1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /*
3 * Copyright (C) Sunplus Technology Co., Ltd.
4 * All rights reserved.
5 */
6 #include <linux/module.h>
7 #include <linux/clk-provider.h>
8 #include <linux/of.h>
9 #include <linux/bitfield.h>
10 #include <linux/hw_bitfield.h>
11 #include <linux/slab.h>
12 #include <linux/io.h>
13 #include <linux/err.h>
14 #include <linux/platform_device.h>
15
16 #include <dt-bindings/clock/sunplus,sp7021-clkc.h>
17
18 /* special div_width values for PLLTV/PLLA */
19 #define DIV_TV 33
20 #define DIV_A 34
21
22 /* PLLTV parameters */
23 enum {
24 SEL_FRA,
25 SDM_MOD,
26 PH_SEL,
27 NFRA,
28 DIVR,
29 DIVN,
30 DIVM,
31 P_MAX
32 };
33
34 #define MASK_SEL_FRA GENMASK(1, 1)
35 #define MASK_SDM_MOD GENMASK(2, 2)
36 #define MASK_PH_SEL GENMASK(4, 4)
37 #define MASK_NFRA GENMASK(12, 6)
38 #define MASK_DIVR GENMASK(8, 7)
39 #define MASK_DIVN GENMASK(7, 0)
40 #define MASK_DIVM GENMASK(14, 8)
41
42 struct sp_pll {
43 struct clk_hw hw;
44 void __iomem *reg;
45 spinlock_t lock; /* lock for reg */
46 int div_shift;
47 int div_width;
48 int pd_bit; /* power down bit idx */
49 int bp_bit; /* bypass bit idx */
50 unsigned long brate; /* base rate, TODO: replace brate with muldiv */
51 u32 p[P_MAX]; /* for hold PLLTV/PLLA parameters */
52 };
53
54 #define to_sp_pll(_hw) container_of(_hw, struct sp_pll, hw)
55
56 struct sp_clk_gate_info {
57 u16 reg; /* reg_index_shift */
58 u16 ext_parent; /* parent is extclk */
59 };
60
61 static const struct sp_clk_gate_info sp_clk_gates[] = {
62 { 0x02 },
63 { 0x05 },
64 { 0x06 },
65 { 0x07 },
66 { 0x09 },
67 { 0x0b, 1 },
68 { 0x0f, 1 },
69 { 0x14 },
70 { 0x15 },
71 { 0x16 },
72 { 0x17 },
73 { 0x18, 1 },
74 { 0x19, 1 },
75 { 0x1a, 1 },
76 { 0x1b, 1 },
77 { 0x1c, 1 },
78 { 0x1d, 1 },
79 { 0x1e },
80 { 0x1f, 1 },
81 { 0x20 },
82 { 0x21 },
83 { 0x22 },
84 { 0x23 },
85 { 0x24 },
86 { 0x25 },
87 { 0x26 },
88 { 0x2a },
89 { 0x2b },
90 { 0x2d },
91 { 0x2e },
92 { 0x30 },
93 { 0x31 },
94 { 0x32 },
95 { 0x33 },
96 { 0x3d },
97 { 0x3e },
98 { 0x3f },
99 { 0x42 },
100 { 0x44 },
101 { 0x4b },
102 { 0x4c },
103 { 0x4d },
104 { 0x4e },
105 { 0x4f },
106 { 0x50 },
107 { 0x55 },
108 { 0x60 },
109 { 0x61 },
110 { 0x6a },
111 { 0x73 },
112 { 0x86 },
113 { 0x8a },
114 { 0x8b },
115 { 0x8d },
116 { 0x8e },
117 { 0x8f },
118 { 0x90 },
119 { 0x92 },
120 { 0x93 },
121 { 0x95 },
122 { 0x96 },
123 { 0x97 },
124 { 0x98 },
125 { 0x99 },
126 };
127
128 #define _M 1000000UL
129 #define F_27M (27 * _M)
130
131 /*********************************** PLL_TV **********************************/
132
133 /* TODO: set proper FVCO range */
134 #define FVCO_MIN (100 * _M)
135 #define FVCO_MAX (200 * _M)
136
137 #define F_MIN (FVCO_MIN / 8)
138 #define F_MAX (FVCO_MAX)
139
plltv_integer_div(struct sp_pll * clk,unsigned long freq)140 static long plltv_integer_div(struct sp_pll *clk, unsigned long freq)
141 {
142 /* valid m values: 27M must be divisible by m */
143 static const u32 m_table[] = {
144 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 27, 30, 32
145 };
146 u32 m, n, r;
147 unsigned long fvco, nf;
148 long ret;
149
150 freq = clamp(freq, F_MIN, F_MAX);
151
152 /* DIVR 0~3 */
153 for (r = 0; r <= 3; r++) {
154 fvco = freq << r;
155 if (fvco <= FVCO_MAX)
156 break;
157 }
158
159 /* DIVM */
160 for (m = 0; m < ARRAY_SIZE(m_table); m++) {
161 nf = fvco * m_table[m];
162 n = nf / F_27M;
163 if ((n * F_27M) == nf)
164 break;
165 }
166 if (m >= ARRAY_SIZE(m_table)) {
167 ret = -EINVAL;
168 goto err_not_found;
169 }
170
171 /* save parameters */
172 clk->p[SEL_FRA] = 0;
173 clk->p[DIVR] = r;
174 clk->p[DIVN] = n;
175 clk->p[DIVM] = m_table[m];
176
177 return freq;
178
179 err_not_found:
180 pr_err("%s: %s freq:%lu not found a valid setting\n",
181 __func__, clk_hw_get_name(&clk->hw), freq);
182
183 return ret;
184 }
185
186 /* parameters for PLLTV fractional divider */
187 static const u32 pt[][5] = {
188 /* conventional fractional */
189 {
190 1, /* factor */
191 5, /* 5 * p0 (nint) */
192 1, /* 1 * p0 */
193 F_27M, /* F_27M / p0 */
194 1, /* p0 / p2 */
195 },
196 /* phase rotation */
197 {
198 10, /* factor */
199 54, /* 5.4 * p0 (nint) */
200 2, /* 0.2 * p0 */
201 F_27M / 10, /* F_27M / p0 */
202 5, /* p0 / p2 */
203 },
204 };
205
206 static const u32 sdm_mod_vals[] = { 91, 55 };
207
plltv_fractional_div(struct sp_pll * clk,unsigned long freq)208 static long plltv_fractional_div(struct sp_pll *clk, unsigned long freq)
209 {
210 u32 m, r;
211 u32 nint, nfra;
212 u32 df_quotient_min = 210000000;
213 u32 df_remainder_min = 0;
214 unsigned long fvco, nf, f, fout = 0;
215 int sdm, ph;
216
217 freq = clamp(freq, F_MIN, F_MAX);
218
219 /* DIVR 0~3 */
220 for (r = 0; r <= 3; r++) {
221 fvco = freq << r;
222 if (fvco <= FVCO_MAX)
223 break;
224 }
225 f = F_27M >> r;
226
227 /* PH_SEL */
228 for (ph = ARRAY_SIZE(pt) - 1; ph >= 0; ph--) {
229 const u32 *pp = pt[ph];
230
231 /* SDM_MOD */
232 for (sdm = 0; sdm < ARRAY_SIZE(sdm_mod_vals); sdm++) {
233 u32 mod = sdm_mod_vals[sdm];
234
235 /* DIVM 1~32 */
236 for (m = 1; m <= 32; m++) {
237 u32 df; /* diff freq */
238 u32 df_quotient, df_remainder;
239
240 nf = fvco * m;
241 nint = nf / pp[3];
242
243 if (nint < pp[1])
244 continue;
245 if (nint > pp[1])
246 break;
247
248 nfra = (((nf % pp[3]) * mod * pp[4]) + (F_27M / 2)) / F_27M;
249 if (nfra) {
250 u32 df0 = f * (nint + pp[2]) / pp[0];
251 u32 df1 = f * (mod - nfra) / mod / pp[4];
252
253 df = df0 - df1;
254 } else {
255 df = f * (nint) / pp[0];
256 }
257
258 df_quotient = df / m;
259 df_remainder = ((df % m) * 1000) / m;
260
261 if (freq > df_quotient) {
262 df_quotient = freq - df_quotient - 1;
263 df_remainder = 1000 - df_remainder;
264 } else {
265 df_quotient = df_quotient - freq;
266 }
267
268 if (df_quotient_min > df_quotient ||
269 (df_quotient_min == df_quotient &&
270 df_remainder_min > df_remainder)) {
271 /* found a closer freq, save parameters */
272 clk->p[SEL_FRA] = 1;
273 clk->p[SDM_MOD] = sdm;
274 clk->p[PH_SEL] = ph;
275 clk->p[NFRA] = nfra;
276 clk->p[DIVR] = r;
277 clk->p[DIVM] = m;
278
279 fout = df / m;
280 df_quotient_min = df_quotient;
281 df_remainder_min = df_remainder;
282 }
283 }
284 }
285 }
286
287 if (!fout) {
288 pr_err("%s: %s freq:%lu not found a valid setting\n",
289 __func__, clk_hw_get_name(&clk->hw), freq);
290 return -EINVAL;
291 }
292
293 return fout;
294 }
295
plltv_div(struct sp_pll * clk,unsigned long freq)296 static long plltv_div(struct sp_pll *clk, unsigned long freq)
297 {
298 if (freq % 100)
299 return plltv_fractional_div(clk, freq);
300
301 return plltv_integer_div(clk, freq);
302 }
303
plltv_set_rate(struct sp_pll * clk)304 static int plltv_set_rate(struct sp_pll *clk)
305 {
306 unsigned long flags;
307 u32 r0, r1, r2;
308
309 r0 = BIT(clk->bp_bit + 16);
310 r0 |= FIELD_PREP_WM16(MASK_SEL_FRA, clk->p[SEL_FRA]);
311 r0 |= FIELD_PREP_WM16(MASK_SDM_MOD, clk->p[SDM_MOD]);
312 r0 |= FIELD_PREP_WM16(MASK_PH_SEL, clk->p[PH_SEL]);
313 r0 |= FIELD_PREP_WM16(MASK_NFRA, clk->p[NFRA]);
314
315 r1 = FIELD_PREP_WM16(MASK_DIVR, clk->p[DIVR]);
316
317 r2 = FIELD_PREP_WM16(MASK_DIVN, clk->p[DIVN] - 1);
318 r2 |= FIELD_PREP_WM16(MASK_DIVM, clk->p[DIVM] - 1);
319
320 spin_lock_irqsave(&clk->lock, flags);
321 writel(r0, clk->reg);
322 writel(r1, clk->reg + 4);
323 writel(r2, clk->reg + 8);
324 spin_unlock_irqrestore(&clk->lock, flags);
325
326 return 0;
327 }
328
329 /*********************************** PLL_A ***********************************/
330
331 /* from Q628_PLLs_REG_setting.xlsx */
332 static const struct {
333 u32 rate;
334 u32 regs[5];
335 } pa[] = {
336 {
337 .rate = 135475200,
338 .regs = {
339 0x4801,
340 0x02df,
341 0x248f,
342 0x0211,
343 0x33e9
344 }
345 },
346 {
347 .rate = 147456000,
348 .regs = {
349 0x4801,
350 0x1adf,
351 0x2490,
352 0x0349,
353 0x33e9
354 }
355 },
356 {
357 .rate = 196608000,
358 .regs = {
359 0x4801,
360 0x42ef,
361 0x2495,
362 0x01c6,
363 0x33e9
364 }
365 },
366 };
367
plla_set_rate(struct sp_pll * clk)368 static int plla_set_rate(struct sp_pll *clk)
369 {
370 const u32 *pp = pa[clk->p[0]].regs;
371 unsigned long flags;
372 int i;
373
374 spin_lock_irqsave(&clk->lock, flags);
375 for (i = 0; i < ARRAY_SIZE(pa->regs); i++)
376 writel(0xffff0000 | pp[i], clk->reg + (i * 4));
377 spin_unlock_irqrestore(&clk->lock, flags);
378
379 return 0;
380 }
381
plla_round_rate(struct sp_pll * clk,unsigned long rate)382 static long plla_round_rate(struct sp_pll *clk, unsigned long rate)
383 {
384 int i = ARRAY_SIZE(pa);
385
386 while (--i) {
387 if (rate >= pa[i].rate)
388 break;
389 }
390 clk->p[0] = i;
391
392 return pa[i].rate;
393 }
394
395 /********************************** SP_PLL ***********************************/
396
sp_pll_calc_div(struct sp_pll * clk,unsigned long rate)397 static long sp_pll_calc_div(struct sp_pll *clk, unsigned long rate)
398 {
399 u32 fbdiv;
400 u32 max = 1 << clk->div_width;
401
402 fbdiv = DIV_ROUND_CLOSEST(rate, clk->brate);
403 if (fbdiv > max)
404 fbdiv = max;
405
406 return fbdiv;
407 }
408
sp_pll_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)409 static int sp_pll_determine_rate(struct clk_hw *hw,
410 struct clk_rate_request *req)
411 {
412 struct sp_pll *clk = to_sp_pll(hw);
413 long ret;
414
415 if (req->rate == req->best_parent_rate) {
416 ret = req->best_parent_rate; /* bypass */
417 } else if (clk->div_width == DIV_A) {
418 ret = plla_round_rate(clk, req->rate);
419 } else if (clk->div_width == DIV_TV) {
420 ret = plltv_div(clk, req->rate);
421 if (ret < 0)
422 ret = req->best_parent_rate;
423 } else {
424 ret = sp_pll_calc_div(clk, req->rate) * clk->brate;
425 }
426
427 req->rate = ret;
428
429 return 0;
430 }
431
sp_pll_recalc_rate(struct clk_hw * hw,unsigned long prate)432 static unsigned long sp_pll_recalc_rate(struct clk_hw *hw,
433 unsigned long prate)
434 {
435 struct sp_pll *clk = to_sp_pll(hw);
436 u32 reg = readl(clk->reg);
437 unsigned long ret;
438
439 if (reg & BIT(clk->bp_bit)) {
440 ret = prate; /* bypass */
441 } else if (clk->div_width == DIV_A) {
442 ret = pa[clk->p[0]].rate;
443 } else if (clk->div_width == DIV_TV) {
444 u32 m, r, reg2;
445
446 r = FIELD_GET(MASK_DIVR, readl(clk->reg + 4));
447 reg2 = readl(clk->reg + 8);
448 m = FIELD_GET(MASK_DIVM, reg2) + 1;
449
450 if (reg & MASK_SEL_FRA) {
451 /* fractional divider */
452 u32 sdm = FIELD_GET(MASK_SDM_MOD, reg);
453 u32 ph = FIELD_GET(MASK_PH_SEL, reg);
454 u32 nfra = FIELD_GET(MASK_NFRA, reg);
455 const u32 *pp = pt[ph];
456 unsigned long r0, r1;
457
458 ret = prate >> r;
459 r0 = ret * (pp[1] + pp[2]) / pp[0];
460 r1 = ret * (sdm_mod_vals[sdm] - nfra) / sdm_mod_vals[sdm] / pp[4];
461 ret = (r0 - r1) / m;
462 } else {
463 /* integer divider */
464 u32 n = FIELD_GET(MASK_DIVN, reg2) + 1;
465
466 ret = (prate / m * n) >> r;
467 }
468 } else {
469 u32 fbdiv = ((reg >> clk->div_shift) & ((1 << clk->div_width) - 1)) + 1;
470
471 ret = clk->brate * fbdiv;
472 }
473
474 return ret;
475 }
476
sp_pll_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long prate)477 static int sp_pll_set_rate(struct clk_hw *hw, unsigned long rate,
478 unsigned long prate)
479 {
480 struct sp_pll *clk = to_sp_pll(hw);
481 unsigned long flags;
482 u32 reg;
483
484 reg = BIT(clk->bp_bit + 16); /* HIWORD_MASK */
485
486 if (rate == prate) {
487 reg |= BIT(clk->bp_bit); /* bypass */
488 } else if (clk->div_width == DIV_A) {
489 return plla_set_rate(clk);
490 } else if (clk->div_width == DIV_TV) {
491 return plltv_set_rate(clk);
492 } else if (clk->div_width) {
493 u32 fbdiv = sp_pll_calc_div(clk, rate);
494 u32 mask = GENMASK(clk->div_shift + clk->div_width - 1, clk->div_shift);
495
496 reg |= mask << 16;
497 reg |= ((fbdiv - 1) << clk->div_shift) & mask;
498 }
499
500 spin_lock_irqsave(&clk->lock, flags);
501 writel(reg, clk->reg);
502 spin_unlock_irqrestore(&clk->lock, flags);
503
504 return 0;
505 }
506
sp_pll_enable(struct clk_hw * hw)507 static int sp_pll_enable(struct clk_hw *hw)
508 {
509 struct sp_pll *clk = to_sp_pll(hw);
510
511 writel(BIT(clk->pd_bit + 16) | BIT(clk->pd_bit), clk->reg);
512
513 return 0;
514 }
515
sp_pll_disable(struct clk_hw * hw)516 static void sp_pll_disable(struct clk_hw *hw)
517 {
518 struct sp_pll *clk = to_sp_pll(hw);
519
520 writel(BIT(clk->pd_bit + 16), clk->reg);
521 }
522
sp_pll_is_enabled(struct clk_hw * hw)523 static int sp_pll_is_enabled(struct clk_hw *hw)
524 {
525 struct sp_pll *clk = to_sp_pll(hw);
526
527 return readl(clk->reg) & BIT(clk->pd_bit);
528 }
529
530 static const struct clk_ops sp_pll_ops = {
531 .enable = sp_pll_enable,
532 .disable = sp_pll_disable,
533 .is_enabled = sp_pll_is_enabled,
534 .determine_rate = sp_pll_determine_rate,
535 .recalc_rate = sp_pll_recalc_rate,
536 .set_rate = sp_pll_set_rate
537 };
538
539 static const struct clk_ops sp_pll_sub_ops = {
540 .enable = sp_pll_enable,
541 .disable = sp_pll_disable,
542 .is_enabled = sp_pll_is_enabled,
543 .recalc_rate = sp_pll_recalc_rate,
544 };
545
sp_pll_register(struct device * dev,const char * name,const struct clk_parent_data * parent_data,void __iomem * reg,int pd_bit,int bp_bit,unsigned long brate,int shift,int width,unsigned long flags)546 static struct clk_hw *sp_pll_register(struct device *dev, const char *name,
547 const struct clk_parent_data *parent_data,
548 void __iomem *reg, int pd_bit, int bp_bit,
549 unsigned long brate, int shift, int width,
550 unsigned long flags)
551 {
552 struct sp_pll *pll;
553 struct clk_hw *hw;
554 struct clk_init_data initd = {
555 .name = name,
556 .parent_data = parent_data,
557 .ops = (bp_bit >= 0) ? &sp_pll_ops : &sp_pll_sub_ops,
558 .num_parents = 1,
559 .flags = flags,
560 };
561 int ret;
562
563 pll = devm_kzalloc(dev, sizeof(*pll), GFP_KERNEL);
564 if (!pll)
565 return ERR_PTR(-ENOMEM);
566
567 pll->hw.init = &initd;
568 pll->reg = reg;
569 pll->pd_bit = pd_bit;
570 pll->bp_bit = bp_bit;
571 pll->brate = brate;
572 pll->div_shift = shift;
573 pll->div_width = width;
574 spin_lock_init(&pll->lock);
575
576 hw = &pll->hw;
577 ret = devm_clk_hw_register(dev, hw);
578 if (ret)
579 return ERR_PTR(ret);
580
581 return hw;
582 }
583
584 #define PLLA_CTL (pll_base + 0x1c)
585 #define PLLE_CTL (pll_base + 0x30)
586 #define PLLF_CTL (pll_base + 0x34)
587 #define PLLTV_CTL (pll_base + 0x38)
588
sp7021_clk_probe(struct platform_device * pdev)589 static int sp7021_clk_probe(struct platform_device *pdev)
590 {
591 static const u32 sp_clken[] = {
592 0x67ef, 0x03ff, 0xff03, 0xfff0, 0x0004, /* G0.1~5 */
593 0x0000, 0x8000, 0xffff, 0x0040, 0x0000, /* G0.6~10 */
594 };
595 static struct clk_parent_data pd_ext, pd_sys, pd_e;
596 struct device *dev = &pdev->dev;
597 void __iomem *clk_base, *pll_base, *sys_base;
598 struct clk_hw_onecell_data *clk_data;
599 struct clk_hw **hws;
600 int i;
601
602 clk_base = devm_platform_ioremap_resource(pdev, 0);
603 if (IS_ERR(clk_base))
604 return PTR_ERR(clk_base);
605 pll_base = devm_platform_ioremap_resource(pdev, 1);
606 if (IS_ERR(pll_base))
607 return PTR_ERR(pll_base);
608 sys_base = devm_platform_ioremap_resource(pdev, 2);
609 if (IS_ERR(sys_base))
610 return PTR_ERR(sys_base);
611
612 /* enable default clks */
613 for (i = 0; i < ARRAY_SIZE(sp_clken); i++)
614 writel((sp_clken[i] << 16) | sp_clken[i], clk_base + i * 4);
615
616 clk_data = devm_kzalloc(dev, struct_size(clk_data, hws, CLK_MAX),
617 GFP_KERNEL);
618 if (!clk_data)
619 return -ENOMEM;
620 clk_data->num = CLK_MAX;
621
622 hws = clk_data->hws;
623 pd_ext.index = 0;
624
625 /* PLLs */
626 hws[PLL_A] = sp_pll_register(dev, "plla", &pd_ext, PLLA_CTL,
627 11, 12, 27000000, 0, DIV_A, 0);
628 if (IS_ERR(hws[PLL_A]))
629 return PTR_ERR(hws[PLL_A]);
630
631 hws[PLL_E] = sp_pll_register(dev, "plle", &pd_ext, PLLE_CTL,
632 6, 2, 50000000, 0, 0, 0);
633 if (IS_ERR(hws[PLL_E]))
634 return PTR_ERR(hws[PLL_E]);
635 pd_e.hw = hws[PLL_E];
636 hws[PLL_E_2P5] = sp_pll_register(dev, "plle_2p5", &pd_e, PLLE_CTL,
637 13, -1, 2500000, 0, 0, 0);
638 if (IS_ERR(hws[PLL_E_2P5]))
639 return PTR_ERR(hws[PLL_E_2P5]);
640 hws[PLL_E_25] = sp_pll_register(dev, "plle_25", &pd_e, PLLE_CTL,
641 12, -1, 25000000, 0, 0, 0);
642 if (IS_ERR(hws[PLL_E_25]))
643 return PTR_ERR(hws[PLL_E_25]);
644 hws[PLL_E_112P5] = sp_pll_register(dev, "plle_112p5", &pd_e, PLLE_CTL,
645 11, -1, 112500000, 0, 0, 0);
646 if (IS_ERR(hws[PLL_E_112P5]))
647 return PTR_ERR(hws[PLL_E_112P5]);
648
649 hws[PLL_F] = sp_pll_register(dev, "pllf", &pd_ext, PLLF_CTL,
650 0, 10, 13500000, 1, 4, 0);
651 if (IS_ERR(hws[PLL_F]))
652 return PTR_ERR(hws[PLL_F]);
653
654 hws[PLL_TV] = sp_pll_register(dev, "plltv", &pd_ext, PLLTV_CTL,
655 0, 15, 27000000, 0, DIV_TV, 0);
656 if (IS_ERR(hws[PLL_TV]))
657 return PTR_ERR(hws[PLL_TV]);
658 hws[PLL_TV_A] = devm_clk_hw_register_divider(dev, "plltv_a", "plltv", 0,
659 PLLTV_CTL + 4, 5, 1,
660 CLK_DIVIDER_POWER_OF_TWO,
661 &to_sp_pll(hws[PLL_TV])->lock);
662 if (IS_ERR(hws[PLL_TV_A]))
663 return PTR_ERR(hws[PLL_TV_A]);
664
665 /* system clock, should not be disabled */
666 hws[PLL_SYS] = sp_pll_register(dev, "pllsys", &pd_ext, sys_base,
667 10, 9, 13500000, 0, 4, CLK_IS_CRITICAL);
668 if (IS_ERR(hws[PLL_SYS]))
669 return PTR_ERR(hws[PLL_SYS]);
670 pd_sys.hw = hws[PLL_SYS];
671
672 /* gates */
673 for (i = 0; i < ARRAY_SIZE(sp_clk_gates); i++) {
674 char name[10];
675 u32 j = sp_clk_gates[i].reg;
676 struct clk_parent_data *pd = sp_clk_gates[i].ext_parent ? &pd_ext : &pd_sys;
677
678 sprintf(name, "%02d_0x%02x", i, j);
679 hws[i] = devm_clk_hw_register_gate_parent_data(dev, name, pd, 0,
680 clk_base + (j >> 4) * 4,
681 j & 0x0f,
682 CLK_GATE_HIWORD_MASK,
683 NULL);
684 if (IS_ERR(hws[i]))
685 return PTR_ERR(hws[i]);
686 }
687
688 return devm_of_clk_add_hw_provider(dev, of_clk_hw_onecell_get, clk_data);
689 }
690
691 static const struct of_device_id sp7021_clk_dt_ids[] = {
692 { .compatible = "sunplus,sp7021-clkc" },
693 { }
694 };
695 MODULE_DEVICE_TABLE(of, sp7021_clk_dt_ids);
696
697 static struct platform_driver sp7021_clk_driver = {
698 .probe = sp7021_clk_probe,
699 .driver = {
700 .name = "sp7021-clk",
701 .of_match_table = sp7021_clk_dt_ids,
702 },
703 };
704 module_platform_driver(sp7021_clk_driver);
705
706 MODULE_AUTHOR("Sunplus Technology");
707 MODULE_LICENSE("GPL");
708 MODULE_DESCRIPTION("Clock driver for Sunplus SP7021 SoC");
709