xref: /linux/drivers/clk/clk-sp7021.c (revision 522ba450b56fff29f868b1552bdc2965f55de7ed)
1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /*
3  * Copyright (C) Sunplus Technology Co., Ltd.
4  *       All rights reserved.
5  */
6 #include <linux/module.h>
7 #include <linux/clk-provider.h>
8 #include <linux/of.h>
9 #include <linux/bitfield.h>
10 #include <linux/hw_bitfield.h>
11 #include <linux/slab.h>
12 #include <linux/io.h>
13 #include <linux/err.h>
14 #include <linux/platform_device.h>
15 
16 #include <dt-bindings/clock/sunplus,sp7021-clkc.h>
17 
18 /* special div_width values for PLLTV/PLLA */
19 #define DIV_TV		33
20 #define DIV_A		34
21 
22 /* PLLTV parameters */
23 enum {
24 	SEL_FRA,
25 	SDM_MOD,
26 	PH_SEL,
27 	NFRA,
28 	DIVR,
29 	DIVN,
30 	DIVM,
31 	P_MAX
32 };
33 
34 #define MASK_SEL_FRA	GENMASK(1, 1)
35 #define MASK_SDM_MOD	GENMASK(2, 2)
36 #define MASK_PH_SEL	GENMASK(4, 4)
37 #define MASK_NFRA	GENMASK(12, 6)
38 #define MASK_DIVR	GENMASK(8, 7)
39 #define MASK_DIVN	GENMASK(7, 0)
40 #define MASK_DIVM	GENMASK(14, 8)
41 
42 struct sp_pll {
43 	struct clk_hw hw;
44 	void __iomem *reg;
45 	spinlock_t lock;	/* lock for reg */
46 	int div_shift;
47 	int div_width;
48 	int pd_bit;		/* power down bit idx */
49 	int bp_bit;		/* bypass bit idx */
50 	unsigned long brate;	/* base rate, TODO: replace brate with muldiv */
51 	u32 p[P_MAX];		/* for hold PLLTV/PLLA parameters */
52 };
53 
54 #define to_sp_pll(_hw)	container_of(_hw, struct sp_pll, hw)
55 
56 struct sp_clk_gate_info {
57 	u16	reg;		/* reg_index_shift */
58 	u16	ext_parent;	/* parent is extclk */
59 };
60 
61 static const struct sp_clk_gate_info sp_clk_gates[] = {
62 	{ 0x02 },
63 	{ 0x05 },
64 	{ 0x06 },
65 	{ 0x07 },
66 	{ 0x09 },
67 	{ 0x0b, 1 },
68 	{ 0x0f, 1 },
69 	{ 0x14 },
70 	{ 0x15 },
71 	{ 0x16 },
72 	{ 0x17 },
73 	{ 0x18, 1 },
74 	{ 0x19, 1 },
75 	{ 0x1a, 1 },
76 	{ 0x1b, 1 },
77 	{ 0x1c, 1 },
78 	{ 0x1d, 1 },
79 	{ 0x1e },
80 	{ 0x1f, 1 },
81 	{ 0x20 },
82 	{ 0x21 },
83 	{ 0x22 },
84 	{ 0x23 },
85 	{ 0x24 },
86 	{ 0x25 },
87 	{ 0x26 },
88 	{ 0x2a },
89 	{ 0x2b },
90 	{ 0x2d },
91 	{ 0x2e },
92 	{ 0x30 },
93 	{ 0x31 },
94 	{ 0x32 },
95 	{ 0x33 },
96 	{ 0x3d },
97 	{ 0x3e },
98 	{ 0x3f },
99 	{ 0x42 },
100 	{ 0x44 },
101 	{ 0x4b },
102 	{ 0x4c },
103 	{ 0x4d },
104 	{ 0x4e },
105 	{ 0x4f },
106 	{ 0x50 },
107 	{ 0x55 },
108 	{ 0x60 },
109 	{ 0x61 },
110 	{ 0x6a },
111 	{ 0x73 },
112 	{ 0x86 },
113 	{ 0x8a },
114 	{ 0x8b },
115 	{ 0x8d },
116 	{ 0x8e },
117 	{ 0x8f },
118 	{ 0x90 },
119 	{ 0x92 },
120 	{ 0x93 },
121 	{ 0x95 },
122 	{ 0x96 },
123 	{ 0x97 },
124 	{ 0x98 },
125 	{ 0x99 },
126 };
127 
128 #define _M		1000000UL
129 #define F_27M		(27 * _M)
130 
131 /*********************************** PLL_TV **********************************/
132 
133 /* TODO: set proper FVCO range */
134 #define FVCO_MIN	(100 * _M)
135 #define FVCO_MAX	(200 * _M)
136 
137 #define F_MIN		(FVCO_MIN / 8)
138 #define F_MAX		(FVCO_MAX)
139 
plltv_integer_div(struct sp_pll * clk,unsigned long freq)140 static long plltv_integer_div(struct sp_pll *clk, unsigned long freq)
141 {
142 	/* valid m values: 27M must be divisible by m */
143 	static const u32 m_table[] = {
144 		1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32
145 	};
146 	u32 m, n, r;
147 	unsigned long fvco, nf;
148 	long ret;
149 
150 	freq = clamp(freq, F_MIN, F_MAX);
151 
152 	/* DIVR 0~3 */
153 	for (r = 0; r <= 3; r++) {
154 		fvco = freq << r;
155 		if (fvco <= FVCO_MAX)
156 			break;
157 	}
158 
159 	/* DIVM */
160 	for (m = 0; m < ARRAY_SIZE(m_table); m++) {
161 		nf = fvco * m_table[m];
162 		n = nf / F_27M;
163 		if ((n * F_27M) == nf)
164 			break;
165 	}
166 	if (m >= ARRAY_SIZE(m_table)) {
167 		ret = -EINVAL;
168 		goto err_not_found;
169 	}
170 
171 	/* save parameters */
172 	clk->p[SEL_FRA] = 0;
173 	clk->p[DIVR]    = r;
174 	clk->p[DIVN]    = n;
175 	clk->p[DIVM]    = m_table[m];
176 
177 	return freq;
178 
179 err_not_found:
180 	pr_err("%s: %s freq:%lu not found a valid setting\n",
181 	       __func__, clk_hw_get_name(&clk->hw), freq);
182 
183 	return ret;
184 }
185 
186 /* parameters for PLLTV fractional divider */
187 static const u32 pt[][5] = {
188 	/* conventional fractional */
189 	{
190 		1,			/* factor */
191 		5,			/* 5 * p0 (nint) */
192 		1,			/* 1 * p0 */
193 		F_27M,			/* F_27M / p0 */
194 		1,			/* p0 / p2 */
195 	},
196 	/* phase rotation */
197 	{
198 		10,			/* factor */
199 		54,			/* 5.4 * p0 (nint) */
200 		2,			/* 0.2 * p0 */
201 		F_27M / 10,		/* F_27M / p0 */
202 		5,			/* p0 / p2 */
203 	},
204 };
205 
206 static const u32 sdm_mod_vals[] = { 91, 55 };
207 
plltv_fractional_div(struct sp_pll * clk,unsigned long freq)208 static long plltv_fractional_div(struct sp_pll *clk, unsigned long freq)
209 {
210 	u32 m, r;
211 	u32 nint, nfra;
212 	u32 df_quotient_min = 210000000;
213 	u32 df_remainder_min = 0;
214 	unsigned long fvco, nf, f, fout = 0;
215 	int sdm, ph;
216 
217 	freq = clamp(freq, F_MIN, F_MAX);
218 
219 	/* DIVR 0~3 */
220 	for (r = 0; r <= 3; r++) {
221 		fvco = freq << r;
222 		if (fvco <= FVCO_MAX)
223 			break;
224 	}
225 	f = F_27M >> r;
226 
227 	/* PH_SEL */
228 	for (ph = ARRAY_SIZE(pt) - 1; ph >= 0; ph--) {
229 		const u32 *pp = pt[ph];
230 
231 		/* SDM_MOD */
232 		for (sdm = 0; sdm < ARRAY_SIZE(sdm_mod_vals); sdm++) {
233 			u32 mod = sdm_mod_vals[sdm];
234 
235 			/* DIVM 1~32 */
236 			for (m = 1; m <= 32; m++) {
237 				u32 df; /* diff freq */
238 				u32 df_quotient, df_remainder;
239 
240 				nf = fvco * m;
241 				nint = nf / pp[3];
242 
243 				if (nint < pp[1])
244 					continue;
245 				if (nint > pp[1])
246 					break;
247 
248 				nfra = (((nf % pp[3]) * mod * pp[4]) + (F_27M / 2)) / F_27M;
249 				if (nfra) {
250 					u32 df0 = f * (nint + pp[2]) / pp[0];
251 					u32 df1 = f * (mod - nfra) / mod / pp[4];
252 
253 					df = df0 - df1;
254 				} else {
255 					df = f * (nint) / pp[0];
256 				}
257 
258 				df_quotient  = df / m;
259 				df_remainder = ((df % m) * 1000) / m;
260 
261 				if (freq > df_quotient) {
262 					df_quotient  = freq - df_quotient - 1;
263 					df_remainder = 1000 - df_remainder;
264 				} else {
265 					df_quotient = df_quotient - freq;
266 				}
267 
268 				if (df_quotient_min > df_quotient ||
269 				    (df_quotient_min == df_quotient &&
270 				    df_remainder_min > df_remainder)) {
271 					/* found a closer freq, save parameters */
272 					clk->p[SEL_FRA] = 1;
273 					clk->p[SDM_MOD] = sdm;
274 					clk->p[PH_SEL]  = ph;
275 					clk->p[NFRA]    = nfra;
276 					clk->p[DIVR]    = r;
277 					clk->p[DIVM]    = m;
278 
279 					fout = df / m;
280 					df_quotient_min = df_quotient;
281 					df_remainder_min = df_remainder;
282 				}
283 			}
284 		}
285 	}
286 
287 	if (!fout) {
288 		pr_err("%s: %s freq:%lu not found a valid setting\n",
289 		       __func__, clk_hw_get_name(&clk->hw), freq);
290 		return -EINVAL;
291 	}
292 
293 	return fout;
294 }
295 
plltv_div(struct sp_pll * clk,unsigned long freq)296 static long plltv_div(struct sp_pll *clk, unsigned long freq)
297 {
298 	if (freq % 100)
299 		return plltv_fractional_div(clk, freq);
300 
301 	return plltv_integer_div(clk, freq);
302 }
303 
plltv_set_rate(struct sp_pll * clk)304 static int plltv_set_rate(struct sp_pll *clk)
305 {
306 	unsigned long flags;
307 	u32 r0, r1, r2;
308 
309 	r0  = BIT(clk->bp_bit + 16);
310 	r0 |= FIELD_PREP_WM16(MASK_SEL_FRA, clk->p[SEL_FRA]);
311 	r0 |= FIELD_PREP_WM16(MASK_SDM_MOD, clk->p[SDM_MOD]);
312 	r0 |= FIELD_PREP_WM16(MASK_PH_SEL, clk->p[PH_SEL]);
313 	r0 |= FIELD_PREP_WM16(MASK_NFRA, clk->p[NFRA]);
314 
315 	r1  = FIELD_PREP_WM16(MASK_DIVR, clk->p[DIVR]);
316 
317 	r2  = FIELD_PREP_WM16(MASK_DIVN, clk->p[DIVN] - 1);
318 	r2 |= FIELD_PREP_WM16(MASK_DIVM, clk->p[DIVM] - 1);
319 
320 	spin_lock_irqsave(&clk->lock, flags);
321 	writel(r0, clk->reg);
322 	writel(r1, clk->reg + 4);
323 	writel(r2, clk->reg + 8);
324 	spin_unlock_irqrestore(&clk->lock, flags);
325 
326 	return 0;
327 }
328 
329 /*********************************** PLL_A ***********************************/
330 
331 /* from Q628_PLLs_REG_setting.xlsx */
332 static const struct {
333 	u32 rate;
334 	u32 regs[5];
335 } pa[] = {
336 	{
337 		.rate = 135475200,
338 		.regs = {
339 			0x4801,
340 			0x02df,
341 			0x248f,
342 			0x0211,
343 			0x33e9
344 		}
345 	},
346 	{
347 		.rate = 147456000,
348 		.regs = {
349 			0x4801,
350 			0x1adf,
351 			0x2490,
352 			0x0349,
353 			0x33e9
354 		}
355 	},
356 	{
357 		.rate = 196608000,
358 		.regs = {
359 			0x4801,
360 			0x42ef,
361 			0x2495,
362 			0x01c6,
363 			0x33e9
364 		}
365 	},
366 };
367 
plla_set_rate(struct sp_pll * clk)368 static int plla_set_rate(struct sp_pll *clk)
369 {
370 	const u32 *pp = pa[clk->p[0]].regs;
371 	unsigned long flags;
372 	int i;
373 
374 	spin_lock_irqsave(&clk->lock, flags);
375 	for (i = 0; i < ARRAY_SIZE(pa->regs); i++)
376 		writel(0xffff0000 | pp[i], clk->reg + (i * 4));
377 	spin_unlock_irqrestore(&clk->lock, flags);
378 
379 	return 0;
380 }
381 
plla_round_rate(struct sp_pll * clk,unsigned long rate)382 static long plla_round_rate(struct sp_pll *clk, unsigned long rate)
383 {
384 	int i = ARRAY_SIZE(pa);
385 
386 	while (--i) {
387 		if (rate >= pa[i].rate)
388 			break;
389 	}
390 	clk->p[0] = i;
391 
392 	return pa[i].rate;
393 }
394 
395 /********************************** SP_PLL ***********************************/
396 
sp_pll_calc_div(struct sp_pll * clk,unsigned long rate)397 static long sp_pll_calc_div(struct sp_pll *clk, unsigned long rate)
398 {
399 	u32 fbdiv;
400 	u32 max = 1 << clk->div_width;
401 
402 	fbdiv = DIV_ROUND_CLOSEST(rate, clk->brate);
403 	if (fbdiv > max)
404 		fbdiv = max;
405 
406 	return fbdiv;
407 }
408 
sp_pll_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)409 static int sp_pll_determine_rate(struct clk_hw *hw,
410 				 struct clk_rate_request *req)
411 {
412 	struct sp_pll *clk = to_sp_pll(hw);
413 	long ret;
414 
415 	if (req->rate == req->best_parent_rate) {
416 		ret = req->best_parent_rate; /* bypass */
417 	} else if (clk->div_width == DIV_A) {
418 		ret = plla_round_rate(clk, req->rate);
419 	} else if (clk->div_width == DIV_TV) {
420 		ret = plltv_div(clk, req->rate);
421 		if (ret < 0)
422 			ret = req->best_parent_rate;
423 	} else {
424 		ret = sp_pll_calc_div(clk, req->rate) * clk->brate;
425 	}
426 
427 	req->rate = ret;
428 
429 	return 0;
430 }
431 
sp_pll_recalc_rate(struct clk_hw * hw,unsigned long prate)432 static unsigned long sp_pll_recalc_rate(struct clk_hw *hw,
433 					unsigned long prate)
434 {
435 	struct sp_pll *clk = to_sp_pll(hw);
436 	u32 reg = readl(clk->reg);
437 	unsigned long ret;
438 
439 	if (reg & BIT(clk->bp_bit)) {
440 		ret = prate; /* bypass */
441 	} else if (clk->div_width == DIV_A) {
442 		ret = pa[clk->p[0]].rate;
443 	} else if (clk->div_width == DIV_TV) {
444 		u32 m, r, reg2;
445 
446 		r = FIELD_GET(MASK_DIVR, readl(clk->reg + 4));
447 		reg2 = readl(clk->reg + 8);
448 		m = FIELD_GET(MASK_DIVM, reg2) + 1;
449 
450 		if (reg & MASK_SEL_FRA) {
451 			/* fractional divider */
452 			u32 sdm  = FIELD_GET(MASK_SDM_MOD, reg);
453 			u32 ph   = FIELD_GET(MASK_PH_SEL, reg);
454 			u32 nfra = FIELD_GET(MASK_NFRA, reg);
455 			const u32 *pp = pt[ph];
456 			unsigned long r0, r1;
457 
458 			ret = prate >> r;
459 			r0  = ret * (pp[1] + pp[2]) / pp[0];
460 			r1  = ret * (sdm_mod_vals[sdm] - nfra) / sdm_mod_vals[sdm] / pp[4];
461 			ret = (r0 - r1) / m;
462 		} else {
463 			/* integer divider */
464 			u32 n = FIELD_GET(MASK_DIVN, reg2) + 1;
465 
466 			ret = (prate / m * n) >> r;
467 		}
468 	} else {
469 		u32 fbdiv = ((reg >> clk->div_shift) & ((1 << clk->div_width) - 1)) + 1;
470 
471 		ret = clk->brate * fbdiv;
472 	}
473 
474 	return ret;
475 }
476 
sp_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)477 static int sp_pll_set_rate(struct clk_hw *hw, unsigned long rate,
478 			   unsigned long prate)
479 {
480 	struct sp_pll *clk = to_sp_pll(hw);
481 	unsigned long flags;
482 	u32 reg;
483 
484 	reg = BIT(clk->bp_bit + 16); /* HIWORD_MASK */
485 
486 	if (rate == prate) {
487 		reg |= BIT(clk->bp_bit); /* bypass */
488 	} else if (clk->div_width == DIV_A) {
489 		return plla_set_rate(clk);
490 	} else if (clk->div_width == DIV_TV) {
491 		return plltv_set_rate(clk);
492 	} else if (clk->div_width) {
493 		u32 fbdiv = sp_pll_calc_div(clk, rate);
494 		u32 mask = GENMASK(clk->div_shift + clk->div_width - 1, clk->div_shift);
495 
496 		reg |= mask << 16;
497 		reg |= ((fbdiv - 1) << clk->div_shift) & mask;
498 	}
499 
500 	spin_lock_irqsave(&clk->lock, flags);
501 	writel(reg, clk->reg);
502 	spin_unlock_irqrestore(&clk->lock, flags);
503 
504 	return 0;
505 }
506 
sp_pll_enable(struct clk_hw * hw)507 static int sp_pll_enable(struct clk_hw *hw)
508 {
509 	struct sp_pll *clk = to_sp_pll(hw);
510 
511 	writel(BIT(clk->pd_bit + 16) | BIT(clk->pd_bit), clk->reg);
512 
513 	return 0;
514 }
515 
sp_pll_disable(struct clk_hw * hw)516 static void sp_pll_disable(struct clk_hw *hw)
517 {
518 	struct sp_pll *clk = to_sp_pll(hw);
519 
520 	writel(BIT(clk->pd_bit + 16), clk->reg);
521 }
522 
sp_pll_is_enabled(struct clk_hw * hw)523 static int sp_pll_is_enabled(struct clk_hw *hw)
524 {
525 	struct sp_pll *clk = to_sp_pll(hw);
526 
527 	return readl(clk->reg) & BIT(clk->pd_bit);
528 }
529 
530 static const struct clk_ops sp_pll_ops = {
531 	.enable = sp_pll_enable,
532 	.disable = sp_pll_disable,
533 	.is_enabled = sp_pll_is_enabled,
534 	.determine_rate = sp_pll_determine_rate,
535 	.recalc_rate = sp_pll_recalc_rate,
536 	.set_rate = sp_pll_set_rate
537 };
538 
539 static const struct clk_ops sp_pll_sub_ops = {
540 	.enable = sp_pll_enable,
541 	.disable = sp_pll_disable,
542 	.is_enabled = sp_pll_is_enabled,
543 	.recalc_rate = sp_pll_recalc_rate,
544 };
545 
sp_pll_register(struct device * dev,const char * name,const struct clk_parent_data * parent_data,void __iomem * reg,int pd_bit,int bp_bit,unsigned long brate,int shift,int width,unsigned long flags)546 static struct clk_hw *sp_pll_register(struct device *dev, const char *name,
547 				      const struct clk_parent_data *parent_data,
548 				      void __iomem *reg, int pd_bit, int bp_bit,
549 				      unsigned long brate, int shift, int width,
550 				      unsigned long flags)
551 {
552 	struct sp_pll *pll;
553 	struct clk_hw *hw;
554 	struct clk_init_data initd = {
555 		.name = name,
556 		.parent_data = parent_data,
557 		.ops = (bp_bit >= 0) ? &sp_pll_ops : &sp_pll_sub_ops,
558 		.num_parents = 1,
559 		.flags = flags,
560 	};
561 	int ret;
562 
563 	pll = devm_kzalloc(dev, sizeof(*pll), GFP_KERNEL);
564 	if (!pll)
565 		return ERR_PTR(-ENOMEM);
566 
567 	pll->hw.init = &initd;
568 	pll->reg = reg;
569 	pll->pd_bit = pd_bit;
570 	pll->bp_bit = bp_bit;
571 	pll->brate = brate;
572 	pll->div_shift = shift;
573 	pll->div_width = width;
574 	spin_lock_init(&pll->lock);
575 
576 	hw = &pll->hw;
577 	ret = devm_clk_hw_register(dev, hw);
578 	if (ret)
579 		return ERR_PTR(ret);
580 
581 	return hw;
582 }
583 
584 #define PLLA_CTL	(pll_base + 0x1c)
585 #define PLLE_CTL	(pll_base + 0x30)
586 #define PLLF_CTL	(pll_base + 0x34)
587 #define PLLTV_CTL	(pll_base + 0x38)
588 
sp7021_clk_probe(struct platform_device * pdev)589 static int sp7021_clk_probe(struct platform_device *pdev)
590 {
591 	static const u32 sp_clken[] = {
592 		0x67ef, 0x03ff, 0xff03, 0xfff0, 0x0004, /* G0.1~5  */
593 		0x0000, 0x8000, 0xffff, 0x0040, 0x0000, /* G0.6~10 */
594 	};
595 	static struct clk_parent_data pd_ext, pd_sys, pd_e;
596 	struct device *dev = &pdev->dev;
597 	void __iomem *clk_base, *pll_base, *sys_base;
598 	struct clk_hw_onecell_data *clk_data;
599 	struct clk_hw **hws;
600 	int i;
601 
602 	clk_base = devm_platform_ioremap_resource(pdev, 0);
603 	if (IS_ERR(clk_base))
604 		return PTR_ERR(clk_base);
605 	pll_base = devm_platform_ioremap_resource(pdev, 1);
606 	if (IS_ERR(pll_base))
607 		return PTR_ERR(pll_base);
608 	sys_base = devm_platform_ioremap_resource(pdev, 2);
609 	if (IS_ERR(sys_base))
610 		return PTR_ERR(sys_base);
611 
612 	/* enable default clks */
613 	for (i = 0; i < ARRAY_SIZE(sp_clken); i++)
614 		writel((sp_clken[i] << 16) | sp_clken[i], clk_base + i * 4);
615 
616 	clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, CLK_MAX),
617 				GFP_KERNEL);
618 	if (!clk_data)
619 		return -ENOMEM;
620 	clk_data->num = CLK_MAX;
621 
622 	hws = clk_data->hws;
623 	pd_ext.index = 0;
624 
625 	/* PLLs */
626 	hws[PLL_A] = sp_pll_register(dev, "plla", &pd_ext, PLLA_CTL,
627 				     11, 12, 27000000, 0, DIV_A, 0);
628 	if (IS_ERR(hws[PLL_A]))
629 		return PTR_ERR(hws[PLL_A]);
630 
631 	hws[PLL_E] = sp_pll_register(dev, "plle", &pd_ext, PLLE_CTL,
632 				     6, 2, 50000000, 0, 0, 0);
633 	if (IS_ERR(hws[PLL_E]))
634 		return PTR_ERR(hws[PLL_E]);
635 	pd_e.hw = hws[PLL_E];
636 	hws[PLL_E_2P5] = sp_pll_register(dev, "plle_2p5", &pd_e, PLLE_CTL,
637 					 13, -1, 2500000, 0, 0, 0);
638 	if (IS_ERR(hws[PLL_E_2P5]))
639 		return PTR_ERR(hws[PLL_E_2P5]);
640 	hws[PLL_E_25] = sp_pll_register(dev, "plle_25", &pd_e, PLLE_CTL,
641 					12, -1, 25000000, 0, 0, 0);
642 	if (IS_ERR(hws[PLL_E_25]))
643 		return PTR_ERR(hws[PLL_E_25]);
644 	hws[PLL_E_112P5] = sp_pll_register(dev, "plle_112p5", &pd_e, PLLE_CTL,
645 					   11, -1, 112500000, 0, 0, 0);
646 	if (IS_ERR(hws[PLL_E_112P5]))
647 		return PTR_ERR(hws[PLL_E_112P5]);
648 
649 	hws[PLL_F] = sp_pll_register(dev, "pllf", &pd_ext, PLLF_CTL,
650 				     0, 10, 13500000, 1, 4, 0);
651 	if (IS_ERR(hws[PLL_F]))
652 		return PTR_ERR(hws[PLL_F]);
653 
654 	hws[PLL_TV] = sp_pll_register(dev, "plltv", &pd_ext, PLLTV_CTL,
655 				      0, 15, 27000000, 0, DIV_TV, 0);
656 	if (IS_ERR(hws[PLL_TV]))
657 		return PTR_ERR(hws[PLL_TV]);
658 	hws[PLL_TV_A] = devm_clk_hw_register_divider(dev, "plltv_a", "plltv", 0,
659 						     PLLTV_CTL + 4, 5, 1,
660 						     CLK_DIVIDER_POWER_OF_TWO,
661 						     &to_sp_pll(hws[PLL_TV])->lock);
662 	if (IS_ERR(hws[PLL_TV_A]))
663 		return PTR_ERR(hws[PLL_TV_A]);
664 
665 	/* system clock, should not be disabled */
666 	hws[PLL_SYS] = sp_pll_register(dev, "pllsys", &pd_ext, sys_base,
667 				       10, 9, 13500000, 0, 4, CLK_IS_CRITICAL);
668 	if (IS_ERR(hws[PLL_SYS]))
669 		return PTR_ERR(hws[PLL_SYS]);
670 	pd_sys.hw = hws[PLL_SYS];
671 
672 	/* gates */
673 	for (i = 0; i < ARRAY_SIZE(sp_clk_gates); i++) {
674 		char name[10];
675 		u32 j = sp_clk_gates[i].reg;
676 		struct clk_parent_data *pd = sp_clk_gates[i].ext_parent ? &pd_ext : &pd_sys;
677 
678 		sprintf(name, "%02d_0x%02x", i, j);
679 		hws[i] = devm_clk_hw_register_gate_parent_data(dev, name, pd, 0,
680 							       clk_base + (j >> 4) * 4,
681 							       j & 0x0f,
682 							       CLK_GATE_HIWORD_MASK,
683 							       NULL);
684 		if (IS_ERR(hws[i]))
685 			return PTR_ERR(hws[i]);
686 	}
687 
688 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data);
689 }
690 
691 static const struct of_device_id sp7021_clk_dt_ids[] = {
692 	{ .compatible = "sunplus,sp7021-clkc" },
693 	{ }
694 };
695 MODULE_DEVICE_TABLE(of, sp7021_clk_dt_ids);
696 
697 static struct platform_driver sp7021_clk_driver = {
698 	.probe  = sp7021_clk_probe,
699 	.driver = {
700 		.name = "sp7021-clk",
701 		.of_match_table = sp7021_clk_dt_ids,
702 	},
703 };
704 module_platform_driver(sp7021_clk_driver);
705 
706 MODULE_AUTHOR("Sunplus Technology");
707 MODULE_LICENSE("GPL");
708 MODULE_DESCRIPTION("Clock driver for Sunplus SP7021 SoC");
709