1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include <linux/unicode.h>
44 #include "swap.h"
45
46 static struct vfsmount *shm_mnt __ro_after_init;
47
48 #ifdef CONFIG_SHMEM
49 /*
50 * This virtual memory filesystem is heavily based on the ramfs. It
51 * extends ramfs by the ability to use swap and honor resource limits
52 * which makes it a completely usable filesystem.
53 */
54
55 #include <linux/xattr.h>
56 #include <linux/exportfs.h>
57 #include <linux/posix_acl.h>
58 #include <linux/posix_acl_xattr.h>
59 #include <linux/mman.h>
60 #include <linux/string.h>
61 #include <linux/slab.h>
62 #include <linux/backing-dev.h>
63 #include <linux/writeback.h>
64 #include <linux/pagevec.h>
65 #include <linux/percpu_counter.h>
66 #include <linux/falloc.h>
67 #include <linux/splice.h>
68 #include <linux/security.h>
69 #include <linux/swapops.h>
70 #include <linux/mempolicy.h>
71 #include <linux/namei.h>
72 #include <linux/ctype.h>
73 #include <linux/migrate.h>
74 #include <linux/highmem.h>
75 #include <linux/seq_file.h>
76 #include <linux/magic.h>
77 #include <linux/syscalls.h>
78 #include <linux/fcntl.h>
79 #include <uapi/linux/memfd.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
82 #include <linux/quotaops.h>
83 #include <linux/rcupdate_wait.h>
84
85 #include <linux/uaccess.h>
86
87 #include "internal.h"
88
89 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
90 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91
92 /* Pretend that each entry is of this size in directory's i_size */
93 #define BOGO_DIRENT_SIZE 20
94
95 /* Pretend that one inode + its dentry occupy this much memory */
96 #define BOGO_INODE_SIZE 1024
97
98 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
99 #define SHORT_SYMLINK_LEN 128
100
101 /*
102 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
103 * inode->i_private (with i_rwsem making sure that it has only one user at
104 * a time): we would prefer not to enlarge the shmem inode just for that.
105 */
106 struct shmem_falloc {
107 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
108 pgoff_t start; /* start of range currently being fallocated */
109 pgoff_t next; /* the next page offset to be fallocated */
110 pgoff_t nr_falloced; /* how many new pages have been fallocated */
111 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
112 };
113
114 struct shmem_options {
115 unsigned long long blocks;
116 unsigned long long inodes;
117 struct mempolicy *mpol;
118 kuid_t uid;
119 kgid_t gid;
120 umode_t mode;
121 bool full_inums;
122 int huge;
123 int seen;
124 bool noswap;
125 unsigned short quota_types;
126 struct shmem_quota_limits qlimits;
127 #if IS_ENABLED(CONFIG_UNICODE)
128 struct unicode_map *encoding;
129 bool strict_encoding;
130 #endif
131 #define SHMEM_SEEN_BLOCKS 1
132 #define SHMEM_SEEN_INODES 2
133 #define SHMEM_SEEN_HUGE 4
134 #define SHMEM_SEEN_INUMS 8
135 #define SHMEM_SEEN_NOSWAP 16
136 #define SHMEM_SEEN_QUOTA 32
137 };
138
139 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
140 static unsigned long huge_shmem_orders_always __read_mostly;
141 static unsigned long huge_shmem_orders_madvise __read_mostly;
142 static unsigned long huge_shmem_orders_inherit __read_mostly;
143 static unsigned long huge_shmem_orders_within_size __read_mostly;
144 static bool shmem_orders_configured __initdata;
145 #endif
146
147 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)148 static unsigned long shmem_default_max_blocks(void)
149 {
150 return totalram_pages() / 2;
151 }
152
shmem_default_max_inodes(void)153 static unsigned long shmem_default_max_inodes(void)
154 {
155 unsigned long nr_pages = totalram_pages();
156
157 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
158 ULONG_MAX / BOGO_INODE_SIZE);
159 }
160 #endif
161
162 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
163 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
164 struct vm_area_struct *vma, vm_fault_t *fault_type);
165
SHMEM_SB(struct super_block * sb)166 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
167 {
168 return sb->s_fs_info;
169 }
170
171 /*
172 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
173 * for shared memory and for shared anonymous (/dev/zero) mappings
174 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
175 * consistent with the pre-accounting of private mappings ...
176 */
shmem_acct_size(unsigned long flags,loff_t size)177 static inline int shmem_acct_size(unsigned long flags, loff_t size)
178 {
179 return (flags & VM_NORESERVE) ?
180 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
181 }
182
shmem_unacct_size(unsigned long flags,loff_t size)183 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
184 {
185 if (!(flags & VM_NORESERVE))
186 vm_unacct_memory(VM_ACCT(size));
187 }
188
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)189 static inline int shmem_reacct_size(unsigned long flags,
190 loff_t oldsize, loff_t newsize)
191 {
192 if (!(flags & VM_NORESERVE)) {
193 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
194 return security_vm_enough_memory_mm(current->mm,
195 VM_ACCT(newsize) - VM_ACCT(oldsize));
196 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
197 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
198 }
199 return 0;
200 }
201
202 /*
203 * ... whereas tmpfs objects are accounted incrementally as
204 * pages are allocated, in order to allow large sparse files.
205 * shmem_get_folio reports shmem_acct_blocks failure as -ENOSPC not -ENOMEM,
206 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
207 */
shmem_acct_blocks(unsigned long flags,long pages)208 static inline int shmem_acct_blocks(unsigned long flags, long pages)
209 {
210 if (!(flags & VM_NORESERVE))
211 return 0;
212
213 return security_vm_enough_memory_mm(current->mm,
214 pages * VM_ACCT(PAGE_SIZE));
215 }
216
shmem_unacct_blocks(unsigned long flags,long pages)217 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
218 {
219 if (flags & VM_NORESERVE)
220 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
221 }
222
shmem_inode_acct_blocks(struct inode * inode,long pages)223 static int shmem_inode_acct_blocks(struct inode *inode, long pages)
224 {
225 struct shmem_inode_info *info = SHMEM_I(inode);
226 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 int err = -ENOSPC;
228
229 if (shmem_acct_blocks(info->flags, pages))
230 return err;
231
232 might_sleep(); /* when quotas */
233 if (sbinfo->max_blocks) {
234 if (!percpu_counter_limited_add(&sbinfo->used_blocks,
235 sbinfo->max_blocks, pages))
236 goto unacct;
237
238 err = dquot_alloc_block_nodirty(inode, pages);
239 if (err) {
240 percpu_counter_sub(&sbinfo->used_blocks, pages);
241 goto unacct;
242 }
243 } else {
244 err = dquot_alloc_block_nodirty(inode, pages);
245 if (err)
246 goto unacct;
247 }
248
249 return 0;
250
251 unacct:
252 shmem_unacct_blocks(info->flags, pages);
253 return err;
254 }
255
shmem_inode_unacct_blocks(struct inode * inode,long pages)256 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
257 {
258 struct shmem_inode_info *info = SHMEM_I(inode);
259 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
260
261 might_sleep(); /* when quotas */
262 dquot_free_block_nodirty(inode, pages);
263
264 if (sbinfo->max_blocks)
265 percpu_counter_sub(&sbinfo->used_blocks, pages);
266 shmem_unacct_blocks(info->flags, pages);
267 }
268
269 static const struct super_operations shmem_ops;
270 static const struct address_space_operations shmem_aops;
271 static const struct file_operations shmem_file_operations;
272 static const struct inode_operations shmem_inode_operations;
273 static const struct inode_operations shmem_dir_inode_operations;
274 static const struct inode_operations shmem_special_inode_operations;
275 static const struct vm_operations_struct shmem_vm_ops;
276 static const struct vm_operations_struct shmem_anon_vm_ops;
277 static struct file_system_type shmem_fs_type;
278
shmem_mapping(struct address_space * mapping)279 bool shmem_mapping(struct address_space *mapping)
280 {
281 return mapping->a_ops == &shmem_aops;
282 }
283 EXPORT_SYMBOL_GPL(shmem_mapping);
284
vma_is_anon_shmem(struct vm_area_struct * vma)285 bool vma_is_anon_shmem(struct vm_area_struct *vma)
286 {
287 return vma->vm_ops == &shmem_anon_vm_ops;
288 }
289
vma_is_shmem(struct vm_area_struct * vma)290 bool vma_is_shmem(struct vm_area_struct *vma)
291 {
292 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
293 }
294
295 static LIST_HEAD(shmem_swaplist);
296 static DEFINE_MUTEX(shmem_swaplist_mutex);
297
298 #ifdef CONFIG_TMPFS_QUOTA
299
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)300 static int shmem_enable_quotas(struct super_block *sb,
301 unsigned short quota_types)
302 {
303 int type, err = 0;
304
305 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
306 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
307 if (!(quota_types & (1 << type)))
308 continue;
309 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
310 DQUOT_USAGE_ENABLED |
311 DQUOT_LIMITS_ENABLED);
312 if (err)
313 goto out_err;
314 }
315 return 0;
316
317 out_err:
318 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
319 type, err);
320 for (type--; type >= 0; type--)
321 dquot_quota_off(sb, type);
322 return err;
323 }
324
shmem_disable_quotas(struct super_block * sb)325 static void shmem_disable_quotas(struct super_block *sb)
326 {
327 int type;
328
329 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
330 dquot_quota_off(sb, type);
331 }
332
shmem_get_dquots(struct inode * inode)333 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
334 {
335 return SHMEM_I(inode)->i_dquot;
336 }
337 #endif /* CONFIG_TMPFS_QUOTA */
338
339 /*
340 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
341 * produces a novel ino for the newly allocated inode.
342 *
343 * It may also be called when making a hard link to permit the space needed by
344 * each dentry. However, in that case, no new inode number is needed since that
345 * internally draws from another pool of inode numbers (currently global
346 * get_next_ino()). This case is indicated by passing NULL as inop.
347 */
348 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)349 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
350 {
351 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
352 ino_t ino;
353
354 if (!(sb->s_flags & SB_KERNMOUNT)) {
355 raw_spin_lock(&sbinfo->stat_lock);
356 if (sbinfo->max_inodes) {
357 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
358 raw_spin_unlock(&sbinfo->stat_lock);
359 return -ENOSPC;
360 }
361 sbinfo->free_ispace -= BOGO_INODE_SIZE;
362 }
363 if (inop) {
364 ino = sbinfo->next_ino++;
365 if (unlikely(is_zero_ino(ino)))
366 ino = sbinfo->next_ino++;
367 if (unlikely(!sbinfo->full_inums &&
368 ino > UINT_MAX)) {
369 /*
370 * Emulate get_next_ino uint wraparound for
371 * compatibility
372 */
373 if (IS_ENABLED(CONFIG_64BIT))
374 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
375 __func__, MINOR(sb->s_dev));
376 sbinfo->next_ino = 1;
377 ino = sbinfo->next_ino++;
378 }
379 *inop = ino;
380 }
381 raw_spin_unlock(&sbinfo->stat_lock);
382 } else if (inop) {
383 /*
384 * __shmem_file_setup, one of our callers, is lock-free: it
385 * doesn't hold stat_lock in shmem_reserve_inode since
386 * max_inodes is always 0, and is called from potentially
387 * unknown contexts. As such, use a per-cpu batched allocator
388 * which doesn't require the per-sb stat_lock unless we are at
389 * the batch boundary.
390 *
391 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
392 * shmem mounts are not exposed to userspace, so we don't need
393 * to worry about things like glibc compatibility.
394 */
395 ino_t *next_ino;
396
397 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
398 ino = *next_ino;
399 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 ino = sbinfo->next_ino;
402 sbinfo->next_ino += SHMEM_INO_BATCH;
403 raw_spin_unlock(&sbinfo->stat_lock);
404 if (unlikely(is_zero_ino(ino)))
405 ino++;
406 }
407 *inop = ino;
408 *next_ino = ++ino;
409 put_cpu();
410 }
411
412 return 0;
413 }
414
shmem_free_inode(struct super_block * sb,size_t freed_ispace)415 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
416 {
417 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
418 if (sbinfo->max_inodes) {
419 raw_spin_lock(&sbinfo->stat_lock);
420 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
421 raw_spin_unlock(&sbinfo->stat_lock);
422 }
423 }
424
425 /**
426 * shmem_recalc_inode - recalculate the block usage of an inode
427 * @inode: inode to recalc
428 * @alloced: the change in number of pages allocated to inode
429 * @swapped: the change in number of pages swapped from inode
430 *
431 * We have to calculate the free blocks since the mm can drop
432 * undirtied hole pages behind our back.
433 *
434 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
435 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
436 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)437 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
438 {
439 struct shmem_inode_info *info = SHMEM_I(inode);
440 long freed;
441
442 spin_lock(&info->lock);
443 info->alloced += alloced;
444 info->swapped += swapped;
445 freed = info->alloced - info->swapped -
446 READ_ONCE(inode->i_mapping->nrpages);
447 /*
448 * Special case: whereas normally shmem_recalc_inode() is called
449 * after i_mapping->nrpages has already been adjusted (up or down),
450 * shmem_writepage() has to raise swapped before nrpages is lowered -
451 * to stop a racing shmem_recalc_inode() from thinking that a page has
452 * been freed. Compensate here, to avoid the need for a followup call.
453 */
454 if (swapped > 0)
455 freed += swapped;
456 if (freed > 0)
457 info->alloced -= freed;
458 spin_unlock(&info->lock);
459
460 /* The quota case may block */
461 if (freed > 0)
462 shmem_inode_unacct_blocks(inode, freed);
463 }
464
shmem_charge(struct inode * inode,long pages)465 bool shmem_charge(struct inode *inode, long pages)
466 {
467 struct address_space *mapping = inode->i_mapping;
468
469 if (shmem_inode_acct_blocks(inode, pages))
470 return false;
471
472 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
473 xa_lock_irq(&mapping->i_pages);
474 mapping->nrpages += pages;
475 xa_unlock_irq(&mapping->i_pages);
476
477 shmem_recalc_inode(inode, pages, 0);
478 return true;
479 }
480
shmem_uncharge(struct inode * inode,long pages)481 void shmem_uncharge(struct inode *inode, long pages)
482 {
483 /* pages argument is currently unused: keep it to help debugging */
484 /* nrpages adjustment done by __filemap_remove_folio() or caller */
485
486 shmem_recalc_inode(inode, 0, 0);
487 }
488
489 /*
490 * Replace item expected in xarray by a new item, while holding xa_lock.
491 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)492 static int shmem_replace_entry(struct address_space *mapping,
493 pgoff_t index, void *expected, void *replacement)
494 {
495 XA_STATE(xas, &mapping->i_pages, index);
496 void *item;
497
498 VM_BUG_ON(!expected);
499 VM_BUG_ON(!replacement);
500 item = xas_load(&xas);
501 if (item != expected)
502 return -ENOENT;
503 xas_store(&xas, replacement);
504 return 0;
505 }
506
507 /*
508 * Sometimes, before we decide whether to proceed or to fail, we must check
509 * that an entry was not already brought back from swap by a racing thread.
510 *
511 * Checking folio is not enough: by the time a swapcache folio is locked, it
512 * might be reused, and again be swapcache, using the same swap as before.
513 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)514 static bool shmem_confirm_swap(struct address_space *mapping,
515 pgoff_t index, swp_entry_t swap)
516 {
517 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
518 }
519
520 /*
521 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
522 *
523 * SHMEM_HUGE_NEVER:
524 * disables huge pages for the mount;
525 * SHMEM_HUGE_ALWAYS:
526 * enables huge pages for the mount;
527 * SHMEM_HUGE_WITHIN_SIZE:
528 * only allocate huge pages if the page will be fully within i_size,
529 * also respect fadvise()/madvise() hints;
530 * SHMEM_HUGE_ADVISE:
531 * only allocate huge pages if requested with fadvise()/madvise();
532 */
533
534 #define SHMEM_HUGE_NEVER 0
535 #define SHMEM_HUGE_ALWAYS 1
536 #define SHMEM_HUGE_WITHIN_SIZE 2
537 #define SHMEM_HUGE_ADVISE 3
538
539 /*
540 * Special values.
541 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
542 *
543 * SHMEM_HUGE_DENY:
544 * disables huge on shm_mnt and all mounts, for emergency use;
545 * SHMEM_HUGE_FORCE:
546 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
547 *
548 */
549 #define SHMEM_HUGE_DENY (-1)
550 #define SHMEM_HUGE_FORCE (-2)
551
552 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
553 /* ifdef here to avoid bloating shmem.o when not necessary */
554
555 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
556 static int tmpfs_huge __read_mostly = SHMEM_HUGE_NEVER;
557
558 /**
559 * shmem_mapping_size_orders - Get allowable folio orders for the given file size.
560 * @mapping: Target address_space.
561 * @index: The page index.
562 * @write_end: end of a write, could extend inode size.
563 *
564 * This returns huge orders for folios (when supported) based on the file size
565 * which the mapping currently allows at the given index. The index is relevant
566 * due to alignment considerations the mapping might have. The returned order
567 * may be less than the size passed.
568 *
569 * Return: The orders.
570 */
571 static inline unsigned int
shmem_mapping_size_orders(struct address_space * mapping,pgoff_t index,loff_t write_end)572 shmem_mapping_size_orders(struct address_space *mapping, pgoff_t index, loff_t write_end)
573 {
574 unsigned int order;
575 size_t size;
576
577 if (!mapping_large_folio_support(mapping) || !write_end)
578 return 0;
579
580 /* Calculate the write size based on the write_end */
581 size = write_end - (index << PAGE_SHIFT);
582 order = filemap_get_order(size);
583 if (!order)
584 return 0;
585
586 /* If we're not aligned, allocate a smaller folio */
587 if (index & ((1UL << order) - 1))
588 order = __ffs(index);
589
590 order = min_t(size_t, order, MAX_PAGECACHE_ORDER);
591 return order > 0 ? BIT(order + 1) - 1 : 0;
592 }
593
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)594 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
595 loff_t write_end, bool shmem_huge_force,
596 struct vm_area_struct *vma,
597 unsigned long vm_flags)
598 {
599 unsigned int maybe_pmd_order = HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER ?
600 0 : BIT(HPAGE_PMD_ORDER);
601 unsigned long within_size_orders;
602 unsigned int order;
603 pgoff_t aligned_index;
604 loff_t i_size;
605
606 if (!S_ISREG(inode->i_mode))
607 return 0;
608 if (shmem_huge == SHMEM_HUGE_DENY)
609 return 0;
610 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
611 return maybe_pmd_order;
612
613 /*
614 * The huge order allocation for anon shmem is controlled through
615 * the mTHP interface, so we still use PMD-sized huge order to
616 * check whether global control is enabled.
617 *
618 * For tmpfs mmap()'s huge order, we still use PMD-sized order to
619 * allocate huge pages due to lack of a write size hint.
620 *
621 * Otherwise, tmpfs will allow getting a highest order hint based on
622 * the size of write and fallocate paths, then will try each allowable
623 * huge orders.
624 */
625 switch (SHMEM_SB(inode->i_sb)->huge) {
626 case SHMEM_HUGE_ALWAYS:
627 if (vma)
628 return maybe_pmd_order;
629
630 return shmem_mapping_size_orders(inode->i_mapping, index, write_end);
631 case SHMEM_HUGE_WITHIN_SIZE:
632 if (vma)
633 within_size_orders = maybe_pmd_order;
634 else
635 within_size_orders = shmem_mapping_size_orders(inode->i_mapping,
636 index, write_end);
637
638 order = highest_order(within_size_orders);
639 while (within_size_orders) {
640 aligned_index = round_up(index + 1, 1 << order);
641 i_size = max(write_end, i_size_read(inode));
642 i_size = round_up(i_size, PAGE_SIZE);
643 if (i_size >> PAGE_SHIFT >= aligned_index)
644 return within_size_orders;
645
646 order = next_order(&within_size_orders, order);
647 }
648 fallthrough;
649 case SHMEM_HUGE_ADVISE:
650 if (vm_flags & VM_HUGEPAGE)
651 return maybe_pmd_order;
652 fallthrough;
653 default:
654 return 0;
655 }
656 }
657
shmem_parse_huge(const char * str)658 static int shmem_parse_huge(const char *str)
659 {
660 int huge;
661
662 if (!str)
663 return -EINVAL;
664
665 if (!strcmp(str, "never"))
666 huge = SHMEM_HUGE_NEVER;
667 else if (!strcmp(str, "always"))
668 huge = SHMEM_HUGE_ALWAYS;
669 else if (!strcmp(str, "within_size"))
670 huge = SHMEM_HUGE_WITHIN_SIZE;
671 else if (!strcmp(str, "advise"))
672 huge = SHMEM_HUGE_ADVISE;
673 else if (!strcmp(str, "deny"))
674 huge = SHMEM_HUGE_DENY;
675 else if (!strcmp(str, "force"))
676 huge = SHMEM_HUGE_FORCE;
677 else
678 return -EINVAL;
679
680 if (!has_transparent_hugepage() &&
681 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
682 return -EINVAL;
683
684 /* Do not override huge allocation policy with non-PMD sized mTHP */
685 if (huge == SHMEM_HUGE_FORCE &&
686 huge_shmem_orders_inherit != BIT(HPAGE_PMD_ORDER))
687 return -EINVAL;
688
689 return huge;
690 }
691
692 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)693 static const char *shmem_format_huge(int huge)
694 {
695 switch (huge) {
696 case SHMEM_HUGE_NEVER:
697 return "never";
698 case SHMEM_HUGE_ALWAYS:
699 return "always";
700 case SHMEM_HUGE_WITHIN_SIZE:
701 return "within_size";
702 case SHMEM_HUGE_ADVISE:
703 return "advise";
704 case SHMEM_HUGE_DENY:
705 return "deny";
706 case SHMEM_HUGE_FORCE:
707 return "force";
708 default:
709 VM_BUG_ON(1);
710 return "bad_val";
711 }
712 }
713 #endif
714
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)715 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
716 struct shrink_control *sc, unsigned long nr_to_free)
717 {
718 LIST_HEAD(list), *pos, *next;
719 struct inode *inode;
720 struct shmem_inode_info *info;
721 struct folio *folio;
722 unsigned long batch = sc ? sc->nr_to_scan : 128;
723 unsigned long split = 0, freed = 0;
724
725 if (list_empty(&sbinfo->shrinklist))
726 return SHRINK_STOP;
727
728 spin_lock(&sbinfo->shrinklist_lock);
729 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
730 info = list_entry(pos, struct shmem_inode_info, shrinklist);
731
732 /* pin the inode */
733 inode = igrab(&info->vfs_inode);
734
735 /* inode is about to be evicted */
736 if (!inode) {
737 list_del_init(&info->shrinklist);
738 goto next;
739 }
740
741 list_move(&info->shrinklist, &list);
742 next:
743 sbinfo->shrinklist_len--;
744 if (!--batch)
745 break;
746 }
747 spin_unlock(&sbinfo->shrinklist_lock);
748
749 list_for_each_safe(pos, next, &list) {
750 pgoff_t next, end;
751 loff_t i_size;
752 int ret;
753
754 info = list_entry(pos, struct shmem_inode_info, shrinklist);
755 inode = &info->vfs_inode;
756
757 if (nr_to_free && freed >= nr_to_free)
758 goto move_back;
759
760 i_size = i_size_read(inode);
761 folio = filemap_get_entry(inode->i_mapping, i_size / PAGE_SIZE);
762 if (!folio || xa_is_value(folio))
763 goto drop;
764
765 /* No large folio at the end of the file: nothing to split */
766 if (!folio_test_large(folio)) {
767 folio_put(folio);
768 goto drop;
769 }
770
771 /* Check if there is anything to gain from splitting */
772 next = folio_next_index(folio);
773 end = shmem_fallocend(inode, DIV_ROUND_UP(i_size, PAGE_SIZE));
774 if (end <= folio->index || end >= next) {
775 folio_put(folio);
776 goto drop;
777 }
778
779 /*
780 * Move the inode on the list back to shrinklist if we failed
781 * to lock the page at this time.
782 *
783 * Waiting for the lock may lead to deadlock in the
784 * reclaim path.
785 */
786 if (!folio_trylock(folio)) {
787 folio_put(folio);
788 goto move_back;
789 }
790
791 ret = split_folio(folio);
792 folio_unlock(folio);
793 folio_put(folio);
794
795 /* If split failed move the inode on the list back to shrinklist */
796 if (ret)
797 goto move_back;
798
799 freed += next - end;
800 split++;
801 drop:
802 list_del_init(&info->shrinklist);
803 goto put;
804 move_back:
805 /*
806 * Make sure the inode is either on the global list or deleted
807 * from any local list before iput() since it could be deleted
808 * in another thread once we put the inode (then the local list
809 * is corrupted).
810 */
811 spin_lock(&sbinfo->shrinklist_lock);
812 list_move(&info->shrinklist, &sbinfo->shrinklist);
813 sbinfo->shrinklist_len++;
814 spin_unlock(&sbinfo->shrinklist_lock);
815 put:
816 iput(inode);
817 }
818
819 return split;
820 }
821
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)822 static long shmem_unused_huge_scan(struct super_block *sb,
823 struct shrink_control *sc)
824 {
825 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
826
827 if (!READ_ONCE(sbinfo->shrinklist_len))
828 return SHRINK_STOP;
829
830 return shmem_unused_huge_shrink(sbinfo, sc, 0);
831 }
832
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)833 static long shmem_unused_huge_count(struct super_block *sb,
834 struct shrink_control *sc)
835 {
836 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
837 return READ_ONCE(sbinfo->shrinklist_len);
838 }
839 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
840
841 #define shmem_huge SHMEM_HUGE_DENY
842
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_free)843 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
844 struct shrink_control *sc, unsigned long nr_to_free)
845 {
846 return 0;
847 }
848
shmem_huge_global_enabled(struct inode * inode,pgoff_t index,loff_t write_end,bool shmem_huge_force,struct vm_area_struct * vma,unsigned long vm_flags)849 static unsigned int shmem_huge_global_enabled(struct inode *inode, pgoff_t index,
850 loff_t write_end, bool shmem_huge_force,
851 struct vm_area_struct *vma,
852 unsigned long vm_flags)
853 {
854 return 0;
855 }
856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
857
shmem_update_stats(struct folio * folio,int nr_pages)858 static void shmem_update_stats(struct folio *folio, int nr_pages)
859 {
860 if (folio_test_pmd_mappable(folio))
861 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr_pages);
862 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_pages);
863 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_pages);
864 }
865
866 /*
867 * Somewhat like filemap_add_folio, but error if expected item has gone.
868 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp)869 static int shmem_add_to_page_cache(struct folio *folio,
870 struct address_space *mapping,
871 pgoff_t index, void *expected, gfp_t gfp)
872 {
873 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
874 long nr = folio_nr_pages(folio);
875
876 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
877 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
878 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
879
880 folio_ref_add(folio, nr);
881 folio->mapping = mapping;
882 folio->index = index;
883
884 gfp &= GFP_RECLAIM_MASK;
885 folio_throttle_swaprate(folio, gfp);
886
887 do {
888 xas_lock_irq(&xas);
889 if (expected != xas_find_conflict(&xas)) {
890 xas_set_err(&xas, -EEXIST);
891 goto unlock;
892 }
893 if (expected && xas_find_conflict(&xas)) {
894 xas_set_err(&xas, -EEXIST);
895 goto unlock;
896 }
897 xas_store(&xas, folio);
898 if (xas_error(&xas))
899 goto unlock;
900 shmem_update_stats(folio, nr);
901 mapping->nrpages += nr;
902 unlock:
903 xas_unlock_irq(&xas);
904 } while (xas_nomem(&xas, gfp));
905
906 if (xas_error(&xas)) {
907 folio->mapping = NULL;
908 folio_ref_sub(folio, nr);
909 return xas_error(&xas);
910 }
911
912 return 0;
913 }
914
915 /*
916 * Somewhat like filemap_remove_folio, but substitutes swap for @folio.
917 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)918 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
919 {
920 struct address_space *mapping = folio->mapping;
921 long nr = folio_nr_pages(folio);
922 int error;
923
924 xa_lock_irq(&mapping->i_pages);
925 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
926 folio->mapping = NULL;
927 mapping->nrpages -= nr;
928 shmem_update_stats(folio, -nr);
929 xa_unlock_irq(&mapping->i_pages);
930 folio_put_refs(folio, nr);
931 BUG_ON(error);
932 }
933
934 /*
935 * Remove swap entry from page cache, free the swap and its page cache. Returns
936 * the number of pages being freed. 0 means entry not found in XArray (0 pages
937 * being freed).
938 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)939 static long shmem_free_swap(struct address_space *mapping,
940 pgoff_t index, void *radswap)
941 {
942 int order = xa_get_order(&mapping->i_pages, index);
943 void *old;
944
945 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
946 if (old != radswap)
947 return 0;
948 free_swap_and_cache_nr(radix_to_swp_entry(radswap), 1 << order);
949
950 return 1 << order;
951 }
952
953 /*
954 * Determine (in bytes) how many of the shmem object's pages mapped by the
955 * given offsets are swapped out.
956 *
957 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
958 * as long as the inode doesn't go away and racy results are not a problem.
959 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)960 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
961 pgoff_t start, pgoff_t end)
962 {
963 XA_STATE(xas, &mapping->i_pages, start);
964 struct page *page;
965 unsigned long swapped = 0;
966 unsigned long max = end - 1;
967
968 rcu_read_lock();
969 xas_for_each(&xas, page, max) {
970 if (xas_retry(&xas, page))
971 continue;
972 if (xa_is_value(page))
973 swapped += 1 << xas_get_order(&xas);
974 if (xas.xa_index == max)
975 break;
976 if (need_resched()) {
977 xas_pause(&xas);
978 cond_resched_rcu();
979 }
980 }
981 rcu_read_unlock();
982
983 return swapped << PAGE_SHIFT;
984 }
985
986 /*
987 * Determine (in bytes) how many of the shmem object's pages mapped by the
988 * given vma is swapped out.
989 *
990 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
991 * as long as the inode doesn't go away and racy results are not a problem.
992 */
shmem_swap_usage(struct vm_area_struct * vma)993 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
994 {
995 struct inode *inode = file_inode(vma->vm_file);
996 struct shmem_inode_info *info = SHMEM_I(inode);
997 struct address_space *mapping = inode->i_mapping;
998 unsigned long swapped;
999
1000 /* Be careful as we don't hold info->lock */
1001 swapped = READ_ONCE(info->swapped);
1002
1003 /*
1004 * The easier cases are when the shmem object has nothing in swap, or
1005 * the vma maps it whole. Then we can simply use the stats that we
1006 * already track.
1007 */
1008 if (!swapped)
1009 return 0;
1010
1011 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
1012 return swapped << PAGE_SHIFT;
1013
1014 /* Here comes the more involved part */
1015 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
1016 vma->vm_pgoff + vma_pages(vma));
1017 }
1018
1019 /*
1020 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
1021 */
shmem_unlock_mapping(struct address_space * mapping)1022 void shmem_unlock_mapping(struct address_space *mapping)
1023 {
1024 struct folio_batch fbatch;
1025 pgoff_t index = 0;
1026
1027 folio_batch_init(&fbatch);
1028 /*
1029 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
1030 */
1031 while (!mapping_unevictable(mapping) &&
1032 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
1033 check_move_unevictable_folios(&fbatch);
1034 folio_batch_release(&fbatch);
1035 cond_resched();
1036 }
1037 }
1038
shmem_get_partial_folio(struct inode * inode,pgoff_t index)1039 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
1040 {
1041 struct folio *folio;
1042
1043 /*
1044 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
1045 * beyond i_size, and reports fallocated folios as holes.
1046 */
1047 folio = filemap_get_entry(inode->i_mapping, index);
1048 if (!folio)
1049 return folio;
1050 if (!xa_is_value(folio)) {
1051 folio_lock(folio);
1052 if (folio->mapping == inode->i_mapping)
1053 return folio;
1054 /* The folio has been swapped out */
1055 folio_unlock(folio);
1056 folio_put(folio);
1057 }
1058 /*
1059 * But read a folio back from swap if any of it is within i_size
1060 * (although in some cases this is just a waste of time).
1061 */
1062 folio = NULL;
1063 shmem_get_folio(inode, index, 0, &folio, SGP_READ);
1064 return folio;
1065 }
1066
1067 /*
1068 * Remove range of pages and swap entries from page cache, and free them.
1069 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
1070 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)1071 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
1072 bool unfalloc)
1073 {
1074 struct address_space *mapping = inode->i_mapping;
1075 struct shmem_inode_info *info = SHMEM_I(inode);
1076 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
1077 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
1078 struct folio_batch fbatch;
1079 pgoff_t indices[PAGEVEC_SIZE];
1080 struct folio *folio;
1081 bool same_folio;
1082 long nr_swaps_freed = 0;
1083 pgoff_t index;
1084 int i;
1085
1086 if (lend == -1)
1087 end = -1; /* unsigned, so actually very big */
1088
1089 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1090 info->fallocend = start;
1091
1092 folio_batch_init(&fbatch);
1093 index = start;
1094 while (index < end && find_lock_entries(mapping, &index, end - 1,
1095 &fbatch, indices)) {
1096 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1097 folio = fbatch.folios[i];
1098
1099 if (xa_is_value(folio)) {
1100 if (unfalloc)
1101 continue;
1102 nr_swaps_freed += shmem_free_swap(mapping,
1103 indices[i], folio);
1104 continue;
1105 }
1106
1107 if (!unfalloc || !folio_test_uptodate(folio))
1108 truncate_inode_folio(mapping, folio);
1109 folio_unlock(folio);
1110 }
1111 folio_batch_remove_exceptionals(&fbatch);
1112 folio_batch_release(&fbatch);
1113 cond_resched();
1114 }
1115
1116 /*
1117 * When undoing a failed fallocate, we want none of the partial folio
1118 * zeroing and splitting below, but shall want to truncate the whole
1119 * folio when !uptodate indicates that it was added by this fallocate,
1120 * even when [lstart, lend] covers only a part of the folio.
1121 */
1122 if (unfalloc)
1123 goto whole_folios;
1124
1125 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1126 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1127 if (folio) {
1128 same_folio = lend < folio_pos(folio) + folio_size(folio);
1129 folio_mark_dirty(folio);
1130 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1131 start = folio_next_index(folio);
1132 if (same_folio)
1133 end = folio->index;
1134 }
1135 folio_unlock(folio);
1136 folio_put(folio);
1137 folio = NULL;
1138 }
1139
1140 if (!same_folio)
1141 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1142 if (folio) {
1143 folio_mark_dirty(folio);
1144 if (!truncate_inode_partial_folio(folio, lstart, lend))
1145 end = folio->index;
1146 folio_unlock(folio);
1147 folio_put(folio);
1148 }
1149
1150 whole_folios:
1151
1152 index = start;
1153 while (index < end) {
1154 cond_resched();
1155
1156 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1157 indices)) {
1158 /* If all gone or hole-punch or unfalloc, we're done */
1159 if (index == start || end != -1)
1160 break;
1161 /* But if truncating, restart to make sure all gone */
1162 index = start;
1163 continue;
1164 }
1165 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1166 folio = fbatch.folios[i];
1167
1168 if (xa_is_value(folio)) {
1169 long swaps_freed;
1170
1171 if (unfalloc)
1172 continue;
1173 swaps_freed = shmem_free_swap(mapping, indices[i], folio);
1174 if (!swaps_freed) {
1175 /* Swap was replaced by page: retry */
1176 index = indices[i];
1177 break;
1178 }
1179 nr_swaps_freed += swaps_freed;
1180 continue;
1181 }
1182
1183 folio_lock(folio);
1184
1185 if (!unfalloc || !folio_test_uptodate(folio)) {
1186 if (folio_mapping(folio) != mapping) {
1187 /* Page was replaced by swap: retry */
1188 folio_unlock(folio);
1189 index = indices[i];
1190 break;
1191 }
1192 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1193 folio);
1194
1195 if (!folio_test_large(folio)) {
1196 truncate_inode_folio(mapping, folio);
1197 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1198 /*
1199 * If we split a page, reset the loop so
1200 * that we pick up the new sub pages.
1201 * Otherwise the THP was entirely
1202 * dropped or the target range was
1203 * zeroed, so just continue the loop as
1204 * is.
1205 */
1206 if (!folio_test_large(folio)) {
1207 folio_unlock(folio);
1208 index = start;
1209 break;
1210 }
1211 }
1212 }
1213 folio_unlock(folio);
1214 }
1215 folio_batch_remove_exceptionals(&fbatch);
1216 folio_batch_release(&fbatch);
1217 }
1218
1219 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1220 }
1221
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1222 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1223 {
1224 shmem_undo_range(inode, lstart, lend, false);
1225 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1226 inode_inc_iversion(inode);
1227 }
1228 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1229
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1230 static int shmem_getattr(struct mnt_idmap *idmap,
1231 const struct path *path, struct kstat *stat,
1232 u32 request_mask, unsigned int query_flags)
1233 {
1234 struct inode *inode = path->dentry->d_inode;
1235 struct shmem_inode_info *info = SHMEM_I(inode);
1236
1237 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1238 shmem_recalc_inode(inode, 0, 0);
1239
1240 if (info->fsflags & FS_APPEND_FL)
1241 stat->attributes |= STATX_ATTR_APPEND;
1242 if (info->fsflags & FS_IMMUTABLE_FL)
1243 stat->attributes |= STATX_ATTR_IMMUTABLE;
1244 if (info->fsflags & FS_NODUMP_FL)
1245 stat->attributes |= STATX_ATTR_NODUMP;
1246 stat->attributes_mask |= (STATX_ATTR_APPEND |
1247 STATX_ATTR_IMMUTABLE |
1248 STATX_ATTR_NODUMP);
1249 generic_fillattr(idmap, request_mask, inode, stat);
1250
1251 if (shmem_huge_global_enabled(inode, 0, 0, false, NULL, 0))
1252 stat->blksize = HPAGE_PMD_SIZE;
1253
1254 if (request_mask & STATX_BTIME) {
1255 stat->result_mask |= STATX_BTIME;
1256 stat->btime.tv_sec = info->i_crtime.tv_sec;
1257 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1258 }
1259
1260 return 0;
1261 }
1262
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1263 static int shmem_setattr(struct mnt_idmap *idmap,
1264 struct dentry *dentry, struct iattr *attr)
1265 {
1266 struct inode *inode = d_inode(dentry);
1267 struct shmem_inode_info *info = SHMEM_I(inode);
1268 int error;
1269 bool update_mtime = false;
1270 bool update_ctime = true;
1271
1272 error = setattr_prepare(idmap, dentry, attr);
1273 if (error)
1274 return error;
1275
1276 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1277 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1278 return -EPERM;
1279 }
1280 }
1281
1282 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1283 loff_t oldsize = inode->i_size;
1284 loff_t newsize = attr->ia_size;
1285
1286 /* protected by i_rwsem */
1287 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1288 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1289 return -EPERM;
1290
1291 if (newsize != oldsize) {
1292 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1293 oldsize, newsize);
1294 if (error)
1295 return error;
1296 i_size_write(inode, newsize);
1297 update_mtime = true;
1298 } else {
1299 update_ctime = false;
1300 }
1301 if (newsize <= oldsize) {
1302 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1303 if (oldsize > holebegin)
1304 unmap_mapping_range(inode->i_mapping,
1305 holebegin, 0, 1);
1306 if (info->alloced)
1307 shmem_truncate_range(inode,
1308 newsize, (loff_t)-1);
1309 /* unmap again to remove racily COWed private pages */
1310 if (oldsize > holebegin)
1311 unmap_mapping_range(inode->i_mapping,
1312 holebegin, 0, 1);
1313 }
1314 }
1315
1316 if (is_quota_modification(idmap, inode, attr)) {
1317 error = dquot_initialize(inode);
1318 if (error)
1319 return error;
1320 }
1321
1322 /* Transfer quota accounting */
1323 if (i_uid_needs_update(idmap, attr, inode) ||
1324 i_gid_needs_update(idmap, attr, inode)) {
1325 error = dquot_transfer(idmap, inode, attr);
1326 if (error)
1327 return error;
1328 }
1329
1330 setattr_copy(idmap, inode, attr);
1331 if (attr->ia_valid & ATTR_MODE)
1332 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1333 if (!error && update_ctime) {
1334 inode_set_ctime_current(inode);
1335 if (update_mtime)
1336 inode_set_mtime_to_ts(inode, inode_get_ctime(inode));
1337 inode_inc_iversion(inode);
1338 }
1339 return error;
1340 }
1341
shmem_evict_inode(struct inode * inode)1342 static void shmem_evict_inode(struct inode *inode)
1343 {
1344 struct shmem_inode_info *info = SHMEM_I(inode);
1345 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1346 size_t freed = 0;
1347
1348 if (shmem_mapping(inode->i_mapping)) {
1349 shmem_unacct_size(info->flags, inode->i_size);
1350 inode->i_size = 0;
1351 mapping_set_exiting(inode->i_mapping);
1352 shmem_truncate_range(inode, 0, (loff_t)-1);
1353 if (!list_empty(&info->shrinklist)) {
1354 spin_lock(&sbinfo->shrinklist_lock);
1355 if (!list_empty(&info->shrinklist)) {
1356 list_del_init(&info->shrinklist);
1357 sbinfo->shrinklist_len--;
1358 }
1359 spin_unlock(&sbinfo->shrinklist_lock);
1360 }
1361 while (!list_empty(&info->swaplist)) {
1362 /* Wait while shmem_unuse() is scanning this inode... */
1363 wait_var_event(&info->stop_eviction,
1364 !atomic_read(&info->stop_eviction));
1365 mutex_lock(&shmem_swaplist_mutex);
1366 /* ...but beware of the race if we peeked too early */
1367 if (!atomic_read(&info->stop_eviction))
1368 list_del_init(&info->swaplist);
1369 mutex_unlock(&shmem_swaplist_mutex);
1370 }
1371 }
1372
1373 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1374 shmem_free_inode(inode->i_sb, freed);
1375 WARN_ON(inode->i_blocks);
1376 clear_inode(inode);
1377 #ifdef CONFIG_TMPFS_QUOTA
1378 dquot_free_inode(inode);
1379 dquot_drop(inode);
1380 #endif
1381 }
1382
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1383 static int shmem_find_swap_entries(struct address_space *mapping,
1384 pgoff_t start, struct folio_batch *fbatch,
1385 pgoff_t *indices, unsigned int type)
1386 {
1387 XA_STATE(xas, &mapping->i_pages, start);
1388 struct folio *folio;
1389 swp_entry_t entry;
1390
1391 rcu_read_lock();
1392 xas_for_each(&xas, folio, ULONG_MAX) {
1393 if (xas_retry(&xas, folio))
1394 continue;
1395
1396 if (!xa_is_value(folio))
1397 continue;
1398
1399 entry = radix_to_swp_entry(folio);
1400 /*
1401 * swapin error entries can be found in the mapping. But they're
1402 * deliberately ignored here as we've done everything we can do.
1403 */
1404 if (swp_type(entry) != type)
1405 continue;
1406
1407 indices[folio_batch_count(fbatch)] = xas.xa_index;
1408 if (!folio_batch_add(fbatch, folio))
1409 break;
1410
1411 if (need_resched()) {
1412 xas_pause(&xas);
1413 cond_resched_rcu();
1414 }
1415 }
1416 rcu_read_unlock();
1417
1418 return xas.xa_index;
1419 }
1420
1421 /*
1422 * Move the swapped pages for an inode to page cache. Returns the count
1423 * of pages swapped in, or the error in case of failure.
1424 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1425 static int shmem_unuse_swap_entries(struct inode *inode,
1426 struct folio_batch *fbatch, pgoff_t *indices)
1427 {
1428 int i = 0;
1429 int ret = 0;
1430 int error = 0;
1431 struct address_space *mapping = inode->i_mapping;
1432
1433 for (i = 0; i < folio_batch_count(fbatch); i++) {
1434 struct folio *folio = fbatch->folios[i];
1435
1436 if (!xa_is_value(folio))
1437 continue;
1438 error = shmem_swapin_folio(inode, indices[i], &folio, SGP_CACHE,
1439 mapping_gfp_mask(mapping), NULL, NULL);
1440 if (error == 0) {
1441 folio_unlock(folio);
1442 folio_put(folio);
1443 ret++;
1444 }
1445 if (error == -ENOMEM)
1446 break;
1447 error = 0;
1448 }
1449 return error ? error : ret;
1450 }
1451
1452 /*
1453 * If swap found in inode, free it and move page from swapcache to filecache.
1454 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1455 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1456 {
1457 struct address_space *mapping = inode->i_mapping;
1458 pgoff_t start = 0;
1459 struct folio_batch fbatch;
1460 pgoff_t indices[PAGEVEC_SIZE];
1461 int ret = 0;
1462
1463 do {
1464 folio_batch_init(&fbatch);
1465 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1466 if (folio_batch_count(&fbatch) == 0) {
1467 ret = 0;
1468 break;
1469 }
1470
1471 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1472 if (ret < 0)
1473 break;
1474
1475 start = indices[folio_batch_count(&fbatch) - 1];
1476 } while (true);
1477
1478 return ret;
1479 }
1480
1481 /*
1482 * Read all the shared memory data that resides in the swap
1483 * device 'type' back into memory, so the swap device can be
1484 * unused.
1485 */
shmem_unuse(unsigned int type)1486 int shmem_unuse(unsigned int type)
1487 {
1488 struct shmem_inode_info *info, *next;
1489 int error = 0;
1490
1491 if (list_empty(&shmem_swaplist))
1492 return 0;
1493
1494 mutex_lock(&shmem_swaplist_mutex);
1495 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1496 if (!info->swapped) {
1497 list_del_init(&info->swaplist);
1498 continue;
1499 }
1500 /*
1501 * Drop the swaplist mutex while searching the inode for swap;
1502 * but before doing so, make sure shmem_evict_inode() will not
1503 * remove placeholder inode from swaplist, nor let it be freed
1504 * (igrab() would protect from unlink, but not from unmount).
1505 */
1506 atomic_inc(&info->stop_eviction);
1507 mutex_unlock(&shmem_swaplist_mutex);
1508
1509 error = shmem_unuse_inode(&info->vfs_inode, type);
1510 cond_resched();
1511
1512 mutex_lock(&shmem_swaplist_mutex);
1513 next = list_next_entry(info, swaplist);
1514 if (!info->swapped)
1515 list_del_init(&info->swaplist);
1516 if (atomic_dec_and_test(&info->stop_eviction))
1517 wake_up_var(&info->stop_eviction);
1518 if (error)
1519 break;
1520 }
1521 mutex_unlock(&shmem_swaplist_mutex);
1522
1523 return error;
1524 }
1525
1526 /*
1527 * Move the page from the page cache to the swap cache.
1528 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1529 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1530 {
1531 struct folio *folio = page_folio(page);
1532 struct address_space *mapping = folio->mapping;
1533 struct inode *inode = mapping->host;
1534 struct shmem_inode_info *info = SHMEM_I(inode);
1535 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1536 swp_entry_t swap;
1537 pgoff_t index;
1538 int nr_pages;
1539 bool split = false;
1540
1541 /*
1542 * Our capabilities prevent regular writeback or sync from ever calling
1543 * shmem_writepage; but a stacking filesystem might use ->writepage of
1544 * its underlying filesystem, in which case tmpfs should write out to
1545 * swap only in response to memory pressure, and not for the writeback
1546 * threads or sync.
1547 */
1548 if (WARN_ON_ONCE(!wbc->for_reclaim))
1549 goto redirty;
1550
1551 if ((info->flags & VM_LOCKED) || sbinfo->noswap)
1552 goto redirty;
1553
1554 if (!total_swap_pages)
1555 goto redirty;
1556
1557 /*
1558 * If CONFIG_THP_SWAP is not enabled, the large folio should be
1559 * split when swapping.
1560 *
1561 * And shrinkage of pages beyond i_size does not split swap, so
1562 * swapout of a large folio crossing i_size needs to split too
1563 * (unless fallocate has been used to preallocate beyond EOF).
1564 */
1565 if (folio_test_large(folio)) {
1566 index = shmem_fallocend(inode,
1567 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
1568 if ((index > folio->index && index < folio_next_index(folio)) ||
1569 !IS_ENABLED(CONFIG_THP_SWAP))
1570 split = true;
1571 }
1572
1573 if (split) {
1574 try_split:
1575 /* Ensure the subpages are still dirty */
1576 folio_test_set_dirty(folio);
1577 if (split_huge_page_to_list_to_order(page, wbc->list, 0))
1578 goto redirty;
1579 folio = page_folio(page);
1580 folio_clear_dirty(folio);
1581 }
1582
1583 index = folio->index;
1584 nr_pages = folio_nr_pages(folio);
1585
1586 /*
1587 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1588 * value into swapfile.c, the only way we can correctly account for a
1589 * fallocated folio arriving here is now to initialize it and write it.
1590 *
1591 * That's okay for a folio already fallocated earlier, but if we have
1592 * not yet completed the fallocation, then (a) we want to keep track
1593 * of this folio in case we have to undo it, and (b) it may not be a
1594 * good idea to continue anyway, once we're pushing into swap. So
1595 * reactivate the folio, and let shmem_fallocate() quit when too many.
1596 */
1597 if (!folio_test_uptodate(folio)) {
1598 if (inode->i_private) {
1599 struct shmem_falloc *shmem_falloc;
1600 spin_lock(&inode->i_lock);
1601 shmem_falloc = inode->i_private;
1602 if (shmem_falloc &&
1603 !shmem_falloc->waitq &&
1604 index >= shmem_falloc->start &&
1605 index < shmem_falloc->next)
1606 shmem_falloc->nr_unswapped += nr_pages;
1607 else
1608 shmem_falloc = NULL;
1609 spin_unlock(&inode->i_lock);
1610 if (shmem_falloc)
1611 goto redirty;
1612 }
1613 folio_zero_range(folio, 0, folio_size(folio));
1614 flush_dcache_folio(folio);
1615 folio_mark_uptodate(folio);
1616 }
1617
1618 swap = folio_alloc_swap(folio);
1619 if (!swap.val) {
1620 if (nr_pages > 1)
1621 goto try_split;
1622
1623 goto redirty;
1624 }
1625
1626 /*
1627 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1628 * if it's not already there. Do it now before the folio is
1629 * moved to swap cache, when its pagelock no longer protects
1630 * the inode from eviction. But don't unlock the mutex until
1631 * we've incremented swapped, because shmem_unuse_inode() will
1632 * prune a !swapped inode from the swaplist under this mutex.
1633 */
1634 mutex_lock(&shmem_swaplist_mutex);
1635 if (list_empty(&info->swaplist))
1636 list_add(&info->swaplist, &shmem_swaplist);
1637
1638 if (add_to_swap_cache(folio, swap,
1639 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1640 NULL) == 0) {
1641 shmem_recalc_inode(inode, 0, nr_pages);
1642 swap_shmem_alloc(swap, nr_pages);
1643 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1644
1645 mutex_unlock(&shmem_swaplist_mutex);
1646 BUG_ON(folio_mapped(folio));
1647 return swap_writepage(&folio->page, wbc);
1648 }
1649
1650 mutex_unlock(&shmem_swaplist_mutex);
1651 put_swap_folio(folio, swap);
1652 redirty:
1653 folio_mark_dirty(folio);
1654 if (wbc->for_reclaim)
1655 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1656 folio_unlock(folio);
1657 return 0;
1658 }
1659
1660 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1661 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1662 {
1663 char buffer[64];
1664
1665 if (!mpol || mpol->mode == MPOL_DEFAULT)
1666 return; /* show nothing */
1667
1668 mpol_to_str(buffer, sizeof(buffer), mpol);
1669
1670 seq_printf(seq, ",mpol=%s", buffer);
1671 }
1672
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1673 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1674 {
1675 struct mempolicy *mpol = NULL;
1676 if (sbinfo->mpol) {
1677 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1678 mpol = sbinfo->mpol;
1679 mpol_get(mpol);
1680 raw_spin_unlock(&sbinfo->stat_lock);
1681 }
1682 return mpol;
1683 }
1684 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1685 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1686 {
1687 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1688 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1689 {
1690 return NULL;
1691 }
1692 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1693
1694 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
1695 pgoff_t index, unsigned int order, pgoff_t *ilx);
1696
shmem_swapin_cluster(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1697 static struct folio *shmem_swapin_cluster(swp_entry_t swap, gfp_t gfp,
1698 struct shmem_inode_info *info, pgoff_t index)
1699 {
1700 struct mempolicy *mpol;
1701 pgoff_t ilx;
1702 struct folio *folio;
1703
1704 mpol = shmem_get_pgoff_policy(info, index, 0, &ilx);
1705 folio = swap_cluster_readahead(swap, gfp, mpol, ilx);
1706 mpol_cond_put(mpol);
1707
1708 return folio;
1709 }
1710
1711 /*
1712 * Make sure huge_gfp is always more limited than limit_gfp.
1713 * Some of the flags set permissions, while others set limitations.
1714 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1715 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1716 {
1717 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1718 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1719 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1720 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1721
1722 /* Allow allocations only from the originally specified zones. */
1723 result |= zoneflags;
1724
1725 /*
1726 * Minimize the result gfp by taking the union with the deny flags,
1727 * and the intersection of the allow flags.
1728 */
1729 result |= (limit_gfp & denyflags);
1730 result |= (huge_gfp & limit_gfp) & allowflags;
1731
1732 return result;
1733 }
1734
1735 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
shmem_hpage_pmd_enabled(void)1736 bool shmem_hpage_pmd_enabled(void)
1737 {
1738 if (shmem_huge == SHMEM_HUGE_DENY)
1739 return false;
1740 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_always))
1741 return true;
1742 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_madvise))
1743 return true;
1744 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_within_size))
1745 return true;
1746 if (test_bit(HPAGE_PMD_ORDER, &huge_shmem_orders_inherit) &&
1747 shmem_huge != SHMEM_HUGE_NEVER)
1748 return true;
1749
1750 return false;
1751 }
1752
shmem_allowable_huge_orders(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,loff_t write_end,bool shmem_huge_force)1753 unsigned long shmem_allowable_huge_orders(struct inode *inode,
1754 struct vm_area_struct *vma, pgoff_t index,
1755 loff_t write_end, bool shmem_huge_force)
1756 {
1757 unsigned long mask = READ_ONCE(huge_shmem_orders_always);
1758 unsigned long within_size_orders = READ_ONCE(huge_shmem_orders_within_size);
1759 unsigned long vm_flags = vma ? vma->vm_flags : 0;
1760 pgoff_t aligned_index;
1761 unsigned int global_orders;
1762 loff_t i_size;
1763 int order;
1764
1765 if (thp_disabled_by_hw() || (vma && vma_thp_disabled(vma, vm_flags)))
1766 return 0;
1767
1768 global_orders = shmem_huge_global_enabled(inode, index, write_end,
1769 shmem_huge_force, vma, vm_flags);
1770 /* Tmpfs huge pages allocation */
1771 if (!vma || !vma_is_anon_shmem(vma))
1772 return global_orders;
1773
1774 /*
1775 * Following the 'deny' semantics of the top level, force the huge
1776 * option off from all mounts.
1777 */
1778 if (shmem_huge == SHMEM_HUGE_DENY)
1779 return 0;
1780
1781 /*
1782 * Only allow inherit orders if the top-level value is 'force', which
1783 * means non-PMD sized THP can not override 'huge' mount option now.
1784 */
1785 if (shmem_huge == SHMEM_HUGE_FORCE)
1786 return READ_ONCE(huge_shmem_orders_inherit);
1787
1788 /* Allow mTHP that will be fully within i_size. */
1789 order = highest_order(within_size_orders);
1790 while (within_size_orders) {
1791 aligned_index = round_up(index + 1, 1 << order);
1792 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1793 if (i_size >> PAGE_SHIFT >= aligned_index) {
1794 mask |= within_size_orders;
1795 break;
1796 }
1797
1798 order = next_order(&within_size_orders, order);
1799 }
1800
1801 if (vm_flags & VM_HUGEPAGE)
1802 mask |= READ_ONCE(huge_shmem_orders_madvise);
1803
1804 if (global_orders > 0)
1805 mask |= READ_ONCE(huge_shmem_orders_inherit);
1806
1807 return THP_ORDERS_ALL_FILE_DEFAULT & mask;
1808 }
1809
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1810 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1811 struct address_space *mapping, pgoff_t index,
1812 unsigned long orders)
1813 {
1814 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
1815 pgoff_t aligned_index;
1816 unsigned long pages;
1817 int order;
1818
1819 if (vma) {
1820 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
1821 if (!orders)
1822 return 0;
1823 }
1824
1825 /* Find the highest order that can add into the page cache */
1826 order = highest_order(orders);
1827 while (orders) {
1828 pages = 1UL << order;
1829 aligned_index = round_down(index, pages);
1830 /*
1831 * Check for conflict before waiting on a huge allocation.
1832 * Conflict might be that a huge page has just been allocated
1833 * and added to page cache by a racing thread, or that there
1834 * is already at least one small page in the huge extent.
1835 * Be careful to retry when appropriate, but not forever!
1836 * Elsewhere -EEXIST would be the right code, but not here.
1837 */
1838 if (!xa_find(&mapping->i_pages, &aligned_index,
1839 aligned_index + pages - 1, XA_PRESENT))
1840 break;
1841 order = next_order(&orders, order);
1842 }
1843
1844 return orders;
1845 }
1846 #else
shmem_suitable_orders(struct inode * inode,struct vm_fault * vmf,struct address_space * mapping,pgoff_t index,unsigned long orders)1847 static unsigned long shmem_suitable_orders(struct inode *inode, struct vm_fault *vmf,
1848 struct address_space *mapping, pgoff_t index,
1849 unsigned long orders)
1850 {
1851 return 0;
1852 }
1853 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1854
shmem_alloc_folio(gfp_t gfp,int order,struct shmem_inode_info * info,pgoff_t index)1855 static struct folio *shmem_alloc_folio(gfp_t gfp, int order,
1856 struct shmem_inode_info *info, pgoff_t index)
1857 {
1858 struct mempolicy *mpol;
1859 pgoff_t ilx;
1860 struct folio *folio;
1861
1862 mpol = shmem_get_pgoff_policy(info, index, order, &ilx);
1863 folio = folio_alloc_mpol(gfp, order, mpol, ilx, numa_node_id());
1864 mpol_cond_put(mpol);
1865
1866 return folio;
1867 }
1868
shmem_alloc_and_add_folio(struct vm_fault * vmf,gfp_t gfp,struct inode * inode,pgoff_t index,struct mm_struct * fault_mm,unsigned long orders)1869 static struct folio *shmem_alloc_and_add_folio(struct vm_fault *vmf,
1870 gfp_t gfp, struct inode *inode, pgoff_t index,
1871 struct mm_struct *fault_mm, unsigned long orders)
1872 {
1873 struct address_space *mapping = inode->i_mapping;
1874 struct shmem_inode_info *info = SHMEM_I(inode);
1875 unsigned long suitable_orders = 0;
1876 struct folio *folio = NULL;
1877 long pages;
1878 int error, order;
1879
1880 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1881 orders = 0;
1882
1883 if (orders > 0) {
1884 suitable_orders = shmem_suitable_orders(inode, vmf,
1885 mapping, index, orders);
1886
1887 order = highest_order(suitable_orders);
1888 while (suitable_orders) {
1889 pages = 1UL << order;
1890 index = round_down(index, pages);
1891 folio = shmem_alloc_folio(gfp, order, info, index);
1892 if (folio)
1893 goto allocated;
1894
1895 if (pages == HPAGE_PMD_NR)
1896 count_vm_event(THP_FILE_FALLBACK);
1897 count_mthp_stat(order, MTHP_STAT_SHMEM_FALLBACK);
1898 order = next_order(&suitable_orders, order);
1899 }
1900 } else {
1901 pages = 1;
1902 folio = shmem_alloc_folio(gfp, 0, info, index);
1903 }
1904 if (!folio)
1905 return ERR_PTR(-ENOMEM);
1906
1907 allocated:
1908 __folio_set_locked(folio);
1909 __folio_set_swapbacked(folio);
1910
1911 gfp &= GFP_RECLAIM_MASK;
1912 error = mem_cgroup_charge(folio, fault_mm, gfp);
1913 if (error) {
1914 if (xa_find(&mapping->i_pages, &index,
1915 index + pages - 1, XA_PRESENT)) {
1916 error = -EEXIST;
1917 } else if (pages > 1) {
1918 if (pages == HPAGE_PMD_NR) {
1919 count_vm_event(THP_FILE_FALLBACK);
1920 count_vm_event(THP_FILE_FALLBACK_CHARGE);
1921 }
1922 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK);
1923 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_FALLBACK_CHARGE);
1924 }
1925 goto unlock;
1926 }
1927
1928 error = shmem_add_to_page_cache(folio, mapping, index, NULL, gfp);
1929 if (error)
1930 goto unlock;
1931
1932 error = shmem_inode_acct_blocks(inode, pages);
1933 if (error) {
1934 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1935 long freed;
1936 /*
1937 * Try to reclaim some space by splitting a few
1938 * large folios beyond i_size on the filesystem.
1939 */
1940 shmem_unused_huge_shrink(sbinfo, NULL, pages);
1941 /*
1942 * And do a shmem_recalc_inode() to account for freed pages:
1943 * except our folio is there in cache, so not quite balanced.
1944 */
1945 spin_lock(&info->lock);
1946 freed = pages + info->alloced - info->swapped -
1947 READ_ONCE(mapping->nrpages);
1948 if (freed > 0)
1949 info->alloced -= freed;
1950 spin_unlock(&info->lock);
1951 if (freed > 0)
1952 shmem_inode_unacct_blocks(inode, freed);
1953 error = shmem_inode_acct_blocks(inode, pages);
1954 if (error) {
1955 filemap_remove_folio(folio);
1956 goto unlock;
1957 }
1958 }
1959
1960 shmem_recalc_inode(inode, pages, 0);
1961 folio_add_lru(folio);
1962 return folio;
1963
1964 unlock:
1965 folio_unlock(folio);
1966 folio_put(folio);
1967 return ERR_PTR(error);
1968 }
1969
shmem_swap_alloc_folio(struct inode * inode,struct vm_area_struct * vma,pgoff_t index,swp_entry_t entry,int order,gfp_t gfp)1970 static struct folio *shmem_swap_alloc_folio(struct inode *inode,
1971 struct vm_area_struct *vma, pgoff_t index,
1972 swp_entry_t entry, int order, gfp_t gfp)
1973 {
1974 struct shmem_inode_info *info = SHMEM_I(inode);
1975 struct folio *new;
1976 void *shadow;
1977 int nr_pages;
1978
1979 /*
1980 * We have arrived here because our zones are constrained, so don't
1981 * limit chance of success with further cpuset and node constraints.
1982 */
1983 gfp &= ~GFP_CONSTRAINT_MASK;
1984 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && order > 0) {
1985 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
1986
1987 gfp = limit_gfp_mask(huge_gfp, gfp);
1988 }
1989
1990 new = shmem_alloc_folio(gfp, order, info, index);
1991 if (!new)
1992 return ERR_PTR(-ENOMEM);
1993
1994 nr_pages = folio_nr_pages(new);
1995 if (mem_cgroup_swapin_charge_folio(new, vma ? vma->vm_mm : NULL,
1996 gfp, entry)) {
1997 folio_put(new);
1998 return ERR_PTR(-ENOMEM);
1999 }
2000
2001 /*
2002 * Prevent parallel swapin from proceeding with the swap cache flag.
2003 *
2004 * Of course there is another possible concurrent scenario as well,
2005 * that is to say, the swap cache flag of a large folio has already
2006 * been set by swapcache_prepare(), while another thread may have
2007 * already split the large swap entry stored in the shmem mapping.
2008 * In this case, shmem_add_to_page_cache() will help identify the
2009 * concurrent swapin and return -EEXIST.
2010 */
2011 if (swapcache_prepare(entry, nr_pages)) {
2012 folio_put(new);
2013 return ERR_PTR(-EEXIST);
2014 }
2015
2016 __folio_set_locked(new);
2017 __folio_set_swapbacked(new);
2018 new->swap = entry;
2019
2020 mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
2021 shadow = get_shadow_from_swap_cache(entry);
2022 if (shadow)
2023 workingset_refault(new, shadow);
2024 folio_add_lru(new);
2025 swap_read_folio(new, NULL);
2026 return new;
2027 }
2028
2029 /*
2030 * When a page is moved from swapcache to shmem filecache (either by the
2031 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
2032 * shmem_unuse_inode()), it may have been read in earlier from swap, in
2033 * ignorance of the mapping it belongs to. If that mapping has special
2034 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
2035 * we may need to copy to a suitable page before moving to filecache.
2036 *
2037 * In a future release, this may well be extended to respect cpuset and
2038 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
2039 * but for now it is a simple matter of zone.
2040 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)2041 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
2042 {
2043 return folio_zonenum(folio) > gfp_zone(gfp);
2044 }
2045
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index,struct vm_area_struct * vma)2046 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
2047 struct shmem_inode_info *info, pgoff_t index,
2048 struct vm_area_struct *vma)
2049 {
2050 struct folio *new, *old = *foliop;
2051 swp_entry_t entry = old->swap;
2052 struct address_space *swap_mapping = swap_address_space(entry);
2053 pgoff_t swap_index = swap_cache_index(entry);
2054 XA_STATE(xas, &swap_mapping->i_pages, swap_index);
2055 int nr_pages = folio_nr_pages(old);
2056 int error = 0, i;
2057
2058 /*
2059 * We have arrived here because our zones are constrained, so don't
2060 * limit chance of success by further cpuset and node constraints.
2061 */
2062 gfp &= ~GFP_CONSTRAINT_MASK;
2063 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2064 if (nr_pages > 1) {
2065 gfp_t huge_gfp = vma_thp_gfp_mask(vma);
2066
2067 gfp = limit_gfp_mask(huge_gfp, gfp);
2068 }
2069 #endif
2070
2071 new = shmem_alloc_folio(gfp, folio_order(old), info, index);
2072 if (!new)
2073 return -ENOMEM;
2074
2075 folio_ref_add(new, nr_pages);
2076 folio_copy(new, old);
2077 flush_dcache_folio(new);
2078
2079 __folio_set_locked(new);
2080 __folio_set_swapbacked(new);
2081 folio_mark_uptodate(new);
2082 new->swap = entry;
2083 folio_set_swapcache(new);
2084
2085 /* Swap cache still stores N entries instead of a high-order entry */
2086 xa_lock_irq(&swap_mapping->i_pages);
2087 for (i = 0; i < nr_pages; i++) {
2088 void *item = xas_load(&xas);
2089
2090 if (item != old) {
2091 error = -ENOENT;
2092 break;
2093 }
2094
2095 xas_store(&xas, new);
2096 xas_next(&xas);
2097 }
2098 if (!error) {
2099 mem_cgroup_replace_folio(old, new);
2100 shmem_update_stats(new, nr_pages);
2101 shmem_update_stats(old, -nr_pages);
2102 }
2103 xa_unlock_irq(&swap_mapping->i_pages);
2104
2105 if (unlikely(error)) {
2106 /*
2107 * Is this possible? I think not, now that our callers
2108 * check both the swapcache flag and folio->private
2109 * after getting the folio lock; but be defensive.
2110 * Reverse old to newpage for clear and free.
2111 */
2112 old = new;
2113 } else {
2114 folio_add_lru(new);
2115 *foliop = new;
2116 }
2117
2118 folio_clear_swapcache(old);
2119 old->private = NULL;
2120
2121 folio_unlock(old);
2122 /*
2123 * The old folio are removed from swap cache, drop the 'nr_pages'
2124 * reference, as well as one temporary reference getting from swap
2125 * cache.
2126 */
2127 folio_put_refs(old, nr_pages + 1);
2128 return error;
2129 }
2130
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap,bool skip_swapcache)2131 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
2132 struct folio *folio, swp_entry_t swap,
2133 bool skip_swapcache)
2134 {
2135 struct address_space *mapping = inode->i_mapping;
2136 swp_entry_t swapin_error;
2137 void *old;
2138 int nr_pages;
2139
2140 swapin_error = make_poisoned_swp_entry();
2141 old = xa_cmpxchg_irq(&mapping->i_pages, index,
2142 swp_to_radix_entry(swap),
2143 swp_to_radix_entry(swapin_error), 0);
2144 if (old != swp_to_radix_entry(swap))
2145 return;
2146
2147 nr_pages = folio_nr_pages(folio);
2148 folio_wait_writeback(folio);
2149 if (!skip_swapcache)
2150 delete_from_swap_cache(folio);
2151 /*
2152 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
2153 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
2154 * in shmem_evict_inode().
2155 */
2156 shmem_recalc_inode(inode, -nr_pages, -nr_pages);
2157 swap_free_nr(swap, nr_pages);
2158 }
2159
shmem_split_large_entry(struct inode * inode,pgoff_t index,swp_entry_t swap,gfp_t gfp)2160 static int shmem_split_large_entry(struct inode *inode, pgoff_t index,
2161 swp_entry_t swap, gfp_t gfp)
2162 {
2163 struct address_space *mapping = inode->i_mapping;
2164 XA_STATE_ORDER(xas, &mapping->i_pages, index, 0);
2165 void *alloced_shadow = NULL;
2166 int alloced_order = 0, i;
2167
2168 /* Convert user data gfp flags to xarray node gfp flags */
2169 gfp &= GFP_RECLAIM_MASK;
2170
2171 for (;;) {
2172 int order = -1, split_order = 0;
2173 void *old = NULL;
2174
2175 xas_lock_irq(&xas);
2176 old = xas_load(&xas);
2177 if (!xa_is_value(old) || swp_to_radix_entry(swap) != old) {
2178 xas_set_err(&xas, -EEXIST);
2179 goto unlock;
2180 }
2181
2182 order = xas_get_order(&xas);
2183
2184 /* Swap entry may have changed before we re-acquire the lock */
2185 if (alloced_order &&
2186 (old != alloced_shadow || order != alloced_order)) {
2187 xas_destroy(&xas);
2188 alloced_order = 0;
2189 }
2190
2191 /* Try to split large swap entry in pagecache */
2192 if (order > 0) {
2193 if (!alloced_order) {
2194 split_order = order;
2195 goto unlock;
2196 }
2197 xas_split(&xas, old, order);
2198
2199 /*
2200 * Re-set the swap entry after splitting, and the swap
2201 * offset of the original large entry must be continuous.
2202 */
2203 for (i = 0; i < 1 << order; i++) {
2204 pgoff_t aligned_index = round_down(index, 1 << order);
2205 swp_entry_t tmp;
2206
2207 tmp = swp_entry(swp_type(swap), swp_offset(swap) + i);
2208 __xa_store(&mapping->i_pages, aligned_index + i,
2209 swp_to_radix_entry(tmp), 0);
2210 }
2211 }
2212
2213 unlock:
2214 xas_unlock_irq(&xas);
2215
2216 /* split needed, alloc here and retry. */
2217 if (split_order) {
2218 xas_split_alloc(&xas, old, split_order, gfp);
2219 if (xas_error(&xas))
2220 goto error;
2221 alloced_shadow = old;
2222 alloced_order = split_order;
2223 xas_reset(&xas);
2224 continue;
2225 }
2226
2227 if (!xas_nomem(&xas, gfp))
2228 break;
2229 }
2230
2231 error:
2232 if (xas_error(&xas))
2233 return xas_error(&xas);
2234
2235 return alloced_order;
2236 }
2237
2238 /*
2239 * Swap in the folio pointed to by *foliop.
2240 * Caller has to make sure that *foliop contains a valid swapped folio.
2241 * Returns 0 and the folio in foliop if success. On failure, returns the
2242 * error code and NULL in *foliop.
2243 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)2244 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
2245 struct folio **foliop, enum sgp_type sgp,
2246 gfp_t gfp, struct vm_area_struct *vma,
2247 vm_fault_t *fault_type)
2248 {
2249 struct address_space *mapping = inode->i_mapping;
2250 struct mm_struct *fault_mm = vma ? vma->vm_mm : NULL;
2251 struct shmem_inode_info *info = SHMEM_I(inode);
2252 struct swap_info_struct *si;
2253 struct folio *folio = NULL;
2254 bool skip_swapcache = false;
2255 swp_entry_t swap;
2256 int error, nr_pages, order, split_order;
2257
2258 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
2259 swap = radix_to_swp_entry(*foliop);
2260 *foliop = NULL;
2261
2262 if (is_poisoned_swp_entry(swap))
2263 return -EIO;
2264
2265 si = get_swap_device(swap);
2266 if (!si) {
2267 if (!shmem_confirm_swap(mapping, index, swap))
2268 return -EEXIST;
2269 else
2270 return -EINVAL;
2271 }
2272
2273 /* Look it up and read it in.. */
2274 folio = swap_cache_get_folio(swap, NULL, 0);
2275 order = xa_get_order(&mapping->i_pages, index);
2276 if (!folio) {
2277 bool fallback_order0 = false;
2278
2279 /* Or update major stats only when swapin succeeds?? */
2280 if (fault_type) {
2281 *fault_type |= VM_FAULT_MAJOR;
2282 count_vm_event(PGMAJFAULT);
2283 count_memcg_event_mm(fault_mm, PGMAJFAULT);
2284 }
2285
2286 /*
2287 * If uffd is active for the vma, we need per-page fault
2288 * fidelity to maintain the uffd semantics, then fallback
2289 * to swapin order-0 folio, as well as for zswap case.
2290 */
2291 if (order > 0 && ((vma && unlikely(userfaultfd_armed(vma))) ||
2292 !zswap_never_enabled()))
2293 fallback_order0 = true;
2294
2295 /* Skip swapcache for synchronous device. */
2296 if (!fallback_order0 && data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
2297 folio = shmem_swap_alloc_folio(inode, vma, index, swap, order, gfp);
2298 if (!IS_ERR(folio)) {
2299 skip_swapcache = true;
2300 goto alloced;
2301 }
2302
2303 /*
2304 * Fallback to swapin order-0 folio unless the swap entry
2305 * already exists.
2306 */
2307 error = PTR_ERR(folio);
2308 folio = NULL;
2309 if (error == -EEXIST)
2310 goto failed;
2311 }
2312
2313 /*
2314 * Now swap device can only swap in order 0 folio, then we
2315 * should split the large swap entry stored in the pagecache
2316 * if necessary.
2317 */
2318 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2319 if (split_order < 0) {
2320 error = split_order;
2321 goto failed;
2322 }
2323
2324 /*
2325 * If the large swap entry has already been split, it is
2326 * necessary to recalculate the new swap entry based on
2327 * the old order alignment.
2328 */
2329 if (split_order > 0) {
2330 pgoff_t offset = index - round_down(index, 1 << split_order);
2331
2332 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2333 }
2334
2335 /* Here we actually start the io */
2336 folio = shmem_swapin_cluster(swap, gfp, info, index);
2337 if (!folio) {
2338 error = -ENOMEM;
2339 goto failed;
2340 }
2341 } else if (order != folio_order(folio)) {
2342 /*
2343 * Swap readahead may swap in order 0 folios into swapcache
2344 * asynchronously, while the shmem mapping can still stores
2345 * large swap entries. In such cases, we should split the
2346 * large swap entry to prevent possible data corruption.
2347 */
2348 split_order = shmem_split_large_entry(inode, index, swap, gfp);
2349 if (split_order < 0) {
2350 error = split_order;
2351 goto failed;
2352 }
2353
2354 /*
2355 * If the large swap entry has already been split, it is
2356 * necessary to recalculate the new swap entry based on
2357 * the old order alignment.
2358 */
2359 if (split_order > 0) {
2360 pgoff_t offset = index - round_down(index, 1 << split_order);
2361
2362 swap = swp_entry(swp_type(swap), swp_offset(swap) + offset);
2363 }
2364 }
2365
2366 alloced:
2367 /* We have to do this with folio locked to prevent races */
2368 folio_lock(folio);
2369 if ((!skip_swapcache && !folio_test_swapcache(folio)) ||
2370 folio->swap.val != swap.val ||
2371 !shmem_confirm_swap(mapping, index, swap) ||
2372 xa_get_order(&mapping->i_pages, index) != folio_order(folio)) {
2373 error = -EEXIST;
2374 goto unlock;
2375 }
2376 if (!folio_test_uptodate(folio)) {
2377 error = -EIO;
2378 goto failed;
2379 }
2380 folio_wait_writeback(folio);
2381 nr_pages = folio_nr_pages(folio);
2382
2383 /*
2384 * Some architectures may have to restore extra metadata to the
2385 * folio after reading from swap.
2386 */
2387 arch_swap_restore(folio_swap(swap, folio), folio);
2388
2389 if (shmem_should_replace_folio(folio, gfp)) {
2390 error = shmem_replace_folio(&folio, gfp, info, index, vma);
2391 if (error)
2392 goto failed;
2393 }
2394
2395 error = shmem_add_to_page_cache(folio, mapping,
2396 round_down(index, nr_pages),
2397 swp_to_radix_entry(swap), gfp);
2398 if (error)
2399 goto failed;
2400
2401 shmem_recalc_inode(inode, 0, -nr_pages);
2402
2403 if (sgp == SGP_WRITE)
2404 folio_mark_accessed(folio);
2405
2406 if (skip_swapcache) {
2407 folio->swap.val = 0;
2408 swapcache_clear(si, swap, nr_pages);
2409 } else {
2410 delete_from_swap_cache(folio);
2411 }
2412 folio_mark_dirty(folio);
2413 swap_free_nr(swap, nr_pages);
2414 put_swap_device(si);
2415
2416 *foliop = folio;
2417 return 0;
2418 failed:
2419 if (!shmem_confirm_swap(mapping, index, swap))
2420 error = -EEXIST;
2421 if (error == -EIO)
2422 shmem_set_folio_swapin_error(inode, index, folio, swap,
2423 skip_swapcache);
2424 unlock:
2425 if (skip_swapcache)
2426 swapcache_clear(si, swap, folio_nr_pages(folio));
2427 if (folio) {
2428 folio_unlock(folio);
2429 folio_put(folio);
2430 }
2431 put_swap_device(si);
2432
2433 return error;
2434 }
2435
2436 /*
2437 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
2438 *
2439 * If we allocate a new one we do not mark it dirty. That's up to the
2440 * vm. If we swap it in we mark it dirty since we also free the swap
2441 * entry since a page cannot live in both the swap and page cache.
2442 *
2443 * vmf and fault_type are only supplied by shmem_fault: otherwise they are NULL.
2444 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_fault * vmf,vm_fault_t * fault_type)2445 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
2446 loff_t write_end, struct folio **foliop, enum sgp_type sgp,
2447 gfp_t gfp, struct vm_fault *vmf, vm_fault_t *fault_type)
2448 {
2449 struct vm_area_struct *vma = vmf ? vmf->vma : NULL;
2450 struct mm_struct *fault_mm;
2451 struct folio *folio;
2452 int error;
2453 bool alloced;
2454 unsigned long orders = 0;
2455
2456 if (WARN_ON_ONCE(!shmem_mapping(inode->i_mapping)))
2457 return -EINVAL;
2458
2459 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
2460 return -EFBIG;
2461 repeat:
2462 if (sgp <= SGP_CACHE &&
2463 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode))
2464 return -EINVAL;
2465
2466 alloced = false;
2467 fault_mm = vma ? vma->vm_mm : NULL;
2468
2469 folio = filemap_get_entry(inode->i_mapping, index);
2470 if (folio && vma && userfaultfd_minor(vma)) {
2471 if (!xa_is_value(folio))
2472 folio_put(folio);
2473 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
2474 return 0;
2475 }
2476
2477 if (xa_is_value(folio)) {
2478 error = shmem_swapin_folio(inode, index, &folio,
2479 sgp, gfp, vma, fault_type);
2480 if (error == -EEXIST)
2481 goto repeat;
2482
2483 *foliop = folio;
2484 return error;
2485 }
2486
2487 if (folio) {
2488 folio_lock(folio);
2489
2490 /* Has the folio been truncated or swapped out? */
2491 if (unlikely(folio->mapping != inode->i_mapping)) {
2492 folio_unlock(folio);
2493 folio_put(folio);
2494 goto repeat;
2495 }
2496 if (sgp == SGP_WRITE)
2497 folio_mark_accessed(folio);
2498 if (folio_test_uptodate(folio))
2499 goto out;
2500 /* fallocated folio */
2501 if (sgp != SGP_READ)
2502 goto clear;
2503 folio_unlock(folio);
2504 folio_put(folio);
2505 }
2506
2507 /*
2508 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2509 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2510 */
2511 *foliop = NULL;
2512 if (sgp == SGP_READ)
2513 return 0;
2514 if (sgp == SGP_NOALLOC)
2515 return -ENOENT;
2516
2517 /*
2518 * Fast cache lookup and swap lookup did not find it: allocate.
2519 */
2520
2521 if (vma && userfaultfd_missing(vma)) {
2522 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2523 return 0;
2524 }
2525
2526 /* Find hugepage orders that are allowed for anonymous shmem and tmpfs. */
2527 orders = shmem_allowable_huge_orders(inode, vma, index, write_end, false);
2528 if (orders > 0) {
2529 gfp_t huge_gfp;
2530
2531 huge_gfp = vma_thp_gfp_mask(vma);
2532 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2533 folio = shmem_alloc_and_add_folio(vmf, huge_gfp,
2534 inode, index, fault_mm, orders);
2535 if (!IS_ERR(folio)) {
2536 if (folio_test_pmd_mappable(folio))
2537 count_vm_event(THP_FILE_ALLOC);
2538 count_mthp_stat(folio_order(folio), MTHP_STAT_SHMEM_ALLOC);
2539 goto alloced;
2540 }
2541 if (PTR_ERR(folio) == -EEXIST)
2542 goto repeat;
2543 }
2544
2545 folio = shmem_alloc_and_add_folio(vmf, gfp, inode, index, fault_mm, 0);
2546 if (IS_ERR(folio)) {
2547 error = PTR_ERR(folio);
2548 if (error == -EEXIST)
2549 goto repeat;
2550 folio = NULL;
2551 goto unlock;
2552 }
2553
2554 alloced:
2555 alloced = true;
2556 if (folio_test_large(folio) &&
2557 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2558 folio_next_index(folio)) {
2559 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2560 struct shmem_inode_info *info = SHMEM_I(inode);
2561 /*
2562 * Part of the large folio is beyond i_size: subject
2563 * to shrink under memory pressure.
2564 */
2565 spin_lock(&sbinfo->shrinklist_lock);
2566 /*
2567 * _careful to defend against unlocked access to
2568 * ->shrink_list in shmem_unused_huge_shrink()
2569 */
2570 if (list_empty_careful(&info->shrinklist)) {
2571 list_add_tail(&info->shrinklist,
2572 &sbinfo->shrinklist);
2573 sbinfo->shrinklist_len++;
2574 }
2575 spin_unlock(&sbinfo->shrinklist_lock);
2576 }
2577
2578 if (sgp == SGP_WRITE)
2579 folio_set_referenced(folio);
2580 /*
2581 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2582 */
2583 if (sgp == SGP_FALLOC)
2584 sgp = SGP_WRITE;
2585 clear:
2586 /*
2587 * Let SGP_WRITE caller clear ends if write does not fill folio;
2588 * but SGP_FALLOC on a folio fallocated earlier must initialize
2589 * it now, lest undo on failure cancel our earlier guarantee.
2590 */
2591 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2592 long i, n = folio_nr_pages(folio);
2593
2594 for (i = 0; i < n; i++)
2595 clear_highpage(folio_page(folio, i));
2596 flush_dcache_folio(folio);
2597 folio_mark_uptodate(folio);
2598 }
2599
2600 /* Perhaps the file has been truncated since we checked */
2601 if (sgp <= SGP_CACHE &&
2602 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2603 error = -EINVAL;
2604 goto unlock;
2605 }
2606 out:
2607 *foliop = folio;
2608 return 0;
2609
2610 /*
2611 * Error recovery.
2612 */
2613 unlock:
2614 if (alloced)
2615 filemap_remove_folio(folio);
2616 shmem_recalc_inode(inode, 0, 0);
2617 if (folio) {
2618 folio_unlock(folio);
2619 folio_put(folio);
2620 }
2621 return error;
2622 }
2623
2624 /**
2625 * shmem_get_folio - find, and lock a shmem folio.
2626 * @inode: inode to search
2627 * @index: the page index.
2628 * @write_end: end of a write, could extend inode size
2629 * @foliop: pointer to the folio if found
2630 * @sgp: SGP_* flags to control behavior
2631 *
2632 * Looks up the page cache entry at @inode & @index. If a folio is
2633 * present, it is returned locked with an increased refcount.
2634 *
2635 * If the caller modifies data in the folio, it must call folio_mark_dirty()
2636 * before unlocking the folio to ensure that the folio is not reclaimed.
2637 * There is no need to reserve space before calling folio_mark_dirty().
2638 *
2639 * When no folio is found, the behavior depends on @sgp:
2640 * - for SGP_READ, *@foliop is %NULL and 0 is returned
2641 * - for SGP_NOALLOC, *@foliop is %NULL and -ENOENT is returned
2642 * - for all other flags a new folio is allocated, inserted into the
2643 * page cache and returned locked in @foliop.
2644 *
2645 * Context: May sleep.
2646 * Return: 0 if successful, else a negative error code.
2647 */
shmem_get_folio(struct inode * inode,pgoff_t index,loff_t write_end,struct folio ** foliop,enum sgp_type sgp)2648 int shmem_get_folio(struct inode *inode, pgoff_t index, loff_t write_end,
2649 struct folio **foliop, enum sgp_type sgp)
2650 {
2651 return shmem_get_folio_gfp(inode, index, write_end, foliop, sgp,
2652 mapping_gfp_mask(inode->i_mapping), NULL, NULL);
2653 }
2654 EXPORT_SYMBOL_GPL(shmem_get_folio);
2655
2656 /*
2657 * This is like autoremove_wake_function, but it removes the wait queue
2658 * entry unconditionally - even if something else had already woken the
2659 * target.
2660 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned int mode,int sync,void * key)2661 static int synchronous_wake_function(wait_queue_entry_t *wait,
2662 unsigned int mode, int sync, void *key)
2663 {
2664 int ret = default_wake_function(wait, mode, sync, key);
2665 list_del_init(&wait->entry);
2666 return ret;
2667 }
2668
2669 /*
2670 * Trinity finds that probing a hole which tmpfs is punching can
2671 * prevent the hole-punch from ever completing: which in turn
2672 * locks writers out with its hold on i_rwsem. So refrain from
2673 * faulting pages into the hole while it's being punched. Although
2674 * shmem_undo_range() does remove the additions, it may be unable to
2675 * keep up, as each new page needs its own unmap_mapping_range() call,
2676 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2677 *
2678 * It does not matter if we sometimes reach this check just before the
2679 * hole-punch begins, so that one fault then races with the punch:
2680 * we just need to make racing faults a rare case.
2681 *
2682 * The implementation below would be much simpler if we just used a
2683 * standard mutex or completion: but we cannot take i_rwsem in fault,
2684 * and bloating every shmem inode for this unlikely case would be sad.
2685 */
shmem_falloc_wait(struct vm_fault * vmf,struct inode * inode)2686 static vm_fault_t shmem_falloc_wait(struct vm_fault *vmf, struct inode *inode)
2687 {
2688 struct shmem_falloc *shmem_falloc;
2689 struct file *fpin = NULL;
2690 vm_fault_t ret = 0;
2691
2692 spin_lock(&inode->i_lock);
2693 shmem_falloc = inode->i_private;
2694 if (shmem_falloc &&
2695 shmem_falloc->waitq &&
2696 vmf->pgoff >= shmem_falloc->start &&
2697 vmf->pgoff < shmem_falloc->next) {
2698 wait_queue_head_t *shmem_falloc_waitq;
2699 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2700
2701 ret = VM_FAULT_NOPAGE;
2702 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2703 shmem_falloc_waitq = shmem_falloc->waitq;
2704 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2705 TASK_UNINTERRUPTIBLE);
2706 spin_unlock(&inode->i_lock);
2707 schedule();
2708
2709 /*
2710 * shmem_falloc_waitq points into the shmem_fallocate()
2711 * stack of the hole-punching task: shmem_falloc_waitq
2712 * is usually invalid by the time we reach here, but
2713 * finish_wait() does not dereference it in that case;
2714 * though i_lock needed lest racing with wake_up_all().
2715 */
2716 spin_lock(&inode->i_lock);
2717 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2718 }
2719 spin_unlock(&inode->i_lock);
2720 if (fpin) {
2721 fput(fpin);
2722 ret = VM_FAULT_RETRY;
2723 }
2724 return ret;
2725 }
2726
shmem_fault(struct vm_fault * vmf)2727 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2728 {
2729 struct inode *inode = file_inode(vmf->vma->vm_file);
2730 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2731 struct folio *folio = NULL;
2732 vm_fault_t ret = 0;
2733 int err;
2734
2735 /*
2736 * Trinity finds that probing a hole which tmpfs is punching can
2737 * prevent the hole-punch from ever completing: noted in i_private.
2738 */
2739 if (unlikely(inode->i_private)) {
2740 ret = shmem_falloc_wait(vmf, inode);
2741 if (ret)
2742 return ret;
2743 }
2744
2745 WARN_ON_ONCE(vmf->page != NULL);
2746 err = shmem_get_folio_gfp(inode, vmf->pgoff, 0, &folio, SGP_CACHE,
2747 gfp, vmf, &ret);
2748 if (err)
2749 return vmf_error(err);
2750 if (folio) {
2751 vmf->page = folio_file_page(folio, vmf->pgoff);
2752 ret |= VM_FAULT_LOCKED;
2753 }
2754 return ret;
2755 }
2756
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2757 unsigned long shmem_get_unmapped_area(struct file *file,
2758 unsigned long uaddr, unsigned long len,
2759 unsigned long pgoff, unsigned long flags)
2760 {
2761 unsigned long addr;
2762 unsigned long offset;
2763 unsigned long inflated_len;
2764 unsigned long inflated_addr;
2765 unsigned long inflated_offset;
2766 unsigned long hpage_size;
2767
2768 if (len > TASK_SIZE)
2769 return -ENOMEM;
2770
2771 addr = mm_get_unmapped_area(current->mm, file, uaddr, len, pgoff,
2772 flags);
2773
2774 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2775 return addr;
2776 if (IS_ERR_VALUE(addr))
2777 return addr;
2778 if (addr & ~PAGE_MASK)
2779 return addr;
2780 if (addr > TASK_SIZE - len)
2781 return addr;
2782
2783 if (shmem_huge == SHMEM_HUGE_DENY)
2784 return addr;
2785 if (flags & MAP_FIXED)
2786 return addr;
2787 /*
2788 * Our priority is to support MAP_SHARED mapped hugely;
2789 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2790 * But if caller specified an address hint and we allocated area there
2791 * successfully, respect that as before.
2792 */
2793 if (uaddr == addr)
2794 return addr;
2795
2796 hpage_size = HPAGE_PMD_SIZE;
2797 if (shmem_huge != SHMEM_HUGE_FORCE) {
2798 struct super_block *sb;
2799 unsigned long __maybe_unused hpage_orders;
2800 int order = 0;
2801
2802 if (file) {
2803 VM_BUG_ON(file->f_op != &shmem_file_operations);
2804 sb = file_inode(file)->i_sb;
2805 } else {
2806 /*
2807 * Called directly from mm/mmap.c, or drivers/char/mem.c
2808 * for "/dev/zero", to create a shared anonymous object.
2809 */
2810 if (IS_ERR(shm_mnt))
2811 return addr;
2812 sb = shm_mnt->mnt_sb;
2813
2814 /*
2815 * Find the highest mTHP order used for anonymous shmem to
2816 * provide a suitable alignment address.
2817 */
2818 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2819 hpage_orders = READ_ONCE(huge_shmem_orders_always);
2820 hpage_orders |= READ_ONCE(huge_shmem_orders_within_size);
2821 hpage_orders |= READ_ONCE(huge_shmem_orders_madvise);
2822 if (SHMEM_SB(sb)->huge != SHMEM_HUGE_NEVER)
2823 hpage_orders |= READ_ONCE(huge_shmem_orders_inherit);
2824
2825 if (hpage_orders > 0) {
2826 order = highest_order(hpage_orders);
2827 hpage_size = PAGE_SIZE << order;
2828 }
2829 #endif
2830 }
2831 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER && !order)
2832 return addr;
2833 }
2834
2835 if (len < hpage_size)
2836 return addr;
2837
2838 offset = (pgoff << PAGE_SHIFT) & (hpage_size - 1);
2839 if (offset && offset + len < 2 * hpage_size)
2840 return addr;
2841 if ((addr & (hpage_size - 1)) == offset)
2842 return addr;
2843
2844 inflated_len = len + hpage_size - PAGE_SIZE;
2845 if (inflated_len > TASK_SIZE)
2846 return addr;
2847 if (inflated_len < len)
2848 return addr;
2849
2850 inflated_addr = mm_get_unmapped_area(current->mm, NULL, uaddr,
2851 inflated_len, 0, flags);
2852 if (IS_ERR_VALUE(inflated_addr))
2853 return addr;
2854 if (inflated_addr & ~PAGE_MASK)
2855 return addr;
2856
2857 inflated_offset = inflated_addr & (hpage_size - 1);
2858 inflated_addr += offset - inflated_offset;
2859 if (inflated_offset > offset)
2860 inflated_addr += hpage_size;
2861
2862 if (inflated_addr > TASK_SIZE - len)
2863 return addr;
2864 return inflated_addr;
2865 }
2866
2867 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2868 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2869 {
2870 struct inode *inode = file_inode(vma->vm_file);
2871 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2872 }
2873
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr,pgoff_t * ilx)2874 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2875 unsigned long addr, pgoff_t *ilx)
2876 {
2877 struct inode *inode = file_inode(vma->vm_file);
2878 pgoff_t index;
2879
2880 /*
2881 * Bias interleave by inode number to distribute better across nodes;
2882 * but this interface is independent of which page order is used, so
2883 * supplies only that bias, letting caller apply the offset (adjusted
2884 * by page order, as in shmem_get_pgoff_policy() and get_vma_policy()).
2885 */
2886 *ilx = inode->i_ino;
2887 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2888 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2889 }
2890
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2891 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2892 pgoff_t index, unsigned int order, pgoff_t *ilx)
2893 {
2894 struct mempolicy *mpol;
2895
2896 /* Bias interleave by inode number to distribute better across nodes */
2897 *ilx = info->vfs_inode.i_ino + (index >> order);
2898
2899 mpol = mpol_shared_policy_lookup(&info->policy, index);
2900 return mpol ? mpol : get_task_policy(current);
2901 }
2902 #else
shmem_get_pgoff_policy(struct shmem_inode_info * info,pgoff_t index,unsigned int order,pgoff_t * ilx)2903 static struct mempolicy *shmem_get_pgoff_policy(struct shmem_inode_info *info,
2904 pgoff_t index, unsigned int order, pgoff_t *ilx)
2905 {
2906 *ilx = 0;
2907 return NULL;
2908 }
2909 #endif /* CONFIG_NUMA */
2910
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2911 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2912 {
2913 struct inode *inode = file_inode(file);
2914 struct shmem_inode_info *info = SHMEM_I(inode);
2915 int retval = -ENOMEM;
2916
2917 /*
2918 * What serializes the accesses to info->flags?
2919 * ipc_lock_object() when called from shmctl_do_lock(),
2920 * no serialization needed when called from shm_destroy().
2921 */
2922 if (lock && !(info->flags & VM_LOCKED)) {
2923 if (!user_shm_lock(inode->i_size, ucounts))
2924 goto out_nomem;
2925 info->flags |= VM_LOCKED;
2926 mapping_set_unevictable(file->f_mapping);
2927 }
2928 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2929 user_shm_unlock(inode->i_size, ucounts);
2930 info->flags &= ~VM_LOCKED;
2931 mapping_clear_unevictable(file->f_mapping);
2932 }
2933 retval = 0;
2934
2935 out_nomem:
2936 return retval;
2937 }
2938
shmem_mmap(struct file * file,struct vm_area_struct * vma)2939 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2940 {
2941 struct inode *inode = file_inode(file);
2942
2943 file_accessed(file);
2944 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2945 if (inode->i_nlink)
2946 vma->vm_ops = &shmem_vm_ops;
2947 else
2948 vma->vm_ops = &shmem_anon_vm_ops;
2949 return 0;
2950 }
2951
shmem_file_open(struct inode * inode,struct file * file)2952 static int shmem_file_open(struct inode *inode, struct file *file)
2953 {
2954 file->f_mode |= FMODE_CAN_ODIRECT;
2955 return generic_file_open(inode, file);
2956 }
2957
2958 #ifdef CONFIG_TMPFS_XATTR
2959 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2960
2961 #if IS_ENABLED(CONFIG_UNICODE)
2962 /*
2963 * shmem_inode_casefold_flags - Deal with casefold file attribute flag
2964 *
2965 * The casefold file attribute needs some special checks. I can just be added to
2966 * an empty dir, and can't be removed from a non-empty dir.
2967 */
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2968 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2969 struct dentry *dentry, unsigned int *i_flags)
2970 {
2971 unsigned int old = inode->i_flags;
2972 struct super_block *sb = inode->i_sb;
2973
2974 if (fsflags & FS_CASEFOLD_FL) {
2975 if (!(old & S_CASEFOLD)) {
2976 if (!sb->s_encoding)
2977 return -EOPNOTSUPP;
2978
2979 if (!S_ISDIR(inode->i_mode))
2980 return -ENOTDIR;
2981
2982 if (dentry && !simple_empty(dentry))
2983 return -ENOTEMPTY;
2984 }
2985
2986 *i_flags = *i_flags | S_CASEFOLD;
2987 } else if (old & S_CASEFOLD) {
2988 if (dentry && !simple_empty(dentry))
2989 return -ENOTEMPTY;
2990 }
2991
2992 return 0;
2993 }
2994 #else
shmem_inode_casefold_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry,unsigned int * i_flags)2995 static int shmem_inode_casefold_flags(struct inode *inode, unsigned int fsflags,
2996 struct dentry *dentry, unsigned int *i_flags)
2997 {
2998 if (fsflags & FS_CASEFOLD_FL)
2999 return -EOPNOTSUPP;
3000
3001 return 0;
3002 }
3003 #endif
3004
3005 /*
3006 * chattr's fsflags are unrelated to extended attributes,
3007 * but tmpfs has chosen to enable them under the same config option.
3008 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3009 static int shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3010 {
3011 unsigned int i_flags = 0;
3012 int ret;
3013
3014 ret = shmem_inode_casefold_flags(inode, fsflags, dentry, &i_flags);
3015 if (ret)
3016 return ret;
3017
3018 if (fsflags & FS_NOATIME_FL)
3019 i_flags |= S_NOATIME;
3020 if (fsflags & FS_APPEND_FL)
3021 i_flags |= S_APPEND;
3022 if (fsflags & FS_IMMUTABLE_FL)
3023 i_flags |= S_IMMUTABLE;
3024 /*
3025 * But FS_NODUMP_FL does not require any action in i_flags.
3026 */
3027 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE | S_CASEFOLD);
3028
3029 return 0;
3030 }
3031 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags,struct dentry * dentry)3032 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags, struct dentry *dentry)
3033 {
3034 }
3035 #define shmem_initxattrs NULL
3036 #endif
3037
shmem_get_offset_ctx(struct inode * inode)3038 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
3039 {
3040 return &SHMEM_I(inode)->dir_offsets;
3041 }
3042
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3043 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
3044 struct super_block *sb,
3045 struct inode *dir, umode_t mode,
3046 dev_t dev, unsigned long flags)
3047 {
3048 struct inode *inode;
3049 struct shmem_inode_info *info;
3050 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3051 ino_t ino;
3052 int err;
3053
3054 err = shmem_reserve_inode(sb, &ino);
3055 if (err)
3056 return ERR_PTR(err);
3057
3058 inode = new_inode(sb);
3059 if (!inode) {
3060 shmem_free_inode(sb, 0);
3061 return ERR_PTR(-ENOSPC);
3062 }
3063
3064 inode->i_ino = ino;
3065 inode_init_owner(idmap, inode, dir, mode);
3066 inode->i_blocks = 0;
3067 simple_inode_init_ts(inode);
3068 inode->i_generation = get_random_u32();
3069 info = SHMEM_I(inode);
3070 memset(info, 0, (char *)inode - (char *)info);
3071 spin_lock_init(&info->lock);
3072 atomic_set(&info->stop_eviction, 0);
3073 info->seals = F_SEAL_SEAL;
3074 info->flags = flags & VM_NORESERVE;
3075 info->i_crtime = inode_get_mtime(inode);
3076 info->fsflags = (dir == NULL) ? 0 :
3077 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
3078 if (info->fsflags)
3079 shmem_set_inode_flags(inode, info->fsflags, NULL);
3080 INIT_LIST_HEAD(&info->shrinklist);
3081 INIT_LIST_HEAD(&info->swaplist);
3082 simple_xattrs_init(&info->xattrs);
3083 cache_no_acl(inode);
3084 if (sbinfo->noswap)
3085 mapping_set_unevictable(inode->i_mapping);
3086
3087 /* Don't consider 'deny' for emergencies and 'force' for testing */
3088 if (sbinfo->huge)
3089 mapping_set_large_folios(inode->i_mapping);
3090
3091 switch (mode & S_IFMT) {
3092 default:
3093 inode->i_op = &shmem_special_inode_operations;
3094 init_special_inode(inode, mode, dev);
3095 break;
3096 case S_IFREG:
3097 inode->i_mapping->a_ops = &shmem_aops;
3098 inode->i_op = &shmem_inode_operations;
3099 inode->i_fop = &shmem_file_operations;
3100 mpol_shared_policy_init(&info->policy,
3101 shmem_get_sbmpol(sbinfo));
3102 break;
3103 case S_IFDIR:
3104 inc_nlink(inode);
3105 /* Some things misbehave if size == 0 on a directory */
3106 inode->i_size = 2 * BOGO_DIRENT_SIZE;
3107 inode->i_op = &shmem_dir_inode_operations;
3108 inode->i_fop = &simple_offset_dir_operations;
3109 simple_offset_init(shmem_get_offset_ctx(inode));
3110 break;
3111 case S_IFLNK:
3112 /*
3113 * Must not load anything in the rbtree,
3114 * mpol_free_shared_policy will not be called.
3115 */
3116 mpol_shared_policy_init(&info->policy, NULL);
3117 break;
3118 }
3119
3120 lockdep_annotate_inode_mutex_key(inode);
3121 return inode;
3122 }
3123
3124 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3125 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3126 struct super_block *sb, struct inode *dir,
3127 umode_t mode, dev_t dev, unsigned long flags)
3128 {
3129 int err;
3130 struct inode *inode;
3131
3132 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3133 if (IS_ERR(inode))
3134 return inode;
3135
3136 err = dquot_initialize(inode);
3137 if (err)
3138 goto errout;
3139
3140 err = dquot_alloc_inode(inode);
3141 if (err) {
3142 dquot_drop(inode);
3143 goto errout;
3144 }
3145 return inode;
3146
3147 errout:
3148 inode->i_flags |= S_NOQUOTA;
3149 iput(inode);
3150 return ERR_PTR(err);
3151 }
3152 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)3153 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
3154 struct super_block *sb, struct inode *dir,
3155 umode_t mode, dev_t dev, unsigned long flags)
3156 {
3157 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
3158 }
3159 #endif /* CONFIG_TMPFS_QUOTA */
3160
3161 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)3162 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
3163 struct vm_area_struct *dst_vma,
3164 unsigned long dst_addr,
3165 unsigned long src_addr,
3166 uffd_flags_t flags,
3167 struct folio **foliop)
3168 {
3169 struct inode *inode = file_inode(dst_vma->vm_file);
3170 struct shmem_inode_info *info = SHMEM_I(inode);
3171 struct address_space *mapping = inode->i_mapping;
3172 gfp_t gfp = mapping_gfp_mask(mapping);
3173 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
3174 void *page_kaddr;
3175 struct folio *folio;
3176 int ret;
3177 pgoff_t max_off;
3178
3179 if (shmem_inode_acct_blocks(inode, 1)) {
3180 /*
3181 * We may have got a page, returned -ENOENT triggering a retry,
3182 * and now we find ourselves with -ENOMEM. Release the page, to
3183 * avoid a BUG_ON in our caller.
3184 */
3185 if (unlikely(*foliop)) {
3186 folio_put(*foliop);
3187 *foliop = NULL;
3188 }
3189 return -ENOMEM;
3190 }
3191
3192 if (!*foliop) {
3193 ret = -ENOMEM;
3194 folio = shmem_alloc_folio(gfp, 0, info, pgoff);
3195 if (!folio)
3196 goto out_unacct_blocks;
3197
3198 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
3199 page_kaddr = kmap_local_folio(folio, 0);
3200 /*
3201 * The read mmap_lock is held here. Despite the
3202 * mmap_lock being read recursive a deadlock is still
3203 * possible if a writer has taken a lock. For example:
3204 *
3205 * process A thread 1 takes read lock on own mmap_lock
3206 * process A thread 2 calls mmap, blocks taking write lock
3207 * process B thread 1 takes page fault, read lock on own mmap lock
3208 * process B thread 2 calls mmap, blocks taking write lock
3209 * process A thread 1 blocks taking read lock on process B
3210 * process B thread 1 blocks taking read lock on process A
3211 *
3212 * Disable page faults to prevent potential deadlock
3213 * and retry the copy outside the mmap_lock.
3214 */
3215 pagefault_disable();
3216 ret = copy_from_user(page_kaddr,
3217 (const void __user *)src_addr,
3218 PAGE_SIZE);
3219 pagefault_enable();
3220 kunmap_local(page_kaddr);
3221
3222 /* fallback to copy_from_user outside mmap_lock */
3223 if (unlikely(ret)) {
3224 *foliop = folio;
3225 ret = -ENOENT;
3226 /* don't free the page */
3227 goto out_unacct_blocks;
3228 }
3229
3230 flush_dcache_folio(folio);
3231 } else { /* ZEROPAGE */
3232 clear_user_highpage(&folio->page, dst_addr);
3233 }
3234 } else {
3235 folio = *foliop;
3236 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
3237 *foliop = NULL;
3238 }
3239
3240 VM_BUG_ON(folio_test_locked(folio));
3241 VM_BUG_ON(folio_test_swapbacked(folio));
3242 __folio_set_locked(folio);
3243 __folio_set_swapbacked(folio);
3244 __folio_mark_uptodate(folio);
3245
3246 ret = -EFAULT;
3247 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3248 if (unlikely(pgoff >= max_off))
3249 goto out_release;
3250
3251 ret = mem_cgroup_charge(folio, dst_vma->vm_mm, gfp);
3252 if (ret)
3253 goto out_release;
3254 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL, gfp);
3255 if (ret)
3256 goto out_release;
3257
3258 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
3259 &folio->page, true, flags);
3260 if (ret)
3261 goto out_delete_from_cache;
3262
3263 shmem_recalc_inode(inode, 1, 0);
3264 folio_unlock(folio);
3265 return 0;
3266 out_delete_from_cache:
3267 filemap_remove_folio(folio);
3268 out_release:
3269 folio_unlock(folio);
3270 folio_put(folio);
3271 out_unacct_blocks:
3272 shmem_inode_unacct_blocks(inode, 1);
3273 return ret;
3274 }
3275 #endif /* CONFIG_USERFAULTFD */
3276
3277 #ifdef CONFIG_TMPFS
3278 static const struct inode_operations shmem_symlink_inode_operations;
3279 static const struct inode_operations shmem_short_symlink_operations;
3280
3281 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)3282 shmem_write_begin(struct file *file, struct address_space *mapping,
3283 loff_t pos, unsigned len,
3284 struct folio **foliop, void **fsdata)
3285 {
3286 struct inode *inode = mapping->host;
3287 struct shmem_inode_info *info = SHMEM_I(inode);
3288 pgoff_t index = pos >> PAGE_SHIFT;
3289 struct folio *folio;
3290 int ret = 0;
3291
3292 /* i_rwsem is held by caller */
3293 if (unlikely(info->seals & (F_SEAL_GROW |
3294 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
3295 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
3296 return -EPERM;
3297 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
3298 return -EPERM;
3299 }
3300
3301 ret = shmem_get_folio(inode, index, pos + len, &folio, SGP_WRITE);
3302 if (ret)
3303 return ret;
3304
3305 if (folio_test_hwpoison(folio) ||
3306 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
3307 folio_unlock(folio);
3308 folio_put(folio);
3309 return -EIO;
3310 }
3311
3312 *foliop = folio;
3313 return 0;
3314 }
3315
3316 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3317 shmem_write_end(struct file *file, struct address_space *mapping,
3318 loff_t pos, unsigned len, unsigned copied,
3319 struct folio *folio, void *fsdata)
3320 {
3321 struct inode *inode = mapping->host;
3322
3323 if (pos + copied > inode->i_size)
3324 i_size_write(inode, pos + copied);
3325
3326 if (!folio_test_uptodate(folio)) {
3327 if (copied < folio_size(folio)) {
3328 size_t from = offset_in_folio(folio, pos);
3329 folio_zero_segments(folio, 0, from,
3330 from + copied, folio_size(folio));
3331 }
3332 folio_mark_uptodate(folio);
3333 }
3334 folio_mark_dirty(folio);
3335 folio_unlock(folio);
3336 folio_put(folio);
3337
3338 return copied;
3339 }
3340
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)3341 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3342 {
3343 struct file *file = iocb->ki_filp;
3344 struct inode *inode = file_inode(file);
3345 struct address_space *mapping = inode->i_mapping;
3346 pgoff_t index;
3347 unsigned long offset;
3348 int error = 0;
3349 ssize_t retval = 0;
3350
3351 for (;;) {
3352 struct folio *folio = NULL;
3353 struct page *page = NULL;
3354 unsigned long nr, ret;
3355 loff_t end_offset, i_size = i_size_read(inode);
3356 bool fallback_page_copy = false;
3357 size_t fsize;
3358
3359 if (unlikely(iocb->ki_pos >= i_size))
3360 break;
3361
3362 index = iocb->ki_pos >> PAGE_SHIFT;
3363 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3364 if (error) {
3365 if (error == -EINVAL)
3366 error = 0;
3367 break;
3368 }
3369 if (folio) {
3370 folio_unlock(folio);
3371
3372 page = folio_file_page(folio, index);
3373 if (PageHWPoison(page)) {
3374 folio_put(folio);
3375 error = -EIO;
3376 break;
3377 }
3378
3379 if (folio_test_large(folio) &&
3380 folio_test_has_hwpoisoned(folio))
3381 fallback_page_copy = true;
3382 }
3383
3384 /*
3385 * We must evaluate after, since reads (unlike writes)
3386 * are called without i_rwsem protection against truncate
3387 */
3388 i_size = i_size_read(inode);
3389 if (unlikely(iocb->ki_pos >= i_size)) {
3390 if (folio)
3391 folio_put(folio);
3392 break;
3393 }
3394 end_offset = min_t(loff_t, i_size, iocb->ki_pos + to->count);
3395 if (folio && likely(!fallback_page_copy))
3396 fsize = folio_size(folio);
3397 else
3398 fsize = PAGE_SIZE;
3399 offset = iocb->ki_pos & (fsize - 1);
3400 nr = min_t(loff_t, end_offset - iocb->ki_pos, fsize - offset);
3401
3402 if (folio) {
3403 /*
3404 * If users can be writing to this page using arbitrary
3405 * virtual addresses, take care about potential aliasing
3406 * before reading the page on the kernel side.
3407 */
3408 if (mapping_writably_mapped(mapping)) {
3409 if (likely(!fallback_page_copy))
3410 flush_dcache_folio(folio);
3411 else
3412 flush_dcache_page(page);
3413 }
3414
3415 /*
3416 * Mark the folio accessed if we read the beginning.
3417 */
3418 if (!offset)
3419 folio_mark_accessed(folio);
3420 /*
3421 * Ok, we have the page, and it's up-to-date, so
3422 * now we can copy it to user space...
3423 */
3424 if (likely(!fallback_page_copy))
3425 ret = copy_folio_to_iter(folio, offset, nr, to);
3426 else
3427 ret = copy_page_to_iter(page, offset, nr, to);
3428 folio_put(folio);
3429 } else if (user_backed_iter(to)) {
3430 /*
3431 * Copy to user tends to be so well optimized, but
3432 * clear_user() not so much, that it is noticeably
3433 * faster to copy the zero page instead of clearing.
3434 */
3435 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
3436 } else {
3437 /*
3438 * But submitting the same page twice in a row to
3439 * splice() - or others? - can result in confusion:
3440 * so don't attempt that optimization on pipes etc.
3441 */
3442 ret = iov_iter_zero(nr, to);
3443 }
3444
3445 retval += ret;
3446 iocb->ki_pos += ret;
3447
3448 if (!iov_iter_count(to))
3449 break;
3450 if (ret < nr) {
3451 error = -EFAULT;
3452 break;
3453 }
3454 cond_resched();
3455 }
3456
3457 file_accessed(file);
3458 return retval ? retval : error;
3459 }
3460
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)3461 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3462 {
3463 struct file *file = iocb->ki_filp;
3464 struct inode *inode = file->f_mapping->host;
3465 ssize_t ret;
3466
3467 inode_lock(inode);
3468 ret = generic_write_checks(iocb, from);
3469 if (ret <= 0)
3470 goto unlock;
3471 ret = file_remove_privs(file);
3472 if (ret)
3473 goto unlock;
3474 ret = file_update_time(file);
3475 if (ret)
3476 goto unlock;
3477 ret = generic_perform_write(iocb, from);
3478 unlock:
3479 inode_unlock(inode);
3480 return ret;
3481 }
3482
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3483 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
3484 struct pipe_buffer *buf)
3485 {
3486 return true;
3487 }
3488
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3489 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
3490 struct pipe_buffer *buf)
3491 {
3492 }
3493
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)3494 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
3495 struct pipe_buffer *buf)
3496 {
3497 return false;
3498 }
3499
3500 static const struct pipe_buf_operations zero_pipe_buf_ops = {
3501 .release = zero_pipe_buf_release,
3502 .try_steal = zero_pipe_buf_try_steal,
3503 .get = zero_pipe_buf_get,
3504 };
3505
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)3506 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
3507 loff_t fpos, size_t size)
3508 {
3509 size_t offset = fpos & ~PAGE_MASK;
3510
3511 size = min_t(size_t, size, PAGE_SIZE - offset);
3512
3513 if (!pipe_is_full(pipe)) {
3514 struct pipe_buffer *buf = pipe_head_buf(pipe);
3515
3516 *buf = (struct pipe_buffer) {
3517 .ops = &zero_pipe_buf_ops,
3518 .page = ZERO_PAGE(0),
3519 .offset = offset,
3520 .len = size,
3521 };
3522 pipe->head++;
3523 }
3524
3525 return size;
3526 }
3527
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)3528 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
3529 struct pipe_inode_info *pipe,
3530 size_t len, unsigned int flags)
3531 {
3532 struct inode *inode = file_inode(in);
3533 struct address_space *mapping = inode->i_mapping;
3534 struct folio *folio = NULL;
3535 size_t total_spliced = 0, used, npages, n, part;
3536 loff_t isize;
3537 int error = 0;
3538
3539 /* Work out how much data we can actually add into the pipe */
3540 used = pipe_buf_usage(pipe);
3541 npages = max_t(ssize_t, pipe->max_usage - used, 0);
3542 len = min_t(size_t, len, npages * PAGE_SIZE);
3543
3544 do {
3545 bool fallback_page_splice = false;
3546 struct page *page = NULL;
3547 pgoff_t index;
3548 size_t size;
3549
3550 if (*ppos >= i_size_read(inode))
3551 break;
3552
3553 index = *ppos >> PAGE_SHIFT;
3554 error = shmem_get_folio(inode, index, 0, &folio, SGP_READ);
3555 if (error) {
3556 if (error == -EINVAL)
3557 error = 0;
3558 break;
3559 }
3560 if (folio) {
3561 folio_unlock(folio);
3562
3563 page = folio_file_page(folio, index);
3564 if (PageHWPoison(page)) {
3565 error = -EIO;
3566 break;
3567 }
3568
3569 if (folio_test_large(folio) &&
3570 folio_test_has_hwpoisoned(folio))
3571 fallback_page_splice = true;
3572 }
3573
3574 /*
3575 * i_size must be checked after we know the pages are Uptodate.
3576 *
3577 * Checking i_size after the check allows us to calculate
3578 * the correct value for "nr", which means the zero-filled
3579 * part of the page is not copied back to userspace (unless
3580 * another truncate extends the file - this is desired though).
3581 */
3582 isize = i_size_read(inode);
3583 if (unlikely(*ppos >= isize))
3584 break;
3585 /*
3586 * Fallback to PAGE_SIZE splice if the large folio has hwpoisoned
3587 * pages.
3588 */
3589 size = len;
3590 if (unlikely(fallback_page_splice)) {
3591 size_t offset = *ppos & ~PAGE_MASK;
3592
3593 size = umin(size, PAGE_SIZE - offset);
3594 }
3595 part = min_t(loff_t, isize - *ppos, size);
3596
3597 if (folio) {
3598 /*
3599 * If users can be writing to this page using arbitrary
3600 * virtual addresses, take care about potential aliasing
3601 * before reading the page on the kernel side.
3602 */
3603 if (mapping_writably_mapped(mapping)) {
3604 if (likely(!fallback_page_splice))
3605 flush_dcache_folio(folio);
3606 else
3607 flush_dcache_page(page);
3608 }
3609 folio_mark_accessed(folio);
3610 /*
3611 * Ok, we have the page, and it's up-to-date, so we can
3612 * now splice it into the pipe.
3613 */
3614 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3615 folio_put(folio);
3616 folio = NULL;
3617 } else {
3618 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3619 }
3620
3621 if (!n)
3622 break;
3623 len -= n;
3624 total_spliced += n;
3625 *ppos += n;
3626 in->f_ra.prev_pos = *ppos;
3627 if (pipe_is_full(pipe))
3628 break;
3629
3630 cond_resched();
3631 } while (len);
3632
3633 if (folio)
3634 folio_put(folio);
3635
3636 file_accessed(in);
3637 return total_spliced ? total_spliced : error;
3638 }
3639
shmem_file_llseek(struct file * file,loff_t offset,int whence)3640 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3641 {
3642 struct address_space *mapping = file->f_mapping;
3643 struct inode *inode = mapping->host;
3644
3645 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3646 return generic_file_llseek_size(file, offset, whence,
3647 MAX_LFS_FILESIZE, i_size_read(inode));
3648 if (offset < 0)
3649 return -ENXIO;
3650
3651 inode_lock(inode);
3652 /* We're holding i_rwsem so we can access i_size directly */
3653 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3654 if (offset >= 0)
3655 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3656 inode_unlock(inode);
3657 return offset;
3658 }
3659
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3660 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3661 loff_t len)
3662 {
3663 struct inode *inode = file_inode(file);
3664 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3665 struct shmem_inode_info *info = SHMEM_I(inode);
3666 struct shmem_falloc shmem_falloc;
3667 pgoff_t start, index, end, undo_fallocend;
3668 int error;
3669
3670 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3671 return -EOPNOTSUPP;
3672
3673 inode_lock(inode);
3674
3675 if (mode & FALLOC_FL_PUNCH_HOLE) {
3676 struct address_space *mapping = file->f_mapping;
3677 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3678 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3679 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3680
3681 /* protected by i_rwsem */
3682 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3683 error = -EPERM;
3684 goto out;
3685 }
3686
3687 shmem_falloc.waitq = &shmem_falloc_waitq;
3688 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3689 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3690 spin_lock(&inode->i_lock);
3691 inode->i_private = &shmem_falloc;
3692 spin_unlock(&inode->i_lock);
3693
3694 if ((u64)unmap_end > (u64)unmap_start)
3695 unmap_mapping_range(mapping, unmap_start,
3696 1 + unmap_end - unmap_start, 0);
3697 shmem_truncate_range(inode, offset, offset + len - 1);
3698 /* No need to unmap again: hole-punching leaves COWed pages */
3699
3700 spin_lock(&inode->i_lock);
3701 inode->i_private = NULL;
3702 wake_up_all(&shmem_falloc_waitq);
3703 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3704 spin_unlock(&inode->i_lock);
3705 error = 0;
3706 goto out;
3707 }
3708
3709 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3710 error = inode_newsize_ok(inode, offset + len);
3711 if (error)
3712 goto out;
3713
3714 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3715 error = -EPERM;
3716 goto out;
3717 }
3718
3719 start = offset >> PAGE_SHIFT;
3720 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3721 /* Try to avoid a swapstorm if len is impossible to satisfy */
3722 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3723 error = -ENOSPC;
3724 goto out;
3725 }
3726
3727 shmem_falloc.waitq = NULL;
3728 shmem_falloc.start = start;
3729 shmem_falloc.next = start;
3730 shmem_falloc.nr_falloced = 0;
3731 shmem_falloc.nr_unswapped = 0;
3732 spin_lock(&inode->i_lock);
3733 inode->i_private = &shmem_falloc;
3734 spin_unlock(&inode->i_lock);
3735
3736 /*
3737 * info->fallocend is only relevant when huge pages might be
3738 * involved: to prevent split_huge_page() freeing fallocated
3739 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3740 */
3741 undo_fallocend = info->fallocend;
3742 if (info->fallocend < end)
3743 info->fallocend = end;
3744
3745 for (index = start; index < end; ) {
3746 struct folio *folio;
3747
3748 /*
3749 * Check for fatal signal so that we abort early in OOM
3750 * situations. We don't want to abort in case of non-fatal
3751 * signals as large fallocate can take noticeable time and
3752 * e.g. periodic timers may result in fallocate constantly
3753 * restarting.
3754 */
3755 if (fatal_signal_pending(current))
3756 error = -EINTR;
3757 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3758 error = -ENOMEM;
3759 else
3760 error = shmem_get_folio(inode, index, offset + len,
3761 &folio, SGP_FALLOC);
3762 if (error) {
3763 info->fallocend = undo_fallocend;
3764 /* Remove the !uptodate folios we added */
3765 if (index > start) {
3766 shmem_undo_range(inode,
3767 (loff_t)start << PAGE_SHIFT,
3768 ((loff_t)index << PAGE_SHIFT) - 1, true);
3769 }
3770 goto undone;
3771 }
3772
3773 /*
3774 * Here is a more important optimization than it appears:
3775 * a second SGP_FALLOC on the same large folio will clear it,
3776 * making it uptodate and un-undoable if we fail later.
3777 */
3778 index = folio_next_index(folio);
3779 /* Beware 32-bit wraparound */
3780 if (!index)
3781 index--;
3782
3783 /*
3784 * Inform shmem_writepage() how far we have reached.
3785 * No need for lock or barrier: we have the page lock.
3786 */
3787 if (!folio_test_uptodate(folio))
3788 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3789 shmem_falloc.next = index;
3790
3791 /*
3792 * If !uptodate, leave it that way so that freeable folios
3793 * can be recognized if we need to rollback on error later.
3794 * But mark it dirty so that memory pressure will swap rather
3795 * than free the folios we are allocating (and SGP_CACHE folios
3796 * might still be clean: we now need to mark those dirty too).
3797 */
3798 folio_mark_dirty(folio);
3799 folio_unlock(folio);
3800 folio_put(folio);
3801 cond_resched();
3802 }
3803
3804 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3805 i_size_write(inode, offset + len);
3806 undone:
3807 spin_lock(&inode->i_lock);
3808 inode->i_private = NULL;
3809 spin_unlock(&inode->i_lock);
3810 out:
3811 if (!error)
3812 file_modified(file);
3813 inode_unlock(inode);
3814 return error;
3815 }
3816
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3817 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3818 {
3819 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3820
3821 buf->f_type = TMPFS_MAGIC;
3822 buf->f_bsize = PAGE_SIZE;
3823 buf->f_namelen = NAME_MAX;
3824 if (sbinfo->max_blocks) {
3825 buf->f_blocks = sbinfo->max_blocks;
3826 buf->f_bavail =
3827 buf->f_bfree = sbinfo->max_blocks -
3828 percpu_counter_sum(&sbinfo->used_blocks);
3829 }
3830 if (sbinfo->max_inodes) {
3831 buf->f_files = sbinfo->max_inodes;
3832 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3833 }
3834 /* else leave those fields 0 like simple_statfs */
3835
3836 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3837
3838 return 0;
3839 }
3840
3841 /*
3842 * File creation. Allocate an inode, and we're done..
3843 */
3844 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3845 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3846 struct dentry *dentry, umode_t mode, dev_t dev)
3847 {
3848 struct inode *inode;
3849 int error;
3850
3851 if (!generic_ci_validate_strict_name(dir, &dentry->d_name))
3852 return -EINVAL;
3853
3854 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3855 if (IS_ERR(inode))
3856 return PTR_ERR(inode);
3857
3858 error = simple_acl_create(dir, inode);
3859 if (error)
3860 goto out_iput;
3861 error = security_inode_init_security(inode, dir, &dentry->d_name,
3862 shmem_initxattrs, NULL);
3863 if (error && error != -EOPNOTSUPP)
3864 goto out_iput;
3865
3866 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3867 if (error)
3868 goto out_iput;
3869
3870 dir->i_size += BOGO_DIRENT_SIZE;
3871 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
3872 inode_inc_iversion(dir);
3873
3874 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3875 d_add(dentry, inode);
3876 else
3877 d_instantiate(dentry, inode);
3878
3879 dget(dentry); /* Extra count - pin the dentry in core */
3880 return error;
3881
3882 out_iput:
3883 iput(inode);
3884 return error;
3885 }
3886
3887 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3888 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3889 struct file *file, umode_t mode)
3890 {
3891 struct inode *inode;
3892 int error;
3893
3894 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3895 if (IS_ERR(inode)) {
3896 error = PTR_ERR(inode);
3897 goto err_out;
3898 }
3899 error = security_inode_init_security(inode, dir, NULL,
3900 shmem_initxattrs, NULL);
3901 if (error && error != -EOPNOTSUPP)
3902 goto out_iput;
3903 error = simple_acl_create(dir, inode);
3904 if (error)
3905 goto out_iput;
3906 d_tmpfile(file, inode);
3907
3908 err_out:
3909 return finish_open_simple(file, error);
3910 out_iput:
3911 iput(inode);
3912 return error;
3913 }
3914
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3915 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3916 struct dentry *dentry, umode_t mode)
3917 {
3918 int error;
3919
3920 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3921 if (error)
3922 return error;
3923 inc_nlink(dir);
3924 return 0;
3925 }
3926
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3927 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3928 struct dentry *dentry, umode_t mode, bool excl)
3929 {
3930 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3931 }
3932
3933 /*
3934 * Link a file..
3935 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3936 static int shmem_link(struct dentry *old_dentry, struct inode *dir,
3937 struct dentry *dentry)
3938 {
3939 struct inode *inode = d_inode(old_dentry);
3940 int ret = 0;
3941
3942 /*
3943 * No ordinary (disk based) filesystem counts links as inodes;
3944 * but each new link needs a new dentry, pinning lowmem, and
3945 * tmpfs dentries cannot be pruned until they are unlinked.
3946 * But if an O_TMPFILE file is linked into the tmpfs, the
3947 * first link must skip that, to get the accounting right.
3948 */
3949 if (inode->i_nlink) {
3950 ret = shmem_reserve_inode(inode->i_sb, NULL);
3951 if (ret)
3952 goto out;
3953 }
3954
3955 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3956 if (ret) {
3957 if (inode->i_nlink)
3958 shmem_free_inode(inode->i_sb, 0);
3959 goto out;
3960 }
3961
3962 dir->i_size += BOGO_DIRENT_SIZE;
3963 inode_set_mtime_to_ts(dir,
3964 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3965 inode_inc_iversion(dir);
3966 inc_nlink(inode);
3967 ihold(inode); /* New dentry reference */
3968 dget(dentry); /* Extra pinning count for the created dentry */
3969 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3970 d_add(dentry, inode);
3971 else
3972 d_instantiate(dentry, inode);
3973 out:
3974 return ret;
3975 }
3976
shmem_unlink(struct inode * dir,struct dentry * dentry)3977 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3978 {
3979 struct inode *inode = d_inode(dentry);
3980
3981 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3982 shmem_free_inode(inode->i_sb, 0);
3983
3984 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3985
3986 dir->i_size -= BOGO_DIRENT_SIZE;
3987 inode_set_mtime_to_ts(dir,
3988 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
3989 inode_inc_iversion(dir);
3990 drop_nlink(inode);
3991 dput(dentry); /* Undo the count from "create" - does all the work */
3992
3993 /*
3994 * For now, VFS can't deal with case-insensitive negative dentries, so
3995 * we invalidate them
3996 */
3997 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
3998 d_invalidate(dentry);
3999
4000 return 0;
4001 }
4002
shmem_rmdir(struct inode * dir,struct dentry * dentry)4003 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
4004 {
4005 if (!simple_empty(dentry))
4006 return -ENOTEMPTY;
4007
4008 drop_nlink(d_inode(dentry));
4009 drop_nlink(dir);
4010 return shmem_unlink(dir, dentry);
4011 }
4012
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)4013 static int shmem_whiteout(struct mnt_idmap *idmap,
4014 struct inode *old_dir, struct dentry *old_dentry)
4015 {
4016 struct dentry *whiteout;
4017 int error;
4018
4019 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
4020 if (!whiteout)
4021 return -ENOMEM;
4022
4023 error = shmem_mknod(idmap, old_dir, whiteout,
4024 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4025 dput(whiteout);
4026 if (error)
4027 return error;
4028
4029 /*
4030 * Cheat and hash the whiteout while the old dentry is still in
4031 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
4032 *
4033 * d_lookup() will consistently find one of them at this point,
4034 * not sure which one, but that isn't even important.
4035 */
4036 d_rehash(whiteout);
4037 return 0;
4038 }
4039
4040 /*
4041 * The VFS layer already does all the dentry stuff for rename,
4042 * we just have to decrement the usage count for the target if
4043 * it exists so that the VFS layer correctly free's it when it
4044 * gets overwritten.
4045 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)4046 static int shmem_rename2(struct mnt_idmap *idmap,
4047 struct inode *old_dir, struct dentry *old_dentry,
4048 struct inode *new_dir, struct dentry *new_dentry,
4049 unsigned int flags)
4050 {
4051 struct inode *inode = d_inode(old_dentry);
4052 int they_are_dirs = S_ISDIR(inode->i_mode);
4053 int error;
4054
4055 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4056 return -EINVAL;
4057
4058 if (flags & RENAME_EXCHANGE)
4059 return simple_offset_rename_exchange(old_dir, old_dentry,
4060 new_dir, new_dentry);
4061
4062 if (!simple_empty(new_dentry))
4063 return -ENOTEMPTY;
4064
4065 if (flags & RENAME_WHITEOUT) {
4066 error = shmem_whiteout(idmap, old_dir, old_dentry);
4067 if (error)
4068 return error;
4069 }
4070
4071 error = simple_offset_rename(old_dir, old_dentry, new_dir, new_dentry);
4072 if (error)
4073 return error;
4074
4075 if (d_really_is_positive(new_dentry)) {
4076 (void) shmem_unlink(new_dir, new_dentry);
4077 if (they_are_dirs) {
4078 drop_nlink(d_inode(new_dentry));
4079 drop_nlink(old_dir);
4080 }
4081 } else if (they_are_dirs) {
4082 drop_nlink(old_dir);
4083 inc_nlink(new_dir);
4084 }
4085
4086 old_dir->i_size -= BOGO_DIRENT_SIZE;
4087 new_dir->i_size += BOGO_DIRENT_SIZE;
4088 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
4089 inode_inc_iversion(old_dir);
4090 inode_inc_iversion(new_dir);
4091 return 0;
4092 }
4093
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)4094 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
4095 struct dentry *dentry, const char *symname)
4096 {
4097 int error;
4098 int len;
4099 struct inode *inode;
4100 struct folio *folio;
4101 char *link;
4102
4103 len = strlen(symname) + 1;
4104 if (len > PAGE_SIZE)
4105 return -ENAMETOOLONG;
4106
4107 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
4108 VM_NORESERVE);
4109 if (IS_ERR(inode))
4110 return PTR_ERR(inode);
4111
4112 error = security_inode_init_security(inode, dir, &dentry->d_name,
4113 shmem_initxattrs, NULL);
4114 if (error && error != -EOPNOTSUPP)
4115 goto out_iput;
4116
4117 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
4118 if (error)
4119 goto out_iput;
4120
4121 inode->i_size = len-1;
4122 if (len <= SHORT_SYMLINK_LEN) {
4123 link = kmemdup(symname, len, GFP_KERNEL);
4124 if (!link) {
4125 error = -ENOMEM;
4126 goto out_remove_offset;
4127 }
4128 inode->i_op = &shmem_short_symlink_operations;
4129 inode_set_cached_link(inode, link, len - 1);
4130 } else {
4131 inode_nohighmem(inode);
4132 inode->i_mapping->a_ops = &shmem_aops;
4133 error = shmem_get_folio(inode, 0, 0, &folio, SGP_WRITE);
4134 if (error)
4135 goto out_remove_offset;
4136 inode->i_op = &shmem_symlink_inode_operations;
4137 memcpy(folio_address(folio), symname, len);
4138 folio_mark_uptodate(folio);
4139 folio_mark_dirty(folio);
4140 folio_unlock(folio);
4141 folio_put(folio);
4142 }
4143 dir->i_size += BOGO_DIRENT_SIZE;
4144 inode_set_mtime_to_ts(dir, inode_set_ctime_current(dir));
4145 inode_inc_iversion(dir);
4146 if (IS_ENABLED(CONFIG_UNICODE) && IS_CASEFOLDED(dir))
4147 d_add(dentry, inode);
4148 else
4149 d_instantiate(dentry, inode);
4150 dget(dentry);
4151 return 0;
4152
4153 out_remove_offset:
4154 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
4155 out_iput:
4156 iput(inode);
4157 return error;
4158 }
4159
shmem_put_link(void * arg)4160 static void shmem_put_link(void *arg)
4161 {
4162 folio_mark_accessed(arg);
4163 folio_put(arg);
4164 }
4165
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)4166 static const char *shmem_get_link(struct dentry *dentry, struct inode *inode,
4167 struct delayed_call *done)
4168 {
4169 struct folio *folio = NULL;
4170 int error;
4171
4172 if (!dentry) {
4173 folio = filemap_get_folio(inode->i_mapping, 0);
4174 if (IS_ERR(folio))
4175 return ERR_PTR(-ECHILD);
4176 if (PageHWPoison(folio_page(folio, 0)) ||
4177 !folio_test_uptodate(folio)) {
4178 folio_put(folio);
4179 return ERR_PTR(-ECHILD);
4180 }
4181 } else {
4182 error = shmem_get_folio(inode, 0, 0, &folio, SGP_READ);
4183 if (error)
4184 return ERR_PTR(error);
4185 if (!folio)
4186 return ERR_PTR(-ECHILD);
4187 if (PageHWPoison(folio_page(folio, 0))) {
4188 folio_unlock(folio);
4189 folio_put(folio);
4190 return ERR_PTR(-ECHILD);
4191 }
4192 folio_unlock(folio);
4193 }
4194 set_delayed_call(done, shmem_put_link, folio);
4195 return folio_address(folio);
4196 }
4197
4198 #ifdef CONFIG_TMPFS_XATTR
4199
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)4200 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
4201 {
4202 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4203
4204 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
4205
4206 return 0;
4207 }
4208
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)4209 static int shmem_fileattr_set(struct mnt_idmap *idmap,
4210 struct dentry *dentry, struct fileattr *fa)
4211 {
4212 struct inode *inode = d_inode(dentry);
4213 struct shmem_inode_info *info = SHMEM_I(inode);
4214 int ret, flags;
4215
4216 if (fileattr_has_fsx(fa))
4217 return -EOPNOTSUPP;
4218 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
4219 return -EOPNOTSUPP;
4220
4221 flags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
4222 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
4223
4224 ret = shmem_set_inode_flags(inode, flags, dentry);
4225
4226 if (ret)
4227 return ret;
4228
4229 info->fsflags = flags;
4230
4231 inode_set_ctime_current(inode);
4232 inode_inc_iversion(inode);
4233 return 0;
4234 }
4235
4236 /*
4237 * Superblocks without xattr inode operations may get some security.* xattr
4238 * support from the LSM "for free". As soon as we have any other xattrs
4239 * like ACLs, we also need to implement the security.* handlers at
4240 * filesystem level, though.
4241 */
4242
4243 /*
4244 * Callback for security_inode_init_security() for acquiring xattrs.
4245 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)4246 static int shmem_initxattrs(struct inode *inode,
4247 const struct xattr *xattr_array, void *fs_info)
4248 {
4249 struct shmem_inode_info *info = SHMEM_I(inode);
4250 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4251 const struct xattr *xattr;
4252 struct simple_xattr *new_xattr;
4253 size_t ispace = 0;
4254 size_t len;
4255
4256 if (sbinfo->max_inodes) {
4257 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4258 ispace += simple_xattr_space(xattr->name,
4259 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
4260 }
4261 if (ispace) {
4262 raw_spin_lock(&sbinfo->stat_lock);
4263 if (sbinfo->free_ispace < ispace)
4264 ispace = 0;
4265 else
4266 sbinfo->free_ispace -= ispace;
4267 raw_spin_unlock(&sbinfo->stat_lock);
4268 if (!ispace)
4269 return -ENOSPC;
4270 }
4271 }
4272
4273 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
4274 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
4275 if (!new_xattr)
4276 break;
4277
4278 len = strlen(xattr->name) + 1;
4279 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
4280 GFP_KERNEL_ACCOUNT);
4281 if (!new_xattr->name) {
4282 kvfree(new_xattr);
4283 break;
4284 }
4285
4286 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
4287 XATTR_SECURITY_PREFIX_LEN);
4288 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
4289 xattr->name, len);
4290
4291 simple_xattr_add(&info->xattrs, new_xattr);
4292 }
4293
4294 if (xattr->name != NULL) {
4295 if (ispace) {
4296 raw_spin_lock(&sbinfo->stat_lock);
4297 sbinfo->free_ispace += ispace;
4298 raw_spin_unlock(&sbinfo->stat_lock);
4299 }
4300 simple_xattrs_free(&info->xattrs, NULL);
4301 return -ENOMEM;
4302 }
4303
4304 return 0;
4305 }
4306
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)4307 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
4308 struct dentry *unused, struct inode *inode,
4309 const char *name, void *buffer, size_t size)
4310 {
4311 struct shmem_inode_info *info = SHMEM_I(inode);
4312
4313 name = xattr_full_name(handler, name);
4314 return simple_xattr_get(&info->xattrs, name, buffer, size);
4315 }
4316
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)4317 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
4318 struct mnt_idmap *idmap,
4319 struct dentry *unused, struct inode *inode,
4320 const char *name, const void *value,
4321 size_t size, int flags)
4322 {
4323 struct shmem_inode_info *info = SHMEM_I(inode);
4324 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4325 struct simple_xattr *old_xattr;
4326 size_t ispace = 0;
4327
4328 name = xattr_full_name(handler, name);
4329 if (value && sbinfo->max_inodes) {
4330 ispace = simple_xattr_space(name, size);
4331 raw_spin_lock(&sbinfo->stat_lock);
4332 if (sbinfo->free_ispace < ispace)
4333 ispace = 0;
4334 else
4335 sbinfo->free_ispace -= ispace;
4336 raw_spin_unlock(&sbinfo->stat_lock);
4337 if (!ispace)
4338 return -ENOSPC;
4339 }
4340
4341 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
4342 if (!IS_ERR(old_xattr)) {
4343 ispace = 0;
4344 if (old_xattr && sbinfo->max_inodes)
4345 ispace = simple_xattr_space(old_xattr->name,
4346 old_xattr->size);
4347 simple_xattr_free(old_xattr);
4348 old_xattr = NULL;
4349 inode_set_ctime_current(inode);
4350 inode_inc_iversion(inode);
4351 }
4352 if (ispace) {
4353 raw_spin_lock(&sbinfo->stat_lock);
4354 sbinfo->free_ispace += ispace;
4355 raw_spin_unlock(&sbinfo->stat_lock);
4356 }
4357 return PTR_ERR(old_xattr);
4358 }
4359
4360 static const struct xattr_handler shmem_security_xattr_handler = {
4361 .prefix = XATTR_SECURITY_PREFIX,
4362 .get = shmem_xattr_handler_get,
4363 .set = shmem_xattr_handler_set,
4364 };
4365
4366 static const struct xattr_handler shmem_trusted_xattr_handler = {
4367 .prefix = XATTR_TRUSTED_PREFIX,
4368 .get = shmem_xattr_handler_get,
4369 .set = shmem_xattr_handler_set,
4370 };
4371
4372 static const struct xattr_handler shmem_user_xattr_handler = {
4373 .prefix = XATTR_USER_PREFIX,
4374 .get = shmem_xattr_handler_get,
4375 .set = shmem_xattr_handler_set,
4376 };
4377
4378 static const struct xattr_handler * const shmem_xattr_handlers[] = {
4379 &shmem_security_xattr_handler,
4380 &shmem_trusted_xattr_handler,
4381 &shmem_user_xattr_handler,
4382 NULL
4383 };
4384
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)4385 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
4386 {
4387 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
4388 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
4389 }
4390 #endif /* CONFIG_TMPFS_XATTR */
4391
4392 static const struct inode_operations shmem_short_symlink_operations = {
4393 .getattr = shmem_getattr,
4394 .setattr = shmem_setattr,
4395 .get_link = simple_get_link,
4396 #ifdef CONFIG_TMPFS_XATTR
4397 .listxattr = shmem_listxattr,
4398 #endif
4399 };
4400
4401 static const struct inode_operations shmem_symlink_inode_operations = {
4402 .getattr = shmem_getattr,
4403 .setattr = shmem_setattr,
4404 .get_link = shmem_get_link,
4405 #ifdef CONFIG_TMPFS_XATTR
4406 .listxattr = shmem_listxattr,
4407 #endif
4408 };
4409
shmem_get_parent(struct dentry * child)4410 static struct dentry *shmem_get_parent(struct dentry *child)
4411 {
4412 return ERR_PTR(-ESTALE);
4413 }
4414
shmem_match(struct inode * ino,void * vfh)4415 static int shmem_match(struct inode *ino, void *vfh)
4416 {
4417 __u32 *fh = vfh;
4418 __u64 inum = fh[2];
4419 inum = (inum << 32) | fh[1];
4420 return ino->i_ino == inum && fh[0] == ino->i_generation;
4421 }
4422
4423 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)4424 static struct dentry *shmem_find_alias(struct inode *inode)
4425 {
4426 struct dentry *alias = d_find_alias(inode);
4427
4428 return alias ?: d_find_any_alias(inode);
4429 }
4430
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)4431 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
4432 struct fid *fid, int fh_len, int fh_type)
4433 {
4434 struct inode *inode;
4435 struct dentry *dentry = NULL;
4436 u64 inum;
4437
4438 if (fh_len < 3)
4439 return NULL;
4440
4441 inum = fid->raw[2];
4442 inum = (inum << 32) | fid->raw[1];
4443
4444 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
4445 shmem_match, fid->raw);
4446 if (inode) {
4447 dentry = shmem_find_alias(inode);
4448 iput(inode);
4449 }
4450
4451 return dentry;
4452 }
4453
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)4454 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
4455 struct inode *parent)
4456 {
4457 if (*len < 3) {
4458 *len = 3;
4459 return FILEID_INVALID;
4460 }
4461
4462 if (inode_unhashed(inode)) {
4463 /* Unfortunately insert_inode_hash is not idempotent,
4464 * so as we hash inodes here rather than at creation
4465 * time, we need a lock to ensure we only try
4466 * to do it once
4467 */
4468 static DEFINE_SPINLOCK(lock);
4469 spin_lock(&lock);
4470 if (inode_unhashed(inode))
4471 __insert_inode_hash(inode,
4472 inode->i_ino + inode->i_generation);
4473 spin_unlock(&lock);
4474 }
4475
4476 fh[0] = inode->i_generation;
4477 fh[1] = inode->i_ino;
4478 fh[2] = ((__u64)inode->i_ino) >> 32;
4479
4480 *len = 3;
4481 return 1;
4482 }
4483
4484 static const struct export_operations shmem_export_ops = {
4485 .get_parent = shmem_get_parent,
4486 .encode_fh = shmem_encode_fh,
4487 .fh_to_dentry = shmem_fh_to_dentry,
4488 };
4489
4490 enum shmem_param {
4491 Opt_gid,
4492 Opt_huge,
4493 Opt_mode,
4494 Opt_mpol,
4495 Opt_nr_blocks,
4496 Opt_nr_inodes,
4497 Opt_size,
4498 Opt_uid,
4499 Opt_inode32,
4500 Opt_inode64,
4501 Opt_noswap,
4502 Opt_quota,
4503 Opt_usrquota,
4504 Opt_grpquota,
4505 Opt_usrquota_block_hardlimit,
4506 Opt_usrquota_inode_hardlimit,
4507 Opt_grpquota_block_hardlimit,
4508 Opt_grpquota_inode_hardlimit,
4509 Opt_casefold_version,
4510 Opt_casefold,
4511 Opt_strict_encoding,
4512 };
4513
4514 static const struct constant_table shmem_param_enums_huge[] = {
4515 {"never", SHMEM_HUGE_NEVER },
4516 {"always", SHMEM_HUGE_ALWAYS },
4517 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
4518 {"advise", SHMEM_HUGE_ADVISE },
4519 {}
4520 };
4521
4522 const struct fs_parameter_spec shmem_fs_parameters[] = {
4523 fsparam_gid ("gid", Opt_gid),
4524 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
4525 fsparam_u32oct("mode", Opt_mode),
4526 fsparam_string("mpol", Opt_mpol),
4527 fsparam_string("nr_blocks", Opt_nr_blocks),
4528 fsparam_string("nr_inodes", Opt_nr_inodes),
4529 fsparam_string("size", Opt_size),
4530 fsparam_uid ("uid", Opt_uid),
4531 fsparam_flag ("inode32", Opt_inode32),
4532 fsparam_flag ("inode64", Opt_inode64),
4533 fsparam_flag ("noswap", Opt_noswap),
4534 #ifdef CONFIG_TMPFS_QUOTA
4535 fsparam_flag ("quota", Opt_quota),
4536 fsparam_flag ("usrquota", Opt_usrquota),
4537 fsparam_flag ("grpquota", Opt_grpquota),
4538 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
4539 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
4540 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
4541 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
4542 #endif
4543 fsparam_string("casefold", Opt_casefold_version),
4544 fsparam_flag ("casefold", Opt_casefold),
4545 fsparam_flag ("strict_encoding", Opt_strict_encoding),
4546 {}
4547 };
4548
4549 #if IS_ENABLED(CONFIG_UNICODE)
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4550 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4551 bool latest_version)
4552 {
4553 struct shmem_options *ctx = fc->fs_private;
4554 int version = UTF8_LATEST;
4555 struct unicode_map *encoding;
4556 char *version_str = param->string + 5;
4557
4558 if (!latest_version) {
4559 if (strncmp(param->string, "utf8-", 5))
4560 return invalfc(fc, "Only UTF-8 encodings are supported "
4561 "in the format: utf8-<version number>");
4562
4563 version = utf8_parse_version(version_str);
4564 if (version < 0)
4565 return invalfc(fc, "Invalid UTF-8 version: %s", version_str);
4566 }
4567
4568 encoding = utf8_load(version);
4569
4570 if (IS_ERR(encoding)) {
4571 return invalfc(fc, "Failed loading UTF-8 version: utf8-%u.%u.%u\n",
4572 unicode_major(version), unicode_minor(version),
4573 unicode_rev(version));
4574 }
4575
4576 pr_info("tmpfs: Using encoding : utf8-%u.%u.%u\n",
4577 unicode_major(version), unicode_minor(version), unicode_rev(version));
4578
4579 ctx->encoding = encoding;
4580
4581 return 0;
4582 }
4583 #else
shmem_parse_opt_casefold(struct fs_context * fc,struct fs_parameter * param,bool latest_version)4584 static int shmem_parse_opt_casefold(struct fs_context *fc, struct fs_parameter *param,
4585 bool latest_version)
4586 {
4587 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4588 }
4589 #endif
4590
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)4591 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
4592 {
4593 struct shmem_options *ctx = fc->fs_private;
4594 struct fs_parse_result result;
4595 unsigned long long size;
4596 char *rest;
4597 int opt;
4598 kuid_t kuid;
4599 kgid_t kgid;
4600
4601 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
4602 if (opt < 0)
4603 return opt;
4604
4605 switch (opt) {
4606 case Opt_size:
4607 size = memparse(param->string, &rest);
4608 if (*rest == '%') {
4609 size <<= PAGE_SHIFT;
4610 size *= totalram_pages();
4611 do_div(size, 100);
4612 rest++;
4613 }
4614 if (*rest)
4615 goto bad_value;
4616 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
4617 ctx->seen |= SHMEM_SEEN_BLOCKS;
4618 break;
4619 case Opt_nr_blocks:
4620 ctx->blocks = memparse(param->string, &rest);
4621 if (*rest || ctx->blocks > LONG_MAX)
4622 goto bad_value;
4623 ctx->seen |= SHMEM_SEEN_BLOCKS;
4624 break;
4625 case Opt_nr_inodes:
4626 ctx->inodes = memparse(param->string, &rest);
4627 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
4628 goto bad_value;
4629 ctx->seen |= SHMEM_SEEN_INODES;
4630 break;
4631 case Opt_mode:
4632 ctx->mode = result.uint_32 & 07777;
4633 break;
4634 case Opt_uid:
4635 kuid = result.uid;
4636
4637 /*
4638 * The requested uid must be representable in the
4639 * filesystem's idmapping.
4640 */
4641 if (!kuid_has_mapping(fc->user_ns, kuid))
4642 goto bad_value;
4643
4644 ctx->uid = kuid;
4645 break;
4646 case Opt_gid:
4647 kgid = result.gid;
4648
4649 /*
4650 * The requested gid must be representable in the
4651 * filesystem's idmapping.
4652 */
4653 if (!kgid_has_mapping(fc->user_ns, kgid))
4654 goto bad_value;
4655
4656 ctx->gid = kgid;
4657 break;
4658 case Opt_huge:
4659 ctx->huge = result.uint_32;
4660 if (ctx->huge != SHMEM_HUGE_NEVER &&
4661 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
4662 has_transparent_hugepage()))
4663 goto unsupported_parameter;
4664 ctx->seen |= SHMEM_SEEN_HUGE;
4665 break;
4666 case Opt_mpol:
4667 if (IS_ENABLED(CONFIG_NUMA)) {
4668 mpol_put(ctx->mpol);
4669 ctx->mpol = NULL;
4670 if (mpol_parse_str(param->string, &ctx->mpol))
4671 goto bad_value;
4672 break;
4673 }
4674 goto unsupported_parameter;
4675 case Opt_inode32:
4676 ctx->full_inums = false;
4677 ctx->seen |= SHMEM_SEEN_INUMS;
4678 break;
4679 case Opt_inode64:
4680 if (sizeof(ino_t) < 8) {
4681 return invalfc(fc,
4682 "Cannot use inode64 with <64bit inums in kernel\n");
4683 }
4684 ctx->full_inums = true;
4685 ctx->seen |= SHMEM_SEEN_INUMS;
4686 break;
4687 case Opt_noswap:
4688 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4689 return invalfc(fc,
4690 "Turning off swap in unprivileged tmpfs mounts unsupported");
4691 }
4692 ctx->noswap = true;
4693 ctx->seen |= SHMEM_SEEN_NOSWAP;
4694 break;
4695 case Opt_quota:
4696 if (fc->user_ns != &init_user_ns)
4697 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4698 ctx->seen |= SHMEM_SEEN_QUOTA;
4699 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4700 break;
4701 case Opt_usrquota:
4702 if (fc->user_ns != &init_user_ns)
4703 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4704 ctx->seen |= SHMEM_SEEN_QUOTA;
4705 ctx->quota_types |= QTYPE_MASK_USR;
4706 break;
4707 case Opt_grpquota:
4708 if (fc->user_ns != &init_user_ns)
4709 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4710 ctx->seen |= SHMEM_SEEN_QUOTA;
4711 ctx->quota_types |= QTYPE_MASK_GRP;
4712 break;
4713 case Opt_usrquota_block_hardlimit:
4714 size = memparse(param->string, &rest);
4715 if (*rest || !size)
4716 goto bad_value;
4717 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4718 return invalfc(fc,
4719 "User quota block hardlimit too large.");
4720 ctx->qlimits.usrquota_bhardlimit = size;
4721 break;
4722 case Opt_grpquota_block_hardlimit:
4723 size = memparse(param->string, &rest);
4724 if (*rest || !size)
4725 goto bad_value;
4726 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4727 return invalfc(fc,
4728 "Group quota block hardlimit too large.");
4729 ctx->qlimits.grpquota_bhardlimit = size;
4730 break;
4731 case Opt_usrquota_inode_hardlimit:
4732 size = memparse(param->string, &rest);
4733 if (*rest || !size)
4734 goto bad_value;
4735 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4736 return invalfc(fc,
4737 "User quota inode hardlimit too large.");
4738 ctx->qlimits.usrquota_ihardlimit = size;
4739 break;
4740 case Opt_grpquota_inode_hardlimit:
4741 size = memparse(param->string, &rest);
4742 if (*rest || !size)
4743 goto bad_value;
4744 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4745 return invalfc(fc,
4746 "Group quota inode hardlimit too large.");
4747 ctx->qlimits.grpquota_ihardlimit = size;
4748 break;
4749 case Opt_casefold_version:
4750 return shmem_parse_opt_casefold(fc, param, false);
4751 case Opt_casefold:
4752 return shmem_parse_opt_casefold(fc, param, true);
4753 case Opt_strict_encoding:
4754 #if IS_ENABLED(CONFIG_UNICODE)
4755 ctx->strict_encoding = true;
4756 break;
4757 #else
4758 return invalfc(fc, "tmpfs: Kernel not built with CONFIG_UNICODE\n");
4759 #endif
4760 }
4761 return 0;
4762
4763 unsupported_parameter:
4764 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4765 bad_value:
4766 return invalfc(fc, "Bad value for '%s'", param->key);
4767 }
4768
shmem_next_opt(char ** s)4769 static char *shmem_next_opt(char **s)
4770 {
4771 char *sbegin = *s;
4772 char *p;
4773
4774 if (sbegin == NULL)
4775 return NULL;
4776
4777 /*
4778 * NUL-terminate this option: unfortunately,
4779 * mount options form a comma-separated list,
4780 * but mpol's nodelist may also contain commas.
4781 */
4782 for (;;) {
4783 p = strchr(*s, ',');
4784 if (p == NULL)
4785 break;
4786 *s = p + 1;
4787 if (!isdigit(*(p+1))) {
4788 *p = '\0';
4789 return sbegin;
4790 }
4791 }
4792
4793 *s = NULL;
4794 return sbegin;
4795 }
4796
shmem_parse_monolithic(struct fs_context * fc,void * data)4797 static int shmem_parse_monolithic(struct fs_context *fc, void *data)
4798 {
4799 return vfs_parse_monolithic_sep(fc, data, shmem_next_opt);
4800 }
4801
4802 /*
4803 * Reconfigure a shmem filesystem.
4804 */
shmem_reconfigure(struct fs_context * fc)4805 static int shmem_reconfigure(struct fs_context *fc)
4806 {
4807 struct shmem_options *ctx = fc->fs_private;
4808 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4809 unsigned long used_isp;
4810 struct mempolicy *mpol = NULL;
4811 const char *err;
4812
4813 raw_spin_lock(&sbinfo->stat_lock);
4814 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4815
4816 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4817 if (!sbinfo->max_blocks) {
4818 err = "Cannot retroactively limit size";
4819 goto out;
4820 }
4821 if (percpu_counter_compare(&sbinfo->used_blocks,
4822 ctx->blocks) > 0) {
4823 err = "Too small a size for current use";
4824 goto out;
4825 }
4826 }
4827 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4828 if (!sbinfo->max_inodes) {
4829 err = "Cannot retroactively limit inodes";
4830 goto out;
4831 }
4832 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4833 err = "Too few inodes for current use";
4834 goto out;
4835 }
4836 }
4837
4838 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4839 sbinfo->next_ino > UINT_MAX) {
4840 err = "Current inum too high to switch to 32-bit inums";
4841 goto out;
4842 }
4843 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4844 err = "Cannot disable swap on remount";
4845 goto out;
4846 }
4847 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4848 err = "Cannot enable swap on remount if it was disabled on first mount";
4849 goto out;
4850 }
4851
4852 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4853 !sb_any_quota_loaded(fc->root->d_sb)) {
4854 err = "Cannot enable quota on remount";
4855 goto out;
4856 }
4857
4858 #ifdef CONFIG_TMPFS_QUOTA
4859 #define CHANGED_LIMIT(name) \
4860 (ctx->qlimits.name## hardlimit && \
4861 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4862
4863 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4864 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4865 err = "Cannot change global quota limit on remount";
4866 goto out;
4867 }
4868 #endif /* CONFIG_TMPFS_QUOTA */
4869
4870 if (ctx->seen & SHMEM_SEEN_HUGE)
4871 sbinfo->huge = ctx->huge;
4872 if (ctx->seen & SHMEM_SEEN_INUMS)
4873 sbinfo->full_inums = ctx->full_inums;
4874 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4875 sbinfo->max_blocks = ctx->blocks;
4876 if (ctx->seen & SHMEM_SEEN_INODES) {
4877 sbinfo->max_inodes = ctx->inodes;
4878 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4879 }
4880
4881 /*
4882 * Preserve previous mempolicy unless mpol remount option was specified.
4883 */
4884 if (ctx->mpol) {
4885 mpol = sbinfo->mpol;
4886 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4887 ctx->mpol = NULL;
4888 }
4889
4890 if (ctx->noswap)
4891 sbinfo->noswap = true;
4892
4893 raw_spin_unlock(&sbinfo->stat_lock);
4894 mpol_put(mpol);
4895 return 0;
4896 out:
4897 raw_spin_unlock(&sbinfo->stat_lock);
4898 return invalfc(fc, "%s", err);
4899 }
4900
shmem_show_options(struct seq_file * seq,struct dentry * root)4901 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4902 {
4903 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4904 struct mempolicy *mpol;
4905
4906 if (sbinfo->max_blocks != shmem_default_max_blocks())
4907 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4908 if (sbinfo->max_inodes != shmem_default_max_inodes())
4909 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4910 if (sbinfo->mode != (0777 | S_ISVTX))
4911 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4912 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4913 seq_printf(seq, ",uid=%u",
4914 from_kuid_munged(&init_user_ns, sbinfo->uid));
4915 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4916 seq_printf(seq, ",gid=%u",
4917 from_kgid_munged(&init_user_ns, sbinfo->gid));
4918
4919 /*
4920 * Showing inode{64,32} might be useful even if it's the system default,
4921 * since then people don't have to resort to checking both here and
4922 * /proc/config.gz to confirm 64-bit inums were successfully applied
4923 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4924 *
4925 * We hide it when inode64 isn't the default and we are using 32-bit
4926 * inodes, since that probably just means the feature isn't even under
4927 * consideration.
4928 *
4929 * As such:
4930 *
4931 * +-----------------+-----------------+
4932 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4933 * +------------------+-----------------+-----------------+
4934 * | full_inums=true | show | show |
4935 * | full_inums=false | show | hide |
4936 * +------------------+-----------------+-----------------+
4937 *
4938 */
4939 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4940 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4942 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4943 if (sbinfo->huge)
4944 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4945 #endif
4946 mpol = shmem_get_sbmpol(sbinfo);
4947 shmem_show_mpol(seq, mpol);
4948 mpol_put(mpol);
4949 if (sbinfo->noswap)
4950 seq_printf(seq, ",noswap");
4951 #ifdef CONFIG_TMPFS_QUOTA
4952 if (sb_has_quota_active(root->d_sb, USRQUOTA))
4953 seq_printf(seq, ",usrquota");
4954 if (sb_has_quota_active(root->d_sb, GRPQUOTA))
4955 seq_printf(seq, ",grpquota");
4956 if (sbinfo->qlimits.usrquota_bhardlimit)
4957 seq_printf(seq, ",usrquota_block_hardlimit=%lld",
4958 sbinfo->qlimits.usrquota_bhardlimit);
4959 if (sbinfo->qlimits.grpquota_bhardlimit)
4960 seq_printf(seq, ",grpquota_block_hardlimit=%lld",
4961 sbinfo->qlimits.grpquota_bhardlimit);
4962 if (sbinfo->qlimits.usrquota_ihardlimit)
4963 seq_printf(seq, ",usrquota_inode_hardlimit=%lld",
4964 sbinfo->qlimits.usrquota_ihardlimit);
4965 if (sbinfo->qlimits.grpquota_ihardlimit)
4966 seq_printf(seq, ",grpquota_inode_hardlimit=%lld",
4967 sbinfo->qlimits.grpquota_ihardlimit);
4968 #endif
4969 return 0;
4970 }
4971
4972 #endif /* CONFIG_TMPFS */
4973
shmem_put_super(struct super_block * sb)4974 static void shmem_put_super(struct super_block *sb)
4975 {
4976 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4977
4978 #if IS_ENABLED(CONFIG_UNICODE)
4979 if (sb->s_encoding)
4980 utf8_unload(sb->s_encoding);
4981 #endif
4982
4983 #ifdef CONFIG_TMPFS_QUOTA
4984 shmem_disable_quotas(sb);
4985 #endif
4986 free_percpu(sbinfo->ino_batch);
4987 percpu_counter_destroy(&sbinfo->used_blocks);
4988 mpol_put(sbinfo->mpol);
4989 kfree(sbinfo);
4990 sb->s_fs_info = NULL;
4991 }
4992
4993 #if IS_ENABLED(CONFIG_UNICODE) && defined(CONFIG_TMPFS)
4994 static const struct dentry_operations shmem_ci_dentry_ops = {
4995 .d_hash = generic_ci_d_hash,
4996 .d_compare = generic_ci_d_compare,
4997 .d_delete = always_delete_dentry,
4998 };
4999 #endif
5000
shmem_fill_super(struct super_block * sb,struct fs_context * fc)5001 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
5002 {
5003 struct shmem_options *ctx = fc->fs_private;
5004 struct inode *inode;
5005 struct shmem_sb_info *sbinfo;
5006 int error = -ENOMEM;
5007
5008 /* Round up to L1_CACHE_BYTES to resist false sharing */
5009 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
5010 L1_CACHE_BYTES), GFP_KERNEL);
5011 if (!sbinfo)
5012 return error;
5013
5014 sb->s_fs_info = sbinfo;
5015
5016 #ifdef CONFIG_TMPFS
5017 /*
5018 * Per default we only allow half of the physical ram per
5019 * tmpfs instance, limiting inodes to one per page of lowmem;
5020 * but the internal instance is left unlimited.
5021 */
5022 if (!(sb->s_flags & SB_KERNMOUNT)) {
5023 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
5024 ctx->blocks = shmem_default_max_blocks();
5025 if (!(ctx->seen & SHMEM_SEEN_INODES))
5026 ctx->inodes = shmem_default_max_inodes();
5027 if (!(ctx->seen & SHMEM_SEEN_INUMS))
5028 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
5029 sbinfo->noswap = ctx->noswap;
5030 } else {
5031 sb->s_flags |= SB_NOUSER;
5032 }
5033 sb->s_export_op = &shmem_export_ops;
5034 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
5035
5036 #if IS_ENABLED(CONFIG_UNICODE)
5037 if (!ctx->encoding && ctx->strict_encoding) {
5038 pr_err("tmpfs: strict_encoding option without encoding is forbidden\n");
5039 error = -EINVAL;
5040 goto failed;
5041 }
5042
5043 if (ctx->encoding) {
5044 sb->s_encoding = ctx->encoding;
5045 sb->s_d_op = &shmem_ci_dentry_ops;
5046 if (ctx->strict_encoding)
5047 sb->s_encoding_flags = SB_ENC_STRICT_MODE_FL;
5048 }
5049 #endif
5050
5051 #else
5052 sb->s_flags |= SB_NOUSER;
5053 #endif /* CONFIG_TMPFS */
5054 sbinfo->max_blocks = ctx->blocks;
5055 sbinfo->max_inodes = ctx->inodes;
5056 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
5057 if (sb->s_flags & SB_KERNMOUNT) {
5058 sbinfo->ino_batch = alloc_percpu(ino_t);
5059 if (!sbinfo->ino_batch)
5060 goto failed;
5061 }
5062 sbinfo->uid = ctx->uid;
5063 sbinfo->gid = ctx->gid;
5064 sbinfo->full_inums = ctx->full_inums;
5065 sbinfo->mode = ctx->mode;
5066 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5067 if (ctx->seen & SHMEM_SEEN_HUGE)
5068 sbinfo->huge = ctx->huge;
5069 else
5070 sbinfo->huge = tmpfs_huge;
5071 #endif
5072 sbinfo->mpol = ctx->mpol;
5073 ctx->mpol = NULL;
5074
5075 raw_spin_lock_init(&sbinfo->stat_lock);
5076 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
5077 goto failed;
5078 spin_lock_init(&sbinfo->shrinklist_lock);
5079 INIT_LIST_HEAD(&sbinfo->shrinklist);
5080
5081 sb->s_maxbytes = MAX_LFS_FILESIZE;
5082 sb->s_blocksize = PAGE_SIZE;
5083 sb->s_blocksize_bits = PAGE_SHIFT;
5084 sb->s_magic = TMPFS_MAGIC;
5085 sb->s_op = &shmem_ops;
5086 sb->s_time_gran = 1;
5087 #ifdef CONFIG_TMPFS_XATTR
5088 sb->s_xattr = shmem_xattr_handlers;
5089 #endif
5090 #ifdef CONFIG_TMPFS_POSIX_ACL
5091 sb->s_flags |= SB_POSIXACL;
5092 #endif
5093 uuid_t uuid;
5094 uuid_gen(&uuid);
5095 super_set_uuid(sb, uuid.b, sizeof(uuid));
5096
5097 #ifdef CONFIG_TMPFS_QUOTA
5098 if (ctx->seen & SHMEM_SEEN_QUOTA) {
5099 sb->dq_op = &shmem_quota_operations;
5100 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5101 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
5102
5103 /* Copy the default limits from ctx into sbinfo */
5104 memcpy(&sbinfo->qlimits, &ctx->qlimits,
5105 sizeof(struct shmem_quota_limits));
5106
5107 if (shmem_enable_quotas(sb, ctx->quota_types))
5108 goto failed;
5109 }
5110 #endif /* CONFIG_TMPFS_QUOTA */
5111
5112 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL,
5113 S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
5114 if (IS_ERR(inode)) {
5115 error = PTR_ERR(inode);
5116 goto failed;
5117 }
5118 inode->i_uid = sbinfo->uid;
5119 inode->i_gid = sbinfo->gid;
5120 sb->s_root = d_make_root(inode);
5121 if (!sb->s_root)
5122 goto failed;
5123 return 0;
5124
5125 failed:
5126 shmem_put_super(sb);
5127 return error;
5128 }
5129
shmem_get_tree(struct fs_context * fc)5130 static int shmem_get_tree(struct fs_context *fc)
5131 {
5132 return get_tree_nodev(fc, shmem_fill_super);
5133 }
5134
shmem_free_fc(struct fs_context * fc)5135 static void shmem_free_fc(struct fs_context *fc)
5136 {
5137 struct shmem_options *ctx = fc->fs_private;
5138
5139 if (ctx) {
5140 mpol_put(ctx->mpol);
5141 kfree(ctx);
5142 }
5143 }
5144
5145 static const struct fs_context_operations shmem_fs_context_ops = {
5146 .free = shmem_free_fc,
5147 .get_tree = shmem_get_tree,
5148 #ifdef CONFIG_TMPFS
5149 .parse_monolithic = shmem_parse_monolithic,
5150 .parse_param = shmem_parse_one,
5151 .reconfigure = shmem_reconfigure,
5152 #endif
5153 };
5154
5155 static struct kmem_cache *shmem_inode_cachep __ro_after_init;
5156
shmem_alloc_inode(struct super_block * sb)5157 static struct inode *shmem_alloc_inode(struct super_block *sb)
5158 {
5159 struct shmem_inode_info *info;
5160 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
5161 if (!info)
5162 return NULL;
5163 return &info->vfs_inode;
5164 }
5165
shmem_free_in_core_inode(struct inode * inode)5166 static void shmem_free_in_core_inode(struct inode *inode)
5167 {
5168 if (S_ISLNK(inode->i_mode))
5169 kfree(inode->i_link);
5170 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
5171 }
5172
shmem_destroy_inode(struct inode * inode)5173 static void shmem_destroy_inode(struct inode *inode)
5174 {
5175 if (S_ISREG(inode->i_mode))
5176 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
5177 if (S_ISDIR(inode->i_mode))
5178 simple_offset_destroy(shmem_get_offset_ctx(inode));
5179 }
5180
shmem_init_inode(void * foo)5181 static void shmem_init_inode(void *foo)
5182 {
5183 struct shmem_inode_info *info = foo;
5184 inode_init_once(&info->vfs_inode);
5185 }
5186
shmem_init_inodecache(void)5187 static void __init shmem_init_inodecache(void)
5188 {
5189 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
5190 sizeof(struct shmem_inode_info),
5191 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
5192 }
5193
shmem_destroy_inodecache(void)5194 static void __init shmem_destroy_inodecache(void)
5195 {
5196 kmem_cache_destroy(shmem_inode_cachep);
5197 }
5198
5199 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_folio(struct address_space * mapping,struct folio * folio)5200 static int shmem_error_remove_folio(struct address_space *mapping,
5201 struct folio *folio)
5202 {
5203 return 0;
5204 }
5205
5206 static const struct address_space_operations shmem_aops = {
5207 .writepage = shmem_writepage,
5208 .dirty_folio = noop_dirty_folio,
5209 #ifdef CONFIG_TMPFS
5210 .write_begin = shmem_write_begin,
5211 .write_end = shmem_write_end,
5212 #endif
5213 #ifdef CONFIG_MIGRATION
5214 .migrate_folio = migrate_folio,
5215 #endif
5216 .error_remove_folio = shmem_error_remove_folio,
5217 };
5218
5219 static const struct file_operations shmem_file_operations = {
5220 .mmap = shmem_mmap,
5221 .open = shmem_file_open,
5222 .get_unmapped_area = shmem_get_unmapped_area,
5223 #ifdef CONFIG_TMPFS
5224 .llseek = shmem_file_llseek,
5225 .read_iter = shmem_file_read_iter,
5226 .write_iter = shmem_file_write_iter,
5227 .fsync = noop_fsync,
5228 .splice_read = shmem_file_splice_read,
5229 .splice_write = iter_file_splice_write,
5230 .fallocate = shmem_fallocate,
5231 #endif
5232 };
5233
5234 static const struct inode_operations shmem_inode_operations = {
5235 .getattr = shmem_getattr,
5236 .setattr = shmem_setattr,
5237 #ifdef CONFIG_TMPFS_XATTR
5238 .listxattr = shmem_listxattr,
5239 .set_acl = simple_set_acl,
5240 .fileattr_get = shmem_fileattr_get,
5241 .fileattr_set = shmem_fileattr_set,
5242 #endif
5243 };
5244
5245 static const struct inode_operations shmem_dir_inode_operations = {
5246 #ifdef CONFIG_TMPFS
5247 .getattr = shmem_getattr,
5248 .create = shmem_create,
5249 .lookup = simple_lookup,
5250 .link = shmem_link,
5251 .unlink = shmem_unlink,
5252 .symlink = shmem_symlink,
5253 .mkdir = shmem_mkdir,
5254 .rmdir = shmem_rmdir,
5255 .mknod = shmem_mknod,
5256 .rename = shmem_rename2,
5257 .tmpfile = shmem_tmpfile,
5258 .get_offset_ctx = shmem_get_offset_ctx,
5259 #endif
5260 #ifdef CONFIG_TMPFS_XATTR
5261 .listxattr = shmem_listxattr,
5262 .fileattr_get = shmem_fileattr_get,
5263 .fileattr_set = shmem_fileattr_set,
5264 #endif
5265 #ifdef CONFIG_TMPFS_POSIX_ACL
5266 .setattr = shmem_setattr,
5267 .set_acl = simple_set_acl,
5268 #endif
5269 };
5270
5271 static const struct inode_operations shmem_special_inode_operations = {
5272 .getattr = shmem_getattr,
5273 #ifdef CONFIG_TMPFS_XATTR
5274 .listxattr = shmem_listxattr,
5275 #endif
5276 #ifdef CONFIG_TMPFS_POSIX_ACL
5277 .setattr = shmem_setattr,
5278 .set_acl = simple_set_acl,
5279 #endif
5280 };
5281
5282 static const struct super_operations shmem_ops = {
5283 .alloc_inode = shmem_alloc_inode,
5284 .free_inode = shmem_free_in_core_inode,
5285 .destroy_inode = shmem_destroy_inode,
5286 #ifdef CONFIG_TMPFS
5287 .statfs = shmem_statfs,
5288 .show_options = shmem_show_options,
5289 #endif
5290 #ifdef CONFIG_TMPFS_QUOTA
5291 .get_dquots = shmem_get_dquots,
5292 #endif
5293 .evict_inode = shmem_evict_inode,
5294 .drop_inode = generic_delete_inode,
5295 .put_super = shmem_put_super,
5296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5297 .nr_cached_objects = shmem_unused_huge_count,
5298 .free_cached_objects = shmem_unused_huge_scan,
5299 #endif
5300 };
5301
5302 static const struct vm_operations_struct shmem_vm_ops = {
5303 .fault = shmem_fault,
5304 .map_pages = filemap_map_pages,
5305 #ifdef CONFIG_NUMA
5306 .set_policy = shmem_set_policy,
5307 .get_policy = shmem_get_policy,
5308 #endif
5309 };
5310
5311 static const struct vm_operations_struct shmem_anon_vm_ops = {
5312 .fault = shmem_fault,
5313 .map_pages = filemap_map_pages,
5314 #ifdef CONFIG_NUMA
5315 .set_policy = shmem_set_policy,
5316 .get_policy = shmem_get_policy,
5317 #endif
5318 };
5319
shmem_init_fs_context(struct fs_context * fc)5320 int shmem_init_fs_context(struct fs_context *fc)
5321 {
5322 struct shmem_options *ctx;
5323
5324 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
5325 if (!ctx)
5326 return -ENOMEM;
5327
5328 ctx->mode = 0777 | S_ISVTX;
5329 ctx->uid = current_fsuid();
5330 ctx->gid = current_fsgid();
5331
5332 #if IS_ENABLED(CONFIG_UNICODE)
5333 ctx->encoding = NULL;
5334 #endif
5335
5336 fc->fs_private = ctx;
5337 fc->ops = &shmem_fs_context_ops;
5338 return 0;
5339 }
5340
5341 static struct file_system_type shmem_fs_type = {
5342 .owner = THIS_MODULE,
5343 .name = "tmpfs",
5344 .init_fs_context = shmem_init_fs_context,
5345 #ifdef CONFIG_TMPFS
5346 .parameters = shmem_fs_parameters,
5347 #endif
5348 .kill_sb = kill_litter_super,
5349 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP | FS_MGTIME,
5350 };
5351
5352 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5353
5354 #define __INIT_KOBJ_ATTR(_name, _mode, _show, _store) \
5355 { \
5356 .attr = { .name = __stringify(_name), .mode = _mode }, \
5357 .show = _show, \
5358 .store = _store, \
5359 }
5360
5361 #define TMPFS_ATTR_W(_name, _store) \
5362 static struct kobj_attribute tmpfs_attr_##_name = \
5363 __INIT_KOBJ_ATTR(_name, 0200, NULL, _store)
5364
5365 #define TMPFS_ATTR_RW(_name, _show, _store) \
5366 static struct kobj_attribute tmpfs_attr_##_name = \
5367 __INIT_KOBJ_ATTR(_name, 0644, _show, _store)
5368
5369 #define TMPFS_ATTR_RO(_name, _show) \
5370 static struct kobj_attribute tmpfs_attr_##_name = \
5371 __INIT_KOBJ_ATTR(_name, 0444, _show, NULL)
5372
5373 #if IS_ENABLED(CONFIG_UNICODE)
casefold_show(struct kobject * kobj,struct kobj_attribute * a,char * buf)5374 static ssize_t casefold_show(struct kobject *kobj, struct kobj_attribute *a,
5375 char *buf)
5376 {
5377 return sysfs_emit(buf, "supported\n");
5378 }
5379 TMPFS_ATTR_RO(casefold, casefold_show);
5380 #endif
5381
5382 static struct attribute *tmpfs_attributes[] = {
5383 #if IS_ENABLED(CONFIG_UNICODE)
5384 &tmpfs_attr_casefold.attr,
5385 #endif
5386 NULL
5387 };
5388
5389 static const struct attribute_group tmpfs_attribute_group = {
5390 .attrs = tmpfs_attributes,
5391 .name = "features"
5392 };
5393
5394 static struct kobject *tmpfs_kobj;
5395
tmpfs_sysfs_init(void)5396 static int __init tmpfs_sysfs_init(void)
5397 {
5398 int ret;
5399
5400 tmpfs_kobj = kobject_create_and_add("tmpfs", fs_kobj);
5401 if (!tmpfs_kobj)
5402 return -ENOMEM;
5403
5404 ret = sysfs_create_group(tmpfs_kobj, &tmpfs_attribute_group);
5405 if (ret)
5406 kobject_put(tmpfs_kobj);
5407
5408 return ret;
5409 }
5410 #endif /* CONFIG_SYSFS && CONFIG_TMPFS */
5411
shmem_init(void)5412 void __init shmem_init(void)
5413 {
5414 int error;
5415
5416 shmem_init_inodecache();
5417
5418 #ifdef CONFIG_TMPFS_QUOTA
5419 register_quota_format(&shmem_quota_format);
5420 #endif
5421
5422 error = register_filesystem(&shmem_fs_type);
5423 if (error) {
5424 pr_err("Could not register tmpfs\n");
5425 goto out2;
5426 }
5427
5428 shm_mnt = kern_mount(&shmem_fs_type);
5429 if (IS_ERR(shm_mnt)) {
5430 error = PTR_ERR(shm_mnt);
5431 pr_err("Could not kern_mount tmpfs\n");
5432 goto out1;
5433 }
5434
5435 #if defined(CONFIG_SYSFS) && defined(CONFIG_TMPFS)
5436 error = tmpfs_sysfs_init();
5437 if (error) {
5438 pr_err("Could not init tmpfs sysfs\n");
5439 goto out1;
5440 }
5441 #endif
5442
5443 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5444 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
5445 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5446 else
5447 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
5448
5449 /*
5450 * Default to setting PMD-sized THP to inherit the global setting and
5451 * disable all other multi-size THPs.
5452 */
5453 if (!shmem_orders_configured)
5454 huge_shmem_orders_inherit = BIT(HPAGE_PMD_ORDER);
5455 #endif
5456 return;
5457
5458 out1:
5459 unregister_filesystem(&shmem_fs_type);
5460 out2:
5461 #ifdef CONFIG_TMPFS_QUOTA
5462 unregister_quota_format(&shmem_quota_format);
5463 #endif
5464 shmem_destroy_inodecache();
5465 shm_mnt = ERR_PTR(error);
5466 }
5467
5468 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5469 static ssize_t shmem_enabled_show(struct kobject *kobj,
5470 struct kobj_attribute *attr, char *buf)
5471 {
5472 static const int values[] = {
5473 SHMEM_HUGE_ALWAYS,
5474 SHMEM_HUGE_WITHIN_SIZE,
5475 SHMEM_HUGE_ADVISE,
5476 SHMEM_HUGE_NEVER,
5477 SHMEM_HUGE_DENY,
5478 SHMEM_HUGE_FORCE,
5479 };
5480 int len = 0;
5481 int i;
5482
5483 for (i = 0; i < ARRAY_SIZE(values); i++) {
5484 len += sysfs_emit_at(buf, len,
5485 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
5486 i ? " " : "", shmem_format_huge(values[i]));
5487 }
5488 len += sysfs_emit_at(buf, len, "\n");
5489
5490 return len;
5491 }
5492
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5493 static ssize_t shmem_enabled_store(struct kobject *kobj,
5494 struct kobj_attribute *attr, const char *buf, size_t count)
5495 {
5496 char tmp[16];
5497 int huge, err;
5498
5499 if (count + 1 > sizeof(tmp))
5500 return -EINVAL;
5501 memcpy(tmp, buf, count);
5502 tmp[count] = '\0';
5503 if (count && tmp[count - 1] == '\n')
5504 tmp[count - 1] = '\0';
5505
5506 huge = shmem_parse_huge(tmp);
5507 if (huge == -EINVAL)
5508 return huge;
5509
5510 shmem_huge = huge;
5511 if (shmem_huge > SHMEM_HUGE_DENY)
5512 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
5513
5514 err = start_stop_khugepaged();
5515 return err ? err : count;
5516 }
5517
5518 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
5519 static DEFINE_SPINLOCK(huge_shmem_orders_lock);
5520
thpsize_shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)5521 static ssize_t thpsize_shmem_enabled_show(struct kobject *kobj,
5522 struct kobj_attribute *attr, char *buf)
5523 {
5524 int order = to_thpsize(kobj)->order;
5525 const char *output;
5526
5527 if (test_bit(order, &huge_shmem_orders_always))
5528 output = "[always] inherit within_size advise never";
5529 else if (test_bit(order, &huge_shmem_orders_inherit))
5530 output = "always [inherit] within_size advise never";
5531 else if (test_bit(order, &huge_shmem_orders_within_size))
5532 output = "always inherit [within_size] advise never";
5533 else if (test_bit(order, &huge_shmem_orders_madvise))
5534 output = "always inherit within_size [advise] never";
5535 else
5536 output = "always inherit within_size advise [never]";
5537
5538 return sysfs_emit(buf, "%s\n", output);
5539 }
5540
thpsize_shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)5541 static ssize_t thpsize_shmem_enabled_store(struct kobject *kobj,
5542 struct kobj_attribute *attr,
5543 const char *buf, size_t count)
5544 {
5545 int order = to_thpsize(kobj)->order;
5546 ssize_t ret = count;
5547
5548 if (sysfs_streq(buf, "always")) {
5549 spin_lock(&huge_shmem_orders_lock);
5550 clear_bit(order, &huge_shmem_orders_inherit);
5551 clear_bit(order, &huge_shmem_orders_madvise);
5552 clear_bit(order, &huge_shmem_orders_within_size);
5553 set_bit(order, &huge_shmem_orders_always);
5554 spin_unlock(&huge_shmem_orders_lock);
5555 } else if (sysfs_streq(buf, "inherit")) {
5556 /* Do not override huge allocation policy with non-PMD sized mTHP */
5557 if (shmem_huge == SHMEM_HUGE_FORCE &&
5558 order != HPAGE_PMD_ORDER)
5559 return -EINVAL;
5560
5561 spin_lock(&huge_shmem_orders_lock);
5562 clear_bit(order, &huge_shmem_orders_always);
5563 clear_bit(order, &huge_shmem_orders_madvise);
5564 clear_bit(order, &huge_shmem_orders_within_size);
5565 set_bit(order, &huge_shmem_orders_inherit);
5566 spin_unlock(&huge_shmem_orders_lock);
5567 } else if (sysfs_streq(buf, "within_size")) {
5568 spin_lock(&huge_shmem_orders_lock);
5569 clear_bit(order, &huge_shmem_orders_always);
5570 clear_bit(order, &huge_shmem_orders_inherit);
5571 clear_bit(order, &huge_shmem_orders_madvise);
5572 set_bit(order, &huge_shmem_orders_within_size);
5573 spin_unlock(&huge_shmem_orders_lock);
5574 } else if (sysfs_streq(buf, "advise")) {
5575 spin_lock(&huge_shmem_orders_lock);
5576 clear_bit(order, &huge_shmem_orders_always);
5577 clear_bit(order, &huge_shmem_orders_inherit);
5578 clear_bit(order, &huge_shmem_orders_within_size);
5579 set_bit(order, &huge_shmem_orders_madvise);
5580 spin_unlock(&huge_shmem_orders_lock);
5581 } else if (sysfs_streq(buf, "never")) {
5582 spin_lock(&huge_shmem_orders_lock);
5583 clear_bit(order, &huge_shmem_orders_always);
5584 clear_bit(order, &huge_shmem_orders_inherit);
5585 clear_bit(order, &huge_shmem_orders_within_size);
5586 clear_bit(order, &huge_shmem_orders_madvise);
5587 spin_unlock(&huge_shmem_orders_lock);
5588 } else {
5589 ret = -EINVAL;
5590 }
5591
5592 if (ret > 0) {
5593 int err = start_stop_khugepaged();
5594
5595 if (err)
5596 ret = err;
5597 }
5598 return ret;
5599 }
5600
5601 struct kobj_attribute thpsize_shmem_enabled_attr =
5602 __ATTR(shmem_enabled, 0644, thpsize_shmem_enabled_show, thpsize_shmem_enabled_store);
5603 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
5604
5605 #if defined(CONFIG_TRANSPARENT_HUGEPAGE)
5606
setup_transparent_hugepage_shmem(char * str)5607 static int __init setup_transparent_hugepage_shmem(char *str)
5608 {
5609 int huge;
5610
5611 huge = shmem_parse_huge(str);
5612 if (huge == -EINVAL) {
5613 pr_warn("transparent_hugepage_shmem= cannot parse, ignored\n");
5614 return huge;
5615 }
5616
5617 shmem_huge = huge;
5618 return 1;
5619 }
5620 __setup("transparent_hugepage_shmem=", setup_transparent_hugepage_shmem);
5621
setup_transparent_hugepage_tmpfs(char * str)5622 static int __init setup_transparent_hugepage_tmpfs(char *str)
5623 {
5624 int huge;
5625
5626 huge = shmem_parse_huge(str);
5627 if (huge < 0) {
5628 pr_warn("transparent_hugepage_tmpfs= cannot parse, ignored\n");
5629 return huge;
5630 }
5631
5632 tmpfs_huge = huge;
5633 return 1;
5634 }
5635 __setup("transparent_hugepage_tmpfs=", setup_transparent_hugepage_tmpfs);
5636
5637 static char str_dup[PAGE_SIZE] __initdata;
setup_thp_shmem(char * str)5638 static int __init setup_thp_shmem(char *str)
5639 {
5640 char *token, *range, *policy, *subtoken;
5641 unsigned long always, inherit, madvise, within_size;
5642 char *start_size, *end_size;
5643 int start, end, nr;
5644 char *p;
5645
5646 if (!str || strlen(str) + 1 > PAGE_SIZE)
5647 goto err;
5648 strscpy(str_dup, str);
5649
5650 always = huge_shmem_orders_always;
5651 inherit = huge_shmem_orders_inherit;
5652 madvise = huge_shmem_orders_madvise;
5653 within_size = huge_shmem_orders_within_size;
5654 p = str_dup;
5655 while ((token = strsep(&p, ";")) != NULL) {
5656 range = strsep(&token, ":");
5657 policy = token;
5658
5659 if (!policy)
5660 goto err;
5661
5662 while ((subtoken = strsep(&range, ",")) != NULL) {
5663 if (strchr(subtoken, '-')) {
5664 start_size = strsep(&subtoken, "-");
5665 end_size = subtoken;
5666
5667 start = get_order_from_str(start_size,
5668 THP_ORDERS_ALL_FILE_DEFAULT);
5669 end = get_order_from_str(end_size,
5670 THP_ORDERS_ALL_FILE_DEFAULT);
5671 } else {
5672 start_size = end_size = subtoken;
5673 start = end = get_order_from_str(subtoken,
5674 THP_ORDERS_ALL_FILE_DEFAULT);
5675 }
5676
5677 if (start == -EINVAL) {
5678 pr_err("invalid size %s in thp_shmem boot parameter\n",
5679 start_size);
5680 goto err;
5681 }
5682
5683 if (end == -EINVAL) {
5684 pr_err("invalid size %s in thp_shmem boot parameter\n",
5685 end_size);
5686 goto err;
5687 }
5688
5689 if (start < 0 || end < 0 || start > end)
5690 goto err;
5691
5692 nr = end - start + 1;
5693 if (!strcmp(policy, "always")) {
5694 bitmap_set(&always, start, nr);
5695 bitmap_clear(&inherit, start, nr);
5696 bitmap_clear(&madvise, start, nr);
5697 bitmap_clear(&within_size, start, nr);
5698 } else if (!strcmp(policy, "advise")) {
5699 bitmap_set(&madvise, start, nr);
5700 bitmap_clear(&inherit, start, nr);
5701 bitmap_clear(&always, start, nr);
5702 bitmap_clear(&within_size, start, nr);
5703 } else if (!strcmp(policy, "inherit")) {
5704 bitmap_set(&inherit, start, nr);
5705 bitmap_clear(&madvise, start, nr);
5706 bitmap_clear(&always, start, nr);
5707 bitmap_clear(&within_size, start, nr);
5708 } else if (!strcmp(policy, "within_size")) {
5709 bitmap_set(&within_size, start, nr);
5710 bitmap_clear(&inherit, start, nr);
5711 bitmap_clear(&madvise, start, nr);
5712 bitmap_clear(&always, start, nr);
5713 } else if (!strcmp(policy, "never")) {
5714 bitmap_clear(&inherit, start, nr);
5715 bitmap_clear(&madvise, start, nr);
5716 bitmap_clear(&always, start, nr);
5717 bitmap_clear(&within_size, start, nr);
5718 } else {
5719 pr_err("invalid policy %s in thp_shmem boot parameter\n", policy);
5720 goto err;
5721 }
5722 }
5723 }
5724
5725 huge_shmem_orders_always = always;
5726 huge_shmem_orders_madvise = madvise;
5727 huge_shmem_orders_inherit = inherit;
5728 huge_shmem_orders_within_size = within_size;
5729 shmem_orders_configured = true;
5730 return 1;
5731
5732 err:
5733 pr_warn("thp_shmem=%s: error parsing string, ignoring setting\n", str);
5734 return 0;
5735 }
5736 __setup("thp_shmem=", setup_thp_shmem);
5737
5738 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5739
5740 #else /* !CONFIG_SHMEM */
5741
5742 /*
5743 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
5744 *
5745 * This is intended for small system where the benefits of the full
5746 * shmem code (swap-backed and resource-limited) are outweighed by
5747 * their complexity. On systems without swap this code should be
5748 * effectively equivalent, but much lighter weight.
5749 */
5750
5751 static struct file_system_type shmem_fs_type = {
5752 .name = "tmpfs",
5753 .init_fs_context = ramfs_init_fs_context,
5754 .parameters = ramfs_fs_parameters,
5755 .kill_sb = ramfs_kill_sb,
5756 .fs_flags = FS_USERNS_MOUNT,
5757 };
5758
shmem_init(void)5759 void __init shmem_init(void)
5760 {
5761 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
5762
5763 shm_mnt = kern_mount(&shmem_fs_type);
5764 BUG_ON(IS_ERR(shm_mnt));
5765 }
5766
shmem_unuse(unsigned int type)5767 int shmem_unuse(unsigned int type)
5768 {
5769 return 0;
5770 }
5771
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)5772 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
5773 {
5774 return 0;
5775 }
5776
shmem_unlock_mapping(struct address_space * mapping)5777 void shmem_unlock_mapping(struct address_space *mapping)
5778 {
5779 }
5780
5781 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)5782 unsigned long shmem_get_unmapped_area(struct file *file,
5783 unsigned long addr, unsigned long len,
5784 unsigned long pgoff, unsigned long flags)
5785 {
5786 return mm_get_unmapped_area(current->mm, file, addr, len, pgoff, flags);
5787 }
5788 #endif
5789
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)5790 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
5791 {
5792 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
5793 }
5794 EXPORT_SYMBOL_GPL(shmem_truncate_range);
5795
5796 #define shmem_vm_ops generic_file_vm_ops
5797 #define shmem_anon_vm_ops generic_file_vm_ops
5798 #define shmem_file_operations ramfs_file_operations
5799 #define shmem_acct_size(flags, size) 0
5800 #define shmem_unacct_size(flags, size) do {} while (0)
5801
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)5802 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
5803 struct super_block *sb, struct inode *dir,
5804 umode_t mode, dev_t dev, unsigned long flags)
5805 {
5806 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
5807 return inode ? inode : ERR_PTR(-ENOSPC);
5808 }
5809
5810 #endif /* CONFIG_SHMEM */
5811
5812 /* common code */
5813
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)5814 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name,
5815 loff_t size, unsigned long flags, unsigned int i_flags)
5816 {
5817 struct inode *inode;
5818 struct file *res;
5819
5820 if (IS_ERR(mnt))
5821 return ERR_CAST(mnt);
5822
5823 if (size < 0 || size > MAX_LFS_FILESIZE)
5824 return ERR_PTR(-EINVAL);
5825
5826 if (shmem_acct_size(flags, size))
5827 return ERR_PTR(-ENOMEM);
5828
5829 if (is_idmapped_mnt(mnt))
5830 return ERR_PTR(-EINVAL);
5831
5832 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
5833 S_IFREG | S_IRWXUGO, 0, flags);
5834 if (IS_ERR(inode)) {
5835 shmem_unacct_size(flags, size);
5836 return ERR_CAST(inode);
5837 }
5838 inode->i_flags |= i_flags;
5839 inode->i_size = size;
5840 clear_nlink(inode); /* It is unlinked */
5841 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
5842 if (!IS_ERR(res))
5843 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
5844 &shmem_file_operations);
5845 if (IS_ERR(res))
5846 iput(inode);
5847 return res;
5848 }
5849
5850 /**
5851 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
5852 * kernel internal. There will be NO LSM permission checks against the
5853 * underlying inode. So users of this interface must do LSM checks at a
5854 * higher layer. The users are the big_key and shm implementations. LSM
5855 * checks are provided at the key or shm level rather than the inode.
5856 * @name: name for dentry (to be seen in /proc/<pid>/maps
5857 * @size: size to be set for the file
5858 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5859 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)5860 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
5861 {
5862 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
5863 }
5864 EXPORT_SYMBOL_GPL(shmem_kernel_file_setup);
5865
5866 /**
5867 * shmem_file_setup - get an unlinked file living in tmpfs
5868 * @name: name for dentry (to be seen in /proc/<pid>/maps
5869 * @size: size to be set for the file
5870 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5871 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)5872 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
5873 {
5874 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
5875 }
5876 EXPORT_SYMBOL_GPL(shmem_file_setup);
5877
5878 /**
5879 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
5880 * @mnt: the tmpfs mount where the file will be created
5881 * @name: name for dentry (to be seen in /proc/<pid>/maps
5882 * @size: size to be set for the file
5883 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
5884 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)5885 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
5886 loff_t size, unsigned long flags)
5887 {
5888 return __shmem_file_setup(mnt, name, size, flags, 0);
5889 }
5890 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
5891
5892 /**
5893 * shmem_zero_setup - setup a shared anonymous mapping
5894 * @vma: the vma to be mmapped is prepared by do_mmap
5895 */
shmem_zero_setup(struct vm_area_struct * vma)5896 int shmem_zero_setup(struct vm_area_struct *vma)
5897 {
5898 struct file *file;
5899 loff_t size = vma->vm_end - vma->vm_start;
5900
5901 /*
5902 * Cloning a new file under mmap_lock leads to a lock ordering conflict
5903 * between XFS directory reading and selinux: since this file is only
5904 * accessible to the user through its mapping, use S_PRIVATE flag to
5905 * bypass file security, in the same way as shmem_kernel_file_setup().
5906 */
5907 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
5908 if (IS_ERR(file))
5909 return PTR_ERR(file);
5910
5911 if (vma->vm_file)
5912 fput(vma->vm_file);
5913 vma->vm_file = file;
5914 vma->vm_ops = &shmem_anon_vm_ops;
5915
5916 return 0;
5917 }
5918
5919 /**
5920 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
5921 * @mapping: the folio's address_space
5922 * @index: the folio index
5923 * @gfp: the page allocator flags to use if allocating
5924 *
5925 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
5926 * with any new page allocations done using the specified allocation flags.
5927 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
5928 * suit tmpfs, since it may have pages in swapcache, and needs to find those
5929 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
5930 *
5931 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
5932 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
5933 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5934 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
5935 pgoff_t index, gfp_t gfp)
5936 {
5937 #ifdef CONFIG_SHMEM
5938 struct inode *inode = mapping->host;
5939 struct folio *folio;
5940 int error;
5941
5942 error = shmem_get_folio_gfp(inode, index, 0, &folio, SGP_CACHE,
5943 gfp, NULL, NULL);
5944 if (error)
5945 return ERR_PTR(error);
5946
5947 folio_unlock(folio);
5948 return folio;
5949 #else
5950 /*
5951 * The tiny !SHMEM case uses ramfs without swap
5952 */
5953 return mapping_read_folio_gfp(mapping, index, gfp);
5954 #endif
5955 }
5956 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
5957
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)5958 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
5959 pgoff_t index, gfp_t gfp)
5960 {
5961 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
5962 struct page *page;
5963
5964 if (IS_ERR(folio))
5965 return &folio->page;
5966
5967 page = folio_file_page(folio, index);
5968 if (PageHWPoison(page)) {
5969 folio_put(folio);
5970 return ERR_PTR(-EIO);
5971 }
5972
5973 return page;
5974 }
5975 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
5976