[j].name)) {
3290 nor->manufacturer = manufacturers[i];
3291 return &manufacturers[i]->parts[j];
3292 }
3293 }
3294 }
3295
3296 return NULL;
3297 }
3298
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3299 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3300 const char *name)
3301 {
3302 const struct flash_info *info = NULL;
3303
3304 if (name)
3305 info = spi_nor_match_name(nor, name);
3306 /*
3307 * Auto-detect if chip name wasn't specified or not found, or the chip
3308 * has an ID. If the chip supposedly has an ID, we also do an
3309 * auto-detection to compare it later.
3310 */
3311 if (!info || info->id) {
3312 const struct flash_info *jinfo;
3313
3314 jinfo = spi_nor_detect(nor);
3315 if (IS_ERR(jinfo))
3316 return jinfo;
3317
3318 /*
3319 * If caller has specified name of flash model that can normally
3320 * be detected using JEDEC, let's verify it.
3321 */
3322 if (info && jinfo != info)
3323 dev_warn(nor->dev, "found %s, expected %s\n",
3324 jinfo->name, info->name);
3325
3326 /* If info was set before, JEDEC knows better. */
3327 info = jinfo;
3328 }
3329
3330 return info;
3331 }
3332
3333 static u32
spi_nor_get_region_erasesize(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase_type)3334 spi_nor_get_region_erasesize(const struct spi_nor_erase_region *region,
3335 const struct spi_nor_erase_type *erase_type)
3336 {
3337 int i;
3338
3339 if (region->overlaid)
3340 return region->size;
3341
3342 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
3343 if (region->erase_mask & BIT(i))
3344 return erase_type[i].size;
3345 }
3346
3347 return 0;
3348 }
3349
spi_nor_set_mtd_eraseregions(struct spi_nor * nor)3350 static int spi_nor_set_mtd_eraseregions(struct spi_nor *nor)
3351 {
3352 const struct spi_nor_erase_map *map = &nor->params->erase_map;
3353 const struct spi_nor_erase_region *region = map->regions;
3354 struct mtd_erase_region_info *mtd_region;
3355 struct mtd_info *mtd = &nor->mtd;
3356 u32 erasesize, i;
3357
3358 mtd_region = devm_kcalloc(nor->dev, map->n_regions, sizeof(*mtd_region),
3359 GFP_KERNEL);
3360 if (!mtd_region)
3361 return -ENOMEM;
3362
3363 for (i = 0; i < map->n_regions; i++) {
3364 erasesize = spi_nor_get_region_erasesize(®ion[i],
3365 map->erase_type);
3366 if (!erasesize)
3367 return -EINVAL;
3368
3369 mtd_region[i].erasesize = erasesize;
3370 mtd_region[i].numblocks = div_u64(region[i].size, erasesize);
3371 mtd_region[i].offset = region[i].offset;
3372 }
3373
3374 mtd->numeraseregions = map->n_regions;
3375 mtd->eraseregions = mtd_region;
3376
3377 return 0;
3378 }
3379
spi_nor_set_mtd_info(struct spi_nor * nor)3380 static int spi_nor_set_mtd_info(struct spi_nor *nor)
3381 {
3382 struct mtd_info *mtd = &nor->mtd;
3383 struct device *dev = nor->dev;
3384
3385 spi_nor_set_mtd_locking_ops(nor);
3386 spi_nor_set_mtd_otp_ops(nor);
3387
3388 mtd->dev.parent = dev;
3389 if (!mtd->name)
3390 mtd->name = dev_name(dev);
3391 mtd->type = MTD_NORFLASH;
3392 mtd->flags = MTD_CAP_NORFLASH;
3393 /* Unset BIT_WRITEABLE to enable JFFS2 write buffer for ECC'd NOR */
3394 if (nor->flags & SNOR_F_ECC)
3395 mtd->flags &= ~MTD_BIT_WRITEABLE;
3396 if (nor->info->flags & SPI_NOR_NO_ERASE)
3397 mtd->flags |= MTD_NO_ERASE;
3398 else
3399 mtd->_erase = spi_nor_erase;
3400 mtd->writesize = nor->params->writesize;
3401 mtd->writebufsize = nor->params->page_size;
3402 mtd->size = nor->params->size;
3403 mtd->_read = spi_nor_read;
3404 /* Might be already set by some SST flashes. */
3405 if (!mtd->_write)
3406 mtd->_write = spi_nor_write;
3407 mtd->_suspend = spi_nor_suspend;
3408 mtd->_resume = spi_nor_resume;
3409 mtd->_get_device = spi_nor_get_device;
3410 mtd->_put_device = spi_nor_put_device;
3411
3412 if (!spi_nor_has_uniform_erase(nor))
3413 return spi_nor_set_mtd_eraseregions(nor);
3414
3415 return 0;
3416 }
3417
spi_nor_hw_reset(struct spi_nor * nor)3418 static int spi_nor_hw_reset(struct spi_nor *nor)
3419 {
3420 struct gpio_desc *reset;
3421
3422 reset = devm_gpiod_get_optional(nor->dev, "reset", GPIOD_OUT_LOW);
3423 if (IS_ERR_OR_NULL(reset))
3424 return PTR_ERR_OR_ZERO(reset);
3425
3426 /*
3427 * Experimental delay values by looking at different flash device
3428 * vendors datasheets.
3429 */
3430 usleep_range(1, 5);
3431 gpiod_set_value_cansleep(reset, 1);
3432 usleep_range(100, 150);
3433 gpiod_set_value_cansleep(reset, 0);
3434 usleep_range(1000, 1200);
3435
3436 return 0;
3437 }
3438
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3439 int spi_nor_scan(struct spi_nor *nor, const char *name,
3440 const struct spi_nor_hwcaps *hwcaps)
3441 {
3442 const struct flash_info *info;
3443 struct device *dev = nor->dev;
3444 int ret;
3445
3446 ret = spi_nor_check(nor);
3447 if (ret)
3448 return ret;
3449
3450 /* Reset SPI protocol for all commands. */
3451 nor->reg_proto = SNOR_PROTO_1_1_1;
3452 nor->read_proto = SNOR_PROTO_1_1_1;
3453 nor->write_proto = SNOR_PROTO_1_1_1;
3454
3455 /*
3456 * We need the bounce buffer early to read/write registers when going
3457 * through the spi-mem layer (buffers have to be DMA-able).
3458 * For spi-mem drivers, we'll reallocate a new buffer if
3459 * nor->params->page_size turns out to be greater than PAGE_SIZE (which
3460 * shouldn't happen before long since NOR pages are usually less
3461 * than 1KB) after spi_nor_scan() returns.
3462 */
3463 nor->bouncebuf_size = PAGE_SIZE;
3464 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3465 GFP_KERNEL);
3466 if (!nor->bouncebuf)
3467 return -ENOMEM;
3468
3469 ret = spi_nor_hw_reset(nor);
3470 if (ret)
3471 return ret;
3472
3473 info = spi_nor_get_flash_info(nor, name);
3474 if (IS_ERR(info))
3475 return PTR_ERR(info);
3476
3477 nor->info = info;
3478
3479 mutex_init(&nor->lock);
3480
3481 /* Init flash parameters based on flash_info struct and SFDP */
3482 ret = spi_nor_init_params(nor);
3483 if (ret)
3484 return ret;
3485
3486 if (spi_nor_use_parallel_locking(nor))
3487 init_waitqueue_head(&nor->rww.wait);
3488
3489 /*
3490 * Configure the SPI memory:
3491 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3492 * - set the number of dummy cycles (mode cycles + wait states).
3493 * - set the SPI protocols for register and memory accesses.
3494 * - set the number of address bytes.
3495 */
3496 ret = spi_nor_setup(nor, hwcaps);
3497 if (ret)
3498 return ret;
3499
3500 /* Send all the required SPI flash commands to initialize device */
3501 ret = spi_nor_init(nor);
3502 if (ret)
3503 return ret;
3504
3505 /* No mtd_info fields should be used up to this point. */
3506 ret = spi_nor_set_mtd_info(nor);
3507 if (ret)
3508 return ret;
3509
3510 dev_dbg(dev, "Manufacturer and device ID: %*phN\n",
3511 SPI_NOR_MAX_ID_LEN, nor->id);
3512
3513 return 0;
3514 }
3515 EXPORT_SYMBOL_GPL(spi_nor_scan);
3516
spi_nor_create_read_dirmap(struct spi_nor * nor)3517 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3518 {
3519 struct spi_mem_dirmap_info info = {
3520 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3521 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3522 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3523 SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3524 .offset = 0,
3525 .length = nor->params->size,
3526 };
3527 struct spi_mem_op *op = &info.op_tmpl;
3528
3529 spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3530
3531 /* convert the dummy cycles to the number of bytes */
3532 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3533 if (spi_nor_protocol_is_dtr(nor->read_proto))
3534 op->dummy.nbytes *= 2;
3535
3536 /*
3537 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3538 * of data bytes is non-zero, the data buswidth won't be set here. So,
3539 * do it explicitly.
3540 */
3541 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3542
3543 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3544 &info);
3545 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3546 }
3547
spi_nor_create_write_dirmap(struct spi_nor * nor)3548 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3549 {
3550 struct spi_mem_dirmap_info info = {
3551 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3552 SPI_MEM_OP_ADDR(nor->addr_nbytes, 0, 0),
3553 SPI_MEM_OP_NO_DUMMY,
3554 SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3555 .offset = 0,
3556 .length = nor->params->size,
3557 };
3558 struct spi_mem_op *op = &info.op_tmpl;
3559
3560 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3561 op->addr.nbytes = 0;
3562
3563 spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3564
3565 /*
3566 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3567 * of data bytes is non-zero, the data buswidth won't be set here. So,
3568 * do it explicitly.
3569 */
3570 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3571
3572 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3573 &info);
3574 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3575 }
3576
spi_nor_probe(struct spi_mem * spimem)3577 static int spi_nor_probe(struct spi_mem *spimem)
3578 {
3579 struct spi_device *spi = spimem->spi;
3580 struct device *dev = &spi->dev;
3581 struct flash_platform_data *data = dev_get_platdata(dev);
3582 struct spi_nor *nor;
3583 /*
3584 * Enable all caps by default. The core will mask them after
3585 * checking what's really supported using spi_mem_supports_op().
3586 */
3587 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3588 char *flash_name;
3589 int ret;
3590
3591 ret = devm_regulator_get_enable(dev, "vcc");
3592 if (ret)
3593 return ret;
3594
3595 nor = devm_kzalloc(dev, sizeof(*nor), GFP_KERNEL);
3596 if (!nor)
3597 return -ENOMEM;
3598
3599 nor->spimem = spimem;
3600 nor->dev = dev;
3601 spi_nor_set_flash_node(nor, dev->of_node);
3602
3603 spi_mem_set_drvdata(spimem, nor);
3604
3605 if (data && data->name)
3606 nor->mtd.name = data->name;
3607
3608 if (!nor->mtd.name)
3609 nor->mtd.name = spi_mem_get_name(spimem);
3610
3611 /*
3612 * For some (historical?) reason many platforms provide two different
3613 * names in flash_platform_data: "name" and "type". Quite often name is
3614 * set to "m25p80" and then "type" provides a real chip name.
3615 * If that's the case, respect "type" and ignore a "name".
3616 */
3617 if (data && data->type)
3618 flash_name = data->type;
3619 else if (!strcmp(spi->modalias, "spi-nor"))
3620 flash_name = NULL; /* auto-detect */
3621 else
3622 flash_name = spi->modalias;
3623
3624 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3625 if (ret)
3626 return ret;
3627
3628 spi_nor_debugfs_register(nor);
3629
3630 /*
3631 * None of the existing parts have > 512B pages, but let's play safe
3632 * and add this logic so that if anyone ever adds support for such
3633 * a NOR we don't end up with buffer overflows.
3634 */
3635 if (nor->params->page_size > PAGE_SIZE) {
3636 nor->bouncebuf_size = nor->params->page_size;
3637 devm_kfree(dev, nor->bouncebuf);
3638 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3639 GFP_KERNEL);
3640 if (!nor->bouncebuf)
3641 return -ENOMEM;
3642 }
3643
3644 ret = spi_nor_create_read_dirmap(nor);
3645 if (ret)
3646 return ret;
3647
3648 ret = spi_nor_create_write_dirmap(nor);
3649 if (ret)
3650 return ret;
3651
3652 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3653 data ? data->nr_parts : 0);
3654 }
3655
spi_nor_remove(struct spi_mem * spimem)3656 static int spi_nor_remove(struct spi_mem *spimem)
3657 {
3658 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3659
3660 spi_nor_restore(nor);
3661
3662 /* Clean up MTD stuff. */
3663 return mtd_device_unregister(&nor->mtd);
3664 }
3665
spi_nor_shutdown(struct spi_mem * spimem)3666 static void spi_nor_shutdown(struct spi_mem *spimem)
3667 {
3668 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3669
3670 spi_nor_restore(nor);
3671 }
3672
3673 /*
3674 * Do NOT add to this array without reading the following:
3675 *
3676 * Historically, many flash devices are bound to this driver by their name. But
3677 * since most of these flash are compatible to some extent, and their
3678 * differences can often be differentiated by the JEDEC read-ID command, we
3679 * encourage new users to add support to the spi-nor library, and simply bind
3680 * against a generic string here (e.g., "jedec,spi-nor").
3681 *
3682 * Many flash names are kept here in this list to keep them available
3683 * as module aliases for existing platforms.
3684 */
3685 static const struct spi_device_id spi_nor_dev_ids[] = {
3686 /*
3687 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3688 * hack around the fact that the SPI core does not provide uevent
3689 * matching for .of_match_table
3690 */
3691 {"spi-nor"},
3692
3693 /*
3694 * Entries not used in DTs that should be safe to drop after replacing
3695 * them with "spi-nor" in platform data.
3696 */
3697 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3698
3699 /*
3700 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3701 * should be kept for backward compatibility.
3702 */
3703 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3704 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3705 {"mx25l25635e"},{"mx66l51235l"},
3706 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3707 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3708 {"s25fl064k"},
3709 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3710 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3711 {"m25p64"}, {"m25p128"},
3712 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3713 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3714
3715 /* Flashes that can't be detected using JEDEC */
3716 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3717 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3718 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3719
3720 /* Everspin MRAMs (non-JEDEC) */
3721 { "mr25h128" }, /* 128 Kib, 40 MHz */
3722 { "mr25h256" }, /* 256 Kib, 40 MHz */
3723 { "mr25h10" }, /* 1 Mib, 40 MHz */
3724 { "mr25h40" }, /* 4 Mib, 40 MHz */
3725
3726 { },
3727 };
3728 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3729
3730 static const struct of_device_id spi_nor_of_table[] = {
3731 /*
3732 * Generic compatibility for SPI NOR that can be identified by the
3733 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3734 */
3735 { .compatible = "jedec,spi-nor" },
3736 { /* sentinel */ },
3737 };
3738 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3739
3740 /*
3741 * REVISIT: many of these chips have deep power-down modes, which
3742 * should clearly be entered on suspend() to minimize power use.
3743 * And also when they're otherwise idle...
3744 */
3745 static struct spi_mem_driver spi_nor_driver = {
3746 .spidrv = {
3747 .driver = {
3748 .name = "spi-nor",
3749 .of_match_table = spi_nor_of_table,
3750 .dev_groups = spi_nor_sysfs_groups,
3751 },
3752 .id_table = spi_nor_dev_ids,
3753 },
3754 .probe = spi_nor_probe,
3755 .remove = spi_nor_remove,
3756 .shutdown = spi_nor_shutdown,
3757 };
3758
spi_nor_module_init(void)3759 static int __init spi_nor_module_init(void)
3760 {
3761 return spi_mem_driver_register(&spi_nor_driver);
3762 }
3763 module_init(spi_nor_module_init);
3764
spi_nor_module_exit(void)3765 static void __exit spi_nor_module_exit(void)
3766 {
3767 spi_mem_driver_unregister(&spi_nor_driver);
3768 spi_nor_debugfs_shutdown();
3769 }
3770 module_exit(spi_nor_module_exit);
3771
3772 MODULE_LICENSE("GPL v2");
3773 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3774 MODULE_AUTHOR("Mike Lavender");
3775 MODULE_DESCRIPTION("framework for SPI NOR");
3776