xref: /linux/lib/crypto/sha1.c (revision 9ddfabcc1ed884ef47bcca317e77596c797bef83)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SHA-1 and HMAC-SHA1 library functions
4  */
5 
6 #include <crypto/hmac.h>
7 #include <crypto/sha1.h>
8 #include <linux/bitops.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/string.h>
13 #include <linux/unaligned.h>
14 #include <linux/wordpart.h>
15 #include "fips.h"
16 
17 static const struct sha1_block_state sha1_iv = {
18 	.h = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
19 };
20 
21 /*
22  * If you have 32 registers or more, the compiler can (and should)
23  * try to change the array[] accesses into registers. However, on
24  * machines with less than ~25 registers, that won't really work,
25  * and at least gcc will make an unholy mess of it.
26  *
27  * So to avoid that mess which just slows things down, we force
28  * the stores to memory to actually happen (we might be better off
29  * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
30  * suggested by Artur Skawina - that will also make gcc unable to
31  * try to do the silly "optimize away loads" part because it won't
32  * see what the value will be).
33  *
34  * Ben Herrenschmidt reports that on PPC, the C version comes close
35  * to the optimized asm with this (ie on PPC you don't want that
36  * 'volatile', since there are lots of registers).
37  *
38  * On ARM we get the best code generation by forcing a full memory barrier
39  * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
40  * the stack frame size simply explode and performance goes down the drain.
41  */
42 
43 #ifdef CONFIG_X86
44   #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
45 #elif defined(CONFIG_ARM)
46   #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
47 #else
48   #define setW(x, val) (W(x) = (val))
49 #endif
50 
51 /* This "rolls" over the 512-bit array */
52 #define W(x) (workspace[(x)&15])
53 
54 /*
55  * Where do we get the source from? The first 16 iterations get it from
56  * the input data, the next mix it from the 512-bit array.
57  */
58 #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
59 #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
60 
61 #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
62 	__u32 TEMP = input(t); setW(t, TEMP); \
63 	E += TEMP + rol32(A,5) + (fn) + (constant); \
64 	B = ror32(B, 2); \
65 	TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
66 
67 #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
68 #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
69 #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
70 #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
71 #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
72 
73 #define SHA1_WORKSPACE_WORDS 16
74 
75 static void sha1_block_generic(struct sha1_block_state *state,
76 			       const u8 data[SHA1_BLOCK_SIZE],
77 			       u32 workspace[SHA1_WORKSPACE_WORDS])
78 {
79 	__u32 A, B, C, D, E;
80 	unsigned int i = 0;
81 
82 	A = state->h[0];
83 	B = state->h[1];
84 	C = state->h[2];
85 	D = state->h[3];
86 	E = state->h[4];
87 
88 	/* Round 1 - iterations 0-16 take their input from 'data' */
89 	for (; i < 16; ++i)
90 		T_0_15(i, A, B, C, D, E);
91 
92 	/* Round 1 - tail. Input from 512-bit mixing array */
93 	for (; i < 20; ++i)
94 		T_16_19(i, A, B, C, D, E);
95 
96 	/* Round 2 */
97 	for (; i < 40; ++i)
98 		T_20_39(i, A, B, C, D, E);
99 
100 	/* Round 3 */
101 	for (; i < 60; ++i)
102 		T_40_59(i, A, B, C, D, E);
103 
104 	/* Round 4 */
105 	for (; i < 80; ++i)
106 		T_60_79(i, A, B, C, D, E);
107 
108 	state->h[0] += A;
109 	state->h[1] += B;
110 	state->h[2] += C;
111 	state->h[3] += D;
112 	state->h[4] += E;
113 }
114 
115 static void __maybe_unused sha1_blocks_generic(struct sha1_block_state *state,
116 					       const u8 *data, size_t nblocks)
117 {
118 	u32 workspace[SHA1_WORKSPACE_WORDS];
119 
120 	do {
121 		sha1_block_generic(state, data, workspace);
122 		data += SHA1_BLOCK_SIZE;
123 	} while (--nblocks);
124 
125 	memzero_explicit(workspace, sizeof(workspace));
126 }
127 
128 #ifdef CONFIG_CRYPTO_LIB_SHA1_ARCH
129 #include "sha1.h" /* $(SRCARCH)/sha1.h */
130 #else
131 #define sha1_blocks sha1_blocks_generic
132 #endif
133 
134 void sha1_init(struct sha1_ctx *ctx)
135 {
136 	ctx->state = sha1_iv;
137 	ctx->bytecount = 0;
138 }
139 EXPORT_SYMBOL_GPL(sha1_init);
140 
141 void sha1_update(struct sha1_ctx *ctx, const u8 *data, size_t len)
142 {
143 	size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
144 
145 	ctx->bytecount += len;
146 
147 	if (partial + len >= SHA1_BLOCK_SIZE) {
148 		size_t nblocks;
149 
150 		if (partial) {
151 			size_t l = SHA1_BLOCK_SIZE - partial;
152 
153 			memcpy(&ctx->buf[partial], data, l);
154 			data += l;
155 			len -= l;
156 
157 			sha1_blocks(&ctx->state, ctx->buf, 1);
158 		}
159 
160 		nblocks = len / SHA1_BLOCK_SIZE;
161 		len %= SHA1_BLOCK_SIZE;
162 
163 		if (nblocks) {
164 			sha1_blocks(&ctx->state, data, nblocks);
165 			data += nblocks * SHA1_BLOCK_SIZE;
166 		}
167 		partial = 0;
168 	}
169 	if (len)
170 		memcpy(&ctx->buf[partial], data, len);
171 }
172 EXPORT_SYMBOL_GPL(sha1_update);
173 
174 static void __sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
175 {
176 	u64 bitcount = ctx->bytecount << 3;
177 	size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
178 
179 	ctx->buf[partial++] = 0x80;
180 	if (partial > SHA1_BLOCK_SIZE - 8) {
181 		memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - partial);
182 		sha1_blocks(&ctx->state, ctx->buf, 1);
183 		partial = 0;
184 	}
185 	memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - 8 - partial);
186 	*(__be64 *)&ctx->buf[SHA1_BLOCK_SIZE - 8] = cpu_to_be64(bitcount);
187 	sha1_blocks(&ctx->state, ctx->buf, 1);
188 
189 	for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
190 		put_unaligned_be32(ctx->state.h[i / 4], out + i);
191 }
192 
193 void sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
194 {
195 	__sha1_final(ctx, out);
196 	memzero_explicit(ctx, sizeof(*ctx));
197 }
198 EXPORT_SYMBOL_GPL(sha1_final);
199 
200 void sha1(const u8 *data, size_t len, u8 out[SHA1_DIGEST_SIZE])
201 {
202 	struct sha1_ctx ctx;
203 
204 	sha1_init(&ctx);
205 	sha1_update(&ctx, data, len);
206 	sha1_final(&ctx, out);
207 }
208 EXPORT_SYMBOL_GPL(sha1);
209 
210 static void __hmac_sha1_preparekey(struct sha1_block_state *istate,
211 				   struct sha1_block_state *ostate,
212 				   const u8 *raw_key, size_t raw_key_len)
213 {
214 	union {
215 		u8 b[SHA1_BLOCK_SIZE];
216 		unsigned long w[SHA1_BLOCK_SIZE / sizeof(unsigned long)];
217 	} derived_key = { 0 };
218 
219 	if (unlikely(raw_key_len > SHA1_BLOCK_SIZE))
220 		sha1(raw_key, raw_key_len, derived_key.b);
221 	else
222 		memcpy(derived_key.b, raw_key, raw_key_len);
223 
224 	for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
225 		derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE);
226 	*istate = sha1_iv;
227 	sha1_blocks(istate, derived_key.b, 1);
228 
229 	for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
230 		derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^
231 						HMAC_IPAD_VALUE);
232 	*ostate = sha1_iv;
233 	sha1_blocks(ostate, derived_key.b, 1);
234 
235 	memzero_explicit(&derived_key, sizeof(derived_key));
236 }
237 
238 void hmac_sha1_preparekey(struct hmac_sha1_key *key,
239 			  const u8 *raw_key, size_t raw_key_len)
240 {
241 	__hmac_sha1_preparekey(&key->istate, &key->ostate,
242 			       raw_key, raw_key_len);
243 }
244 EXPORT_SYMBOL_GPL(hmac_sha1_preparekey);
245 
246 void hmac_sha1_init(struct hmac_sha1_ctx *ctx, const struct hmac_sha1_key *key)
247 {
248 	ctx->sha_ctx.state = key->istate;
249 	ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
250 	ctx->ostate = key->ostate;
251 }
252 EXPORT_SYMBOL_GPL(hmac_sha1_init);
253 
254 void hmac_sha1_init_usingrawkey(struct hmac_sha1_ctx *ctx,
255 				const u8 *raw_key, size_t raw_key_len)
256 {
257 	__hmac_sha1_preparekey(&ctx->sha_ctx.state, &ctx->ostate,
258 			       raw_key, raw_key_len);
259 	ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
260 }
261 EXPORT_SYMBOL_GPL(hmac_sha1_init_usingrawkey);
262 
263 void hmac_sha1_final(struct hmac_sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
264 {
265 	/* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */
266 	__sha1_final(&ctx->sha_ctx, ctx->sha_ctx.buf);
267 	memset(&ctx->sha_ctx.buf[SHA1_DIGEST_SIZE], 0,
268 	       SHA1_BLOCK_SIZE - SHA1_DIGEST_SIZE);
269 	ctx->sha_ctx.buf[SHA1_DIGEST_SIZE] = 0x80;
270 	*(__be32 *)&ctx->sha_ctx.buf[SHA1_BLOCK_SIZE - 4] =
271 		cpu_to_be32(8 * (SHA1_BLOCK_SIZE + SHA1_DIGEST_SIZE));
272 
273 	/* Compute the outer hash, which gives the HMAC value. */
274 	sha1_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1);
275 	for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
276 		put_unaligned_be32(ctx->ostate.h[i / 4], out + i);
277 
278 	memzero_explicit(ctx, sizeof(*ctx));
279 }
280 EXPORT_SYMBOL_GPL(hmac_sha1_final);
281 
282 void hmac_sha1(const struct hmac_sha1_key *key,
283 	       const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE])
284 {
285 	struct hmac_sha1_ctx ctx;
286 
287 	hmac_sha1_init(&ctx, key);
288 	hmac_sha1_update(&ctx, data, data_len);
289 	hmac_sha1_final(&ctx, out);
290 }
291 EXPORT_SYMBOL_GPL(hmac_sha1);
292 
293 void hmac_sha1_usingrawkey(const u8 *raw_key, size_t raw_key_len,
294 			   const u8 *data, size_t data_len,
295 			   u8 out[SHA1_DIGEST_SIZE])
296 {
297 	struct hmac_sha1_ctx ctx;
298 
299 	hmac_sha1_init_usingrawkey(&ctx, raw_key, raw_key_len);
300 	hmac_sha1_update(&ctx, data, data_len);
301 	hmac_sha1_final(&ctx, out);
302 }
303 EXPORT_SYMBOL_GPL(hmac_sha1_usingrawkey);
304 
305 #if defined(sha1_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS)
306 static int __init sha1_mod_init(void)
307 {
308 #ifdef sha1_mod_init_arch
309 	sha1_mod_init_arch();
310 #endif
311 	if (fips_enabled) {
312 		/*
313 		 * FIPS cryptographic algorithm self-test.  As per the FIPS
314 		 * Implementation Guidance, testing HMAC-SHA1 satisfies the test
315 		 * requirement for SHA-1 too.
316 		 */
317 		u8 mac[SHA1_DIGEST_SIZE];
318 
319 		hmac_sha1_usingrawkey(fips_test_key, sizeof(fips_test_key),
320 				      fips_test_data, sizeof(fips_test_data),
321 				      mac);
322 		if (memcmp(fips_test_hmac_sha1_value, mac, sizeof(mac)) != 0)
323 			panic("sha1: FIPS self-test failed\n");
324 	}
325 	return 0;
326 }
327 subsys_initcall(sha1_mod_init);
328 
329 static void __exit sha1_mod_exit(void)
330 {
331 }
332 module_exit(sha1_mod_exit);
333 #endif
334 
335 MODULE_DESCRIPTION("SHA-1 and HMAC-SHA1 library functions");
336 MODULE_LICENSE("GPL");
337