xref: /linux/include/linux/skbuff.h (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <net/checksum.h>
27 #include <linux/rcupdate.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/netdev_features.h>
30 #include <net/flow_dissector.h>
31 #include <linux/in6.h>
32 #include <linux/if_packet.h>
33 #include <linux/llist.h>
34 #include <linux/page_frag_cache.h>
35 #include <net/flow.h>
36 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
37 #include <linux/netfilter/nf_conntrack_common.h>
38 #endif
39 #include <net/net_debug.h>
40 #include <net/dropreason-core.h>
41 #include <net/netmem.h>
42 
43 /**
44  * DOC: skb checksums
45  *
46  * The interface for checksum offload between the stack and networking drivers
47  * is as follows...
48  *
49  * IP checksum related features
50  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
51  *
52  * Drivers advertise checksum offload capabilities in the features of a device.
53  * From the stack's point of view these are capabilities offered by the driver.
54  * A driver typically only advertises features that it is capable of offloading
55  * to its device.
56  *
57  * .. flat-table:: Checksum related device features
58  *   :widths: 1 10
59  *
60  *   * - %NETIF_F_HW_CSUM
61  *     - The driver (or its device) is able to compute one
62  *	 IP (one's complement) checksum for any combination
63  *	 of protocols or protocol layering. The checksum is
64  *	 computed and set in a packet per the CHECKSUM_PARTIAL
65  *	 interface (see below).
66  *
67  *   * - %NETIF_F_IP_CSUM
68  *     - Driver (device) is only able to checksum plain
69  *	 TCP or UDP packets over IPv4. These are specifically
70  *	 unencapsulated packets of the form IPv4|TCP or
71  *	 IPv4|UDP where the Protocol field in the IPv4 header
72  *	 is TCP or UDP. The IPv4 header may contain IP options.
73  *	 This feature cannot be set in features for a device
74  *	 with NETIF_F_HW_CSUM also set. This feature is being
75  *	 DEPRECATED (see below).
76  *
77  *   * - %NETIF_F_IPV6_CSUM
78  *     - Driver (device) is only able to checksum plain
79  *	 TCP or UDP packets over IPv6. These are specifically
80  *	 unencapsulated packets of the form IPv6|TCP or
81  *	 IPv6|UDP where the Next Header field in the IPv6
82  *	 header is either TCP or UDP. IPv6 extension headers
83  *	 are not supported with this feature. This feature
84  *	 cannot be set in features for a device with
85  *	 NETIF_F_HW_CSUM also set. This feature is being
86  *	 DEPRECATED (see below).
87  *
88  *   * - %NETIF_F_RXCSUM
89  *     - Driver (device) performs receive checksum offload.
90  *	 This flag is only used to disable the RX checksum
91  *	 feature for a device. The stack will accept receive
92  *	 checksum indication in packets received on a device
93  *	 regardless of whether NETIF_F_RXCSUM is set.
94  *
95  * Checksumming of received packets by device
96  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
97  *
98  * Indication of checksum verification is set in &sk_buff.ip_summed.
99  * Possible values are:
100  *
101  * - %CHECKSUM_NONE
102  *
103  *   Device did not checksum this packet e.g. due to lack of capabilities.
104  *   The packet contains full (though not verified) checksum in packet but
105  *   not in skb->csum. Thus, skb->csum is undefined in this case.
106  *
107  * - %CHECKSUM_UNNECESSARY
108  *
109  *   The hardware you're dealing with doesn't calculate the full checksum
110  *   (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
111  *   for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
112  *   if their checksums are okay. &sk_buff.csum is still undefined in this case
113  *   though. A driver or device must never modify the checksum field in the
114  *   packet even if checksum is verified.
115  *
116  *   %CHECKSUM_UNNECESSARY is applicable to following protocols:
117  *
118  *     - TCP: IPv6 and IPv4.
119  *     - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
120  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
121  *       may perform further validation in this case.
122  *     - GRE: only if the checksum is present in the header.
123  *     - SCTP: indicates the CRC in SCTP header has been validated.
124  *     - FCOE: indicates the CRC in FC frame has been validated.
125  *
126  *   &sk_buff.csum_level indicates the number of consecutive checksums found in
127  *   the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
128  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
129  *   and a device is able to verify the checksums for UDP (possibly zero),
130  *   GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
131  *   two. If the device were only able to verify the UDP checksum and not
132  *   GRE, either because it doesn't support GRE checksum or because GRE
133  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
134  *   not considered in this case).
135  *
136  * - %CHECKSUM_COMPLETE
137  *
138  *   This is the most generic way. The device supplied checksum of the _whole_
139  *   packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
140  *   hardware doesn't need to parse L3/L4 headers to implement this.
141  *
142  *   Notes:
143  *
144  *   - Even if device supports only some protocols, but is able to produce
145  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
146  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
147  *
148  * - %CHECKSUM_PARTIAL
149  *
150  *   A checksum is set up to be offloaded to a device as described in the
151  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
152  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
153  *   on the same host, or it may be set in the input path in GRO or remote
154  *   checksum offload. For the purposes of checksum verification, the checksum
155  *   referred to by skb->csum_start + skb->csum_offset and any preceding
156  *   checksums in the packet are considered verified. Any checksums in the
157  *   packet that are after the checksum being offloaded are not considered to
158  *   be verified.
159  *
160  * Checksumming on transmit for non-GSO
161  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
162  *
163  * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
164  * Values are:
165  *
166  * - %CHECKSUM_PARTIAL
167  *
168  *   The driver is required to checksum the packet as seen by hard_start_xmit()
169  *   from &sk_buff.csum_start up to the end, and to record/write the checksum at
170  *   offset &sk_buff.csum_start + &sk_buff.csum_offset.
171  *   A driver may verify that the
172  *   csum_start and csum_offset values are valid values given the length and
173  *   offset of the packet, but it should not attempt to validate that the
174  *   checksum refers to a legitimate transport layer checksum -- it is the
175  *   purview of the stack to validate that csum_start and csum_offset are set
176  *   correctly.
177  *
178  *   When the stack requests checksum offload for a packet, the driver MUST
179  *   ensure that the checksum is set correctly. A driver can either offload the
180  *   checksum calculation to the device, or call skb_checksum_help (in the case
181  *   that the device does not support offload for a particular checksum).
182  *
183  *   %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
184  *   %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
185  *   checksum offload capability.
186  *   skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
187  *   on network device checksumming capabilities: if a packet does not match
188  *   them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
189  *   &sk_buff.csum_not_inet, see :ref:`crc`)
190  *   is called to resolve the checksum.
191  *
192  * - %CHECKSUM_NONE
193  *
194  *   The skb was already checksummed by the protocol, or a checksum is not
195  *   required.
196  *
197  * - %CHECKSUM_UNNECESSARY
198  *
199  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
200  *   output.
201  *
202  * - %CHECKSUM_COMPLETE
203  *
204  *   Not used in checksum output. If a driver observes a packet with this value
205  *   set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
206  *
207  * .. _crc:
208  *
209  * Non-IP checksum (CRC) offloads
210  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
211  *
212  * .. flat-table::
213  *   :widths: 1 10
214  *
215  *   * - %NETIF_F_SCTP_CRC
216  *     - This feature indicates that a device is capable of
217  *	 offloading the SCTP CRC in a packet. To perform this offload the stack
218  *	 will set csum_start and csum_offset accordingly, set ip_summed to
219  *	 %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
220  *	 in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
221  *	 A driver that supports both IP checksum offload and SCTP CRC32c offload
222  *	 must verify which offload is configured for a packet by testing the
223  *	 value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
224  *	 resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
225  *
226  *   * - %NETIF_F_FCOE_CRC
227  *     - This feature indicates that a device is capable of offloading the FCOE
228  *	 CRC in a packet. To perform this offload the stack will set ip_summed
229  *	 to %CHECKSUM_PARTIAL and set csum_start and csum_offset
230  *	 accordingly. Note that there is no indication in the skbuff that the
231  *	 %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
232  *	 both IP checksum offload and FCOE CRC offload must verify which offload
233  *	 is configured for a packet, presumably by inspecting packet headers.
234  *
235  * Checksumming on output with GSO
236  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
237  *
238  * In the case of a GSO packet (skb_is_gso() is true), checksum offload
239  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
240  * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
241  * part of the GSO operation is implied. If a checksum is being offloaded
242  * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
243  * csum_offset are set to refer to the outermost checksum being offloaded
244  * (two offloaded checksums are possible with UDP encapsulation).
245  */
246 
247 /* Don't change this without changing skb_csum_unnecessary! */
248 #define CHECKSUM_NONE		0
249 #define CHECKSUM_UNNECESSARY	1
250 #define CHECKSUM_COMPLETE	2
251 #define CHECKSUM_PARTIAL	3
252 
253 /* Maximum value in skb->csum_level */
254 #define SKB_MAX_CSUM_LEVEL	3
255 
256 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
257 #define SKB_WITH_OVERHEAD(X)	\
258 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
259 
260 /* For X bytes available in skb->head, what is the minimal
261  * allocation needed, knowing struct skb_shared_info needs
262  * to be aligned.
263  */
264 #define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
265 	SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
266 
267 #define SKB_MAX_ORDER(X, ORDER) \
268 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
269 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
270 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
271 
272 /* return minimum truesize of one skb containing X bytes of data */
273 #define SKB_TRUESIZE(X) ((X) +						\
274 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
275 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
276 
277 struct net_device;
278 struct scatterlist;
279 struct pipe_inode_info;
280 struct iov_iter;
281 struct napi_struct;
282 struct bpf_prog;
283 union bpf_attr;
284 struct skb_ext;
285 struct ts_config;
286 
287 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288 struct nf_bridge_info {
289 	enum {
290 		BRNF_PROTO_UNCHANGED,
291 		BRNF_PROTO_8021Q,
292 		BRNF_PROTO_PPPOE
293 	} orig_proto:8;
294 	u8			pkt_otherhost:1;
295 	u8			in_prerouting:1;
296 	u8			bridged_dnat:1;
297 	u8			sabotage_in_done:1;
298 	__u16			frag_max_size;
299 	int			physinif;
300 
301 	/* always valid & non-NULL from FORWARD on, for physdev match */
302 	struct net_device	*physoutdev;
303 	union {
304 		/* prerouting: detect dnat in orig/reply direction */
305 		__be32          ipv4_daddr;
306 		struct in6_addr ipv6_daddr;
307 
308 		/* after prerouting + nat detected: store original source
309 		 * mac since neigh resolution overwrites it, only used while
310 		 * skb is out in neigh layer.
311 		 */
312 		char neigh_header[8];
313 	};
314 };
315 #endif
316 
317 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318 /* Chain in tc_skb_ext will be used to share the tc chain with
319  * ovs recirc_id. It will be set to the current chain by tc
320  * and read by ovs to recirc_id.
321  */
322 struct tc_skb_ext {
323 	union {
324 		u64 act_miss_cookie;
325 		__u32 chain;
326 	};
327 	__u16 mru;
328 	__u16 zone;
329 	u8 post_ct:1;
330 	u8 post_ct_snat:1;
331 	u8 post_ct_dnat:1;
332 	u8 act_miss:1; /* Set if act_miss_cookie is used */
333 	u8 l2_miss:1; /* Set by bridge upon FDB or MDB miss */
334 };
335 #endif
336 
337 struct sk_buff_head {
338 	/* These two members must be first to match sk_buff. */
339 	struct_group_tagged(sk_buff_list, list,
340 		struct sk_buff	*next;
341 		struct sk_buff	*prev;
342 	);
343 
344 	__u32		qlen;
345 	spinlock_t	lock;
346 };
347 
348 struct sk_buff;
349 
350 #ifndef CONFIG_MAX_SKB_FRAGS
351 # define CONFIG_MAX_SKB_FRAGS 17
352 #endif
353 
354 #define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
355 
356 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
357  * segment using its current segmentation instead.
358  */
359 #define GSO_BY_FRAGS	0xFFFF
360 
361 typedef struct skb_frag {
362 	netmem_ref netmem;
363 	unsigned int len;
364 	unsigned int offset;
365 } skb_frag_t;
366 
367 /**
368  * skb_frag_size() - Returns the size of a skb fragment
369  * @frag: skb fragment
370  */
skb_frag_size(const skb_frag_t * frag)371 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 {
373 	return frag->len;
374 }
375 
376 /**
377  * skb_frag_size_set() - Sets the size of a skb fragment
378  * @frag: skb fragment
379  * @size: size of fragment
380  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)381 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 {
383 	frag->len = size;
384 }
385 
386 /**
387  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
388  * @frag: skb fragment
389  * @delta: value to add
390  */
skb_frag_size_add(skb_frag_t * frag,int delta)391 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
392 {
393 	frag->len += delta;
394 }
395 
396 /**
397  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
398  * @frag: skb fragment
399  * @delta: value to subtract
400  */
skb_frag_size_sub(skb_frag_t * frag,int delta)401 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
402 {
403 	frag->len -= delta;
404 }
405 
406 /**
407  * skb_frag_must_loop - Test if %p is a high memory page
408  * @p: fragment's page
409  */
skb_frag_must_loop(struct page * p)410 static inline bool skb_frag_must_loop(struct page *p)
411 {
412 #if defined(CONFIG_HIGHMEM)
413 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
414 		return true;
415 #endif
416 	return false;
417 }
418 
419 /**
420  *	skb_frag_foreach_page - loop over pages in a fragment
421  *
422  *	@f:		skb frag to operate on
423  *	@f_off:		offset from start of f->netmem
424  *	@f_len:		length from f_off to loop over
425  *	@p:		(temp var) current page
426  *	@p_off:		(temp var) offset from start of current page,
427  *	                           non-zero only on first page.
428  *	@p_len:		(temp var) length in current page,
429  *				   < PAGE_SIZE only on first and last page.
430  *	@copied:	(temp var) length so far, excluding current p_len.
431  *
432  *	A fragment can hold a compound page, in which case per-page
433  *	operations, notably kmap_atomic, must be called for each
434  *	regular page.
435  */
436 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
437 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
438 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
439 	     p_len = skb_frag_must_loop(p) ?				\
440 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
441 	     copied = 0;						\
442 	     copied < f_len;						\
443 	     copied += p_len, p++, p_off = 0,				\
444 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
445 
446 /**
447  * struct skb_shared_hwtstamps - hardware time stamps
448  * @hwtstamp:		hardware time stamp transformed into duration
449  *			since arbitrary point in time
450  * @netdev_data:	address/cookie of network device driver used as
451  *			reference to actual hardware time stamp
452  *
453  * Software time stamps generated by ktime_get_real() are stored in
454  * skb->tstamp.
455  *
456  * hwtstamps can only be compared against other hwtstamps from
457  * the same device.
458  *
459  * This structure is attached to packets as part of the
460  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
461  */
462 struct skb_shared_hwtstamps {
463 	union {
464 		ktime_t	hwtstamp;
465 		void *netdev_data;
466 	};
467 };
468 
469 /* Definitions for tx_flags in struct skb_shared_info */
470 enum {
471 	/* generate hardware time stamp */
472 	SKBTX_HW_TSTAMP_NOBPF = 1 << 0,
473 
474 	/* generate software time stamp when queueing packet to NIC */
475 	SKBTX_SW_TSTAMP = 1 << 1,
476 
477 	/* device driver is going to provide hardware time stamp */
478 	SKBTX_IN_PROGRESS = 1 << 2,
479 
480 	/* generate software time stamp on packet tx completion */
481 	SKBTX_COMPLETION_TSTAMP = 1 << 3,
482 
483 	/* determine hardware time stamp based on time or cycles */
484 	SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
485 
486 	/* generate software time stamp when entering packet scheduling */
487 	SKBTX_SCHED_TSTAMP = 1 << 6,
488 
489 	/* used for bpf extension when a bpf program is loaded */
490 	SKBTX_BPF = 1 << 7,
491 };
492 
493 #define SKBTX_HW_TSTAMP		(SKBTX_HW_TSTAMP_NOBPF | SKBTX_BPF)
494 
495 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
496 				 SKBTX_SCHED_TSTAMP | \
497 				 SKBTX_BPF          | \
498 				 SKBTX_COMPLETION_TSTAMP)
499 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | \
500 				 SKBTX_ANY_SW_TSTAMP)
501 
502 /* Definitions for flags in struct skb_shared_info */
503 enum {
504 	/* use zcopy routines */
505 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
506 
507 	/* This indicates at least one fragment might be overwritten
508 	 * (as in vmsplice(), sendfile() ...)
509 	 * If we need to compute a TX checksum, we'll need to copy
510 	 * all frags to avoid possible bad checksum
511 	 */
512 	SKBFL_SHARED_FRAG = BIT(1),
513 
514 	/* segment contains only zerocopy data and should not be
515 	 * charged to the kernel memory.
516 	 */
517 	SKBFL_PURE_ZEROCOPY = BIT(2),
518 
519 	SKBFL_DONT_ORPHAN = BIT(3),
520 
521 	/* page references are managed by the ubuf_info, so it's safe to
522 	 * use frags only up until ubuf_info is released
523 	 */
524 	SKBFL_MANAGED_FRAG_REFS = BIT(4),
525 };
526 
527 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
528 #define SKBFL_ALL_ZEROCOPY	(SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
529 				 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
530 
531 struct ubuf_info_ops {
532 	void (*complete)(struct sk_buff *, struct ubuf_info *,
533 			 bool zerocopy_success);
534 	/* has to be compatible with skb_zcopy_set() */
535 	int (*link_skb)(struct sk_buff *skb, struct ubuf_info *uarg);
536 };
537 
538 /*
539  * The callback notifies userspace to release buffers when skb DMA is done in
540  * lower device, the skb last reference should be 0 when calling this.
541  * The zerocopy_success argument is true if zero copy transmit occurred,
542  * false on data copy or out of memory error caused by data copy attempt.
543  * The ctx field is used to track device context.
544  * The desc field is used to track userspace buffer index.
545  */
546 struct ubuf_info {
547 	const struct ubuf_info_ops *ops;
548 	refcount_t refcnt;
549 	u8 flags;
550 };
551 
552 struct ubuf_info_msgzc {
553 	struct ubuf_info ubuf;
554 
555 	union {
556 		struct {
557 			unsigned long desc;
558 			void *ctx;
559 		};
560 		struct {
561 			u32 id;
562 			u16 len;
563 			u16 zerocopy:1;
564 			u32 bytelen;
565 		};
566 	};
567 
568 	struct mmpin {
569 		struct user_struct *user;
570 		unsigned int num_pg;
571 	} mmp;
572 };
573 
574 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
575 #define uarg_to_msgzc(ubuf_ptr)	container_of((ubuf_ptr), struct ubuf_info_msgzc, \
576 					     ubuf)
577 
578 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
579 void mm_unaccount_pinned_pages(struct mmpin *mmp);
580 
581 /* Preserve some data across TX submission and completion.
582  *
583  * Note, this state is stored in the driver. Extending the layout
584  * might need some special care.
585  */
586 struct xsk_tx_metadata_compl {
587 	__u64 *tx_timestamp;
588 };
589 
590 /* This data is invariant across clones and lives at
591  * the end of the header data, ie. at skb->end.
592  */
593 struct skb_shared_info {
594 	__u8		flags;
595 	__u8		meta_len;
596 	__u8		nr_frags;
597 	__u8		tx_flags;
598 	unsigned short	gso_size;
599 	/* Warning: this field is not always filled in (UFO)! */
600 	unsigned short	gso_segs;
601 	struct sk_buff	*frag_list;
602 	union {
603 		struct skb_shared_hwtstamps hwtstamps;
604 		struct xsk_tx_metadata_compl xsk_meta;
605 	};
606 	unsigned int	gso_type;
607 	u32		tskey;
608 
609 	/*
610 	 * Warning : all fields before dataref are cleared in __alloc_skb()
611 	 */
612 	atomic_t	dataref;
613 
614 	union {
615 		struct {
616 			u32		xdp_frags_size;
617 			u32		xdp_frags_truesize;
618 		};
619 
620 		/*
621 		 * Intermediate layers must ensure that destructor_arg
622 		 * remains valid until skb destructor.
623 		 */
624 		void		*destructor_arg;
625 	};
626 
627 	/* must be last field, see pskb_expand_head() */
628 	skb_frag_t	frags[MAX_SKB_FRAGS];
629 };
630 
631 /**
632  * DOC: dataref and headerless skbs
633  *
634  * Transport layers send out clones of payload skbs they hold for
635  * retransmissions. To allow lower layers of the stack to prepend their headers
636  * we split &skb_shared_info.dataref into two halves.
637  * The lower 16 bits count the overall number of references.
638  * The higher 16 bits indicate how many of the references are payload-only.
639  * skb_header_cloned() checks if skb is allowed to add / write the headers.
640  *
641  * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
642  * (via __skb_header_release()). Any clone created from marked skb will get
643  * &sk_buff.hdr_len populated with the available headroom.
644  * If there's the only clone in existence it's able to modify the headroom
645  * at will. The sequence of calls inside the transport layer is::
646  *
647  *  <alloc skb>
648  *  skb_reserve()
649  *  __skb_header_release()
650  *  skb_clone()
651  *  // send the clone down the stack
652  *
653  * This is not a very generic construct and it depends on the transport layers
654  * doing the right thing. In practice there's usually only one payload-only skb.
655  * Having multiple payload-only skbs with different lengths of hdr_len is not
656  * possible. The payload-only skbs should never leave their owner.
657  */
658 #define SKB_DATAREF_SHIFT 16
659 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
660 
661 
662 enum {
663 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
664 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
665 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
666 };
667 
668 enum {
669 	SKB_GSO_TCPV4 = 1 << 0,
670 
671 	/* This indicates the skb is from an untrusted source. */
672 	SKB_GSO_DODGY = 1 << 1,
673 
674 	/* This indicates the tcp segment has CWR set. */
675 	SKB_GSO_TCP_ECN = 1 << 2,
676 
677 	SKB_GSO_TCP_FIXEDID = 1 << 3,
678 
679 	SKB_GSO_TCPV6 = 1 << 4,
680 
681 	SKB_GSO_FCOE = 1 << 5,
682 
683 	SKB_GSO_GRE = 1 << 6,
684 
685 	SKB_GSO_GRE_CSUM = 1 << 7,
686 
687 	SKB_GSO_IPXIP4 = 1 << 8,
688 
689 	SKB_GSO_IPXIP6 = 1 << 9,
690 
691 	SKB_GSO_UDP_TUNNEL = 1 << 10,
692 
693 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
694 
695 	SKB_GSO_PARTIAL = 1 << 12,
696 
697 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
698 
699 	SKB_GSO_SCTP = 1 << 14,
700 
701 	SKB_GSO_ESP = 1 << 15,
702 
703 	SKB_GSO_UDP = 1 << 16,
704 
705 	SKB_GSO_UDP_L4 = 1 << 17,
706 
707 	SKB_GSO_FRAGLIST = 1 << 18,
708 
709 	SKB_GSO_TCP_ACCECN = 1 << 19,
710 };
711 
712 #if BITS_PER_LONG > 32
713 #define NET_SKBUFF_DATA_USES_OFFSET 1
714 #endif
715 
716 #ifdef NET_SKBUFF_DATA_USES_OFFSET
717 typedef unsigned int sk_buff_data_t;
718 #else
719 typedef unsigned char *sk_buff_data_t;
720 #endif
721 
722 enum skb_tstamp_type {
723 	SKB_CLOCK_REALTIME,
724 	SKB_CLOCK_MONOTONIC,
725 	SKB_CLOCK_TAI,
726 	__SKB_CLOCK_MAX = SKB_CLOCK_TAI,
727 };
728 
729 /**
730  * DOC: Basic sk_buff geometry
731  *
732  * struct sk_buff itself is a metadata structure and does not hold any packet
733  * data. All the data is held in associated buffers.
734  *
735  * &sk_buff.head points to the main "head" buffer. The head buffer is divided
736  * into two parts:
737  *
738  *  - data buffer, containing headers and sometimes payload;
739  *    this is the part of the skb operated on by the common helpers
740  *    such as skb_put() or skb_pull();
741  *  - shared info (struct skb_shared_info) which holds an array of pointers
742  *    to read-only data in the (page, offset, length) format.
743  *
744  * Optionally &skb_shared_info.frag_list may point to another skb.
745  *
746  * Basic diagram may look like this::
747  *
748  *                                  ---------------
749  *                                 | sk_buff       |
750  *                                  ---------------
751  *     ,---------------------------  + head
752  *    /          ,-----------------  + data
753  *   /          /      ,-----------  + tail
754  *  |          |      |            , + end
755  *  |          |      |           |
756  *  v          v      v           v
757  *   -----------------------------------------------
758  *  | headroom | data |  tailroom | skb_shared_info |
759  *   -----------------------------------------------
760  *                                 + [page frag]
761  *                                 + [page frag]
762  *                                 + [page frag]
763  *                                 + [page frag]       ---------
764  *                                 + frag_list    --> | sk_buff |
765  *                                                     ---------
766  *
767  */
768 
769 /**
770  *	struct sk_buff - socket buffer
771  *	@next: Next buffer in list
772  *	@prev: Previous buffer in list
773  *	@tstamp: Time we arrived/left
774  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
775  *		for retransmit timer
776  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
777  *	@list: queue head
778  *	@ll_node: anchor in an llist (eg socket defer_list)
779  *	@sk: Socket we are owned by
780  *	@dev: Device we arrived on/are leaving by
781  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
782  *	@cb: Control buffer. Free for use by every layer. Put private vars here
783  *	@_skb_refdst: destination entry (with norefcount bit)
784  *	@len: Length of actual data
785  *	@data_len: Data length
786  *	@mac_len: Length of link layer header
787  *	@hdr_len: writable header length of cloned skb
788  *	@csum: Checksum (must include start/offset pair)
789  *	@csum_start: Offset from skb->head where checksumming should start
790  *	@csum_offset: Offset from csum_start where checksum should be stored
791  *	@priority: Packet queueing priority
792  *	@ignore_df: allow local fragmentation
793  *	@cloned: Head may be cloned (check refcnt to be sure)
794  *	@ip_summed: Driver fed us an IP checksum
795  *	@nohdr: Payload reference only, must not modify header
796  *	@pkt_type: Packet class
797  *	@fclone: skbuff clone status
798  *	@ipvs_property: skbuff is owned by ipvs
799  *	@inner_protocol_type: whether the inner protocol is
800  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
801  *	@remcsum_offload: remote checksum offload is enabled
802  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
803  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
804  *	@tc_skip_classify: do not classify packet. set by IFB device
805  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
806  *	@redirected: packet was redirected by packet classifier
807  *	@from_ingress: packet was redirected from the ingress path
808  *	@nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
809  *	@peeked: this packet has been seen already, so stats have been
810  *		done for it, don't do them again
811  *	@nf_trace: netfilter packet trace flag
812  *	@protocol: Packet protocol from driver
813  *	@destructor: Destruct function
814  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
815  *	@_sk_redir: socket redirection information for skmsg
816  *	@_nfct: Associated connection, if any (with nfctinfo bits)
817  *	@skb_iif: ifindex of device we arrived on
818  *	@tc_index: Traffic control index
819  *	@hash: the packet hash
820  *	@queue_mapping: Queue mapping for multiqueue devices
821  *	@head_frag: skb was allocated from page fragments,
822  *		not allocated by kmalloc() or vmalloc().
823  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
824  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
825  *		page_pool support on driver)
826  *	@active_extensions: active extensions (skb_ext_id types)
827  *	@ndisc_nodetype: router type (from link layer)
828  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
829  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
830  *		ports.
831  *	@sw_hash: indicates hash was computed in software stack
832  *	@wifi_acked_valid: wifi_acked was set
833  *	@wifi_acked: whether frame was acked on wifi or not
834  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
835  *	@encapsulation: indicates the inner headers in the skbuff are valid
836  *	@encap_hdr_csum: software checksum is needed
837  *	@csum_valid: checksum is already valid
838  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
839  *	@csum_complete_sw: checksum was completed by software
840  *	@csum_level: indicates the number of consecutive checksums found in
841  *		the packet minus one that have been verified as
842  *		CHECKSUM_UNNECESSARY (max 3)
843  *	@unreadable: indicates that at least 1 of the fragments in this skb is
844  *		unreadable.
845  *	@dst_pending_confirm: need to confirm neighbour
846  *	@decrypted: Decrypted SKB
847  *	@slow_gro: state present at GRO time, slower prepare step required
848  *	@tstamp_type: When set, skb->tstamp has the
849  *		delivery_time clock base of skb->tstamp.
850  *	@napi_id: id of the NAPI struct this skb came from
851  *	@sender_cpu: (aka @napi_id) source CPU in XPS
852  *	@alloc_cpu: CPU which did the skb allocation.
853  *	@secmark: security marking
854  *	@mark: Generic packet mark
855  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
856  *		at the tail of an sk_buff
857  *	@vlan_all: vlan fields (proto & tci)
858  *	@vlan_proto: vlan encapsulation protocol
859  *	@vlan_tci: vlan tag control information
860  *	@inner_protocol: Protocol (encapsulation)
861  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
862  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
863  *	@inner_transport_header: Inner transport layer header (encapsulation)
864  *	@inner_network_header: Network layer header (encapsulation)
865  *	@inner_mac_header: Link layer header (encapsulation)
866  *	@transport_header: Transport layer header
867  *	@network_header: Network layer header
868  *	@mac_header: Link layer header
869  *	@kcov_handle: KCOV remote handle for remote coverage collection
870  *	@tail: Tail pointer
871  *	@end: End pointer
872  *	@head: Head of buffer
873  *	@data: Data head pointer
874  *	@truesize: Buffer size
875  *	@users: User count - see {datagram,tcp}.c
876  *	@extensions: allocated extensions, valid if active_extensions is nonzero
877  */
878 
879 struct sk_buff {
880 	union {
881 		struct {
882 			/* These two members must be first to match sk_buff_head. */
883 			struct sk_buff		*next;
884 			struct sk_buff		*prev;
885 
886 			union {
887 				struct net_device	*dev;
888 				/* Some protocols might use this space to store information,
889 				 * while device pointer would be NULL.
890 				 * UDP receive path is one user.
891 				 */
892 				unsigned long		dev_scratch;
893 			};
894 		};
895 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
896 		struct list_head	list;
897 		struct llist_node	ll_node;
898 	};
899 
900 	struct sock		*sk;
901 
902 	union {
903 		ktime_t		tstamp;
904 		u64		skb_mstamp_ns; /* earliest departure time */
905 	};
906 	/*
907 	 * This is the control buffer. It is free to use for every
908 	 * layer. Please put your private variables there. If you
909 	 * want to keep them across layers you have to do a skb_clone()
910 	 * first. This is owned by whoever has the skb queued ATM.
911 	 */
912 	char			cb[48] __aligned(8);
913 
914 	union {
915 		struct {
916 			unsigned long	_skb_refdst;
917 			void		(*destructor)(struct sk_buff *skb);
918 		};
919 		struct list_head	tcp_tsorted_anchor;
920 #ifdef CONFIG_NET_SOCK_MSG
921 		unsigned long		_sk_redir;
922 #endif
923 	};
924 
925 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
926 	unsigned long		 _nfct;
927 #endif
928 	unsigned int		len,
929 				data_len;
930 	__u16			mac_len,
931 				hdr_len;
932 
933 	/* Following fields are _not_ copied in __copy_skb_header()
934 	 * Note that queue_mapping is here mostly to fill a hole.
935 	 */
936 	__u16			queue_mapping;
937 
938 /* if you move cloned around you also must adapt those constants */
939 #ifdef __BIG_ENDIAN_BITFIELD
940 #define CLONED_MASK	(1 << 7)
941 #else
942 #define CLONED_MASK	1
943 #endif
944 #define CLONED_OFFSET		offsetof(struct sk_buff, __cloned_offset)
945 
946 	/* private: */
947 	__u8			__cloned_offset[0];
948 	/* public: */
949 	__u8			cloned:1,
950 				nohdr:1,
951 				fclone:2,
952 				peeked:1,
953 				head_frag:1,
954 				pfmemalloc:1,
955 				pp_recycle:1; /* page_pool recycle indicator */
956 #ifdef CONFIG_SKB_EXTENSIONS
957 	__u8			active_extensions;
958 #endif
959 
960 	/* Fields enclosed in headers group are copied
961 	 * using a single memcpy() in __copy_skb_header()
962 	 */
963 	struct_group(headers,
964 
965 	/* private: */
966 	__u8			__pkt_type_offset[0];
967 	/* public: */
968 	__u8			pkt_type:3; /* see PKT_TYPE_MAX */
969 	__u8			ignore_df:1;
970 	__u8			dst_pending_confirm:1;
971 	__u8			ip_summed:2;
972 	__u8			ooo_okay:1;
973 
974 	/* private: */
975 	__u8			__mono_tc_offset[0];
976 	/* public: */
977 	__u8			tstamp_type:2;	/* See skb_tstamp_type */
978 #ifdef CONFIG_NET_XGRESS
979 	__u8			tc_at_ingress:1;	/* See TC_AT_INGRESS_MASK */
980 	__u8			tc_skip_classify:1;
981 #endif
982 	__u8			remcsum_offload:1;
983 	__u8			csum_complete_sw:1;
984 	__u8			csum_level:2;
985 	__u8			inner_protocol_type:1;
986 
987 	__u8			l4_hash:1;
988 	__u8			sw_hash:1;
989 #ifdef CONFIG_WIRELESS
990 	__u8			wifi_acked_valid:1;
991 	__u8			wifi_acked:1;
992 #endif
993 	__u8			no_fcs:1;
994 	/* Indicates the inner headers are valid in the skbuff. */
995 	__u8			encapsulation:1;
996 	__u8			encap_hdr_csum:1;
997 	__u8			csum_valid:1;
998 #ifdef CONFIG_IPV6_NDISC_NODETYPE
999 	__u8			ndisc_nodetype:2;
1000 #endif
1001 
1002 #if IS_ENABLED(CONFIG_IP_VS)
1003 	__u8			ipvs_property:1;
1004 #endif
1005 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
1006 	__u8			nf_trace:1;
1007 #endif
1008 #ifdef CONFIG_NET_SWITCHDEV
1009 	__u8			offload_fwd_mark:1;
1010 	__u8			offload_l3_fwd_mark:1;
1011 #endif
1012 	__u8			redirected:1;
1013 #ifdef CONFIG_NET_REDIRECT
1014 	__u8			from_ingress:1;
1015 #endif
1016 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
1017 	__u8			nf_skip_egress:1;
1018 #endif
1019 #ifdef CONFIG_SKB_DECRYPTED
1020 	__u8			decrypted:1;
1021 #endif
1022 	__u8			slow_gro:1;
1023 #if IS_ENABLED(CONFIG_IP_SCTP)
1024 	__u8			csum_not_inet:1;
1025 #endif
1026 	__u8			unreadable:1;
1027 #if defined(CONFIG_NET_SCHED) || defined(CONFIG_NET_XGRESS)
1028 	__u16			tc_index;	/* traffic control index */
1029 #endif
1030 
1031 	u16			alloc_cpu;
1032 
1033 	union {
1034 		__wsum		csum;
1035 		struct {
1036 			__u16	csum_start;
1037 			__u16	csum_offset;
1038 		};
1039 	};
1040 	__u32			priority;
1041 	int			skb_iif;
1042 	__u32			hash;
1043 	union {
1044 		u32		vlan_all;
1045 		struct {
1046 			__be16	vlan_proto;
1047 			__u16	vlan_tci;
1048 		};
1049 	};
1050 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1051 	union {
1052 		unsigned int	napi_id;
1053 		unsigned int	sender_cpu;
1054 	};
1055 #endif
1056 #ifdef CONFIG_NETWORK_SECMARK
1057 	__u32		secmark;
1058 #endif
1059 
1060 	union {
1061 		__u32		mark;
1062 		__u32		reserved_tailroom;
1063 	};
1064 
1065 	union {
1066 		__be16		inner_protocol;
1067 		__u8		inner_ipproto;
1068 	};
1069 
1070 	__u16			inner_transport_header;
1071 	__u16			inner_network_header;
1072 	__u16			inner_mac_header;
1073 
1074 	__be16			protocol;
1075 	__u16			transport_header;
1076 	__u16			network_header;
1077 	__u16			mac_header;
1078 
1079 #ifdef CONFIG_KCOV
1080 	u64			kcov_handle;
1081 #endif
1082 
1083 	); /* end headers group */
1084 
1085 	/* These elements must be at the end, see alloc_skb() for details.  */
1086 	sk_buff_data_t		tail;
1087 	sk_buff_data_t		end;
1088 	unsigned char		*head,
1089 				*data;
1090 	unsigned int		truesize;
1091 	refcount_t		users;
1092 
1093 #ifdef CONFIG_SKB_EXTENSIONS
1094 	/* only usable after checking ->active_extensions != 0 */
1095 	struct skb_ext		*extensions;
1096 #endif
1097 };
1098 
1099 /* if you move pkt_type around you also must adapt those constants */
1100 #ifdef __BIG_ENDIAN_BITFIELD
1101 #define PKT_TYPE_MAX	(7 << 5)
1102 #else
1103 #define PKT_TYPE_MAX	7
1104 #endif
1105 #define PKT_TYPE_OFFSET		offsetof(struct sk_buff, __pkt_type_offset)
1106 
1107 /* if you move tc_at_ingress or tstamp_type
1108  * around, you also must adapt these constants.
1109  */
1110 #ifdef __BIG_ENDIAN_BITFIELD
1111 #define SKB_TSTAMP_TYPE_MASK		(3 << 6)
1112 #define SKB_TSTAMP_TYPE_RSHIFT		(6)
1113 #define TC_AT_INGRESS_MASK		(1 << 5)
1114 #else
1115 #define SKB_TSTAMP_TYPE_MASK		(3)
1116 #define TC_AT_INGRESS_MASK		(1 << 2)
1117 #endif
1118 #define SKB_BF_MONO_TC_OFFSET		offsetof(struct sk_buff, __mono_tc_offset)
1119 
1120 #ifdef __KERNEL__
1121 /*
1122  *	Handling routines are only of interest to the kernel
1123  */
1124 
1125 #define SKB_ALLOC_FCLONE	0x01
1126 #define SKB_ALLOC_RX		0x02
1127 #define SKB_ALLOC_NAPI		0x04
1128 
1129 /**
1130  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1131  * @skb: buffer
1132  */
skb_pfmemalloc(const struct sk_buff * skb)1133 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1134 {
1135 	return unlikely(skb->pfmemalloc);
1136 }
1137 
1138 /*
1139  * skb might have a dst pointer attached, refcounted or not.
1140  * _skb_refdst low order bit is set if refcount was _not_ taken
1141  */
1142 #define SKB_DST_NOREF	1UL
1143 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
1144 
1145 /**
1146  * skb_dst - returns skb dst_entry
1147  * @skb: buffer
1148  *
1149  * Returns: skb dst_entry, regardless of reference taken or not.
1150  */
skb_dst(const struct sk_buff * skb)1151 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1152 {
1153 	/* If refdst was not refcounted, check we still are in a
1154 	 * rcu_read_lock section
1155 	 */
1156 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1157 		!rcu_read_lock_held() &&
1158 		!rcu_read_lock_bh_held());
1159 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1160 }
1161 
1162 /**
1163  * skb_dst_set - sets skb dst
1164  * @skb: buffer
1165  * @dst: dst entry
1166  *
1167  * Sets skb dst, assuming a reference was taken on dst and should
1168  * be released by skb_dst_drop()
1169  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)1170 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1171 {
1172 	skb->slow_gro |= !!dst;
1173 	skb->_skb_refdst = (unsigned long)dst;
1174 }
1175 
1176 /**
1177  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1178  * @skb: buffer
1179  * @dst: dst entry
1180  *
1181  * Sets skb dst, assuming a reference was not taken on dst.
1182  * If dst entry is cached, we do not take reference and dst_release
1183  * will be avoided by refdst_drop. If dst entry is not cached, we take
1184  * reference, so that last dst_release can destroy the dst immediately.
1185  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1186 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1187 {
1188 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1189 	skb->slow_gro |= !!dst;
1190 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1191 }
1192 
1193 /**
1194  * skb_dst_is_noref - Test if skb dst isn't refcounted
1195  * @skb: buffer
1196  */
skb_dst_is_noref(const struct sk_buff * skb)1197 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1198 {
1199 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1200 }
1201 
1202 /* For mangling skb->pkt_type from user space side from applications
1203  * such as nft, tc, etc, we only allow a conservative subset of
1204  * possible pkt_types to be set.
1205 */
skb_pkt_type_ok(u32 ptype)1206 static inline bool skb_pkt_type_ok(u32 ptype)
1207 {
1208 	return ptype <= PACKET_OTHERHOST;
1209 }
1210 
1211 /**
1212  * skb_napi_id - Returns the skb's NAPI id
1213  * @skb: buffer
1214  */
skb_napi_id(const struct sk_buff * skb)1215 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1216 {
1217 #ifdef CONFIG_NET_RX_BUSY_POLL
1218 	return skb->napi_id;
1219 #else
1220 	return 0;
1221 #endif
1222 }
1223 
skb_wifi_acked_valid(const struct sk_buff * skb)1224 static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1225 {
1226 #ifdef CONFIG_WIRELESS
1227 	return skb->wifi_acked_valid;
1228 #else
1229 	return 0;
1230 #endif
1231 }
1232 
1233 /**
1234  * skb_unref - decrement the skb's reference count
1235  * @skb: buffer
1236  *
1237  * Returns: true if we can free the skb.
1238  */
skb_unref(struct sk_buff * skb)1239 static inline bool skb_unref(struct sk_buff *skb)
1240 {
1241 	if (unlikely(!skb))
1242 		return false;
1243 	if (!IS_ENABLED(CONFIG_DEBUG_NET) && likely(refcount_read(&skb->users) == 1))
1244 		smp_rmb();
1245 	else if (likely(!refcount_dec_and_test(&skb->users)))
1246 		return false;
1247 
1248 	return true;
1249 }
1250 
skb_data_unref(const struct sk_buff * skb,struct skb_shared_info * shinfo)1251 static inline bool skb_data_unref(const struct sk_buff *skb,
1252 				  struct skb_shared_info *shinfo)
1253 {
1254 	int bias;
1255 
1256 	if (!skb->cloned)
1257 		return true;
1258 
1259 	bias = skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1;
1260 
1261 	if (atomic_read(&shinfo->dataref) == bias)
1262 		smp_rmb();
1263 	else if (atomic_sub_return(bias, &shinfo->dataref))
1264 		return false;
1265 
1266 	return true;
1267 }
1268 
1269 void __fix_address sk_skb_reason_drop(struct sock *sk, struct sk_buff *skb,
1270 				      enum skb_drop_reason reason);
1271 
1272 static inline void
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)1273 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1274 {
1275 	sk_skb_reason_drop(NULL, skb, reason);
1276 }
1277 
1278 /**
1279  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1280  *	@skb: buffer to free
1281  */
kfree_skb(struct sk_buff * skb)1282 static inline void kfree_skb(struct sk_buff *skb)
1283 {
1284 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1285 }
1286 
1287 void skb_release_head_state(struct sk_buff *skb);
1288 void kfree_skb_list_reason(struct sk_buff *segs,
1289 			   enum skb_drop_reason reason);
1290 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1291 void skb_tx_error(struct sk_buff *skb);
1292 
kfree_skb_list(struct sk_buff * segs)1293 static inline void kfree_skb_list(struct sk_buff *segs)
1294 {
1295 	kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1296 }
1297 
1298 #ifdef CONFIG_TRACEPOINTS
1299 void consume_skb(struct sk_buff *skb);
1300 #else
consume_skb(struct sk_buff * skb)1301 static inline void consume_skb(struct sk_buff *skb)
1302 {
1303 	return kfree_skb(skb);
1304 }
1305 #endif
1306 
1307 void __consume_stateless_skb(struct sk_buff *skb);
1308 void  __kfree_skb(struct sk_buff *skb);
1309 
1310 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1311 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1312 		      bool *fragstolen, int *delta_truesize);
1313 
1314 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1315 			    int node);
1316 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1317 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1318 struct sk_buff *build_skb_around(struct sk_buff *skb,
1319 				 void *data, unsigned int frag_size);
1320 void skb_attempt_defer_free(struct sk_buff *skb);
1321 
1322 u32 napi_skb_cache_get_bulk(void **skbs, u32 n);
1323 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1324 struct sk_buff *slab_build_skb(void *data);
1325 
1326 /**
1327  * alloc_skb - allocate a network buffer
1328  * @size: size to allocate
1329  * @priority: allocation mask
1330  *
1331  * This function is a convenient wrapper around __alloc_skb().
1332  */
alloc_skb(unsigned int size,gfp_t priority)1333 static inline struct sk_buff *alloc_skb(unsigned int size,
1334 					gfp_t priority)
1335 {
1336 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1337 }
1338 
1339 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1340 				     unsigned long data_len,
1341 				     int max_page_order,
1342 				     int *errcode,
1343 				     gfp_t gfp_mask);
1344 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1345 
1346 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1347 struct sk_buff_fclones {
1348 	struct sk_buff	skb1;
1349 
1350 	struct sk_buff	skb2;
1351 
1352 	refcount_t	fclone_ref;
1353 };
1354 
1355 /**
1356  *	skb_fclone_busy - check if fclone is busy
1357  *	@sk: socket
1358  *	@skb: buffer
1359  *
1360  * Returns: true if skb is a fast clone, and its clone is not freed.
1361  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1362  * so we also check that didn't happen.
1363  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1364 static inline bool skb_fclone_busy(const struct sock *sk,
1365 				   const struct sk_buff *skb)
1366 {
1367 	const struct sk_buff_fclones *fclones;
1368 
1369 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1370 
1371 	return skb->fclone == SKB_FCLONE_ORIG &&
1372 	       refcount_read(&fclones->fclone_ref) > 1 &&
1373 	       READ_ONCE(fclones->skb2.sk) == sk;
1374 }
1375 
1376 /**
1377  * alloc_skb_fclone - allocate a network buffer from fclone cache
1378  * @size: size to allocate
1379  * @priority: allocation mask
1380  *
1381  * This function is a convenient wrapper around __alloc_skb().
1382  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1383 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1384 					       gfp_t priority)
1385 {
1386 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1387 }
1388 
1389 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1390 void skb_headers_offset_update(struct sk_buff *skb, int off);
1391 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1392 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1393 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1394 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1395 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1396 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1397 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1398 					  gfp_t gfp_mask)
1399 {
1400 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1401 }
1402 
1403 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1404 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1405 				     unsigned int headroom);
1406 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1407 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1408 				int newtailroom, gfp_t priority);
1409 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1410 				     int offset, int len);
1411 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1412 			      int offset, int len);
1413 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1414 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1415 
1416 /**
1417  *	skb_pad			-	zero pad the tail of an skb
1418  *	@skb: buffer to pad
1419  *	@pad: space to pad
1420  *
1421  *	Ensure that a buffer is followed by a padding area that is zero
1422  *	filled. Used by network drivers which may DMA or transfer data
1423  *	beyond the buffer end onto the wire.
1424  *
1425  *	May return error in out of memory cases. The skb is freed on error.
1426  */
skb_pad(struct sk_buff * skb,int pad)1427 static inline int skb_pad(struct sk_buff *skb, int pad)
1428 {
1429 	return __skb_pad(skb, pad, true);
1430 }
1431 #define dev_kfree_skb(a)	consume_skb(a)
1432 
1433 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1434 			 int offset, size_t size, size_t max_frags);
1435 
1436 struct skb_seq_state {
1437 	__u32		lower_offset;
1438 	__u32		upper_offset;
1439 	__u32		frag_idx;
1440 	__u32		stepped_offset;
1441 	struct sk_buff	*root_skb;
1442 	struct sk_buff	*cur_skb;
1443 	__u8		*frag_data;
1444 	__u32		frag_off;
1445 };
1446 
1447 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1448 			  unsigned int to, struct skb_seq_state *st);
1449 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1450 			  struct skb_seq_state *st);
1451 void skb_abort_seq_read(struct skb_seq_state *st);
1452 int skb_copy_seq_read(struct skb_seq_state *st, int offset, void *to, int len);
1453 
1454 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1455 			   unsigned int to, struct ts_config *config);
1456 
1457 /*
1458  * Packet hash types specify the type of hash in skb_set_hash.
1459  *
1460  * Hash types refer to the protocol layer addresses which are used to
1461  * construct a packet's hash. The hashes are used to differentiate or identify
1462  * flows of the protocol layer for the hash type. Hash types are either
1463  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1464  *
1465  * Properties of hashes:
1466  *
1467  * 1) Two packets in different flows have different hash values
1468  * 2) Two packets in the same flow should have the same hash value
1469  *
1470  * A hash at a higher layer is considered to be more specific. A driver should
1471  * set the most specific hash possible.
1472  *
1473  * A driver cannot indicate a more specific hash than the layer at which a hash
1474  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1475  *
1476  * A driver may indicate a hash level which is less specific than the
1477  * actual layer the hash was computed on. For instance, a hash computed
1478  * at L4 may be considered an L3 hash. This should only be done if the
1479  * driver can't unambiguously determine that the HW computed the hash at
1480  * the higher layer. Note that the "should" in the second property above
1481  * permits this.
1482  */
1483 enum pkt_hash_types {
1484 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1485 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1486 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1487 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1488 };
1489 
skb_clear_hash(struct sk_buff * skb)1490 static inline void skb_clear_hash(struct sk_buff *skb)
1491 {
1492 	skb->hash = 0;
1493 	skb->sw_hash = 0;
1494 	skb->l4_hash = 0;
1495 }
1496 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1497 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1498 {
1499 	if (!skb->l4_hash)
1500 		skb_clear_hash(skb);
1501 }
1502 
1503 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1504 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1505 {
1506 	skb->l4_hash = is_l4;
1507 	skb->sw_hash = is_sw;
1508 	skb->hash = hash;
1509 }
1510 
1511 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1512 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1513 {
1514 	/* Used by drivers to set hash from HW */
1515 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1516 }
1517 
1518 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1519 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1520 {
1521 	__skb_set_hash(skb, hash, true, is_l4);
1522 }
1523 
1524 u32 __skb_get_hash_symmetric_net(const struct net *net, const struct sk_buff *skb);
1525 
__skb_get_hash_symmetric(const struct sk_buff * skb)1526 static inline u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
1527 {
1528 	return __skb_get_hash_symmetric_net(NULL, skb);
1529 }
1530 
1531 void __skb_get_hash_net(const struct net *net, struct sk_buff *skb);
1532 u32 skb_get_poff(const struct sk_buff *skb);
1533 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1534 		   const struct flow_keys_basic *keys, int hlen);
1535 __be32 skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1536 			  const void *data, int hlen_proto);
1537 
1538 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1539 			     const struct flow_dissector_key *key,
1540 			     unsigned int key_count);
1541 
1542 struct bpf_flow_dissector;
1543 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1544 		     __be16 proto, int nhoff, int hlen, unsigned int flags);
1545 
1546 bool __skb_flow_dissect(const struct net *net,
1547 			const struct sk_buff *skb,
1548 			struct flow_dissector *flow_dissector,
1549 			void *target_container, const void *data,
1550 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1551 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1552 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1553 				    struct flow_dissector *flow_dissector,
1554 				    void *target_container, unsigned int flags)
1555 {
1556 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1557 				  target_container, NULL, 0, 0, 0, flags);
1558 }
1559 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1560 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1561 					      struct flow_keys *flow,
1562 					      unsigned int flags)
1563 {
1564 	memset(flow, 0, sizeof(*flow));
1565 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1566 				  flow, NULL, 0, 0, 0, flags);
1567 }
1568 
1569 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1570 skb_flow_dissect_flow_keys_basic(const struct net *net,
1571 				 const struct sk_buff *skb,
1572 				 struct flow_keys_basic *flow,
1573 				 const void *data, __be16 proto,
1574 				 int nhoff, int hlen, unsigned int flags)
1575 {
1576 	memset(flow, 0, sizeof(*flow));
1577 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1578 				  data, proto, nhoff, hlen, flags);
1579 }
1580 
1581 void skb_flow_dissect_meta(const struct sk_buff *skb,
1582 			   struct flow_dissector *flow_dissector,
1583 			   void *target_container);
1584 
1585 /* Gets a skb connection tracking info, ctinfo map should be a
1586  * map of mapsize to translate enum ip_conntrack_info states
1587  * to user states.
1588  */
1589 void
1590 skb_flow_dissect_ct(const struct sk_buff *skb,
1591 		    struct flow_dissector *flow_dissector,
1592 		    void *target_container,
1593 		    u16 *ctinfo_map, size_t mapsize,
1594 		    bool post_ct, u16 zone);
1595 void
1596 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1597 			     struct flow_dissector *flow_dissector,
1598 			     void *target_container);
1599 
1600 void skb_flow_dissect_hash(const struct sk_buff *skb,
1601 			   struct flow_dissector *flow_dissector,
1602 			   void *target_container);
1603 
skb_get_hash_net(const struct net * net,struct sk_buff * skb)1604 static inline __u32 skb_get_hash_net(const struct net *net, struct sk_buff *skb)
1605 {
1606 	if (!skb->l4_hash && !skb->sw_hash)
1607 		__skb_get_hash_net(net, skb);
1608 
1609 	return skb->hash;
1610 }
1611 
skb_get_hash(struct sk_buff * skb)1612 static inline __u32 skb_get_hash(struct sk_buff *skb)
1613 {
1614 	if (!skb->l4_hash && !skb->sw_hash)
1615 		__skb_get_hash_net(NULL, skb);
1616 
1617 	return skb->hash;
1618 }
1619 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1620 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1621 {
1622 	if (!skb->l4_hash && !skb->sw_hash) {
1623 		struct flow_keys keys;
1624 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1625 
1626 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1627 	}
1628 
1629 	return skb->hash;
1630 }
1631 
1632 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1633 			   const siphash_key_t *perturb);
1634 
skb_get_hash_raw(const struct sk_buff * skb)1635 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1636 {
1637 	return skb->hash;
1638 }
1639 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1640 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1641 {
1642 	to->hash = from->hash;
1643 	to->sw_hash = from->sw_hash;
1644 	to->l4_hash = from->l4_hash;
1645 };
1646 
skb_cmp_decrypted(const struct sk_buff * skb1,const struct sk_buff * skb2)1647 static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1648 				    const struct sk_buff *skb2)
1649 {
1650 #ifdef CONFIG_SKB_DECRYPTED
1651 	return skb2->decrypted - skb1->decrypted;
1652 #else
1653 	return 0;
1654 #endif
1655 }
1656 
skb_is_decrypted(const struct sk_buff * skb)1657 static inline bool skb_is_decrypted(const struct sk_buff *skb)
1658 {
1659 #ifdef CONFIG_SKB_DECRYPTED
1660 	return skb->decrypted;
1661 #else
1662 	return false;
1663 #endif
1664 }
1665 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1666 static inline void skb_copy_decrypted(struct sk_buff *to,
1667 				      const struct sk_buff *from)
1668 {
1669 #ifdef CONFIG_SKB_DECRYPTED
1670 	to->decrypted = from->decrypted;
1671 #endif
1672 }
1673 
1674 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1675 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1676 {
1677 	return skb->head + skb->end;
1678 }
1679 
skb_end_offset(const struct sk_buff * skb)1680 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1681 {
1682 	return skb->end;
1683 }
1684 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1685 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1686 {
1687 	skb->end = offset;
1688 }
1689 #else
skb_end_pointer(const struct sk_buff * skb)1690 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1691 {
1692 	return skb->end;
1693 }
1694 
skb_end_offset(const struct sk_buff * skb)1695 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1696 {
1697 	return skb->end - skb->head;
1698 }
1699 
skb_set_end_offset(struct sk_buff * skb,unsigned int offset)1700 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1701 {
1702 	skb->end = skb->head + offset;
1703 }
1704 #endif
1705 
1706 extern const struct ubuf_info_ops msg_zerocopy_ubuf_ops;
1707 
1708 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1709 				       struct ubuf_info *uarg, bool devmem);
1710 
1711 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1712 
1713 struct net_devmem_dmabuf_binding;
1714 
1715 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1716 			    struct sk_buff *skb, struct iov_iter *from,
1717 			    size_t length,
1718 			    struct net_devmem_dmabuf_binding *binding);
1719 
1720 int zerocopy_fill_skb_from_iter(struct sk_buff *skb,
1721 				struct iov_iter *from, size_t length);
1722 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1723 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1724 					  struct msghdr *msg, int len)
1725 {
1726 	return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len,
1727 				       NULL);
1728 }
1729 
1730 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1731 			     struct msghdr *msg, int len,
1732 			     struct ubuf_info *uarg,
1733 			     struct net_devmem_dmabuf_binding *binding);
1734 
1735 /* Internal */
1736 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1737 
skb_hwtstamps(struct sk_buff * skb)1738 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1739 {
1740 	return &skb_shinfo(skb)->hwtstamps;
1741 }
1742 
skb_zcopy(struct sk_buff * skb)1743 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1744 {
1745 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1746 
1747 	return is_zcopy ? skb_uarg(skb) : NULL;
1748 }
1749 
skb_zcopy_pure(const struct sk_buff * skb)1750 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1751 {
1752 	return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1753 }
1754 
skb_zcopy_managed(const struct sk_buff * skb)1755 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1756 {
1757 	return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1758 }
1759 
skb_pure_zcopy_same(const struct sk_buff * skb1,const struct sk_buff * skb2)1760 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1761 				       const struct sk_buff *skb2)
1762 {
1763 	return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1764 }
1765 
net_zcopy_get(struct ubuf_info * uarg)1766 static inline void net_zcopy_get(struct ubuf_info *uarg)
1767 {
1768 	refcount_inc(&uarg->refcnt);
1769 }
1770 
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1771 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1772 {
1773 	skb_shinfo(skb)->destructor_arg = uarg;
1774 	skb_shinfo(skb)->flags |= uarg->flags;
1775 }
1776 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1777 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1778 				 bool *have_ref)
1779 {
1780 	if (skb && uarg && !skb_zcopy(skb)) {
1781 		if (unlikely(have_ref && *have_ref))
1782 			*have_ref = false;
1783 		else
1784 			net_zcopy_get(uarg);
1785 		skb_zcopy_init(skb, uarg);
1786 	}
1787 }
1788 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1789 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1790 {
1791 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1792 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1793 }
1794 
skb_zcopy_is_nouarg(struct sk_buff * skb)1795 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1796 {
1797 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1798 }
1799 
skb_zcopy_get_nouarg(struct sk_buff * skb)1800 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1801 {
1802 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1803 }
1804 
net_zcopy_put(struct ubuf_info * uarg)1805 static inline void net_zcopy_put(struct ubuf_info *uarg)
1806 {
1807 	if (uarg)
1808 		uarg->ops->complete(NULL, uarg, true);
1809 }
1810 
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1811 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1812 {
1813 	if (uarg) {
1814 		if (uarg->ops == &msg_zerocopy_ubuf_ops)
1815 			msg_zerocopy_put_abort(uarg, have_uref);
1816 		else if (have_uref)
1817 			net_zcopy_put(uarg);
1818 	}
1819 }
1820 
1821 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1822 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1823 {
1824 	struct ubuf_info *uarg = skb_zcopy(skb);
1825 
1826 	if (uarg) {
1827 		if (!skb_zcopy_is_nouarg(skb))
1828 			uarg->ops->complete(skb, uarg, zerocopy_success);
1829 
1830 		skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1831 	}
1832 }
1833 
1834 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1835 
skb_zcopy_downgrade_managed(struct sk_buff * skb)1836 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1837 {
1838 	if (unlikely(skb_zcopy_managed(skb)))
1839 		__skb_zcopy_downgrade_managed(skb);
1840 }
1841 
1842 /* Return true if frags in this skb are readable by the host. */
skb_frags_readable(const struct sk_buff * skb)1843 static inline bool skb_frags_readable(const struct sk_buff *skb)
1844 {
1845 	return !skb->unreadable;
1846 }
1847 
skb_mark_not_on_list(struct sk_buff * skb)1848 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1849 {
1850 	skb->next = NULL;
1851 }
1852 
skb_poison_list(struct sk_buff * skb)1853 static inline void skb_poison_list(struct sk_buff *skb)
1854 {
1855 #ifdef CONFIG_DEBUG_NET
1856 	skb->next = SKB_LIST_POISON_NEXT;
1857 #endif
1858 }
1859 
1860 /* Iterate through singly-linked GSO fragments of an skb. */
1861 #define skb_list_walk_safe(first, skb, next_skb)                               \
1862 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1863 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1864 
skb_list_del_init(struct sk_buff * skb)1865 static inline void skb_list_del_init(struct sk_buff *skb)
1866 {
1867 	__list_del_entry(&skb->list);
1868 	skb_mark_not_on_list(skb);
1869 }
1870 
1871 /**
1872  *	skb_queue_empty - check if a queue is empty
1873  *	@list: queue head
1874  *
1875  *	Returns true if the queue is empty, false otherwise.
1876  */
skb_queue_empty(const struct sk_buff_head * list)1877 static inline int skb_queue_empty(const struct sk_buff_head *list)
1878 {
1879 	return list->next == (const struct sk_buff *) list;
1880 }
1881 
1882 /**
1883  *	skb_queue_empty_lockless - check if a queue is empty
1884  *	@list: queue head
1885  *
1886  *	Returns true if the queue is empty, false otherwise.
1887  *	This variant can be used in lockless contexts.
1888  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1889 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1890 {
1891 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1892 }
1893 
1894 
1895 /**
1896  *	skb_queue_is_last - check if skb is the last entry in the queue
1897  *	@list: queue head
1898  *	@skb: buffer
1899  *
1900  *	Returns true if @skb is the last buffer on the list.
1901  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1902 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1903 				     const struct sk_buff *skb)
1904 {
1905 	return skb->next == (const struct sk_buff *) list;
1906 }
1907 
1908 /**
1909  *	skb_queue_is_first - check if skb is the first entry in the queue
1910  *	@list: queue head
1911  *	@skb: buffer
1912  *
1913  *	Returns true if @skb is the first buffer on the list.
1914  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1915 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1916 				      const struct sk_buff *skb)
1917 {
1918 	return skb->prev == (const struct sk_buff *) list;
1919 }
1920 
1921 /**
1922  *	skb_queue_next - return the next packet in the queue
1923  *	@list: queue head
1924  *	@skb: current buffer
1925  *
1926  *	Return the next packet in @list after @skb.  It is only valid to
1927  *	call this if skb_queue_is_last() evaluates to false.
1928  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1929 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1930 					     const struct sk_buff *skb)
1931 {
1932 	/* This BUG_ON may seem severe, but if we just return then we
1933 	 * are going to dereference garbage.
1934 	 */
1935 	BUG_ON(skb_queue_is_last(list, skb));
1936 	return skb->next;
1937 }
1938 
1939 /**
1940  *	skb_queue_prev - return the prev packet in the queue
1941  *	@list: queue head
1942  *	@skb: current buffer
1943  *
1944  *	Return the prev packet in @list before @skb.  It is only valid to
1945  *	call this if skb_queue_is_first() evaluates to false.
1946  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1947 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1948 					     const struct sk_buff *skb)
1949 {
1950 	/* This BUG_ON may seem severe, but if we just return then we
1951 	 * are going to dereference garbage.
1952 	 */
1953 	BUG_ON(skb_queue_is_first(list, skb));
1954 	return skb->prev;
1955 }
1956 
1957 /**
1958  *	skb_get - reference buffer
1959  *	@skb: buffer to reference
1960  *
1961  *	Makes another reference to a socket buffer and returns a pointer
1962  *	to the buffer.
1963  */
skb_get(struct sk_buff * skb)1964 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1965 {
1966 	refcount_inc(&skb->users);
1967 	return skb;
1968 }
1969 
1970 /*
1971  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1972  */
1973 
1974 /**
1975  *	skb_cloned - is the buffer a clone
1976  *	@skb: buffer to check
1977  *
1978  *	Returns true if the buffer was generated with skb_clone() and is
1979  *	one of multiple shared copies of the buffer. Cloned buffers are
1980  *	shared data so must not be written to under normal circumstances.
1981  */
skb_cloned(const struct sk_buff * skb)1982 static inline int skb_cloned(const struct sk_buff *skb)
1983 {
1984 	return skb->cloned &&
1985 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1986 }
1987 
skb_unclone(struct sk_buff * skb,gfp_t pri)1988 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1989 {
1990 	might_sleep_if(gfpflags_allow_blocking(pri));
1991 
1992 	if (skb_cloned(skb))
1993 		return pskb_expand_head(skb, 0, 0, pri);
1994 
1995 	return 0;
1996 }
1997 
1998 /* This variant of skb_unclone() makes sure skb->truesize
1999  * and skb_end_offset() are not changed, whenever a new skb->head is needed.
2000  *
2001  * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
2002  * when various debugging features are in place.
2003  */
2004 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)2005 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2006 {
2007 	might_sleep_if(gfpflags_allow_blocking(pri));
2008 
2009 	if (skb_cloned(skb))
2010 		return __skb_unclone_keeptruesize(skb, pri);
2011 	return 0;
2012 }
2013 
2014 /**
2015  *	skb_header_cloned - is the header a clone
2016  *	@skb: buffer to check
2017  *
2018  *	Returns true if modifying the header part of the buffer requires
2019  *	the data to be copied.
2020  */
skb_header_cloned(const struct sk_buff * skb)2021 static inline int skb_header_cloned(const struct sk_buff *skb)
2022 {
2023 	int dataref;
2024 
2025 	if (!skb->cloned)
2026 		return 0;
2027 
2028 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
2029 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
2030 	return dataref != 1;
2031 }
2032 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)2033 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
2034 {
2035 	might_sleep_if(gfpflags_allow_blocking(pri));
2036 
2037 	if (skb_header_cloned(skb))
2038 		return pskb_expand_head(skb, 0, 0, pri);
2039 
2040 	return 0;
2041 }
2042 
2043 /**
2044  * __skb_header_release() - allow clones to use the headroom
2045  * @skb: buffer to operate on
2046  *
2047  * See "DOC: dataref and headerless skbs".
2048  */
__skb_header_release(struct sk_buff * skb)2049 static inline void __skb_header_release(struct sk_buff *skb)
2050 {
2051 	skb->nohdr = 1;
2052 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
2053 }
2054 
2055 
2056 /**
2057  *	skb_shared - is the buffer shared
2058  *	@skb: buffer to check
2059  *
2060  *	Returns true if more than one person has a reference to this
2061  *	buffer.
2062  */
skb_shared(const struct sk_buff * skb)2063 static inline int skb_shared(const struct sk_buff *skb)
2064 {
2065 	return refcount_read(&skb->users) != 1;
2066 }
2067 
2068 /**
2069  *	skb_share_check - check if buffer is shared and if so clone it
2070  *	@skb: buffer to check
2071  *	@pri: priority for memory allocation
2072  *
2073  *	If the buffer is shared the buffer is cloned and the old copy
2074  *	drops a reference. A new clone with a single reference is returned.
2075  *	If the buffer is not shared the original buffer is returned. When
2076  *	being called from interrupt status or with spinlocks held pri must
2077  *	be GFP_ATOMIC.
2078  *
2079  *	NULL is returned on a memory allocation failure.
2080  */
skb_share_check(struct sk_buff * skb,gfp_t pri)2081 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2082 {
2083 	might_sleep_if(gfpflags_allow_blocking(pri));
2084 	if (skb_shared(skb)) {
2085 		struct sk_buff *nskb = skb_clone(skb, pri);
2086 
2087 		if (likely(nskb))
2088 			consume_skb(skb);
2089 		else
2090 			kfree_skb(skb);
2091 		skb = nskb;
2092 	}
2093 	return skb;
2094 }
2095 
2096 /*
2097  *	Copy shared buffers into a new sk_buff. We effectively do COW on
2098  *	packets to handle cases where we have a local reader and forward
2099  *	and a couple of other messy ones. The normal one is tcpdumping
2100  *	a packet that's being forwarded.
2101  */
2102 
2103 /**
2104  *	skb_unshare - make a copy of a shared buffer
2105  *	@skb: buffer to check
2106  *	@pri: priority for memory allocation
2107  *
2108  *	If the socket buffer is a clone then this function creates a new
2109  *	copy of the data, drops a reference count on the old copy and returns
2110  *	the new copy with the reference count at 1. If the buffer is not a clone
2111  *	the original buffer is returned. When called with a spinlock held or
2112  *	from interrupt state @pri must be %GFP_ATOMIC
2113  *
2114  *	%NULL is returned on a memory allocation failure.
2115  */
skb_unshare(struct sk_buff * skb,gfp_t pri)2116 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2117 					  gfp_t pri)
2118 {
2119 	might_sleep_if(gfpflags_allow_blocking(pri));
2120 	if (skb_cloned(skb)) {
2121 		struct sk_buff *nskb = skb_copy(skb, pri);
2122 
2123 		/* Free our shared copy */
2124 		if (likely(nskb))
2125 			consume_skb(skb);
2126 		else
2127 			kfree_skb(skb);
2128 		skb = nskb;
2129 	}
2130 	return skb;
2131 }
2132 
2133 /**
2134  *	skb_peek - peek at the head of an &sk_buff_head
2135  *	@list_: list to peek at
2136  *
2137  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2138  *	be careful with this one. A peek leaves the buffer on the
2139  *	list and someone else may run off with it. You must hold
2140  *	the appropriate locks or have a private queue to do this.
2141  *
2142  *	Returns %NULL for an empty list or a pointer to the head element.
2143  *	The reference count is not incremented and the reference is therefore
2144  *	volatile. Use with caution.
2145  */
skb_peek(const struct sk_buff_head * list_)2146 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2147 {
2148 	struct sk_buff *skb = list_->next;
2149 
2150 	if (skb == (struct sk_buff *)list_)
2151 		skb = NULL;
2152 	return skb;
2153 }
2154 
2155 /**
2156  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
2157  *	@list_: list to peek at
2158  *
2159  *	Like skb_peek(), but the caller knows that the list is not empty.
2160  */
__skb_peek(const struct sk_buff_head * list_)2161 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2162 {
2163 	return list_->next;
2164 }
2165 
2166 /**
2167  *	skb_peek_next - peek skb following the given one from a queue
2168  *	@skb: skb to start from
2169  *	@list_: list to peek at
2170  *
2171  *	Returns %NULL when the end of the list is met or a pointer to the
2172  *	next element. The reference count is not incremented and the
2173  *	reference is therefore volatile. Use with caution.
2174  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)2175 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2176 		const struct sk_buff_head *list_)
2177 {
2178 	struct sk_buff *next = skb->next;
2179 
2180 	if (next == (struct sk_buff *)list_)
2181 		next = NULL;
2182 	return next;
2183 }
2184 
2185 /**
2186  *	skb_peek_tail - peek at the tail of an &sk_buff_head
2187  *	@list_: list to peek at
2188  *
2189  *	Peek an &sk_buff. Unlike most other operations you _MUST_
2190  *	be careful with this one. A peek leaves the buffer on the
2191  *	list and someone else may run off with it. You must hold
2192  *	the appropriate locks or have a private queue to do this.
2193  *
2194  *	Returns %NULL for an empty list or a pointer to the tail element.
2195  *	The reference count is not incremented and the reference is therefore
2196  *	volatile. Use with caution.
2197  */
skb_peek_tail(const struct sk_buff_head * list_)2198 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2199 {
2200 	struct sk_buff *skb = READ_ONCE(list_->prev);
2201 
2202 	if (skb == (struct sk_buff *)list_)
2203 		skb = NULL;
2204 	return skb;
2205 
2206 }
2207 
2208 /**
2209  *	skb_queue_len	- get queue length
2210  *	@list_: list to measure
2211  *
2212  *	Return the length of an &sk_buff queue.
2213  */
skb_queue_len(const struct sk_buff_head * list_)2214 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2215 {
2216 	return list_->qlen;
2217 }
2218 
2219 /**
2220  *	skb_queue_len_lockless	- get queue length
2221  *	@list_: list to measure
2222  *
2223  *	Return the length of an &sk_buff queue.
2224  *	This variant can be used in lockless contexts.
2225  */
skb_queue_len_lockless(const struct sk_buff_head * list_)2226 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2227 {
2228 	return READ_ONCE(list_->qlen);
2229 }
2230 
2231 /**
2232  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2233  *	@list: queue to initialize
2234  *
2235  *	This initializes only the list and queue length aspects of
2236  *	an sk_buff_head object.  This allows to initialize the list
2237  *	aspects of an sk_buff_head without reinitializing things like
2238  *	the spinlock.  It can also be used for on-stack sk_buff_head
2239  *	objects where the spinlock is known to not be used.
2240  */
__skb_queue_head_init(struct sk_buff_head * list)2241 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2242 {
2243 	list->prev = list->next = (struct sk_buff *)list;
2244 	list->qlen = 0;
2245 }
2246 
2247 /*
2248  * This function creates a split out lock class for each invocation;
2249  * this is needed for now since a whole lot of users of the skb-queue
2250  * infrastructure in drivers have different locking usage (in hardirq)
2251  * than the networking core (in softirq only). In the long run either the
2252  * network layer or drivers should need annotation to consolidate the
2253  * main types of usage into 3 classes.
2254  */
skb_queue_head_init(struct sk_buff_head * list)2255 static inline void skb_queue_head_init(struct sk_buff_head *list)
2256 {
2257 	spin_lock_init(&list->lock);
2258 	__skb_queue_head_init(list);
2259 }
2260 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)2261 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2262 		struct lock_class_key *class)
2263 {
2264 	skb_queue_head_init(list);
2265 	lockdep_set_class(&list->lock, class);
2266 }
2267 
2268 /*
2269  *	Insert an sk_buff on a list.
2270  *
2271  *	The "__skb_xxxx()" functions are the non-atomic ones that
2272  *	can only be called with interrupts disabled.
2273  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)2274 static inline void __skb_insert(struct sk_buff *newsk,
2275 				struct sk_buff *prev, struct sk_buff *next,
2276 				struct sk_buff_head *list)
2277 {
2278 	/* See skb_queue_empty_lockless() and skb_peek_tail()
2279 	 * for the opposite READ_ONCE()
2280 	 */
2281 	WRITE_ONCE(newsk->next, next);
2282 	WRITE_ONCE(newsk->prev, prev);
2283 	WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2284 	WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2285 	WRITE_ONCE(list->qlen, list->qlen + 1);
2286 }
2287 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)2288 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2289 				      struct sk_buff *prev,
2290 				      struct sk_buff *next)
2291 {
2292 	struct sk_buff *first = list->next;
2293 	struct sk_buff *last = list->prev;
2294 
2295 	WRITE_ONCE(first->prev, prev);
2296 	WRITE_ONCE(prev->next, first);
2297 
2298 	WRITE_ONCE(last->next, next);
2299 	WRITE_ONCE(next->prev, last);
2300 }
2301 
2302 /**
2303  *	skb_queue_splice - join two skb lists, this is designed for stacks
2304  *	@list: the new list to add
2305  *	@head: the place to add it in the first list
2306  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)2307 static inline void skb_queue_splice(const struct sk_buff_head *list,
2308 				    struct sk_buff_head *head)
2309 {
2310 	if (!skb_queue_empty(list)) {
2311 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2312 		head->qlen += list->qlen;
2313 	}
2314 }
2315 
2316 /**
2317  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2318  *	@list: the new list to add
2319  *	@head: the place to add it in the first list
2320  *
2321  *	The list at @list is reinitialised
2322  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)2323 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2324 					 struct sk_buff_head *head)
2325 {
2326 	if (!skb_queue_empty(list)) {
2327 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
2328 		head->qlen += list->qlen;
2329 		__skb_queue_head_init(list);
2330 	}
2331 }
2332 
2333 /**
2334  *	skb_queue_splice_tail - join two skb lists, each list being a queue
2335  *	@list: the new list to add
2336  *	@head: the place to add it in the first list
2337  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)2338 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2339 					 struct sk_buff_head *head)
2340 {
2341 	if (!skb_queue_empty(list)) {
2342 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2343 		head->qlen += list->qlen;
2344 	}
2345 }
2346 
2347 /**
2348  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2349  *	@list: the new list to add
2350  *	@head: the place to add it in the first list
2351  *
2352  *	Each of the lists is a queue.
2353  *	The list at @list is reinitialised
2354  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2355 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2356 					      struct sk_buff_head *head)
2357 {
2358 	if (!skb_queue_empty(list)) {
2359 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2360 		head->qlen += list->qlen;
2361 		__skb_queue_head_init(list);
2362 	}
2363 }
2364 
2365 /**
2366  *	__skb_queue_after - queue a buffer at the list head
2367  *	@list: list to use
2368  *	@prev: place after this buffer
2369  *	@newsk: buffer to queue
2370  *
2371  *	Queue a buffer int the middle of a list. This function takes no locks
2372  *	and you must therefore hold required locks before calling it.
2373  *
2374  *	A buffer cannot be placed on two lists at the same time.
2375  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2376 static inline void __skb_queue_after(struct sk_buff_head *list,
2377 				     struct sk_buff *prev,
2378 				     struct sk_buff *newsk)
2379 {
2380 	__skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2381 }
2382 
2383 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2384 		struct sk_buff_head *list);
2385 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2386 static inline void __skb_queue_before(struct sk_buff_head *list,
2387 				      struct sk_buff *next,
2388 				      struct sk_buff *newsk)
2389 {
2390 	__skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2391 }
2392 
2393 /**
2394  *	__skb_queue_head - queue a buffer at the list head
2395  *	@list: list to use
2396  *	@newsk: buffer to queue
2397  *
2398  *	Queue a buffer at the start of a list. This function takes no locks
2399  *	and you must therefore hold required locks before calling it.
2400  *
2401  *	A buffer cannot be placed on two lists at the same time.
2402  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2403 static inline void __skb_queue_head(struct sk_buff_head *list,
2404 				    struct sk_buff *newsk)
2405 {
2406 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2407 }
2408 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2409 
2410 /**
2411  *	__skb_queue_tail - queue a buffer at the list tail
2412  *	@list: list to use
2413  *	@newsk: buffer to queue
2414  *
2415  *	Queue a buffer at the end of a list. This function takes no locks
2416  *	and you must therefore hold required locks before calling it.
2417  *
2418  *	A buffer cannot be placed on two lists at the same time.
2419  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2420 static inline void __skb_queue_tail(struct sk_buff_head *list,
2421 				   struct sk_buff *newsk)
2422 {
2423 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2424 }
2425 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2426 
2427 /*
2428  * remove sk_buff from list. _Must_ be called atomically, and with
2429  * the list known..
2430  */
2431 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2432 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2433 {
2434 	struct sk_buff *next, *prev;
2435 
2436 	WRITE_ONCE(list->qlen, list->qlen - 1);
2437 	next	   = skb->next;
2438 	prev	   = skb->prev;
2439 	skb->next  = skb->prev = NULL;
2440 	WRITE_ONCE(next->prev, prev);
2441 	WRITE_ONCE(prev->next, next);
2442 }
2443 
2444 /**
2445  *	__skb_dequeue - remove from the head of the queue
2446  *	@list: list to dequeue from
2447  *
2448  *	Remove the head of the list. This function does not take any locks
2449  *	so must be used with appropriate locks held only. The head item is
2450  *	returned or %NULL if the list is empty.
2451  */
__skb_dequeue(struct sk_buff_head * list)2452 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2453 {
2454 	struct sk_buff *skb = skb_peek(list);
2455 	if (skb)
2456 		__skb_unlink(skb, list);
2457 	return skb;
2458 }
2459 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2460 
2461 /**
2462  *	__skb_dequeue_tail - remove from the tail of the queue
2463  *	@list: list to dequeue from
2464  *
2465  *	Remove the tail of the list. This function does not take any locks
2466  *	so must be used with appropriate locks held only. The tail item is
2467  *	returned or %NULL if the list is empty.
2468  */
__skb_dequeue_tail(struct sk_buff_head * list)2469 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2470 {
2471 	struct sk_buff *skb = skb_peek_tail(list);
2472 	if (skb)
2473 		__skb_unlink(skb, list);
2474 	return skb;
2475 }
2476 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2477 
2478 
skb_is_nonlinear(const struct sk_buff * skb)2479 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2480 {
2481 	return skb->data_len;
2482 }
2483 
skb_headlen(const struct sk_buff * skb)2484 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2485 {
2486 	return skb->len - skb->data_len;
2487 }
2488 
__skb_pagelen(const struct sk_buff * skb)2489 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2490 {
2491 	unsigned int i, len = 0;
2492 
2493 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2494 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2495 	return len;
2496 }
2497 
skb_pagelen(const struct sk_buff * skb)2498 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2499 {
2500 	return skb_headlen(skb) + __skb_pagelen(skb);
2501 }
2502 
skb_frag_fill_netmem_desc(skb_frag_t * frag,netmem_ref netmem,int off,int size)2503 static inline void skb_frag_fill_netmem_desc(skb_frag_t *frag,
2504 					     netmem_ref netmem, int off,
2505 					     int size)
2506 {
2507 	frag->netmem = netmem;
2508 	frag->offset = off;
2509 	skb_frag_size_set(frag, size);
2510 }
2511 
skb_frag_fill_page_desc(skb_frag_t * frag,struct page * page,int off,int size)2512 static inline void skb_frag_fill_page_desc(skb_frag_t *frag,
2513 					   struct page *page,
2514 					   int off, int size)
2515 {
2516 	skb_frag_fill_netmem_desc(frag, page_to_netmem(page), off, size);
2517 }
2518 
__skb_fill_netmem_desc_noacc(struct skb_shared_info * shinfo,int i,netmem_ref netmem,int off,int size)2519 static inline void __skb_fill_netmem_desc_noacc(struct skb_shared_info *shinfo,
2520 						int i, netmem_ref netmem,
2521 						int off, int size)
2522 {
2523 	skb_frag_t *frag = &shinfo->frags[i];
2524 
2525 	skb_frag_fill_netmem_desc(frag, netmem, off, size);
2526 }
2527 
__skb_fill_page_desc_noacc(struct skb_shared_info * shinfo,int i,struct page * page,int off,int size)2528 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2529 					      int i, struct page *page,
2530 					      int off, int size)
2531 {
2532 	__skb_fill_netmem_desc_noacc(shinfo, i, page_to_netmem(page), off,
2533 				     size);
2534 }
2535 
2536 /**
2537  * skb_len_add - adds a number to len fields of skb
2538  * @skb: buffer to add len to
2539  * @delta: number of bytes to add
2540  */
skb_len_add(struct sk_buff * skb,int delta)2541 static inline void skb_len_add(struct sk_buff *skb, int delta)
2542 {
2543 	skb->len += delta;
2544 	skb->data_len += delta;
2545 	skb->truesize += delta;
2546 }
2547 
2548 /**
2549  * __skb_fill_netmem_desc - initialise a fragment in an skb
2550  * @skb: buffer containing fragment to be initialised
2551  * @i: fragment index to initialise
2552  * @netmem: the netmem to use for this fragment
2553  * @off: the offset to the data with @page
2554  * @size: the length of the data
2555  *
2556  * Initialises the @i'th fragment of @skb to point to &size bytes at
2557  * offset @off within @page.
2558  *
2559  * Does not take any additional reference on the fragment.
2560  */
__skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2561 static inline void __skb_fill_netmem_desc(struct sk_buff *skb, int i,
2562 					  netmem_ref netmem, int off, int size)
2563 {
2564 	struct page *page;
2565 
2566 	__skb_fill_netmem_desc_noacc(skb_shinfo(skb), i, netmem, off, size);
2567 
2568 	if (netmem_is_net_iov(netmem)) {
2569 		skb->unreadable = true;
2570 		return;
2571 	}
2572 
2573 	page = netmem_to_page(netmem);
2574 
2575 	/* Propagate page pfmemalloc to the skb if we can. The problem is
2576 	 * that not all callers have unique ownership of the page but rely
2577 	 * on page_is_pfmemalloc doing the right thing(tm).
2578 	 */
2579 	page = compound_head(page);
2580 	if (page_is_pfmemalloc(page))
2581 		skb->pfmemalloc = true;
2582 }
2583 
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2584 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2585 					struct page *page, int off, int size)
2586 {
2587 	__skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2588 }
2589 
skb_fill_netmem_desc(struct sk_buff * skb,int i,netmem_ref netmem,int off,int size)2590 static inline void skb_fill_netmem_desc(struct sk_buff *skb, int i,
2591 					netmem_ref netmem, int off, int size)
2592 {
2593 	__skb_fill_netmem_desc(skb, i, netmem, off, size);
2594 	skb_shinfo(skb)->nr_frags = i + 1;
2595 }
2596 
2597 /**
2598  * skb_fill_page_desc - initialise a paged fragment in an skb
2599  * @skb: buffer containing fragment to be initialised
2600  * @i: paged fragment index to initialise
2601  * @page: the page to use for this fragment
2602  * @off: the offset to the data with @page
2603  * @size: the length of the data
2604  *
2605  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2606  * @skb to point to @size bytes at offset @off within @page. In
2607  * addition updates @skb such that @i is the last fragment.
2608  *
2609  * Does not take any additional reference on the fragment.
2610  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2611 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2612 				      struct page *page, int off, int size)
2613 {
2614 	skb_fill_netmem_desc(skb, i, page_to_netmem(page), off, size);
2615 }
2616 
2617 /**
2618  * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2619  * @skb: buffer containing fragment to be initialised
2620  * @i: paged fragment index to initialise
2621  * @page: the page to use for this fragment
2622  * @off: the offset to the data with @page
2623  * @size: the length of the data
2624  *
2625  * Variant of skb_fill_page_desc() which does not deal with
2626  * pfmemalloc, if page is not owned by us.
2627  */
skb_fill_page_desc_noacc(struct sk_buff * skb,int i,struct page * page,int off,int size)2628 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2629 					    struct page *page, int off,
2630 					    int size)
2631 {
2632 	struct skb_shared_info *shinfo = skb_shinfo(skb);
2633 
2634 	__skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2635 	shinfo->nr_frags = i + 1;
2636 }
2637 
2638 void skb_add_rx_frag_netmem(struct sk_buff *skb, int i, netmem_ref netmem,
2639 			    int off, int size, unsigned int truesize);
2640 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)2641 static inline void skb_add_rx_frag(struct sk_buff *skb, int i,
2642 				   struct page *page, int off, int size,
2643 				   unsigned int truesize)
2644 {
2645 	skb_add_rx_frag_netmem(skb, i, page_to_netmem(page), off, size,
2646 			       truesize);
2647 }
2648 
2649 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2650 			  unsigned int truesize);
2651 
2652 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2653 
2654 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2655 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2656 {
2657 	return skb->head + skb->tail;
2658 }
2659 
skb_reset_tail_pointer(struct sk_buff * skb)2660 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2661 {
2662 	skb->tail = skb->data - skb->head;
2663 }
2664 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2665 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2666 {
2667 	skb_reset_tail_pointer(skb);
2668 	skb->tail += offset;
2669 }
2670 
2671 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2672 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2673 {
2674 	return skb->tail;
2675 }
2676 
skb_reset_tail_pointer(struct sk_buff * skb)2677 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2678 {
2679 	skb->tail = skb->data;
2680 }
2681 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2682 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2683 {
2684 	skb->tail = skb->data + offset;
2685 }
2686 
2687 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2688 
skb_assert_len(struct sk_buff * skb)2689 static inline void skb_assert_len(struct sk_buff *skb)
2690 {
2691 #ifdef CONFIG_DEBUG_NET
2692 	if (WARN_ONCE(!skb->len, "%s\n", __func__))
2693 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2694 #endif /* CONFIG_DEBUG_NET */
2695 }
2696 
2697 #if defined(CONFIG_FAIL_SKB_REALLOC)
2698 void skb_might_realloc(struct sk_buff *skb);
2699 #else
skb_might_realloc(struct sk_buff * skb)2700 static inline void skb_might_realloc(struct sk_buff *skb) {}
2701 #endif
2702 
2703 /*
2704  *	Add data to an sk_buff
2705  */
2706 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2707 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2708 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2709 {
2710 	void *tmp = skb_tail_pointer(skb);
2711 	SKB_LINEAR_ASSERT(skb);
2712 	skb->tail += len;
2713 	skb->len  += len;
2714 	return tmp;
2715 }
2716 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2717 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2718 {
2719 	void *tmp = __skb_put(skb, len);
2720 
2721 	memset(tmp, 0, len);
2722 	return tmp;
2723 }
2724 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2725 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2726 				   unsigned int len)
2727 {
2728 	void *tmp = __skb_put(skb, len);
2729 
2730 	memcpy(tmp, data, len);
2731 	return tmp;
2732 }
2733 
__skb_put_u8(struct sk_buff * skb,u8 val)2734 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2735 {
2736 	*(u8 *)__skb_put(skb, 1) = val;
2737 }
2738 
skb_put_zero(struct sk_buff * skb,unsigned int len)2739 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2740 {
2741 	void *tmp = skb_put(skb, len);
2742 
2743 	memset(tmp, 0, len);
2744 
2745 	return tmp;
2746 }
2747 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2748 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2749 				 unsigned int len)
2750 {
2751 	void *tmp = skb_put(skb, len);
2752 
2753 	memcpy(tmp, data, len);
2754 
2755 	return tmp;
2756 }
2757 
skb_put_u8(struct sk_buff * skb,u8 val)2758 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2759 {
2760 	*(u8 *)skb_put(skb, 1) = val;
2761 }
2762 
2763 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2764 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2765 {
2766 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2767 
2768 	skb->data -= len;
2769 	skb->len  += len;
2770 	return skb->data;
2771 }
2772 
2773 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2774 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2775 {
2776 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2777 
2778 	skb->len -= len;
2779 	if (unlikely(skb->len < skb->data_len)) {
2780 #if defined(CONFIG_DEBUG_NET)
2781 		skb->len += len;
2782 		pr_err("__skb_pull(len=%u)\n", len);
2783 		skb_dump(KERN_ERR, skb, false);
2784 #endif
2785 		BUG();
2786 	}
2787 	return skb->data += len;
2788 }
2789 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2790 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2791 {
2792 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2793 }
2794 
2795 void *skb_pull_data(struct sk_buff *skb, size_t len);
2796 
2797 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2798 
2799 static inline enum skb_drop_reason
pskb_may_pull_reason(struct sk_buff * skb,unsigned int len)2800 pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2801 {
2802 	DEBUG_NET_WARN_ON_ONCE(len > INT_MAX);
2803 	skb_might_realloc(skb);
2804 
2805 	if (likely(len <= skb_headlen(skb)))
2806 		return SKB_NOT_DROPPED_YET;
2807 
2808 	if (unlikely(len > skb->len))
2809 		return SKB_DROP_REASON_PKT_TOO_SMALL;
2810 
2811 	if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2812 		return SKB_DROP_REASON_NOMEM;
2813 
2814 	return SKB_NOT_DROPPED_YET;
2815 }
2816 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2817 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2818 {
2819 	return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2820 }
2821 
pskb_pull(struct sk_buff * skb,unsigned int len)2822 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2823 {
2824 	if (!pskb_may_pull(skb, len))
2825 		return NULL;
2826 
2827 	skb->len -= len;
2828 	return skb->data += len;
2829 }
2830 
2831 void skb_condense(struct sk_buff *skb);
2832 
2833 /**
2834  *	skb_headroom - bytes at buffer head
2835  *	@skb: buffer to check
2836  *
2837  *	Return the number of bytes of free space at the head of an &sk_buff.
2838  */
skb_headroom(const struct sk_buff * skb)2839 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2840 {
2841 	return skb->data - skb->head;
2842 }
2843 
2844 /**
2845  *	skb_tailroom - bytes at buffer end
2846  *	@skb: buffer to check
2847  *
2848  *	Return the number of bytes of free space at the tail of an sk_buff
2849  */
skb_tailroom(const struct sk_buff * skb)2850 static inline int skb_tailroom(const struct sk_buff *skb)
2851 {
2852 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2853 }
2854 
2855 /**
2856  *	skb_availroom - bytes at buffer end
2857  *	@skb: buffer to check
2858  *
2859  *	Return the number of bytes of free space at the tail of an sk_buff
2860  *	allocated by sk_stream_alloc()
2861  */
skb_availroom(const struct sk_buff * skb)2862 static inline int skb_availroom(const struct sk_buff *skb)
2863 {
2864 	if (skb_is_nonlinear(skb))
2865 		return 0;
2866 
2867 	return skb->end - skb->tail - skb->reserved_tailroom;
2868 }
2869 
2870 /**
2871  *	skb_reserve - adjust headroom
2872  *	@skb: buffer to alter
2873  *	@len: bytes to move
2874  *
2875  *	Increase the headroom of an empty &sk_buff by reducing the tail
2876  *	room. This is only allowed for an empty buffer.
2877  */
skb_reserve(struct sk_buff * skb,int len)2878 static inline void skb_reserve(struct sk_buff *skb, int len)
2879 {
2880 	skb->data += len;
2881 	skb->tail += len;
2882 }
2883 
2884 /**
2885  *	skb_tailroom_reserve - adjust reserved_tailroom
2886  *	@skb: buffer to alter
2887  *	@mtu: maximum amount of headlen permitted
2888  *	@needed_tailroom: minimum amount of reserved_tailroom
2889  *
2890  *	Set reserved_tailroom so that headlen can be as large as possible but
2891  *	not larger than mtu and tailroom cannot be smaller than
2892  *	needed_tailroom.
2893  *	The required headroom should already have been reserved before using
2894  *	this function.
2895  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2896 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2897 					unsigned int needed_tailroom)
2898 {
2899 	SKB_LINEAR_ASSERT(skb);
2900 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2901 		/* use at most mtu */
2902 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2903 	else
2904 		/* use up to all available space */
2905 		skb->reserved_tailroom = needed_tailroom;
2906 }
2907 
2908 #define ENCAP_TYPE_ETHER	0
2909 #define ENCAP_TYPE_IPPROTO	1
2910 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2911 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2912 					  __be16 protocol)
2913 {
2914 	skb->inner_protocol = protocol;
2915 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2916 }
2917 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2918 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2919 					 __u8 ipproto)
2920 {
2921 	skb->inner_ipproto = ipproto;
2922 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2923 }
2924 
skb_reset_inner_headers(struct sk_buff * skb)2925 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2926 {
2927 	skb->inner_mac_header = skb->mac_header;
2928 	skb->inner_network_header = skb->network_header;
2929 	skb->inner_transport_header = skb->transport_header;
2930 }
2931 
skb_mac_header_was_set(const struct sk_buff * skb)2932 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2933 {
2934 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2935 }
2936 
skb_reset_mac_len(struct sk_buff * skb)2937 static inline void skb_reset_mac_len(struct sk_buff *skb)
2938 {
2939 	if (!skb_mac_header_was_set(skb)) {
2940 		DEBUG_NET_WARN_ON_ONCE(1);
2941 		skb->mac_len = 0;
2942 	} else {
2943 		skb->mac_len = skb->network_header - skb->mac_header;
2944 	}
2945 }
2946 
skb_inner_transport_header(const struct sk_buff * skb)2947 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2948 							*skb)
2949 {
2950 	return skb->head + skb->inner_transport_header;
2951 }
2952 
skb_inner_transport_offset(const struct sk_buff * skb)2953 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2954 {
2955 	return skb_inner_transport_header(skb) - skb->data;
2956 }
2957 
skb_reset_inner_transport_header(struct sk_buff * skb)2958 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2959 {
2960 	long offset = skb->data - skb->head;
2961 
2962 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_transport_header))offset);
2963 	skb->inner_transport_header = offset;
2964 }
2965 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2966 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2967 						   const int offset)
2968 {
2969 	skb_reset_inner_transport_header(skb);
2970 	skb->inner_transport_header += offset;
2971 }
2972 
skb_inner_network_header(const struct sk_buff * skb)2973 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2974 {
2975 	return skb->head + skb->inner_network_header;
2976 }
2977 
skb_reset_inner_network_header(struct sk_buff * skb)2978 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2979 {
2980 	long offset = skb->data - skb->head;
2981 
2982 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_network_header))offset);
2983 	skb->inner_network_header = offset;
2984 }
2985 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2986 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2987 						const int offset)
2988 {
2989 	skb_reset_inner_network_header(skb);
2990 	skb->inner_network_header += offset;
2991 }
2992 
skb_inner_network_header_was_set(const struct sk_buff * skb)2993 static inline bool skb_inner_network_header_was_set(const struct sk_buff *skb)
2994 {
2995 	return skb->inner_network_header > 0;
2996 }
2997 
skb_inner_mac_header(const struct sk_buff * skb)2998 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2999 {
3000 	return skb->head + skb->inner_mac_header;
3001 }
3002 
skb_reset_inner_mac_header(struct sk_buff * skb)3003 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
3004 {
3005 	long offset = skb->data - skb->head;
3006 
3007 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->inner_mac_header))offset);
3008 	skb->inner_mac_header = offset;
3009 }
3010 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)3011 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
3012 					    const int offset)
3013 {
3014 	skb_reset_inner_mac_header(skb);
3015 	skb->inner_mac_header += offset;
3016 }
skb_transport_header_was_set(const struct sk_buff * skb)3017 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
3018 {
3019 	return skb->transport_header != (typeof(skb->transport_header))~0U;
3020 }
3021 
skb_transport_header(const struct sk_buff * skb)3022 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
3023 {
3024 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3025 	return skb->head + skb->transport_header;
3026 }
3027 
skb_reset_transport_header(struct sk_buff * skb)3028 static inline void skb_reset_transport_header(struct sk_buff *skb)
3029 {
3030 	long offset = skb->data - skb->head;
3031 
3032 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->transport_header))offset);
3033 	skb->transport_header = offset;
3034 }
3035 
skb_set_transport_header(struct sk_buff * skb,const int offset)3036 static inline void skb_set_transport_header(struct sk_buff *skb,
3037 					    const int offset)
3038 {
3039 	skb_reset_transport_header(skb);
3040 	skb->transport_header += offset;
3041 }
3042 
skb_network_header(const struct sk_buff * skb)3043 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
3044 {
3045 	return skb->head + skb->network_header;
3046 }
3047 
skb_reset_network_header(struct sk_buff * skb)3048 static inline void skb_reset_network_header(struct sk_buff *skb)
3049 {
3050 	long offset = skb->data - skb->head;
3051 
3052 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->network_header))offset);
3053 	skb->network_header = offset;
3054 }
3055 
skb_set_network_header(struct sk_buff * skb,const int offset)3056 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
3057 {
3058 	skb_reset_network_header(skb);
3059 	skb->network_header += offset;
3060 }
3061 
skb_mac_header(const struct sk_buff * skb)3062 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
3063 {
3064 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3065 	return skb->head + skb->mac_header;
3066 }
3067 
skb_mac_offset(const struct sk_buff * skb)3068 static inline int skb_mac_offset(const struct sk_buff *skb)
3069 {
3070 	return skb_mac_header(skb) - skb->data;
3071 }
3072 
skb_mac_header_len(const struct sk_buff * skb)3073 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
3074 {
3075 	DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
3076 	return skb->network_header - skb->mac_header;
3077 }
3078 
skb_unset_mac_header(struct sk_buff * skb)3079 static inline void skb_unset_mac_header(struct sk_buff *skb)
3080 {
3081 	skb->mac_header = (typeof(skb->mac_header))~0U;
3082 }
3083 
skb_reset_mac_header(struct sk_buff * skb)3084 static inline void skb_reset_mac_header(struct sk_buff *skb)
3085 {
3086 	long offset = skb->data - skb->head;
3087 
3088 	DEBUG_NET_WARN_ON_ONCE(offset != (typeof(skb->mac_header))offset);
3089 	skb->mac_header = offset;
3090 }
3091 
skb_set_mac_header(struct sk_buff * skb,const int offset)3092 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
3093 {
3094 	skb_reset_mac_header(skb);
3095 	skb->mac_header += offset;
3096 }
3097 
skb_pop_mac_header(struct sk_buff * skb)3098 static inline void skb_pop_mac_header(struct sk_buff *skb)
3099 {
3100 	skb->mac_header = skb->network_header;
3101 }
3102 
skb_probe_transport_header(struct sk_buff * skb)3103 static inline void skb_probe_transport_header(struct sk_buff *skb)
3104 {
3105 	struct flow_keys_basic keys;
3106 
3107 	if (skb_transport_header_was_set(skb))
3108 		return;
3109 
3110 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
3111 					     NULL, 0, 0, 0, 0))
3112 		skb_set_transport_header(skb, keys.control.thoff);
3113 }
3114 
skb_mac_header_rebuild(struct sk_buff * skb)3115 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
3116 {
3117 	if (skb_mac_header_was_set(skb)) {
3118 		const unsigned char *old_mac = skb_mac_header(skb);
3119 
3120 		skb_set_mac_header(skb, -skb->mac_len);
3121 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
3122 	}
3123 }
3124 
3125 /* Move the full mac header up to current network_header.
3126  * Leaves skb->data pointing at offset skb->mac_len into the mac_header.
3127  * Must be provided the complete mac header length.
3128  */
skb_mac_header_rebuild_full(struct sk_buff * skb,u32 full_mac_len)3129 static inline void skb_mac_header_rebuild_full(struct sk_buff *skb, u32 full_mac_len)
3130 {
3131 	if (skb_mac_header_was_set(skb)) {
3132 		const unsigned char *old_mac = skb_mac_header(skb);
3133 
3134 		skb_set_mac_header(skb, -full_mac_len);
3135 		memmove(skb_mac_header(skb), old_mac, full_mac_len);
3136 		__skb_push(skb, full_mac_len - skb->mac_len);
3137 	}
3138 }
3139 
skb_checksum_start_offset(const struct sk_buff * skb)3140 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
3141 {
3142 	return skb->csum_start - skb_headroom(skb);
3143 }
3144 
skb_checksum_start(const struct sk_buff * skb)3145 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
3146 {
3147 	return skb->head + skb->csum_start;
3148 }
3149 
skb_transport_offset(const struct sk_buff * skb)3150 static inline int skb_transport_offset(const struct sk_buff *skb)
3151 {
3152 	return skb_transport_header(skb) - skb->data;
3153 }
3154 
skb_network_header_len(const struct sk_buff * skb)3155 static inline u32 skb_network_header_len(const struct sk_buff *skb)
3156 {
3157 	DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
3158 	return skb->transport_header - skb->network_header;
3159 }
3160 
skb_inner_network_header_len(const struct sk_buff * skb)3161 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
3162 {
3163 	return skb->inner_transport_header - skb->inner_network_header;
3164 }
3165 
skb_network_offset(const struct sk_buff * skb)3166 static inline int skb_network_offset(const struct sk_buff *skb)
3167 {
3168 	return skb_network_header(skb) - skb->data;
3169 }
3170 
skb_inner_network_offset(const struct sk_buff * skb)3171 static inline int skb_inner_network_offset(const struct sk_buff *skb)
3172 {
3173 	return skb_inner_network_header(skb) - skb->data;
3174 }
3175 
3176 static inline enum skb_drop_reason
pskb_network_may_pull_reason(struct sk_buff * skb,unsigned int len)3177 pskb_network_may_pull_reason(struct sk_buff *skb, unsigned int len)
3178 {
3179 	return pskb_may_pull_reason(skb, skb_network_offset(skb) + len);
3180 }
3181 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)3182 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
3183 {
3184 	return pskb_network_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
3185 }
3186 
3187 /*
3188  * CPUs often take a performance hit when accessing unaligned memory
3189  * locations. The actual performance hit varies, it can be small if the
3190  * hardware handles it or large if we have to take an exception and fix it
3191  * in software.
3192  *
3193  * Since an ethernet header is 14 bytes network drivers often end up with
3194  * the IP header at an unaligned offset. The IP header can be aligned by
3195  * shifting the start of the packet by 2 bytes. Drivers should do this
3196  * with:
3197  *
3198  * skb_reserve(skb, NET_IP_ALIGN);
3199  *
3200  * The downside to this alignment of the IP header is that the DMA is now
3201  * unaligned. On some architectures the cost of an unaligned DMA is high
3202  * and this cost outweighs the gains made by aligning the IP header.
3203  *
3204  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3205  * to be overridden.
3206  */
3207 #ifndef NET_IP_ALIGN
3208 #define NET_IP_ALIGN	2
3209 #endif
3210 
3211 /*
3212  * The networking layer reserves some headroom in skb data (via
3213  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3214  * the header has to grow. In the default case, if the header has to grow
3215  * 32 bytes or less we avoid the reallocation.
3216  *
3217  * Unfortunately this headroom changes the DMA alignment of the resulting
3218  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3219  * on some architectures. An architecture can override this value,
3220  * perhaps setting it to a cacheline in size (since that will maintain
3221  * cacheline alignment of the DMA). It must be a power of 2.
3222  *
3223  * Various parts of the networking layer expect at least 32 bytes of
3224  * headroom, you should not reduce this.
3225  *
3226  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3227  * to reduce average number of cache lines per packet.
3228  * get_rps_cpu() for example only access one 64 bytes aligned block :
3229  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3230  */
3231 #ifndef NET_SKB_PAD
3232 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
3233 #endif
3234 
3235 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3236 
__skb_set_length(struct sk_buff * skb,unsigned int len)3237 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3238 {
3239 	if (WARN_ON(skb_is_nonlinear(skb)))
3240 		return;
3241 	skb->len = len;
3242 	skb_set_tail_pointer(skb, len);
3243 }
3244 
__skb_trim(struct sk_buff * skb,unsigned int len)3245 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3246 {
3247 	__skb_set_length(skb, len);
3248 }
3249 
3250 void skb_trim(struct sk_buff *skb, unsigned int len);
3251 
__pskb_trim(struct sk_buff * skb,unsigned int len)3252 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3253 {
3254 	if (skb->data_len)
3255 		return ___pskb_trim(skb, len);
3256 	__skb_trim(skb, len);
3257 	return 0;
3258 }
3259 
pskb_trim(struct sk_buff * skb,unsigned int len)3260 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3261 {
3262 	skb_might_realloc(skb);
3263 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3264 }
3265 
3266 /**
3267  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3268  *	@skb: buffer to alter
3269  *	@len: new length
3270  *
3271  *	This is identical to pskb_trim except that the caller knows that
3272  *	the skb is not cloned so we should never get an error due to out-
3273  *	of-memory.
3274  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)3275 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3276 {
3277 	int err = pskb_trim(skb, len);
3278 	BUG_ON(err);
3279 }
3280 
__skb_grow(struct sk_buff * skb,unsigned int len)3281 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3282 {
3283 	unsigned int diff = len - skb->len;
3284 
3285 	if (skb_tailroom(skb) < diff) {
3286 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3287 					   GFP_ATOMIC);
3288 		if (ret)
3289 			return ret;
3290 	}
3291 	__skb_set_length(skb, len);
3292 	return 0;
3293 }
3294 
3295 /**
3296  *	skb_orphan - orphan a buffer
3297  *	@skb: buffer to orphan
3298  *
3299  *	If a buffer currently has an owner then we call the owner's
3300  *	destructor function and make the @skb unowned. The buffer continues
3301  *	to exist but is no longer charged to its former owner.
3302  */
skb_orphan(struct sk_buff * skb)3303 static inline void skb_orphan(struct sk_buff *skb)
3304 {
3305 	if (skb->destructor) {
3306 		skb->destructor(skb);
3307 		skb->destructor = NULL;
3308 		skb->sk		= NULL;
3309 	} else {
3310 		BUG_ON(skb->sk);
3311 	}
3312 }
3313 
3314 /**
3315  *	skb_orphan_frags - orphan the frags contained in a buffer
3316  *	@skb: buffer to orphan frags from
3317  *	@gfp_mask: allocation mask for replacement pages
3318  *
3319  *	For each frag in the SKB which needs a destructor (i.e. has an
3320  *	owner) create a copy of that frag and release the original
3321  *	page by calling the destructor.
3322  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)3323 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3324 {
3325 	if (likely(!skb_zcopy(skb)))
3326 		return 0;
3327 	if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3328 		return 0;
3329 	return skb_copy_ubufs(skb, gfp_mask);
3330 }
3331 
3332 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)3333 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3334 {
3335 	if (likely(!skb_zcopy(skb)))
3336 		return 0;
3337 	return skb_copy_ubufs(skb, gfp_mask);
3338 }
3339 
3340 /**
3341  *	__skb_queue_purge_reason - empty a list
3342  *	@list: list to empty
3343  *	@reason: drop reason
3344  *
3345  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3346  *	the list and one reference dropped. This function does not take the
3347  *	list lock and the caller must hold the relevant locks to use it.
3348  */
__skb_queue_purge_reason(struct sk_buff_head * list,enum skb_drop_reason reason)3349 static inline void __skb_queue_purge_reason(struct sk_buff_head *list,
3350 					    enum skb_drop_reason reason)
3351 {
3352 	struct sk_buff *skb;
3353 
3354 	while ((skb = __skb_dequeue(list)) != NULL)
3355 		kfree_skb_reason(skb, reason);
3356 }
3357 
__skb_queue_purge(struct sk_buff_head * list)3358 static inline void __skb_queue_purge(struct sk_buff_head *list)
3359 {
3360 	__skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3361 }
3362 
3363 void skb_queue_purge_reason(struct sk_buff_head *list,
3364 			    enum skb_drop_reason reason);
3365 
skb_queue_purge(struct sk_buff_head * list)3366 static inline void skb_queue_purge(struct sk_buff_head *list)
3367 {
3368 	skb_queue_purge_reason(list, SKB_DROP_REASON_QUEUE_PURGE);
3369 }
3370 
3371 unsigned int skb_rbtree_purge(struct rb_root *root);
3372 void skb_errqueue_purge(struct sk_buff_head *list);
3373 
3374 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3375 
3376 /**
3377  * netdev_alloc_frag - allocate a page fragment
3378  * @fragsz: fragment size
3379  *
3380  * Allocates a frag from a page for receive buffer.
3381  * Uses GFP_ATOMIC allocations.
3382  */
netdev_alloc_frag(unsigned int fragsz)3383 static inline void *netdev_alloc_frag(unsigned int fragsz)
3384 {
3385 	return __netdev_alloc_frag_align(fragsz, ~0u);
3386 }
3387 
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)3388 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3389 					    unsigned int align)
3390 {
3391 	WARN_ON_ONCE(!is_power_of_2(align));
3392 	return __netdev_alloc_frag_align(fragsz, -align);
3393 }
3394 
3395 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3396 				   gfp_t gfp_mask);
3397 
3398 /**
3399  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
3400  *	@dev: network device to receive on
3401  *	@length: length to allocate
3402  *
3403  *	Allocate a new &sk_buff and assign it a usage count of one. The
3404  *	buffer has unspecified headroom built in. Users should allocate
3405  *	the headroom they think they need without accounting for the
3406  *	built in space. The built in space is used for optimisations.
3407  *
3408  *	%NULL is returned if there is no free memory. Although this function
3409  *	allocates memory it can be called from an interrupt.
3410  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)3411 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3412 					       unsigned int length)
3413 {
3414 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3415 }
3416 
3417 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)3418 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3419 					      gfp_t gfp_mask)
3420 {
3421 	return __netdev_alloc_skb(NULL, length, gfp_mask);
3422 }
3423 
3424 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)3425 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3426 {
3427 	return netdev_alloc_skb(NULL, length);
3428 }
3429 
3430 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)3431 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3432 		unsigned int length, gfp_t gfp)
3433 {
3434 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3435 
3436 	if (NET_IP_ALIGN && skb)
3437 		skb_reserve(skb, NET_IP_ALIGN);
3438 	return skb;
3439 }
3440 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)3441 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3442 		unsigned int length)
3443 {
3444 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3445 }
3446 
skb_free_frag(void * addr)3447 static inline void skb_free_frag(void *addr)
3448 {
3449 	page_frag_free(addr);
3450 }
3451 
3452 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3453 
napi_alloc_frag(unsigned int fragsz)3454 static inline void *napi_alloc_frag(unsigned int fragsz)
3455 {
3456 	return __napi_alloc_frag_align(fragsz, ~0u);
3457 }
3458 
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)3459 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3460 					  unsigned int align)
3461 {
3462 	WARN_ON_ONCE(!is_power_of_2(align));
3463 	return __napi_alloc_frag_align(fragsz, -align);
3464 }
3465 
3466 struct sk_buff *napi_alloc_skb(struct napi_struct *napi, unsigned int length);
3467 void napi_consume_skb(struct sk_buff *skb, int budget);
3468 
3469 void napi_skb_free_stolen_head(struct sk_buff *skb);
3470 void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3471 
3472 /**
3473  * __dev_alloc_pages - allocate page for network Rx
3474  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3475  * @order: size of the allocation
3476  *
3477  * Allocate a new page.
3478  *
3479  * %NULL is returned if there is no free memory.
3480 */
__dev_alloc_pages_noprof(gfp_t gfp_mask,unsigned int order)3481 static inline struct page *__dev_alloc_pages_noprof(gfp_t gfp_mask,
3482 					     unsigned int order)
3483 {
3484 	/* This piece of code contains several assumptions.
3485 	 * 1.  This is for device Rx, therefore a cold page is preferred.
3486 	 * 2.  The expectation is the user wants a compound page.
3487 	 * 3.  If requesting a order 0 page it will not be compound
3488 	 *     due to the check to see if order has a value in prep_new_page
3489 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3490 	 *     code in gfp_to_alloc_flags that should be enforcing this.
3491 	 */
3492 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3493 
3494 	return alloc_pages_node_noprof(NUMA_NO_NODE, gfp_mask, order);
3495 }
3496 #define __dev_alloc_pages(...)	alloc_hooks(__dev_alloc_pages_noprof(__VA_ARGS__))
3497 
3498 /*
3499  * This specialized allocator has to be a macro for its allocations to be
3500  * accounted separately (to have a separate alloc_tag).
3501  */
3502 #define dev_alloc_pages(_order) __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, _order)
3503 
3504 /**
3505  * __dev_alloc_page - allocate a page for network Rx
3506  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3507  *
3508  * Allocate a new page.
3509  *
3510  * %NULL is returned if there is no free memory.
3511  */
__dev_alloc_page_noprof(gfp_t gfp_mask)3512 static inline struct page *__dev_alloc_page_noprof(gfp_t gfp_mask)
3513 {
3514 	return __dev_alloc_pages_noprof(gfp_mask, 0);
3515 }
3516 #define __dev_alloc_page(...)	alloc_hooks(__dev_alloc_page_noprof(__VA_ARGS__))
3517 
3518 /*
3519  * This specialized allocator has to be a macro for its allocations to be
3520  * accounted separately (to have a separate alloc_tag).
3521  */
3522 #define dev_alloc_page()	dev_alloc_pages(0)
3523 
3524 /**
3525  * dev_page_is_reusable - check whether a page can be reused for network Rx
3526  * @page: the page to test
3527  *
3528  * A page shouldn't be considered for reusing/recycling if it was allocated
3529  * under memory pressure or at a distant memory node.
3530  *
3531  * Returns: false if this page should be returned to page allocator, true
3532  * otherwise.
3533  */
dev_page_is_reusable(const struct page * page)3534 static inline bool dev_page_is_reusable(const struct page *page)
3535 {
3536 	return likely(page_to_nid(page) == numa_mem_id() &&
3537 		      !page_is_pfmemalloc(page));
3538 }
3539 
3540 /**
3541  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3542  *	@page: The page that was allocated from skb_alloc_page
3543  *	@skb: The skb that may need pfmemalloc set
3544  */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3545 static inline void skb_propagate_pfmemalloc(const struct page *page,
3546 					    struct sk_buff *skb)
3547 {
3548 	if (page_is_pfmemalloc(page))
3549 		skb->pfmemalloc = true;
3550 }
3551 
3552 /**
3553  * skb_frag_off() - Returns the offset of a skb fragment
3554  * @frag: the paged fragment
3555  */
skb_frag_off(const skb_frag_t * frag)3556 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3557 {
3558 	return frag->offset;
3559 }
3560 
3561 /**
3562  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3563  * @frag: skb fragment
3564  * @delta: value to add
3565  */
skb_frag_off_add(skb_frag_t * frag,int delta)3566 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3567 {
3568 	frag->offset += delta;
3569 }
3570 
3571 /**
3572  * skb_frag_off_set() - Sets the offset of a skb fragment
3573  * @frag: skb fragment
3574  * @offset: offset of fragment
3575  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3576 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3577 {
3578 	frag->offset = offset;
3579 }
3580 
3581 /**
3582  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3583  * @fragto: skb fragment where offset is set
3584  * @fragfrom: skb fragment offset is copied from
3585  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3586 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3587 				     const skb_frag_t *fragfrom)
3588 {
3589 	fragto->offset = fragfrom->offset;
3590 }
3591 
3592 /* Return: true if the skb_frag contains a net_iov. */
skb_frag_is_net_iov(const skb_frag_t * frag)3593 static inline bool skb_frag_is_net_iov(const skb_frag_t *frag)
3594 {
3595 	return netmem_is_net_iov(frag->netmem);
3596 }
3597 
3598 /**
3599  * skb_frag_net_iov - retrieve the net_iov referred to by fragment
3600  * @frag: the fragment
3601  *
3602  * Return: the &struct net_iov associated with @frag. Returns NULL if this
3603  * frag has no associated net_iov.
3604  */
skb_frag_net_iov(const skb_frag_t * frag)3605 static inline struct net_iov *skb_frag_net_iov(const skb_frag_t *frag)
3606 {
3607 	if (!skb_frag_is_net_iov(frag))
3608 		return NULL;
3609 
3610 	return netmem_to_net_iov(frag->netmem);
3611 }
3612 
3613 /**
3614  * skb_frag_page - retrieve the page referred to by a paged fragment
3615  * @frag: the paged fragment
3616  *
3617  * Return: the &struct page associated with @frag. Returns NULL if this frag
3618  * has no associated page.
3619  */
skb_frag_page(const skb_frag_t * frag)3620 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3621 {
3622 	if (skb_frag_is_net_iov(frag))
3623 		return NULL;
3624 
3625 	return netmem_to_page(frag->netmem);
3626 }
3627 
3628 /**
3629  * skb_frag_netmem - retrieve the netmem referred to by a fragment
3630  * @frag: the fragment
3631  *
3632  * Return: the &netmem_ref associated with @frag.
3633  */
skb_frag_netmem(const skb_frag_t * frag)3634 static inline netmem_ref skb_frag_netmem(const skb_frag_t *frag)
3635 {
3636 	return frag->netmem;
3637 }
3638 
3639 int skb_pp_cow_data(struct page_pool *pool, struct sk_buff **pskb,
3640 		    unsigned int headroom);
3641 int skb_cow_data_for_xdp(struct page_pool *pool, struct sk_buff **pskb,
3642 			 const struct bpf_prog *prog);
3643 
3644 /**
3645  * skb_frag_address - gets the address of the data contained in a paged fragment
3646  * @frag: the paged fragment buffer
3647  *
3648  * Returns: the address of the data within @frag. The page must already
3649  * be mapped.
3650  */
skb_frag_address(const skb_frag_t * frag)3651 static inline void *skb_frag_address(const skb_frag_t *frag)
3652 {
3653 	if (!skb_frag_page(frag))
3654 		return NULL;
3655 
3656 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3657 }
3658 
3659 /**
3660  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3661  * @frag: the paged fragment buffer
3662  *
3663  * Returns: the address of the data within @frag. Checks that the page
3664  * is mapped and returns %NULL otherwise.
3665  */
skb_frag_address_safe(const skb_frag_t * frag)3666 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3667 {
3668 	struct page *page = skb_frag_page(frag);
3669 	void *ptr;
3670 
3671 	if (!page)
3672 		return NULL;
3673 
3674 	ptr = page_address(page);
3675 	if (unlikely(!ptr))
3676 		return NULL;
3677 
3678 	return ptr + skb_frag_off(frag);
3679 }
3680 
3681 /**
3682  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3683  * @fragto: skb fragment where page is set
3684  * @fragfrom: skb fragment page is copied from
3685  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3686 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3687 				      const skb_frag_t *fragfrom)
3688 {
3689 	fragto->netmem = fragfrom->netmem;
3690 }
3691 
3692 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3693 
3694 /**
3695  * __skb_frag_dma_map - maps a paged fragment via the DMA API
3696  * @dev: the device to map the fragment to
3697  * @frag: the paged fragment to map
3698  * @offset: the offset within the fragment (starting at the
3699  *          fragment's own offset)
3700  * @size: the number of bytes to map
3701  * @dir: the direction of the mapping (``PCI_DMA_*``)
3702  *
3703  * Maps the page associated with @frag to @device.
3704  */
__skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3705 static inline dma_addr_t __skb_frag_dma_map(struct device *dev,
3706 					    const skb_frag_t *frag,
3707 					    size_t offset, size_t size,
3708 					    enum dma_data_direction dir)
3709 {
3710 	if (skb_frag_is_net_iov(frag)) {
3711 		return netmem_to_net_iov(frag->netmem)->dma_addr + offset +
3712 		       frag->offset;
3713 	}
3714 	return dma_map_page(dev, skb_frag_page(frag),
3715 			    skb_frag_off(frag) + offset, size, dir);
3716 }
3717 
3718 #define skb_frag_dma_map(dev, frag, ...)				\
3719 	CONCATENATE(_skb_frag_dma_map,					\
3720 		    COUNT_ARGS(__VA_ARGS__))(dev, frag, ##__VA_ARGS__)
3721 
3722 #define __skb_frag_dma_map1(dev, frag, offset, uf, uo) ({		\
3723 	const skb_frag_t *uf = (frag);					\
3724 	size_t uo = (offset);						\
3725 									\
3726 	__skb_frag_dma_map(dev, uf, uo, skb_frag_size(uf) - uo,		\
3727 			   DMA_TO_DEVICE);				\
3728 })
3729 #define _skb_frag_dma_map1(dev, frag, offset)				\
3730 	__skb_frag_dma_map1(dev, frag, offset, __UNIQUE_ID(frag_),	\
3731 			    __UNIQUE_ID(offset_))
3732 #define _skb_frag_dma_map0(dev, frag)					\
3733 	_skb_frag_dma_map1(dev, frag, 0)
3734 #define _skb_frag_dma_map2(dev, frag, offset, size)			\
3735 	__skb_frag_dma_map(dev, frag, offset, size, DMA_TO_DEVICE)
3736 #define _skb_frag_dma_map3(dev, frag, offset, size, dir)		\
3737 	__skb_frag_dma_map(dev, frag, offset, size, dir)
3738 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3739 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3740 					gfp_t gfp_mask)
3741 {
3742 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3743 }
3744 
3745 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3746 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3747 						  gfp_t gfp_mask)
3748 {
3749 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3750 }
3751 
3752 
3753 /**
3754  *	skb_clone_writable - is the header of a clone writable
3755  *	@skb: buffer to check
3756  *	@len: length up to which to write
3757  *
3758  *	Returns true if modifying the header part of the cloned buffer
3759  *	does not requires the data to be copied.
3760  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3761 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3762 {
3763 	return !skb_header_cloned(skb) &&
3764 	       skb_headroom(skb) + len <= skb->hdr_len;
3765 }
3766 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3767 static inline int skb_try_make_writable(struct sk_buff *skb,
3768 					unsigned int write_len)
3769 {
3770 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3771 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3772 }
3773 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3774 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3775 			    int cloned)
3776 {
3777 	int delta = 0;
3778 
3779 	if (headroom > skb_headroom(skb))
3780 		delta = headroom - skb_headroom(skb);
3781 
3782 	if (delta || cloned)
3783 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3784 					GFP_ATOMIC);
3785 	return 0;
3786 }
3787 
3788 /**
3789  *	skb_cow - copy header of skb when it is required
3790  *	@skb: buffer to cow
3791  *	@headroom: needed headroom
3792  *
3793  *	If the skb passed lacks sufficient headroom or its data part
3794  *	is shared, data is reallocated. If reallocation fails, an error
3795  *	is returned and original skb is not changed.
3796  *
3797  *	The result is skb with writable area skb->head...skb->tail
3798  *	and at least @headroom of space at head.
3799  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3800 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3801 {
3802 	return __skb_cow(skb, headroom, skb_cloned(skb));
3803 }
3804 
3805 /**
3806  *	skb_cow_head - skb_cow but only making the head writable
3807  *	@skb: buffer to cow
3808  *	@headroom: needed headroom
3809  *
3810  *	This function is identical to skb_cow except that we replace the
3811  *	skb_cloned check by skb_header_cloned.  It should be used when
3812  *	you only need to push on some header and do not need to modify
3813  *	the data.
3814  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3815 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3816 {
3817 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3818 }
3819 
3820 /**
3821  *	skb_padto	- pad an skbuff up to a minimal size
3822  *	@skb: buffer to pad
3823  *	@len: minimal length
3824  *
3825  *	Pads up a buffer to ensure the trailing bytes exist and are
3826  *	blanked. If the buffer already contains sufficient data it
3827  *	is untouched. Otherwise it is extended. Returns zero on
3828  *	success. The skb is freed on error.
3829  */
skb_padto(struct sk_buff * skb,unsigned int len)3830 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3831 {
3832 	unsigned int size = skb->len;
3833 	if (likely(size >= len))
3834 		return 0;
3835 	return skb_pad(skb, len - size);
3836 }
3837 
3838 /**
3839  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3840  *	@skb: buffer to pad
3841  *	@len: minimal length
3842  *	@free_on_error: free buffer on error
3843  *
3844  *	Pads up a buffer to ensure the trailing bytes exist and are
3845  *	blanked. If the buffer already contains sufficient data it
3846  *	is untouched. Otherwise it is extended. Returns zero on
3847  *	success. The skb is freed on error if @free_on_error is true.
3848  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3849 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3850 					       unsigned int len,
3851 					       bool free_on_error)
3852 {
3853 	unsigned int size = skb->len;
3854 
3855 	if (unlikely(size < len)) {
3856 		len -= size;
3857 		if (__skb_pad(skb, len, free_on_error))
3858 			return -ENOMEM;
3859 		__skb_put(skb, len);
3860 	}
3861 	return 0;
3862 }
3863 
3864 /**
3865  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3866  *	@skb: buffer to pad
3867  *	@len: minimal length
3868  *
3869  *	Pads up a buffer to ensure the trailing bytes exist and are
3870  *	blanked. If the buffer already contains sufficient data it
3871  *	is untouched. Otherwise it is extended. Returns zero on
3872  *	success. The skb is freed on error.
3873  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3874 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3875 {
3876 	return __skb_put_padto(skb, len, true);
3877 }
3878 
3879 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i)
3880 	__must_check;
3881 
skb_can_coalesce_netmem(struct sk_buff * skb,int i,netmem_ref netmem,int off)3882 static inline bool skb_can_coalesce_netmem(struct sk_buff *skb, int i,
3883 					   netmem_ref netmem, int off)
3884 {
3885 	if (skb_zcopy(skb))
3886 		return false;
3887 	if (i) {
3888 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3889 
3890 		return netmem == skb_frag_netmem(frag) &&
3891 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3892 	}
3893 	return false;
3894 }
3895 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3896 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3897 				    const struct page *page, int off)
3898 {
3899 	return skb_can_coalesce_netmem(skb, i, page_to_netmem(page), off);
3900 }
3901 
__skb_linearize(struct sk_buff * skb)3902 static inline int __skb_linearize(struct sk_buff *skb)
3903 {
3904 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3905 }
3906 
3907 /**
3908  *	skb_linearize - convert paged skb to linear one
3909  *	@skb: buffer to linarize
3910  *
3911  *	If there is no free memory -ENOMEM is returned, otherwise zero
3912  *	is returned and the old skb data released.
3913  */
skb_linearize(struct sk_buff * skb)3914 static inline int skb_linearize(struct sk_buff *skb)
3915 {
3916 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3917 }
3918 
3919 /**
3920  * skb_has_shared_frag - can any frag be overwritten
3921  * @skb: buffer to test
3922  *
3923  * Return: true if the skb has at least one frag that might be modified
3924  * by an external entity (as in vmsplice()/sendfile())
3925  */
skb_has_shared_frag(const struct sk_buff * skb)3926 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3927 {
3928 	return skb_is_nonlinear(skb) &&
3929 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3930 }
3931 
3932 /**
3933  *	skb_linearize_cow - make sure skb is linear and writable
3934  *	@skb: buffer to process
3935  *
3936  *	If there is no free memory -ENOMEM is returned, otherwise zero
3937  *	is returned and the old skb data released.
3938  */
skb_linearize_cow(struct sk_buff * skb)3939 static inline int skb_linearize_cow(struct sk_buff *skb)
3940 {
3941 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3942 	       __skb_linearize(skb) : 0;
3943 }
3944 
3945 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3946 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3947 		     unsigned int off)
3948 {
3949 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3950 		skb->csum = csum_block_sub(skb->csum,
3951 					   csum_partial(start, len, 0), off);
3952 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3953 		 skb_checksum_start_offset(skb) < 0)
3954 		skb->ip_summed = CHECKSUM_NONE;
3955 }
3956 
3957 /**
3958  *	skb_postpull_rcsum - update checksum for received skb after pull
3959  *	@skb: buffer to update
3960  *	@start: start of data before pull
3961  *	@len: length of data pulled
3962  *
3963  *	After doing a pull on a received packet, you need to call this to
3964  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3965  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3966  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3967 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3968 				      const void *start, unsigned int len)
3969 {
3970 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3971 		skb->csum = wsum_negate(csum_partial(start, len,
3972 						     wsum_negate(skb->csum)));
3973 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3974 		 skb_checksum_start_offset(skb) < 0)
3975 		skb->ip_summed = CHECKSUM_NONE;
3976 }
3977 
3978 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3979 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3980 		     unsigned int off)
3981 {
3982 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3983 		skb->csum = csum_block_add(skb->csum,
3984 					   csum_partial(start, len, 0), off);
3985 }
3986 
3987 /**
3988  *	skb_postpush_rcsum - update checksum for received skb after push
3989  *	@skb: buffer to update
3990  *	@start: start of data after push
3991  *	@len: length of data pushed
3992  *
3993  *	After doing a push on a received packet, you need to call this to
3994  *	update the CHECKSUM_COMPLETE checksum.
3995  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3996 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3997 				      const void *start, unsigned int len)
3998 {
3999 	__skb_postpush_rcsum(skb, start, len, 0);
4000 }
4001 
4002 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
4003 
4004 /**
4005  *	skb_push_rcsum - push skb and update receive checksum
4006  *	@skb: buffer to update
4007  *	@len: length of data pulled
4008  *
4009  *	This function performs an skb_push on the packet and updates
4010  *	the CHECKSUM_COMPLETE checksum.  It should be used on
4011  *	receive path processing instead of skb_push unless you know
4012  *	that the checksum difference is zero (e.g., a valid IP header)
4013  *	or you are setting ip_summed to CHECKSUM_NONE.
4014  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)4015 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
4016 {
4017 	skb_push(skb, len);
4018 	skb_postpush_rcsum(skb, skb->data, len);
4019 	return skb->data;
4020 }
4021 
4022 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
4023 /**
4024  *	pskb_trim_rcsum - trim received skb and update checksum
4025  *	@skb: buffer to trim
4026  *	@len: new length
4027  *
4028  *	This is exactly the same as pskb_trim except that it ensures the
4029  *	checksum of received packets are still valid after the operation.
4030  *	It can change skb pointers.
4031  */
4032 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)4033 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4034 {
4035 	skb_might_realloc(skb);
4036 	if (likely(len >= skb->len))
4037 		return 0;
4038 	return pskb_trim_rcsum_slow(skb, len);
4039 }
4040 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)4041 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
4042 {
4043 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4044 		skb->ip_summed = CHECKSUM_NONE;
4045 	__skb_trim(skb, len);
4046 	return 0;
4047 }
4048 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)4049 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
4050 {
4051 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4052 		skb->ip_summed = CHECKSUM_NONE;
4053 	return __skb_grow(skb, len);
4054 }
4055 
4056 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
4057 #define skb_rb_first(root) rb_to_skb(rb_first(root))
4058 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
4059 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
4060 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
4061 
4062 #define skb_queue_walk(queue, skb) \
4063 		for (skb = (queue)->next;					\
4064 		     skb != (struct sk_buff *)(queue);				\
4065 		     skb = skb->next)
4066 
4067 #define skb_queue_walk_safe(queue, skb, tmp)					\
4068 		for (skb = (queue)->next, tmp = skb->next;			\
4069 		     skb != (struct sk_buff *)(queue);				\
4070 		     skb = tmp, tmp = skb->next)
4071 
4072 #define skb_queue_walk_from(queue, skb)						\
4073 		for (; skb != (struct sk_buff *)(queue);			\
4074 		     skb = skb->next)
4075 
4076 #define skb_rbtree_walk(skb, root)						\
4077 		for (skb = skb_rb_first(root); skb != NULL;			\
4078 		     skb = skb_rb_next(skb))
4079 
4080 #define skb_rbtree_walk_from(skb)						\
4081 		for (; skb != NULL;						\
4082 		     skb = skb_rb_next(skb))
4083 
4084 #define skb_rbtree_walk_from_safe(skb, tmp)					\
4085 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
4086 		     skb = tmp)
4087 
4088 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
4089 		for (tmp = skb->next;						\
4090 		     skb != (struct sk_buff *)(queue);				\
4091 		     skb = tmp, tmp = skb->next)
4092 
4093 #define skb_queue_reverse_walk(queue, skb) \
4094 		for (skb = (queue)->prev;					\
4095 		     skb != (struct sk_buff *)(queue);				\
4096 		     skb = skb->prev)
4097 
4098 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
4099 		for (skb = (queue)->prev, tmp = skb->prev;			\
4100 		     skb != (struct sk_buff *)(queue);				\
4101 		     skb = tmp, tmp = skb->prev)
4102 
4103 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
4104 		for (tmp = skb->prev;						\
4105 		     skb != (struct sk_buff *)(queue);				\
4106 		     skb = tmp, tmp = skb->prev)
4107 
skb_has_frag_list(const struct sk_buff * skb)4108 static inline bool skb_has_frag_list(const struct sk_buff *skb)
4109 {
4110 	return skb_shinfo(skb)->frag_list != NULL;
4111 }
4112 
skb_frag_list_init(struct sk_buff * skb)4113 static inline void skb_frag_list_init(struct sk_buff *skb)
4114 {
4115 	skb_shinfo(skb)->frag_list = NULL;
4116 }
4117 
4118 #define skb_walk_frags(skb, iter)	\
4119 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
4120 
4121 
4122 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
4123 				int *err, long *timeo_p,
4124 				const struct sk_buff *skb);
4125 struct sk_buff *__skb_try_recv_from_queue(struct sk_buff_head *queue,
4126 					  unsigned int flags,
4127 					  int *off, int *err,
4128 					  struct sk_buff **last);
4129 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
4130 					struct sk_buff_head *queue,
4131 					unsigned int flags, int *off, int *err,
4132 					struct sk_buff **last);
4133 struct sk_buff *__skb_recv_datagram(struct sock *sk,
4134 				    struct sk_buff_head *sk_queue,
4135 				    unsigned int flags, int *off, int *err);
4136 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
4137 __poll_t datagram_poll(struct file *file, struct socket *sock,
4138 			   struct poll_table_struct *wait);
4139 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
4140 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)4141 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
4142 					struct msghdr *msg, int size)
4143 {
4144 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
4145 }
4146 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
4147 				   struct msghdr *msg);
4148 int skb_copy_and_crc32c_datagram_iter(const struct sk_buff *skb, int offset,
4149 				      struct iov_iter *to, int len, u32 *crcp);
4150 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
4151 				 struct iov_iter *from, int len);
4152 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
4153 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
4154 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
4155 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
4156 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
4157 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
4158 			      int len);
4159 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
4160 		    struct pipe_inode_info *pipe, unsigned int len,
4161 		    unsigned int flags);
4162 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
4163 			 int len);
4164 int skb_send_sock_locked_with_flags(struct sock *sk, struct sk_buff *skb,
4165 				    int offset, int len, int flags);
4166 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
4167 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
4168 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
4169 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
4170 		 int len, int hlen);
4171 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
4172 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
4173 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
4174 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
4175 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
4176 				 unsigned int offset);
4177 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4178 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4179 int skb_ensure_writable_head_tail(struct sk_buff *skb, struct net_device *dev);
4180 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4181 int skb_vlan_pop(struct sk_buff *skb);
4182 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4183 int skb_eth_pop(struct sk_buff *skb);
4184 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4185 		 const unsigned char *src);
4186 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4187 		  int mac_len, bool ethernet);
4188 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4189 		 bool ethernet);
4190 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4191 int skb_mpls_dec_ttl(struct sk_buff *skb);
4192 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4193 			     gfp_t gfp);
4194 
memcpy_from_msg(void * data,struct msghdr * msg,int len)4195 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4196 {
4197 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4198 }
4199 
memcpy_to_msg(struct msghdr * msg,void * data,int len)4200 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4201 {
4202 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4203 }
4204 
4205 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4206 		    __wsum csum);
4207 u32 skb_crc32c(const struct sk_buff *skb, int offset, int len, u32 crc);
4208 
4209 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)4210 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4211 		     const void *data, int hlen, void *buffer)
4212 {
4213 	if (likely(hlen - offset >= len))
4214 		return (void *)data + offset;
4215 
4216 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4217 		return NULL;
4218 
4219 	return buffer;
4220 }
4221 
4222 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)4223 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4224 {
4225 	return __skb_header_pointer(skb, offset, len, skb->data,
4226 				    skb_headlen(skb), buffer);
4227 }
4228 
4229 static inline void * __must_check
skb_pointer_if_linear(const struct sk_buff * skb,int offset,int len)4230 skb_pointer_if_linear(const struct sk_buff *skb, int offset, int len)
4231 {
4232 	if (likely(skb_headlen(skb) - offset >= len))
4233 		return skb->data + offset;
4234 	return NULL;
4235 }
4236 
4237 /**
4238  *	skb_needs_linearize - check if we need to linearize a given skb
4239  *			      depending on the given device features.
4240  *	@skb: socket buffer to check
4241  *	@features: net device features
4242  *
4243  *	Returns true if either:
4244  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
4245  *	2. skb is fragmented and the device does not support SG.
4246  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)4247 static inline bool skb_needs_linearize(struct sk_buff *skb,
4248 				       netdev_features_t features)
4249 {
4250 	return skb_is_nonlinear(skb) &&
4251 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4252 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4253 }
4254 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)4255 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4256 					     void *to,
4257 					     const unsigned int len)
4258 {
4259 	memcpy(to, skb->data, len);
4260 }
4261 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)4262 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4263 						    const int offset, void *to,
4264 						    const unsigned int len)
4265 {
4266 	memcpy(to, skb->data + offset, len);
4267 }
4268 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)4269 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4270 					   const void *from,
4271 					   const unsigned int len)
4272 {
4273 	memcpy(skb->data, from, len);
4274 }
4275 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)4276 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4277 						  const int offset,
4278 						  const void *from,
4279 						  const unsigned int len)
4280 {
4281 	memcpy(skb->data + offset, from, len);
4282 }
4283 
4284 void skb_init(void);
4285 
skb_get_ktime(const struct sk_buff * skb)4286 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4287 {
4288 	return skb->tstamp;
4289 }
4290 
4291 /**
4292  *	skb_get_timestamp - get timestamp from a skb
4293  *	@skb: skb to get stamp from
4294  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
4295  *
4296  *	Timestamps are stored in the skb as offsets to a base timestamp.
4297  *	This function converts the offset back to a struct timeval and stores
4298  *	it in stamp.
4299  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)4300 static inline void skb_get_timestamp(const struct sk_buff *skb,
4301 				     struct __kernel_old_timeval *stamp)
4302 {
4303 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
4304 }
4305 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)4306 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4307 					 struct __kernel_sock_timeval *stamp)
4308 {
4309 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4310 
4311 	stamp->tv_sec = ts.tv_sec;
4312 	stamp->tv_usec = ts.tv_nsec / 1000;
4313 }
4314 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)4315 static inline void skb_get_timestampns(const struct sk_buff *skb,
4316 				       struct __kernel_old_timespec *stamp)
4317 {
4318 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4319 
4320 	stamp->tv_sec = ts.tv_sec;
4321 	stamp->tv_nsec = ts.tv_nsec;
4322 }
4323 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)4324 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4325 					   struct __kernel_timespec *stamp)
4326 {
4327 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4328 
4329 	stamp->tv_sec = ts.tv_sec;
4330 	stamp->tv_nsec = ts.tv_nsec;
4331 }
4332 
__net_timestamp(struct sk_buff * skb)4333 static inline void __net_timestamp(struct sk_buff *skb)
4334 {
4335 	skb->tstamp = ktime_get_real();
4336 	skb->tstamp_type = SKB_CLOCK_REALTIME;
4337 }
4338 
net_timedelta(ktime_t t)4339 static inline ktime_t net_timedelta(ktime_t t)
4340 {
4341 	return ktime_sub(ktime_get_real(), t);
4342 }
4343 
skb_set_delivery_time(struct sk_buff * skb,ktime_t kt,u8 tstamp_type)4344 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4345 					 u8 tstamp_type)
4346 {
4347 	skb->tstamp = kt;
4348 
4349 	if (kt)
4350 		skb->tstamp_type = tstamp_type;
4351 	else
4352 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4353 }
4354 
skb_set_delivery_type_by_clockid(struct sk_buff * skb,ktime_t kt,clockid_t clockid)4355 static inline void skb_set_delivery_type_by_clockid(struct sk_buff *skb,
4356 						    ktime_t kt, clockid_t clockid)
4357 {
4358 	u8 tstamp_type = SKB_CLOCK_REALTIME;
4359 
4360 	switch (clockid) {
4361 	case CLOCK_REALTIME:
4362 		break;
4363 	case CLOCK_MONOTONIC:
4364 		tstamp_type = SKB_CLOCK_MONOTONIC;
4365 		break;
4366 	case CLOCK_TAI:
4367 		tstamp_type = SKB_CLOCK_TAI;
4368 		break;
4369 	default:
4370 		WARN_ON_ONCE(1);
4371 		kt = 0;
4372 	}
4373 
4374 	skb_set_delivery_time(skb, kt, tstamp_type);
4375 }
4376 
4377 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4378 
4379 /* It is used in the ingress path to clear the delivery_time.
4380  * If needed, set the skb->tstamp to the (rcv) timestamp.
4381  */
skb_clear_delivery_time(struct sk_buff * skb)4382 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4383 {
4384 	if (skb->tstamp_type) {
4385 		skb->tstamp_type = SKB_CLOCK_REALTIME;
4386 		if (static_branch_unlikely(&netstamp_needed_key))
4387 			skb->tstamp = ktime_get_real();
4388 		else
4389 			skb->tstamp = 0;
4390 	}
4391 }
4392 
skb_clear_tstamp(struct sk_buff * skb)4393 static inline void skb_clear_tstamp(struct sk_buff *skb)
4394 {
4395 	if (skb->tstamp_type)
4396 		return;
4397 
4398 	skb->tstamp = 0;
4399 }
4400 
skb_tstamp(const struct sk_buff * skb)4401 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4402 {
4403 	if (skb->tstamp_type)
4404 		return 0;
4405 
4406 	return skb->tstamp;
4407 }
4408 
skb_tstamp_cond(const struct sk_buff * skb,bool cond)4409 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4410 {
4411 	if (skb->tstamp_type != SKB_CLOCK_MONOTONIC && skb->tstamp)
4412 		return skb->tstamp;
4413 
4414 	if (static_branch_unlikely(&netstamp_needed_key) || cond)
4415 		return ktime_get_real();
4416 
4417 	return 0;
4418 }
4419 
skb_metadata_len(const struct sk_buff * skb)4420 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4421 {
4422 	return skb_shinfo(skb)->meta_len;
4423 }
4424 
skb_metadata_end(const struct sk_buff * skb)4425 static inline void *skb_metadata_end(const struct sk_buff *skb)
4426 {
4427 	return skb_mac_header(skb);
4428 }
4429 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)4430 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4431 					  const struct sk_buff *skb_b,
4432 					  u8 meta_len)
4433 {
4434 	const void *a = skb_metadata_end(skb_a);
4435 	const void *b = skb_metadata_end(skb_b);
4436 	u64 diffs = 0;
4437 
4438 	if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) ||
4439 	    BITS_PER_LONG != 64)
4440 		goto slow;
4441 
4442 	/* Using more efficient variant than plain call to memcmp(). */
4443 	switch (meta_len) {
4444 #define __it(x, op) (x -= sizeof(u##op))
4445 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4446 	case 32: diffs |= __it_diff(a, b, 64);
4447 		fallthrough;
4448 	case 24: diffs |= __it_diff(a, b, 64);
4449 		fallthrough;
4450 	case 16: diffs |= __it_diff(a, b, 64);
4451 		fallthrough;
4452 	case  8: diffs |= __it_diff(a, b, 64);
4453 		break;
4454 	case 28: diffs |= __it_diff(a, b, 64);
4455 		fallthrough;
4456 	case 20: diffs |= __it_diff(a, b, 64);
4457 		fallthrough;
4458 	case 12: diffs |= __it_diff(a, b, 64);
4459 		fallthrough;
4460 	case  4: diffs |= __it_diff(a, b, 32);
4461 		break;
4462 	default:
4463 slow:
4464 		return memcmp(a - meta_len, b - meta_len, meta_len);
4465 	}
4466 	return diffs;
4467 }
4468 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)4469 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4470 					const struct sk_buff *skb_b)
4471 {
4472 	u8 len_a = skb_metadata_len(skb_a);
4473 	u8 len_b = skb_metadata_len(skb_b);
4474 
4475 	if (!(len_a | len_b))
4476 		return false;
4477 
4478 	return len_a != len_b ?
4479 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
4480 }
4481 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)4482 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4483 {
4484 	skb_shinfo(skb)->meta_len = meta_len;
4485 }
4486 
skb_metadata_clear(struct sk_buff * skb)4487 static inline void skb_metadata_clear(struct sk_buff *skb)
4488 {
4489 	skb_metadata_set(skb, 0);
4490 }
4491 
4492 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4493 
4494 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4495 
4496 void skb_clone_tx_timestamp(struct sk_buff *skb);
4497 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4498 
4499 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4500 
skb_clone_tx_timestamp(struct sk_buff * skb)4501 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4502 {
4503 }
4504 
skb_defer_rx_timestamp(struct sk_buff * skb)4505 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4506 {
4507 	return false;
4508 }
4509 
4510 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4511 
4512 /**
4513  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4514  *
4515  * PHY drivers may accept clones of transmitted packets for
4516  * timestamping via their phy_driver.txtstamp method. These drivers
4517  * must call this function to return the skb back to the stack with a
4518  * timestamp.
4519  *
4520  * @skb: clone of the original outgoing packet
4521  * @hwtstamps: hardware time stamps
4522  *
4523  */
4524 void skb_complete_tx_timestamp(struct sk_buff *skb,
4525 			       struct skb_shared_hwtstamps *hwtstamps);
4526 
4527 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4528 		     struct skb_shared_hwtstamps *hwtstamps,
4529 		     struct sock *sk, int tstype);
4530 
4531 /**
4532  * skb_tstamp_tx - queue clone of skb with send time stamps
4533  * @orig_skb:	the original outgoing packet
4534  * @hwtstamps:	hardware time stamps, may be NULL if not available
4535  *
4536  * If the skb has a socket associated, then this function clones the
4537  * skb (thus sharing the actual data and optional structures), stores
4538  * the optional hardware time stamping information (if non NULL) or
4539  * generates a software time stamp (otherwise), then queues the clone
4540  * to the error queue of the socket.  Errors are silently ignored.
4541  */
4542 void skb_tstamp_tx(struct sk_buff *orig_skb,
4543 		   struct skb_shared_hwtstamps *hwtstamps);
4544 
4545 /**
4546  * skb_tx_timestamp() - Driver hook for transmit timestamping
4547  *
4548  * Ethernet MAC Drivers should call this function in their hard_xmit()
4549  * function immediately before giving the sk_buff to the MAC hardware.
4550  *
4551  * Specifically, one should make absolutely sure that this function is
4552  * called before TX completion of this packet can trigger.  Otherwise
4553  * the packet could potentially already be freed.
4554  *
4555  * @skb: A socket buffer.
4556  */
skb_tx_timestamp(struct sk_buff * skb)4557 static inline void skb_tx_timestamp(struct sk_buff *skb)
4558 {
4559 	skb_clone_tx_timestamp(skb);
4560 	if (skb_shinfo(skb)->tx_flags & (SKBTX_SW_TSTAMP | SKBTX_BPF))
4561 		skb_tstamp_tx(skb, NULL);
4562 }
4563 
4564 /**
4565  * skb_complete_wifi_ack - deliver skb with wifi status
4566  *
4567  * @skb: the original outgoing packet
4568  * @acked: ack status
4569  *
4570  */
4571 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4572 
4573 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4574 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4575 
skb_csum_unnecessary(const struct sk_buff * skb)4576 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4577 {
4578 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4579 		skb->csum_valid ||
4580 		(skb->ip_summed == CHECKSUM_PARTIAL &&
4581 		 skb_checksum_start_offset(skb) >= 0));
4582 }
4583 
4584 /**
4585  *	skb_checksum_complete - Calculate checksum of an entire packet
4586  *	@skb: packet to process
4587  *
4588  *	This function calculates the checksum over the entire packet plus
4589  *	the value of skb->csum.  The latter can be used to supply the
4590  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
4591  *	checksum.
4592  *
4593  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4594  *	this function can be used to verify that checksum on received
4595  *	packets.  In that case the function should return zero if the
4596  *	checksum is correct.  In particular, this function will return zero
4597  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4598  *	hardware has already verified the correctness of the checksum.
4599  */
skb_checksum_complete(struct sk_buff * skb)4600 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4601 {
4602 	return skb_csum_unnecessary(skb) ?
4603 	       0 : __skb_checksum_complete(skb);
4604 }
4605 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4606 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4607 {
4608 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4609 		if (skb->csum_level == 0)
4610 			skb->ip_summed = CHECKSUM_NONE;
4611 		else
4612 			skb->csum_level--;
4613 	}
4614 }
4615 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4616 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4617 {
4618 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4619 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4620 			skb->csum_level++;
4621 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4622 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4623 		skb->csum_level = 0;
4624 	}
4625 }
4626 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4627 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4628 {
4629 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4630 		skb->ip_summed = CHECKSUM_NONE;
4631 		skb->csum_level = 0;
4632 	}
4633 }
4634 
4635 /* Check if we need to perform checksum complete validation.
4636  *
4637  * Returns: true if checksum complete is needed, false otherwise
4638  * (either checksum is unnecessary or zero checksum is allowed).
4639  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4640 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4641 						  bool zero_okay,
4642 						  __sum16 check)
4643 {
4644 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4645 		skb->csum_valid = 1;
4646 		__skb_decr_checksum_unnecessary(skb);
4647 		return false;
4648 	}
4649 
4650 	return true;
4651 }
4652 
4653 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4654  * in checksum_init.
4655  */
4656 #define CHECKSUM_BREAK 76
4657 
4658 /* Unset checksum-complete
4659  *
4660  * Unset checksum complete can be done when packet is being modified
4661  * (uncompressed for instance) and checksum-complete value is
4662  * invalidated.
4663  */
skb_checksum_complete_unset(struct sk_buff * skb)4664 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4665 {
4666 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4667 		skb->ip_summed = CHECKSUM_NONE;
4668 }
4669 
4670 /* Validate (init) checksum based on checksum complete.
4671  *
4672  * Return values:
4673  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4674  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4675  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4676  *   non-zero: value of invalid checksum
4677  *
4678  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4679 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4680 						       bool complete,
4681 						       __wsum psum)
4682 {
4683 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4684 		if (!csum_fold(csum_add(psum, skb->csum))) {
4685 			skb->csum_valid = 1;
4686 			return 0;
4687 		}
4688 	}
4689 
4690 	skb->csum = psum;
4691 
4692 	if (complete || skb->len <= CHECKSUM_BREAK) {
4693 		__sum16 csum;
4694 
4695 		csum = __skb_checksum_complete(skb);
4696 		skb->csum_valid = !csum;
4697 		return csum;
4698 	}
4699 
4700 	return 0;
4701 }
4702 
null_compute_pseudo(struct sk_buff * skb,int proto)4703 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4704 {
4705 	return 0;
4706 }
4707 
4708 /* Perform checksum validate (init). Note that this is a macro since we only
4709  * want to calculate the pseudo header which is an input function if necessary.
4710  * First we try to validate without any computation (checksum unnecessary) and
4711  * then calculate based on checksum complete calling the function to compute
4712  * pseudo header.
4713  *
4714  * Return values:
4715  *   0: checksum is validated or try to in skb_checksum_complete
4716  *   non-zero: value of invalid checksum
4717  */
4718 #define __skb_checksum_validate(skb, proto, complete,			\
4719 				zero_okay, check, compute_pseudo)	\
4720 ({									\
4721 	__sum16 __ret = 0;						\
4722 	skb->csum_valid = 0;						\
4723 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4724 		__ret = __skb_checksum_validate_complete(skb,		\
4725 				complete, compute_pseudo(skb, proto));	\
4726 	__ret;								\
4727 })
4728 
4729 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4730 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4731 
4732 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4733 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4734 
4735 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4736 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4737 
4738 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4739 					 compute_pseudo)		\
4740 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4741 
4742 #define skb_checksum_simple_validate(skb)				\
4743 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4744 
__skb_checksum_convert_check(struct sk_buff * skb)4745 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4746 {
4747 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4748 }
4749 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4750 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4751 {
4752 	skb->csum = ~pseudo;
4753 	skb->ip_summed = CHECKSUM_COMPLETE;
4754 }
4755 
4756 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4757 do {									\
4758 	if (__skb_checksum_convert_check(skb))				\
4759 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4760 } while (0)
4761 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4762 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4763 					      u16 start, u16 offset)
4764 {
4765 	skb->ip_summed = CHECKSUM_PARTIAL;
4766 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4767 	skb->csum_offset = offset - start;
4768 }
4769 
4770 /* Update skbuf and packet to reflect the remote checksum offload operation.
4771  * When called, ptr indicates the starting point for skb->csum when
4772  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4773  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4774  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4775 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4776 				       int start, int offset, bool nopartial)
4777 {
4778 	__wsum delta;
4779 
4780 	if (!nopartial) {
4781 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4782 		return;
4783 	}
4784 
4785 	if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4786 		__skb_checksum_complete(skb);
4787 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4788 	}
4789 
4790 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4791 
4792 	/* Adjust skb->csum since we changed the packet */
4793 	skb->csum = csum_add(skb->csum, delta);
4794 }
4795 
skb_nfct(const struct sk_buff * skb)4796 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4797 {
4798 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4799 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4800 #else
4801 	return NULL;
4802 #endif
4803 }
4804 
skb_get_nfct(const struct sk_buff * skb)4805 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4806 {
4807 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4808 	return skb->_nfct;
4809 #else
4810 	return 0UL;
4811 #endif
4812 }
4813 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4814 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4815 {
4816 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4817 	skb->slow_gro |= !!nfct;
4818 	skb->_nfct = nfct;
4819 #endif
4820 }
4821 
4822 #ifdef CONFIG_SKB_EXTENSIONS
4823 enum skb_ext_id {
4824 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4825 	SKB_EXT_BRIDGE_NF,
4826 #endif
4827 #ifdef CONFIG_XFRM
4828 	SKB_EXT_SEC_PATH,
4829 #endif
4830 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4831 	TC_SKB_EXT,
4832 #endif
4833 #if IS_ENABLED(CONFIG_MPTCP)
4834 	SKB_EXT_MPTCP,
4835 #endif
4836 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4837 	SKB_EXT_MCTP,
4838 #endif
4839 	SKB_EXT_NUM, /* must be last */
4840 };
4841 
4842 /**
4843  *	struct skb_ext - sk_buff extensions
4844  *	@refcnt: 1 on allocation, deallocated on 0
4845  *	@offset: offset to add to @data to obtain extension address
4846  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4847  *	@data: start of extension data, variable sized
4848  *
4849  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4850  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4851  */
4852 struct skb_ext {
4853 	refcount_t refcnt;
4854 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4855 	u8 chunks;		/* same */
4856 	char data[] __aligned(8);
4857 };
4858 
4859 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4860 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4861 		    struct skb_ext *ext);
4862 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4863 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4864 void __skb_ext_put(struct skb_ext *ext);
4865 
skb_ext_put(struct sk_buff * skb)4866 static inline void skb_ext_put(struct sk_buff *skb)
4867 {
4868 	if (skb->active_extensions)
4869 		__skb_ext_put(skb->extensions);
4870 }
4871 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4872 static inline void __skb_ext_copy(struct sk_buff *dst,
4873 				  const struct sk_buff *src)
4874 {
4875 	dst->active_extensions = src->active_extensions;
4876 
4877 	if (src->active_extensions) {
4878 		struct skb_ext *ext = src->extensions;
4879 
4880 		refcount_inc(&ext->refcnt);
4881 		dst->extensions = ext;
4882 	}
4883 }
4884 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4885 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4886 {
4887 	skb_ext_put(dst);
4888 	__skb_ext_copy(dst, src);
4889 }
4890 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4891 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4892 {
4893 	return !!ext->offset[i];
4894 }
4895 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4896 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4897 {
4898 	return skb->active_extensions & (1 << id);
4899 }
4900 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4901 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4902 {
4903 	if (skb_ext_exist(skb, id))
4904 		__skb_ext_del(skb, id);
4905 }
4906 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4907 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4908 {
4909 	if (skb_ext_exist(skb, id)) {
4910 		struct skb_ext *ext = skb->extensions;
4911 
4912 		return (void *)ext + (ext->offset[id] << 3);
4913 	}
4914 
4915 	return NULL;
4916 }
4917 
skb_ext_reset(struct sk_buff * skb)4918 static inline void skb_ext_reset(struct sk_buff *skb)
4919 {
4920 	if (unlikely(skb->active_extensions)) {
4921 		__skb_ext_put(skb->extensions);
4922 		skb->active_extensions = 0;
4923 	}
4924 }
4925 
skb_has_extensions(struct sk_buff * skb)4926 static inline bool skb_has_extensions(struct sk_buff *skb)
4927 {
4928 	return unlikely(skb->active_extensions);
4929 }
4930 #else
skb_ext_put(struct sk_buff * skb)4931 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4932 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4933 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4934 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4935 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4936 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4937 #endif /* CONFIG_SKB_EXTENSIONS */
4938 
nf_reset_ct(struct sk_buff * skb)4939 static inline void nf_reset_ct(struct sk_buff *skb)
4940 {
4941 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4942 	nf_conntrack_put(skb_nfct(skb));
4943 	skb->_nfct = 0;
4944 #endif
4945 }
4946 
nf_reset_trace(struct sk_buff * skb)4947 static inline void nf_reset_trace(struct sk_buff *skb)
4948 {
4949 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4950 	skb->nf_trace = 0;
4951 #endif
4952 }
4953 
ipvs_reset(struct sk_buff * skb)4954 static inline void ipvs_reset(struct sk_buff *skb)
4955 {
4956 #if IS_ENABLED(CONFIG_IP_VS)
4957 	skb->ipvs_property = 0;
4958 #endif
4959 }
4960 
4961 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4962 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4963 			     bool copy)
4964 {
4965 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4966 	dst->_nfct = src->_nfct;
4967 	nf_conntrack_get(skb_nfct(src));
4968 #endif
4969 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4970 	if (copy)
4971 		dst->nf_trace = src->nf_trace;
4972 #endif
4973 }
4974 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4975 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4976 {
4977 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4978 	nf_conntrack_put(skb_nfct(dst));
4979 #endif
4980 	dst->slow_gro = src->slow_gro;
4981 	__nf_copy(dst, src, true);
4982 }
4983 
4984 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4985 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4986 {
4987 	to->secmark = from->secmark;
4988 }
4989 
skb_init_secmark(struct sk_buff * skb)4990 static inline void skb_init_secmark(struct sk_buff *skb)
4991 {
4992 	skb->secmark = 0;
4993 }
4994 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4995 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4996 { }
4997 
skb_init_secmark(struct sk_buff * skb)4998 static inline void skb_init_secmark(struct sk_buff *skb)
4999 { }
5000 #endif
5001 
secpath_exists(const struct sk_buff * skb)5002 static inline int secpath_exists(const struct sk_buff *skb)
5003 {
5004 #ifdef CONFIG_XFRM
5005 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
5006 #else
5007 	return 0;
5008 #endif
5009 }
5010 
skb_irq_freeable(const struct sk_buff * skb)5011 static inline bool skb_irq_freeable(const struct sk_buff *skb)
5012 {
5013 	return !skb->destructor &&
5014 		!secpath_exists(skb) &&
5015 		!skb_nfct(skb) &&
5016 		!skb->_skb_refdst &&
5017 		!skb_has_frag_list(skb);
5018 }
5019 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)5020 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
5021 {
5022 	skb->queue_mapping = queue_mapping;
5023 }
5024 
skb_get_queue_mapping(const struct sk_buff * skb)5025 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
5026 {
5027 	return skb->queue_mapping;
5028 }
5029 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)5030 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
5031 {
5032 	to->queue_mapping = from->queue_mapping;
5033 }
5034 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)5035 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
5036 {
5037 	skb->queue_mapping = rx_queue + 1;
5038 }
5039 
skb_get_rx_queue(const struct sk_buff * skb)5040 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
5041 {
5042 	return skb->queue_mapping - 1;
5043 }
5044 
skb_rx_queue_recorded(const struct sk_buff * skb)5045 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
5046 {
5047 	return skb->queue_mapping != 0;
5048 }
5049 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)5050 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
5051 {
5052 	skb->dst_pending_confirm = val;
5053 }
5054 
skb_get_dst_pending_confirm(const struct sk_buff * skb)5055 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
5056 {
5057 	return skb->dst_pending_confirm != 0;
5058 }
5059 
skb_sec_path(const struct sk_buff * skb)5060 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
5061 {
5062 #ifdef CONFIG_XFRM
5063 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
5064 #else
5065 	return NULL;
5066 #endif
5067 }
5068 
skb_is_gso(const struct sk_buff * skb)5069 static inline bool skb_is_gso(const struct sk_buff *skb)
5070 {
5071 	return skb_shinfo(skb)->gso_size;
5072 }
5073 
5074 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)5075 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
5076 {
5077 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
5078 }
5079 
5080 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)5081 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
5082 {
5083 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
5084 }
5085 
5086 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)5087 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
5088 {
5089 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
5090 }
5091 
skb_gso_reset(struct sk_buff * skb)5092 static inline void skb_gso_reset(struct sk_buff *skb)
5093 {
5094 	skb_shinfo(skb)->gso_size = 0;
5095 	skb_shinfo(skb)->gso_segs = 0;
5096 	skb_shinfo(skb)->gso_type = 0;
5097 }
5098 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)5099 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
5100 					 u16 increment)
5101 {
5102 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5103 		return;
5104 	shinfo->gso_size += increment;
5105 }
5106 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)5107 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
5108 					 u16 decrement)
5109 {
5110 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
5111 		return;
5112 	shinfo->gso_size -= decrement;
5113 }
5114 
5115 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
5116 
skb_warn_if_lro(const struct sk_buff * skb)5117 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
5118 {
5119 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
5120 	 * wanted then gso_type will be set. */
5121 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5122 
5123 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
5124 	    unlikely(shinfo->gso_type == 0)) {
5125 		__skb_warn_lro_forwarding(skb);
5126 		return true;
5127 	}
5128 	return false;
5129 }
5130 
skb_forward_csum(struct sk_buff * skb)5131 static inline void skb_forward_csum(struct sk_buff *skb)
5132 {
5133 	/* Unfortunately we don't support this one.  Any brave souls? */
5134 	if (skb->ip_summed == CHECKSUM_COMPLETE)
5135 		skb->ip_summed = CHECKSUM_NONE;
5136 }
5137 
5138 /**
5139  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5140  * @skb: skb to check
5141  *
5142  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5143  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5144  * use this helper, to document places where we make this assertion.
5145  */
skb_checksum_none_assert(const struct sk_buff * skb)5146 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5147 {
5148 	DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5149 }
5150 
5151 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5152 
5153 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5154 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5155 				     unsigned int transport_len,
5156 				     __sum16(*skb_chkf)(struct sk_buff *skb));
5157 
5158 /**
5159  * skb_head_is_locked - Determine if the skb->head is locked down
5160  * @skb: skb to check
5161  *
5162  * The head on skbs build around a head frag can be removed if they are
5163  * not cloned.  This function returns true if the skb head is locked down
5164  * due to either being allocated via kmalloc, or by being a clone with
5165  * multiple references to the head.
5166  */
skb_head_is_locked(const struct sk_buff * skb)5167 static inline bool skb_head_is_locked(const struct sk_buff *skb)
5168 {
5169 	return !skb->head_frag || skb_cloned(skb);
5170 }
5171 
5172 /* Local Checksum Offload.
5173  * Compute outer checksum based on the assumption that the
5174  * inner checksum will be offloaded later.
5175  * See Documentation/networking/checksum-offloads.rst for
5176  * explanation of how this works.
5177  * Fill in outer checksum adjustment (e.g. with sum of outer
5178  * pseudo-header) before calling.
5179  * Also ensure that inner checksum is in linear data area.
5180  */
lco_csum(struct sk_buff * skb)5181 static inline __wsum lco_csum(struct sk_buff *skb)
5182 {
5183 	unsigned char *csum_start = skb_checksum_start(skb);
5184 	unsigned char *l4_hdr = skb_transport_header(skb);
5185 	__wsum partial;
5186 
5187 	/* Start with complement of inner checksum adjustment */
5188 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5189 						    skb->csum_offset));
5190 
5191 	/* Add in checksum of our headers (incl. outer checksum
5192 	 * adjustment filled in by caller) and return result.
5193 	 */
5194 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5195 }
5196 
skb_is_redirected(const struct sk_buff * skb)5197 static inline bool skb_is_redirected(const struct sk_buff *skb)
5198 {
5199 	return skb->redirected;
5200 }
5201 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)5202 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5203 {
5204 	skb->redirected = 1;
5205 #ifdef CONFIG_NET_REDIRECT
5206 	skb->from_ingress = from_ingress;
5207 	if (skb->from_ingress)
5208 		skb_clear_tstamp(skb);
5209 #endif
5210 }
5211 
skb_reset_redirect(struct sk_buff * skb)5212 static inline void skb_reset_redirect(struct sk_buff *skb)
5213 {
5214 	skb->redirected = 0;
5215 }
5216 
skb_set_redirected_noclear(struct sk_buff * skb,bool from_ingress)5217 static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5218 					      bool from_ingress)
5219 {
5220 	skb->redirected = 1;
5221 #ifdef CONFIG_NET_REDIRECT
5222 	skb->from_ingress = from_ingress;
5223 #endif
5224 }
5225 
skb_csum_is_sctp(struct sk_buff * skb)5226 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5227 {
5228 #if IS_ENABLED(CONFIG_IP_SCTP)
5229 	return skb->csum_not_inet;
5230 #else
5231 	return 0;
5232 #endif
5233 }
5234 
skb_reset_csum_not_inet(struct sk_buff * skb)5235 static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5236 {
5237 	skb->ip_summed = CHECKSUM_NONE;
5238 #if IS_ENABLED(CONFIG_IP_SCTP)
5239 	skb->csum_not_inet = 0;
5240 #endif
5241 }
5242 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)5243 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5244 				       const u64 kcov_handle)
5245 {
5246 #ifdef CONFIG_KCOV
5247 	skb->kcov_handle = kcov_handle;
5248 #endif
5249 }
5250 
skb_get_kcov_handle(struct sk_buff * skb)5251 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5252 {
5253 #ifdef CONFIG_KCOV
5254 	return skb->kcov_handle;
5255 #else
5256 	return 0;
5257 #endif
5258 }
5259 
skb_mark_for_recycle(struct sk_buff * skb)5260 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5261 {
5262 #ifdef CONFIG_PAGE_POOL
5263 	skb->pp_recycle = 1;
5264 #endif
5265 }
5266 
5267 ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
5268 			     ssize_t maxsize);
5269 
5270 #endif	/* __KERNEL__ */
5271 #endif	/* _LINUX_SKBUFF_H */
5272