1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 #include <linux/pidfs.h>
27
28 #include <linux/uaccess.h>
29
30 #include "internal.h"
31
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
33 struct kstat *stat, u32 request_mask,
34 unsigned int query_flags)
35 {
36 struct inode *inode = d_inode(path->dentry);
37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_getattr);
42
simple_statfs(struct dentry * dentry,struct kstatfs * buf)43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 {
45 u64 id = huge_encode_dev(dentry->d_sb->s_dev);
46
47 buf->f_fsid = u64_to_fsid(id);
48 buf->f_type = dentry->d_sb->s_magic;
49 buf->f_bsize = PAGE_SIZE;
50 buf->f_namelen = NAME_MAX;
51 return 0;
52 }
53 EXPORT_SYMBOL(simple_statfs);
54
55 /*
56 * Retaining negative dentries for an in-memory filesystem just wastes
57 * memory and lookup time: arrange for them to be deleted immediately.
58 */
always_delete_dentry(const struct dentry * dentry)59 int always_delete_dentry(const struct dentry *dentry)
60 {
61 return 1;
62 }
63 EXPORT_SYMBOL(always_delete_dentry);
64
65 /*
66 * Lookup the data. This is trivial - if the dentry didn't already
67 * exist, we know it is negative. Set d_op to delete negative dentries.
68 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 if (dentry->d_name.len > NAME_MAX)
72 return ERR_PTR(-ENAMETOOLONG);
73 if (!dentry->d_op && !(dentry->d_flags & DCACHE_DONTCACHE)) {
74 spin_lock(&dentry->d_lock);
75 dentry->d_flags |= DCACHE_DONTCACHE;
76 spin_unlock(&dentry->d_lock);
77 }
78 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
79 return NULL;
80
81 d_add(dentry, NULL);
82 return NULL;
83 }
84 EXPORT_SYMBOL(simple_lookup);
85
dcache_dir_open(struct inode * inode,struct file * file)86 int dcache_dir_open(struct inode *inode, struct file *file)
87 {
88 file->private_data = d_alloc_cursor(file->f_path.dentry);
89
90 return file->private_data ? 0 : -ENOMEM;
91 }
92 EXPORT_SYMBOL(dcache_dir_open);
93
dcache_dir_close(struct inode * inode,struct file * file)94 int dcache_dir_close(struct inode *inode, struct file *file)
95 {
96 dput(file->private_data);
97 return 0;
98 }
99 EXPORT_SYMBOL(dcache_dir_close);
100
101 /* parent is locked at least shared */
102 /*
103 * Returns an element of siblings' list.
104 * We are looking for <count>th positive after <p>; if
105 * found, dentry is grabbed and returned to caller.
106 * If no such element exists, NULL is returned.
107 */
scan_positives(struct dentry * cursor,struct hlist_node ** p,loff_t count,struct dentry * last)108 static struct dentry *scan_positives(struct dentry *cursor,
109 struct hlist_node **p,
110 loff_t count,
111 struct dentry *last)
112 {
113 struct dentry *dentry = cursor->d_parent, *found = NULL;
114
115 spin_lock(&dentry->d_lock);
116 while (*p) {
117 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
118 p = &d->d_sib.next;
119 // we must at least skip cursors, to avoid livelocks
120 if (d->d_flags & DCACHE_DENTRY_CURSOR)
121 continue;
122 if (simple_positive(d) && !--count) {
123 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
124 if (simple_positive(d))
125 found = dget_dlock(d);
126 spin_unlock(&d->d_lock);
127 if (likely(found))
128 break;
129 count = 1;
130 }
131 if (need_resched()) {
132 if (!hlist_unhashed(&cursor->d_sib))
133 __hlist_del(&cursor->d_sib);
134 hlist_add_behind(&cursor->d_sib, &d->d_sib);
135 p = &cursor->d_sib.next;
136 spin_unlock(&dentry->d_lock);
137 cond_resched();
138 spin_lock(&dentry->d_lock);
139 }
140 }
141 spin_unlock(&dentry->d_lock);
142 dput(last);
143 return found;
144 }
145
dcache_dir_lseek(struct file * file,loff_t offset,int whence)146 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
147 {
148 struct dentry *dentry = file->f_path.dentry;
149 switch (whence) {
150 case 1:
151 offset += file->f_pos;
152 fallthrough;
153 case 0:
154 if (offset >= 0)
155 break;
156 fallthrough;
157 default:
158 return -EINVAL;
159 }
160 if (offset != file->f_pos) {
161 struct dentry *cursor = file->private_data;
162 struct dentry *to = NULL;
163
164 inode_lock_shared(dentry->d_inode);
165
166 if (offset > 2)
167 to = scan_positives(cursor, &dentry->d_children.first,
168 offset - 2, NULL);
169 spin_lock(&dentry->d_lock);
170 hlist_del_init(&cursor->d_sib);
171 if (to)
172 hlist_add_behind(&cursor->d_sib, &to->d_sib);
173 spin_unlock(&dentry->d_lock);
174 dput(to);
175
176 file->f_pos = offset;
177
178 inode_unlock_shared(dentry->d_inode);
179 }
180 return offset;
181 }
182 EXPORT_SYMBOL(dcache_dir_lseek);
183
184 /*
185 * Directory is locked and all positive dentries in it are safe, since
186 * for ramfs-type trees they can't go away without unlink() or rmdir(),
187 * both impossible due to the lock on directory.
188 */
189
dcache_readdir(struct file * file,struct dir_context * ctx)190 int dcache_readdir(struct file *file, struct dir_context *ctx)
191 {
192 struct dentry *dentry = file->f_path.dentry;
193 struct dentry *cursor = file->private_data;
194 struct dentry *next = NULL;
195 struct hlist_node **p;
196
197 if (!dir_emit_dots(file, ctx))
198 return 0;
199
200 if (ctx->pos == 2)
201 p = &dentry->d_children.first;
202 else
203 p = &cursor->d_sib.next;
204
205 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 d_inode(next)->i_ino,
208 fs_umode_to_dtype(d_inode(next)->i_mode)))
209 break;
210 ctx->pos++;
211 p = &next->d_sib.next;
212 }
213 spin_lock(&dentry->d_lock);
214 hlist_del_init(&cursor->d_sib);
215 if (next)
216 hlist_add_before(&cursor->d_sib, &next->d_sib);
217 spin_unlock(&dentry->d_lock);
218 dput(next);
219
220 return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 return -EISDIR;
227 }
228 EXPORT_SYMBOL(generic_read_dir);
229
230 const struct file_operations simple_dir_operations = {
231 .open = dcache_dir_open,
232 .release = dcache_dir_close,
233 .llseek = dcache_dir_lseek,
234 .read = generic_read_dir,
235 .iterate_shared = dcache_readdir,
236 .fsync = noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239
240 const struct inode_operations simple_dir_inode_operations = {
241 .lookup = simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244
245 /* simple_offset_add() never assigns these to a dentry */
246 enum {
247 DIR_OFFSET_FIRST = 2, /* Find first real entry */
248 DIR_OFFSET_EOD = S32_MAX,
249 };
250
251 /* simple_offset_add() allocation range */
252 enum {
253 DIR_OFFSET_MIN = DIR_OFFSET_FIRST + 1,
254 DIR_OFFSET_MAX = DIR_OFFSET_EOD - 1,
255 };
256
offset_set(struct dentry * dentry,long offset)257 static void offset_set(struct dentry *dentry, long offset)
258 {
259 dentry->d_fsdata = (void *)offset;
260 }
261
dentry2offset(struct dentry * dentry)262 static long dentry2offset(struct dentry *dentry)
263 {
264 return (long)dentry->d_fsdata;
265 }
266
267 static struct lock_class_key simple_offset_lock_class;
268
269 /**
270 * simple_offset_init - initialize an offset_ctx
271 * @octx: directory offset map to be initialized
272 *
273 */
simple_offset_init(struct offset_ctx * octx)274 void simple_offset_init(struct offset_ctx *octx)
275 {
276 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
277 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
278 octx->next_offset = DIR_OFFSET_MIN;
279 }
280
281 /**
282 * simple_offset_add - Add an entry to a directory's offset map
283 * @octx: directory offset ctx to be updated
284 * @dentry: new dentry being added
285 *
286 * Returns zero on success. @octx and the dentry's offset are updated.
287 * Otherwise, a negative errno value is returned.
288 */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)289 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
290 {
291 unsigned long offset;
292 int ret;
293
294 if (dentry2offset(dentry) != 0)
295 return -EBUSY;
296
297 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
298 DIR_OFFSET_MAX, &octx->next_offset,
299 GFP_KERNEL);
300 if (unlikely(ret < 0))
301 return ret == -EBUSY ? -ENOSPC : ret;
302
303 offset_set(dentry, offset);
304 return 0;
305 }
306
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)307 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
308 long offset)
309 {
310 int ret;
311
312 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
313 if (ret)
314 return ret;
315 offset_set(dentry, offset);
316 return 0;
317 }
318
319 /**
320 * simple_offset_remove - Remove an entry to a directory's offset map
321 * @octx: directory offset ctx to be updated
322 * @dentry: dentry being removed
323 *
324 */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)325 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
326 {
327 long offset;
328
329 offset = dentry2offset(dentry);
330 if (offset == 0)
331 return;
332
333 mtree_erase(&octx->mt, offset);
334 offset_set(dentry, 0);
335 }
336
337 /**
338 * simple_offset_rename - handle directory offsets for rename
339 * @old_dir: parent directory of source entry
340 * @old_dentry: dentry of source entry
341 * @new_dir: parent_directory of destination entry
342 * @new_dentry: dentry of destination
343 *
344 * Caller provides appropriate serialization.
345 *
346 * User space expects the directory offset value of the replaced
347 * (new) directory entry to be unchanged after a rename.
348 *
349 * Returns zero on success, a negative errno value on failure.
350 */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)351 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
352 struct inode *new_dir, struct dentry *new_dentry)
353 {
354 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
355 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
356 long new_offset = dentry2offset(new_dentry);
357
358 simple_offset_remove(old_ctx, old_dentry);
359
360 if (new_offset) {
361 offset_set(new_dentry, 0);
362 return simple_offset_replace(new_ctx, old_dentry, new_offset);
363 }
364 return simple_offset_add(new_ctx, old_dentry);
365 }
366
367 /**
368 * simple_offset_rename_exchange - exchange rename with directory offsets
369 * @old_dir: parent of dentry being moved
370 * @old_dentry: dentry being moved
371 * @new_dir: destination parent
372 * @new_dentry: destination dentry
373 *
374 * This API preserves the directory offset values. Caller provides
375 * appropriate serialization.
376 *
377 * Returns zero on success. Otherwise a negative errno is returned and the
378 * rename is rolled back.
379 */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)380 int simple_offset_rename_exchange(struct inode *old_dir,
381 struct dentry *old_dentry,
382 struct inode *new_dir,
383 struct dentry *new_dentry)
384 {
385 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
386 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
387 long old_index = dentry2offset(old_dentry);
388 long new_index = dentry2offset(new_dentry);
389 int ret;
390
391 simple_offset_remove(old_ctx, old_dentry);
392 simple_offset_remove(new_ctx, new_dentry);
393
394 ret = simple_offset_replace(new_ctx, old_dentry, new_index);
395 if (ret)
396 goto out_restore;
397
398 ret = simple_offset_replace(old_ctx, new_dentry, old_index);
399 if (ret) {
400 simple_offset_remove(new_ctx, old_dentry);
401 goto out_restore;
402 }
403
404 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
405 if (ret) {
406 simple_offset_remove(new_ctx, old_dentry);
407 simple_offset_remove(old_ctx, new_dentry);
408 goto out_restore;
409 }
410 return 0;
411
412 out_restore:
413 (void)simple_offset_replace(old_ctx, old_dentry, old_index);
414 (void)simple_offset_replace(new_ctx, new_dentry, new_index);
415 return ret;
416 }
417
418 /**
419 * simple_offset_destroy - Release offset map
420 * @octx: directory offset ctx that is about to be destroyed
421 *
422 * During fs teardown (eg. umount), a directory's offset map might still
423 * contain entries. xa_destroy() cleans out anything that remains.
424 */
simple_offset_destroy(struct offset_ctx * octx)425 void simple_offset_destroy(struct offset_ctx *octx)
426 {
427 mtree_destroy(&octx->mt);
428 }
429
430 /**
431 * offset_dir_llseek - Advance the read position of a directory descriptor
432 * @file: an open directory whose position is to be updated
433 * @offset: a byte offset
434 * @whence: enumerator describing the starting position for this update
435 *
436 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
437 *
438 * Returns the updated read position if successful; otherwise a
439 * negative errno is returned and the read position remains unchanged.
440 */
offset_dir_llseek(struct file * file,loff_t offset,int whence)441 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
442 {
443 switch (whence) {
444 case SEEK_CUR:
445 offset += file->f_pos;
446 fallthrough;
447 case SEEK_SET:
448 if (offset >= 0)
449 break;
450 fallthrough;
451 default:
452 return -EINVAL;
453 }
454
455 return vfs_setpos(file, offset, LONG_MAX);
456 }
457
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)458 static struct dentry *find_positive_dentry(struct dentry *parent,
459 struct dentry *dentry,
460 bool next)
461 {
462 struct dentry *found = NULL;
463
464 spin_lock(&parent->d_lock);
465 if (next)
466 dentry = d_next_sibling(dentry);
467 else if (!dentry)
468 dentry = d_first_child(parent);
469 hlist_for_each_entry_from(dentry, d_sib) {
470 if (!simple_positive(dentry))
471 continue;
472 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
473 if (simple_positive(dentry))
474 found = dget_dlock(dentry);
475 spin_unlock(&dentry->d_lock);
476 if (likely(found))
477 break;
478 }
479 spin_unlock(&parent->d_lock);
480 return found;
481 }
482
483 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)484 offset_dir_lookup(struct dentry *parent, loff_t offset)
485 {
486 struct inode *inode = d_inode(parent);
487 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
488 struct dentry *child, *found = NULL;
489
490 MA_STATE(mas, &octx->mt, offset, offset);
491
492 if (offset == DIR_OFFSET_FIRST)
493 found = find_positive_dentry(parent, NULL, false);
494 else {
495 rcu_read_lock();
496 child = mas_find_rev(&mas, DIR_OFFSET_MIN);
497 found = find_positive_dentry(parent, child, false);
498 rcu_read_unlock();
499 }
500 return found;
501 }
502
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)503 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
504 {
505 struct inode *inode = d_inode(dentry);
506
507 return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
508 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
509 }
510
offset_iterate_dir(struct file * file,struct dir_context * ctx)511 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
512 {
513 struct dentry *dir = file->f_path.dentry;
514 struct dentry *dentry;
515
516 dentry = offset_dir_lookup(dir, ctx->pos);
517 if (!dentry)
518 goto out_eod;
519 while (true) {
520 struct dentry *next;
521
522 ctx->pos = dentry2offset(dentry);
523 if (!offset_dir_emit(ctx, dentry))
524 break;
525
526 next = find_positive_dentry(dir, dentry, true);
527 dput(dentry);
528
529 if (!next)
530 goto out_eod;
531 dentry = next;
532 }
533 dput(dentry);
534 return;
535
536 out_eod:
537 ctx->pos = DIR_OFFSET_EOD;
538 }
539
540 /**
541 * offset_readdir - Emit entries starting at offset @ctx->pos
542 * @file: an open directory to iterate over
543 * @ctx: directory iteration context
544 *
545 * Caller must hold @file's i_rwsem to prevent insertion or removal of
546 * entries during this call.
547 *
548 * On entry, @ctx->pos contains an offset that represents the first entry
549 * to be read from the directory.
550 *
551 * The operation continues until there are no more entries to read, or
552 * until the ctx->actor indicates there is no more space in the caller's
553 * output buffer.
554 *
555 * On return, @ctx->pos contains an offset that will read the next entry
556 * in this directory when offset_readdir() is called again with @ctx.
557 * Caller places this value in the d_off field of the last entry in the
558 * user's buffer.
559 *
560 * Return values:
561 * %0 - Complete
562 */
offset_readdir(struct file * file,struct dir_context * ctx)563 static int offset_readdir(struct file *file, struct dir_context *ctx)
564 {
565 struct dentry *dir = file->f_path.dentry;
566
567 lockdep_assert_held(&d_inode(dir)->i_rwsem);
568
569 if (!dir_emit_dots(file, ctx))
570 return 0;
571 if (ctx->pos != DIR_OFFSET_EOD)
572 offset_iterate_dir(file, ctx);
573 return 0;
574 }
575
576 const struct file_operations simple_offset_dir_operations = {
577 .llseek = offset_dir_llseek,
578 .iterate_shared = offset_readdir,
579 .read = generic_read_dir,
580 .fsync = noop_fsync,
581 };
582
find_next_child(struct dentry * parent,struct dentry * prev)583 struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
584 {
585 struct dentry *child = NULL, *d;
586
587 spin_lock(&parent->d_lock);
588 d = prev ? d_next_sibling(prev) : d_first_child(parent);
589 hlist_for_each_entry_from(d, d_sib) {
590 if (simple_positive(d)) {
591 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
592 if (simple_positive(d))
593 child = dget_dlock(d);
594 spin_unlock(&d->d_lock);
595 if (likely(child))
596 break;
597 }
598 }
599 spin_unlock(&parent->d_lock);
600 dput(prev);
601 return child;
602 }
603 EXPORT_SYMBOL(find_next_child);
604
__simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *),bool locked)605 static void __simple_recursive_removal(struct dentry *dentry,
606 void (*callback)(struct dentry *),
607 bool locked)
608 {
609 struct dentry *this = dget(dentry);
610 while (true) {
611 struct dentry *victim = NULL, *child;
612 struct inode *inode = this->d_inode;
613
614 inode_lock_nested(inode, I_MUTEX_CHILD);
615 if (d_is_dir(this))
616 inode->i_flags |= S_DEAD;
617 while ((child = find_next_child(this, victim)) == NULL) {
618 // kill and ascend
619 // update metadata while it's still locked
620 inode_set_ctime_current(inode);
621 clear_nlink(inode);
622 inode_unlock(inode);
623 victim = this;
624 this = this->d_parent;
625 inode = this->d_inode;
626 if (!locked || victim != dentry)
627 inode_lock_nested(inode, I_MUTEX_CHILD);
628 if (simple_positive(victim)) {
629 d_invalidate(victim); // avoid lost mounts
630 if (callback)
631 callback(victim);
632 fsnotify_delete(inode, d_inode(victim), victim);
633 d_make_discardable(victim);
634 }
635 if (victim == dentry) {
636 inode_set_mtime_to_ts(inode,
637 inode_set_ctime_current(inode));
638 if (d_is_dir(dentry))
639 drop_nlink(inode);
640 if (!locked)
641 inode_unlock(inode);
642 dput(dentry);
643 return;
644 }
645 }
646 inode_unlock(inode);
647 this = child;
648 }
649 }
650
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))651 void simple_recursive_removal(struct dentry *dentry,
652 void (*callback)(struct dentry *))
653 {
654 return __simple_recursive_removal(dentry, callback, false);
655 }
656 EXPORT_SYMBOL(simple_recursive_removal);
657
simple_remove_by_name(struct dentry * parent,const char * name,void (* callback)(struct dentry *))658 void simple_remove_by_name(struct dentry *parent, const char *name,
659 void (*callback)(struct dentry *))
660 {
661 struct dentry *dentry;
662
663 dentry = lookup_noperm_positive_unlocked(&QSTR(name), parent);
664 if (!IS_ERR(dentry)) {
665 simple_recursive_removal(dentry, callback);
666 dput(dentry); // paired with lookup_noperm_positive_unlocked()
667 }
668 }
669 EXPORT_SYMBOL(simple_remove_by_name);
670
671 /* caller holds parent directory with I_MUTEX_PARENT */
locked_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))672 void locked_recursive_removal(struct dentry *dentry,
673 void (*callback)(struct dentry *))
674 {
675 return __simple_recursive_removal(dentry, callback, true);
676 }
677 EXPORT_SYMBOL(locked_recursive_removal);
678
679 static const struct super_operations simple_super_operations = {
680 .statfs = simple_statfs,
681 };
682
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)683 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
684 {
685 struct pseudo_fs_context *ctx = fc->fs_private;
686 struct inode *root;
687
688 s->s_maxbytes = MAX_LFS_FILESIZE;
689 s->s_blocksize = PAGE_SIZE;
690 s->s_blocksize_bits = PAGE_SHIFT;
691 s->s_magic = ctx->magic;
692 s->s_op = ctx->ops ?: &simple_super_operations;
693 s->s_export_op = ctx->eops;
694 s->s_xattr = ctx->xattr;
695 s->s_time_gran = 1;
696 s->s_d_flags |= ctx->s_d_flags;
697 root = new_inode(s);
698 if (!root)
699 return -ENOMEM;
700
701 /*
702 * since this is the first inode, make it number 1. New inodes created
703 * after this must take care not to collide with it (by passing
704 * max_reserved of 1 to iunique).
705 */
706 root->i_ino = 1;
707 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
708 simple_inode_init_ts(root);
709 s->s_root = d_make_root(root);
710 if (!s->s_root)
711 return -ENOMEM;
712 set_default_d_op(s, ctx->dops);
713 return 0;
714 }
715
pseudo_fs_get_tree(struct fs_context * fc)716 static int pseudo_fs_get_tree(struct fs_context *fc)
717 {
718 return get_tree_nodev(fc, pseudo_fs_fill_super);
719 }
720
pseudo_fs_free(struct fs_context * fc)721 static void pseudo_fs_free(struct fs_context *fc)
722 {
723 kfree(fc->fs_private);
724 }
725
726 static const struct fs_context_operations pseudo_fs_context_ops = {
727 .free = pseudo_fs_free,
728 .get_tree = pseudo_fs_get_tree,
729 };
730
731 /*
732 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
733 * will never be mountable)
734 */
init_pseudo(struct fs_context * fc,unsigned long magic)735 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
736 unsigned long magic)
737 {
738 struct pseudo_fs_context *ctx;
739
740 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
741 if (likely(ctx)) {
742 ctx->magic = magic;
743 fc->fs_private = ctx;
744 fc->ops = &pseudo_fs_context_ops;
745 fc->sb_flags |= SB_NOUSER;
746 fc->global = true;
747 }
748 return ctx;
749 }
750 EXPORT_SYMBOL(init_pseudo);
751
simple_open(struct inode * inode,struct file * file)752 int simple_open(struct inode *inode, struct file *file)
753 {
754 if (inode->i_private)
755 file->private_data = inode->i_private;
756 return 0;
757 }
758 EXPORT_SYMBOL(simple_open);
759
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)760 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
761 {
762 struct inode *inode = d_inode(old_dentry);
763
764 inode_set_mtime_to_ts(dir,
765 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
766 inc_nlink(inode);
767 ihold(inode);
768 d_make_persistent(dentry, inode);
769 return 0;
770 }
771 EXPORT_SYMBOL(simple_link);
772
simple_empty(struct dentry * dentry)773 int simple_empty(struct dentry *dentry)
774 {
775 struct dentry *child;
776 int ret = 0;
777
778 spin_lock(&dentry->d_lock);
779 hlist_for_each_entry(child, &dentry->d_children, d_sib) {
780 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
781 if (simple_positive(child)) {
782 spin_unlock(&child->d_lock);
783 goto out;
784 }
785 spin_unlock(&child->d_lock);
786 }
787 ret = 1;
788 out:
789 spin_unlock(&dentry->d_lock);
790 return ret;
791 }
792 EXPORT_SYMBOL(simple_empty);
793
__simple_unlink(struct inode * dir,struct dentry * dentry)794 void __simple_unlink(struct inode *dir, struct dentry *dentry)
795 {
796 struct inode *inode = d_inode(dentry);
797
798 inode_set_mtime_to_ts(dir,
799 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
800 drop_nlink(inode);
801 }
802 EXPORT_SYMBOL(__simple_unlink);
803
__simple_rmdir(struct inode * dir,struct dentry * dentry)804 void __simple_rmdir(struct inode *dir, struct dentry *dentry)
805 {
806 drop_nlink(d_inode(dentry));
807 __simple_unlink(dir, dentry);
808 drop_nlink(dir);
809 }
810 EXPORT_SYMBOL(__simple_rmdir);
811
simple_unlink(struct inode * dir,struct dentry * dentry)812 int simple_unlink(struct inode *dir, struct dentry *dentry)
813 {
814 __simple_unlink(dir, dentry);
815 d_make_discardable(dentry);
816 return 0;
817 }
818 EXPORT_SYMBOL(simple_unlink);
819
simple_rmdir(struct inode * dir,struct dentry * dentry)820 int simple_rmdir(struct inode *dir, struct dentry *dentry)
821 {
822 if (!simple_empty(dentry))
823 return -ENOTEMPTY;
824
825 __simple_rmdir(dir, dentry);
826 d_make_discardable(dentry);
827 return 0;
828 }
829 EXPORT_SYMBOL(simple_rmdir);
830
831 /**
832 * simple_rename_timestamp - update the various inode timestamps for rename
833 * @old_dir: old parent directory
834 * @old_dentry: dentry that is being renamed
835 * @new_dir: new parent directory
836 * @new_dentry: target for rename
837 *
838 * POSIX mandates that the old and new parent directories have their ctime and
839 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
840 * their ctime updated.
841 */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)842 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
843 struct inode *new_dir, struct dentry *new_dentry)
844 {
845 struct inode *newino = d_inode(new_dentry);
846
847 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
848 if (new_dir != old_dir)
849 inode_set_mtime_to_ts(new_dir,
850 inode_set_ctime_current(new_dir));
851 inode_set_ctime_current(d_inode(old_dentry));
852 if (newino)
853 inode_set_ctime_current(newino);
854 }
855 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
856
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)857 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
858 struct inode *new_dir, struct dentry *new_dentry)
859 {
860 bool old_is_dir = d_is_dir(old_dentry);
861 bool new_is_dir = d_is_dir(new_dentry);
862
863 if (old_dir != new_dir && old_is_dir != new_is_dir) {
864 if (old_is_dir) {
865 drop_nlink(old_dir);
866 inc_nlink(new_dir);
867 } else {
868 drop_nlink(new_dir);
869 inc_nlink(old_dir);
870 }
871 }
872 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
873 return 0;
874 }
875 EXPORT_SYMBOL_GPL(simple_rename_exchange);
876
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)877 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
878 struct dentry *old_dentry, struct inode *new_dir,
879 struct dentry *new_dentry, unsigned int flags)
880 {
881 int they_are_dirs = d_is_dir(old_dentry);
882
883 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
884 return -EINVAL;
885
886 if (flags & RENAME_EXCHANGE)
887 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
888
889 if (!simple_empty(new_dentry))
890 return -ENOTEMPTY;
891
892 if (d_really_is_positive(new_dentry)) {
893 simple_unlink(new_dir, new_dentry);
894 if (they_are_dirs) {
895 drop_nlink(d_inode(new_dentry));
896 drop_nlink(old_dir);
897 }
898 } else if (they_are_dirs) {
899 drop_nlink(old_dir);
900 inc_nlink(new_dir);
901 }
902
903 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
904 return 0;
905 }
906 EXPORT_SYMBOL(simple_rename);
907
908 /**
909 * simple_setattr - setattr for simple filesystem
910 * @idmap: idmap of the target mount
911 * @dentry: dentry
912 * @iattr: iattr structure
913 *
914 * Returns 0 on success, -error on failure.
915 *
916 * simple_setattr is a simple ->setattr implementation without a proper
917 * implementation of size changes.
918 *
919 * It can either be used for in-memory filesystems or special files
920 * on simple regular filesystems. Anything that needs to change on-disk
921 * or wire state on size changes needs its own setattr method.
922 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)923 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
924 struct iattr *iattr)
925 {
926 struct inode *inode = d_inode(dentry);
927 int error;
928
929 error = setattr_prepare(idmap, dentry, iattr);
930 if (error)
931 return error;
932
933 if (iattr->ia_valid & ATTR_SIZE)
934 truncate_setsize(inode, iattr->ia_size);
935 setattr_copy(idmap, inode, iattr);
936 mark_inode_dirty(inode);
937 return 0;
938 }
939 EXPORT_SYMBOL(simple_setattr);
940
simple_read_folio(struct file * file,struct folio * folio)941 static int simple_read_folio(struct file *file, struct folio *folio)
942 {
943 folio_zero_range(folio, 0, folio_size(folio));
944 flush_dcache_folio(folio);
945 folio_mark_uptodate(folio);
946 folio_unlock(folio);
947 return 0;
948 }
949
simple_write_begin(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)950 int simple_write_begin(const struct kiocb *iocb, struct address_space *mapping,
951 loff_t pos, unsigned len,
952 struct folio **foliop, void **fsdata)
953 {
954 struct folio *folio;
955
956 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
957 mapping_gfp_mask(mapping));
958 if (IS_ERR(folio))
959 return PTR_ERR(folio);
960
961 *foliop = folio;
962
963 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
964 size_t from = offset_in_folio(folio, pos);
965
966 folio_zero_segments(folio, 0, from,
967 from + len, folio_size(folio));
968 }
969 return 0;
970 }
971 EXPORT_SYMBOL(simple_write_begin);
972
973 /**
974 * simple_write_end - .write_end helper for non-block-device FSes
975 * @iocb: kernel I/O control block
976 * @mapping: "
977 * @pos: "
978 * @len: "
979 * @copied: "
980 * @folio: "
981 * @fsdata: "
982 *
983 * simple_write_end does the minimum needed for updating a folio after
984 * writing is done. It has the same API signature as the .write_end of
985 * address_space_operations vector. So it can just be set onto .write_end for
986 * FSes that don't need any other processing. i_rwsem is assumed to be held
987 * exclusively.
988 * Block based filesystems should use generic_write_end().
989 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
990 * is not called, so a filesystem that actually does store data in .write_inode
991 * should extend on what's done here with a call to mark_inode_dirty() in the
992 * case that i_size has changed.
993 *
994 * Use *ONLY* with simple_read_folio()
995 */
simple_write_end(const struct kiocb * iocb,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)996 static int simple_write_end(const struct kiocb *iocb,
997 struct address_space *mapping,
998 loff_t pos, unsigned len, unsigned copied,
999 struct folio *folio, void *fsdata)
1000 {
1001 struct inode *inode = folio->mapping->host;
1002 loff_t last_pos = pos + copied;
1003
1004 /* zero the stale part of the folio if we did a short copy */
1005 if (!folio_test_uptodate(folio)) {
1006 if (copied < len) {
1007 size_t from = offset_in_folio(folio, pos);
1008
1009 folio_zero_range(folio, from + copied, len - copied);
1010 }
1011 folio_mark_uptodate(folio);
1012 }
1013 /*
1014 * No need to use i_size_read() here, the i_size
1015 * cannot change under us because we hold the i_rwsem.
1016 */
1017 if (last_pos > inode->i_size)
1018 i_size_write(inode, last_pos);
1019
1020 folio_mark_dirty(folio);
1021 folio_unlock(folio);
1022 folio_put(folio);
1023
1024 return copied;
1025 }
1026
1027 /*
1028 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
1029 */
1030 const struct address_space_operations ram_aops = {
1031 .read_folio = simple_read_folio,
1032 .write_begin = simple_write_begin,
1033 .write_end = simple_write_end,
1034 .dirty_folio = noop_dirty_folio,
1035 };
1036 EXPORT_SYMBOL(ram_aops);
1037
1038 /*
1039 * the inodes created here are not hashed. If you use iunique to generate
1040 * unique inode values later for this filesystem, then you must take care
1041 * to pass it an appropriate max_reserved value to avoid collisions.
1042 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1043 int simple_fill_super(struct super_block *s, unsigned long magic,
1044 const struct tree_descr *files)
1045 {
1046 struct inode *inode;
1047 struct dentry *dentry;
1048 int i;
1049
1050 s->s_blocksize = PAGE_SIZE;
1051 s->s_blocksize_bits = PAGE_SHIFT;
1052 s->s_magic = magic;
1053 s->s_op = &simple_super_operations;
1054 s->s_time_gran = 1;
1055
1056 inode = new_inode(s);
1057 if (!inode)
1058 return -ENOMEM;
1059 /*
1060 * because the root inode is 1, the files array must not contain an
1061 * entry at index 1
1062 */
1063 inode->i_ino = 1;
1064 inode->i_mode = S_IFDIR | 0755;
1065 simple_inode_init_ts(inode);
1066 inode->i_op = &simple_dir_inode_operations;
1067 inode->i_fop = &simple_dir_operations;
1068 set_nlink(inode, 2);
1069 s->s_root = d_make_root(inode);
1070 if (!s->s_root)
1071 return -ENOMEM;
1072 for (i = 0; !files->name || files->name[0]; i++, files++) {
1073 if (!files->name)
1074 continue;
1075
1076 /* warn if it tries to conflict with the root inode */
1077 if (unlikely(i == 1))
1078 printk(KERN_WARNING "%s: %s passed in a files array"
1079 "with an index of 1!\n", __func__,
1080 s->s_type->name);
1081
1082 dentry = d_alloc_name(s->s_root, files->name);
1083 if (!dentry)
1084 return -ENOMEM;
1085 inode = new_inode(s);
1086 if (!inode) {
1087 dput(dentry);
1088 return -ENOMEM;
1089 }
1090 inode->i_mode = S_IFREG | files->mode;
1091 simple_inode_init_ts(inode);
1092 inode->i_fop = files->ops;
1093 inode->i_ino = i;
1094 d_make_persistent(dentry, inode);
1095 dput(dentry);
1096 }
1097 return 0;
1098 }
1099 EXPORT_SYMBOL(simple_fill_super);
1100
1101 static DEFINE_SPINLOCK(pin_fs_lock);
1102
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1103 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1104 {
1105 struct vfsmount *mnt = NULL;
1106 spin_lock(&pin_fs_lock);
1107 if (unlikely(!*mount)) {
1108 spin_unlock(&pin_fs_lock);
1109 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1110 if (IS_ERR(mnt))
1111 return PTR_ERR(mnt);
1112 spin_lock(&pin_fs_lock);
1113 if (!*mount)
1114 *mount = mnt;
1115 }
1116 mntget(*mount);
1117 ++*count;
1118 spin_unlock(&pin_fs_lock);
1119 mntput(mnt);
1120 return 0;
1121 }
1122 EXPORT_SYMBOL(simple_pin_fs);
1123
simple_release_fs(struct vfsmount ** mount,int * count)1124 void simple_release_fs(struct vfsmount **mount, int *count)
1125 {
1126 struct vfsmount *mnt;
1127 spin_lock(&pin_fs_lock);
1128 mnt = *mount;
1129 if (!--*count)
1130 *mount = NULL;
1131 spin_unlock(&pin_fs_lock);
1132 mntput(mnt);
1133 }
1134 EXPORT_SYMBOL(simple_release_fs);
1135
1136 /**
1137 * simple_read_from_buffer - copy data from the buffer to user space
1138 * @to: the user space buffer to read to
1139 * @count: the maximum number of bytes to read
1140 * @ppos: the current position in the buffer
1141 * @from: the buffer to read from
1142 * @available: the size of the buffer
1143 *
1144 * The simple_read_from_buffer() function reads up to @count bytes from the
1145 * buffer @from at offset @ppos into the user space address starting at @to.
1146 *
1147 * On success, the number of bytes read is returned and the offset @ppos is
1148 * advanced by this number, or negative value is returned on error.
1149 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1150 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1151 const void *from, size_t available)
1152 {
1153 loff_t pos = *ppos;
1154 size_t ret;
1155
1156 if (pos < 0)
1157 return -EINVAL;
1158 if (pos >= available || !count)
1159 return 0;
1160 if (count > available - pos)
1161 count = available - pos;
1162 ret = copy_to_user(to, from + pos, count);
1163 if (ret == count)
1164 return -EFAULT;
1165 count -= ret;
1166 *ppos = pos + count;
1167 return count;
1168 }
1169 EXPORT_SYMBOL(simple_read_from_buffer);
1170
1171 /**
1172 * simple_write_to_buffer - copy data from user space to the buffer
1173 * @to: the buffer to write to
1174 * @available: the size of the buffer
1175 * @ppos: the current position in the buffer
1176 * @from: the user space buffer to read from
1177 * @count: the maximum number of bytes to read
1178 *
1179 * The simple_write_to_buffer() function reads up to @count bytes from the user
1180 * space address starting at @from into the buffer @to at offset @ppos.
1181 *
1182 * On success, the number of bytes written is returned and the offset @ppos is
1183 * advanced by this number, or negative value is returned on error.
1184 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1185 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1186 const void __user *from, size_t count)
1187 {
1188 loff_t pos = *ppos;
1189 size_t res;
1190
1191 if (pos < 0)
1192 return -EINVAL;
1193 if (pos >= available || !count)
1194 return 0;
1195 if (count > available - pos)
1196 count = available - pos;
1197 res = copy_from_user(to + pos, from, count);
1198 if (res == count)
1199 return -EFAULT;
1200 count -= res;
1201 *ppos = pos + count;
1202 return count;
1203 }
1204 EXPORT_SYMBOL(simple_write_to_buffer);
1205
1206 /**
1207 * memory_read_from_buffer - copy data from the buffer
1208 * @to: the kernel space buffer to read to
1209 * @count: the maximum number of bytes to read
1210 * @ppos: the current position in the buffer
1211 * @from: the buffer to read from
1212 * @available: the size of the buffer
1213 *
1214 * The memory_read_from_buffer() function reads up to @count bytes from the
1215 * buffer @from at offset @ppos into the kernel space address starting at @to.
1216 *
1217 * On success, the number of bytes read is returned and the offset @ppos is
1218 * advanced by this number, or negative value is returned on error.
1219 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1220 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1221 const void *from, size_t available)
1222 {
1223 loff_t pos = *ppos;
1224
1225 if (pos < 0)
1226 return -EINVAL;
1227 if (pos >= available)
1228 return 0;
1229 if (count > available - pos)
1230 count = available - pos;
1231 memcpy(to, from + pos, count);
1232 *ppos = pos + count;
1233
1234 return count;
1235 }
1236 EXPORT_SYMBOL(memory_read_from_buffer);
1237
1238 /*
1239 * Transaction based IO.
1240 * The file expects a single write which triggers the transaction, and then
1241 * possibly a read which collects the result - which is stored in a
1242 * file-local buffer.
1243 */
1244
simple_transaction_set(struct file * file,size_t n)1245 void simple_transaction_set(struct file *file, size_t n)
1246 {
1247 struct simple_transaction_argresp *ar = file->private_data;
1248
1249 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1250
1251 /*
1252 * The barrier ensures that ar->size will really remain zero until
1253 * ar->data is ready for reading.
1254 */
1255 smp_mb();
1256 ar->size = n;
1257 }
1258 EXPORT_SYMBOL(simple_transaction_set);
1259
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1260 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1261 {
1262 struct simple_transaction_argresp *ar;
1263 static DEFINE_SPINLOCK(simple_transaction_lock);
1264
1265 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1266 return ERR_PTR(-EFBIG);
1267
1268 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1269 if (!ar)
1270 return ERR_PTR(-ENOMEM);
1271
1272 spin_lock(&simple_transaction_lock);
1273
1274 /* only one write allowed per open */
1275 if (file->private_data) {
1276 spin_unlock(&simple_transaction_lock);
1277 free_page((unsigned long)ar);
1278 return ERR_PTR(-EBUSY);
1279 }
1280
1281 file->private_data = ar;
1282
1283 spin_unlock(&simple_transaction_lock);
1284
1285 if (copy_from_user(ar->data, buf, size))
1286 return ERR_PTR(-EFAULT);
1287
1288 return ar->data;
1289 }
1290 EXPORT_SYMBOL(simple_transaction_get);
1291
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1292 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1293 {
1294 struct simple_transaction_argresp *ar = file->private_data;
1295
1296 if (!ar)
1297 return 0;
1298 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1299 }
1300 EXPORT_SYMBOL(simple_transaction_read);
1301
simple_transaction_release(struct inode * inode,struct file * file)1302 int simple_transaction_release(struct inode *inode, struct file *file)
1303 {
1304 free_page((unsigned long)file->private_data);
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(simple_transaction_release);
1308
1309 /* Simple attribute files */
1310
1311 struct simple_attr {
1312 int (*get)(void *, u64 *);
1313 int (*set)(void *, u64);
1314 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1315 char set_buf[24];
1316 void *data;
1317 const char *fmt; /* format for read operation */
1318 struct mutex mutex; /* protects access to these buffers */
1319 };
1320
1321 /* simple_attr_open is called by an actual attribute open file operation
1322 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1323 int simple_attr_open(struct inode *inode, struct file *file,
1324 int (*get)(void *, u64 *), int (*set)(void *, u64),
1325 const char *fmt)
1326 {
1327 struct simple_attr *attr;
1328
1329 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1330 if (!attr)
1331 return -ENOMEM;
1332
1333 attr->get = get;
1334 attr->set = set;
1335 attr->data = inode->i_private;
1336 attr->fmt = fmt;
1337 mutex_init(&attr->mutex);
1338
1339 file->private_data = attr;
1340
1341 return nonseekable_open(inode, file);
1342 }
1343 EXPORT_SYMBOL_GPL(simple_attr_open);
1344
simple_attr_release(struct inode * inode,struct file * file)1345 int simple_attr_release(struct inode *inode, struct file *file)
1346 {
1347 kfree(file->private_data);
1348 return 0;
1349 }
1350 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1351
1352 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1353 ssize_t simple_attr_read(struct file *file, char __user *buf,
1354 size_t len, loff_t *ppos)
1355 {
1356 struct simple_attr *attr;
1357 size_t size;
1358 ssize_t ret;
1359
1360 attr = file->private_data;
1361
1362 if (!attr->get)
1363 return -EACCES;
1364
1365 ret = mutex_lock_interruptible(&attr->mutex);
1366 if (ret)
1367 return ret;
1368
1369 if (*ppos && attr->get_buf[0]) {
1370 /* continued read */
1371 size = strlen(attr->get_buf);
1372 } else {
1373 /* first read */
1374 u64 val;
1375 ret = attr->get(attr->data, &val);
1376 if (ret)
1377 goto out;
1378
1379 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1380 attr->fmt, (unsigned long long)val);
1381 }
1382
1383 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1384 out:
1385 mutex_unlock(&attr->mutex);
1386 return ret;
1387 }
1388 EXPORT_SYMBOL_GPL(simple_attr_read);
1389
1390 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1391 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1392 size_t len, loff_t *ppos, bool is_signed)
1393 {
1394 struct simple_attr *attr;
1395 unsigned long long val;
1396 size_t size;
1397 ssize_t ret;
1398
1399 attr = file->private_data;
1400 if (!attr->set)
1401 return -EACCES;
1402
1403 ret = mutex_lock_interruptible(&attr->mutex);
1404 if (ret)
1405 return ret;
1406
1407 ret = -EFAULT;
1408 size = min(sizeof(attr->set_buf) - 1, len);
1409 if (copy_from_user(attr->set_buf, buf, size))
1410 goto out;
1411
1412 attr->set_buf[size] = '\0';
1413 if (is_signed)
1414 ret = kstrtoll(attr->set_buf, 0, &val);
1415 else
1416 ret = kstrtoull(attr->set_buf, 0, &val);
1417 if (ret)
1418 goto out;
1419 ret = attr->set(attr->data, val);
1420 if (ret == 0)
1421 ret = len; /* on success, claim we got the whole input */
1422 out:
1423 mutex_unlock(&attr->mutex);
1424 return ret;
1425 }
1426
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1427 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1428 size_t len, loff_t *ppos)
1429 {
1430 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1431 }
1432 EXPORT_SYMBOL_GPL(simple_attr_write);
1433
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1434 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1435 size_t len, loff_t *ppos)
1436 {
1437 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1438 }
1439 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1440
1441 /**
1442 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1443 * @inode: the object to encode
1444 * @fh: where to store the file handle fragment
1445 * @max_len: maximum length to store there (in 4 byte units)
1446 * @parent: parent directory inode, if wanted
1447 *
1448 * This generic encode_fh function assumes that the 32 inode number
1449 * is suitable for locating an inode, and that the generation number
1450 * can be used to check that it is still valid. It places them in the
1451 * filehandle fragment where export_decode_fh expects to find them.
1452 */
generic_encode_ino32_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)1453 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1454 struct inode *parent)
1455 {
1456 struct fid *fid = (void *)fh;
1457 int len = *max_len;
1458 int type = FILEID_INO32_GEN;
1459
1460 if (parent && (len < 4)) {
1461 *max_len = 4;
1462 return FILEID_INVALID;
1463 } else if (len < 2) {
1464 *max_len = 2;
1465 return FILEID_INVALID;
1466 }
1467
1468 len = 2;
1469 fid->i32.ino = inode->i_ino;
1470 fid->i32.gen = inode->i_generation;
1471 if (parent) {
1472 fid->i32.parent_ino = parent->i_ino;
1473 fid->i32.parent_gen = parent->i_generation;
1474 len = 4;
1475 type = FILEID_INO32_GEN_PARENT;
1476 }
1477 *max_len = len;
1478 return type;
1479 }
1480 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1481
1482 /**
1483 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1484 * @sb: filesystem to do the file handle conversion on
1485 * @fid: file handle to convert
1486 * @fh_len: length of the file handle in bytes
1487 * @fh_type: type of file handle
1488 * @get_inode: filesystem callback to retrieve inode
1489 *
1490 * This function decodes @fid as long as it has one of the well-known
1491 * Linux filehandle types and calls @get_inode on it to retrieve the
1492 * inode for the object specified in the file handle.
1493 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1494 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1495 int fh_len, int fh_type, struct inode *(*get_inode)
1496 (struct super_block *sb, u64 ino, u32 gen))
1497 {
1498 struct inode *inode = NULL;
1499
1500 if (fh_len < 2)
1501 return NULL;
1502
1503 switch (fh_type) {
1504 case FILEID_INO32_GEN:
1505 case FILEID_INO32_GEN_PARENT:
1506 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1507 break;
1508 }
1509
1510 return d_obtain_alias(inode);
1511 }
1512 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1513
1514 /**
1515 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1516 * @sb: filesystem to do the file handle conversion on
1517 * @fid: file handle to convert
1518 * @fh_len: length of the file handle in bytes
1519 * @fh_type: type of file handle
1520 * @get_inode: filesystem callback to retrieve inode
1521 *
1522 * This function decodes @fid as long as it has one of the well-known
1523 * Linux filehandle types and calls @get_inode on it to retrieve the
1524 * inode for the _parent_ object specified in the file handle if it
1525 * is specified in the file handle, or NULL otherwise.
1526 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1527 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1528 int fh_len, int fh_type, struct inode *(*get_inode)
1529 (struct super_block *sb, u64 ino, u32 gen))
1530 {
1531 struct inode *inode = NULL;
1532
1533 if (fh_len <= 2)
1534 return NULL;
1535
1536 switch (fh_type) {
1537 case FILEID_INO32_GEN_PARENT:
1538 inode = get_inode(sb, fid->i32.parent_ino,
1539 (fh_len > 3 ? fid->i32.parent_gen : 0));
1540 break;
1541 }
1542
1543 return d_obtain_alias(inode);
1544 }
1545 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1546
1547 /**
1548 * __generic_file_fsync - generic fsync implementation for simple filesystems
1549 *
1550 * @file: file to synchronize
1551 * @start: start offset in bytes
1552 * @end: end offset in bytes (inclusive)
1553 * @datasync: only synchronize essential metadata if true
1554 *
1555 * This is a generic implementation of the fsync method for simple
1556 * filesystems which track all non-inode metadata in the buffers list
1557 * hanging off the address_space structure.
1558 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1559 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1560 int datasync)
1561 {
1562 struct inode *inode = file->f_mapping->host;
1563 int err;
1564 int ret;
1565
1566 err = file_write_and_wait_range(file, start, end);
1567 if (err)
1568 return err;
1569
1570 inode_lock(inode);
1571 ret = sync_mapping_buffers(inode->i_mapping);
1572 if (!(inode_state_read_once(inode) & I_DIRTY_ALL))
1573 goto out;
1574 if (datasync && !(inode_state_read_once(inode) & I_DIRTY_DATASYNC))
1575 goto out;
1576
1577 err = sync_inode_metadata(inode, 1);
1578 if (ret == 0)
1579 ret = err;
1580
1581 out:
1582 inode_unlock(inode);
1583 /* check and advance again to catch errors after syncing out buffers */
1584 err = file_check_and_advance_wb_err(file);
1585 if (ret == 0)
1586 ret = err;
1587 return ret;
1588 }
1589 EXPORT_SYMBOL(__generic_file_fsync);
1590
1591 /**
1592 * generic_file_fsync - generic fsync implementation for simple filesystems
1593 * with flush
1594 * @file: file to synchronize
1595 * @start: start offset in bytes
1596 * @end: end offset in bytes (inclusive)
1597 * @datasync: only synchronize essential metadata if true
1598 *
1599 */
1600
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1601 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1602 int datasync)
1603 {
1604 struct inode *inode = file->f_mapping->host;
1605 int err;
1606
1607 err = __generic_file_fsync(file, start, end, datasync);
1608 if (err)
1609 return err;
1610 return blkdev_issue_flush(inode->i_sb->s_bdev);
1611 }
1612 EXPORT_SYMBOL(generic_file_fsync);
1613
1614 /**
1615 * generic_check_addressable - Check addressability of file system
1616 * @blocksize_bits: log of file system block size
1617 * @num_blocks: number of blocks in file system
1618 *
1619 * Determine whether a file system with @num_blocks blocks (and a
1620 * block size of 2**@blocksize_bits) is addressable by the sector_t
1621 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1622 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1623 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1624 {
1625 u64 last_fs_block = num_blocks - 1;
1626 u64 last_fs_page, max_bytes;
1627
1628 if (check_shl_overflow(num_blocks, blocksize_bits, &max_bytes))
1629 return -EFBIG;
1630
1631 last_fs_page = (max_bytes >> PAGE_SHIFT) - 1;
1632
1633 if (unlikely(num_blocks == 0))
1634 return 0;
1635
1636 if (blocksize_bits < 9)
1637 return -EINVAL;
1638
1639 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1640 (last_fs_page > (pgoff_t)(~0ULL))) {
1641 return -EFBIG;
1642 }
1643 return 0;
1644 }
1645 EXPORT_SYMBOL(generic_check_addressable);
1646
1647 /*
1648 * No-op implementation of ->fsync for in-memory filesystems.
1649 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1650 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1651 {
1652 return 0;
1653 }
1654 EXPORT_SYMBOL(noop_fsync);
1655
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1656 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1657 {
1658 /*
1659 * iomap based filesystems support direct I/O without need for
1660 * this callback. However, it still needs to be set in
1661 * inode->a_ops so that open/fcntl know that direct I/O is
1662 * generally supported.
1663 */
1664 return -EINVAL;
1665 }
1666 EXPORT_SYMBOL_GPL(noop_direct_IO);
1667
1668 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1669 void kfree_link(void *p)
1670 {
1671 kfree(p);
1672 }
1673 EXPORT_SYMBOL(kfree_link);
1674
alloc_anon_inode(struct super_block * s)1675 struct inode *alloc_anon_inode(struct super_block *s)
1676 {
1677 static const struct address_space_operations anon_aops = {
1678 .dirty_folio = noop_dirty_folio,
1679 };
1680 struct inode *inode = new_inode_pseudo(s);
1681
1682 if (!inode)
1683 return ERR_PTR(-ENOMEM);
1684
1685 inode->i_ino = get_next_ino();
1686 inode->i_mapping->a_ops = &anon_aops;
1687
1688 /*
1689 * Mark the inode dirty from the very beginning,
1690 * that way it will never be moved to the dirty
1691 * list because mark_inode_dirty() will think
1692 * that it already _is_ on the dirty list.
1693 */
1694 inode_state_assign_raw(inode, I_DIRTY);
1695 /*
1696 * Historically anonymous inodes don't have a type at all and
1697 * userspace has come to rely on this.
1698 */
1699 inode->i_mode = S_IRUSR | S_IWUSR;
1700 inode->i_uid = current_fsuid();
1701 inode->i_gid = current_fsgid();
1702 inode->i_flags |= S_PRIVATE | S_ANON_INODE;
1703 simple_inode_init_ts(inode);
1704 return inode;
1705 }
1706 EXPORT_SYMBOL(alloc_anon_inode);
1707
1708 /**
1709 * simple_nosetlease - generic helper for prohibiting leases
1710 * @filp: file pointer
1711 * @arg: type of lease to obtain
1712 * @flp: new lease supplied for insertion
1713 * @priv: private data for lm_setup operation
1714 *
1715 * Generic helper for filesystems that do not wish to allow leases to be set.
1716 * All arguments are ignored and it just returns -EINVAL.
1717 */
1718 int
simple_nosetlease(struct file * filp,int arg,struct file_lease ** flp,void ** priv)1719 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1720 void **priv)
1721 {
1722 return -EINVAL;
1723 }
1724 EXPORT_SYMBOL(simple_nosetlease);
1725
1726 /**
1727 * simple_get_link - generic helper to get the target of "fast" symlinks
1728 * @dentry: not used here
1729 * @inode: the symlink inode
1730 * @done: not used here
1731 *
1732 * Generic helper for filesystems to use for symlink inodes where a pointer to
1733 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1734 * since as an optimization the path lookup code uses any non-NULL ->i_link
1735 * directly, without calling ->get_link(). But ->get_link() still must be set,
1736 * to mark the inode_operations as being for a symlink.
1737 *
1738 * Return: the symlink target
1739 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1740 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1741 struct delayed_call *done)
1742 {
1743 return inode->i_link;
1744 }
1745 EXPORT_SYMBOL(simple_get_link);
1746
1747 const struct inode_operations simple_symlink_inode_operations = {
1748 .get_link = simple_get_link,
1749 };
1750 EXPORT_SYMBOL(simple_symlink_inode_operations);
1751
1752 /*
1753 * Operations for a permanently empty directory.
1754 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1755 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1756 {
1757 return ERR_PTR(-ENOENT);
1758 }
1759
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1760 static int empty_dir_setattr(struct mnt_idmap *idmap,
1761 struct dentry *dentry, struct iattr *attr)
1762 {
1763 return -EPERM;
1764 }
1765
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1766 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1767 {
1768 return -EOPNOTSUPP;
1769 }
1770
1771 static const struct inode_operations empty_dir_inode_operations = {
1772 .lookup = empty_dir_lookup,
1773 .setattr = empty_dir_setattr,
1774 .listxattr = empty_dir_listxattr,
1775 };
1776
empty_dir_llseek(struct file * file,loff_t offset,int whence)1777 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1778 {
1779 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1780 return generic_file_llseek_size(file, offset, whence, 2, 2);
1781 }
1782
empty_dir_readdir(struct file * file,struct dir_context * ctx)1783 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1784 {
1785 dir_emit_dots(file, ctx);
1786 return 0;
1787 }
1788
1789 static const struct file_operations empty_dir_operations = {
1790 .llseek = empty_dir_llseek,
1791 .read = generic_read_dir,
1792 .iterate_shared = empty_dir_readdir,
1793 .fsync = noop_fsync,
1794 };
1795
1796
make_empty_dir_inode(struct inode * inode)1797 void make_empty_dir_inode(struct inode *inode)
1798 {
1799 set_nlink(inode, 2);
1800 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1801 inode->i_uid = GLOBAL_ROOT_UID;
1802 inode->i_gid = GLOBAL_ROOT_GID;
1803 inode->i_rdev = 0;
1804 inode->i_size = 0;
1805 inode->i_blkbits = PAGE_SHIFT;
1806 inode->i_blocks = 0;
1807
1808 inode->i_op = &empty_dir_inode_operations;
1809 inode->i_opflags &= ~IOP_XATTR;
1810 inode->i_fop = &empty_dir_operations;
1811 }
1812
is_empty_dir_inode(struct inode * inode)1813 bool is_empty_dir_inode(struct inode *inode)
1814 {
1815 return (inode->i_fop == &empty_dir_operations) &&
1816 (inode->i_op == &empty_dir_inode_operations);
1817 }
1818
1819 #if IS_ENABLED(CONFIG_UNICODE)
1820 /**
1821 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1822 * @dentry: dentry whose name we are checking against
1823 * @len: len of name of dentry
1824 * @str: str pointer to name of dentry
1825 * @name: Name to compare against
1826 *
1827 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1828 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1829 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1830 const char *str, const struct qstr *name)
1831 {
1832 const struct dentry *parent;
1833 const struct inode *dir;
1834 union shortname_store strbuf;
1835 struct qstr qstr;
1836
1837 /*
1838 * Attempt a case-sensitive match first. It is cheaper and
1839 * should cover most lookups, including all the sane
1840 * applications that expect a case-sensitive filesystem.
1841 *
1842 * This comparison is safe under RCU because the caller
1843 * guarantees the consistency between str and len. See
1844 * __d_lookup_rcu_op_compare() for details.
1845 */
1846 if (len == name->len && !memcmp(str, name->name, len))
1847 return 0;
1848
1849 parent = READ_ONCE(dentry->d_parent);
1850 dir = READ_ONCE(parent->d_inode);
1851 if (!dir || !IS_CASEFOLDED(dir))
1852 return 1;
1853
1854 qstr.len = len;
1855 qstr.name = str;
1856 /*
1857 * If the dentry name is stored in-line, then it may be concurrently
1858 * modified by a rename. If this happens, the VFS will eventually retry
1859 * the lookup, so it doesn't matter what ->d_compare() returns.
1860 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1861 * string. Therefore, we have to copy the name into a temporary buffer.
1862 * As above, len is guaranteed to match str, so the shortname case
1863 * is exactly when str points to ->d_shortname.
1864 */
1865 if (qstr.name == dentry->d_shortname.string) {
1866 strbuf = dentry->d_shortname; // NUL is guaranteed to be in there
1867 qstr.name = strbuf.string;
1868 /* prevent compiler from optimizing out the temporary buffer */
1869 barrier();
1870 }
1871
1872 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1873 }
1874 EXPORT_SYMBOL(generic_ci_d_compare);
1875
1876 /**
1877 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1878 * @dentry: dentry of the parent directory
1879 * @str: qstr of name whose hash we should fill in
1880 *
1881 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1882 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1883 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1884 {
1885 const struct inode *dir = READ_ONCE(dentry->d_inode);
1886 struct super_block *sb = dentry->d_sb;
1887 const struct unicode_map *um = sb->s_encoding;
1888 int ret;
1889
1890 if (!dir || !IS_CASEFOLDED(dir))
1891 return 0;
1892
1893 ret = utf8_casefold_hash(um, dentry, str);
1894 if (ret < 0 && sb_has_strict_encoding(sb))
1895 return -EINVAL;
1896 return 0;
1897 }
1898 EXPORT_SYMBOL(generic_ci_d_hash);
1899
1900 static const struct dentry_operations generic_ci_dentry_ops = {
1901 .d_hash = generic_ci_d_hash,
1902 .d_compare = generic_ci_d_compare,
1903 #ifdef CONFIG_FS_ENCRYPTION
1904 .d_revalidate = fscrypt_d_revalidate,
1905 #endif
1906 };
1907
1908 /**
1909 * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1910 * This is a filesystem helper for comparison with directory entries.
1911 * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1912 *
1913 * @parent: Inode of the parent of the dirent under comparison
1914 * @name: name under lookup.
1915 * @folded_name: Optional pre-folded name under lookup
1916 * @de_name: Dirent name.
1917 * @de_name_len: dirent name length.
1918 *
1919 * Test whether a case-insensitive directory entry matches the filename
1920 * being searched. If @folded_name is provided, it is used instead of
1921 * recalculating the casefold of @name.
1922 *
1923 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1924 * < 0 on error.
1925 */
generic_ci_match(const struct inode * parent,const struct qstr * name,const struct qstr * folded_name,const u8 * de_name,u32 de_name_len)1926 int generic_ci_match(const struct inode *parent,
1927 const struct qstr *name,
1928 const struct qstr *folded_name,
1929 const u8 *de_name, u32 de_name_len)
1930 {
1931 const struct super_block *sb = parent->i_sb;
1932 const struct unicode_map *um = sb->s_encoding;
1933 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1934 struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1935 int res = 0;
1936
1937 if (IS_ENCRYPTED(parent)) {
1938 const struct fscrypt_str encrypted_name =
1939 FSTR_INIT((u8 *) de_name, de_name_len);
1940
1941 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1942 return -EINVAL;
1943
1944 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1945 if (!decrypted_name.name)
1946 return -ENOMEM;
1947 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1948 &decrypted_name);
1949 if (res < 0) {
1950 kfree(decrypted_name.name);
1951 return res;
1952 }
1953 dirent.name = decrypted_name.name;
1954 dirent.len = decrypted_name.len;
1955 }
1956
1957 /*
1958 * Attempt a case-sensitive match first. It is cheaper and
1959 * should cover most lookups, including all the sane
1960 * applications that expect a case-sensitive filesystem.
1961 */
1962
1963 if (dirent.len == name->len &&
1964 !memcmp(name->name, dirent.name, dirent.len))
1965 goto out;
1966
1967 if (folded_name->name)
1968 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1969 else
1970 res = utf8_strncasecmp(um, name, &dirent);
1971
1972 out:
1973 kfree(decrypted_name.name);
1974 if (res < 0 && sb_has_strict_encoding(sb)) {
1975 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1976 return 0;
1977 }
1978 return !res;
1979 }
1980 EXPORT_SYMBOL(generic_ci_match);
1981 #endif
1982
1983 #ifdef CONFIG_FS_ENCRYPTION
1984 static const struct dentry_operations generic_encrypted_dentry_ops = {
1985 .d_revalidate = fscrypt_d_revalidate,
1986 };
1987 #endif
1988
1989 /**
1990 * generic_set_sb_d_ops - helper for choosing the set of
1991 * filesystem-wide dentry operations for the enabled features
1992 * @sb: superblock to be configured
1993 *
1994 * Filesystems supporting casefolding and/or fscrypt can call this
1995 * helper at mount-time to configure default dentry_operations to the
1996 * best set of dentry operations required for the enabled features.
1997 * The helper must be called after these have been configured, but
1998 * before the root dentry is created.
1999 */
generic_set_sb_d_ops(struct super_block * sb)2000 void generic_set_sb_d_ops(struct super_block *sb)
2001 {
2002 #if IS_ENABLED(CONFIG_UNICODE)
2003 if (sb->s_encoding) {
2004 set_default_d_op(sb, &generic_ci_dentry_ops);
2005 return;
2006 }
2007 #endif
2008 #ifdef CONFIG_FS_ENCRYPTION
2009 if (sb->s_cop) {
2010 set_default_d_op(sb, &generic_encrypted_dentry_ops);
2011 return;
2012 }
2013 #endif
2014 }
2015 EXPORT_SYMBOL(generic_set_sb_d_ops);
2016
2017 /**
2018 * inode_maybe_inc_iversion - increments i_version
2019 * @inode: inode with the i_version that should be updated
2020 * @force: increment the counter even if it's not necessary?
2021 *
2022 * Every time the inode is modified, the i_version field must be seen to have
2023 * changed by any observer.
2024 *
2025 * If "force" is set or the QUERIED flag is set, then ensure that we increment
2026 * the value, and clear the queried flag.
2027 *
2028 * In the common case where neither is set, then we can return "false" without
2029 * updating i_version.
2030 *
2031 * If this function returns false, and no other metadata has changed, then we
2032 * can avoid logging the metadata.
2033 */
inode_maybe_inc_iversion(struct inode * inode,bool force)2034 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
2035 {
2036 u64 cur, new;
2037
2038 /*
2039 * The i_version field is not strictly ordered with any other inode
2040 * information, but the legacy inode_inc_iversion code used a spinlock
2041 * to serialize increments.
2042 *
2043 * We add a full memory barrier to ensure that any de facto ordering
2044 * with other state is preserved (either implicitly coming from cmpxchg
2045 * or explicitly from smp_mb if we don't know upfront if we will execute
2046 * the former).
2047 *
2048 * These barriers pair with inode_query_iversion().
2049 */
2050 cur = inode_peek_iversion_raw(inode);
2051 if (!force && !(cur & I_VERSION_QUERIED)) {
2052 smp_mb();
2053 cur = inode_peek_iversion_raw(inode);
2054 }
2055
2056 do {
2057 /* If flag is clear then we needn't do anything */
2058 if (!force && !(cur & I_VERSION_QUERIED))
2059 return false;
2060
2061 /* Since lowest bit is flag, add 2 to avoid it */
2062 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2063 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2064 return true;
2065 }
2066 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2067
2068 /**
2069 * inode_query_iversion - read i_version for later use
2070 * @inode: inode from which i_version should be read
2071 *
2072 * Read the inode i_version counter. This should be used by callers that wish
2073 * to store the returned i_version for later comparison. This will guarantee
2074 * that a later query of the i_version will result in a different value if
2075 * anything has changed.
2076 *
2077 * In this implementation, we fetch the current value, set the QUERIED flag and
2078 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2079 * that fails, we try again with the newly fetched value from the cmpxchg.
2080 */
inode_query_iversion(struct inode * inode)2081 u64 inode_query_iversion(struct inode *inode)
2082 {
2083 u64 cur, new;
2084 bool fenced = false;
2085
2086 /*
2087 * Memory barriers (implicit in cmpxchg, explicit in smp_mb) pair with
2088 * inode_maybe_inc_iversion(), see that routine for more details.
2089 */
2090 cur = inode_peek_iversion_raw(inode);
2091 do {
2092 /* If flag is already set, then no need to swap */
2093 if (cur & I_VERSION_QUERIED) {
2094 if (!fenced)
2095 smp_mb();
2096 break;
2097 }
2098
2099 fenced = true;
2100 new = cur | I_VERSION_QUERIED;
2101 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2102 return cur >> I_VERSION_QUERIED_SHIFT;
2103 }
2104 EXPORT_SYMBOL(inode_query_iversion);
2105
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)2106 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2107 ssize_t direct_written, ssize_t buffered_written)
2108 {
2109 struct address_space *mapping = iocb->ki_filp->f_mapping;
2110 loff_t pos = iocb->ki_pos - buffered_written;
2111 loff_t end = iocb->ki_pos - 1;
2112 int err;
2113
2114 /*
2115 * If the buffered write fallback returned an error, we want to return
2116 * the number of bytes which were written by direct I/O, or the error
2117 * code if that was zero.
2118 *
2119 * Note that this differs from normal direct-io semantics, which will
2120 * return -EFOO even if some bytes were written.
2121 */
2122 if (unlikely(buffered_written < 0)) {
2123 if (direct_written)
2124 return direct_written;
2125 return buffered_written;
2126 }
2127
2128 /*
2129 * We need to ensure that the page cache pages are written to disk and
2130 * invalidated to preserve the expected O_DIRECT semantics.
2131 */
2132 err = filemap_write_and_wait_range(mapping, pos, end);
2133 if (err < 0) {
2134 /*
2135 * We don't know how much we wrote, so just return the number of
2136 * bytes which were direct-written
2137 */
2138 iocb->ki_pos -= buffered_written;
2139 if (direct_written)
2140 return direct_written;
2141 return err;
2142 }
2143 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2144 return direct_written + buffered_written;
2145 }
2146 EXPORT_SYMBOL_GPL(direct_write_fallback);
2147
2148 /**
2149 * simple_inode_init_ts - initialize the timestamps for a new inode
2150 * @inode: inode to be initialized
2151 *
2152 * When a new inode is created, most filesystems set the timestamps to the
2153 * current time. Add a helper to do this.
2154 */
simple_inode_init_ts(struct inode * inode)2155 struct timespec64 simple_inode_init_ts(struct inode *inode)
2156 {
2157 struct timespec64 ts = inode_set_ctime_current(inode);
2158
2159 inode_set_atime_to_ts(inode, ts);
2160 inode_set_mtime_to_ts(inode, ts);
2161 return ts;
2162 }
2163 EXPORT_SYMBOL(simple_inode_init_ts);
2164
stashed_dentry_get(struct dentry ** stashed)2165 struct dentry *stashed_dentry_get(struct dentry **stashed)
2166 {
2167 struct dentry *dentry;
2168
2169 guard(rcu)();
2170 dentry = rcu_dereference(*stashed);
2171 if (!dentry)
2172 return NULL;
2173 if (IS_ERR(dentry))
2174 return dentry;
2175 if (!lockref_get_not_dead(&dentry->d_lockref))
2176 return NULL;
2177 return dentry;
2178 }
2179
prepare_anon_dentry(struct dentry ** stashed,struct super_block * sb,void * data)2180 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2181 struct super_block *sb,
2182 void *data)
2183 {
2184 struct dentry *dentry;
2185 struct inode *inode;
2186 const struct stashed_operations *sops = sb->s_fs_info;
2187 int ret;
2188
2189 inode = new_inode_pseudo(sb);
2190 if (!inode) {
2191 sops->put_data(data);
2192 return ERR_PTR(-ENOMEM);
2193 }
2194
2195 inode->i_flags |= S_IMMUTABLE;
2196 inode->i_mode = S_IFREG;
2197 simple_inode_init_ts(inode);
2198
2199 ret = sops->init_inode(inode, data);
2200 if (ret < 0) {
2201 iput(inode);
2202 return ERR_PTR(ret);
2203 }
2204
2205 /* Notice when this is changed. */
2206 WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2207
2208 dentry = d_alloc_anon(sb);
2209 if (!dentry) {
2210 iput(inode);
2211 return ERR_PTR(-ENOMEM);
2212 }
2213
2214 /* Store address of location where dentry's supposed to be stashed. */
2215 dentry->d_fsdata = stashed;
2216
2217 /* @data is now owned by the fs */
2218 d_instantiate(dentry, inode);
2219 return dentry;
2220 }
2221
stash_dentry(struct dentry ** stashed,struct dentry * dentry)2222 struct dentry *stash_dentry(struct dentry **stashed, struct dentry *dentry)
2223 {
2224 guard(rcu)();
2225 for (;;) {
2226 struct dentry *old;
2227
2228 /* Assume any old dentry was cleared out. */
2229 old = cmpxchg(stashed, NULL, dentry);
2230 if (likely(!old))
2231 return dentry;
2232
2233 /* Check if somebody else installed a reusable dentry. */
2234 if (lockref_get_not_dead(&old->d_lockref))
2235 return old;
2236
2237 /* There's an old dead dentry there, try to take it over. */
2238 if (likely(try_cmpxchg(stashed, &old, dentry)))
2239 return dentry;
2240 }
2241 }
2242
2243 /**
2244 * path_from_stashed - create path from stashed or new dentry
2245 * @stashed: where to retrieve or stash dentry
2246 * @mnt: mnt of the filesystems to use
2247 * @data: data to store in inode->i_private
2248 * @path: path to create
2249 *
2250 * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2251 * is still valid then it will be reused. If the dentry isn't able the function
2252 * will allocate a new dentry and inode. It will then check again whether it
2253 * can reuse an existing dentry in case one has been added in the meantime or
2254 * update @stashed with the newly added dentry.
2255 *
2256 * Special-purpose helper for nsfs and pidfs.
2257 *
2258 * Return: On success zero and on failure a negative error is returned.
2259 */
path_from_stashed(struct dentry ** stashed,struct vfsmount * mnt,void * data,struct path * path)2260 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2261 struct path *path)
2262 {
2263 struct dentry *dentry, *res;
2264 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2265
2266 /* See if dentry can be reused. */
2267 res = stashed_dentry_get(stashed);
2268 if (IS_ERR(res))
2269 return PTR_ERR(res);
2270 if (res) {
2271 sops->put_data(data);
2272 goto make_path;
2273 }
2274
2275 /* Allocate a new dentry. */
2276 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2277 if (IS_ERR(dentry))
2278 return PTR_ERR(dentry);
2279
2280 /* Added a new dentry. @data is now owned by the filesystem. */
2281 if (sops->stash_dentry)
2282 res = sops->stash_dentry(stashed, dentry);
2283 else
2284 res = stash_dentry(stashed, dentry);
2285 if (IS_ERR(res)) {
2286 dput(dentry);
2287 return PTR_ERR(res);
2288 }
2289 if (res != dentry)
2290 dput(dentry);
2291
2292 make_path:
2293 path->dentry = res;
2294 path->mnt = mntget(mnt);
2295 VFS_WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2296 VFS_WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2297 return 0;
2298 }
2299
stashed_dentry_prune(struct dentry * dentry)2300 void stashed_dentry_prune(struct dentry *dentry)
2301 {
2302 struct dentry **stashed = dentry->d_fsdata;
2303 struct inode *inode = d_inode(dentry);
2304
2305 if (WARN_ON_ONCE(!stashed))
2306 return;
2307
2308 if (!inode)
2309 return;
2310
2311 /*
2312 * Only replace our own @dentry as someone else might've
2313 * already cleared out @dentry and stashed their own
2314 * dentry in there.
2315 */
2316 cmpxchg(stashed, dentry, NULL);
2317 }
2318
2319 /**
2320 * simple_start_creating - prepare to create a given name
2321 * @parent: directory in which to prepare to create the name
2322 * @name: the name to be created
2323 *
2324 * Required lock is taken and a lookup in performed prior to creating an
2325 * object in a directory. No permission checking is performed.
2326 *
2327 * Returns: a negative dentry on which vfs_create() or similar may
2328 * be attempted, or an error.
2329 */
simple_start_creating(struct dentry * parent,const char * name)2330 struct dentry *simple_start_creating(struct dentry *parent, const char *name)
2331 {
2332 struct qstr qname = QSTR(name);
2333 int err;
2334
2335 err = lookup_noperm_common(&qname, parent);
2336 if (err)
2337 return ERR_PTR(err);
2338 return start_dirop(parent, &qname, LOOKUP_CREATE | LOOKUP_EXCL);
2339 }
2340 EXPORT_SYMBOL(simple_start_creating);
2341
2342 /* parent must have been held exclusive since simple_start_creating() */
simple_done_creating(struct dentry * child)2343 void simple_done_creating(struct dentry *child)
2344 {
2345 inode_unlock(child->d_parent->d_inode);
2346 dput(child);
2347 }
2348 EXPORT_SYMBOL(simple_done_creating);
2349