1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kvm_types.h>
12 #include <linux/kvm_host.h>
13 #include <linux/kernel.h>
14 #include <linux/highmem.h>
15 #include <linux/psp.h>
16 #include <linux/psp-sev.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/misc_cgroup.h>
20 #include <linux/processor.h>
21 #include <linux/trace_events.h>
22 #include <uapi/linux/sev-guest.h>
23
24 #include <asm/pkru.h>
25 #include <asm/trapnr.h>
26 #include <asm/fpu/xcr.h>
27 #include <asm/fpu/xstate.h>
28 #include <asm/debugreg.h>
29 #include <asm/msr.h>
30 #include <asm/sev.h>
31
32 #include "mmu.h"
33 #include "x86.h"
34 #include "svm.h"
35 #include "svm_ops.h"
36 #include "cpuid.h"
37 #include "trace.h"
38
39 #define GHCB_VERSION_MAX 2ULL
40 #define GHCB_VERSION_MIN 1ULL
41
42 #define GHCB_HV_FT_SUPPORTED (GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)
43
44 /* enable/disable SEV support */
45 static bool sev_enabled = true;
46 module_param_named(sev, sev_enabled, bool, 0444);
47
48 /* enable/disable SEV-ES support */
49 static bool sev_es_enabled = true;
50 module_param_named(sev_es, sev_es_enabled, bool, 0444);
51
52 /* enable/disable SEV-SNP support */
53 static bool sev_snp_enabled = true;
54 module_param_named(sev_snp, sev_snp_enabled, bool, 0444);
55
56 /* enable/disable SEV-ES DebugSwap support */
57 static bool sev_es_debug_swap_enabled = true;
58 module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
59 static u64 sev_supported_vmsa_features;
60
61 static unsigned int nr_ciphertext_hiding_asids;
62 module_param_named(ciphertext_hiding_asids, nr_ciphertext_hiding_asids, uint, 0444);
63
64 #define AP_RESET_HOLD_NONE 0
65 #define AP_RESET_HOLD_NAE_EVENT 1
66 #define AP_RESET_HOLD_MSR_PROTO 2
67
68 /*
69 * SEV-SNP policy bits that can be supported by KVM. These include policy bits
70 * that have implementation support within KVM or policy bits that do not
71 * require implementation support within KVM to enforce the policy.
72 */
73 #define KVM_SNP_POLICY_MASK_VALID (SNP_POLICY_MASK_API_MINOR | \
74 SNP_POLICY_MASK_API_MAJOR | \
75 SNP_POLICY_MASK_SMT | \
76 SNP_POLICY_MASK_RSVD_MBO | \
77 SNP_POLICY_MASK_DEBUG | \
78 SNP_POLICY_MASK_SINGLE_SOCKET | \
79 SNP_POLICY_MASK_CXL_ALLOW | \
80 SNP_POLICY_MASK_MEM_AES_256_XTS | \
81 SNP_POLICY_MASK_RAPL_DIS | \
82 SNP_POLICY_MASK_CIPHERTEXT_HIDING_DRAM | \
83 SNP_POLICY_MASK_PAGE_SWAP_DISABLE)
84
85 static u64 snp_supported_policy_bits __ro_after_init;
86
87 #define INITIAL_VMSA_GPA 0xFFFFFFFFF000
88
89 static u8 sev_enc_bit;
90 static DECLARE_RWSEM(sev_deactivate_lock);
91 static DEFINE_MUTEX(sev_bitmap_lock);
92 unsigned int max_sev_asid;
93 static unsigned int min_sev_asid;
94 static unsigned int max_sev_es_asid;
95 static unsigned int min_sev_es_asid;
96 static unsigned int max_snp_asid;
97 static unsigned int min_snp_asid;
98 static unsigned long sev_me_mask;
99 static unsigned int nr_asids;
100 static unsigned long *sev_asid_bitmap;
101 static unsigned long *sev_reclaim_asid_bitmap;
102
103 static int snp_decommission_context(struct kvm *kvm);
104
105 struct enc_region {
106 struct list_head list;
107 unsigned long npages;
108 struct page **pages;
109 unsigned long uaddr;
110 unsigned long size;
111 };
112
113 /* Called with the sev_bitmap_lock held, or on shutdown */
sev_flush_asids(unsigned int min_asid,unsigned int max_asid)114 static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
115 {
116 int ret, error = 0;
117 unsigned int asid;
118
119 /* Check if there are any ASIDs to reclaim before performing a flush */
120 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
121 if (asid > max_asid)
122 return -EBUSY;
123
124 /*
125 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
126 * so it must be guarded.
127 */
128 down_write(&sev_deactivate_lock);
129
130 /* SNP firmware requires use of WBINVD for ASID recycling. */
131 wbinvd_on_all_cpus();
132
133 if (sev_snp_enabled)
134 ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
135 else
136 ret = sev_guest_df_flush(&error);
137
138 up_write(&sev_deactivate_lock);
139
140 if (ret)
141 pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
142 sev_snp_enabled ? "-SNP" : "", ret, error);
143
144 return ret;
145 }
146
is_mirroring_enc_context(struct kvm * kvm)147 static inline bool is_mirroring_enc_context(struct kvm *kvm)
148 {
149 return !!to_kvm_sev_info(kvm)->enc_context_owner;
150 }
151
sev_vcpu_has_debug_swap(struct vcpu_svm * svm)152 static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
153 {
154 struct kvm_vcpu *vcpu = &svm->vcpu;
155 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
156
157 return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
158 }
159
snp_is_secure_tsc_enabled(struct kvm * kvm)160 static bool snp_is_secure_tsc_enabled(struct kvm *kvm)
161 {
162 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
163
164 return (sev->vmsa_features & SVM_SEV_FEAT_SECURE_TSC) &&
165 !WARN_ON_ONCE(!sev_snp_guest(kvm));
166 }
167
168 /* Must be called with the sev_bitmap_lock held */
__sev_recycle_asids(unsigned int min_asid,unsigned int max_asid)169 static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
170 {
171 if (sev_flush_asids(min_asid, max_asid))
172 return false;
173
174 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
175 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
176 nr_asids);
177 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
178
179 return true;
180 }
181
sev_misc_cg_try_charge(struct kvm_sev_info * sev)182 static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
183 {
184 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
185 return misc_cg_try_charge(type, sev->misc_cg, 1);
186 }
187
sev_misc_cg_uncharge(struct kvm_sev_info * sev)188 static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
189 {
190 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
191 misc_cg_uncharge(type, sev->misc_cg, 1);
192 }
193
sev_asid_new(struct kvm_sev_info * sev,unsigned long vm_type)194 static int sev_asid_new(struct kvm_sev_info *sev, unsigned long vm_type)
195 {
196 /*
197 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
198 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
199 */
200 unsigned int min_asid, max_asid, asid;
201 bool retry = true;
202 int ret;
203
204 if (vm_type == KVM_X86_SNP_VM) {
205 min_asid = min_snp_asid;
206 max_asid = max_snp_asid;
207 } else if (sev->es_active) {
208 min_asid = min_sev_es_asid;
209 max_asid = max_sev_es_asid;
210 } else {
211 min_asid = min_sev_asid;
212 max_asid = max_sev_asid;
213 }
214
215 /*
216 * The min ASID can end up larger than the max if basic SEV support is
217 * effectively disabled by disallowing use of ASIDs for SEV guests.
218 * Similarly for SEV-ES guests the min ASID can end up larger than the
219 * max when ciphertext hiding is enabled, effectively disabling SEV-ES
220 * support.
221 */
222 if (min_asid > max_asid)
223 return -ENOTTY;
224
225 WARN_ON(sev->misc_cg);
226 sev->misc_cg = get_current_misc_cg();
227 ret = sev_misc_cg_try_charge(sev);
228 if (ret) {
229 put_misc_cg(sev->misc_cg);
230 sev->misc_cg = NULL;
231 return ret;
232 }
233
234 mutex_lock(&sev_bitmap_lock);
235
236 again:
237 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
238 if (asid > max_asid) {
239 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
240 retry = false;
241 goto again;
242 }
243 mutex_unlock(&sev_bitmap_lock);
244 ret = -EBUSY;
245 goto e_uncharge;
246 }
247
248 __set_bit(asid, sev_asid_bitmap);
249
250 mutex_unlock(&sev_bitmap_lock);
251
252 sev->asid = asid;
253 return 0;
254 e_uncharge:
255 sev_misc_cg_uncharge(sev);
256 put_misc_cg(sev->misc_cg);
257 sev->misc_cg = NULL;
258 return ret;
259 }
260
sev_get_asid(struct kvm * kvm)261 static unsigned int sev_get_asid(struct kvm *kvm)
262 {
263 return to_kvm_sev_info(kvm)->asid;
264 }
265
sev_asid_free(struct kvm_sev_info * sev)266 static void sev_asid_free(struct kvm_sev_info *sev)
267 {
268 struct svm_cpu_data *sd;
269 int cpu;
270
271 mutex_lock(&sev_bitmap_lock);
272
273 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
274
275 for_each_possible_cpu(cpu) {
276 sd = per_cpu_ptr(&svm_data, cpu);
277 sd->sev_vmcbs[sev->asid] = NULL;
278 }
279
280 mutex_unlock(&sev_bitmap_lock);
281
282 sev_misc_cg_uncharge(sev);
283 put_misc_cg(sev->misc_cg);
284 sev->misc_cg = NULL;
285 }
286
sev_decommission(unsigned int handle)287 static void sev_decommission(unsigned int handle)
288 {
289 struct sev_data_decommission decommission;
290
291 if (!handle)
292 return;
293
294 decommission.handle = handle;
295 sev_guest_decommission(&decommission, NULL);
296 }
297
298 /*
299 * Transition a page to hypervisor-owned/shared state in the RMP table. This
300 * should not fail under normal conditions, but leak the page should that
301 * happen since it will no longer be usable by the host due to RMP protections.
302 */
kvm_rmp_make_shared(struct kvm * kvm,u64 pfn,enum pg_level level)303 static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
304 {
305 if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
306 snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
307 return -EIO;
308 }
309
310 return 0;
311 }
312
313 /*
314 * Certain page-states, such as Pre-Guest and Firmware pages (as documented
315 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
316 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
317 * unless they are reclaimed first.
318 *
319 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
320 * might not be usable by the host due to being set as immutable or still
321 * being associated with a guest ASID.
322 *
323 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
324 * converted back to shared, as the page is no longer usable due to RMP
325 * protections, and it's infeasible for the guest to continue on.
326 */
snp_page_reclaim(struct kvm * kvm,u64 pfn)327 static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
328 {
329 struct sev_data_snp_page_reclaim data = {0};
330 int fw_err, rc;
331
332 data.paddr = __sme_set(pfn << PAGE_SHIFT);
333 rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
334 if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
335 snp_leak_pages(pfn, 1);
336 return -EIO;
337 }
338
339 if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
340 return -EIO;
341
342 return rc;
343 }
344
sev_unbind_asid(struct kvm * kvm,unsigned int handle)345 static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
346 {
347 struct sev_data_deactivate deactivate;
348
349 if (!handle)
350 return;
351
352 deactivate.handle = handle;
353
354 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
355 down_read(&sev_deactivate_lock);
356 sev_guest_deactivate(&deactivate, NULL);
357 up_read(&sev_deactivate_lock);
358
359 sev_decommission(handle);
360 }
361
362 /*
363 * This sets up bounce buffers/firmware pages to handle SNP Guest Request
364 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
365 * 2.0 specification for more details.
366 *
367 * Technically, when an SNP Guest Request is issued, the guest will provide its
368 * own request/response pages, which could in theory be passed along directly
369 * to firmware rather than using bounce pages. However, these pages would need
370 * special care:
371 *
372 * - Both pages are from shared guest memory, so they need to be protected
373 * from migration/etc. occurring while firmware reads/writes to them. At a
374 * minimum, this requires elevating the ref counts and potentially needing
375 * an explicit pinning of the memory. This places additional restrictions
376 * on what type of memory backends userspace can use for shared guest
377 * memory since there is some reliance on using refcounted pages.
378 *
379 * - The response page needs to be switched to Firmware-owned[1] state
380 * before the firmware can write to it, which can lead to potential
381 * host RMP #PFs if the guest is misbehaved and hands the host a
382 * guest page that KVM might write to for other reasons (e.g. virtio
383 * buffers/etc.).
384 *
385 * Both of these issues can be avoided completely by using separately-allocated
386 * bounce pages for both the request/response pages and passing those to
387 * firmware instead. So that's what is being set up here.
388 *
389 * Guest requests rely on message sequence numbers to ensure requests are
390 * issued to firmware in the order the guest issues them, so concurrent guest
391 * requests generally shouldn't happen. But a misbehaved guest could issue
392 * concurrent guest requests in theory, so a mutex is used to serialize
393 * access to the bounce buffers.
394 *
395 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
396 * details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
397 * in the APM for details on the related RMP restrictions.
398 */
snp_guest_req_init(struct kvm * kvm)399 static int snp_guest_req_init(struct kvm *kvm)
400 {
401 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
402 struct page *req_page;
403
404 req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
405 if (!req_page)
406 return -ENOMEM;
407
408 sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
409 if (!sev->guest_resp_buf) {
410 __free_page(req_page);
411 return -EIO;
412 }
413
414 sev->guest_req_buf = page_address(req_page);
415 mutex_init(&sev->guest_req_mutex);
416
417 return 0;
418 }
419
snp_guest_req_cleanup(struct kvm * kvm)420 static void snp_guest_req_cleanup(struct kvm *kvm)
421 {
422 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
423
424 if (sev->guest_resp_buf)
425 snp_free_firmware_page(sev->guest_resp_buf);
426
427 if (sev->guest_req_buf)
428 __free_page(virt_to_page(sev->guest_req_buf));
429
430 sev->guest_req_buf = NULL;
431 sev->guest_resp_buf = NULL;
432 }
433
__sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_init * data,unsigned long vm_type)434 static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
435 struct kvm_sev_init *data,
436 unsigned long vm_type)
437 {
438 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
439 struct sev_platform_init_args init_args = {0};
440 bool es_active = vm_type != KVM_X86_SEV_VM;
441 bool snp_active = vm_type == KVM_X86_SNP_VM;
442 u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
443 int ret;
444
445 if (kvm->created_vcpus)
446 return -EINVAL;
447
448 if (data->flags)
449 return -EINVAL;
450
451 if (!snp_active)
452 valid_vmsa_features &= ~SVM_SEV_FEAT_SECURE_TSC;
453
454 if (data->vmsa_features & ~valid_vmsa_features)
455 return -EINVAL;
456
457 if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
458 return -EINVAL;
459
460 /*
461 * KVM supports the full range of mandatory features defined by version
462 * 2 of the GHCB protocol, so default to that for SEV-ES guests created
463 * via KVM_SEV_INIT2 (KVM_SEV_INIT forces version 1).
464 */
465 if (es_active && !data->ghcb_version)
466 data->ghcb_version = 2;
467
468 if (snp_active && data->ghcb_version < 2)
469 return -EINVAL;
470
471 if (unlikely(sev->active))
472 return -EINVAL;
473
474 sev->active = true;
475 sev->es_active = es_active;
476 sev->vmsa_features = data->vmsa_features;
477 sev->ghcb_version = data->ghcb_version;
478
479 if (snp_active)
480 sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;
481
482 ret = sev_asid_new(sev, vm_type);
483 if (ret)
484 goto e_no_asid;
485
486 init_args.probe = false;
487 ret = sev_platform_init(&init_args);
488 if (ret)
489 goto e_free_asid;
490
491 if (!zalloc_cpumask_var(&sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
492 ret = -ENOMEM;
493 goto e_free_asid;
494 }
495
496 /* This needs to happen after SEV/SNP firmware initialization. */
497 if (snp_active) {
498 ret = snp_guest_req_init(kvm);
499 if (ret)
500 goto e_free;
501 }
502
503 INIT_LIST_HEAD(&sev->regions_list);
504 INIT_LIST_HEAD(&sev->mirror_vms);
505 sev->need_init = false;
506
507 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
508
509 return 0;
510
511 e_free:
512 free_cpumask_var(sev->have_run_cpus);
513 e_free_asid:
514 argp->error = init_args.error;
515 sev_asid_free(sev);
516 sev->asid = 0;
517 e_no_asid:
518 sev->vmsa_features = 0;
519 sev->es_active = false;
520 sev->active = false;
521 return ret;
522 }
523
sev_guest_init(struct kvm * kvm,struct kvm_sev_cmd * argp)524 static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
525 {
526 struct kvm_sev_init data = {
527 .vmsa_features = 0,
528 .ghcb_version = 0,
529 };
530 unsigned long vm_type;
531
532 if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
533 return -EINVAL;
534
535 vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);
536
537 /*
538 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
539 * continue to only ever support the minimal GHCB protocol version.
540 */
541 if (vm_type == KVM_X86_SEV_ES_VM)
542 data.ghcb_version = GHCB_VERSION_MIN;
543
544 return __sev_guest_init(kvm, argp, &data, vm_type);
545 }
546
sev_guest_init2(struct kvm * kvm,struct kvm_sev_cmd * argp)547 static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
548 {
549 struct kvm_sev_init data;
550
551 if (!to_kvm_sev_info(kvm)->need_init)
552 return -EINVAL;
553
554 if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
555 kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
556 kvm->arch.vm_type != KVM_X86_SNP_VM)
557 return -EINVAL;
558
559 if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
560 return -EFAULT;
561
562 return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
563 }
564
sev_bind_asid(struct kvm * kvm,unsigned int handle,int * error)565 static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
566 {
567 unsigned int asid = sev_get_asid(kvm);
568 struct sev_data_activate activate;
569 int ret;
570
571 /* activate ASID on the given handle */
572 activate.handle = handle;
573 activate.asid = asid;
574 ret = sev_guest_activate(&activate, error);
575
576 return ret;
577 }
578
__sev_issue_cmd(int fd,int id,void * data,int * error)579 static int __sev_issue_cmd(int fd, int id, void *data, int *error)
580 {
581 CLASS(fd, f)(fd);
582
583 if (fd_empty(f))
584 return -EBADF;
585
586 return sev_issue_cmd_external_user(fd_file(f), id, data, error);
587 }
588
sev_issue_cmd(struct kvm * kvm,int id,void * data,int * error)589 static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
590 {
591 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
592
593 return __sev_issue_cmd(sev->fd, id, data, error);
594 }
595
sev_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)596 static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
597 {
598 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
599 struct sev_data_launch_start start;
600 struct kvm_sev_launch_start params;
601 void *dh_blob, *session_blob;
602 int *error = &argp->error;
603 int ret;
604
605 if (!sev_guest(kvm))
606 return -ENOTTY;
607
608 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
609 return -EFAULT;
610
611 memset(&start, 0, sizeof(start));
612
613 dh_blob = NULL;
614 if (params.dh_uaddr) {
615 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
616 if (IS_ERR(dh_blob))
617 return PTR_ERR(dh_blob);
618
619 start.dh_cert_address = __sme_set(__pa(dh_blob));
620 start.dh_cert_len = params.dh_len;
621 }
622
623 session_blob = NULL;
624 if (params.session_uaddr) {
625 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
626 if (IS_ERR(session_blob)) {
627 ret = PTR_ERR(session_blob);
628 goto e_free_dh;
629 }
630
631 start.session_address = __sme_set(__pa(session_blob));
632 start.session_len = params.session_len;
633 }
634
635 start.handle = params.handle;
636 start.policy = params.policy;
637
638 /* create memory encryption context */
639 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
640 if (ret)
641 goto e_free_session;
642
643 /* Bind ASID to this guest */
644 ret = sev_bind_asid(kvm, start.handle, error);
645 if (ret) {
646 sev_decommission(start.handle);
647 goto e_free_session;
648 }
649
650 /* return handle to userspace */
651 params.handle = start.handle;
652 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params))) {
653 sev_unbind_asid(kvm, start.handle);
654 ret = -EFAULT;
655 goto e_free_session;
656 }
657
658 sev->policy = params.policy;
659 sev->handle = start.handle;
660 sev->fd = argp->sev_fd;
661
662 e_free_session:
663 kfree(session_blob);
664 e_free_dh:
665 kfree(dh_blob);
666 return ret;
667 }
668
sev_pin_memory(struct kvm * kvm,unsigned long uaddr,unsigned long ulen,unsigned long * n,unsigned int flags)669 static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
670 unsigned long ulen, unsigned long *n,
671 unsigned int flags)
672 {
673 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
674 unsigned long npages, size;
675 int npinned;
676 unsigned long locked, lock_limit;
677 struct page **pages;
678 unsigned long first, last;
679 int ret;
680
681 lockdep_assert_held(&kvm->lock);
682
683 if (ulen == 0 || uaddr + ulen < uaddr)
684 return ERR_PTR(-EINVAL);
685
686 /* Calculate number of pages. */
687 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
688 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
689 npages = (last - first + 1);
690
691 locked = sev->pages_locked + npages;
692 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
693 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
694 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
695 return ERR_PTR(-ENOMEM);
696 }
697
698 if (WARN_ON_ONCE(npages > INT_MAX))
699 return ERR_PTR(-EINVAL);
700
701 /* Avoid using vmalloc for smaller buffers. */
702 size = npages * sizeof(struct page *);
703 if (size > PAGE_SIZE)
704 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
705 else
706 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
707
708 if (!pages)
709 return ERR_PTR(-ENOMEM);
710
711 /* Pin the user virtual address. */
712 npinned = pin_user_pages_fast(uaddr, npages, flags, pages);
713 if (npinned != npages) {
714 pr_err("SEV: Failure locking %lu pages.\n", npages);
715 ret = -ENOMEM;
716 goto err;
717 }
718
719 *n = npages;
720 sev->pages_locked = locked;
721
722 return pages;
723
724 err:
725 if (npinned > 0)
726 unpin_user_pages(pages, npinned);
727
728 kvfree(pages);
729 return ERR_PTR(ret);
730 }
731
sev_unpin_memory(struct kvm * kvm,struct page ** pages,unsigned long npages)732 static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
733 unsigned long npages)
734 {
735 unpin_user_pages(pages, npages);
736 kvfree(pages);
737 to_kvm_sev_info(kvm)->pages_locked -= npages;
738 }
739
sev_clflush_pages(struct page * pages[],unsigned long npages)740 static void sev_clflush_pages(struct page *pages[], unsigned long npages)
741 {
742 uint8_t *page_virtual;
743 unsigned long i;
744
745 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
746 pages == NULL)
747 return;
748
749 for (i = 0; i < npages; i++) {
750 page_virtual = kmap_local_page(pages[i]);
751 clflush_cache_range(page_virtual, PAGE_SIZE);
752 kunmap_local(page_virtual);
753 cond_resched();
754 }
755 }
756
sev_writeback_caches(struct kvm * kvm)757 static void sev_writeback_caches(struct kvm *kvm)
758 {
759 /*
760 * Ensure that all dirty guest tagged cache entries are written back
761 * before releasing the pages back to the system for use. CLFLUSH will
762 * not do this without SME_COHERENT, and flushing many cache lines
763 * individually is slower than blasting WBINVD for large VMs, so issue
764 * WBNOINVD (or WBINVD if the "no invalidate" variant is unsupported)
765 * on CPUs that have done VMRUN, i.e. may have dirtied data using the
766 * VM's ASID.
767 *
768 * For simplicity, never remove CPUs from the bitmap. Ideally, KVM
769 * would clear the mask when flushing caches, but doing so requires
770 * serializing multiple calls and having responding CPUs (to the IPI)
771 * mark themselves as still running if they are running (or about to
772 * run) a vCPU for the VM.
773 *
774 * Note, the caller is responsible for ensuring correctness if the mask
775 * can be modified, e.g. if a CPU could be doing VMRUN.
776 */
777 wbnoinvd_on_cpus_mask(to_kvm_sev_info(kvm)->have_run_cpus);
778 }
779
get_num_contig_pages(unsigned long idx,struct page ** inpages,unsigned long npages)780 static unsigned long get_num_contig_pages(unsigned long idx,
781 struct page **inpages, unsigned long npages)
782 {
783 unsigned long paddr, next_paddr;
784 unsigned long i = idx + 1, pages = 1;
785
786 /* find the number of contiguous pages starting from idx */
787 paddr = __sme_page_pa(inpages[idx]);
788 while (i < npages) {
789 next_paddr = __sme_page_pa(inpages[i++]);
790 if ((paddr + PAGE_SIZE) == next_paddr) {
791 pages++;
792 paddr = next_paddr;
793 continue;
794 }
795 break;
796 }
797
798 return pages;
799 }
800
sev_launch_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)801 static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
802 {
803 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
804 struct kvm_sev_launch_update_data params;
805 struct sev_data_launch_update_data data;
806 struct page **inpages;
807 int ret;
808
809 if (!sev_guest(kvm))
810 return -ENOTTY;
811
812 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
813 return -EFAULT;
814
815 vaddr = params.uaddr;
816 size = params.len;
817 vaddr_end = vaddr + size;
818
819 /* Lock the user memory. */
820 inpages = sev_pin_memory(kvm, vaddr, size, &npages, FOLL_WRITE);
821 if (IS_ERR(inpages))
822 return PTR_ERR(inpages);
823
824 /*
825 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
826 * place; the cache may contain the data that was written unencrypted.
827 */
828 sev_clflush_pages(inpages, npages);
829
830 data.reserved = 0;
831 data.handle = to_kvm_sev_info(kvm)->handle;
832
833 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
834 int offset, len;
835
836 /*
837 * If the user buffer is not page-aligned, calculate the offset
838 * within the page.
839 */
840 offset = vaddr & (PAGE_SIZE - 1);
841
842 /* Calculate the number of pages that can be encrypted in one go. */
843 pages = get_num_contig_pages(i, inpages, npages);
844
845 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
846
847 data.len = len;
848 data.address = __sme_page_pa(inpages[i]) + offset;
849 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
850 if (ret)
851 goto e_unpin;
852
853 size -= len;
854 next_vaddr = vaddr + len;
855 }
856
857 e_unpin:
858 /* content of memory is updated, mark pages dirty */
859 for (i = 0; i < npages; i++) {
860 set_page_dirty_lock(inpages[i]);
861 mark_page_accessed(inpages[i]);
862 }
863 /* unlock the user pages */
864 sev_unpin_memory(kvm, inpages, npages);
865 return ret;
866 }
867
sev_es_sync_vmsa(struct vcpu_svm * svm)868 static int sev_es_sync_vmsa(struct vcpu_svm *svm)
869 {
870 struct kvm_vcpu *vcpu = &svm->vcpu;
871 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
872 struct sev_es_save_area *save = svm->sev_es.vmsa;
873 struct xregs_state *xsave;
874 const u8 *s;
875 u8 *d;
876 int i;
877
878 /* Check some debug related fields before encrypting the VMSA */
879 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
880 return -EINVAL;
881
882 /*
883 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
884 * the traditional VMSA that is part of the VMCB. Copy the
885 * traditional VMSA as it has been built so far (in prep
886 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
887 */
888 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
889
890 /* Sync registgers */
891 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
892 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
893 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
894 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
895 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
896 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
897 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
898 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
899 #ifdef CONFIG_X86_64
900 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
901 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
902 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
903 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
904 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
905 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
906 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
907 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
908 #endif
909 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
910
911 /* Sync some non-GPR registers before encrypting */
912 save->xcr0 = svm->vcpu.arch.xcr0;
913 save->pkru = svm->vcpu.arch.pkru;
914 save->xss = svm->vcpu.arch.ia32_xss;
915 save->dr6 = svm->vcpu.arch.dr6;
916
917 save->sev_features = sev->vmsa_features;
918
919 /*
920 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
921 * breaking older measurements.
922 */
923 if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
924 xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
925 save->x87_dp = xsave->i387.rdp;
926 save->mxcsr = xsave->i387.mxcsr;
927 save->x87_ftw = xsave->i387.twd;
928 save->x87_fsw = xsave->i387.swd;
929 save->x87_fcw = xsave->i387.cwd;
930 save->x87_fop = xsave->i387.fop;
931 save->x87_ds = 0;
932 save->x87_cs = 0;
933 save->x87_rip = xsave->i387.rip;
934
935 for (i = 0; i < 8; i++) {
936 /*
937 * The format of the x87 save area is undocumented and
938 * definitely not what you would expect. It consists of
939 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
940 * area with bytes 8-9 of each register.
941 */
942 d = save->fpreg_x87 + i * 8;
943 s = ((u8 *)xsave->i387.st_space) + i * 16;
944 memcpy(d, s, 8);
945 save->fpreg_x87[64 + i * 2] = s[8];
946 save->fpreg_x87[64 + i * 2 + 1] = s[9];
947 }
948 memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);
949
950 s = get_xsave_addr(xsave, XFEATURE_YMM);
951 if (s)
952 memcpy(save->fpreg_ymm, s, 256);
953 else
954 memset(save->fpreg_ymm, 0, 256);
955 }
956
957 pr_debug("Virtual Machine Save Area (VMSA):\n");
958 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
959
960 return 0;
961 }
962
__sev_launch_update_vmsa(struct kvm * kvm,struct kvm_vcpu * vcpu,int * error)963 static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
964 int *error)
965 {
966 struct sev_data_launch_update_vmsa vmsa;
967 struct vcpu_svm *svm = to_svm(vcpu);
968 int ret;
969
970 if (vcpu->guest_debug) {
971 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
972 return -EINVAL;
973 }
974
975 /* Perform some pre-encryption checks against the VMSA */
976 ret = sev_es_sync_vmsa(svm);
977 if (ret)
978 return ret;
979
980 /*
981 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
982 * the VMSA memory content (i.e it will write the same memory region
983 * with the guest's key), so invalidate it first.
984 */
985 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
986
987 vmsa.reserved = 0;
988 vmsa.handle = to_kvm_sev_info(kvm)->handle;
989 vmsa.address = __sme_pa(svm->sev_es.vmsa);
990 vmsa.len = PAGE_SIZE;
991 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
992 if (ret)
993 return ret;
994
995 /*
996 * SEV-ES guests maintain an encrypted version of their FPU
997 * state which is restored and saved on VMRUN and VMEXIT.
998 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
999 * do xsave/xrstor on it.
1000 */
1001 fpstate_set_confidential(&vcpu->arch.guest_fpu);
1002 vcpu->arch.guest_state_protected = true;
1003
1004 /*
1005 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
1006 * only after setting guest_state_protected because KVM_SET_MSRS allows
1007 * dynamic toggling of LBRV (for performance reason) on write access to
1008 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
1009 */
1010 svm_enable_lbrv(vcpu);
1011 return 0;
1012 }
1013
sev_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)1014 static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
1015 {
1016 struct kvm_vcpu *vcpu;
1017 unsigned long i;
1018 int ret;
1019
1020 if (!sev_es_guest(kvm))
1021 return -ENOTTY;
1022
1023 kvm_for_each_vcpu(i, vcpu, kvm) {
1024 ret = mutex_lock_killable(&vcpu->mutex);
1025 if (ret)
1026 return ret;
1027
1028 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
1029
1030 mutex_unlock(&vcpu->mutex);
1031 if (ret)
1032 return ret;
1033 }
1034
1035 return 0;
1036 }
1037
sev_launch_measure(struct kvm * kvm,struct kvm_sev_cmd * argp)1038 static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
1039 {
1040 void __user *measure = u64_to_user_ptr(argp->data);
1041 struct sev_data_launch_measure data;
1042 struct kvm_sev_launch_measure params;
1043 void __user *p = NULL;
1044 void *blob = NULL;
1045 int ret;
1046
1047 if (!sev_guest(kvm))
1048 return -ENOTTY;
1049
1050 if (copy_from_user(¶ms, measure, sizeof(params)))
1051 return -EFAULT;
1052
1053 memset(&data, 0, sizeof(data));
1054
1055 /* User wants to query the blob length */
1056 if (!params.len)
1057 goto cmd;
1058
1059 p = u64_to_user_ptr(params.uaddr);
1060 if (p) {
1061 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1062 return -EINVAL;
1063
1064 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1065 if (!blob)
1066 return -ENOMEM;
1067
1068 data.address = __psp_pa(blob);
1069 data.len = params.len;
1070 }
1071
1072 cmd:
1073 data.handle = to_kvm_sev_info(kvm)->handle;
1074 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
1075
1076 /*
1077 * If we query the session length, FW responded with expected data.
1078 */
1079 if (!params.len)
1080 goto done;
1081
1082 if (ret)
1083 goto e_free_blob;
1084
1085 if (blob) {
1086 if (copy_to_user(p, blob, params.len))
1087 ret = -EFAULT;
1088 }
1089
1090 done:
1091 params.len = data.len;
1092 if (copy_to_user(measure, ¶ms, sizeof(params)))
1093 ret = -EFAULT;
1094 e_free_blob:
1095 kfree(blob);
1096 return ret;
1097 }
1098
sev_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1099 static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1100 {
1101 struct sev_data_launch_finish data;
1102
1103 if (!sev_guest(kvm))
1104 return -ENOTTY;
1105
1106 data.handle = to_kvm_sev_info(kvm)->handle;
1107 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
1108 }
1109
sev_guest_status(struct kvm * kvm,struct kvm_sev_cmd * argp)1110 static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
1111 {
1112 struct kvm_sev_guest_status params;
1113 struct sev_data_guest_status data;
1114 int ret;
1115
1116 if (!sev_guest(kvm))
1117 return -ENOTTY;
1118
1119 memset(&data, 0, sizeof(data));
1120
1121 data.handle = to_kvm_sev_info(kvm)->handle;
1122 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
1123 if (ret)
1124 return ret;
1125
1126 params.policy = data.policy;
1127 params.state = data.state;
1128 params.handle = data.handle;
1129
1130 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
1131 ret = -EFAULT;
1132
1133 return ret;
1134 }
1135
__sev_issue_dbg_cmd(struct kvm * kvm,unsigned long src,unsigned long dst,int size,int * error,bool enc)1136 static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
1137 unsigned long dst, int size,
1138 int *error, bool enc)
1139 {
1140 struct sev_data_dbg data;
1141
1142 data.reserved = 0;
1143 data.handle = to_kvm_sev_info(kvm)->handle;
1144 data.dst_addr = dst;
1145 data.src_addr = src;
1146 data.len = size;
1147
1148 return sev_issue_cmd(kvm,
1149 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
1150 &data, error);
1151 }
1152
__sev_dbg_decrypt(struct kvm * kvm,unsigned long src_paddr,unsigned long dst_paddr,int sz,int * err)1153 static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
1154 unsigned long dst_paddr, int sz, int *err)
1155 {
1156 int offset;
1157
1158 /*
1159 * Its safe to read more than we are asked, caller should ensure that
1160 * destination has enough space.
1161 */
1162 offset = src_paddr & 15;
1163 src_paddr = round_down(src_paddr, 16);
1164 sz = round_up(sz + offset, 16);
1165
1166 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
1167 }
1168
__sev_dbg_decrypt_user(struct kvm * kvm,unsigned long paddr,void __user * dst_uaddr,unsigned long dst_paddr,int size,int * err)1169 static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
1170 void __user *dst_uaddr,
1171 unsigned long dst_paddr,
1172 int size, int *err)
1173 {
1174 struct page *tpage = NULL;
1175 int ret, offset;
1176
1177 /* if inputs are not 16-byte then use intermediate buffer */
1178 if (!IS_ALIGNED(dst_paddr, 16) ||
1179 !IS_ALIGNED(paddr, 16) ||
1180 !IS_ALIGNED(size, 16)) {
1181 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1182 if (!tpage)
1183 return -ENOMEM;
1184
1185 dst_paddr = __sme_page_pa(tpage);
1186 }
1187
1188 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
1189 if (ret)
1190 goto e_free;
1191
1192 if (tpage) {
1193 offset = paddr & 15;
1194 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
1195 ret = -EFAULT;
1196 }
1197
1198 e_free:
1199 if (tpage)
1200 __free_page(tpage);
1201
1202 return ret;
1203 }
1204
__sev_dbg_encrypt_user(struct kvm * kvm,unsigned long paddr,void __user * vaddr,unsigned long dst_paddr,void __user * dst_vaddr,int size,int * error)1205 static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
1206 void __user *vaddr,
1207 unsigned long dst_paddr,
1208 void __user *dst_vaddr,
1209 int size, int *error)
1210 {
1211 struct page *src_tpage = NULL;
1212 struct page *dst_tpage = NULL;
1213 int ret, len = size;
1214
1215 /* If source buffer is not aligned then use an intermediate buffer */
1216 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
1217 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1218 if (!src_tpage)
1219 return -ENOMEM;
1220
1221 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
1222 __free_page(src_tpage);
1223 return -EFAULT;
1224 }
1225
1226 paddr = __sme_page_pa(src_tpage);
1227 }
1228
1229 /*
1230 * If destination buffer or length is not aligned then do read-modify-write:
1231 * - decrypt destination in an intermediate buffer
1232 * - copy the source buffer in an intermediate buffer
1233 * - use the intermediate buffer as source buffer
1234 */
1235 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
1236 int dst_offset;
1237
1238 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
1239 if (!dst_tpage) {
1240 ret = -ENOMEM;
1241 goto e_free;
1242 }
1243
1244 ret = __sev_dbg_decrypt(kvm, dst_paddr,
1245 __sme_page_pa(dst_tpage), size, error);
1246 if (ret)
1247 goto e_free;
1248
1249 /*
1250 * If source is kernel buffer then use memcpy() otherwise
1251 * copy_from_user().
1252 */
1253 dst_offset = dst_paddr & 15;
1254
1255 if (src_tpage)
1256 memcpy(page_address(dst_tpage) + dst_offset,
1257 page_address(src_tpage), size);
1258 else {
1259 if (copy_from_user(page_address(dst_tpage) + dst_offset,
1260 vaddr, size)) {
1261 ret = -EFAULT;
1262 goto e_free;
1263 }
1264 }
1265
1266 paddr = __sme_page_pa(dst_tpage);
1267 dst_paddr = round_down(dst_paddr, 16);
1268 len = round_up(size, 16);
1269 }
1270
1271 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
1272
1273 e_free:
1274 if (src_tpage)
1275 __free_page(src_tpage);
1276 if (dst_tpage)
1277 __free_page(dst_tpage);
1278 return ret;
1279 }
1280
sev_dbg_crypt(struct kvm * kvm,struct kvm_sev_cmd * argp,bool dec)1281 static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
1282 {
1283 unsigned long vaddr, vaddr_end, next_vaddr;
1284 unsigned long dst_vaddr;
1285 struct page **src_p, **dst_p;
1286 struct kvm_sev_dbg debug;
1287 unsigned long n;
1288 unsigned int size;
1289 int ret;
1290
1291 if (!sev_guest(kvm))
1292 return -ENOTTY;
1293
1294 if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
1295 return -EFAULT;
1296
1297 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
1298 return -EINVAL;
1299 if (!debug.dst_uaddr)
1300 return -EINVAL;
1301
1302 vaddr = debug.src_uaddr;
1303 size = debug.len;
1304 vaddr_end = vaddr + size;
1305 dst_vaddr = debug.dst_uaddr;
1306
1307 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
1308 int len, s_off, d_off;
1309
1310 /* lock userspace source and destination page */
1311 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
1312 if (IS_ERR(src_p))
1313 return PTR_ERR(src_p);
1314
1315 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, FOLL_WRITE);
1316 if (IS_ERR(dst_p)) {
1317 sev_unpin_memory(kvm, src_p, n);
1318 return PTR_ERR(dst_p);
1319 }
1320
1321 /*
1322 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
1323 * the pages; flush the destination too so that future accesses do not
1324 * see stale data.
1325 */
1326 sev_clflush_pages(src_p, 1);
1327 sev_clflush_pages(dst_p, 1);
1328
1329 /*
1330 * Since user buffer may not be page aligned, calculate the
1331 * offset within the page.
1332 */
1333 s_off = vaddr & ~PAGE_MASK;
1334 d_off = dst_vaddr & ~PAGE_MASK;
1335 len = min_t(size_t, (PAGE_SIZE - s_off), size);
1336
1337 if (dec)
1338 ret = __sev_dbg_decrypt_user(kvm,
1339 __sme_page_pa(src_p[0]) + s_off,
1340 (void __user *)dst_vaddr,
1341 __sme_page_pa(dst_p[0]) + d_off,
1342 len, &argp->error);
1343 else
1344 ret = __sev_dbg_encrypt_user(kvm,
1345 __sme_page_pa(src_p[0]) + s_off,
1346 (void __user *)vaddr,
1347 __sme_page_pa(dst_p[0]) + d_off,
1348 (void __user *)dst_vaddr,
1349 len, &argp->error);
1350
1351 sev_unpin_memory(kvm, src_p, n);
1352 sev_unpin_memory(kvm, dst_p, n);
1353
1354 if (ret)
1355 goto err;
1356
1357 next_vaddr = vaddr + len;
1358 dst_vaddr = dst_vaddr + len;
1359 size -= len;
1360 }
1361 err:
1362 return ret;
1363 }
1364
sev_launch_secret(struct kvm * kvm,struct kvm_sev_cmd * argp)1365 static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1366 {
1367 struct sev_data_launch_secret data;
1368 struct kvm_sev_launch_secret params;
1369 struct page **pages;
1370 void *blob, *hdr;
1371 unsigned long n, i;
1372 int ret, offset;
1373
1374 if (!sev_guest(kvm))
1375 return -ENOTTY;
1376
1377 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1378 return -EFAULT;
1379
1380 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, FOLL_WRITE);
1381 if (IS_ERR(pages))
1382 return PTR_ERR(pages);
1383
1384 /*
1385 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1386 * place; the cache may contain the data that was written unencrypted.
1387 */
1388 sev_clflush_pages(pages, n);
1389
1390 /*
1391 * The secret must be copied into contiguous memory region, lets verify
1392 * that userspace memory pages are contiguous before we issue command.
1393 */
1394 if (get_num_contig_pages(0, pages, n) != n) {
1395 ret = -EINVAL;
1396 goto e_unpin_memory;
1397 }
1398
1399 memset(&data, 0, sizeof(data));
1400
1401 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1402 data.guest_address = __sme_page_pa(pages[0]) + offset;
1403 data.guest_len = params.guest_len;
1404
1405 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1406 if (IS_ERR(blob)) {
1407 ret = PTR_ERR(blob);
1408 goto e_unpin_memory;
1409 }
1410
1411 data.trans_address = __psp_pa(blob);
1412 data.trans_len = params.trans_len;
1413
1414 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1415 if (IS_ERR(hdr)) {
1416 ret = PTR_ERR(hdr);
1417 goto e_free_blob;
1418 }
1419 data.hdr_address = __psp_pa(hdr);
1420 data.hdr_len = params.hdr_len;
1421
1422 data.handle = to_kvm_sev_info(kvm)->handle;
1423 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1424
1425 kfree(hdr);
1426
1427 e_free_blob:
1428 kfree(blob);
1429 e_unpin_memory:
1430 /* content of memory is updated, mark pages dirty */
1431 for (i = 0; i < n; i++) {
1432 set_page_dirty_lock(pages[i]);
1433 mark_page_accessed(pages[i]);
1434 }
1435 sev_unpin_memory(kvm, pages, n);
1436 return ret;
1437 }
1438
sev_get_attestation_report(struct kvm * kvm,struct kvm_sev_cmd * argp)1439 static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1440 {
1441 void __user *report = u64_to_user_ptr(argp->data);
1442 struct sev_data_attestation_report data;
1443 struct kvm_sev_attestation_report params;
1444 void __user *p;
1445 void *blob = NULL;
1446 int ret;
1447
1448 if (!sev_guest(kvm))
1449 return -ENOTTY;
1450
1451 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
1452 return -EFAULT;
1453
1454 memset(&data, 0, sizeof(data));
1455
1456 /* User wants to query the blob length */
1457 if (!params.len)
1458 goto cmd;
1459
1460 p = u64_to_user_ptr(params.uaddr);
1461 if (p) {
1462 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1463 return -EINVAL;
1464
1465 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1466 if (!blob)
1467 return -ENOMEM;
1468
1469 data.address = __psp_pa(blob);
1470 data.len = params.len;
1471 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1472 }
1473 cmd:
1474 data.handle = to_kvm_sev_info(kvm)->handle;
1475 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1476 /*
1477 * If we query the session length, FW responded with expected data.
1478 */
1479 if (!params.len)
1480 goto done;
1481
1482 if (ret)
1483 goto e_free_blob;
1484
1485 if (blob) {
1486 if (copy_to_user(p, blob, params.len))
1487 ret = -EFAULT;
1488 }
1489
1490 done:
1491 params.len = data.len;
1492 if (copy_to_user(report, ¶ms, sizeof(params)))
1493 ret = -EFAULT;
1494 e_free_blob:
1495 kfree(blob);
1496 return ret;
1497 }
1498
1499 /* Userspace wants to query session length. */
1500 static int
__sev_send_start_query_session_length(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_start * params)1501 __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1502 struct kvm_sev_send_start *params)
1503 {
1504 struct sev_data_send_start data;
1505 int ret;
1506
1507 memset(&data, 0, sizeof(data));
1508 data.handle = to_kvm_sev_info(kvm)->handle;
1509 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1510
1511 params->session_len = data.session_len;
1512 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1513 sizeof(struct kvm_sev_send_start)))
1514 ret = -EFAULT;
1515
1516 return ret;
1517 }
1518
sev_send_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1519 static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1520 {
1521 struct sev_data_send_start data;
1522 struct kvm_sev_send_start params;
1523 void *amd_certs, *session_data;
1524 void *pdh_cert, *plat_certs;
1525 int ret;
1526
1527 if (!sev_guest(kvm))
1528 return -ENOTTY;
1529
1530 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1531 sizeof(struct kvm_sev_send_start)))
1532 return -EFAULT;
1533
1534 /* if session_len is zero, userspace wants to query the session length */
1535 if (!params.session_len)
1536 return __sev_send_start_query_session_length(kvm, argp,
1537 ¶ms);
1538
1539 /* some sanity checks */
1540 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1541 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1542 return -EINVAL;
1543
1544 /* allocate the memory to hold the session data blob */
1545 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1546 if (!session_data)
1547 return -ENOMEM;
1548
1549 /* copy the certificate blobs from userspace */
1550 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1551 params.pdh_cert_len);
1552 if (IS_ERR(pdh_cert)) {
1553 ret = PTR_ERR(pdh_cert);
1554 goto e_free_session;
1555 }
1556
1557 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1558 params.plat_certs_len);
1559 if (IS_ERR(plat_certs)) {
1560 ret = PTR_ERR(plat_certs);
1561 goto e_free_pdh;
1562 }
1563
1564 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1565 params.amd_certs_len);
1566 if (IS_ERR(amd_certs)) {
1567 ret = PTR_ERR(amd_certs);
1568 goto e_free_plat_cert;
1569 }
1570
1571 /* populate the FW SEND_START field with system physical address */
1572 memset(&data, 0, sizeof(data));
1573 data.pdh_cert_address = __psp_pa(pdh_cert);
1574 data.pdh_cert_len = params.pdh_cert_len;
1575 data.plat_certs_address = __psp_pa(plat_certs);
1576 data.plat_certs_len = params.plat_certs_len;
1577 data.amd_certs_address = __psp_pa(amd_certs);
1578 data.amd_certs_len = params.amd_certs_len;
1579 data.session_address = __psp_pa(session_data);
1580 data.session_len = params.session_len;
1581 data.handle = to_kvm_sev_info(kvm)->handle;
1582
1583 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1584
1585 if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
1586 session_data, params.session_len)) {
1587 ret = -EFAULT;
1588 goto e_free_amd_cert;
1589 }
1590
1591 params.policy = data.policy;
1592 params.session_len = data.session_len;
1593 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms,
1594 sizeof(struct kvm_sev_send_start)))
1595 ret = -EFAULT;
1596
1597 e_free_amd_cert:
1598 kfree(amd_certs);
1599 e_free_plat_cert:
1600 kfree(plat_certs);
1601 e_free_pdh:
1602 kfree(pdh_cert);
1603 e_free_session:
1604 kfree(session_data);
1605 return ret;
1606 }
1607
1608 /* Userspace wants to query either header or trans length. */
1609 static int
__sev_send_update_data_query_lengths(struct kvm * kvm,struct kvm_sev_cmd * argp,struct kvm_sev_send_update_data * params)1610 __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1611 struct kvm_sev_send_update_data *params)
1612 {
1613 struct sev_data_send_update_data data;
1614 int ret;
1615
1616 memset(&data, 0, sizeof(data));
1617 data.handle = to_kvm_sev_info(kvm)->handle;
1618 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1619
1620 params->hdr_len = data.hdr_len;
1621 params->trans_len = data.trans_len;
1622
1623 if (copy_to_user(u64_to_user_ptr(argp->data), params,
1624 sizeof(struct kvm_sev_send_update_data)))
1625 ret = -EFAULT;
1626
1627 return ret;
1628 }
1629
sev_send_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1630 static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1631 {
1632 struct sev_data_send_update_data data;
1633 struct kvm_sev_send_update_data params;
1634 void *hdr, *trans_data;
1635 struct page **guest_page;
1636 unsigned long n;
1637 int ret, offset;
1638
1639 if (!sev_guest(kvm))
1640 return -ENOTTY;
1641
1642 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1643 sizeof(struct kvm_sev_send_update_data)))
1644 return -EFAULT;
1645
1646 /* userspace wants to query either header or trans length */
1647 if (!params.trans_len || !params.hdr_len)
1648 return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
1649
1650 if (!params.trans_uaddr || !params.guest_uaddr ||
1651 !params.guest_len || !params.hdr_uaddr)
1652 return -EINVAL;
1653
1654 /* Check if we are crossing the page boundary */
1655 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1656 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1657 return -EINVAL;
1658
1659 /* Pin guest memory */
1660 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1661 PAGE_SIZE, &n, 0);
1662 if (IS_ERR(guest_page))
1663 return PTR_ERR(guest_page);
1664
1665 /* allocate memory for header and transport buffer */
1666 ret = -ENOMEM;
1667 hdr = kzalloc(params.hdr_len, GFP_KERNEL);
1668 if (!hdr)
1669 goto e_unpin;
1670
1671 trans_data = kzalloc(params.trans_len, GFP_KERNEL);
1672 if (!trans_data)
1673 goto e_free_hdr;
1674
1675 memset(&data, 0, sizeof(data));
1676 data.hdr_address = __psp_pa(hdr);
1677 data.hdr_len = params.hdr_len;
1678 data.trans_address = __psp_pa(trans_data);
1679 data.trans_len = params.trans_len;
1680
1681 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1682 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1683 data.guest_address |= sev_me_mask;
1684 data.guest_len = params.guest_len;
1685 data.handle = to_kvm_sev_info(kvm)->handle;
1686
1687 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1688
1689 if (ret)
1690 goto e_free_trans_data;
1691
1692 /* copy transport buffer to user space */
1693 if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
1694 trans_data, params.trans_len)) {
1695 ret = -EFAULT;
1696 goto e_free_trans_data;
1697 }
1698
1699 /* Copy packet header to userspace. */
1700 if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
1701 params.hdr_len))
1702 ret = -EFAULT;
1703
1704 e_free_trans_data:
1705 kfree(trans_data);
1706 e_free_hdr:
1707 kfree(hdr);
1708 e_unpin:
1709 sev_unpin_memory(kvm, guest_page, n);
1710
1711 return ret;
1712 }
1713
sev_send_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1714 static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1715 {
1716 struct sev_data_send_finish data;
1717
1718 if (!sev_guest(kvm))
1719 return -ENOTTY;
1720
1721 data.handle = to_kvm_sev_info(kvm)->handle;
1722 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1723 }
1724
sev_send_cancel(struct kvm * kvm,struct kvm_sev_cmd * argp)1725 static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1726 {
1727 struct sev_data_send_cancel data;
1728
1729 if (!sev_guest(kvm))
1730 return -ENOTTY;
1731
1732 data.handle = to_kvm_sev_info(kvm)->handle;
1733 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1734 }
1735
sev_receive_start(struct kvm * kvm,struct kvm_sev_cmd * argp)1736 static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1737 {
1738 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
1739 struct sev_data_receive_start start;
1740 struct kvm_sev_receive_start params;
1741 int *error = &argp->error;
1742 void *session_data;
1743 void *pdh_data;
1744 int ret;
1745
1746 if (!sev_guest(kvm))
1747 return -ENOTTY;
1748
1749 /* Get parameter from the userspace */
1750 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1751 sizeof(struct kvm_sev_receive_start)))
1752 return -EFAULT;
1753
1754 /* some sanity checks */
1755 if (!params.pdh_uaddr || !params.pdh_len ||
1756 !params.session_uaddr || !params.session_len)
1757 return -EINVAL;
1758
1759 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1760 if (IS_ERR(pdh_data))
1761 return PTR_ERR(pdh_data);
1762
1763 session_data = psp_copy_user_blob(params.session_uaddr,
1764 params.session_len);
1765 if (IS_ERR(session_data)) {
1766 ret = PTR_ERR(session_data);
1767 goto e_free_pdh;
1768 }
1769
1770 memset(&start, 0, sizeof(start));
1771 start.handle = params.handle;
1772 start.policy = params.policy;
1773 start.pdh_cert_address = __psp_pa(pdh_data);
1774 start.pdh_cert_len = params.pdh_len;
1775 start.session_address = __psp_pa(session_data);
1776 start.session_len = params.session_len;
1777
1778 /* create memory encryption context */
1779 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1780 error);
1781 if (ret)
1782 goto e_free_session;
1783
1784 /* Bind ASID to this guest */
1785 ret = sev_bind_asid(kvm, start.handle, error);
1786 if (ret) {
1787 sev_decommission(start.handle);
1788 goto e_free_session;
1789 }
1790
1791 params.handle = start.handle;
1792 if (copy_to_user(u64_to_user_ptr(argp->data),
1793 ¶ms, sizeof(struct kvm_sev_receive_start))) {
1794 ret = -EFAULT;
1795 sev_unbind_asid(kvm, start.handle);
1796 goto e_free_session;
1797 }
1798
1799 sev->handle = start.handle;
1800 sev->fd = argp->sev_fd;
1801
1802 e_free_session:
1803 kfree(session_data);
1804 e_free_pdh:
1805 kfree(pdh_data);
1806
1807 return ret;
1808 }
1809
sev_receive_update_data(struct kvm * kvm,struct kvm_sev_cmd * argp)1810 static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1811 {
1812 struct kvm_sev_receive_update_data params;
1813 struct sev_data_receive_update_data data;
1814 void *hdr = NULL, *trans = NULL;
1815 struct page **guest_page;
1816 unsigned long n;
1817 int ret, offset;
1818
1819 if (!sev_guest(kvm))
1820 return -EINVAL;
1821
1822 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data),
1823 sizeof(struct kvm_sev_receive_update_data)))
1824 return -EFAULT;
1825
1826 if (!params.hdr_uaddr || !params.hdr_len ||
1827 !params.guest_uaddr || !params.guest_len ||
1828 !params.trans_uaddr || !params.trans_len)
1829 return -EINVAL;
1830
1831 /* Check if we are crossing the page boundary */
1832 offset = params.guest_uaddr & (PAGE_SIZE - 1);
1833 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1834 return -EINVAL;
1835
1836 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1837 if (IS_ERR(hdr))
1838 return PTR_ERR(hdr);
1839
1840 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1841 if (IS_ERR(trans)) {
1842 ret = PTR_ERR(trans);
1843 goto e_free_hdr;
1844 }
1845
1846 memset(&data, 0, sizeof(data));
1847 data.hdr_address = __psp_pa(hdr);
1848 data.hdr_len = params.hdr_len;
1849 data.trans_address = __psp_pa(trans);
1850 data.trans_len = params.trans_len;
1851
1852 /* Pin guest memory */
1853 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1854 PAGE_SIZE, &n, FOLL_WRITE);
1855 if (IS_ERR(guest_page)) {
1856 ret = PTR_ERR(guest_page);
1857 goto e_free_trans;
1858 }
1859
1860 /*
1861 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1862 * encrypts the written data with the guest's key, and the cache may
1863 * contain dirty, unencrypted data.
1864 */
1865 sev_clflush_pages(guest_page, n);
1866
1867 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1868 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1869 data.guest_address |= sev_me_mask;
1870 data.guest_len = params.guest_len;
1871 data.handle = to_kvm_sev_info(kvm)->handle;
1872
1873 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1874 &argp->error);
1875
1876 sev_unpin_memory(kvm, guest_page, n);
1877
1878 e_free_trans:
1879 kfree(trans);
1880 e_free_hdr:
1881 kfree(hdr);
1882
1883 return ret;
1884 }
1885
sev_receive_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)1886 static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1887 {
1888 struct sev_data_receive_finish data;
1889
1890 if (!sev_guest(kvm))
1891 return -ENOTTY;
1892
1893 data.handle = to_kvm_sev_info(kvm)->handle;
1894 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1895 }
1896
is_cmd_allowed_from_mirror(u32 cmd_id)1897 static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1898 {
1899 /*
1900 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1901 * active mirror VMs. Also allow the debugging and status commands.
1902 */
1903 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1904 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1905 cmd_id == KVM_SEV_DBG_ENCRYPT)
1906 return true;
1907
1908 return false;
1909 }
1910
sev_lock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1911 static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1912 {
1913 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1914 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1915 int r = -EBUSY;
1916
1917 if (dst_kvm == src_kvm)
1918 return -EINVAL;
1919
1920 /*
1921 * Bail if these VMs are already involved in a migration to avoid
1922 * deadlock between two VMs trying to migrate to/from each other.
1923 */
1924 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1925 return -EBUSY;
1926
1927 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1928 goto release_dst;
1929
1930 r = -EINTR;
1931 if (mutex_lock_killable(&dst_kvm->lock))
1932 goto release_src;
1933 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1934 goto unlock_dst;
1935 return 0;
1936
1937 unlock_dst:
1938 mutex_unlock(&dst_kvm->lock);
1939 release_src:
1940 atomic_set_release(&src_sev->migration_in_progress, 0);
1941 release_dst:
1942 atomic_set_release(&dst_sev->migration_in_progress, 0);
1943 return r;
1944 }
1945
sev_unlock_two_vms(struct kvm * dst_kvm,struct kvm * src_kvm)1946 static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1947 {
1948 struct kvm_sev_info *dst_sev = to_kvm_sev_info(dst_kvm);
1949 struct kvm_sev_info *src_sev = to_kvm_sev_info(src_kvm);
1950
1951 mutex_unlock(&dst_kvm->lock);
1952 mutex_unlock(&src_kvm->lock);
1953 atomic_set_release(&dst_sev->migration_in_progress, 0);
1954 atomic_set_release(&src_sev->migration_in_progress, 0);
1955 }
1956
sev_migrate_from(struct kvm * dst_kvm,struct kvm * src_kvm)1957 static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1958 {
1959 struct kvm_sev_info *dst = to_kvm_sev_info(dst_kvm);
1960 struct kvm_sev_info *src = to_kvm_sev_info(src_kvm);
1961 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1962 struct vcpu_svm *dst_svm, *src_svm;
1963 struct kvm_sev_info *mirror;
1964 unsigned long i;
1965
1966 dst->active = true;
1967 dst->asid = src->asid;
1968 dst->handle = src->handle;
1969 dst->pages_locked = src->pages_locked;
1970 dst->enc_context_owner = src->enc_context_owner;
1971 dst->es_active = src->es_active;
1972 dst->vmsa_features = src->vmsa_features;
1973
1974 src->asid = 0;
1975 src->active = false;
1976 src->handle = 0;
1977 src->pages_locked = 0;
1978 src->enc_context_owner = NULL;
1979 src->es_active = false;
1980
1981 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1982
1983 /*
1984 * If this VM has mirrors, "transfer" each mirror's refcount of the
1985 * source to the destination (this KVM). The caller holds a reference
1986 * to the source, so there's no danger of use-after-free.
1987 */
1988 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1989 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1990 kvm_get_kvm(dst_kvm);
1991 kvm_put_kvm(src_kvm);
1992 mirror->enc_context_owner = dst_kvm;
1993 }
1994
1995 /*
1996 * If this VM is a mirror, remove the old mirror from the owners list
1997 * and add the new mirror to the list.
1998 */
1999 if (is_mirroring_enc_context(dst_kvm)) {
2000 struct kvm_sev_info *owner_sev_info = to_kvm_sev_info(dst->enc_context_owner);
2001
2002 list_del(&src->mirror_entry);
2003 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
2004 }
2005
2006 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
2007 dst_svm = to_svm(dst_vcpu);
2008
2009 sev_init_vmcb(dst_svm, false);
2010
2011 if (!dst->es_active)
2012 continue;
2013
2014 /*
2015 * Note, the source is not required to have the same number of
2016 * vCPUs as the destination when migrating a vanilla SEV VM.
2017 */
2018 src_vcpu = kvm_get_vcpu(src_kvm, i);
2019 src_svm = to_svm(src_vcpu);
2020
2021 /*
2022 * Transfer VMSA and GHCB state to the destination. Nullify and
2023 * clear source fields as appropriate, the state now belongs to
2024 * the destination.
2025 */
2026 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
2027 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
2028 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
2029 dst_vcpu->arch.guest_state_protected = true;
2030
2031 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
2032 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
2033 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
2034 src_vcpu->arch.guest_state_protected = false;
2035 }
2036 }
2037
sev_check_source_vcpus(struct kvm * dst,struct kvm * src)2038 static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
2039 {
2040 struct kvm_vcpu *src_vcpu;
2041 unsigned long i;
2042
2043 if (src->created_vcpus != atomic_read(&src->online_vcpus) ||
2044 dst->created_vcpus != atomic_read(&dst->online_vcpus))
2045 return -EBUSY;
2046
2047 if (!sev_es_guest(src))
2048 return 0;
2049
2050 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
2051 return -EINVAL;
2052
2053 kvm_for_each_vcpu(i, src_vcpu, src) {
2054 if (!src_vcpu->arch.guest_state_protected)
2055 return -EINVAL;
2056 }
2057
2058 return 0;
2059 }
2060
sev_vm_move_enc_context_from(struct kvm * kvm,unsigned int source_fd)2061 int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2062 {
2063 struct kvm_sev_info *dst_sev = to_kvm_sev_info(kvm);
2064 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
2065 CLASS(fd, f)(source_fd);
2066 struct kvm *source_kvm;
2067 bool charged = false;
2068 int ret;
2069
2070 if (fd_empty(f))
2071 return -EBADF;
2072
2073 if (!file_is_kvm(fd_file(f)))
2074 return -EBADF;
2075
2076 source_kvm = fd_file(f)->private_data;
2077 ret = sev_lock_two_vms(kvm, source_kvm);
2078 if (ret)
2079 return ret;
2080
2081 if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
2082 sev_guest(kvm) || !sev_guest(source_kvm)) {
2083 ret = -EINVAL;
2084 goto out_unlock;
2085 }
2086
2087 src_sev = to_kvm_sev_info(source_kvm);
2088
2089 dst_sev->misc_cg = get_current_misc_cg();
2090 cg_cleanup_sev = dst_sev;
2091 if (dst_sev->misc_cg != src_sev->misc_cg) {
2092 ret = sev_misc_cg_try_charge(dst_sev);
2093 if (ret)
2094 goto out_dst_cgroup;
2095 charged = true;
2096 }
2097
2098 ret = kvm_lock_all_vcpus(kvm);
2099 if (ret)
2100 goto out_dst_cgroup;
2101 ret = kvm_lock_all_vcpus(source_kvm);
2102 if (ret)
2103 goto out_dst_vcpu;
2104
2105 ret = sev_check_source_vcpus(kvm, source_kvm);
2106 if (ret)
2107 goto out_source_vcpu;
2108
2109 /*
2110 * Allocate a new have_run_cpus for the destination, i.e. don't copy
2111 * the set of CPUs from the source. If a CPU was used to run a vCPU in
2112 * the source VM but is never used for the destination VM, then the CPU
2113 * can only have cached memory that was accessible to the source VM.
2114 */
2115 if (!zalloc_cpumask_var(&dst_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2116 ret = -ENOMEM;
2117 goto out_source_vcpu;
2118 }
2119
2120 sev_migrate_from(kvm, source_kvm);
2121 kvm_vm_dead(source_kvm);
2122 cg_cleanup_sev = src_sev;
2123 ret = 0;
2124
2125 out_source_vcpu:
2126 kvm_unlock_all_vcpus(source_kvm);
2127 out_dst_vcpu:
2128 kvm_unlock_all_vcpus(kvm);
2129 out_dst_cgroup:
2130 /* Operates on the source on success, on the destination on failure. */
2131 if (charged)
2132 sev_misc_cg_uncharge(cg_cleanup_sev);
2133 put_misc_cg(cg_cleanup_sev->misc_cg);
2134 cg_cleanup_sev->misc_cg = NULL;
2135 out_unlock:
2136 sev_unlock_two_vms(kvm, source_kvm);
2137 return ret;
2138 }
2139
sev_dev_get_attr(u32 group,u64 attr,u64 * val)2140 int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
2141 {
2142 if (group != KVM_X86_GRP_SEV)
2143 return -ENXIO;
2144
2145 switch (attr) {
2146 case KVM_X86_SEV_VMSA_FEATURES:
2147 *val = sev_supported_vmsa_features;
2148 return 0;
2149
2150 case KVM_X86_SNP_POLICY_BITS:
2151 *val = snp_supported_policy_bits;
2152 return 0;
2153
2154 default:
2155 return -ENXIO;
2156 }
2157 }
2158
2159 /*
2160 * The guest context contains all the information, keys and metadata
2161 * associated with the guest that the firmware tracks to implement SEV
2162 * and SNP features. The firmware stores the guest context in hypervisor
2163 * provide page via the SNP_GCTX_CREATE command.
2164 */
snp_context_create(struct kvm * kvm,struct kvm_sev_cmd * argp)2165 static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
2166 {
2167 struct sev_data_snp_addr data = {};
2168 void *context;
2169 int rc;
2170
2171 /* Allocate memory for context page */
2172 context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
2173 if (!context)
2174 return NULL;
2175
2176 data.address = __psp_pa(context);
2177 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
2178 if (rc) {
2179 pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
2180 rc, argp->error);
2181 snp_free_firmware_page(context);
2182 return NULL;
2183 }
2184
2185 return context;
2186 }
2187
snp_bind_asid(struct kvm * kvm,int * error)2188 static int snp_bind_asid(struct kvm *kvm, int *error)
2189 {
2190 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2191 struct sev_data_snp_activate data = {0};
2192
2193 data.gctx_paddr = __psp_pa(sev->snp_context);
2194 data.asid = sev_get_asid(kvm);
2195 return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
2196 }
2197
snp_launch_start(struct kvm * kvm,struct kvm_sev_cmd * argp)2198 static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
2199 {
2200 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2201 struct sev_data_snp_launch_start start = {0};
2202 struct kvm_sev_snp_launch_start params;
2203 int rc;
2204
2205 if (!sev_snp_guest(kvm))
2206 return -ENOTTY;
2207
2208 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2209 return -EFAULT;
2210
2211 /* Don't allow userspace to allocate memory for more than 1 SNP context. */
2212 if (sev->snp_context)
2213 return -EINVAL;
2214
2215 if (params.flags)
2216 return -EINVAL;
2217
2218 if (params.policy & ~snp_supported_policy_bits)
2219 return -EINVAL;
2220
2221 /* Check for policy bits that must be set */
2222 if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO))
2223 return -EINVAL;
2224
2225 if (snp_is_secure_tsc_enabled(kvm)) {
2226 if (WARN_ON_ONCE(!kvm->arch.default_tsc_khz))
2227 return -EINVAL;
2228
2229 start.desired_tsc_khz = kvm->arch.default_tsc_khz;
2230 }
2231
2232 sev->snp_context = snp_context_create(kvm, argp);
2233 if (!sev->snp_context)
2234 return -ENOTTY;
2235
2236 start.gctx_paddr = __psp_pa(sev->snp_context);
2237 start.policy = params.policy;
2238
2239 memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
2240 rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
2241 if (rc) {
2242 pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
2243 __func__, rc);
2244 goto e_free_context;
2245 }
2246
2247 sev->policy = params.policy;
2248 sev->fd = argp->sev_fd;
2249 rc = snp_bind_asid(kvm, &argp->error);
2250 if (rc) {
2251 pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
2252 __func__, rc);
2253 goto e_free_context;
2254 }
2255
2256 return 0;
2257
2258 e_free_context:
2259 snp_decommission_context(kvm);
2260
2261 return rc;
2262 }
2263
2264 struct sev_gmem_populate_args {
2265 __u8 type;
2266 int sev_fd;
2267 int fw_error;
2268 };
2269
sev_gmem_post_populate(struct kvm * kvm,gfn_t gfn_start,kvm_pfn_t pfn,void __user * src,int order,void * opaque)2270 static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
2271 void __user *src, int order, void *opaque)
2272 {
2273 struct sev_gmem_populate_args *sev_populate_args = opaque;
2274 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2275 int n_private = 0, ret, i;
2276 int npages = (1 << order);
2277 gfn_t gfn;
2278
2279 if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
2280 return -EINVAL;
2281
2282 for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
2283 struct sev_data_snp_launch_update fw_args = {0};
2284 bool assigned = false;
2285 int level;
2286
2287 ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
2288 if (ret || assigned) {
2289 pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
2290 __func__, gfn, ret, assigned);
2291 ret = ret ? -EINVAL : -EEXIST;
2292 goto err;
2293 }
2294
2295 if (src) {
2296 void *vaddr = kmap_local_pfn(pfn + i);
2297
2298 if (copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE)) {
2299 ret = -EFAULT;
2300 goto err;
2301 }
2302 kunmap_local(vaddr);
2303 }
2304
2305 ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
2306 sev_get_asid(kvm), true);
2307 if (ret)
2308 goto err;
2309
2310 n_private++;
2311
2312 fw_args.gctx_paddr = __psp_pa(sev->snp_context);
2313 fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
2314 fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
2315 fw_args.page_type = sev_populate_args->type;
2316
2317 ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2318 &fw_args, &sev_populate_args->fw_error);
2319 if (ret)
2320 goto fw_err;
2321 }
2322
2323 return 0;
2324
2325 fw_err:
2326 /*
2327 * If the firmware command failed handle the reclaim and cleanup of that
2328 * PFN specially vs. prior pages which can be cleaned up below without
2329 * needing to reclaim in advance.
2330 *
2331 * Additionally, when invalid CPUID function entries are detected,
2332 * firmware writes the expected values into the page and leaves it
2333 * unencrypted so it can be used for debugging and error-reporting.
2334 *
2335 * Copy this page back into the source buffer so userspace can use this
2336 * information to provide information on which CPUID leaves/fields
2337 * failed CPUID validation.
2338 */
2339 if (!snp_page_reclaim(kvm, pfn + i) &&
2340 sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
2341 sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
2342 void *vaddr = kmap_local_pfn(pfn + i);
2343
2344 if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
2345 pr_debug("Failed to write CPUID page back to userspace\n");
2346
2347 kunmap_local(vaddr);
2348 }
2349
2350 /* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
2351 n_private--;
2352
2353 err:
2354 pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
2355 __func__, ret, sev_populate_args->fw_error, n_private);
2356 for (i = 0; i < n_private; i++)
2357 kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);
2358
2359 return ret;
2360 }
2361
snp_launch_update(struct kvm * kvm,struct kvm_sev_cmd * argp)2362 static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
2363 {
2364 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2365 struct sev_gmem_populate_args sev_populate_args = {0};
2366 struct kvm_sev_snp_launch_update params;
2367 struct kvm_memory_slot *memslot;
2368 long npages, count;
2369 void __user *src;
2370 int ret = 0;
2371
2372 if (!sev_snp_guest(kvm) || !sev->snp_context)
2373 return -EINVAL;
2374
2375 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2376 return -EFAULT;
2377
2378 pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
2379 params.gfn_start, params.len, params.type, params.flags);
2380
2381 if (!params.len || !PAGE_ALIGNED(params.len) || params.flags ||
2382 (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
2383 params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
2384 params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
2385 params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
2386 params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
2387 return -EINVAL;
2388
2389 npages = params.len / PAGE_SIZE;
2390
2391 /*
2392 * For each GFN that's being prepared as part of the initial guest
2393 * state, the following pre-conditions are verified:
2394 *
2395 * 1) The backing memslot is a valid private memslot.
2396 * 2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
2397 * beforehand.
2398 * 3) The PFN of the guest_memfd has not already been set to private
2399 * in the RMP table.
2400 *
2401 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
2402 * faults if there's a race between a fault and an attribute update via
2403 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
2404 * here. However, kvm->slots_lock guards against both this as well as
2405 * concurrent memslot updates occurring while these checks are being
2406 * performed, so use that here to make it easier to reason about the
2407 * initial expected state and better guard against unexpected
2408 * situations.
2409 */
2410 mutex_lock(&kvm->slots_lock);
2411
2412 memslot = gfn_to_memslot(kvm, params.gfn_start);
2413 if (!kvm_slot_has_gmem(memslot)) {
2414 ret = -EINVAL;
2415 goto out;
2416 }
2417
2418 sev_populate_args.sev_fd = argp->sev_fd;
2419 sev_populate_args.type = params.type;
2420 src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);
2421
2422 count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
2423 sev_gmem_post_populate, &sev_populate_args);
2424 if (count < 0) {
2425 argp->error = sev_populate_args.fw_error;
2426 pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
2427 __func__, count, argp->error);
2428 ret = -EIO;
2429 } else {
2430 params.gfn_start += count;
2431 params.len -= count * PAGE_SIZE;
2432 if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
2433 params.uaddr += count * PAGE_SIZE;
2434
2435 ret = 0;
2436 if (copy_to_user(u64_to_user_ptr(argp->data), ¶ms, sizeof(params)))
2437 ret = -EFAULT;
2438 }
2439
2440 out:
2441 mutex_unlock(&kvm->slots_lock);
2442
2443 return ret;
2444 }
2445
snp_launch_update_vmsa(struct kvm * kvm,struct kvm_sev_cmd * argp)2446 static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
2447 {
2448 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2449 struct sev_data_snp_launch_update data = {};
2450 struct kvm_vcpu *vcpu;
2451 unsigned long i;
2452 int ret;
2453
2454 data.gctx_paddr = __psp_pa(sev->snp_context);
2455 data.page_type = SNP_PAGE_TYPE_VMSA;
2456
2457 kvm_for_each_vcpu(i, vcpu, kvm) {
2458 struct vcpu_svm *svm = to_svm(vcpu);
2459 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
2460
2461 ret = sev_es_sync_vmsa(svm);
2462 if (ret)
2463 return ret;
2464
2465 /* Transition the VMSA page to a firmware state. */
2466 ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
2467 if (ret)
2468 return ret;
2469
2470 /* Issue the SNP command to encrypt the VMSA */
2471 data.address = __sme_pa(svm->sev_es.vmsa);
2472 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
2473 &data, &argp->error);
2474 if (ret) {
2475 snp_page_reclaim(kvm, pfn);
2476
2477 return ret;
2478 }
2479
2480 svm->vcpu.arch.guest_state_protected = true;
2481 /*
2482 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
2483 * be _always_ ON. Enable it only after setting
2484 * guest_state_protected because KVM_SET_MSRS allows dynamic
2485 * toggling of LBRV (for performance reason) on write access to
2486 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
2487 */
2488 svm_enable_lbrv(vcpu);
2489 }
2490
2491 return 0;
2492 }
2493
snp_launch_finish(struct kvm * kvm,struct kvm_sev_cmd * argp)2494 static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
2495 {
2496 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2497 struct kvm_sev_snp_launch_finish params;
2498 struct sev_data_snp_launch_finish *data;
2499 void *id_block = NULL, *id_auth = NULL;
2500 int ret;
2501
2502 if (!sev_snp_guest(kvm))
2503 return -ENOTTY;
2504
2505 if (!sev->snp_context)
2506 return -EINVAL;
2507
2508 if (copy_from_user(¶ms, u64_to_user_ptr(argp->data), sizeof(params)))
2509 return -EFAULT;
2510
2511 if (params.flags)
2512 return -EINVAL;
2513
2514 /* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
2515 ret = snp_launch_update_vmsa(kvm, argp);
2516 if (ret)
2517 return ret;
2518
2519 data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
2520 if (!data)
2521 return -ENOMEM;
2522
2523 if (params.id_block_en) {
2524 id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
2525 if (IS_ERR(id_block)) {
2526 ret = PTR_ERR(id_block);
2527 goto e_free;
2528 }
2529
2530 data->id_block_en = 1;
2531 data->id_block_paddr = __sme_pa(id_block);
2532
2533 id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
2534 if (IS_ERR(id_auth)) {
2535 ret = PTR_ERR(id_auth);
2536 goto e_free_id_block;
2537 }
2538
2539 data->id_auth_paddr = __sme_pa(id_auth);
2540
2541 if (params.auth_key_en)
2542 data->auth_key_en = 1;
2543 }
2544
2545 data->vcek_disabled = params.vcek_disabled;
2546
2547 memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
2548 data->gctx_paddr = __psp_pa(sev->snp_context);
2549 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);
2550
2551 /*
2552 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
2553 * can be given to the guest simply by marking the RMP entry as private.
2554 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
2555 */
2556 if (!ret)
2557 kvm->arch.pre_fault_allowed = true;
2558
2559 kfree(id_auth);
2560
2561 e_free_id_block:
2562 kfree(id_block);
2563
2564 e_free:
2565 kfree(data);
2566
2567 return ret;
2568 }
2569
sev_mem_enc_ioctl(struct kvm * kvm,void __user * argp)2570 int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
2571 {
2572 struct kvm_sev_cmd sev_cmd;
2573 int r;
2574
2575 if (!sev_enabled)
2576 return -ENOTTY;
2577
2578 if (!argp)
2579 return 0;
2580
2581 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
2582 return -EFAULT;
2583
2584 mutex_lock(&kvm->lock);
2585
2586 /* Only the enc_context_owner handles some memory enc operations. */
2587 if (is_mirroring_enc_context(kvm) &&
2588 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
2589 r = -EINVAL;
2590 goto out;
2591 }
2592
2593 /*
2594 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
2595 * allow the use of SNP-specific commands.
2596 */
2597 if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
2598 r = -EPERM;
2599 goto out;
2600 }
2601
2602 switch (sev_cmd.id) {
2603 case KVM_SEV_ES_INIT:
2604 if (!sev_es_enabled) {
2605 r = -ENOTTY;
2606 goto out;
2607 }
2608 fallthrough;
2609 case KVM_SEV_INIT:
2610 r = sev_guest_init(kvm, &sev_cmd);
2611 break;
2612 case KVM_SEV_INIT2:
2613 r = sev_guest_init2(kvm, &sev_cmd);
2614 break;
2615 case KVM_SEV_LAUNCH_START:
2616 r = sev_launch_start(kvm, &sev_cmd);
2617 break;
2618 case KVM_SEV_LAUNCH_UPDATE_DATA:
2619 r = sev_launch_update_data(kvm, &sev_cmd);
2620 break;
2621 case KVM_SEV_LAUNCH_UPDATE_VMSA:
2622 r = sev_launch_update_vmsa(kvm, &sev_cmd);
2623 break;
2624 case KVM_SEV_LAUNCH_MEASURE:
2625 r = sev_launch_measure(kvm, &sev_cmd);
2626 break;
2627 case KVM_SEV_LAUNCH_FINISH:
2628 r = sev_launch_finish(kvm, &sev_cmd);
2629 break;
2630 case KVM_SEV_GUEST_STATUS:
2631 r = sev_guest_status(kvm, &sev_cmd);
2632 break;
2633 case KVM_SEV_DBG_DECRYPT:
2634 r = sev_dbg_crypt(kvm, &sev_cmd, true);
2635 break;
2636 case KVM_SEV_DBG_ENCRYPT:
2637 r = sev_dbg_crypt(kvm, &sev_cmd, false);
2638 break;
2639 case KVM_SEV_LAUNCH_SECRET:
2640 r = sev_launch_secret(kvm, &sev_cmd);
2641 break;
2642 case KVM_SEV_GET_ATTESTATION_REPORT:
2643 r = sev_get_attestation_report(kvm, &sev_cmd);
2644 break;
2645 case KVM_SEV_SEND_START:
2646 r = sev_send_start(kvm, &sev_cmd);
2647 break;
2648 case KVM_SEV_SEND_UPDATE_DATA:
2649 r = sev_send_update_data(kvm, &sev_cmd);
2650 break;
2651 case KVM_SEV_SEND_FINISH:
2652 r = sev_send_finish(kvm, &sev_cmd);
2653 break;
2654 case KVM_SEV_SEND_CANCEL:
2655 r = sev_send_cancel(kvm, &sev_cmd);
2656 break;
2657 case KVM_SEV_RECEIVE_START:
2658 r = sev_receive_start(kvm, &sev_cmd);
2659 break;
2660 case KVM_SEV_RECEIVE_UPDATE_DATA:
2661 r = sev_receive_update_data(kvm, &sev_cmd);
2662 break;
2663 case KVM_SEV_RECEIVE_FINISH:
2664 r = sev_receive_finish(kvm, &sev_cmd);
2665 break;
2666 case KVM_SEV_SNP_LAUNCH_START:
2667 r = snp_launch_start(kvm, &sev_cmd);
2668 break;
2669 case KVM_SEV_SNP_LAUNCH_UPDATE:
2670 r = snp_launch_update(kvm, &sev_cmd);
2671 break;
2672 case KVM_SEV_SNP_LAUNCH_FINISH:
2673 r = snp_launch_finish(kvm, &sev_cmd);
2674 break;
2675 default:
2676 r = -EINVAL;
2677 goto out;
2678 }
2679
2680 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
2681 r = -EFAULT;
2682
2683 out:
2684 mutex_unlock(&kvm->lock);
2685 return r;
2686 }
2687
sev_mem_enc_register_region(struct kvm * kvm,struct kvm_enc_region * range)2688 int sev_mem_enc_register_region(struct kvm *kvm,
2689 struct kvm_enc_region *range)
2690 {
2691 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2692 struct enc_region *region;
2693 int ret = 0;
2694
2695 if (!sev_guest(kvm))
2696 return -ENOTTY;
2697
2698 /* If kvm is mirroring encryption context it isn't responsible for it */
2699 if (is_mirroring_enc_context(kvm))
2700 return -EINVAL;
2701
2702 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
2703 return -EINVAL;
2704
2705 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
2706 if (!region)
2707 return -ENOMEM;
2708
2709 mutex_lock(&kvm->lock);
2710 region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages,
2711 FOLL_WRITE | FOLL_LONGTERM);
2712 if (IS_ERR(region->pages)) {
2713 ret = PTR_ERR(region->pages);
2714 mutex_unlock(&kvm->lock);
2715 goto e_free;
2716 }
2717
2718 /*
2719 * The guest may change the memory encryption attribute from C=0 -> C=1
2720 * or vice versa for this memory range. Lets make sure caches are
2721 * flushed to ensure that guest data gets written into memory with
2722 * correct C-bit. Note, this must be done before dropping kvm->lock,
2723 * as region and its array of pages can be freed by a different task
2724 * once kvm->lock is released.
2725 */
2726 sev_clflush_pages(region->pages, region->npages);
2727
2728 region->uaddr = range->addr;
2729 region->size = range->size;
2730
2731 list_add_tail(®ion->list, &sev->regions_list);
2732 mutex_unlock(&kvm->lock);
2733
2734 return ret;
2735
2736 e_free:
2737 kfree(region);
2738 return ret;
2739 }
2740
2741 static struct enc_region *
find_enc_region(struct kvm * kvm,struct kvm_enc_region * range)2742 find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2743 {
2744 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2745 struct list_head *head = &sev->regions_list;
2746 struct enc_region *i;
2747
2748 list_for_each_entry(i, head, list) {
2749 if (i->uaddr == range->addr &&
2750 i->size == range->size)
2751 return i;
2752 }
2753
2754 return NULL;
2755 }
2756
__unregister_enc_region_locked(struct kvm * kvm,struct enc_region * region)2757 static void __unregister_enc_region_locked(struct kvm *kvm,
2758 struct enc_region *region)
2759 {
2760 sev_unpin_memory(kvm, region->pages, region->npages);
2761 list_del(®ion->list);
2762 kfree(region);
2763 }
2764
sev_mem_enc_unregister_region(struct kvm * kvm,struct kvm_enc_region * range)2765 int sev_mem_enc_unregister_region(struct kvm *kvm,
2766 struct kvm_enc_region *range)
2767 {
2768 struct enc_region *region;
2769 int ret;
2770
2771 /* If kvm is mirroring encryption context it isn't responsible for it */
2772 if (is_mirroring_enc_context(kvm))
2773 return -EINVAL;
2774
2775 mutex_lock(&kvm->lock);
2776
2777 if (!sev_guest(kvm)) {
2778 ret = -ENOTTY;
2779 goto failed;
2780 }
2781
2782 region = find_enc_region(kvm, range);
2783 if (!region) {
2784 ret = -EINVAL;
2785 goto failed;
2786 }
2787
2788 sev_writeback_caches(kvm);
2789
2790 __unregister_enc_region_locked(kvm, region);
2791
2792 mutex_unlock(&kvm->lock);
2793 return 0;
2794
2795 failed:
2796 mutex_unlock(&kvm->lock);
2797 return ret;
2798 }
2799
sev_vm_copy_enc_context_from(struct kvm * kvm,unsigned int source_fd)2800 int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2801 {
2802 CLASS(fd, f)(source_fd);
2803 struct kvm *source_kvm;
2804 struct kvm_sev_info *source_sev, *mirror_sev;
2805 int ret;
2806
2807 if (fd_empty(f))
2808 return -EBADF;
2809
2810 if (!file_is_kvm(fd_file(f)))
2811 return -EBADF;
2812
2813 source_kvm = fd_file(f)->private_data;
2814 ret = sev_lock_two_vms(kvm, source_kvm);
2815 if (ret)
2816 return ret;
2817
2818 /*
2819 * Mirrors of mirrors should work, but let's not get silly. Also
2820 * disallow out-of-band SEV/SEV-ES init if the target is already an
2821 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2822 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2823 */
2824 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2825 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2826 ret = -EINVAL;
2827 goto e_unlock;
2828 }
2829
2830 mirror_sev = to_kvm_sev_info(kvm);
2831 if (!zalloc_cpumask_var(&mirror_sev->have_run_cpus, GFP_KERNEL_ACCOUNT)) {
2832 ret = -ENOMEM;
2833 goto e_unlock;
2834 }
2835
2836 /*
2837 * The mirror kvm holds an enc_context_owner ref so its asid can't
2838 * disappear until we're done with it
2839 */
2840 source_sev = to_kvm_sev_info(source_kvm);
2841 kvm_get_kvm(source_kvm);
2842 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2843
2844 /* Set enc_context_owner and copy its encryption context over */
2845 mirror_sev->enc_context_owner = source_kvm;
2846 mirror_sev->active = true;
2847 mirror_sev->asid = source_sev->asid;
2848 mirror_sev->fd = source_sev->fd;
2849 mirror_sev->es_active = source_sev->es_active;
2850 mirror_sev->need_init = false;
2851 mirror_sev->handle = source_sev->handle;
2852 INIT_LIST_HEAD(&mirror_sev->regions_list);
2853 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2854 ret = 0;
2855
2856 /*
2857 * Do not copy ap_jump_table. Since the mirror does not share the same
2858 * KVM contexts as the original, and they may have different
2859 * memory-views.
2860 */
2861
2862 e_unlock:
2863 sev_unlock_two_vms(kvm, source_kvm);
2864 return ret;
2865 }
2866
snp_decommission_context(struct kvm * kvm)2867 static int snp_decommission_context(struct kvm *kvm)
2868 {
2869 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2870 struct sev_data_snp_addr data = {};
2871 int ret;
2872
2873 /* If context is not created then do nothing */
2874 if (!sev->snp_context)
2875 return 0;
2876
2877 /* Do the decommision, which will unbind the ASID from the SNP context */
2878 data.address = __sme_pa(sev->snp_context);
2879 down_write(&sev_deactivate_lock);
2880 ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
2881 up_write(&sev_deactivate_lock);
2882
2883 if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
2884 return ret;
2885
2886 snp_free_firmware_page(sev->snp_context);
2887 sev->snp_context = NULL;
2888
2889 return 0;
2890 }
2891
sev_vm_destroy(struct kvm * kvm)2892 void sev_vm_destroy(struct kvm *kvm)
2893 {
2894 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
2895 struct list_head *head = &sev->regions_list;
2896 struct list_head *pos, *q;
2897
2898 if (!sev_guest(kvm))
2899 return;
2900
2901 WARN_ON(!list_empty(&sev->mirror_vms));
2902
2903 free_cpumask_var(sev->have_run_cpus);
2904
2905 /*
2906 * If this is a mirror VM, remove it from the owner's list of a mirrors
2907 * and skip ASID cleanup (the ASID is tied to the lifetime of the owner).
2908 * Note, mirror VMs don't support registering encrypted regions.
2909 */
2910 if (is_mirroring_enc_context(kvm)) {
2911 struct kvm *owner_kvm = sev->enc_context_owner;
2912
2913 mutex_lock(&owner_kvm->lock);
2914 list_del(&sev->mirror_entry);
2915 mutex_unlock(&owner_kvm->lock);
2916 kvm_put_kvm(owner_kvm);
2917 return;
2918 }
2919
2920
2921 /*
2922 * if userspace was terminated before unregistering the memory regions
2923 * then lets unpin all the registered memory.
2924 */
2925 if (!list_empty(head)) {
2926 list_for_each_safe(pos, q, head) {
2927 __unregister_enc_region_locked(kvm,
2928 list_entry(pos, struct enc_region, list));
2929 cond_resched();
2930 }
2931 }
2932
2933 if (sev_snp_guest(kvm)) {
2934 snp_guest_req_cleanup(kvm);
2935
2936 /*
2937 * Decomission handles unbinding of the ASID. If it fails for
2938 * some unexpected reason, just leak the ASID.
2939 */
2940 if (snp_decommission_context(kvm))
2941 return;
2942 } else {
2943 sev_unbind_asid(kvm, sev->handle);
2944 }
2945
2946 sev_asid_free(sev);
2947 }
2948
sev_set_cpu_caps(void)2949 void __init sev_set_cpu_caps(void)
2950 {
2951 if (sev_enabled) {
2952 kvm_cpu_cap_set(X86_FEATURE_SEV);
2953 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
2954 }
2955 if (sev_es_enabled) {
2956 kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
2957 kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
2958 }
2959 if (sev_snp_enabled) {
2960 kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
2961 kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
2962 }
2963 }
2964
is_sev_snp_initialized(void)2965 static bool is_sev_snp_initialized(void)
2966 {
2967 struct sev_user_data_snp_status *status;
2968 struct sev_data_snp_addr buf;
2969 bool initialized = false;
2970 int ret, error = 0;
2971
2972 status = snp_alloc_firmware_page(GFP_KERNEL | __GFP_ZERO);
2973 if (!status)
2974 return false;
2975
2976 buf.address = __psp_pa(status);
2977 ret = sev_do_cmd(SEV_CMD_SNP_PLATFORM_STATUS, &buf, &error);
2978 if (ret) {
2979 pr_err("SEV: SNP_PLATFORM_STATUS failed ret=%d, fw_error=%d (%#x)\n",
2980 ret, error, error);
2981 goto out;
2982 }
2983
2984 initialized = !!status->state;
2985
2986 out:
2987 snp_free_firmware_page(status);
2988
2989 return initialized;
2990 }
2991
sev_hardware_setup(void)2992 void __init sev_hardware_setup(void)
2993 {
2994 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2995 struct sev_platform_init_args init_args = {0};
2996 bool sev_snp_supported = false;
2997 bool sev_es_supported = false;
2998 bool sev_supported = false;
2999
3000 if (!sev_enabled || !npt_enabled || !nrips)
3001 goto out;
3002
3003 /*
3004 * SEV must obviously be supported in hardware. Sanity check that the
3005 * CPU supports decode assists, which is mandatory for SEV guests to
3006 * support instruction emulation. Ditto for flushing by ASID, as SEV
3007 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
3008 * ASID to effect a TLB flush.
3009 */
3010 if (!boot_cpu_has(X86_FEATURE_SEV) ||
3011 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
3012 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
3013 goto out;
3014
3015 /*
3016 * The kernel's initcall infrastructure lacks the ability to express
3017 * dependencies between initcalls, whereas the modules infrastructure
3018 * automatically handles dependencies via symbol loading. Ensure the
3019 * PSP SEV driver is initialized before proceeding if KVM is built-in,
3020 * as the dependency isn't handled by the initcall infrastructure.
3021 */
3022 if (IS_BUILTIN(CONFIG_KVM_AMD) && sev_module_init())
3023 goto out;
3024
3025 /* Retrieve SEV CPUID information */
3026 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
3027
3028 /* Set encryption bit location for SEV-ES guests */
3029 sev_enc_bit = ebx & 0x3f;
3030
3031 /* Maximum number of encrypted guests supported simultaneously */
3032 max_sev_asid = ecx;
3033 if (!max_sev_asid)
3034 goto out;
3035
3036 /* Minimum ASID value that should be used for SEV guest */
3037 min_sev_asid = edx;
3038 sev_me_mask = 1UL << (ebx & 0x3f);
3039
3040 /*
3041 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
3042 * even though it's never used, so that the bitmap is indexed by the
3043 * actual ASID.
3044 */
3045 nr_asids = max_sev_asid + 1;
3046 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3047 if (!sev_asid_bitmap)
3048 goto out;
3049
3050 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
3051 if (!sev_reclaim_asid_bitmap) {
3052 bitmap_free(sev_asid_bitmap);
3053 sev_asid_bitmap = NULL;
3054 goto out;
3055 }
3056
3057 if (min_sev_asid <= max_sev_asid) {
3058 sev_asid_count = max_sev_asid - min_sev_asid + 1;
3059 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
3060 }
3061 sev_supported = true;
3062
3063 /* SEV-ES support requested? */
3064 if (!sev_es_enabled)
3065 goto out;
3066
3067 /*
3068 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
3069 * instruction stream, i.e. can't emulate in response to a #NPF and
3070 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
3071 * (the guest can then do a #VMGEXIT to request MMIO emulation).
3072 */
3073 if (!enable_mmio_caching)
3074 goto out;
3075
3076 /* Does the CPU support SEV-ES? */
3077 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
3078 goto out;
3079
3080 if (!lbrv) {
3081 WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
3082 "LBRV must be present for SEV-ES support");
3083 goto out;
3084 }
3085
3086 /* Has the system been allocated ASIDs for SEV-ES? */
3087 if (min_sev_asid == 1)
3088 goto out;
3089
3090 min_sev_es_asid = min_snp_asid = 1;
3091 max_sev_es_asid = max_snp_asid = min_sev_asid - 1;
3092
3093 sev_es_asid_count = min_sev_asid - 1;
3094 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
3095 sev_es_supported = true;
3096 sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);
3097
3098 out:
3099 if (sev_enabled) {
3100 init_args.probe = true;
3101
3102 if (sev_is_snp_ciphertext_hiding_supported())
3103 init_args.max_snp_asid = min(nr_ciphertext_hiding_asids,
3104 min_sev_asid - 1);
3105
3106 if (sev_platform_init(&init_args))
3107 sev_supported = sev_es_supported = sev_snp_supported = false;
3108 else if (sev_snp_supported)
3109 sev_snp_supported = is_sev_snp_initialized();
3110
3111 if (sev_snp_supported) {
3112 snp_supported_policy_bits = sev_get_snp_policy_bits() &
3113 KVM_SNP_POLICY_MASK_VALID;
3114 nr_ciphertext_hiding_asids = init_args.max_snp_asid;
3115 }
3116
3117 /*
3118 * If ciphertext hiding is enabled, the joint SEV-ES/SEV-SNP
3119 * ASID range is partitioned into separate SEV-ES and SEV-SNP
3120 * ASID ranges, with the SEV-SNP range being [1..max_snp_asid]
3121 * and the SEV-ES range being (max_snp_asid..max_sev_es_asid].
3122 * Note, SEV-ES may effectively be disabled if all ASIDs from
3123 * the joint range are assigned to SEV-SNP.
3124 */
3125 if (nr_ciphertext_hiding_asids) {
3126 max_snp_asid = nr_ciphertext_hiding_asids;
3127 min_sev_es_asid = max_snp_asid + 1;
3128 pr_info("SEV-SNP ciphertext hiding enabled\n");
3129 }
3130 }
3131
3132 if (boot_cpu_has(X86_FEATURE_SEV))
3133 pr_info("SEV %s (ASIDs %u - %u)\n",
3134 sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
3135 "unusable" :
3136 "disabled",
3137 min_sev_asid, max_sev_asid);
3138 if (boot_cpu_has(X86_FEATURE_SEV_ES))
3139 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
3140 sev_es_supported ? min_sev_es_asid <= max_sev_es_asid ? "enabled" :
3141 "unusable" :
3142 "disabled",
3143 min_sev_es_asid, max_sev_es_asid);
3144 if (boot_cpu_has(X86_FEATURE_SEV_SNP))
3145 pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
3146 str_enabled_disabled(sev_snp_supported),
3147 min_snp_asid, max_snp_asid);
3148
3149 sev_enabled = sev_supported;
3150 sev_es_enabled = sev_es_supported;
3151 sev_snp_enabled = sev_snp_supported;
3152
3153 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
3154 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
3155 sev_es_debug_swap_enabled = false;
3156
3157 sev_supported_vmsa_features = 0;
3158 if (sev_es_debug_swap_enabled)
3159 sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
3160
3161 if (sev_snp_enabled && tsc_khz && cpu_feature_enabled(X86_FEATURE_SNP_SECURE_TSC))
3162 sev_supported_vmsa_features |= SVM_SEV_FEAT_SECURE_TSC;
3163 }
3164
sev_hardware_unsetup(void)3165 void sev_hardware_unsetup(void)
3166 {
3167 if (!sev_enabled)
3168 return;
3169
3170 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
3171 sev_flush_asids(1, max_sev_asid);
3172
3173 bitmap_free(sev_asid_bitmap);
3174 bitmap_free(sev_reclaim_asid_bitmap);
3175
3176 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
3177 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
3178
3179 sev_platform_shutdown();
3180 }
3181
sev_cpu_init(struct svm_cpu_data * sd)3182 int sev_cpu_init(struct svm_cpu_data *sd)
3183 {
3184 if (!sev_enabled)
3185 return 0;
3186
3187 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
3188 if (!sd->sev_vmcbs)
3189 return -ENOMEM;
3190
3191 return 0;
3192 }
3193
3194 /*
3195 * Pages used by hardware to hold guest encrypted state must be flushed before
3196 * returning them to the system.
3197 */
sev_flush_encrypted_page(struct kvm_vcpu * vcpu,void * va)3198 static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
3199 {
3200 unsigned int asid = sev_get_asid(vcpu->kvm);
3201
3202 /*
3203 * Note! The address must be a kernel address, as regular page walk
3204 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
3205 * address is non-deterministic and unsafe. This function deliberately
3206 * takes a pointer to deter passing in a user address.
3207 */
3208 unsigned long addr = (unsigned long)va;
3209
3210 /*
3211 * If CPU enforced cache coherency for encrypted mappings of the
3212 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
3213 * flush is still needed in order to work properly with DMA devices.
3214 */
3215 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
3216 clflush_cache_range(va, PAGE_SIZE);
3217 return;
3218 }
3219
3220 /*
3221 * VM Page Flush takes a host virtual address and a guest ASID. Fall
3222 * back to full writeback of caches if this faults so as not to make
3223 * any problems worse by leaving stale encrypted data in the cache.
3224 */
3225 if (WARN_ON_ONCE(wrmsrq_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
3226 goto do_sev_writeback_caches;
3227
3228 return;
3229
3230 do_sev_writeback_caches:
3231 sev_writeback_caches(vcpu->kvm);
3232 }
3233
sev_guest_memory_reclaimed(struct kvm * kvm)3234 void sev_guest_memory_reclaimed(struct kvm *kvm)
3235 {
3236 /*
3237 * With SNP+gmem, private/encrypted memory is unreachable via the
3238 * hva-based mmu notifiers, i.e. these events are explicitly scoped to
3239 * shared pages, where there's no need to flush caches.
3240 */
3241 if (!sev_guest(kvm) || sev_snp_guest(kvm))
3242 return;
3243
3244 sev_writeback_caches(kvm);
3245 }
3246
sev_free_vcpu(struct kvm_vcpu * vcpu)3247 void sev_free_vcpu(struct kvm_vcpu *vcpu)
3248 {
3249 struct vcpu_svm *svm;
3250
3251 if (!sev_es_guest(vcpu->kvm))
3252 return;
3253
3254 svm = to_svm(vcpu);
3255
3256 /*
3257 * If it's an SNP guest, then the VMSA was marked in the RMP table as
3258 * a guest-owned page. Transition the page to hypervisor state before
3259 * releasing it back to the system.
3260 */
3261 if (sev_snp_guest(vcpu->kvm)) {
3262 u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;
3263
3264 if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
3265 goto skip_vmsa_free;
3266 }
3267
3268 if (vcpu->arch.guest_state_protected)
3269 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
3270
3271 __free_page(virt_to_page(svm->sev_es.vmsa));
3272
3273 skip_vmsa_free:
3274 if (svm->sev_es.ghcb_sa_free)
3275 kvfree(svm->sev_es.ghcb_sa);
3276 }
3277
kvm_get_cached_sw_exit_code(struct vmcb_control_area * control)3278 static u64 kvm_get_cached_sw_exit_code(struct vmcb_control_area *control)
3279 {
3280 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
3281 }
3282
dump_ghcb(struct vcpu_svm * svm)3283 static void dump_ghcb(struct vcpu_svm *svm)
3284 {
3285 struct vmcb_control_area *control = &svm->vmcb->control;
3286 unsigned int nbits;
3287
3288 /* Re-use the dump_invalid_vmcb module parameter */
3289 if (!dump_invalid_vmcb) {
3290 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3291 return;
3292 }
3293
3294 nbits = sizeof(svm->sev_es.valid_bitmap) * 8;
3295
3296 /*
3297 * Print KVM's snapshot of the GHCB values that were (unsuccessfully)
3298 * used to handle the exit. If the guest has since modified the GHCB
3299 * itself, dumping the raw GHCB won't help debug why KVM was unable to
3300 * handle the VMGEXIT that KVM observed.
3301 */
3302 pr_err("GHCB (GPA=%016llx) snapshot:\n", svm->vmcb->control.ghcb_gpa);
3303 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
3304 kvm_get_cached_sw_exit_code(control), kvm_ghcb_sw_exit_code_is_valid(svm));
3305 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
3306 control->exit_info_1, kvm_ghcb_sw_exit_info_1_is_valid(svm));
3307 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
3308 control->exit_info_2, kvm_ghcb_sw_exit_info_2_is_valid(svm));
3309 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
3310 svm->sev_es.sw_scratch, kvm_ghcb_sw_scratch_is_valid(svm));
3311 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, svm->sev_es.valid_bitmap);
3312 }
3313
sev_es_sync_to_ghcb(struct vcpu_svm * svm)3314 static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
3315 {
3316 struct kvm_vcpu *vcpu = &svm->vcpu;
3317 struct ghcb *ghcb = svm->sev_es.ghcb;
3318
3319 /*
3320 * The GHCB protocol so far allows for the following data
3321 * to be returned:
3322 * GPRs RAX, RBX, RCX, RDX
3323 *
3324 * Copy their values, even if they may not have been written during the
3325 * VM-Exit. It's the guest's responsibility to not consume random data.
3326 */
3327 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
3328 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
3329 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
3330 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
3331 }
3332
sev_es_sync_from_ghcb(struct vcpu_svm * svm)3333 static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
3334 {
3335 struct vmcb_control_area *control = &svm->vmcb->control;
3336 struct kvm_vcpu *vcpu = &svm->vcpu;
3337 struct ghcb *ghcb = svm->sev_es.ghcb;
3338 u64 exit_code;
3339
3340 /*
3341 * The GHCB protocol so far allows for the following data
3342 * to be supplied:
3343 * GPRs RAX, RBX, RCX, RDX
3344 * XCR0
3345 * CPL
3346 *
3347 * VMMCALL allows the guest to provide extra registers. KVM also
3348 * expects RSI for hypercalls, so include that, too.
3349 *
3350 * Copy their values to the appropriate location if supplied.
3351 */
3352 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
3353
3354 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
3355 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
3356
3357 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm);
3358 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm);
3359 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm);
3360 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm);
3361 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm);
3362
3363 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm);
3364
3365 if (kvm_ghcb_xcr0_is_valid(svm))
3366 __kvm_set_xcr(vcpu, 0, kvm_ghcb_get_xcr0(svm));
3367
3368 if (kvm_ghcb_xss_is_valid(svm))
3369 __kvm_emulate_msr_write(vcpu, MSR_IA32_XSS, kvm_ghcb_get_xss(svm));
3370
3371 /* Copy the GHCB exit information into the VMCB fields */
3372 exit_code = kvm_ghcb_get_sw_exit_code(svm);
3373 control->exit_code = lower_32_bits(exit_code);
3374 control->exit_code_hi = upper_32_bits(exit_code);
3375 control->exit_info_1 = kvm_ghcb_get_sw_exit_info_1(svm);
3376 control->exit_info_2 = kvm_ghcb_get_sw_exit_info_2(svm);
3377 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm);
3378
3379 /* Clear the valid entries fields */
3380 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
3381 }
3382
sev_es_validate_vmgexit(struct vcpu_svm * svm)3383 static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
3384 {
3385 struct vmcb_control_area *control = &svm->vmcb->control;
3386 struct kvm_vcpu *vcpu = &svm->vcpu;
3387 u64 exit_code;
3388 u64 reason;
3389
3390 /*
3391 * Retrieve the exit code now even though it may not be marked valid
3392 * as it could help with debugging.
3393 */
3394 exit_code = kvm_get_cached_sw_exit_code(control);
3395
3396 /* Only GHCB Usage code 0 is supported */
3397 if (svm->sev_es.ghcb->ghcb_usage) {
3398 reason = GHCB_ERR_INVALID_USAGE;
3399 goto vmgexit_err;
3400 }
3401
3402 reason = GHCB_ERR_MISSING_INPUT;
3403
3404 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
3405 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
3406 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
3407 goto vmgexit_err;
3408
3409 switch (exit_code) {
3410 case SVM_EXIT_READ_DR7:
3411 break;
3412 case SVM_EXIT_WRITE_DR7:
3413 if (!kvm_ghcb_rax_is_valid(svm))
3414 goto vmgexit_err;
3415 break;
3416 case SVM_EXIT_RDTSC:
3417 break;
3418 case SVM_EXIT_RDPMC:
3419 if (!kvm_ghcb_rcx_is_valid(svm))
3420 goto vmgexit_err;
3421 break;
3422 case SVM_EXIT_CPUID:
3423 if (!kvm_ghcb_rax_is_valid(svm) ||
3424 !kvm_ghcb_rcx_is_valid(svm))
3425 goto vmgexit_err;
3426 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
3427 if (!kvm_ghcb_xcr0_is_valid(svm))
3428 goto vmgexit_err;
3429 break;
3430 case SVM_EXIT_INVD:
3431 break;
3432 case SVM_EXIT_IOIO:
3433 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
3434 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3435 goto vmgexit_err;
3436 } else {
3437 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
3438 if (!kvm_ghcb_rax_is_valid(svm))
3439 goto vmgexit_err;
3440 }
3441 break;
3442 case SVM_EXIT_MSR:
3443 if (!kvm_ghcb_rcx_is_valid(svm))
3444 goto vmgexit_err;
3445 if (control->exit_info_1) {
3446 if (!kvm_ghcb_rax_is_valid(svm) ||
3447 !kvm_ghcb_rdx_is_valid(svm))
3448 goto vmgexit_err;
3449 }
3450 break;
3451 case SVM_EXIT_VMMCALL:
3452 if (!kvm_ghcb_rax_is_valid(svm) ||
3453 !kvm_ghcb_cpl_is_valid(svm))
3454 goto vmgexit_err;
3455 break;
3456 case SVM_EXIT_RDTSCP:
3457 break;
3458 case SVM_EXIT_WBINVD:
3459 break;
3460 case SVM_EXIT_MONITOR:
3461 if (!kvm_ghcb_rax_is_valid(svm) ||
3462 !kvm_ghcb_rcx_is_valid(svm) ||
3463 !kvm_ghcb_rdx_is_valid(svm))
3464 goto vmgexit_err;
3465 break;
3466 case SVM_EXIT_MWAIT:
3467 if (!kvm_ghcb_rax_is_valid(svm) ||
3468 !kvm_ghcb_rcx_is_valid(svm))
3469 goto vmgexit_err;
3470 break;
3471 case SVM_VMGEXIT_MMIO_READ:
3472 case SVM_VMGEXIT_MMIO_WRITE:
3473 if (!kvm_ghcb_sw_scratch_is_valid(svm))
3474 goto vmgexit_err;
3475 break;
3476 case SVM_VMGEXIT_AP_CREATION:
3477 if (!sev_snp_guest(vcpu->kvm))
3478 goto vmgexit_err;
3479 if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
3480 if (!kvm_ghcb_rax_is_valid(svm))
3481 goto vmgexit_err;
3482 break;
3483 case SVM_VMGEXIT_NMI_COMPLETE:
3484 case SVM_VMGEXIT_AP_HLT_LOOP:
3485 case SVM_VMGEXIT_AP_JUMP_TABLE:
3486 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
3487 case SVM_VMGEXIT_HV_FEATURES:
3488 case SVM_VMGEXIT_TERM_REQUEST:
3489 break;
3490 case SVM_VMGEXIT_PSC:
3491 if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
3492 goto vmgexit_err;
3493 break;
3494 case SVM_VMGEXIT_GUEST_REQUEST:
3495 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
3496 if (!sev_snp_guest(vcpu->kvm) ||
3497 !PAGE_ALIGNED(control->exit_info_1) ||
3498 !PAGE_ALIGNED(control->exit_info_2) ||
3499 control->exit_info_1 == control->exit_info_2)
3500 goto vmgexit_err;
3501 break;
3502 default:
3503 reason = GHCB_ERR_INVALID_EVENT;
3504 goto vmgexit_err;
3505 }
3506
3507 return 0;
3508
3509 vmgexit_err:
3510 if (reason == GHCB_ERR_INVALID_USAGE) {
3511 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
3512 svm->sev_es.ghcb->ghcb_usage);
3513 } else if (reason == GHCB_ERR_INVALID_EVENT) {
3514 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
3515 exit_code);
3516 } else {
3517 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
3518 exit_code);
3519 dump_ghcb(svm);
3520 }
3521
3522 svm_vmgexit_bad_input(svm, reason);
3523
3524 /* Resume the guest to "return" the error code. */
3525 return 1;
3526 }
3527
sev_es_unmap_ghcb(struct vcpu_svm * svm)3528 void sev_es_unmap_ghcb(struct vcpu_svm *svm)
3529 {
3530 /* Clear any indication that the vCPU is in a type of AP Reset Hold */
3531 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;
3532
3533 if (!svm->sev_es.ghcb)
3534 return;
3535
3536 if (svm->sev_es.ghcb_sa_free) {
3537 /*
3538 * The scratch area lives outside the GHCB, so there is a
3539 * buffer that, depending on the operation performed, may
3540 * need to be synced, then freed.
3541 */
3542 if (svm->sev_es.ghcb_sa_sync) {
3543 kvm_write_guest(svm->vcpu.kvm,
3544 svm->sev_es.sw_scratch,
3545 svm->sev_es.ghcb_sa,
3546 svm->sev_es.ghcb_sa_len);
3547 svm->sev_es.ghcb_sa_sync = false;
3548 }
3549
3550 kvfree(svm->sev_es.ghcb_sa);
3551 svm->sev_es.ghcb_sa = NULL;
3552 svm->sev_es.ghcb_sa_free = false;
3553 }
3554
3555 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
3556
3557 sev_es_sync_to_ghcb(svm);
3558
3559 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map);
3560 svm->sev_es.ghcb = NULL;
3561 }
3562
pre_sev_run(struct vcpu_svm * svm,int cpu)3563 int pre_sev_run(struct vcpu_svm *svm, int cpu)
3564 {
3565 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
3566 struct kvm *kvm = svm->vcpu.kvm;
3567 unsigned int asid = sev_get_asid(kvm);
3568
3569 /*
3570 * Reject KVM_RUN if userspace attempts to run the vCPU with an invalid
3571 * VMSA, e.g. if userspace forces the vCPU to be RUNNABLE after an SNP
3572 * AP Destroy event.
3573 */
3574 if (sev_es_guest(kvm) && !VALID_PAGE(svm->vmcb->control.vmsa_pa))
3575 return -EINVAL;
3576
3577 /*
3578 * To optimize cache flushes when memory is reclaimed from an SEV VM,
3579 * track physical CPUs that enter the guest for SEV VMs and thus can
3580 * have encrypted, dirty data in the cache, and flush caches only for
3581 * CPUs that have entered the guest.
3582 */
3583 if (!cpumask_test_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus))
3584 cpumask_set_cpu(cpu, to_kvm_sev_info(kvm)->have_run_cpus);
3585
3586 /* Assign the asid allocated with this SEV guest */
3587 svm->asid = asid;
3588
3589 /*
3590 * Flush guest TLB:
3591 *
3592 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
3593 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
3594 */
3595 if (sd->sev_vmcbs[asid] == svm->vmcb &&
3596 svm->vcpu.arch.last_vmentry_cpu == cpu)
3597 return 0;
3598
3599 sd->sev_vmcbs[asid] = svm->vmcb;
3600 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3601 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
3602 return 0;
3603 }
3604
3605 #define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
setup_vmgexit_scratch(struct vcpu_svm * svm,bool sync,u64 len)3606 static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
3607 {
3608 struct vmcb_control_area *control = &svm->vmcb->control;
3609 u64 ghcb_scratch_beg, ghcb_scratch_end;
3610 u64 scratch_gpa_beg, scratch_gpa_end;
3611 void *scratch_va;
3612
3613 scratch_gpa_beg = svm->sev_es.sw_scratch;
3614 if (!scratch_gpa_beg) {
3615 pr_err("vmgexit: scratch gpa not provided\n");
3616 goto e_scratch;
3617 }
3618
3619 scratch_gpa_end = scratch_gpa_beg + len;
3620 if (scratch_gpa_end < scratch_gpa_beg) {
3621 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
3622 len, scratch_gpa_beg);
3623 goto e_scratch;
3624 }
3625
3626 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
3627 /* Scratch area begins within GHCB */
3628 ghcb_scratch_beg = control->ghcb_gpa +
3629 offsetof(struct ghcb, shared_buffer);
3630 ghcb_scratch_end = control->ghcb_gpa +
3631 offsetof(struct ghcb, reserved_0xff0);
3632
3633 /*
3634 * If the scratch area begins within the GHCB, it must be
3635 * completely contained in the GHCB shared buffer area.
3636 */
3637 if (scratch_gpa_beg < ghcb_scratch_beg ||
3638 scratch_gpa_end > ghcb_scratch_end) {
3639 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
3640 scratch_gpa_beg, scratch_gpa_end);
3641 goto e_scratch;
3642 }
3643
3644 scratch_va = (void *)svm->sev_es.ghcb;
3645 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
3646 } else {
3647 /*
3648 * The guest memory must be read into a kernel buffer, so
3649 * limit the size
3650 */
3651 if (len > GHCB_SCRATCH_AREA_LIMIT) {
3652 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
3653 len, GHCB_SCRATCH_AREA_LIMIT);
3654 goto e_scratch;
3655 }
3656 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
3657 if (!scratch_va)
3658 return -ENOMEM;
3659
3660 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
3661 /* Unable to copy scratch area from guest */
3662 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
3663
3664 kvfree(scratch_va);
3665 return -EFAULT;
3666 }
3667
3668 /*
3669 * The scratch area is outside the GHCB. The operation will
3670 * dictate whether the buffer needs to be synced before running
3671 * the vCPU next time (i.e. a read was requested so the data
3672 * must be written back to the guest memory).
3673 */
3674 svm->sev_es.ghcb_sa_sync = sync;
3675 svm->sev_es.ghcb_sa_free = true;
3676 }
3677
3678 svm->sev_es.ghcb_sa = scratch_va;
3679 svm->sev_es.ghcb_sa_len = len;
3680
3681 return 0;
3682
3683 e_scratch:
3684 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_SCRATCH_AREA);
3685
3686 return 1;
3687 }
3688
set_ghcb_msr_bits(struct vcpu_svm * svm,u64 value,u64 mask,unsigned int pos)3689 static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
3690 unsigned int pos)
3691 {
3692 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
3693 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
3694 }
3695
get_ghcb_msr_bits(struct vcpu_svm * svm,u64 mask,unsigned int pos)3696 static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
3697 {
3698 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
3699 }
3700
set_ghcb_msr(struct vcpu_svm * svm,u64 value)3701 static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
3702 {
3703 svm->vmcb->control.ghcb_gpa = value;
3704 }
3705
snp_rmptable_psmash(kvm_pfn_t pfn)3706 static int snp_rmptable_psmash(kvm_pfn_t pfn)
3707 {
3708 int ret;
3709
3710 pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);
3711
3712 /*
3713 * PSMASH_FAIL_INUSE indicates another processor is modifying the
3714 * entry, so retry until that's no longer the case.
3715 */
3716 do {
3717 ret = psmash(pfn);
3718 } while (ret == PSMASH_FAIL_INUSE);
3719
3720 return ret;
3721 }
3722
snp_complete_psc_msr(struct kvm_vcpu * vcpu)3723 static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
3724 {
3725 struct vcpu_svm *svm = to_svm(vcpu);
3726
3727 if (vcpu->run->hypercall.ret)
3728 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3729 else
3730 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);
3731
3732 return 1; /* resume guest */
3733 }
3734
snp_begin_psc_msr(struct vcpu_svm * svm,u64 ghcb_msr)3735 static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
3736 {
3737 u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
3738 u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
3739 struct kvm_vcpu *vcpu = &svm->vcpu;
3740
3741 if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
3742 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3743 return 1; /* resume guest */
3744 }
3745
3746 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3747 set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
3748 return 1; /* resume guest */
3749 }
3750
3751 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3752 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3753 /*
3754 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3755 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3756 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3757 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3758 */
3759 vcpu->run->hypercall.ret = 0;
3760 vcpu->run->hypercall.args[0] = gpa;
3761 vcpu->run->hypercall.args[1] = 1;
3762 vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
3763 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3764 : KVM_MAP_GPA_RANGE_DECRYPTED;
3765 vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3766
3767 vcpu->arch.complete_userspace_io = snp_complete_psc_msr;
3768
3769 return 0; /* forward request to userspace */
3770 }
3771
3772 struct psc_buffer {
3773 struct psc_hdr hdr;
3774 struct psc_entry entries[];
3775 } __packed;
3776
3777 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);
3778
snp_complete_psc(struct vcpu_svm * svm,u64 psc_ret)3779 static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
3780 {
3781 svm->sev_es.psc_inflight = 0;
3782 svm->sev_es.psc_idx = 0;
3783 svm->sev_es.psc_2m = false;
3784
3785 /*
3786 * PSC requests always get a "no action" response in SW_EXITINFO1, with
3787 * a PSC-specific return code in SW_EXITINFO2 that provides the "real"
3788 * return code. E.g. if the PSC request was interrupted, the need to
3789 * retry is communicated via SW_EXITINFO2, not SW_EXITINFO1.
3790 */
3791 svm_vmgexit_no_action(svm, psc_ret);
3792 }
3793
__snp_complete_one_psc(struct vcpu_svm * svm)3794 static void __snp_complete_one_psc(struct vcpu_svm *svm)
3795 {
3796 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3797 struct psc_entry *entries = psc->entries;
3798 struct psc_hdr *hdr = &psc->hdr;
3799 __u16 idx;
3800
3801 /*
3802 * Everything in-flight has been processed successfully. Update the
3803 * corresponding entries in the guest's PSC buffer and zero out the
3804 * count of in-flight PSC entries.
3805 */
3806 for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
3807 svm->sev_es.psc_inflight--, idx++) {
3808 struct psc_entry *entry = &entries[idx];
3809
3810 entry->cur_page = entry->pagesize ? 512 : 1;
3811 }
3812
3813 hdr->cur_entry = idx;
3814 }
3815
snp_complete_one_psc(struct kvm_vcpu * vcpu)3816 static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
3817 {
3818 struct vcpu_svm *svm = to_svm(vcpu);
3819 struct psc_buffer *psc = svm->sev_es.ghcb_sa;
3820
3821 if (vcpu->run->hypercall.ret) {
3822 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3823 return 1; /* resume guest */
3824 }
3825
3826 __snp_complete_one_psc(svm);
3827
3828 /* Handle the next range (if any). */
3829 return snp_begin_psc(svm, psc);
3830 }
3831
snp_begin_psc(struct vcpu_svm * svm,struct psc_buffer * psc)3832 static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
3833 {
3834 struct psc_entry *entries = psc->entries;
3835 struct kvm_vcpu *vcpu = &svm->vcpu;
3836 struct psc_hdr *hdr = &psc->hdr;
3837 struct psc_entry entry_start;
3838 u16 idx, idx_start, idx_end;
3839 int npages;
3840 bool huge;
3841 u64 gfn;
3842
3843 if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) {
3844 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3845 return 1;
3846 }
3847
3848 next_range:
3849 /* There should be no other PSCs in-flight at this point. */
3850 if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
3851 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
3852 return 1;
3853 }
3854
3855 /*
3856 * The PSC descriptor buffer can be modified by a misbehaved guest after
3857 * validation, so take care to only use validated copies of values used
3858 * for things like array indexing.
3859 */
3860 idx_start = hdr->cur_entry;
3861 idx_end = hdr->end_entry;
3862
3863 if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
3864 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
3865 return 1;
3866 }
3867
3868 /* Find the start of the next range which needs processing. */
3869 for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
3870 entry_start = entries[idx];
3871
3872 gfn = entry_start.gfn;
3873 huge = entry_start.pagesize;
3874 npages = huge ? 512 : 1;
3875
3876 if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
3877 snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
3878 return 1;
3879 }
3880
3881 if (entry_start.cur_page) {
3882 /*
3883 * If this is a partially-completed 2M range, force 4K handling
3884 * for the remaining pages since they're effectively split at
3885 * this point. Subsequent code should ensure this doesn't get
3886 * combined with adjacent PSC entries where 2M handling is still
3887 * possible.
3888 */
3889 npages -= entry_start.cur_page;
3890 gfn += entry_start.cur_page;
3891 huge = false;
3892 }
3893
3894 if (npages)
3895 break;
3896 }
3897
3898 if (idx > idx_end) {
3899 /* Nothing more to process. */
3900 snp_complete_psc(svm, 0);
3901 return 1;
3902 }
3903
3904 svm->sev_es.psc_2m = huge;
3905 svm->sev_es.psc_idx = idx;
3906 svm->sev_es.psc_inflight = 1;
3907
3908 /*
3909 * Find all subsequent PSC entries that contain adjacent GPA
3910 * ranges/operations and can be combined into a single
3911 * KVM_HC_MAP_GPA_RANGE exit.
3912 */
3913 while (++idx <= idx_end) {
3914 struct psc_entry entry = entries[idx];
3915
3916 if (entry.operation != entry_start.operation ||
3917 entry.gfn != entry_start.gfn + npages ||
3918 entry.cur_page || !!entry.pagesize != huge)
3919 break;
3920
3921 svm->sev_es.psc_inflight++;
3922 npages += huge ? 512 : 1;
3923 }
3924
3925 switch (entry_start.operation) {
3926 case VMGEXIT_PSC_OP_PRIVATE:
3927 case VMGEXIT_PSC_OP_SHARED:
3928 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
3929 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
3930 /*
3931 * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2)
3932 * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that
3933 * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting
3934 * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU.
3935 */
3936 vcpu->run->hypercall.ret = 0;
3937 vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
3938 vcpu->run->hypercall.args[1] = npages;
3939 vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
3940 ? KVM_MAP_GPA_RANGE_ENCRYPTED
3941 : KVM_MAP_GPA_RANGE_DECRYPTED;
3942 vcpu->run->hypercall.args[2] |= entry_start.pagesize
3943 ? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
3944 : KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
3945 vcpu->arch.complete_userspace_io = snp_complete_one_psc;
3946 return 0; /* forward request to userspace */
3947 default:
3948 /*
3949 * Only shared/private PSC operations are currently supported, so if the
3950 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
3951 * then consider the entire range completed and avoid exiting to
3952 * userspace. In theory snp_complete_psc() can always be called directly
3953 * at this point to complete the current range and start the next one,
3954 * but that could lead to unexpected levels of recursion.
3955 */
3956 __snp_complete_one_psc(svm);
3957 goto next_range;
3958 }
3959
3960 BUG();
3961 }
3962
3963 /*
3964 * Invoked as part of svm_vcpu_reset() processing of an init event.
3965 */
sev_snp_init_protected_guest_state(struct kvm_vcpu * vcpu)3966 static void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
3967 {
3968 struct vcpu_svm *svm = to_svm(vcpu);
3969 struct kvm_memory_slot *slot;
3970 struct page *page;
3971 kvm_pfn_t pfn;
3972 gfn_t gfn;
3973
3974 guard(mutex)(&svm->sev_es.snp_vmsa_mutex);
3975
3976 if (!svm->sev_es.snp_ap_waiting_for_reset)
3977 return;
3978
3979 svm->sev_es.snp_ap_waiting_for_reset = false;
3980
3981 /* Mark the vCPU as offline and not runnable */
3982 vcpu->arch.pv.pv_unhalted = false;
3983 kvm_set_mp_state(vcpu, KVM_MP_STATE_HALTED);
3984
3985 /* Clear use of the VMSA */
3986 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
3987
3988 /*
3989 * When replacing the VMSA during SEV-SNP AP creation,
3990 * mark the VMCB dirty so that full state is always reloaded.
3991 */
3992 vmcb_mark_all_dirty(svm->vmcb);
3993
3994 if (!VALID_PAGE(svm->sev_es.snp_vmsa_gpa))
3995 return;
3996
3997 gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
3998 svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
3999
4000 slot = gfn_to_memslot(vcpu->kvm, gfn);
4001 if (!slot)
4002 return;
4003
4004 /*
4005 * The new VMSA will be private memory guest memory, so retrieve the
4006 * PFN from the gmem backend.
4007 */
4008 if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, &page, NULL))
4009 return;
4010
4011 /*
4012 * From this point forward, the VMSA will always be a guest-mapped page
4013 * rather than the initial one allocated by KVM in svm->sev_es.vmsa. In
4014 * theory, svm->sev_es.vmsa could be free'd and cleaned up here, but
4015 * that involves cleanups like flushing caches, which would ideally be
4016 * handled during teardown rather than guest boot. Deferring that also
4017 * allows the existing logic for SEV-ES VMSAs to be re-used with
4018 * minimal SNP-specific changes.
4019 */
4020 svm->sev_es.snp_has_guest_vmsa = true;
4021
4022 /* Use the new VMSA */
4023 svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);
4024
4025 /* Mark the vCPU as runnable */
4026 kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
4027
4028 /*
4029 * gmem pages aren't currently migratable, but if this ever changes
4030 * then care should be taken to ensure svm->sev_es.vmsa is pinned
4031 * through some other means.
4032 */
4033 kvm_release_page_clean(page);
4034 }
4035
sev_snp_ap_creation(struct vcpu_svm * svm)4036 static int sev_snp_ap_creation(struct vcpu_svm *svm)
4037 {
4038 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4039 struct kvm_vcpu *vcpu = &svm->vcpu;
4040 struct kvm_vcpu *target_vcpu;
4041 struct vcpu_svm *target_svm;
4042 unsigned int request;
4043 unsigned int apic_id;
4044
4045 request = lower_32_bits(svm->vmcb->control.exit_info_1);
4046 apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);
4047
4048 /* Validate the APIC ID */
4049 target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
4050 if (!target_vcpu) {
4051 vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
4052 apic_id);
4053 return -EINVAL;
4054 }
4055
4056 target_svm = to_svm(target_vcpu);
4057
4058 guard(mutex)(&target_svm->sev_es.snp_vmsa_mutex);
4059
4060 switch (request) {
4061 case SVM_VMGEXIT_AP_CREATE_ON_INIT:
4062 case SVM_VMGEXIT_AP_CREATE:
4063 if (vcpu->arch.regs[VCPU_REGS_RAX] != sev->vmsa_features) {
4064 vcpu_unimpl(vcpu, "vmgexit: mismatched AP sev_features [%#lx] != [%#llx] from guest\n",
4065 vcpu->arch.regs[VCPU_REGS_RAX], sev->vmsa_features);
4066 return -EINVAL;
4067 }
4068
4069 if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
4070 vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
4071 svm->vmcb->control.exit_info_2);
4072 return -EINVAL;
4073 }
4074
4075 /*
4076 * Malicious guest can RMPADJUST a large page into VMSA which
4077 * will hit the SNP erratum where the CPU will incorrectly signal
4078 * an RMP violation #PF if a hugepage collides with the RMP entry
4079 * of VMSA page, reject the AP CREATE request if VMSA address from
4080 * guest is 2M aligned.
4081 */
4082 if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
4083 vcpu_unimpl(vcpu,
4084 "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
4085 svm->vmcb->control.exit_info_2);
4086 return -EINVAL;
4087 }
4088
4089 target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
4090 break;
4091 case SVM_VMGEXIT_AP_DESTROY:
4092 target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
4093 break;
4094 default:
4095 vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
4096 request);
4097 return -EINVAL;
4098 }
4099
4100 target_svm->sev_es.snp_ap_waiting_for_reset = true;
4101
4102 /*
4103 * Unless Creation is deferred until INIT, signal the vCPU to update
4104 * its state.
4105 */
4106 if (request != SVM_VMGEXIT_AP_CREATE_ON_INIT)
4107 kvm_make_request_and_kick(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
4108
4109 return 0;
4110 }
4111
snp_handle_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4112 static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4113 {
4114 struct sev_data_snp_guest_request data = {0};
4115 struct kvm *kvm = svm->vcpu.kvm;
4116 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4117 sev_ret_code fw_err = 0;
4118 int ret;
4119
4120 if (!sev_snp_guest(kvm))
4121 return -EINVAL;
4122
4123 mutex_lock(&sev->guest_req_mutex);
4124
4125 if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
4126 ret = -EIO;
4127 goto out_unlock;
4128 }
4129
4130 data.gctx_paddr = __psp_pa(sev->snp_context);
4131 data.req_paddr = __psp_pa(sev->guest_req_buf);
4132 data.res_paddr = __psp_pa(sev->guest_resp_buf);
4133
4134 /*
4135 * Firmware failures are propagated on to guest, but any other failure
4136 * condition along the way should be reported to userspace. E.g. if
4137 * the PSP is dead and commands are timing out.
4138 */
4139 ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
4140 if (ret && !fw_err)
4141 goto out_unlock;
4142
4143 if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
4144 ret = -EIO;
4145 goto out_unlock;
4146 }
4147
4148 /* No action is requested *from KVM* if there was a firmware error. */
4149 svm_vmgexit_no_action(svm, SNP_GUEST_ERR(0, fw_err));
4150
4151 ret = 1; /* resume guest */
4152
4153 out_unlock:
4154 mutex_unlock(&sev->guest_req_mutex);
4155 return ret;
4156 }
4157
snp_handle_ext_guest_req(struct vcpu_svm * svm,gpa_t req_gpa,gpa_t resp_gpa)4158 static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
4159 {
4160 struct kvm *kvm = svm->vcpu.kvm;
4161 u8 msg_type;
4162
4163 if (!sev_snp_guest(kvm))
4164 return -EINVAL;
4165
4166 if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
4167 &msg_type, 1))
4168 return -EIO;
4169
4170 /*
4171 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
4172 * additional certificate data to be provided alongside the attestation
4173 * report via the guest-provided data pages indicated by RAX/RBX. The
4174 * certificate data is optional and requires additional KVM enablement
4175 * to provide an interface for userspace to provide it, but KVM still
4176 * needs to be able to handle extended guest requests either way. So
4177 * provide a stub implementation that will always return an empty
4178 * certificate table in the guest-provided data pages.
4179 */
4180 if (msg_type == SNP_MSG_REPORT_REQ) {
4181 struct kvm_vcpu *vcpu = &svm->vcpu;
4182 u64 data_npages;
4183 gpa_t data_gpa;
4184
4185 if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
4186 goto request_invalid;
4187
4188 data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
4189 data_npages = vcpu->arch.regs[VCPU_REGS_RBX];
4190
4191 if (!PAGE_ALIGNED(data_gpa))
4192 goto request_invalid;
4193
4194 /*
4195 * As per GHCB spec (see "SNP Extended Guest Request"), the
4196 * certificate table is terminated by 24-bytes of zeroes.
4197 */
4198 if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
4199 return -EIO;
4200 }
4201
4202 return snp_handle_guest_req(svm, req_gpa, resp_gpa);
4203
4204 request_invalid:
4205 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4206 return 1; /* resume guest */
4207 }
4208
sev_handle_vmgexit_msr_protocol(struct vcpu_svm * svm)4209 static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
4210 {
4211 struct vmcb_control_area *control = &svm->vmcb->control;
4212 struct kvm_vcpu *vcpu = &svm->vcpu;
4213 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4214 u64 ghcb_info;
4215 int ret = 1;
4216
4217 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
4218
4219 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
4220 control->ghcb_gpa);
4221
4222 switch (ghcb_info) {
4223 case GHCB_MSR_SEV_INFO_REQ:
4224 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4225 GHCB_VERSION_MIN,
4226 sev_enc_bit));
4227 break;
4228 case GHCB_MSR_CPUID_REQ: {
4229 u64 cpuid_fn, cpuid_reg, cpuid_value;
4230
4231 cpuid_fn = get_ghcb_msr_bits(svm,
4232 GHCB_MSR_CPUID_FUNC_MASK,
4233 GHCB_MSR_CPUID_FUNC_POS);
4234
4235 /* Initialize the registers needed by the CPUID intercept */
4236 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
4237 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
4238
4239 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
4240 if (!ret) {
4241 /* Error, keep GHCB MSR value as-is */
4242 break;
4243 }
4244
4245 cpuid_reg = get_ghcb_msr_bits(svm,
4246 GHCB_MSR_CPUID_REG_MASK,
4247 GHCB_MSR_CPUID_REG_POS);
4248 if (cpuid_reg == 0)
4249 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
4250 else if (cpuid_reg == 1)
4251 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
4252 else if (cpuid_reg == 2)
4253 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
4254 else
4255 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
4256
4257 set_ghcb_msr_bits(svm, cpuid_value,
4258 GHCB_MSR_CPUID_VALUE_MASK,
4259 GHCB_MSR_CPUID_VALUE_POS);
4260
4261 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
4262 GHCB_MSR_INFO_MASK,
4263 GHCB_MSR_INFO_POS);
4264 break;
4265 }
4266 case GHCB_MSR_AP_RESET_HOLD_REQ:
4267 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
4268 ret = kvm_emulate_ap_reset_hold(&svm->vcpu);
4269
4270 /*
4271 * Preset the result to a non-SIPI return and then only set
4272 * the result to non-zero when delivering a SIPI.
4273 */
4274 set_ghcb_msr_bits(svm, 0,
4275 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4276 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4277
4278 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4279 GHCB_MSR_INFO_MASK,
4280 GHCB_MSR_INFO_POS);
4281 break;
4282 case GHCB_MSR_HV_FT_REQ:
4283 set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
4284 GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
4285 set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
4286 GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
4287 break;
4288 case GHCB_MSR_PREF_GPA_REQ:
4289 if (!sev_snp_guest(vcpu->kvm))
4290 goto out_terminate;
4291
4292 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
4293 GHCB_MSR_GPA_VALUE_POS);
4294 set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
4295 GHCB_MSR_INFO_POS);
4296 break;
4297 case GHCB_MSR_REG_GPA_REQ: {
4298 u64 gfn;
4299
4300 if (!sev_snp_guest(vcpu->kvm))
4301 goto out_terminate;
4302
4303 gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
4304 GHCB_MSR_GPA_VALUE_POS);
4305
4306 svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);
4307
4308 set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
4309 GHCB_MSR_GPA_VALUE_POS);
4310 set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
4311 GHCB_MSR_INFO_POS);
4312 break;
4313 }
4314 case GHCB_MSR_PSC_REQ:
4315 if (!sev_snp_guest(vcpu->kvm))
4316 goto out_terminate;
4317
4318 ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
4319 break;
4320 case GHCB_MSR_TERM_REQ: {
4321 u64 reason_set, reason_code;
4322
4323 reason_set = get_ghcb_msr_bits(svm,
4324 GHCB_MSR_TERM_REASON_SET_MASK,
4325 GHCB_MSR_TERM_REASON_SET_POS);
4326 reason_code = get_ghcb_msr_bits(svm,
4327 GHCB_MSR_TERM_REASON_MASK,
4328 GHCB_MSR_TERM_REASON_POS);
4329 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
4330 reason_set, reason_code);
4331
4332 goto out_terminate;
4333 }
4334 default:
4335 /* Error, keep GHCB MSR value as-is */
4336 break;
4337 }
4338
4339 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
4340 control->ghcb_gpa, ret);
4341
4342 return ret;
4343
4344 out_terminate:
4345 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4346 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4347 vcpu->run->system_event.ndata = 1;
4348 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4349
4350 return 0;
4351 }
4352
sev_handle_vmgexit(struct kvm_vcpu * vcpu)4353 int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
4354 {
4355 struct vcpu_svm *svm = to_svm(vcpu);
4356 struct vmcb_control_area *control = &svm->vmcb->control;
4357 u64 ghcb_gpa, exit_code;
4358 int ret;
4359
4360 /* Validate the GHCB */
4361 ghcb_gpa = control->ghcb_gpa;
4362 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
4363 return sev_handle_vmgexit_msr_protocol(svm);
4364
4365 if (!ghcb_gpa) {
4366 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
4367
4368 /* Without a GHCB, just return right back to the guest */
4369 return 1;
4370 }
4371
4372 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
4373 /* Unable to map GHCB from guest */
4374 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
4375 ghcb_gpa);
4376
4377 /* Without a GHCB, just return right back to the guest */
4378 return 1;
4379 }
4380
4381 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
4382
4383 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
4384
4385 sev_es_sync_from_ghcb(svm);
4386
4387 /* SEV-SNP guest requires that the GHCB GPA must be registered */
4388 if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
4389 vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
4390 return -EINVAL;
4391 }
4392
4393 ret = sev_es_validate_vmgexit(svm);
4394 if (ret)
4395 return ret;
4396
4397 svm_vmgexit_success(svm, 0);
4398
4399 exit_code = kvm_get_cached_sw_exit_code(control);
4400 switch (exit_code) {
4401 case SVM_VMGEXIT_MMIO_READ:
4402 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4403 if (ret)
4404 break;
4405
4406 ret = kvm_sev_es_mmio_read(vcpu,
4407 control->exit_info_1,
4408 control->exit_info_2,
4409 svm->sev_es.ghcb_sa);
4410 break;
4411 case SVM_VMGEXIT_MMIO_WRITE:
4412 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
4413 if (ret)
4414 break;
4415
4416 ret = kvm_sev_es_mmio_write(vcpu,
4417 control->exit_info_1,
4418 control->exit_info_2,
4419 svm->sev_es.ghcb_sa);
4420 break;
4421 case SVM_VMGEXIT_NMI_COMPLETE:
4422 ++vcpu->stat.nmi_window_exits;
4423 svm->nmi_masked = false;
4424 kvm_make_request(KVM_REQ_EVENT, vcpu);
4425 ret = 1;
4426 break;
4427 case SVM_VMGEXIT_AP_HLT_LOOP:
4428 svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
4429 ret = kvm_emulate_ap_reset_hold(vcpu);
4430 break;
4431 case SVM_VMGEXIT_AP_JUMP_TABLE: {
4432 struct kvm_sev_info *sev = to_kvm_sev_info(vcpu->kvm);
4433
4434 switch (control->exit_info_1) {
4435 case 0:
4436 /* Set AP jump table address */
4437 sev->ap_jump_table = control->exit_info_2;
4438 break;
4439 case 1:
4440 /* Get AP jump table address */
4441 svm_vmgexit_success(svm, sev->ap_jump_table);
4442 break;
4443 default:
4444 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
4445 control->exit_info_1);
4446 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4447 }
4448
4449 ret = 1;
4450 break;
4451 }
4452 case SVM_VMGEXIT_HV_FEATURES:
4453 svm_vmgexit_success(svm, GHCB_HV_FT_SUPPORTED);
4454 ret = 1;
4455 break;
4456 case SVM_VMGEXIT_TERM_REQUEST:
4457 pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
4458 control->exit_info_1, control->exit_info_2);
4459 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
4460 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
4461 vcpu->run->system_event.ndata = 1;
4462 vcpu->run->system_event.data[0] = control->ghcb_gpa;
4463 break;
4464 case SVM_VMGEXIT_PSC:
4465 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
4466 if (ret)
4467 break;
4468
4469 ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
4470 break;
4471 case SVM_VMGEXIT_AP_CREATION:
4472 ret = sev_snp_ap_creation(svm);
4473 if (ret) {
4474 svm_vmgexit_bad_input(svm, GHCB_ERR_INVALID_INPUT);
4475 }
4476
4477 ret = 1;
4478 break;
4479 case SVM_VMGEXIT_GUEST_REQUEST:
4480 ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
4481 break;
4482 case SVM_VMGEXIT_EXT_GUEST_REQUEST:
4483 ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
4484 break;
4485 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
4486 vcpu_unimpl(vcpu,
4487 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
4488 control->exit_info_1, control->exit_info_2);
4489 ret = -EINVAL;
4490 break;
4491 default:
4492 ret = svm_invoke_exit_handler(vcpu, exit_code);
4493 }
4494
4495 return ret;
4496 }
4497
sev_es_string_io(struct vcpu_svm * svm,int size,unsigned int port,int in)4498 int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
4499 {
4500 int count;
4501 int bytes;
4502 int r;
4503
4504 if (svm->vmcb->control.exit_info_2 > INT_MAX)
4505 return -EINVAL;
4506
4507 count = svm->vmcb->control.exit_info_2;
4508 if (unlikely(check_mul_overflow(count, size, &bytes)))
4509 return -EINVAL;
4510
4511 r = setup_vmgexit_scratch(svm, in, bytes);
4512 if (r)
4513 return r;
4514
4515 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
4516 count, in);
4517 }
4518
sev_es_recalc_msr_intercepts(struct kvm_vcpu * vcpu)4519 void sev_es_recalc_msr_intercepts(struct kvm_vcpu *vcpu)
4520 {
4521 /* Clear intercepts on MSRs that are context switched by hardware. */
4522 svm_disable_intercept_for_msr(vcpu, MSR_AMD64_SEV_ES_GHCB, MSR_TYPE_RW);
4523 svm_disable_intercept_for_msr(vcpu, MSR_EFER, MSR_TYPE_RW);
4524 svm_disable_intercept_for_msr(vcpu, MSR_IA32_CR_PAT, MSR_TYPE_RW);
4525
4526 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX))
4527 svm_set_intercept_for_msr(vcpu, MSR_TSC_AUX, MSR_TYPE_RW,
4528 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) &&
4529 !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID));
4530
4531 svm_set_intercept_for_msr(vcpu, MSR_AMD64_GUEST_TSC_FREQ, MSR_TYPE_R,
4532 !snp_is_secure_tsc_enabled(vcpu->kvm));
4533
4534 /*
4535 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
4536 * the host/guest supports its use.
4537 *
4538 * KVM treats the guest as being capable of using XSAVES even if XSAVES
4539 * isn't enabled in guest CPUID as there is no intercept for XSAVES,
4540 * i.e. the guest can use XSAVES/XRSTOR to read/write XSS if XSAVE is
4541 * exposed to the guest and XSAVES is supported in hardware. Condition
4542 * full XSS passthrough on the guest being able to use XSAVES *and*
4543 * XSAVES being exposed to the guest so that KVM can at least honor
4544 * guest CPUID for RDMSR and WRMSR.
4545 */
4546 svm_set_intercept_for_msr(vcpu, MSR_IA32_XSS, MSR_TYPE_RW,
4547 !guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) ||
4548 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES));
4549 }
4550
sev_vcpu_after_set_cpuid(struct vcpu_svm * svm)4551 void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
4552 {
4553 struct kvm_vcpu *vcpu = &svm->vcpu;
4554 struct kvm_cpuid_entry2 *best;
4555
4556 /* For sev guests, the memory encryption bit is not reserved in CR3. */
4557 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
4558 if (best)
4559 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
4560 }
4561
sev_es_init_vmcb(struct vcpu_svm * svm,bool init_event)4562 static void sev_es_init_vmcb(struct vcpu_svm *svm, bool init_event)
4563 {
4564 struct kvm_sev_info *sev = to_kvm_sev_info(svm->vcpu.kvm);
4565 struct vmcb *vmcb = svm->vmcb01.ptr;
4566
4567 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
4568
4569 /*
4570 * An SEV-ES guest requires a VMSA area that is a separate from the
4571 * VMCB page. Do not include the encryption mask on the VMSA physical
4572 * address since hardware will access it using the guest key. Note,
4573 * the VMSA will be NULL if this vCPU is the destination for intrahost
4574 * migration, and will be copied later.
4575 */
4576 if (!svm->sev_es.snp_has_guest_vmsa) {
4577 if (svm->sev_es.vmsa)
4578 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
4579 else
4580 svm->vmcb->control.vmsa_pa = INVALID_PAGE;
4581 }
4582
4583 if (cpu_feature_enabled(X86_FEATURE_ALLOWED_SEV_FEATURES))
4584 svm->vmcb->control.allowed_sev_features = sev->vmsa_features |
4585 VMCB_ALLOWED_SEV_FEATURES_VALID;
4586
4587 /* Can't intercept CR register access, HV can't modify CR registers */
4588 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
4589 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
4590 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
4591 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
4592 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
4593 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
4594
4595 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
4596
4597 /* Track EFER/CR register changes */
4598 svm_set_intercept(svm, TRAP_EFER_WRITE);
4599 svm_set_intercept(svm, TRAP_CR0_WRITE);
4600 svm_set_intercept(svm, TRAP_CR4_WRITE);
4601 svm_set_intercept(svm, TRAP_CR8_WRITE);
4602
4603 vmcb->control.intercepts[INTERCEPT_DR] = 0;
4604 if (!sev_vcpu_has_debug_swap(svm)) {
4605 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
4606 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
4607 recalc_intercepts(svm);
4608 } else {
4609 /*
4610 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
4611 * allow debugging SEV-ES guests, and enables DebugSwap iff
4612 * NO_NESTED_DATA_BP is supported, so there's no reason to
4613 * intercept #DB when DebugSwap is enabled. For simplicity
4614 * with respect to guest debug, intercept #DB for other VMs
4615 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
4616 * guest can't DoS the CPU with infinite #DB vectoring.
4617 */
4618 clr_exception_intercept(svm, DB_VECTOR);
4619 }
4620
4621 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
4622 svm_clr_intercept(svm, INTERCEPT_XSETBV);
4623
4624 /*
4625 * Set the GHCB MSR value as per the GHCB specification when emulating
4626 * vCPU RESET for an SEV-ES guest.
4627 */
4628 if (!init_event)
4629 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
4630 GHCB_VERSION_MIN,
4631 sev_enc_bit));
4632 }
4633
sev_init_vmcb(struct vcpu_svm * svm,bool init_event)4634 void sev_init_vmcb(struct vcpu_svm *svm, bool init_event)
4635 {
4636 struct kvm_vcpu *vcpu = &svm->vcpu;
4637
4638 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
4639 clr_exception_intercept(svm, UD_VECTOR);
4640
4641 /*
4642 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
4643 * KVM can't decrypt guest memory to decode the faulting instruction.
4644 */
4645 clr_exception_intercept(svm, GP_VECTOR);
4646
4647 if (init_event && sev_snp_guest(vcpu->kvm))
4648 sev_snp_init_protected_guest_state(vcpu);
4649
4650 if (sev_es_guest(vcpu->kvm))
4651 sev_es_init_vmcb(svm, init_event);
4652 }
4653
sev_vcpu_create(struct kvm_vcpu * vcpu)4654 int sev_vcpu_create(struct kvm_vcpu *vcpu)
4655 {
4656 struct vcpu_svm *svm = to_svm(vcpu);
4657 struct page *vmsa_page;
4658
4659 mutex_init(&svm->sev_es.snp_vmsa_mutex);
4660
4661 if (!sev_es_guest(vcpu->kvm))
4662 return 0;
4663
4664 /*
4665 * SEV-ES guests require a separate (from the VMCB) VMSA page used to
4666 * contain the encrypted register state of the guest.
4667 */
4668 vmsa_page = snp_safe_alloc_page();
4669 if (!vmsa_page)
4670 return -ENOMEM;
4671
4672 svm->sev_es.vmsa = page_address(vmsa_page);
4673
4674 vcpu->arch.guest_tsc_protected = snp_is_secure_tsc_enabled(vcpu->kvm);
4675
4676 return 0;
4677 }
4678
sev_es_prepare_switch_to_guest(struct vcpu_svm * svm,struct sev_es_save_area * hostsa)4679 void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
4680 {
4681 struct kvm *kvm = svm->vcpu.kvm;
4682
4683 /*
4684 * All host state for SEV-ES guests is categorized into three swap types
4685 * based on how it is handled by hardware during a world switch:
4686 *
4687 * A: VMRUN: Host state saved in host save area
4688 * VMEXIT: Host state loaded from host save area
4689 *
4690 * B: VMRUN: Host state _NOT_ saved in host save area
4691 * VMEXIT: Host state loaded from host save area
4692 *
4693 * C: VMRUN: Host state _NOT_ saved in host save area
4694 * VMEXIT: Host state initialized to default(reset) values
4695 *
4696 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
4697 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
4698 * by common SVM code).
4699 */
4700 hostsa->xcr0 = kvm_host.xcr0;
4701 hostsa->pkru = read_pkru();
4702 hostsa->xss = kvm_host.xss;
4703
4704 /*
4705 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
4706 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU does
4707 * not save or load debug registers. Sadly, KVM can't prevent SNP
4708 * guests from lying about DebugSwap on secondary vCPUs, i.e. the
4709 * SEV_FEATURES provided at "AP Create" isn't guaranteed to match what
4710 * the guest has actually enabled (or not!) in the VMSA.
4711 *
4712 * If DebugSwap is *possible*, save the masks so that they're restored
4713 * if the guest enables DebugSwap. But for the DRs themselves, do NOT
4714 * rely on the CPU to restore the host values; KVM will restore them as
4715 * needed in common code, via hw_breakpoint_restore(). Note, KVM does
4716 * NOT support virtualizing Breakpoint Extensions, i.e. the mask MSRs
4717 * don't need to be restored per se, KVM just needs to ensure they are
4718 * loaded with the correct values *if* the CPU writes the MSRs.
4719 */
4720 if (sev_vcpu_has_debug_swap(svm) ||
4721 (sev_snp_guest(kvm) && cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP))) {
4722 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
4723 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
4724 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
4725 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
4726 }
4727
4728 /*
4729 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
4730 * available, i.e. TSC_AUX is loaded on #VMEXIT from the host save area.
4731 * Set the save area to the current hardware value, i.e. the current
4732 * user return value, so that the correct value is restored on #VMEXIT.
4733 */
4734 if (cpu_feature_enabled(X86_FEATURE_V_TSC_AUX) &&
4735 !WARN_ON_ONCE(tsc_aux_uret_slot < 0))
4736 hostsa->tsc_aux = kvm_get_user_return_msr(tsc_aux_uret_slot);
4737 }
4738
sev_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)4739 void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4740 {
4741 struct vcpu_svm *svm = to_svm(vcpu);
4742
4743 /* First SIPI: Use the values as initially set by the VMM */
4744 if (!svm->sev_es.received_first_sipi) {
4745 svm->sev_es.received_first_sipi = true;
4746 return;
4747 }
4748
4749 /* Subsequent SIPI */
4750 switch (svm->sev_es.ap_reset_hold_type) {
4751 case AP_RESET_HOLD_NAE_EVENT:
4752 /*
4753 * Return from an AP Reset Hold VMGEXIT, where the guest will
4754 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
4755 */
4756 svm_vmgexit_success(svm, 1);
4757 break;
4758 case AP_RESET_HOLD_MSR_PROTO:
4759 /*
4760 * Return from an AP Reset Hold VMGEXIT, where the guest will
4761 * set the CS and RIP. Set GHCB data field to a non-zero value.
4762 */
4763 set_ghcb_msr_bits(svm, 1,
4764 GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
4765 GHCB_MSR_AP_RESET_HOLD_RESULT_POS);
4766
4767 set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
4768 GHCB_MSR_INFO_MASK,
4769 GHCB_MSR_INFO_POS);
4770 break;
4771 default:
4772 break;
4773 }
4774 }
4775
snp_safe_alloc_page_node(int node,gfp_t gfp)4776 struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
4777 {
4778 unsigned long pfn;
4779 struct page *p;
4780
4781 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
4782 return alloc_pages_node(node, gfp | __GFP_ZERO, 0);
4783
4784 /*
4785 * Allocate an SNP-safe page to workaround the SNP erratum where
4786 * the CPU will incorrectly signal an RMP violation #PF if a
4787 * hugepage (2MB or 1GB) collides with the RMP entry of a
4788 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
4789 *
4790 * Allocate one extra page, choose a page which is not
4791 * 2MB-aligned, and free the other.
4792 */
4793 p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
4794 if (!p)
4795 return NULL;
4796
4797 split_page(p, 1);
4798
4799 pfn = page_to_pfn(p);
4800 if (IS_ALIGNED(pfn, PTRS_PER_PMD))
4801 __free_page(p++);
4802 else
4803 __free_page(p + 1);
4804
4805 return p;
4806 }
4807
sev_handle_rmp_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u64 error_code)4808 void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
4809 {
4810 struct kvm_memory_slot *slot;
4811 struct kvm *kvm = vcpu->kvm;
4812 int order, rmp_level, ret;
4813 struct page *page;
4814 bool assigned;
4815 kvm_pfn_t pfn;
4816 gfn_t gfn;
4817
4818 gfn = gpa >> PAGE_SHIFT;
4819
4820 /*
4821 * The only time RMP faults occur for shared pages is when the guest is
4822 * triggering an RMP fault for an implicit page-state change from
4823 * shared->private. Implicit page-state changes are forwarded to
4824 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
4825 * for shared pages should not end up here.
4826 */
4827 if (!kvm_mem_is_private(kvm, gfn)) {
4828 pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
4829 gpa);
4830 return;
4831 }
4832
4833 slot = gfn_to_memslot(kvm, gfn);
4834 if (!kvm_slot_has_gmem(slot)) {
4835 pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
4836 gpa);
4837 return;
4838 }
4839
4840 ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &page, &order);
4841 if (ret) {
4842 pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
4843 gpa);
4844 return;
4845 }
4846
4847 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4848 if (ret || !assigned) {
4849 pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
4850 gpa, pfn, ret);
4851 goto out_no_trace;
4852 }
4853
4854 /*
4855 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
4856 * with PFERR_GUEST_RMP_BIT set:
4857 *
4858 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
4859 * bit set if the guest issues them with a smaller granularity than
4860 * what is indicated by the page-size bit in the 2MB RMP entry for
4861 * the PFN that backs the GPA.
4862 *
4863 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
4864 * smaller than what is indicated by the 2MB RMP entry for the PFN
4865 * that backs the GPA.
4866 *
4867 * In both these cases, the corresponding 2M RMP entry needs to
4868 * be PSMASH'd to 512 4K RMP entries. If the RMP entry is already
4869 * split into 4K RMP entries, then this is likely a spurious case which
4870 * can occur when there are concurrent accesses by the guest to a 2MB
4871 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
4872 * the process of being PMASH'd into 4K entries. These cases should
4873 * resolve automatically on subsequent accesses, so just ignore them
4874 * here.
4875 */
4876 if (rmp_level == PG_LEVEL_4K)
4877 goto out;
4878
4879 ret = snp_rmptable_psmash(pfn);
4880 if (ret) {
4881 /*
4882 * Look it up again. If it's 4K now then the PSMASH may have
4883 * raced with another process and the issue has already resolved
4884 * itself.
4885 */
4886 if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
4887 assigned && rmp_level == PG_LEVEL_4K)
4888 goto out;
4889
4890 pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
4891 gpa, pfn, ret);
4892 }
4893
4894 kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
4895 out:
4896 trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
4897 out_no_trace:
4898 kvm_release_page_unused(page);
4899 }
4900
is_pfn_range_shared(kvm_pfn_t start,kvm_pfn_t end)4901 static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
4902 {
4903 kvm_pfn_t pfn = start;
4904
4905 while (pfn < end) {
4906 int ret, rmp_level;
4907 bool assigned;
4908
4909 ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
4910 if (ret) {
4911 pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
4912 pfn, start, end, rmp_level, ret);
4913 return false;
4914 }
4915
4916 if (assigned) {
4917 pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
4918 __func__, pfn, start, end, rmp_level);
4919 return false;
4920 }
4921
4922 pfn++;
4923 }
4924
4925 return true;
4926 }
4927
max_level_for_order(int order)4928 static u8 max_level_for_order(int order)
4929 {
4930 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4931 return PG_LEVEL_2M;
4932
4933 return PG_LEVEL_4K;
4934 }
4935
is_large_rmp_possible(struct kvm * kvm,kvm_pfn_t pfn,int order)4936 static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
4937 {
4938 kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4939
4940 /*
4941 * If this is a large folio, and the entire 2M range containing the
4942 * PFN is currently shared, then the entire 2M-aligned range can be
4943 * set to private via a single 2M RMP entry.
4944 */
4945 if (max_level_for_order(order) > PG_LEVEL_4K &&
4946 is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
4947 return true;
4948
4949 return false;
4950 }
4951
sev_gmem_prepare(struct kvm * kvm,kvm_pfn_t pfn,gfn_t gfn,int max_order)4952 int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
4953 {
4954 struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
4955 kvm_pfn_t pfn_aligned;
4956 gfn_t gfn_aligned;
4957 int level, rc;
4958 bool assigned;
4959
4960 if (!sev_snp_guest(kvm))
4961 return 0;
4962
4963 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
4964 if (rc) {
4965 pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
4966 gfn, pfn, rc);
4967 return -ENOENT;
4968 }
4969
4970 if (assigned) {
4971 pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
4972 __func__, gfn, pfn, max_order, level);
4973 return 0;
4974 }
4975
4976 if (is_large_rmp_possible(kvm, pfn, max_order)) {
4977 level = PG_LEVEL_2M;
4978 pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
4979 gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
4980 } else {
4981 level = PG_LEVEL_4K;
4982 pfn_aligned = pfn;
4983 gfn_aligned = gfn;
4984 }
4985
4986 rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
4987 if (rc) {
4988 pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
4989 gfn, pfn, level, rc);
4990 return -EINVAL;
4991 }
4992
4993 pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
4994 __func__, gfn, pfn, pfn_aligned, max_order, level);
4995
4996 return 0;
4997 }
4998
sev_gmem_invalidate(kvm_pfn_t start,kvm_pfn_t end)4999 void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
5000 {
5001 kvm_pfn_t pfn;
5002
5003 if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
5004 return;
5005
5006 pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);
5007
5008 for (pfn = start; pfn < end;) {
5009 bool use_2m_update = false;
5010 int rc, rmp_level;
5011 bool assigned;
5012
5013 rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
5014 if (rc || !assigned)
5015 goto next_pfn;
5016
5017 use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
5018 end >= (pfn + PTRS_PER_PMD) &&
5019 rmp_level > PG_LEVEL_4K;
5020
5021 /*
5022 * If an unaligned PFN corresponds to a 2M region assigned as a
5023 * large page in the RMP table, PSMASH the region into individual
5024 * 4K RMP entries before attempting to convert a 4K sub-page.
5025 */
5026 if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
5027 /*
5028 * This shouldn't fail, but if it does, report it, but
5029 * still try to update RMP entry to shared and pray this
5030 * was a spurious error that can be addressed later.
5031 */
5032 rc = snp_rmptable_psmash(pfn);
5033 WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
5034 pfn, rc);
5035 }
5036
5037 rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
5038 if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
5039 pfn, rc))
5040 goto next_pfn;
5041
5042 /*
5043 * SEV-ES avoids host/guest cache coherency issues through
5044 * WBNOINVD hooks issued via MMU notifiers during run-time, and
5045 * KVM's VM destroy path at shutdown. Those MMU notifier events
5046 * don't cover gmem since there is no requirement to map pages
5047 * to a HVA in order to use them for a running guest. While the
5048 * shutdown path would still likely cover things for SNP guests,
5049 * userspace may also free gmem pages during run-time via
5050 * hole-punching operations on the guest_memfd, so flush the
5051 * cache entries for these pages before free'ing them back to
5052 * the host.
5053 */
5054 clflush_cache_range(__va(pfn_to_hpa(pfn)),
5055 use_2m_update ? PMD_SIZE : PAGE_SIZE);
5056 next_pfn:
5057 pfn += use_2m_update ? PTRS_PER_PMD : 1;
5058 cond_resched();
5059 }
5060 }
5061
sev_gmem_max_mapping_level(struct kvm * kvm,kvm_pfn_t pfn,bool is_private)5062 int sev_gmem_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn, bool is_private)
5063 {
5064 int level, rc;
5065 bool assigned;
5066
5067 if (!sev_snp_guest(kvm))
5068 return 0;
5069
5070 rc = snp_lookup_rmpentry(pfn, &assigned, &level);
5071 if (rc || !assigned)
5072 return PG_LEVEL_4K;
5073
5074 return level;
5075 }
5076
sev_decrypt_vmsa(struct kvm_vcpu * vcpu)5077 struct vmcb_save_area *sev_decrypt_vmsa(struct kvm_vcpu *vcpu)
5078 {
5079 struct vcpu_svm *svm = to_svm(vcpu);
5080 struct vmcb_save_area *vmsa;
5081 struct kvm_sev_info *sev;
5082 int error = 0;
5083 int ret;
5084
5085 if (!sev_es_guest(vcpu->kvm))
5086 return NULL;
5087
5088 /*
5089 * If the VMSA has not yet been encrypted, return a pointer to the
5090 * current un-encrypted VMSA.
5091 */
5092 if (!vcpu->arch.guest_state_protected)
5093 return (struct vmcb_save_area *)svm->sev_es.vmsa;
5094
5095 sev = to_kvm_sev_info(vcpu->kvm);
5096
5097 /* Check if the SEV policy allows debugging */
5098 if (sev_snp_guest(vcpu->kvm)) {
5099 if (!(sev->policy & SNP_POLICY_MASK_DEBUG))
5100 return NULL;
5101 } else {
5102 if (sev->policy & SEV_POLICY_MASK_NODBG)
5103 return NULL;
5104 }
5105
5106 if (sev_snp_guest(vcpu->kvm)) {
5107 struct sev_data_snp_dbg dbg = {0};
5108
5109 vmsa = snp_alloc_firmware_page(__GFP_ZERO);
5110 if (!vmsa)
5111 return NULL;
5112
5113 dbg.gctx_paddr = __psp_pa(sev->snp_context);
5114 dbg.src_addr = svm->vmcb->control.vmsa_pa;
5115 dbg.dst_addr = __psp_pa(vmsa);
5116
5117 ret = sev_do_cmd(SEV_CMD_SNP_DBG_DECRYPT, &dbg, &error);
5118
5119 /*
5120 * Return the target page to a hypervisor page no matter what.
5121 * If this fails, the page can't be used, so leak it and don't
5122 * try to use it.
5123 */
5124 if (snp_page_reclaim(vcpu->kvm, PHYS_PFN(__pa(vmsa))))
5125 return NULL;
5126
5127 if (ret) {
5128 pr_err("SEV: SNP_DBG_DECRYPT failed ret=%d, fw_error=%d (%#x)\n",
5129 ret, error, error);
5130 free_page((unsigned long)vmsa);
5131
5132 return NULL;
5133 }
5134 } else {
5135 struct sev_data_dbg dbg = {0};
5136 struct page *vmsa_page;
5137
5138 vmsa_page = alloc_page(GFP_KERNEL);
5139 if (!vmsa_page)
5140 return NULL;
5141
5142 vmsa = page_address(vmsa_page);
5143
5144 dbg.handle = sev->handle;
5145 dbg.src_addr = svm->vmcb->control.vmsa_pa;
5146 dbg.dst_addr = __psp_pa(vmsa);
5147 dbg.len = PAGE_SIZE;
5148
5149 ret = sev_do_cmd(SEV_CMD_DBG_DECRYPT, &dbg, &error);
5150 if (ret) {
5151 pr_err("SEV: SEV_CMD_DBG_DECRYPT failed ret=%d, fw_error=%d (0x%x)\n",
5152 ret, error, error);
5153 __free_page(vmsa_page);
5154
5155 return NULL;
5156 }
5157 }
5158
5159 return vmsa;
5160 }
5161
sev_free_decrypted_vmsa(struct kvm_vcpu * vcpu,struct vmcb_save_area * vmsa)5162 void sev_free_decrypted_vmsa(struct kvm_vcpu *vcpu, struct vmcb_save_area *vmsa)
5163 {
5164 /* If the VMSA has not yet been encrypted, nothing was allocated */
5165 if (!vcpu->arch.guest_state_protected || !vmsa)
5166 return;
5167
5168 free_page((unsigned long)vmsa);
5169 }
5170