xref: /linux/arch/s390/kernel/perf_cpum_sf.c (revision bc46b7cbc58c4cb562b6a45a1fbc7b8e7b23df58)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance event support for the System z CPU-measurement Sampling Facility
4  *
5  * Copyright IBM Corp. 2013, 2018
6  * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7  */
8 #define KMSG_COMPONENT	"cpum_sf"
9 #define pr_fmt(fmt)	KMSG_COMPONENT ": " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/moduleparam.h>
20 #include <asm/cpu_mf.h>
21 #include <asm/irq.h>
22 #include <asm/debug.h>
23 #include <asm/timex.h>
24 #include <linux/io.h>
25 
26 /* Perf PMU definitions for the sampling facility */
27 #define PERF_CPUM_SF_MAX_CTR		2
28 #define PERF_EVENT_CPUM_SF		0xB0000UL /* Event: Basic-sampling */
29 #define PERF_EVENT_CPUM_SF_DIAG		0xBD000UL /* Event: Combined-sampling */
30 #define PERF_CPUM_SF_BASIC_MODE		0x0001	  /* Basic-sampling flag */
31 #define PERF_CPUM_SF_DIAG_MODE		0x0002	  /* Diagnostic-sampling flag */
32 #define PERF_CPUM_SF_FREQ_MODE		0x0008	  /* Sampling with frequency */
33 
34 #define OVERFLOW_REG(hwc)	((hwc)->extra_reg.config)
35 #define SFB_ALLOC_REG(hwc)	((hwc)->extra_reg.alloc)
36 #define TEAR_REG(hwc)		((hwc)->last_tag)
37 #define SAMPL_RATE(hwc)		((hwc)->event_base)
38 #define SAMPL_FLAGS(hwc)	((hwc)->config_base)
39 #define SAMPL_DIAG_MODE(hwc)	(SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE)
40 #define SAMPL_FREQ_MODE(hwc)	(SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE)
41 
42 /* Minimum number of sample-data-block-tables:
43  * At least one table is required for the sampling buffer structure.
44  * A single table contains up to 511 pointers to sample-data-blocks.
45  */
46 #define CPUM_SF_MIN_SDBT	1
47 
48 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
49  * A table contains SDB pointers (8 bytes) and one table-link entry
50  * that points to the origin of the next SDBT.
51  */
52 #define CPUM_SF_SDB_PER_TABLE	((PAGE_SIZE - 8) / 8)
53 
54 /* Maximum page offset for an SDBT table-link entry:
55  * If this page offset is reached, a table-link entry to the next SDBT
56  * must be added.
57  */
58 #define CPUM_SF_SDBT_TL_OFFSET	(CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)59 static inline int require_table_link(const void *sdbt)
60 {
61 	return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
62 }
63 
64 /* Minimum and maximum sampling buffer sizes:
65  *
66  * This number represents the maximum size of the sampling buffer taking
67  * the number of sample-data-block-tables into account.  Note that these
68  * numbers apply to the basic-sampling function only.
69  * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
70  * the diagnostic-sampling function is active.
71  *
72  * Sampling buffer size		Buffer characteristics
73  * ---------------------------------------------------
74  *	 64KB		    ==	  16 pages (4KB per page)
75  *				   1 page  for SDB-tables
76  *				  15 pages for SDBs
77  *
78  *  32MB		    ==	8192 pages (4KB per page)
79  *				  16 pages for SDB-tables
80  *				8176 pages for SDBs
81  */
82 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
83 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
84 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
85 
86 struct sf_buffer {
87 	unsigned long	 *sdbt;	    /* Sample-data-block-table origin */
88 	/* buffer characteristics (required for buffer increments) */
89 	unsigned long  num_sdb;	    /* Number of sample-data-blocks */
90 	unsigned long num_sdbt;	    /* Number of sample-data-block-tables */
91 	unsigned long	 *tail;	    /* last sample-data-block-table */
92 };
93 
94 struct aux_buffer {
95 	struct sf_buffer sfb;
96 	unsigned long head;	   /* index of SDB of buffer head */
97 	unsigned long alert_mark;  /* index of SDB of alert request position */
98 	unsigned long empty_mark;  /* mark of SDB not marked full */
99 	unsigned long *sdb_index;  /* SDB address for fast lookup */
100 	unsigned long *sdbt_index; /* SDBT address for fast lookup */
101 };
102 
103 struct cpu_hw_sf {
104 	/* CPU-measurement sampling information block */
105 	struct hws_qsi_info_block qsi;
106 	/* CPU-measurement sampling control block */
107 	struct hws_lsctl_request_block lsctl;
108 	struct sf_buffer sfb;	    /* Sampling buffer */
109 	unsigned int flags;	    /* Status flags */
110 	struct perf_event *event;   /* Scheduled perf event */
111 	struct perf_output_handle handle; /* AUX buffer output handle */
112 };
113 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
114 
115 /* Debug feature */
116 static debug_info_t *sfdbg;
117 
118 /* Sampling control helper functions */
freq_to_sample_rate(struct hws_qsi_info_block * qsi,unsigned long freq)119 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
120 						unsigned long freq)
121 {
122 	return (USEC_PER_SEC / freq) * qsi->cpu_speed;
123 }
124 
sample_rate_to_freq(struct hws_qsi_info_block * qsi,unsigned long rate)125 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
126 						unsigned long rate)
127 {
128 	return USEC_PER_SEC * qsi->cpu_speed / rate;
129 }
130 
131 /* Return pointer to trailer entry of an sample data block */
trailer_entry_ptr(unsigned long v)132 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
133 {
134 	void *ret;
135 
136 	ret = (void *)v;
137 	ret += PAGE_SIZE;
138 	ret -= sizeof(struct hws_trailer_entry);
139 
140 	return ret;
141 }
142 
143 /*
144  * Return true if the entry in the sample data block table (sdbt)
145  * is a link to the next sdbt
146  */
is_link_entry(unsigned long * s)147 static inline int is_link_entry(unsigned long *s)
148 {
149 	return *s & 0x1UL ? 1 : 0;
150 }
151 
152 /* Return pointer to the linked sdbt */
get_next_sdbt(unsigned long * s)153 static inline unsigned long *get_next_sdbt(unsigned long *s)
154 {
155 	return phys_to_virt(*s & ~0x1UL);
156 }
157 
158 /*
159  * sf_disable() - Switch off sampling facility
160  */
sf_disable(void)161 static void sf_disable(void)
162 {
163 	struct hws_lsctl_request_block sreq;
164 
165 	memset(&sreq, 0, sizeof(sreq));
166 	lsctl(&sreq);
167 }
168 
169 /*
170  * sf_buffer_available() - Check for an allocated sampling buffer
171  */
sf_buffer_available(struct cpu_hw_sf * cpuhw)172 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
173 {
174 	return !!cpuhw->sfb.sdbt;
175 }
176 
177 /*
178  * deallocate sampling facility buffer
179  */
free_sampling_buffer(struct sf_buffer * sfb)180 static void free_sampling_buffer(struct sf_buffer *sfb)
181 {
182 	unsigned long *sdbt, *curr, *head;
183 
184 	sdbt = sfb->sdbt;
185 	if (!sdbt)
186 		return;
187 	sfb->sdbt = NULL;
188 	/* Free the SDBT after all SDBs are processed... */
189 	head = sdbt;
190 	curr = sdbt;
191 	do {
192 		if (is_link_entry(curr)) {
193 			/* Process table-link entries */
194 			curr = get_next_sdbt(curr);
195 			free_page((unsigned long)sdbt);
196 			sdbt = curr;
197 		} else {
198 			/* Process SDB pointer */
199 			free_page((unsigned long)phys_to_virt(*curr));
200 			curr++;
201 		}
202 	} while (curr != head);
203 	memset(sfb, 0, sizeof(*sfb));
204 }
205 
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)206 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
207 {
208 	struct hws_trailer_entry *te;
209 	unsigned long sdb;
210 
211 	/* Allocate and initialize sample-data-block */
212 	sdb = get_zeroed_page(gfp_flags);
213 	if (!sdb)
214 		return -ENOMEM;
215 	te = trailer_entry_ptr(sdb);
216 	te->header.a = 1;
217 
218 	/* Link SDB into the sample-data-block-table */
219 	*sdbt = virt_to_phys((void *)sdb);
220 
221 	return 0;
222 }
223 
224 /*
225  * realloc_sampling_buffer() - extend sampler memory
226  *
227  * Allocates new sample-data-blocks and adds them to the specified sampling
228  * buffer memory.
229  *
230  * Important: This modifies the sampling buffer and must be called when the
231  *	      sampling facility is disabled.
232  *
233  * Returns zero on success, non-zero otherwise.
234  */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)235 static int realloc_sampling_buffer(struct sf_buffer *sfb,
236 				   unsigned long num_sdb, gfp_t gfp_flags)
237 {
238 	int i, rc;
239 	unsigned long *new, *tail, *tail_prev = NULL;
240 
241 	if (!sfb->sdbt || !sfb->tail)
242 		return -EINVAL;
243 
244 	if (!is_link_entry(sfb->tail))
245 		return -EINVAL;
246 
247 	/* Append to the existing sampling buffer, overwriting the table-link
248 	 * register.
249 	 * The tail variables always points to the "tail" (last and table-link)
250 	 * entry in an SDB-table.
251 	 */
252 	tail = sfb->tail;
253 
254 	/* Do a sanity check whether the table-link entry points to
255 	 * the sampling buffer origin.
256 	 */
257 	if (sfb->sdbt != get_next_sdbt(tail)) {
258 		debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n",
259 				    __func__, (unsigned long)sfb->sdbt,
260 				    (unsigned long)tail);
261 		return -EINVAL;
262 	}
263 
264 	/* Allocate remaining SDBs */
265 	rc = 0;
266 	for (i = 0; i < num_sdb; i++) {
267 		/* Allocate a new SDB-table if it is full. */
268 		if (require_table_link(tail)) {
269 			new = (unsigned long *)get_zeroed_page(gfp_flags);
270 			if (!new) {
271 				rc = -ENOMEM;
272 				break;
273 			}
274 			sfb->num_sdbt++;
275 			/* Link current page to tail of chain */
276 			*tail = virt_to_phys((void *)new) + 1;
277 			tail_prev = tail;
278 			tail = new;
279 		}
280 
281 		/* Allocate a new sample-data-block.
282 		 * If there is not enough memory, stop the realloc process
283 		 * and simply use what was allocated.  If this is a temporary
284 		 * issue, a new realloc call (if required) might succeed.
285 		 */
286 		rc = alloc_sample_data_block(tail, gfp_flags);
287 		if (rc) {
288 			/* Undo last SDBT. An SDBT with no SDB at its first
289 			 * entry but with an SDBT entry instead can not be
290 			 * handled by the interrupt handler code.
291 			 * Avoid this situation.
292 			 */
293 			if (tail_prev) {
294 				sfb->num_sdbt--;
295 				free_page((unsigned long)new);
296 				tail = tail_prev;
297 			}
298 			break;
299 		}
300 		sfb->num_sdb++;
301 		tail++;
302 		tail_prev = new = NULL;	/* Allocated at least one SBD */
303 	}
304 
305 	/* Link sampling buffer to its origin */
306 	*tail = virt_to_phys(sfb->sdbt) + 1;
307 	sfb->tail = tail;
308 
309 	return rc;
310 }
311 
312 /*
313  * allocate_sampling_buffer() - allocate sampler memory
314  *
315  * Allocates and initializes a sampling buffer structure using the
316  * specified number of sample-data-blocks (SDB).  For each allocation,
317  * a 4K page is used.  The number of sample-data-block-tables (SDBT)
318  * are calculated from SDBs.
319  * Also set the ALERT_REQ mask in each SDBs trailer.
320  *
321  * Returns zero on success, non-zero otherwise.
322  */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)323 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
324 {
325 	int rc;
326 
327 	if (sfb->sdbt)
328 		return -EINVAL;
329 
330 	/* Allocate the sample-data-block-table origin */
331 	sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
332 	if (!sfb->sdbt)
333 		return -ENOMEM;
334 	sfb->num_sdb = 0;
335 	sfb->num_sdbt = 1;
336 
337 	/* Link the table origin to point to itself to prepare for
338 	 * realloc_sampling_buffer() invocation.
339 	 */
340 	sfb->tail = sfb->sdbt;
341 	*sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
342 
343 	/* Allocate requested number of sample-data-blocks */
344 	rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
345 	if (rc)
346 		free_sampling_buffer(sfb);
347 	return rc;
348 }
349 
sfb_set_limits(unsigned long min,unsigned long max)350 static void sfb_set_limits(unsigned long min, unsigned long max)
351 {
352 	struct hws_qsi_info_block si;
353 
354 	CPUM_SF_MIN_SDB = min;
355 	CPUM_SF_MAX_SDB = max;
356 
357 	memset(&si, 0, sizeof(si));
358 	qsi(&si);
359 	CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
360 }
361 
sfb_max_limit(struct hw_perf_event * hwc)362 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
363 {
364 	return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
365 				    : CPUM_SF_MAX_SDB;
366 }
367 
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)368 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
369 					struct hw_perf_event *hwc)
370 {
371 	if (!sfb->sdbt)
372 		return SFB_ALLOC_REG(hwc);
373 	if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
374 		return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
375 	return 0;
376 }
377 
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)378 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
379 {
380 	/* Limit the number of SDBs to not exceed the maximum */
381 	num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
382 	if (num)
383 		SFB_ALLOC_REG(hwc) += num;
384 }
385 
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)386 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
387 {
388 	SFB_ALLOC_REG(hwc) = 0;
389 	sfb_account_allocs(num, hwc);
390 }
391 
deallocate_buffers(struct cpu_hw_sf * cpuhw)392 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
393 {
394 	if (sf_buffer_available(cpuhw))
395 		free_sampling_buffer(&cpuhw->sfb);
396 }
397 
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)398 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
399 {
400 	unsigned long n_sdb, freq;
401 
402 	/* Calculate sampling buffers using 4K pages
403 	 *
404 	 *    1. The sampling size is 32 bytes for basic sampling. This size
405 	 *	 is the same for all machine types. Diagnostic
406 	 *	 sampling uses auxlilary data buffer setup which provides the
407 	 *	 memory for SDBs using linux common code auxiliary trace
408 	 *	 setup.
409 	 *
410 	 *    2. Function alloc_sampling_buffer() sets the Alert Request
411 	 *	 Control indicator to trigger a measurement-alert to harvest
412 	 *	 sample-data-blocks (SDB). This is done per SDB. This
413 	 *	 measurement alert interrupt fires quick enough to handle
414 	 *	 one SDB, on very high frequency and work loads there might
415 	 *	 be 2 to 3 SBDs available for sample processing.
416 	 *	 Currently there is no need for setup alert request on every
417 	 *	 n-th page. This is counterproductive as one IRQ triggers
418 	 *	 a very high number of samples to be processed at one IRQ.
419 	 *
420 	 *    3. Use the sampling frequency as input.
421 	 *	 Compute the number of SDBs and ensure a minimum
422 	 *	 of CPUM_SF_MIN_SDB.  Depending on frequency add some more
423 	 *	 SDBs to handle a higher sampling rate.
424 	 *	 Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
425 	 *	 (one SDB) for every 10000 HZ frequency increment.
426 	 *
427 	 *    4. Compute the number of sample-data-block-tables (SDBT) and
428 	 *	 ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
429 	 *	 to 511 SDBs).
430 	 */
431 	freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
432 	n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
433 
434 	/* If there is already a sampling buffer allocated, it is very likely
435 	 * that the sampling facility is enabled too.  If the event to be
436 	 * initialized requires a greater sampling buffer, the allocation must
437 	 * be postponed.  Changing the sampling buffer requires the sampling
438 	 * facility to be in the disabled state.  So, account the number of
439 	 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
440 	 * before the event is started.
441 	 */
442 	sfb_init_allocs(n_sdb, hwc);
443 	if (sf_buffer_available(cpuhw))
444 		return 0;
445 
446 	return alloc_sampling_buffer(&cpuhw->sfb,
447 				     sfb_pending_allocs(&cpuhw->sfb, hwc));
448 }
449 
min_percent(unsigned int percent,unsigned long base,unsigned long min)450 static unsigned long min_percent(unsigned int percent, unsigned long base,
451 				 unsigned long min)
452 {
453 	return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
454 }
455 
compute_sfb_extent(unsigned long ratio,unsigned long base)456 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
457 {
458 	/* Use a percentage-based approach to extend the sampling facility
459 	 * buffer.  Accept up to 5% sample data loss.
460 	 * Vary the extents between 1% to 5% of the current number of
461 	 * sample-data-blocks.
462 	 */
463 	if (ratio <= 5)
464 		return 0;
465 	if (ratio <= 25)
466 		return min_percent(1, base, 1);
467 	if (ratio <= 50)
468 		return min_percent(1, base, 1);
469 	if (ratio <= 75)
470 		return min_percent(2, base, 2);
471 	if (ratio <= 100)
472 		return min_percent(3, base, 3);
473 	if (ratio <= 250)
474 		return min_percent(4, base, 4);
475 
476 	return min_percent(5, base, 8);
477 }
478 
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)479 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
480 				  struct hw_perf_event *hwc)
481 {
482 	unsigned long ratio, num;
483 
484 	if (!OVERFLOW_REG(hwc))
485 		return;
486 
487 	/* The sample_overflow contains the average number of sample data
488 	 * that has been lost because sample-data-blocks were full.
489 	 *
490 	 * Calculate the total number of sample data entries that has been
491 	 * discarded.  Then calculate the ratio of lost samples to total samples
492 	 * per second in percent.
493 	 */
494 	ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
495 			     sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
496 
497 	/* Compute number of sample-data-blocks */
498 	num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
499 	if (num)
500 		sfb_account_allocs(num, hwc);
501 
502 	OVERFLOW_REG(hwc) = 0;
503 }
504 
505 /* extend_sampling_buffer() - Extend sampling buffer
506  * @sfb:	Sampling buffer structure (for local CPU)
507  * @hwc:	Perf event hardware structure
508  *
509  * Use this function to extend the sampling buffer based on the overflow counter
510  * and postponed allocation extents stored in the specified Perf event hardware.
511  *
512  * Important: This function disables the sampling facility in order to safely
513  *	      change the sampling buffer structure.  Do not call this function
514  *	      when the PMU is active.
515  */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)516 static void extend_sampling_buffer(struct sf_buffer *sfb,
517 				   struct hw_perf_event *hwc)
518 {
519 	unsigned long num;
520 
521 	num = sfb_pending_allocs(sfb, hwc);
522 	if (!num)
523 		return;
524 
525 	/* Disable the sampling facility to reset any states and also
526 	 * clear pending measurement alerts.
527 	 */
528 	sf_disable();
529 
530 	/* Extend the sampling buffer.
531 	 * This memory allocation typically happens in an atomic context when
532 	 * called by perf.  Because this is a reallocation, it is fine if the
533 	 * new SDB-request cannot be satisfied immediately.
534 	 */
535 	realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
536 }
537 
538 /* Number of perf events counting hardware events */
539 static refcount_t num_events;
540 /* Used to avoid races in calling reserve/release_cpumf_hardware */
541 static DEFINE_MUTEX(pmc_reserve_mutex);
542 
543 #define PMC_INIT      0
544 #define PMC_RELEASE   1
setup_pmc_cpu(void * flags)545 static void setup_pmc_cpu(void *flags)
546 {
547 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
548 
549 	sf_disable();
550 	switch (*((int *)flags)) {
551 	case PMC_INIT:
552 		memset(cpuhw, 0, sizeof(*cpuhw));
553 		qsi(&cpuhw->qsi);
554 		cpuhw->flags |= PMU_F_RESERVED;
555 		break;
556 	case PMC_RELEASE:
557 		cpuhw->flags &= ~PMU_F_RESERVED;
558 		deallocate_buffers(cpuhw);
559 		break;
560 	}
561 }
562 
release_pmc_hardware(void)563 static void release_pmc_hardware(void)
564 {
565 	int flags = PMC_RELEASE;
566 
567 	irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
568 	on_each_cpu(setup_pmc_cpu, &flags, 1);
569 }
570 
reserve_pmc_hardware(void)571 static void reserve_pmc_hardware(void)
572 {
573 	int flags = PMC_INIT;
574 
575 	on_each_cpu(setup_pmc_cpu, &flags, 1);
576 	irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
577 }
578 
hw_perf_event_destroy(struct perf_event * event)579 static void hw_perf_event_destroy(struct perf_event *event)
580 {
581 	/* Release PMC if this is the last perf event */
582 	if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) {
583 		release_pmc_hardware();
584 		mutex_unlock(&pmc_reserve_mutex);
585 	}
586 }
587 
hw_init_period(struct hw_perf_event * hwc,u64 period)588 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
589 {
590 	hwc->sample_period = period;
591 	hwc->last_period = hwc->sample_period;
592 	local64_set(&hwc->period_left, hwc->sample_period);
593 }
594 
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)595 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
596 				   unsigned long rate)
597 {
598 	return clamp_t(unsigned long, rate,
599 		       si->min_sampl_rate, si->max_sampl_rate);
600 }
601 
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)602 static u32 cpumsf_pid_type(struct perf_event *event,
603 			   u32 pid, enum pid_type type)
604 {
605 	struct task_struct *tsk;
606 
607 	/* Idle process */
608 	if (!pid)
609 		goto out;
610 
611 	tsk = find_task_by_pid_ns(pid, &init_pid_ns);
612 	pid = -1;
613 	if (tsk) {
614 		/*
615 		 * Only top level events contain the pid namespace in which
616 		 * they are created.
617 		 */
618 		if (event->parent)
619 			event = event->parent;
620 		pid = __task_pid_nr_ns(tsk, type, event->ns);
621 		/*
622 		 * See also 1d953111b648
623 		 * "perf/core: Don't report zero PIDs for exiting tasks".
624 		 */
625 		if (!pid && !pid_alive(tsk))
626 			pid = -1;
627 	}
628 out:
629 	return pid;
630 }
631 
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)632 static void cpumsf_output_event_pid(struct perf_event *event,
633 				    struct perf_sample_data *data,
634 				    struct pt_regs *regs)
635 {
636 	u32 pid;
637 	struct perf_event_header header;
638 	struct perf_output_handle handle;
639 
640 	/*
641 	 * Obtain the PID from the basic-sampling data entry and
642 	 * correct the data->tid_entry.pid value.
643 	 */
644 	pid = data->tid_entry.pid;
645 
646 	/* Protect callchain buffers, tasks */
647 	rcu_read_lock();
648 
649 	perf_prepare_sample(data, event, regs);
650 	perf_prepare_header(&header, data, event, regs);
651 	if (perf_output_begin(&handle, data, event, header.size))
652 		goto out;
653 
654 	/* Update the process ID (see also kernel/events/core.c) */
655 	data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
656 	data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
657 
658 	perf_output_sample(&handle, &header, data, event);
659 	perf_output_end(&handle);
660 out:
661 	rcu_read_unlock();
662 }
663 
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)664 static unsigned long getrate(bool freq, unsigned long sample,
665 			     struct hws_qsi_info_block *si)
666 {
667 	unsigned long rate;
668 
669 	if (freq) {
670 		rate = freq_to_sample_rate(si, sample);
671 		rate = hw_limit_rate(si, rate);
672 	} else {
673 		/* The min/max sampling rates specifies the valid range
674 		 * of sample periods.  If the specified sample period is
675 		 * out of range, limit the period to the range boundary.
676 		 */
677 		rate = hw_limit_rate(si, sample);
678 
679 		/* The perf core maintains a maximum sample rate that is
680 		 * configurable through the sysctl interface.  Ensure the
681 		 * sampling rate does not exceed this value.  This also helps
682 		 * to avoid throttling when pushing samples with
683 		 * perf_event_overflow().
684 		 */
685 		if (sample_rate_to_freq(si, rate) >
686 		    sysctl_perf_event_sample_rate) {
687 			rate = 0;
688 		}
689 	}
690 	return rate;
691 }
692 
693 /* The sampling information (si) contains information about the
694  * min/max sampling intervals and the CPU speed.  So calculate the
695  * correct sampling interval and avoid the whole period adjust
696  * feedback loop.
697  *
698  * Since the CPU Measurement sampling facility can not handle frequency
699  * calculate the sampling interval when frequency is specified using
700  * this formula:
701  *	interval := cpu_speed * 1000000 / sample_freq
702  *
703  * Returns errno on bad input and zero on success with parameter interval
704  * set to the correct sampling rate.
705  *
706  * Note: This function turns off freq bit to avoid calling function
707  * perf_adjust_period(). This causes frequency adjustment in the common
708  * code part which causes tremendous variations in the counter values.
709  */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)710 static int __hw_perf_event_init_rate(struct perf_event *event,
711 				     struct hws_qsi_info_block *si)
712 {
713 	struct perf_event_attr *attr = &event->attr;
714 	struct hw_perf_event *hwc = &event->hw;
715 	unsigned long rate;
716 
717 	if (attr->freq) {
718 		if (!attr->sample_freq)
719 			return -EINVAL;
720 		rate = getrate(attr->freq, attr->sample_freq, si);
721 		attr->freq = 0;		/* Don't call  perf_adjust_period() */
722 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
723 	} else {
724 		rate = getrate(attr->freq, attr->sample_period, si);
725 		if (!rate)
726 			return -EINVAL;
727 	}
728 	attr->sample_period = rate;
729 	SAMPL_RATE(hwc) = rate;
730 	hw_init_period(hwc, SAMPL_RATE(hwc));
731 	return 0;
732 }
733 
__hw_perf_event_init(struct perf_event * event)734 static int __hw_perf_event_init(struct perf_event *event)
735 {
736 	struct cpu_hw_sf *cpuhw;
737 	struct hws_qsi_info_block si;
738 	struct perf_event_attr *attr = &event->attr;
739 	struct hw_perf_event *hwc = &event->hw;
740 	int cpu, err = 0;
741 
742 	/* Reserve CPU-measurement sampling facility */
743 	mutex_lock(&pmc_reserve_mutex);
744 	if (!refcount_inc_not_zero(&num_events)) {
745 		reserve_pmc_hardware();
746 		refcount_set(&num_events, 1);
747 	}
748 	event->destroy = hw_perf_event_destroy;
749 
750 	/* Access per-CPU sampling information (query sampling info) */
751 	/*
752 	 * The event->cpu value can be -1 to count on every CPU, for example,
753 	 * when attaching to a task.  If this is specified, use the query
754 	 * sampling info from the current CPU, otherwise use event->cpu to
755 	 * retrieve the per-CPU information.
756 	 * Later, cpuhw indicates whether to allocate sampling buffers for a
757 	 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
758 	 */
759 	memset(&si, 0, sizeof(si));
760 	cpuhw = NULL;
761 	if (event->cpu == -1) {
762 		qsi(&si);
763 	} else {
764 		/* Event is pinned to a particular CPU, retrieve the per-CPU
765 		 * sampling structure for accessing the CPU-specific QSI.
766 		 */
767 		cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
768 		si = cpuhw->qsi;
769 	}
770 
771 	/* Check sampling facility authorization and, if not authorized,
772 	 * fall back to other PMUs.  It is safe to check any CPU because
773 	 * the authorization is identical for all configured CPUs.
774 	 */
775 	if (!si.as) {
776 		err = -ENOENT;
777 		goto out;
778 	}
779 
780 	if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
781 		pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
782 		err = -EBUSY;
783 		goto out;
784 	}
785 
786 	/* Always enable basic sampling */
787 	SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
788 
789 	/* Check if diagnostic sampling is requested.  Deny if the required
790 	 * sampling authorization is missing.
791 	 */
792 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
793 		if (!si.ad) {
794 			err = -EPERM;
795 			goto out;
796 		}
797 		SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
798 	}
799 
800 	err =  __hw_perf_event_init_rate(event, &si);
801 	if (err)
802 		goto out;
803 
804 	/* Use AUX buffer. No need to allocate it by ourself */
805 	if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
806 		goto out;
807 
808 	/* Allocate the per-CPU sampling buffer using the CPU information
809 	 * from the event.  If the event is not pinned to a particular
810 	 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
811 	 * buffers for each online CPU.
812 	 */
813 	if (cpuhw)
814 		/* Event is pinned to a particular CPU */
815 		err = allocate_buffers(cpuhw, hwc);
816 	else {
817 		/* Event is not pinned, allocate sampling buffer on
818 		 * each online CPU
819 		 */
820 		for_each_online_cpu(cpu) {
821 			cpuhw = &per_cpu(cpu_hw_sf, cpu);
822 			err = allocate_buffers(cpuhw, hwc);
823 			if (err)
824 				break;
825 		}
826 	}
827 
828 	/* If PID/TID sampling is active, replace the default overflow
829 	 * handler to extract and resolve the PIDs from the basic-sampling
830 	 * data entries.
831 	 */
832 	if (event->attr.sample_type & PERF_SAMPLE_TID)
833 		if (is_default_overflow_handler(event))
834 			event->overflow_handler = cpumsf_output_event_pid;
835 out:
836 	mutex_unlock(&pmc_reserve_mutex);
837 	return err;
838 }
839 
is_callchain_event(struct perf_event * event)840 static bool is_callchain_event(struct perf_event *event)
841 {
842 	u64 sample_type = event->attr.sample_type;
843 
844 	return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
845 			      PERF_SAMPLE_STACK_USER);
846 }
847 
cpumsf_pmu_event_init(struct perf_event * event)848 static int cpumsf_pmu_event_init(struct perf_event *event)
849 {
850 	int err;
851 
852 	/* No support for taken branch sampling */
853 	/* No support for callchain, stacks and registers */
854 	if (has_branch_stack(event) || is_callchain_event(event))
855 		return -EOPNOTSUPP;
856 
857 	switch (event->attr.type) {
858 	case PERF_TYPE_RAW:
859 		if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
860 		    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
861 			return -ENOENT;
862 		break;
863 	case PERF_TYPE_HARDWARE:
864 		/* Support sampling of CPU cycles in addition to the
865 		 * counter facility.  However, the counter facility
866 		 * is more precise and, hence, restrict this PMU to
867 		 * sampling events only.
868 		 */
869 		if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
870 			return -ENOENT;
871 		if (!is_sampling_event(event))
872 			return -ENOENT;
873 		break;
874 	default:
875 		return -ENOENT;
876 	}
877 
878 	/* Force reset of idle/hv excludes regardless of what the
879 	 * user requested.
880 	 */
881 	if (event->attr.exclude_hv)
882 		event->attr.exclude_hv = 0;
883 	if (event->attr.exclude_idle)
884 		event->attr.exclude_idle = 0;
885 
886 	err = __hw_perf_event_init(event);
887 	return err;
888 }
889 
cpumsf_pmu_enable(struct pmu * pmu)890 static void cpumsf_pmu_enable(struct pmu *pmu)
891 {
892 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
893 	struct hw_perf_event *hwc;
894 	int err;
895 
896 	/*
897 	 * Event must be
898 	 * - added/started on this CPU (PMU_F_IN_USE set)
899 	 * - and CPU must be available (PMU_F_RESERVED set)
900 	 * - and not already enabled (PMU_F_ENABLED not set)
901 	 * - and not in error condition (PMU_F_ERR_MASK not set)
902 	 */
903 	if (cpuhw->flags != (PMU_F_IN_USE | PMU_F_RESERVED))
904 		return;
905 
906 	/* Check whether to extent the sampling buffer.
907 	 *
908 	 * Two conditions trigger an increase of the sampling buffer for a
909 	 * perf event:
910 	 *    1. Postponed buffer allocations from the event initialization.
911 	 *    2. Sampling overflows that contribute to pending allocations.
912 	 *
913 	 * Note that the extend_sampling_buffer() function disables the sampling
914 	 * facility, but it can be fully re-enabled using sampling controls that
915 	 * have been saved in cpumsf_pmu_disable().
916 	 */
917 	hwc = &cpuhw->event->hw;
918 	if (!(SAMPL_DIAG_MODE(hwc))) {
919 		/*
920 		 * Account number of overflow-designated buffer extents
921 		 */
922 		sfb_account_overflows(cpuhw, hwc);
923 		extend_sampling_buffer(&cpuhw->sfb, hwc);
924 	}
925 	/* Rate may be adjusted with ioctl() */
926 	cpuhw->lsctl.interval = SAMPL_RATE(hwc);
927 
928 	/* (Re)enable the PMU and sampling facility */
929 	err = lsctl(&cpuhw->lsctl);
930 	if (err) {
931 		pr_err("Loading sampling controls failed: op 1 err %i\n", err);
932 		return;
933 	}
934 
935 	/* Load current program parameter */
936 	lpp(&get_lowcore()->lpp);
937 	cpuhw->flags |= PMU_F_ENABLED;
938 }
939 
cpumsf_pmu_disable(struct pmu * pmu)940 static void cpumsf_pmu_disable(struct pmu *pmu)
941 {
942 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
943 	struct hws_lsctl_request_block inactive;
944 	struct hws_qsi_info_block si;
945 	int err;
946 
947 	if (!(cpuhw->flags & PMU_F_ENABLED))
948 		return;
949 
950 	if (cpuhw->flags & PMU_F_ERR_MASK)
951 		return;
952 
953 	/* Switch off sampling activation control */
954 	inactive = cpuhw->lsctl;
955 	inactive.cs = 0;
956 	inactive.cd = 0;
957 
958 	err = lsctl(&inactive);
959 	if (err) {
960 		pr_err("Loading sampling controls failed: op 2 err %i\n", err);
961 		return;
962 	}
963 
964 	/*
965 	 * Save state of TEAR and DEAR register contents.
966 	 * TEAR/DEAR values are valid only if the sampling facility is
967 	 * enabled.  Note that cpumsf_pmu_disable() might be called even
968 	 * for a disabled sampling facility because cpumsf_pmu_enable()
969 	 * controls the enable/disable state.
970 	 */
971 	qsi(&si);
972 	if (si.es) {
973 		cpuhw->lsctl.tear = si.tear;
974 		cpuhw->lsctl.dear = si.dear;
975 	}
976 
977 	cpuhw->flags &= ~PMU_F_ENABLED;
978 }
979 
980 /* perf_event_exclude() - Filter event
981  * @event:	The perf event
982  * @regs:	pt_regs structure
983  * @sde_regs:	Sample-data-entry (sde) regs structure
984  *
985  * Filter perf events according to their exclude specification.
986  *
987  * Return non-zero if the event shall be excluded.
988  */
perf_event_exclude(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)989 static int perf_event_exclude(struct perf_event *event, struct pt_regs *regs,
990 			      struct perf_sf_sde_regs *sde_regs)
991 {
992 	if (event->attr.exclude_user && user_mode(regs))
993 		return 1;
994 	if (event->attr.exclude_kernel && !user_mode(regs))
995 		return 1;
996 	if (event->attr.exclude_guest && sde_regs->in_guest)
997 		return 1;
998 	if (event->attr.exclude_host && !sde_regs->in_guest)
999 		return 1;
1000 	return 0;
1001 }
1002 
1003 /* perf_push_sample() - Push samples to perf
1004  * @event:	The perf event
1005  * @sample:	Hardware sample data
1006  *
1007  * Use the hardware sample data to create perf event sample.  The sample
1008  * is the pushed to the event subsystem and the function checks for
1009  * possible event overflows.  If an event overflow occurs, the PMU is
1010  * stopped.
1011  *
1012  * Return non-zero if an event overflow occurred.
1013  */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1014 static int perf_push_sample(struct perf_event *event,
1015 			    struct hws_basic_entry *basic)
1016 {
1017 	int overflow;
1018 	struct pt_regs regs;
1019 	struct perf_sf_sde_regs *sde_regs;
1020 	struct perf_sample_data data;
1021 
1022 	/* Setup perf sample */
1023 	perf_sample_data_init(&data, 0, event->hw.last_period);
1024 
1025 	/* Setup pt_regs to look like an CPU-measurement external interrupt
1026 	 * using the Program Request Alert code.  The regs.int_parm_long
1027 	 * field which is unused contains additional sample-data-entry related
1028 	 * indicators.
1029 	 */
1030 	memset(&regs, 0, sizeof(regs));
1031 	regs.int_code = 0x1407;
1032 	regs.int_parm = CPU_MF_INT_SF_PRA;
1033 	sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1034 
1035 	psw_bits(regs.psw).ia	= basic->ia;
1036 	psw_bits(regs.psw).dat	= basic->T;
1037 	psw_bits(regs.psw).wait = basic->W;
1038 	psw_bits(regs.psw).pstate = basic->P;
1039 	psw_bits(regs.psw).as	= basic->AS;
1040 
1041 	/*
1042 	 * Use the hardware provided configuration level to decide if the
1043 	 * sample belongs to a guest or host. If that is not available,
1044 	 * fall back to the following heuristics:
1045 	 * A non-zero guest program parameter always indicates a guest
1046 	 * sample. Some early samples or samples from guests without
1047 	 * lpp usage would be misaccounted to the host. We use the asn
1048 	 * value as an addon heuristic to detect most of these guest samples.
1049 	 * If the value differs from 0xffff (the host value), we assume to
1050 	 * be a KVM guest.
1051 	 */
1052 	switch (basic->CL) {
1053 	case 1: /* logical partition */
1054 		sde_regs->in_guest = 0;
1055 		break;
1056 	case 2: /* virtual machine */
1057 		sde_regs->in_guest = 1;
1058 		break;
1059 	default: /* old machine, use heuristics */
1060 		if (basic->gpp || basic->prim_asn != 0xffff)
1061 			sde_regs->in_guest = 1;
1062 		break;
1063 	}
1064 
1065 	/*
1066 	 * Store the PID value from the sample-data-entry to be
1067 	 * processed and resolved by cpumsf_output_event_pid().
1068 	 */
1069 	data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1070 
1071 	overflow = 0;
1072 	if (perf_event_exclude(event, &regs, sde_regs))
1073 		goto out;
1074 	overflow = perf_event_overflow(event, &data, &regs);
1075 	perf_event_update_userpage(event);
1076 out:
1077 	return overflow;
1078 }
1079 
perf_event_count_update(struct perf_event * event,u64 count)1080 static void perf_event_count_update(struct perf_event *event, u64 count)
1081 {
1082 	local64_add(count, &event->count);
1083 }
1084 
1085 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1086  * @event:	The perf event
1087  * @sdbt:	Sample-data-block table
1088  * @overflow:	Event overflow counter
1089  *
1090  * Walks through a sample-data-block and collects sampling data entries that are
1091  * then pushed to the perf event subsystem.  Depending on the sampling function,
1092  * there can be either basic-sampling or combined-sampling data entries.  A
1093  * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1094  * data entry.	The sampling function is determined by the flags in the perf
1095  * event hardware structure.  The function always works with a combined-sampling
1096  * data entry but ignores the the diagnostic portion if it is not available.
1097  *
1098  * Note that the implementation focuses on basic-sampling data entries and, if
1099  * such an entry is not valid, the entire combined-sampling data entry is
1100  * ignored.
1101  *
1102  * The overflow variables counts the number of samples that has been discarded
1103  * due to a perf event overflow.
1104  */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1105 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1106 			       unsigned long long *overflow)
1107 {
1108 	struct hws_trailer_entry *te;
1109 	struct hws_basic_entry *sample;
1110 
1111 	te = trailer_entry_ptr((unsigned long)sdbt);
1112 	sample = (struct hws_basic_entry *)sdbt;
1113 	while ((unsigned long *)sample < (unsigned long *)te) {
1114 		/* Check for an empty sample */
1115 		if (!sample->def || sample->LS)
1116 			break;
1117 
1118 		/* Update perf event period */
1119 		perf_event_count_update(event, SAMPL_RATE(&event->hw));
1120 
1121 		/* Check whether sample is valid */
1122 		if (sample->def == 0x0001) {
1123 			/* If an event overflow occurred, the PMU is stopped to
1124 			 * throttle event delivery.  Remaining sample data is
1125 			 * discarded.
1126 			 */
1127 			if (!*overflow) {
1128 				/* Check whether sample is consistent */
1129 				if (sample->I == 0 && sample->W == 0) {
1130 					/* Deliver sample data to perf */
1131 					*overflow = perf_push_sample(event,
1132 								     sample);
1133 				}
1134 			} else
1135 				/* Count discarded samples */
1136 				*overflow += 1;
1137 		} else {
1138 			/* Sample slot is not yet written or other record.
1139 			 *
1140 			 * This condition can occur if the buffer was reused
1141 			 * from a combined basic- and diagnostic-sampling.
1142 			 * If only basic-sampling is then active, entries are
1143 			 * written into the larger diagnostic entries.
1144 			 * This is typically the case for sample-data-blocks
1145 			 * that are not full.  Stop processing if the first
1146 			 * invalid format was detected.
1147 			 */
1148 			if (!te->header.f)
1149 				break;
1150 		}
1151 
1152 		/* Reset sample slot and advance to next sample */
1153 		sample->def = 0;
1154 		sample++;
1155 	}
1156 }
1157 
1158 /* hw_perf_event_update() - Process sampling buffer
1159  * @event:	The perf event
1160  * @flush_all:	Flag to also flush partially filled sample-data-blocks
1161  *
1162  * Processes the sampling buffer and create perf event samples.
1163  * The sampling buffer position are retrieved and saved in the TEAR_REG
1164  * register of the specified perf event.
1165  *
1166  * Only full sample-data-blocks are processed.	Specify the flush_all flag
1167  * to also walk through partially filled sample-data-blocks.
1168  */
hw_perf_event_update(struct perf_event * event,int flush_all)1169 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1170 {
1171 	unsigned long long event_overflow, sampl_overflow, num_sdb;
1172 	struct hw_perf_event *hwc = &event->hw;
1173 	union hws_trailer_header prev, new;
1174 	struct hws_trailer_entry *te;
1175 	unsigned long *sdbt, sdb;
1176 	int done;
1177 
1178 	/*
1179 	 * AUX buffer is used when in diagnostic sampling mode.
1180 	 * No perf events/samples are created.
1181 	 */
1182 	if (SAMPL_DIAG_MODE(hwc))
1183 		return;
1184 
1185 	sdbt = (unsigned long *)TEAR_REG(hwc);
1186 	done = event_overflow = sampl_overflow = num_sdb = 0;
1187 	while (!done) {
1188 		/* Get the trailer entry of the sample-data-block */
1189 		sdb = (unsigned long)phys_to_virt(*sdbt);
1190 		te = trailer_entry_ptr(sdb);
1191 
1192 		/* Leave loop if no more work to do (block full indicator) */
1193 		if (!te->header.f) {
1194 			done = 1;
1195 			if (!flush_all)
1196 				break;
1197 		}
1198 
1199 		/* Check the sample overflow count */
1200 		if (te->header.overflow)
1201 			/* Account sample overflows and, if a particular limit
1202 			 * is reached, extend the sampling buffer.
1203 			 * For details, see sfb_account_overflows().
1204 			 */
1205 			sampl_overflow += te->header.overflow;
1206 
1207 		/* Collect all samples from a single sample-data-block and
1208 		 * flag if an (perf) event overflow happened.  If so, the PMU
1209 		 * is stopped and remaining samples will be discarded.
1210 		 */
1211 		hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
1212 		num_sdb++;
1213 
1214 		/* Reset trailer (using compare-double-and-swap) */
1215 		prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1216 		do {
1217 			new.val = prev.val;
1218 			new.f = 0;
1219 			new.a = 1;
1220 			new.overflow = 0;
1221 		} while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1222 
1223 		/* Advance to next sample-data-block */
1224 		sdbt++;
1225 		if (is_link_entry(sdbt))
1226 			sdbt = get_next_sdbt(sdbt);
1227 
1228 		/* Update event hardware registers */
1229 		TEAR_REG(hwc) = (unsigned long)sdbt;
1230 
1231 		/* Stop processing sample-data if all samples of the current
1232 		 * sample-data-block were flushed even if it was not full.
1233 		 */
1234 		if (flush_all && done)
1235 			break;
1236 	}
1237 
1238 	/* Account sample overflows in the event hardware structure */
1239 	if (sampl_overflow)
1240 		OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1241 						 sampl_overflow, 1 + num_sdb);
1242 
1243 	/* Perf_event_overflow() and perf_event_account_interrupt() limit
1244 	 * the interrupt rate to an upper limit. Roughly 1000 samples per
1245 	 * task tick.
1246 	 * Hitting this limit results in a large number
1247 	 * of throttled REF_REPORT_THROTTLE entries and the samples
1248 	 * are dropped.
1249 	 * Slightly increase the interval to avoid hitting this limit.
1250 	 */
1251 	if (event_overflow)
1252 		SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1253 }
1254 
aux_sdb_index(struct aux_buffer * aux,unsigned long i)1255 static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1256 					  unsigned long i)
1257 {
1258 	return i % aux->sfb.num_sdb;
1259 }
1260 
aux_sdb_num(unsigned long start,unsigned long end)1261 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1262 {
1263 	return end >= start ? end - start + 1 : 0;
1264 }
1265 
aux_sdb_num_alert(struct aux_buffer * aux)1266 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1267 {
1268 	return aux_sdb_num(aux->head, aux->alert_mark);
1269 }
1270 
aux_sdb_num_empty(struct aux_buffer * aux)1271 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1272 {
1273 	return aux_sdb_num(aux->head, aux->empty_mark);
1274 }
1275 
1276 /*
1277  * Get trailer entry by index of SDB.
1278  */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1279 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1280 						 unsigned long index)
1281 {
1282 	unsigned long sdb;
1283 
1284 	index = aux_sdb_index(aux, index);
1285 	sdb = aux->sdb_index[index];
1286 	return trailer_entry_ptr(sdb);
1287 }
1288 
1289 /*
1290  * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1291  * disabled. Collect the full SDBs in AUX buffer which have not reached
1292  * the point of alert indicator. And ignore the SDBs which are not
1293  * full.
1294  *
1295  * 1. Scan SDBs to see how much data is there and consume them.
1296  * 2. Remove alert indicator in the buffer.
1297  */
aux_output_end(struct perf_output_handle * handle)1298 static void aux_output_end(struct perf_output_handle *handle)
1299 {
1300 	unsigned long i, range_scan, idx;
1301 	struct aux_buffer *aux;
1302 	struct hws_trailer_entry *te;
1303 
1304 	aux = perf_get_aux(handle);
1305 	if (!aux)
1306 		return;
1307 
1308 	range_scan = aux_sdb_num_alert(aux);
1309 	for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1310 		te = aux_sdb_trailer(aux, idx);
1311 		if (!te->header.f)
1312 			break;
1313 	}
1314 	/* i is num of SDBs which are full */
1315 	perf_aux_output_end(handle, i << PAGE_SHIFT);
1316 
1317 	/* Remove alert indicators in the buffer */
1318 	te = aux_sdb_trailer(aux, aux->alert_mark);
1319 	te->header.a = 0;
1320 }
1321 
1322 /*
1323  * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1324  * is first added to the CPU or rescheduled again to the CPU. It is called
1325  * with pmu disabled.
1326  *
1327  * 1. Reset the trailer of SDBs to get ready for new data.
1328  * 2. Tell the hardware where to put the data by reset the SDBs buffer
1329  *    head(tear/dear).
1330  */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1331 static int aux_output_begin(struct perf_output_handle *handle,
1332 			    struct aux_buffer *aux,
1333 			    struct cpu_hw_sf *cpuhw)
1334 {
1335 	unsigned long range, i, range_scan, idx, head, base, offset;
1336 	struct hws_trailer_entry *te;
1337 
1338 	if (handle->head & ~PAGE_MASK)
1339 		return -EINVAL;
1340 
1341 	aux->head = handle->head >> PAGE_SHIFT;
1342 	range = (handle->size + 1) >> PAGE_SHIFT;
1343 	if (range <= 1)
1344 		return -ENOMEM;
1345 
1346 	/*
1347 	 * SDBs between aux->head and aux->empty_mark are already ready
1348 	 * for new data. range_scan is num of SDBs not within them.
1349 	 */
1350 	if (range > aux_sdb_num_empty(aux)) {
1351 		range_scan = range - aux_sdb_num_empty(aux);
1352 		idx = aux->empty_mark + 1;
1353 		for (i = 0; i < range_scan; i++, idx++) {
1354 			te = aux_sdb_trailer(aux, idx);
1355 			te->header.f = 0;
1356 			te->header.a = 0;
1357 			te->header.overflow = 0;
1358 		}
1359 		/* Save the position of empty SDBs */
1360 		aux->empty_mark = aux->head + range - 1;
1361 	}
1362 
1363 	/* Set alert indicator */
1364 	aux->alert_mark = aux->head + range/2 - 1;
1365 	te = aux_sdb_trailer(aux, aux->alert_mark);
1366 	te->header.a = 1;
1367 
1368 	/* Reset hardware buffer head */
1369 	head = aux_sdb_index(aux, aux->head);
1370 	base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1371 	offset = head % CPUM_SF_SDB_PER_TABLE;
1372 	cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
1373 	cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
1374 
1375 	return 0;
1376 }
1377 
1378 /*
1379  * Set alert indicator on SDB at index @alert_index while sampler is running.
1380  *
1381  * Return true if successfully.
1382  * Return false if full indicator is already set by hardware sampler.
1383  */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1384 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1385 			  unsigned long long *overflow)
1386 {
1387 	union hws_trailer_header prev, new;
1388 	struct hws_trailer_entry *te;
1389 
1390 	te = aux_sdb_trailer(aux, alert_index);
1391 	prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1392 	do {
1393 		new.val = prev.val;
1394 		*overflow = prev.overflow;
1395 		if (prev.f) {
1396 			/*
1397 			 * SDB is already set by hardware.
1398 			 * Abort and try to set somewhere
1399 			 * behind.
1400 			 */
1401 			return false;
1402 		}
1403 		new.a = 1;
1404 		new.overflow = 0;
1405 	} while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1406 	return true;
1407 }
1408 
1409 /*
1410  * aux_reset_buffer() - Scan and setup SDBs for new samples
1411  * @aux:	The AUX buffer to set
1412  * @range:	The range of SDBs to scan started from aux->head
1413  * @overflow:	Set to overflow count
1414  *
1415  * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1416  * marked as empty, check if it is already set full by the hardware sampler.
1417  * If yes, that means new data is already there before we can set an alert
1418  * indicator. Caller should try to set alert indicator to some position behind.
1419  *
1420  * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1421  * previously and have already been consumed by user space. Reset these SDBs
1422  * (clear full indicator and alert indicator) for new data.
1423  * If aux->alert_mark fall in this area, just set it. Overflow count is
1424  * recorded while scanning.
1425  *
1426  * SDBs between aux->head and aux->empty_mark are already reset at last time.
1427  * and ready for new samples. So scanning on this area could be skipped.
1428  *
1429  * Return true if alert indicator is set successfully and false if not.
1430  */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1431 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1432 			     unsigned long long *overflow)
1433 {
1434 	union hws_trailer_header prev, new;
1435 	unsigned long i, range_scan, idx;
1436 	unsigned long long orig_overflow;
1437 	struct hws_trailer_entry *te;
1438 
1439 	if (range <= aux_sdb_num_empty(aux))
1440 		/*
1441 		 * No need to scan. All SDBs in range are marked as empty.
1442 		 * Just set alert indicator. Should check race with hardware
1443 		 * sampler.
1444 		 */
1445 		return aux_set_alert(aux, aux->alert_mark, overflow);
1446 
1447 	if (aux->alert_mark <= aux->empty_mark)
1448 		/*
1449 		 * Set alert indicator on empty SDB. Should check race
1450 		 * with hardware sampler.
1451 		 */
1452 		if (!aux_set_alert(aux, aux->alert_mark, overflow))
1453 			return false;
1454 
1455 	/*
1456 	 * Scan the SDBs to clear full and alert indicator used previously.
1457 	 * Start scanning from one SDB behind empty_mark. If the new alert
1458 	 * indicator fall into this range, set it.
1459 	 */
1460 	range_scan = range - aux_sdb_num_empty(aux);
1461 	idx = aux->empty_mark + 1;
1462 	for (i = 0; i < range_scan; i++, idx++) {
1463 		te = aux_sdb_trailer(aux, idx);
1464 		prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1465 		do {
1466 			new.val = prev.val;
1467 			orig_overflow = prev.overflow;
1468 			new.f = 0;
1469 			new.overflow = 0;
1470 			if (idx == aux->alert_mark)
1471 				new.a = 1;
1472 			else
1473 				new.a = 0;
1474 		} while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1475 		*overflow += orig_overflow;
1476 	}
1477 
1478 	/* Update empty_mark to new position */
1479 	aux->empty_mark = aux->head + range - 1;
1480 
1481 	return true;
1482 }
1483 
1484 /*
1485  * Measurement alert handler for diagnostic mode sampling.
1486  */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1487 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1488 {
1489 	struct aux_buffer *aux;
1490 	int done = 0;
1491 	unsigned long range = 0, size;
1492 	unsigned long long overflow = 0;
1493 	struct perf_output_handle *handle = &cpuhw->handle;
1494 	unsigned long num_sdb;
1495 
1496 	aux = perf_get_aux(handle);
1497 	if (!aux)
1498 		return;
1499 
1500 	/* Inform user space new data arrived */
1501 	size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1502 	debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__,
1503 			    size >> PAGE_SHIFT);
1504 	perf_aux_output_end(handle, size);
1505 
1506 	num_sdb = aux->sfb.num_sdb;
1507 	while (!done) {
1508 		/* Get an output handle */
1509 		aux = perf_aux_output_begin(handle, cpuhw->event);
1510 		if (handle->size == 0) {
1511 			pr_err("The AUX buffer with %lu pages for the "
1512 			       "diagnostic-sampling mode is full\n",
1513 				num_sdb);
1514 			break;
1515 		}
1516 		if (!aux)
1517 			return;
1518 
1519 		/* Update head and alert_mark to new position */
1520 		aux->head = handle->head >> PAGE_SHIFT;
1521 		range = (handle->size + 1) >> PAGE_SHIFT;
1522 		if (range == 1)
1523 			aux->alert_mark = aux->head;
1524 		else
1525 			aux->alert_mark = aux->head + range/2 - 1;
1526 
1527 		if (aux_reset_buffer(aux, range, &overflow)) {
1528 			if (!overflow) {
1529 				done = 1;
1530 				break;
1531 			}
1532 			size = range << PAGE_SHIFT;
1533 			perf_aux_output_end(&cpuhw->handle, size);
1534 			pr_err("Sample data caused the AUX buffer with %lu "
1535 			       "pages to overflow\n", aux->sfb.num_sdb);
1536 		} else {
1537 			size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1538 			perf_aux_output_end(&cpuhw->handle, size);
1539 		}
1540 	}
1541 }
1542 
1543 /*
1544  * Callback when freeing AUX buffers.
1545  */
aux_buffer_free(void * data)1546 static void aux_buffer_free(void *data)
1547 {
1548 	struct aux_buffer *aux = data;
1549 	unsigned long i, num_sdbt;
1550 
1551 	if (!aux)
1552 		return;
1553 
1554 	/* Free SDBT. SDB is freed by the caller */
1555 	num_sdbt = aux->sfb.num_sdbt;
1556 	for (i = 0; i < num_sdbt; i++)
1557 		free_page(aux->sdbt_index[i]);
1558 
1559 	kfree(aux->sdbt_index);
1560 	kfree(aux->sdb_index);
1561 	kfree(aux);
1562 }
1563 
aux_sdb_init(unsigned long sdb)1564 static void aux_sdb_init(unsigned long sdb)
1565 {
1566 	struct hws_trailer_entry *te;
1567 
1568 	te = trailer_entry_ptr(sdb);
1569 
1570 	/* Save clock base */
1571 	te->clock_base = 1;
1572 	te->progusage2 = tod_clock_base.tod;
1573 }
1574 
1575 /*
1576  * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1577  * @event:	Event the buffer is setup for, event->cpu == -1 means current
1578  * @pages:	Array of pointers to buffer pages passed from perf core
1579  * @nr_pages:	Total pages
1580  * @snapshot:	Flag for snapshot mode
1581  *
1582  * This is the callback when setup an event using AUX buffer. Perf tool can
1583  * trigger this by an additional mmap() call on the event. Unlike the buffer
1584  * for basic samples, AUX buffer belongs to the event. It is scheduled with
1585  * the task among online cpus when it is a per-thread event.
1586  *
1587  * Return the private AUX buffer structure if success or NULL if fails.
1588  */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1589 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1590 			      int nr_pages, bool snapshot)
1591 {
1592 	struct sf_buffer *sfb;
1593 	struct aux_buffer *aux;
1594 	unsigned long *new, *tail;
1595 	int i, n_sdbt;
1596 
1597 	if (!nr_pages || !pages)
1598 		return NULL;
1599 
1600 	if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1601 		pr_err("AUX buffer size (%i pages) is larger than the "
1602 		       "maximum sampling buffer limit\n",
1603 		       nr_pages);
1604 		return NULL;
1605 	} else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1606 		pr_err("AUX buffer size (%i pages) is less than the "
1607 		       "minimum sampling buffer limit\n",
1608 		       nr_pages);
1609 		return NULL;
1610 	}
1611 
1612 	/* Allocate aux_buffer struct for the event */
1613 	aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1614 	if (!aux)
1615 		goto no_aux;
1616 	sfb = &aux->sfb;
1617 
1618 	/* Allocate sdbt_index for fast reference */
1619 	n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1620 	aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1621 	if (!aux->sdbt_index)
1622 		goto no_sdbt_index;
1623 
1624 	/* Allocate sdb_index for fast reference */
1625 	aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1626 	if (!aux->sdb_index)
1627 		goto no_sdb_index;
1628 
1629 	/* Allocate the first SDBT */
1630 	sfb->num_sdbt = 0;
1631 	sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1632 	if (!sfb->sdbt)
1633 		goto no_sdbt;
1634 	aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1635 	tail = sfb->tail = sfb->sdbt;
1636 
1637 	/*
1638 	 * Link the provided pages of AUX buffer to SDBT.
1639 	 * Allocate SDBT if needed.
1640 	 */
1641 	for (i = 0; i < nr_pages; i++, tail++) {
1642 		if (require_table_link(tail)) {
1643 			new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1644 			if (!new)
1645 				goto no_sdbt;
1646 			aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1647 			/* Link current page to tail of chain */
1648 			*tail = virt_to_phys(new) + 1;
1649 			tail = new;
1650 		}
1651 		/* Tail is the entry in a SDBT */
1652 		*tail = virt_to_phys(pages[i]);
1653 		aux->sdb_index[i] = (unsigned long)pages[i];
1654 		aux_sdb_init((unsigned long)pages[i]);
1655 	}
1656 	sfb->num_sdb = nr_pages;
1657 
1658 	/* Link the last entry in the SDBT to the first SDBT */
1659 	*tail = virt_to_phys(sfb->sdbt) + 1;
1660 	sfb->tail = tail;
1661 
1662 	/*
1663 	 * Initial all SDBs are zeroed. Mark it as empty.
1664 	 * So there is no need to clear the full indicator
1665 	 * when this event is first added.
1666 	 */
1667 	aux->empty_mark = sfb->num_sdb - 1;
1668 
1669 	return aux;
1670 
1671 no_sdbt:
1672 	/* SDBs (AUX buffer pages) are freed by caller */
1673 	for (i = 0; i < sfb->num_sdbt; i++)
1674 		free_page(aux->sdbt_index[i]);
1675 	kfree(aux->sdb_index);
1676 no_sdb_index:
1677 	kfree(aux->sdbt_index);
1678 no_sdbt_index:
1679 	kfree(aux);
1680 no_aux:
1681 	return NULL;
1682 }
1683 
cpumsf_pmu_read(struct perf_event * event)1684 static void cpumsf_pmu_read(struct perf_event *event)
1685 {
1686 	/* Nothing to do ... updates are interrupt-driven */
1687 }
1688 
1689 /* Check if the new sampling period/frequency is appropriate.
1690  *
1691  * Return non-zero on error and zero on passed checks.
1692  */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1693 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1694 {
1695 	struct hws_qsi_info_block si;
1696 	unsigned long rate;
1697 	bool do_freq;
1698 
1699 	memset(&si, 0, sizeof(si));
1700 	if (event->cpu == -1) {
1701 		qsi(&si);
1702 	} else {
1703 		/* Event is pinned to a particular CPU, retrieve the per-CPU
1704 		 * sampling structure for accessing the CPU-specific QSI.
1705 		 */
1706 		struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1707 
1708 		si = cpuhw->qsi;
1709 	}
1710 
1711 	do_freq = !!SAMPL_FREQ_MODE(&event->hw);
1712 	rate = getrate(do_freq, value, &si);
1713 	if (!rate)
1714 		return -EINVAL;
1715 
1716 	event->attr.sample_period = rate;
1717 	SAMPL_RATE(&event->hw) = rate;
1718 	hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1719 	return 0;
1720 }
1721 
1722 /* Activate sampling control.
1723  * Next call of pmu_enable() starts sampling.
1724  */
cpumsf_pmu_start(struct perf_event * event,int flags)1725 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1726 {
1727 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1728 
1729 	if (!(event->hw.state & PERF_HES_STOPPED))
1730 		return;
1731 	perf_pmu_disable(event->pmu);
1732 	event->hw.state = 0;
1733 	cpuhw->lsctl.cs = 1;
1734 	if (SAMPL_DIAG_MODE(&event->hw))
1735 		cpuhw->lsctl.cd = 1;
1736 	perf_pmu_enable(event->pmu);
1737 }
1738 
1739 /* Deactivate sampling control.
1740  * Next call of pmu_enable() stops sampling.
1741  */
cpumsf_pmu_stop(struct perf_event * event,int flags)1742 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1743 {
1744 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1745 
1746 	if (event->hw.state & PERF_HES_STOPPED)
1747 		return;
1748 
1749 	perf_pmu_disable(event->pmu);
1750 	cpuhw->lsctl.cs = 0;
1751 	cpuhw->lsctl.cd = 0;
1752 	event->hw.state |= PERF_HES_STOPPED;
1753 
1754 	if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1755 		/* CPU hotplug off removes SDBs. No samples to extract. */
1756 		if (cpuhw->flags & PMU_F_RESERVED)
1757 			hw_perf_event_update(event, 1);
1758 		event->hw.state |= PERF_HES_UPTODATE;
1759 	}
1760 	perf_pmu_enable(event->pmu);
1761 }
1762 
cpumsf_pmu_add(struct perf_event * event,int flags)1763 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1764 {
1765 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1766 	struct aux_buffer *aux;
1767 	int err = 0;
1768 
1769 	if (cpuhw->flags & PMU_F_IN_USE)
1770 		return -EAGAIN;
1771 
1772 	if (!SAMPL_DIAG_MODE(&event->hw) && !sf_buffer_available(cpuhw))
1773 		return -EINVAL;
1774 
1775 	perf_pmu_disable(event->pmu);
1776 
1777 	event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1778 
1779 	/* Set up sampling controls.  Always program the sampling register
1780 	 * using the SDB-table start.  Reset TEAR_REG event hardware register
1781 	 * that is used by hw_perf_event_update() to store the sampling buffer
1782 	 * position after samples have been flushed.
1783 	 */
1784 	cpuhw->lsctl.s = 0;
1785 	cpuhw->lsctl.h = 1;
1786 	cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1787 	if (!SAMPL_DIAG_MODE(&event->hw)) {
1788 		cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
1789 		cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1790 		TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1791 	}
1792 
1793 	/* Ensure sampling functions are in the disabled state.  If disabled,
1794 	 * switch on sampling enable control. */
1795 	if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1796 		err = -EAGAIN;
1797 		goto out;
1798 	}
1799 	if (SAMPL_DIAG_MODE(&event->hw)) {
1800 		aux = perf_aux_output_begin(&cpuhw->handle, event);
1801 		if (!aux) {
1802 			err = -EINVAL;
1803 			goto out;
1804 		}
1805 		err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1806 		if (err)
1807 			goto out;
1808 		cpuhw->lsctl.ed = 1;
1809 	}
1810 	cpuhw->lsctl.es = 1;
1811 
1812 	/* Set in_use flag and store event */
1813 	cpuhw->event = event;
1814 	cpuhw->flags |= PMU_F_IN_USE;
1815 
1816 	if (flags & PERF_EF_START)
1817 		cpumsf_pmu_start(event, PERF_EF_RELOAD);
1818 out:
1819 	perf_event_update_userpage(event);
1820 	perf_pmu_enable(event->pmu);
1821 	return err;
1822 }
1823 
cpumsf_pmu_del(struct perf_event * event,int flags)1824 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1825 {
1826 	struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1827 
1828 	perf_pmu_disable(event->pmu);
1829 	cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1830 
1831 	cpuhw->lsctl.es = 0;
1832 	cpuhw->lsctl.ed = 0;
1833 	cpuhw->flags &= ~PMU_F_IN_USE;
1834 	cpuhw->event = NULL;
1835 
1836 	if (SAMPL_DIAG_MODE(&event->hw))
1837 		aux_output_end(&cpuhw->handle);
1838 	perf_event_update_userpage(event);
1839 	perf_pmu_enable(event->pmu);
1840 }
1841 
1842 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1843 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1844 
1845 /* Attribute list for CPU_SF.
1846  *
1847  * The availablitiy depends on the CPU_MF sampling facility authorization
1848  * for basic + diagnositic samples. This is determined at initialization
1849  * time by the sampling facility device driver.
1850  * If the authorization for basic samples is turned off, it should be
1851  * also turned off for diagnostic sampling.
1852  *
1853  * During initialization of the device driver, check the authorization
1854  * level for diagnostic sampling and installs the attribute
1855  * file for diagnostic sampling if necessary.
1856  *
1857  * For now install a placeholder to reference all possible attributes:
1858  * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1859  * Add another entry for the final NULL pointer.
1860  */
1861 enum {
1862 	SF_CYCLES_BASIC_ATTR_IDX = 0,
1863 	SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1864 	SF_CYCLES_ATTR_MAX
1865 };
1866 
1867 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1868 	[SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1869 };
1870 
1871 PMU_FORMAT_ATTR(event, "config:0-63");
1872 
1873 static struct attribute *cpumsf_pmu_format_attr[] = {
1874 	&format_attr_event.attr,
1875 	NULL,
1876 };
1877 
1878 static struct attribute_group cpumsf_pmu_events_group = {
1879 	.name = "events",
1880 	.attrs = cpumsf_pmu_events_attr,
1881 };
1882 
1883 static struct attribute_group cpumsf_pmu_format_group = {
1884 	.name = "format",
1885 	.attrs = cpumsf_pmu_format_attr,
1886 };
1887 
1888 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1889 	&cpumsf_pmu_events_group,
1890 	&cpumsf_pmu_format_group,
1891 	NULL,
1892 };
1893 
1894 static struct pmu cpumf_sampling = {
1895 	.pmu_enable   = cpumsf_pmu_enable,
1896 	.pmu_disable  = cpumsf_pmu_disable,
1897 
1898 	.event_init   = cpumsf_pmu_event_init,
1899 	.add	      = cpumsf_pmu_add,
1900 	.del	      = cpumsf_pmu_del,
1901 
1902 	.start	      = cpumsf_pmu_start,
1903 	.stop	      = cpumsf_pmu_stop,
1904 	.read	      = cpumsf_pmu_read,
1905 
1906 	.attr_groups  = cpumsf_pmu_attr_groups,
1907 
1908 	.setup_aux    = aux_buffer_setup,
1909 	.free_aux     = aux_buffer_free,
1910 
1911 	.check_period = cpumsf_pmu_check_period,
1912 };
1913 
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1914 static void cpumf_measurement_alert(struct ext_code ext_code,
1915 				    unsigned int alert, unsigned long unused)
1916 {
1917 	struct cpu_hw_sf *cpuhw;
1918 
1919 	if (!(alert & CPU_MF_INT_SF_MASK))
1920 		return;
1921 	inc_irq_stat(IRQEXT_CMS);
1922 	cpuhw = this_cpu_ptr(&cpu_hw_sf);
1923 
1924 	/* Measurement alerts are shared and might happen when the PMU
1925 	 * is not reserved.  Ignore these alerts in this case. */
1926 	if (!(cpuhw->flags & PMU_F_RESERVED))
1927 		return;
1928 
1929 	/* The processing below must take care of multiple alert events that
1930 	 * might be indicated concurrently. */
1931 
1932 	/* Program alert request */
1933 	if (alert & CPU_MF_INT_SF_PRA) {
1934 		if (cpuhw->flags & PMU_F_IN_USE) {
1935 			if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
1936 				hw_collect_aux(cpuhw);
1937 			else
1938 				hw_perf_event_update(cpuhw->event, 0);
1939 		}
1940 	}
1941 
1942 	/* Report measurement alerts only for non-PRA codes */
1943 	if (alert != CPU_MF_INT_SF_PRA)
1944 		debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__,
1945 				    alert);
1946 
1947 	/* Sampling authorization change request */
1948 	if (alert & CPU_MF_INT_SF_SACA)
1949 		qsi(&cpuhw->qsi);
1950 
1951 	/* Loss of sample data due to high-priority machine activities */
1952 	if (alert & CPU_MF_INT_SF_LSDA) {
1953 		pr_err("Sample data was lost\n");
1954 		cpuhw->flags |= PMU_F_ERR_LSDA;
1955 		sf_disable();
1956 	}
1957 
1958 	/* Invalid sampling buffer entry */
1959 	if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1960 		pr_err("A sampling buffer entry is incorrect (alert=%#x)\n",
1961 		       alert);
1962 		cpuhw->flags |= PMU_F_ERR_IBE;
1963 		sf_disable();
1964 	}
1965 }
1966 
cpusf_pmu_setup(unsigned int cpu,int flags)1967 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1968 {
1969 	/* Ignore the notification if no events are scheduled on the PMU.
1970 	 * This might be racy...
1971 	 */
1972 	if (!refcount_read(&num_events))
1973 		return 0;
1974 
1975 	local_irq_disable();
1976 	setup_pmc_cpu(&flags);
1977 	local_irq_enable();
1978 	return 0;
1979 }
1980 
s390_pmu_sf_online_cpu(unsigned int cpu)1981 static int s390_pmu_sf_online_cpu(unsigned int cpu)
1982 {
1983 	return cpusf_pmu_setup(cpu, PMC_INIT);
1984 }
1985 
s390_pmu_sf_offline_cpu(unsigned int cpu)1986 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
1987 {
1988 	return cpusf_pmu_setup(cpu, PMC_RELEASE);
1989 }
1990 
param_get_sfb_size(char * buffer,const struct kernel_param * kp)1991 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1992 {
1993 	if (!cpum_sf_avail())
1994 		return -ENODEV;
1995 	return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1996 }
1997 
param_set_sfb_size(const char * val,const struct kernel_param * kp)1998 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1999 {
2000 	int rc;
2001 	unsigned long min, max;
2002 
2003 	if (!cpum_sf_avail())
2004 		return -ENODEV;
2005 	if (!val || !strlen(val))
2006 		return -EINVAL;
2007 
2008 	/* Valid parameter values: "min,max" or "max" */
2009 	min = CPUM_SF_MIN_SDB;
2010 	max = CPUM_SF_MAX_SDB;
2011 	if (strchr(val, ','))
2012 		rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2013 	else
2014 		rc = kstrtoul(val, 10, &max);
2015 
2016 	if (min < 2 || min >= max || max > get_num_physpages())
2017 		rc = -EINVAL;
2018 	if (rc)
2019 		return rc;
2020 
2021 	sfb_set_limits(min, max);
2022 	pr_info("The sampling buffer limits have changed to: "
2023 		"min %lu max %lu (diag %lu)\n",
2024 		CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2025 	return 0;
2026 }
2027 
2028 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2029 static const struct kernel_param_ops param_ops_sfb_size = {
2030 	.set = param_set_sfb_size,
2031 	.get = param_get_sfb_size,
2032 };
2033 
2034 enum {
2035 	RS_INIT_FAILURE_BSDES	= 2,	/* Bad basic sampling size */
2036 	RS_INIT_FAILURE_ALRT	= 3,	/* IRQ registration failure */
2037 	RS_INIT_FAILURE_PERF	= 4	/* PMU registration failure */
2038 };
2039 
pr_cpumsf_err(unsigned int reason)2040 static void __init pr_cpumsf_err(unsigned int reason)
2041 {
2042 	pr_err("Sampling facility support for perf is not available: "
2043 	       "reason %#x\n", reason);
2044 }
2045 
init_cpum_sampling_pmu(void)2046 static int __init init_cpum_sampling_pmu(void)
2047 {
2048 	struct hws_qsi_info_block si;
2049 	int err;
2050 
2051 	if (!cpum_sf_avail())
2052 		return -ENODEV;
2053 
2054 	memset(&si, 0, sizeof(si));
2055 	qsi(&si);
2056 	if (!si.as && !si.ad)
2057 		return -ENODEV;
2058 
2059 	if (si.bsdes != sizeof(struct hws_basic_entry)) {
2060 		pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2061 		return -EINVAL;
2062 	}
2063 
2064 	if (si.ad) {
2065 		sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2066 		/* Sampling of diagnostic data authorized,
2067 		 * install event into attribute list of PMU device.
2068 		 */
2069 		cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2070 			CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2071 	}
2072 
2073 	sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2074 	if (!sfdbg) {
2075 		pr_err("Registering for s390dbf failed\n");
2076 		return -ENOMEM;
2077 	}
2078 	debug_register_view(sfdbg, &debug_sprintf_view);
2079 
2080 	err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2081 				    cpumf_measurement_alert);
2082 	if (err) {
2083 		pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2084 		debug_unregister(sfdbg);
2085 		goto out;
2086 	}
2087 
2088 	err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2089 	if (err) {
2090 		pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2091 		unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2092 					cpumf_measurement_alert);
2093 		debug_unregister(sfdbg);
2094 		goto out;
2095 	}
2096 
2097 	cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2098 			  s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2099 out:
2100 	return err;
2101 }
2102 
2103 arch_initcall(init_cpum_sampling_pmu);
2104 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2105