1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/slab.h>
18 #include <linux/mm.h>
19 #include <linux/moduleparam.h>
20 #include <asm/cpu_mf.h>
21 #include <asm/irq.h>
22 #include <asm/debug.h>
23 #include <asm/timex.h>
24 #include <linux/io.h>
25
26 /* Perf PMU definitions for the sampling facility */
27 #define PERF_CPUM_SF_MAX_CTR 2
28 #define PERF_EVENT_CPUM_SF 0xB0000UL /* Event: Basic-sampling */
29 #define PERF_EVENT_CPUM_SF_DIAG 0xBD000UL /* Event: Combined-sampling */
30 #define PERF_CPUM_SF_BASIC_MODE 0x0001 /* Basic-sampling flag */
31 #define PERF_CPUM_SF_DIAG_MODE 0x0002 /* Diagnostic-sampling flag */
32 #define PERF_CPUM_SF_FREQ_MODE 0x0008 /* Sampling with frequency */
33
34 #define OVERFLOW_REG(hwc) ((hwc)->extra_reg.config)
35 #define SFB_ALLOC_REG(hwc) ((hwc)->extra_reg.alloc)
36 #define TEAR_REG(hwc) ((hwc)->last_tag)
37 #define SAMPL_RATE(hwc) ((hwc)->event_base)
38 #define SAMPL_FLAGS(hwc) ((hwc)->config_base)
39 #define SAMPL_DIAG_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_DIAG_MODE)
40 #define SAMPL_FREQ_MODE(hwc) (SAMPL_FLAGS(hwc) & PERF_CPUM_SF_FREQ_MODE)
41
42 /* Minimum number of sample-data-block-tables:
43 * At least one table is required for the sampling buffer structure.
44 * A single table contains up to 511 pointers to sample-data-blocks.
45 */
46 #define CPUM_SF_MIN_SDBT 1
47
48 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
49 * A table contains SDB pointers (8 bytes) and one table-link entry
50 * that points to the origin of the next SDBT.
51 */
52 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
53
54 /* Maximum page offset for an SDBT table-link entry:
55 * If this page offset is reached, a table-link entry to the next SDBT
56 * must be added.
57 */
58 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
require_table_link(const void * sdbt)59 static inline int require_table_link(const void *sdbt)
60 {
61 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
62 }
63
64 /* Minimum and maximum sampling buffer sizes:
65 *
66 * This number represents the maximum size of the sampling buffer taking
67 * the number of sample-data-block-tables into account. Note that these
68 * numbers apply to the basic-sampling function only.
69 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
70 * the diagnostic-sampling function is active.
71 *
72 * Sampling buffer size Buffer characteristics
73 * ---------------------------------------------------
74 * 64KB == 16 pages (4KB per page)
75 * 1 page for SDB-tables
76 * 15 pages for SDBs
77 *
78 * 32MB == 8192 pages (4KB per page)
79 * 16 pages for SDB-tables
80 * 8176 pages for SDBs
81 */
82 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
83 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
84 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
85
86 struct sf_buffer {
87 unsigned long *sdbt; /* Sample-data-block-table origin */
88 /* buffer characteristics (required for buffer increments) */
89 unsigned long num_sdb; /* Number of sample-data-blocks */
90 unsigned long num_sdbt; /* Number of sample-data-block-tables */
91 unsigned long *tail; /* last sample-data-block-table */
92 };
93
94 struct aux_buffer {
95 struct sf_buffer sfb;
96 unsigned long head; /* index of SDB of buffer head */
97 unsigned long alert_mark; /* index of SDB of alert request position */
98 unsigned long empty_mark; /* mark of SDB not marked full */
99 unsigned long *sdb_index; /* SDB address for fast lookup */
100 unsigned long *sdbt_index; /* SDBT address for fast lookup */
101 };
102
103 struct cpu_hw_sf {
104 /* CPU-measurement sampling information block */
105 struct hws_qsi_info_block qsi;
106 /* CPU-measurement sampling control block */
107 struct hws_lsctl_request_block lsctl;
108 struct sf_buffer sfb; /* Sampling buffer */
109 unsigned int flags; /* Status flags */
110 struct perf_event *event; /* Scheduled perf event */
111 struct perf_output_handle handle; /* AUX buffer output handle */
112 };
113 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
114
115 /* Debug feature */
116 static debug_info_t *sfdbg;
117
118 /* Sampling control helper functions */
freq_to_sample_rate(struct hws_qsi_info_block * qsi,unsigned long freq)119 static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
120 unsigned long freq)
121 {
122 return (USEC_PER_SEC / freq) * qsi->cpu_speed;
123 }
124
sample_rate_to_freq(struct hws_qsi_info_block * qsi,unsigned long rate)125 static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
126 unsigned long rate)
127 {
128 return USEC_PER_SEC * qsi->cpu_speed / rate;
129 }
130
131 /* Return pointer to trailer entry of an sample data block */
trailer_entry_ptr(unsigned long v)132 static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
133 {
134 void *ret;
135
136 ret = (void *)v;
137 ret += PAGE_SIZE;
138 ret -= sizeof(struct hws_trailer_entry);
139
140 return ret;
141 }
142
143 /*
144 * Return true if the entry in the sample data block table (sdbt)
145 * is a link to the next sdbt
146 */
is_link_entry(unsigned long * s)147 static inline int is_link_entry(unsigned long *s)
148 {
149 return *s & 0x1UL ? 1 : 0;
150 }
151
152 /* Return pointer to the linked sdbt */
get_next_sdbt(unsigned long * s)153 static inline unsigned long *get_next_sdbt(unsigned long *s)
154 {
155 return phys_to_virt(*s & ~0x1UL);
156 }
157
158 /*
159 * sf_disable() - Switch off sampling facility
160 */
sf_disable(void)161 static void sf_disable(void)
162 {
163 struct hws_lsctl_request_block sreq;
164
165 memset(&sreq, 0, sizeof(sreq));
166 lsctl(&sreq);
167 }
168
169 /*
170 * sf_buffer_available() - Check for an allocated sampling buffer
171 */
sf_buffer_available(struct cpu_hw_sf * cpuhw)172 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
173 {
174 return !!cpuhw->sfb.sdbt;
175 }
176
177 /*
178 * deallocate sampling facility buffer
179 */
free_sampling_buffer(struct sf_buffer * sfb)180 static void free_sampling_buffer(struct sf_buffer *sfb)
181 {
182 unsigned long *sdbt, *curr, *head;
183
184 sdbt = sfb->sdbt;
185 if (!sdbt)
186 return;
187 sfb->sdbt = NULL;
188 /* Free the SDBT after all SDBs are processed... */
189 head = sdbt;
190 curr = sdbt;
191 do {
192 if (is_link_entry(curr)) {
193 /* Process table-link entries */
194 curr = get_next_sdbt(curr);
195 free_page((unsigned long)sdbt);
196 sdbt = curr;
197 } else {
198 /* Process SDB pointer */
199 free_page((unsigned long)phys_to_virt(*curr));
200 curr++;
201 }
202 } while (curr != head);
203 memset(sfb, 0, sizeof(*sfb));
204 }
205
alloc_sample_data_block(unsigned long * sdbt,gfp_t gfp_flags)206 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
207 {
208 struct hws_trailer_entry *te;
209 unsigned long sdb;
210
211 /* Allocate and initialize sample-data-block */
212 sdb = get_zeroed_page(gfp_flags);
213 if (!sdb)
214 return -ENOMEM;
215 te = trailer_entry_ptr(sdb);
216 te->header.a = 1;
217
218 /* Link SDB into the sample-data-block-table */
219 *sdbt = virt_to_phys((void *)sdb);
220
221 return 0;
222 }
223
224 /*
225 * realloc_sampling_buffer() - extend sampler memory
226 *
227 * Allocates new sample-data-blocks and adds them to the specified sampling
228 * buffer memory.
229 *
230 * Important: This modifies the sampling buffer and must be called when the
231 * sampling facility is disabled.
232 *
233 * Returns zero on success, non-zero otherwise.
234 */
realloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb,gfp_t gfp_flags)235 static int realloc_sampling_buffer(struct sf_buffer *sfb,
236 unsigned long num_sdb, gfp_t gfp_flags)
237 {
238 int i, rc;
239 unsigned long *new, *tail, *tail_prev = NULL;
240
241 if (!sfb->sdbt || !sfb->tail)
242 return -EINVAL;
243
244 if (!is_link_entry(sfb->tail))
245 return -EINVAL;
246
247 /* Append to the existing sampling buffer, overwriting the table-link
248 * register.
249 * The tail variables always points to the "tail" (last and table-link)
250 * entry in an SDB-table.
251 */
252 tail = sfb->tail;
253
254 /* Do a sanity check whether the table-link entry points to
255 * the sampling buffer origin.
256 */
257 if (sfb->sdbt != get_next_sdbt(tail)) {
258 debug_sprintf_event(sfdbg, 3, "%s buffer not linked origin %#lx tail %#lx\n",
259 __func__, (unsigned long)sfb->sdbt,
260 (unsigned long)tail);
261 return -EINVAL;
262 }
263
264 /* Allocate remaining SDBs */
265 rc = 0;
266 for (i = 0; i < num_sdb; i++) {
267 /* Allocate a new SDB-table if it is full. */
268 if (require_table_link(tail)) {
269 new = (unsigned long *)get_zeroed_page(gfp_flags);
270 if (!new) {
271 rc = -ENOMEM;
272 break;
273 }
274 sfb->num_sdbt++;
275 /* Link current page to tail of chain */
276 *tail = virt_to_phys((void *)new) + 1;
277 tail_prev = tail;
278 tail = new;
279 }
280
281 /* Allocate a new sample-data-block.
282 * If there is not enough memory, stop the realloc process
283 * and simply use what was allocated. If this is a temporary
284 * issue, a new realloc call (if required) might succeed.
285 */
286 rc = alloc_sample_data_block(tail, gfp_flags);
287 if (rc) {
288 /* Undo last SDBT. An SDBT with no SDB at its first
289 * entry but with an SDBT entry instead can not be
290 * handled by the interrupt handler code.
291 * Avoid this situation.
292 */
293 if (tail_prev) {
294 sfb->num_sdbt--;
295 free_page((unsigned long)new);
296 tail = tail_prev;
297 }
298 break;
299 }
300 sfb->num_sdb++;
301 tail++;
302 tail_prev = new = NULL; /* Allocated at least one SBD */
303 }
304
305 /* Link sampling buffer to its origin */
306 *tail = virt_to_phys(sfb->sdbt) + 1;
307 sfb->tail = tail;
308
309 return rc;
310 }
311
312 /*
313 * allocate_sampling_buffer() - allocate sampler memory
314 *
315 * Allocates and initializes a sampling buffer structure using the
316 * specified number of sample-data-blocks (SDB). For each allocation,
317 * a 4K page is used. The number of sample-data-block-tables (SDBT)
318 * are calculated from SDBs.
319 * Also set the ALERT_REQ mask in each SDBs trailer.
320 *
321 * Returns zero on success, non-zero otherwise.
322 */
alloc_sampling_buffer(struct sf_buffer * sfb,unsigned long num_sdb)323 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
324 {
325 int rc;
326
327 if (sfb->sdbt)
328 return -EINVAL;
329
330 /* Allocate the sample-data-block-table origin */
331 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
332 if (!sfb->sdbt)
333 return -ENOMEM;
334 sfb->num_sdb = 0;
335 sfb->num_sdbt = 1;
336
337 /* Link the table origin to point to itself to prepare for
338 * realloc_sampling_buffer() invocation.
339 */
340 sfb->tail = sfb->sdbt;
341 *sfb->tail = virt_to_phys((void *)sfb->sdbt) + 1;
342
343 /* Allocate requested number of sample-data-blocks */
344 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
345 if (rc)
346 free_sampling_buffer(sfb);
347 return rc;
348 }
349
sfb_set_limits(unsigned long min,unsigned long max)350 static void sfb_set_limits(unsigned long min, unsigned long max)
351 {
352 struct hws_qsi_info_block si;
353
354 CPUM_SF_MIN_SDB = min;
355 CPUM_SF_MAX_SDB = max;
356
357 memset(&si, 0, sizeof(si));
358 qsi(&si);
359 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
360 }
361
sfb_max_limit(struct hw_perf_event * hwc)362 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
363 {
364 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
365 : CPUM_SF_MAX_SDB;
366 }
367
sfb_pending_allocs(struct sf_buffer * sfb,struct hw_perf_event * hwc)368 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
369 struct hw_perf_event *hwc)
370 {
371 if (!sfb->sdbt)
372 return SFB_ALLOC_REG(hwc);
373 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
374 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
375 return 0;
376 }
377
sfb_account_allocs(unsigned long num,struct hw_perf_event * hwc)378 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
379 {
380 /* Limit the number of SDBs to not exceed the maximum */
381 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
382 if (num)
383 SFB_ALLOC_REG(hwc) += num;
384 }
385
sfb_init_allocs(unsigned long num,struct hw_perf_event * hwc)386 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
387 {
388 SFB_ALLOC_REG(hwc) = 0;
389 sfb_account_allocs(num, hwc);
390 }
391
deallocate_buffers(struct cpu_hw_sf * cpuhw)392 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
393 {
394 if (sf_buffer_available(cpuhw))
395 free_sampling_buffer(&cpuhw->sfb);
396 }
397
allocate_buffers(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)398 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
399 {
400 unsigned long n_sdb, freq;
401
402 /* Calculate sampling buffers using 4K pages
403 *
404 * 1. The sampling size is 32 bytes for basic sampling. This size
405 * is the same for all machine types. Diagnostic
406 * sampling uses auxlilary data buffer setup which provides the
407 * memory for SDBs using linux common code auxiliary trace
408 * setup.
409 *
410 * 2. Function alloc_sampling_buffer() sets the Alert Request
411 * Control indicator to trigger a measurement-alert to harvest
412 * sample-data-blocks (SDB). This is done per SDB. This
413 * measurement alert interrupt fires quick enough to handle
414 * one SDB, on very high frequency and work loads there might
415 * be 2 to 3 SBDs available for sample processing.
416 * Currently there is no need for setup alert request on every
417 * n-th page. This is counterproductive as one IRQ triggers
418 * a very high number of samples to be processed at one IRQ.
419 *
420 * 3. Use the sampling frequency as input.
421 * Compute the number of SDBs and ensure a minimum
422 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
423 * SDBs to handle a higher sampling rate.
424 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
425 * (one SDB) for every 10000 HZ frequency increment.
426 *
427 * 4. Compute the number of sample-data-block-tables (SDBT) and
428 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
429 * to 511 SDBs).
430 */
431 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
432 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
433
434 /* If there is already a sampling buffer allocated, it is very likely
435 * that the sampling facility is enabled too. If the event to be
436 * initialized requires a greater sampling buffer, the allocation must
437 * be postponed. Changing the sampling buffer requires the sampling
438 * facility to be in the disabled state. So, account the number of
439 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
440 * before the event is started.
441 */
442 sfb_init_allocs(n_sdb, hwc);
443 if (sf_buffer_available(cpuhw))
444 return 0;
445
446 return alloc_sampling_buffer(&cpuhw->sfb,
447 sfb_pending_allocs(&cpuhw->sfb, hwc));
448 }
449
min_percent(unsigned int percent,unsigned long base,unsigned long min)450 static unsigned long min_percent(unsigned int percent, unsigned long base,
451 unsigned long min)
452 {
453 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
454 }
455
compute_sfb_extent(unsigned long ratio,unsigned long base)456 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
457 {
458 /* Use a percentage-based approach to extend the sampling facility
459 * buffer. Accept up to 5% sample data loss.
460 * Vary the extents between 1% to 5% of the current number of
461 * sample-data-blocks.
462 */
463 if (ratio <= 5)
464 return 0;
465 if (ratio <= 25)
466 return min_percent(1, base, 1);
467 if (ratio <= 50)
468 return min_percent(1, base, 1);
469 if (ratio <= 75)
470 return min_percent(2, base, 2);
471 if (ratio <= 100)
472 return min_percent(3, base, 3);
473 if (ratio <= 250)
474 return min_percent(4, base, 4);
475
476 return min_percent(5, base, 8);
477 }
478
sfb_account_overflows(struct cpu_hw_sf * cpuhw,struct hw_perf_event * hwc)479 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
480 struct hw_perf_event *hwc)
481 {
482 unsigned long ratio, num;
483
484 if (!OVERFLOW_REG(hwc))
485 return;
486
487 /* The sample_overflow contains the average number of sample data
488 * that has been lost because sample-data-blocks were full.
489 *
490 * Calculate the total number of sample data entries that has been
491 * discarded. Then calculate the ratio of lost samples to total samples
492 * per second in percent.
493 */
494 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
495 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
496
497 /* Compute number of sample-data-blocks */
498 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
499 if (num)
500 sfb_account_allocs(num, hwc);
501
502 OVERFLOW_REG(hwc) = 0;
503 }
504
505 /* extend_sampling_buffer() - Extend sampling buffer
506 * @sfb: Sampling buffer structure (for local CPU)
507 * @hwc: Perf event hardware structure
508 *
509 * Use this function to extend the sampling buffer based on the overflow counter
510 * and postponed allocation extents stored in the specified Perf event hardware.
511 *
512 * Important: This function disables the sampling facility in order to safely
513 * change the sampling buffer structure. Do not call this function
514 * when the PMU is active.
515 */
extend_sampling_buffer(struct sf_buffer * sfb,struct hw_perf_event * hwc)516 static void extend_sampling_buffer(struct sf_buffer *sfb,
517 struct hw_perf_event *hwc)
518 {
519 unsigned long num;
520
521 num = sfb_pending_allocs(sfb, hwc);
522 if (!num)
523 return;
524
525 /* Disable the sampling facility to reset any states and also
526 * clear pending measurement alerts.
527 */
528 sf_disable();
529
530 /* Extend the sampling buffer.
531 * This memory allocation typically happens in an atomic context when
532 * called by perf. Because this is a reallocation, it is fine if the
533 * new SDB-request cannot be satisfied immediately.
534 */
535 realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
536 }
537
538 /* Number of perf events counting hardware events */
539 static refcount_t num_events;
540 /* Used to avoid races in calling reserve/release_cpumf_hardware */
541 static DEFINE_MUTEX(pmc_reserve_mutex);
542
543 #define PMC_INIT 0
544 #define PMC_RELEASE 1
setup_pmc_cpu(void * flags)545 static void setup_pmc_cpu(void *flags)
546 {
547 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
548
549 sf_disable();
550 switch (*((int *)flags)) {
551 case PMC_INIT:
552 memset(cpuhw, 0, sizeof(*cpuhw));
553 qsi(&cpuhw->qsi);
554 cpuhw->flags |= PMU_F_RESERVED;
555 break;
556 case PMC_RELEASE:
557 cpuhw->flags &= ~PMU_F_RESERVED;
558 deallocate_buffers(cpuhw);
559 break;
560 }
561 }
562
release_pmc_hardware(void)563 static void release_pmc_hardware(void)
564 {
565 int flags = PMC_RELEASE;
566
567 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
568 on_each_cpu(setup_pmc_cpu, &flags, 1);
569 }
570
reserve_pmc_hardware(void)571 static void reserve_pmc_hardware(void)
572 {
573 int flags = PMC_INIT;
574
575 on_each_cpu(setup_pmc_cpu, &flags, 1);
576 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
577 }
578
hw_perf_event_destroy(struct perf_event * event)579 static void hw_perf_event_destroy(struct perf_event *event)
580 {
581 /* Release PMC if this is the last perf event */
582 if (refcount_dec_and_mutex_lock(&num_events, &pmc_reserve_mutex)) {
583 release_pmc_hardware();
584 mutex_unlock(&pmc_reserve_mutex);
585 }
586 }
587
hw_init_period(struct hw_perf_event * hwc,u64 period)588 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
589 {
590 hwc->sample_period = period;
591 hwc->last_period = hwc->sample_period;
592 local64_set(&hwc->period_left, hwc->sample_period);
593 }
594
hw_limit_rate(const struct hws_qsi_info_block * si,unsigned long rate)595 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
596 unsigned long rate)
597 {
598 return clamp_t(unsigned long, rate,
599 si->min_sampl_rate, si->max_sampl_rate);
600 }
601
cpumsf_pid_type(struct perf_event * event,u32 pid,enum pid_type type)602 static u32 cpumsf_pid_type(struct perf_event *event,
603 u32 pid, enum pid_type type)
604 {
605 struct task_struct *tsk;
606
607 /* Idle process */
608 if (!pid)
609 goto out;
610
611 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
612 pid = -1;
613 if (tsk) {
614 /*
615 * Only top level events contain the pid namespace in which
616 * they are created.
617 */
618 if (event->parent)
619 event = event->parent;
620 pid = __task_pid_nr_ns(tsk, type, event->ns);
621 /*
622 * See also 1d953111b648
623 * "perf/core: Don't report zero PIDs for exiting tasks".
624 */
625 if (!pid && !pid_alive(tsk))
626 pid = -1;
627 }
628 out:
629 return pid;
630 }
631
cpumsf_output_event_pid(struct perf_event * event,struct perf_sample_data * data,struct pt_regs * regs)632 static void cpumsf_output_event_pid(struct perf_event *event,
633 struct perf_sample_data *data,
634 struct pt_regs *regs)
635 {
636 u32 pid;
637 struct perf_event_header header;
638 struct perf_output_handle handle;
639
640 /*
641 * Obtain the PID from the basic-sampling data entry and
642 * correct the data->tid_entry.pid value.
643 */
644 pid = data->tid_entry.pid;
645
646 /* Protect callchain buffers, tasks */
647 rcu_read_lock();
648
649 perf_prepare_sample(data, event, regs);
650 perf_prepare_header(&header, data, event, regs);
651 if (perf_output_begin(&handle, data, event, header.size))
652 goto out;
653
654 /* Update the process ID (see also kernel/events/core.c) */
655 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
656 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
657
658 perf_output_sample(&handle, &header, data, event);
659 perf_output_end(&handle);
660 out:
661 rcu_read_unlock();
662 }
663
getrate(bool freq,unsigned long sample,struct hws_qsi_info_block * si)664 static unsigned long getrate(bool freq, unsigned long sample,
665 struct hws_qsi_info_block *si)
666 {
667 unsigned long rate;
668
669 if (freq) {
670 rate = freq_to_sample_rate(si, sample);
671 rate = hw_limit_rate(si, rate);
672 } else {
673 /* The min/max sampling rates specifies the valid range
674 * of sample periods. If the specified sample period is
675 * out of range, limit the period to the range boundary.
676 */
677 rate = hw_limit_rate(si, sample);
678
679 /* The perf core maintains a maximum sample rate that is
680 * configurable through the sysctl interface. Ensure the
681 * sampling rate does not exceed this value. This also helps
682 * to avoid throttling when pushing samples with
683 * perf_event_overflow().
684 */
685 if (sample_rate_to_freq(si, rate) >
686 sysctl_perf_event_sample_rate) {
687 rate = 0;
688 }
689 }
690 return rate;
691 }
692
693 /* The sampling information (si) contains information about the
694 * min/max sampling intervals and the CPU speed. So calculate the
695 * correct sampling interval and avoid the whole period adjust
696 * feedback loop.
697 *
698 * Since the CPU Measurement sampling facility can not handle frequency
699 * calculate the sampling interval when frequency is specified using
700 * this formula:
701 * interval := cpu_speed * 1000000 / sample_freq
702 *
703 * Returns errno on bad input and zero on success with parameter interval
704 * set to the correct sampling rate.
705 *
706 * Note: This function turns off freq bit to avoid calling function
707 * perf_adjust_period(). This causes frequency adjustment in the common
708 * code part which causes tremendous variations in the counter values.
709 */
__hw_perf_event_init_rate(struct perf_event * event,struct hws_qsi_info_block * si)710 static int __hw_perf_event_init_rate(struct perf_event *event,
711 struct hws_qsi_info_block *si)
712 {
713 struct perf_event_attr *attr = &event->attr;
714 struct hw_perf_event *hwc = &event->hw;
715 unsigned long rate;
716
717 if (attr->freq) {
718 if (!attr->sample_freq)
719 return -EINVAL;
720 rate = getrate(attr->freq, attr->sample_freq, si);
721 attr->freq = 0; /* Don't call perf_adjust_period() */
722 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
723 } else {
724 rate = getrate(attr->freq, attr->sample_period, si);
725 if (!rate)
726 return -EINVAL;
727 }
728 attr->sample_period = rate;
729 SAMPL_RATE(hwc) = rate;
730 hw_init_period(hwc, SAMPL_RATE(hwc));
731 return 0;
732 }
733
__hw_perf_event_init(struct perf_event * event)734 static int __hw_perf_event_init(struct perf_event *event)
735 {
736 struct cpu_hw_sf *cpuhw;
737 struct hws_qsi_info_block si;
738 struct perf_event_attr *attr = &event->attr;
739 struct hw_perf_event *hwc = &event->hw;
740 int cpu, err = 0;
741
742 /* Reserve CPU-measurement sampling facility */
743 mutex_lock(&pmc_reserve_mutex);
744 if (!refcount_inc_not_zero(&num_events)) {
745 reserve_pmc_hardware();
746 refcount_set(&num_events, 1);
747 }
748 event->destroy = hw_perf_event_destroy;
749
750 /* Access per-CPU sampling information (query sampling info) */
751 /*
752 * The event->cpu value can be -1 to count on every CPU, for example,
753 * when attaching to a task. If this is specified, use the query
754 * sampling info from the current CPU, otherwise use event->cpu to
755 * retrieve the per-CPU information.
756 * Later, cpuhw indicates whether to allocate sampling buffers for a
757 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
758 */
759 memset(&si, 0, sizeof(si));
760 cpuhw = NULL;
761 if (event->cpu == -1) {
762 qsi(&si);
763 } else {
764 /* Event is pinned to a particular CPU, retrieve the per-CPU
765 * sampling structure for accessing the CPU-specific QSI.
766 */
767 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
768 si = cpuhw->qsi;
769 }
770
771 /* Check sampling facility authorization and, if not authorized,
772 * fall back to other PMUs. It is safe to check any CPU because
773 * the authorization is identical for all configured CPUs.
774 */
775 if (!si.as) {
776 err = -ENOENT;
777 goto out;
778 }
779
780 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
781 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
782 err = -EBUSY;
783 goto out;
784 }
785
786 /* Always enable basic sampling */
787 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
788
789 /* Check if diagnostic sampling is requested. Deny if the required
790 * sampling authorization is missing.
791 */
792 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
793 if (!si.ad) {
794 err = -EPERM;
795 goto out;
796 }
797 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
798 }
799
800 err = __hw_perf_event_init_rate(event, &si);
801 if (err)
802 goto out;
803
804 /* Use AUX buffer. No need to allocate it by ourself */
805 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
806 goto out;
807
808 /* Allocate the per-CPU sampling buffer using the CPU information
809 * from the event. If the event is not pinned to a particular
810 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
811 * buffers for each online CPU.
812 */
813 if (cpuhw)
814 /* Event is pinned to a particular CPU */
815 err = allocate_buffers(cpuhw, hwc);
816 else {
817 /* Event is not pinned, allocate sampling buffer on
818 * each online CPU
819 */
820 for_each_online_cpu(cpu) {
821 cpuhw = &per_cpu(cpu_hw_sf, cpu);
822 err = allocate_buffers(cpuhw, hwc);
823 if (err)
824 break;
825 }
826 }
827
828 /* If PID/TID sampling is active, replace the default overflow
829 * handler to extract and resolve the PIDs from the basic-sampling
830 * data entries.
831 */
832 if (event->attr.sample_type & PERF_SAMPLE_TID)
833 if (is_default_overflow_handler(event))
834 event->overflow_handler = cpumsf_output_event_pid;
835 out:
836 mutex_unlock(&pmc_reserve_mutex);
837 return err;
838 }
839
is_callchain_event(struct perf_event * event)840 static bool is_callchain_event(struct perf_event *event)
841 {
842 u64 sample_type = event->attr.sample_type;
843
844 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
845 PERF_SAMPLE_STACK_USER);
846 }
847
cpumsf_pmu_event_init(struct perf_event * event)848 static int cpumsf_pmu_event_init(struct perf_event *event)
849 {
850 int err;
851
852 /* No support for taken branch sampling */
853 /* No support for callchain, stacks and registers */
854 if (has_branch_stack(event) || is_callchain_event(event))
855 return -EOPNOTSUPP;
856
857 switch (event->attr.type) {
858 case PERF_TYPE_RAW:
859 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
860 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
861 return -ENOENT;
862 break;
863 case PERF_TYPE_HARDWARE:
864 /* Support sampling of CPU cycles in addition to the
865 * counter facility. However, the counter facility
866 * is more precise and, hence, restrict this PMU to
867 * sampling events only.
868 */
869 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
870 return -ENOENT;
871 if (!is_sampling_event(event))
872 return -ENOENT;
873 break;
874 default:
875 return -ENOENT;
876 }
877
878 /* Force reset of idle/hv excludes regardless of what the
879 * user requested.
880 */
881 if (event->attr.exclude_hv)
882 event->attr.exclude_hv = 0;
883 if (event->attr.exclude_idle)
884 event->attr.exclude_idle = 0;
885
886 err = __hw_perf_event_init(event);
887 return err;
888 }
889
cpumsf_pmu_enable(struct pmu * pmu)890 static void cpumsf_pmu_enable(struct pmu *pmu)
891 {
892 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
893 struct hw_perf_event *hwc;
894 int err;
895
896 /*
897 * Event must be
898 * - added/started on this CPU (PMU_F_IN_USE set)
899 * - and CPU must be available (PMU_F_RESERVED set)
900 * - and not already enabled (PMU_F_ENABLED not set)
901 * - and not in error condition (PMU_F_ERR_MASK not set)
902 */
903 if (cpuhw->flags != (PMU_F_IN_USE | PMU_F_RESERVED))
904 return;
905
906 /* Check whether to extent the sampling buffer.
907 *
908 * Two conditions trigger an increase of the sampling buffer for a
909 * perf event:
910 * 1. Postponed buffer allocations from the event initialization.
911 * 2. Sampling overflows that contribute to pending allocations.
912 *
913 * Note that the extend_sampling_buffer() function disables the sampling
914 * facility, but it can be fully re-enabled using sampling controls that
915 * have been saved in cpumsf_pmu_disable().
916 */
917 hwc = &cpuhw->event->hw;
918 if (!(SAMPL_DIAG_MODE(hwc))) {
919 /*
920 * Account number of overflow-designated buffer extents
921 */
922 sfb_account_overflows(cpuhw, hwc);
923 extend_sampling_buffer(&cpuhw->sfb, hwc);
924 }
925 /* Rate may be adjusted with ioctl() */
926 cpuhw->lsctl.interval = SAMPL_RATE(hwc);
927
928 /* (Re)enable the PMU and sampling facility */
929 err = lsctl(&cpuhw->lsctl);
930 if (err) {
931 pr_err("Loading sampling controls failed: op 1 err %i\n", err);
932 return;
933 }
934
935 /* Load current program parameter */
936 lpp(&get_lowcore()->lpp);
937 cpuhw->flags |= PMU_F_ENABLED;
938 }
939
cpumsf_pmu_disable(struct pmu * pmu)940 static void cpumsf_pmu_disable(struct pmu *pmu)
941 {
942 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
943 struct hws_lsctl_request_block inactive;
944 struct hws_qsi_info_block si;
945 int err;
946
947 if (!(cpuhw->flags & PMU_F_ENABLED))
948 return;
949
950 if (cpuhw->flags & PMU_F_ERR_MASK)
951 return;
952
953 /* Switch off sampling activation control */
954 inactive = cpuhw->lsctl;
955 inactive.cs = 0;
956 inactive.cd = 0;
957
958 err = lsctl(&inactive);
959 if (err) {
960 pr_err("Loading sampling controls failed: op 2 err %i\n", err);
961 return;
962 }
963
964 /*
965 * Save state of TEAR and DEAR register contents.
966 * TEAR/DEAR values are valid only if the sampling facility is
967 * enabled. Note that cpumsf_pmu_disable() might be called even
968 * for a disabled sampling facility because cpumsf_pmu_enable()
969 * controls the enable/disable state.
970 */
971 qsi(&si);
972 if (si.es) {
973 cpuhw->lsctl.tear = si.tear;
974 cpuhw->lsctl.dear = si.dear;
975 }
976
977 cpuhw->flags &= ~PMU_F_ENABLED;
978 }
979
980 /* perf_event_exclude() - Filter event
981 * @event: The perf event
982 * @regs: pt_regs structure
983 * @sde_regs: Sample-data-entry (sde) regs structure
984 *
985 * Filter perf events according to their exclude specification.
986 *
987 * Return non-zero if the event shall be excluded.
988 */
perf_event_exclude(struct perf_event * event,struct pt_regs * regs,struct perf_sf_sde_regs * sde_regs)989 static int perf_event_exclude(struct perf_event *event, struct pt_regs *regs,
990 struct perf_sf_sde_regs *sde_regs)
991 {
992 if (event->attr.exclude_user && user_mode(regs))
993 return 1;
994 if (event->attr.exclude_kernel && !user_mode(regs))
995 return 1;
996 if (event->attr.exclude_guest && sde_regs->in_guest)
997 return 1;
998 if (event->attr.exclude_host && !sde_regs->in_guest)
999 return 1;
1000 return 0;
1001 }
1002
1003 /* perf_push_sample() - Push samples to perf
1004 * @event: The perf event
1005 * @sample: Hardware sample data
1006 *
1007 * Use the hardware sample data to create perf event sample. The sample
1008 * is the pushed to the event subsystem and the function checks for
1009 * possible event overflows. If an event overflow occurs, the PMU is
1010 * stopped.
1011 *
1012 * Return non-zero if an event overflow occurred.
1013 */
perf_push_sample(struct perf_event * event,struct hws_basic_entry * basic)1014 static int perf_push_sample(struct perf_event *event,
1015 struct hws_basic_entry *basic)
1016 {
1017 int overflow;
1018 struct pt_regs regs;
1019 struct perf_sf_sde_regs *sde_regs;
1020 struct perf_sample_data data;
1021
1022 /* Setup perf sample */
1023 perf_sample_data_init(&data, 0, event->hw.last_period);
1024
1025 /* Setup pt_regs to look like an CPU-measurement external interrupt
1026 * using the Program Request Alert code. The regs.int_parm_long
1027 * field which is unused contains additional sample-data-entry related
1028 * indicators.
1029 */
1030 memset(®s, 0, sizeof(regs));
1031 regs.int_code = 0x1407;
1032 regs.int_parm = CPU_MF_INT_SF_PRA;
1033 sde_regs = (struct perf_sf_sde_regs *) ®s.int_parm_long;
1034
1035 psw_bits(regs.psw).ia = basic->ia;
1036 psw_bits(regs.psw).dat = basic->T;
1037 psw_bits(regs.psw).wait = basic->W;
1038 psw_bits(regs.psw).pstate = basic->P;
1039 psw_bits(regs.psw).as = basic->AS;
1040
1041 /*
1042 * Use the hardware provided configuration level to decide if the
1043 * sample belongs to a guest or host. If that is not available,
1044 * fall back to the following heuristics:
1045 * A non-zero guest program parameter always indicates a guest
1046 * sample. Some early samples or samples from guests without
1047 * lpp usage would be misaccounted to the host. We use the asn
1048 * value as an addon heuristic to detect most of these guest samples.
1049 * If the value differs from 0xffff (the host value), we assume to
1050 * be a KVM guest.
1051 */
1052 switch (basic->CL) {
1053 case 1: /* logical partition */
1054 sde_regs->in_guest = 0;
1055 break;
1056 case 2: /* virtual machine */
1057 sde_regs->in_guest = 1;
1058 break;
1059 default: /* old machine, use heuristics */
1060 if (basic->gpp || basic->prim_asn != 0xffff)
1061 sde_regs->in_guest = 1;
1062 break;
1063 }
1064
1065 /*
1066 * Store the PID value from the sample-data-entry to be
1067 * processed and resolved by cpumsf_output_event_pid().
1068 */
1069 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1070
1071 overflow = 0;
1072 if (perf_event_exclude(event, ®s, sde_regs))
1073 goto out;
1074 overflow = perf_event_overflow(event, &data, ®s);
1075 perf_event_update_userpage(event);
1076 out:
1077 return overflow;
1078 }
1079
perf_event_count_update(struct perf_event * event,u64 count)1080 static void perf_event_count_update(struct perf_event *event, u64 count)
1081 {
1082 local64_add(count, &event->count);
1083 }
1084
1085 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1086 * @event: The perf event
1087 * @sdbt: Sample-data-block table
1088 * @overflow: Event overflow counter
1089 *
1090 * Walks through a sample-data-block and collects sampling data entries that are
1091 * then pushed to the perf event subsystem. Depending on the sampling function,
1092 * there can be either basic-sampling or combined-sampling data entries. A
1093 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1094 * data entry. The sampling function is determined by the flags in the perf
1095 * event hardware structure. The function always works with a combined-sampling
1096 * data entry but ignores the the diagnostic portion if it is not available.
1097 *
1098 * Note that the implementation focuses on basic-sampling data entries and, if
1099 * such an entry is not valid, the entire combined-sampling data entry is
1100 * ignored.
1101 *
1102 * The overflow variables counts the number of samples that has been discarded
1103 * due to a perf event overflow.
1104 */
hw_collect_samples(struct perf_event * event,unsigned long * sdbt,unsigned long long * overflow)1105 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1106 unsigned long long *overflow)
1107 {
1108 struct hws_trailer_entry *te;
1109 struct hws_basic_entry *sample;
1110
1111 te = trailer_entry_ptr((unsigned long)sdbt);
1112 sample = (struct hws_basic_entry *)sdbt;
1113 while ((unsigned long *)sample < (unsigned long *)te) {
1114 /* Check for an empty sample */
1115 if (!sample->def || sample->LS)
1116 break;
1117
1118 /* Update perf event period */
1119 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1120
1121 /* Check whether sample is valid */
1122 if (sample->def == 0x0001) {
1123 /* If an event overflow occurred, the PMU is stopped to
1124 * throttle event delivery. Remaining sample data is
1125 * discarded.
1126 */
1127 if (!*overflow) {
1128 /* Check whether sample is consistent */
1129 if (sample->I == 0 && sample->W == 0) {
1130 /* Deliver sample data to perf */
1131 *overflow = perf_push_sample(event,
1132 sample);
1133 }
1134 } else
1135 /* Count discarded samples */
1136 *overflow += 1;
1137 } else {
1138 /* Sample slot is not yet written or other record.
1139 *
1140 * This condition can occur if the buffer was reused
1141 * from a combined basic- and diagnostic-sampling.
1142 * If only basic-sampling is then active, entries are
1143 * written into the larger diagnostic entries.
1144 * This is typically the case for sample-data-blocks
1145 * that are not full. Stop processing if the first
1146 * invalid format was detected.
1147 */
1148 if (!te->header.f)
1149 break;
1150 }
1151
1152 /* Reset sample slot and advance to next sample */
1153 sample->def = 0;
1154 sample++;
1155 }
1156 }
1157
1158 /* hw_perf_event_update() - Process sampling buffer
1159 * @event: The perf event
1160 * @flush_all: Flag to also flush partially filled sample-data-blocks
1161 *
1162 * Processes the sampling buffer and create perf event samples.
1163 * The sampling buffer position are retrieved and saved in the TEAR_REG
1164 * register of the specified perf event.
1165 *
1166 * Only full sample-data-blocks are processed. Specify the flush_all flag
1167 * to also walk through partially filled sample-data-blocks.
1168 */
hw_perf_event_update(struct perf_event * event,int flush_all)1169 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1170 {
1171 unsigned long long event_overflow, sampl_overflow, num_sdb;
1172 struct hw_perf_event *hwc = &event->hw;
1173 union hws_trailer_header prev, new;
1174 struct hws_trailer_entry *te;
1175 unsigned long *sdbt, sdb;
1176 int done;
1177
1178 /*
1179 * AUX buffer is used when in diagnostic sampling mode.
1180 * No perf events/samples are created.
1181 */
1182 if (SAMPL_DIAG_MODE(hwc))
1183 return;
1184
1185 sdbt = (unsigned long *)TEAR_REG(hwc);
1186 done = event_overflow = sampl_overflow = num_sdb = 0;
1187 while (!done) {
1188 /* Get the trailer entry of the sample-data-block */
1189 sdb = (unsigned long)phys_to_virt(*sdbt);
1190 te = trailer_entry_ptr(sdb);
1191
1192 /* Leave loop if no more work to do (block full indicator) */
1193 if (!te->header.f) {
1194 done = 1;
1195 if (!flush_all)
1196 break;
1197 }
1198
1199 /* Check the sample overflow count */
1200 if (te->header.overflow)
1201 /* Account sample overflows and, if a particular limit
1202 * is reached, extend the sampling buffer.
1203 * For details, see sfb_account_overflows().
1204 */
1205 sampl_overflow += te->header.overflow;
1206
1207 /* Collect all samples from a single sample-data-block and
1208 * flag if an (perf) event overflow happened. If so, the PMU
1209 * is stopped and remaining samples will be discarded.
1210 */
1211 hw_collect_samples(event, (unsigned long *)sdb, &event_overflow);
1212 num_sdb++;
1213
1214 /* Reset trailer (using compare-double-and-swap) */
1215 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1216 do {
1217 new.val = prev.val;
1218 new.f = 0;
1219 new.a = 1;
1220 new.overflow = 0;
1221 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1222
1223 /* Advance to next sample-data-block */
1224 sdbt++;
1225 if (is_link_entry(sdbt))
1226 sdbt = get_next_sdbt(sdbt);
1227
1228 /* Update event hardware registers */
1229 TEAR_REG(hwc) = (unsigned long)sdbt;
1230
1231 /* Stop processing sample-data if all samples of the current
1232 * sample-data-block were flushed even if it was not full.
1233 */
1234 if (flush_all && done)
1235 break;
1236 }
1237
1238 /* Account sample overflows in the event hardware structure */
1239 if (sampl_overflow)
1240 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1241 sampl_overflow, 1 + num_sdb);
1242
1243 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1244 * the interrupt rate to an upper limit. Roughly 1000 samples per
1245 * task tick.
1246 * Hitting this limit results in a large number
1247 * of throttled REF_REPORT_THROTTLE entries and the samples
1248 * are dropped.
1249 * Slightly increase the interval to avoid hitting this limit.
1250 */
1251 if (event_overflow)
1252 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1253 }
1254
aux_sdb_index(struct aux_buffer * aux,unsigned long i)1255 static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1256 unsigned long i)
1257 {
1258 return i % aux->sfb.num_sdb;
1259 }
1260
aux_sdb_num(unsigned long start,unsigned long end)1261 static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1262 {
1263 return end >= start ? end - start + 1 : 0;
1264 }
1265
aux_sdb_num_alert(struct aux_buffer * aux)1266 static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1267 {
1268 return aux_sdb_num(aux->head, aux->alert_mark);
1269 }
1270
aux_sdb_num_empty(struct aux_buffer * aux)1271 static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1272 {
1273 return aux_sdb_num(aux->head, aux->empty_mark);
1274 }
1275
1276 /*
1277 * Get trailer entry by index of SDB.
1278 */
aux_sdb_trailer(struct aux_buffer * aux,unsigned long index)1279 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1280 unsigned long index)
1281 {
1282 unsigned long sdb;
1283
1284 index = aux_sdb_index(aux, index);
1285 sdb = aux->sdb_index[index];
1286 return trailer_entry_ptr(sdb);
1287 }
1288
1289 /*
1290 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1291 * disabled. Collect the full SDBs in AUX buffer which have not reached
1292 * the point of alert indicator. And ignore the SDBs which are not
1293 * full.
1294 *
1295 * 1. Scan SDBs to see how much data is there and consume them.
1296 * 2. Remove alert indicator in the buffer.
1297 */
aux_output_end(struct perf_output_handle * handle)1298 static void aux_output_end(struct perf_output_handle *handle)
1299 {
1300 unsigned long i, range_scan, idx;
1301 struct aux_buffer *aux;
1302 struct hws_trailer_entry *te;
1303
1304 aux = perf_get_aux(handle);
1305 if (!aux)
1306 return;
1307
1308 range_scan = aux_sdb_num_alert(aux);
1309 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1310 te = aux_sdb_trailer(aux, idx);
1311 if (!te->header.f)
1312 break;
1313 }
1314 /* i is num of SDBs which are full */
1315 perf_aux_output_end(handle, i << PAGE_SHIFT);
1316
1317 /* Remove alert indicators in the buffer */
1318 te = aux_sdb_trailer(aux, aux->alert_mark);
1319 te->header.a = 0;
1320 }
1321
1322 /*
1323 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1324 * is first added to the CPU or rescheduled again to the CPU. It is called
1325 * with pmu disabled.
1326 *
1327 * 1. Reset the trailer of SDBs to get ready for new data.
1328 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1329 * head(tear/dear).
1330 */
aux_output_begin(struct perf_output_handle * handle,struct aux_buffer * aux,struct cpu_hw_sf * cpuhw)1331 static int aux_output_begin(struct perf_output_handle *handle,
1332 struct aux_buffer *aux,
1333 struct cpu_hw_sf *cpuhw)
1334 {
1335 unsigned long range, i, range_scan, idx, head, base, offset;
1336 struct hws_trailer_entry *te;
1337
1338 if (handle->head & ~PAGE_MASK)
1339 return -EINVAL;
1340
1341 aux->head = handle->head >> PAGE_SHIFT;
1342 range = (handle->size + 1) >> PAGE_SHIFT;
1343 if (range <= 1)
1344 return -ENOMEM;
1345
1346 /*
1347 * SDBs between aux->head and aux->empty_mark are already ready
1348 * for new data. range_scan is num of SDBs not within them.
1349 */
1350 if (range > aux_sdb_num_empty(aux)) {
1351 range_scan = range - aux_sdb_num_empty(aux);
1352 idx = aux->empty_mark + 1;
1353 for (i = 0; i < range_scan; i++, idx++) {
1354 te = aux_sdb_trailer(aux, idx);
1355 te->header.f = 0;
1356 te->header.a = 0;
1357 te->header.overflow = 0;
1358 }
1359 /* Save the position of empty SDBs */
1360 aux->empty_mark = aux->head + range - 1;
1361 }
1362
1363 /* Set alert indicator */
1364 aux->alert_mark = aux->head + range/2 - 1;
1365 te = aux_sdb_trailer(aux, aux->alert_mark);
1366 te->header.a = 1;
1367
1368 /* Reset hardware buffer head */
1369 head = aux_sdb_index(aux, aux->head);
1370 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1371 offset = head % CPUM_SF_SDB_PER_TABLE;
1372 cpuhw->lsctl.tear = virt_to_phys((void *)base) + offset * sizeof(unsigned long);
1373 cpuhw->lsctl.dear = virt_to_phys((void *)aux->sdb_index[head]);
1374
1375 return 0;
1376 }
1377
1378 /*
1379 * Set alert indicator on SDB at index @alert_index while sampler is running.
1380 *
1381 * Return true if successfully.
1382 * Return false if full indicator is already set by hardware sampler.
1383 */
aux_set_alert(struct aux_buffer * aux,unsigned long alert_index,unsigned long long * overflow)1384 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1385 unsigned long long *overflow)
1386 {
1387 union hws_trailer_header prev, new;
1388 struct hws_trailer_entry *te;
1389
1390 te = aux_sdb_trailer(aux, alert_index);
1391 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1392 do {
1393 new.val = prev.val;
1394 *overflow = prev.overflow;
1395 if (prev.f) {
1396 /*
1397 * SDB is already set by hardware.
1398 * Abort and try to set somewhere
1399 * behind.
1400 */
1401 return false;
1402 }
1403 new.a = 1;
1404 new.overflow = 0;
1405 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1406 return true;
1407 }
1408
1409 /*
1410 * aux_reset_buffer() - Scan and setup SDBs for new samples
1411 * @aux: The AUX buffer to set
1412 * @range: The range of SDBs to scan started from aux->head
1413 * @overflow: Set to overflow count
1414 *
1415 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1416 * marked as empty, check if it is already set full by the hardware sampler.
1417 * If yes, that means new data is already there before we can set an alert
1418 * indicator. Caller should try to set alert indicator to some position behind.
1419 *
1420 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1421 * previously and have already been consumed by user space. Reset these SDBs
1422 * (clear full indicator and alert indicator) for new data.
1423 * If aux->alert_mark fall in this area, just set it. Overflow count is
1424 * recorded while scanning.
1425 *
1426 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1427 * and ready for new samples. So scanning on this area could be skipped.
1428 *
1429 * Return true if alert indicator is set successfully and false if not.
1430 */
aux_reset_buffer(struct aux_buffer * aux,unsigned long range,unsigned long long * overflow)1431 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1432 unsigned long long *overflow)
1433 {
1434 union hws_trailer_header prev, new;
1435 unsigned long i, range_scan, idx;
1436 unsigned long long orig_overflow;
1437 struct hws_trailer_entry *te;
1438
1439 if (range <= aux_sdb_num_empty(aux))
1440 /*
1441 * No need to scan. All SDBs in range are marked as empty.
1442 * Just set alert indicator. Should check race with hardware
1443 * sampler.
1444 */
1445 return aux_set_alert(aux, aux->alert_mark, overflow);
1446
1447 if (aux->alert_mark <= aux->empty_mark)
1448 /*
1449 * Set alert indicator on empty SDB. Should check race
1450 * with hardware sampler.
1451 */
1452 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1453 return false;
1454
1455 /*
1456 * Scan the SDBs to clear full and alert indicator used previously.
1457 * Start scanning from one SDB behind empty_mark. If the new alert
1458 * indicator fall into this range, set it.
1459 */
1460 range_scan = range - aux_sdb_num_empty(aux);
1461 idx = aux->empty_mark + 1;
1462 for (i = 0; i < range_scan; i++, idx++) {
1463 te = aux_sdb_trailer(aux, idx);
1464 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1465 do {
1466 new.val = prev.val;
1467 orig_overflow = prev.overflow;
1468 new.f = 0;
1469 new.overflow = 0;
1470 if (idx == aux->alert_mark)
1471 new.a = 1;
1472 else
1473 new.a = 0;
1474 } while (!try_cmpxchg128(&te->header.val, &prev.val, new.val));
1475 *overflow += orig_overflow;
1476 }
1477
1478 /* Update empty_mark to new position */
1479 aux->empty_mark = aux->head + range - 1;
1480
1481 return true;
1482 }
1483
1484 /*
1485 * Measurement alert handler for diagnostic mode sampling.
1486 */
hw_collect_aux(struct cpu_hw_sf * cpuhw)1487 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1488 {
1489 struct aux_buffer *aux;
1490 int done = 0;
1491 unsigned long range = 0, size;
1492 unsigned long long overflow = 0;
1493 struct perf_output_handle *handle = &cpuhw->handle;
1494 unsigned long num_sdb;
1495
1496 aux = perf_get_aux(handle);
1497 if (!aux)
1498 return;
1499
1500 /* Inform user space new data arrived */
1501 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1502 debug_sprintf_event(sfdbg, 6, "%s #alert %ld\n", __func__,
1503 size >> PAGE_SHIFT);
1504 perf_aux_output_end(handle, size);
1505
1506 num_sdb = aux->sfb.num_sdb;
1507 while (!done) {
1508 /* Get an output handle */
1509 aux = perf_aux_output_begin(handle, cpuhw->event);
1510 if (handle->size == 0) {
1511 pr_err("The AUX buffer with %lu pages for the "
1512 "diagnostic-sampling mode is full\n",
1513 num_sdb);
1514 break;
1515 }
1516 if (!aux)
1517 return;
1518
1519 /* Update head and alert_mark to new position */
1520 aux->head = handle->head >> PAGE_SHIFT;
1521 range = (handle->size + 1) >> PAGE_SHIFT;
1522 if (range == 1)
1523 aux->alert_mark = aux->head;
1524 else
1525 aux->alert_mark = aux->head + range/2 - 1;
1526
1527 if (aux_reset_buffer(aux, range, &overflow)) {
1528 if (!overflow) {
1529 done = 1;
1530 break;
1531 }
1532 size = range << PAGE_SHIFT;
1533 perf_aux_output_end(&cpuhw->handle, size);
1534 pr_err("Sample data caused the AUX buffer with %lu "
1535 "pages to overflow\n", aux->sfb.num_sdb);
1536 } else {
1537 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1538 perf_aux_output_end(&cpuhw->handle, size);
1539 }
1540 }
1541 }
1542
1543 /*
1544 * Callback when freeing AUX buffers.
1545 */
aux_buffer_free(void * data)1546 static void aux_buffer_free(void *data)
1547 {
1548 struct aux_buffer *aux = data;
1549 unsigned long i, num_sdbt;
1550
1551 if (!aux)
1552 return;
1553
1554 /* Free SDBT. SDB is freed by the caller */
1555 num_sdbt = aux->sfb.num_sdbt;
1556 for (i = 0; i < num_sdbt; i++)
1557 free_page(aux->sdbt_index[i]);
1558
1559 kfree(aux->sdbt_index);
1560 kfree(aux->sdb_index);
1561 kfree(aux);
1562 }
1563
aux_sdb_init(unsigned long sdb)1564 static void aux_sdb_init(unsigned long sdb)
1565 {
1566 struct hws_trailer_entry *te;
1567
1568 te = trailer_entry_ptr(sdb);
1569
1570 /* Save clock base */
1571 te->clock_base = 1;
1572 te->progusage2 = tod_clock_base.tod;
1573 }
1574
1575 /*
1576 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1577 * @event: Event the buffer is setup for, event->cpu == -1 means current
1578 * @pages: Array of pointers to buffer pages passed from perf core
1579 * @nr_pages: Total pages
1580 * @snapshot: Flag for snapshot mode
1581 *
1582 * This is the callback when setup an event using AUX buffer. Perf tool can
1583 * trigger this by an additional mmap() call on the event. Unlike the buffer
1584 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1585 * the task among online cpus when it is a per-thread event.
1586 *
1587 * Return the private AUX buffer structure if success or NULL if fails.
1588 */
aux_buffer_setup(struct perf_event * event,void ** pages,int nr_pages,bool snapshot)1589 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1590 int nr_pages, bool snapshot)
1591 {
1592 struct sf_buffer *sfb;
1593 struct aux_buffer *aux;
1594 unsigned long *new, *tail;
1595 int i, n_sdbt;
1596
1597 if (!nr_pages || !pages)
1598 return NULL;
1599
1600 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1601 pr_err("AUX buffer size (%i pages) is larger than the "
1602 "maximum sampling buffer limit\n",
1603 nr_pages);
1604 return NULL;
1605 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1606 pr_err("AUX buffer size (%i pages) is less than the "
1607 "minimum sampling buffer limit\n",
1608 nr_pages);
1609 return NULL;
1610 }
1611
1612 /* Allocate aux_buffer struct for the event */
1613 aux = kzalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1614 if (!aux)
1615 goto no_aux;
1616 sfb = &aux->sfb;
1617
1618 /* Allocate sdbt_index for fast reference */
1619 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1620 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1621 if (!aux->sdbt_index)
1622 goto no_sdbt_index;
1623
1624 /* Allocate sdb_index for fast reference */
1625 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1626 if (!aux->sdb_index)
1627 goto no_sdb_index;
1628
1629 /* Allocate the first SDBT */
1630 sfb->num_sdbt = 0;
1631 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1632 if (!sfb->sdbt)
1633 goto no_sdbt;
1634 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1635 tail = sfb->tail = sfb->sdbt;
1636
1637 /*
1638 * Link the provided pages of AUX buffer to SDBT.
1639 * Allocate SDBT if needed.
1640 */
1641 for (i = 0; i < nr_pages; i++, tail++) {
1642 if (require_table_link(tail)) {
1643 new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1644 if (!new)
1645 goto no_sdbt;
1646 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1647 /* Link current page to tail of chain */
1648 *tail = virt_to_phys(new) + 1;
1649 tail = new;
1650 }
1651 /* Tail is the entry in a SDBT */
1652 *tail = virt_to_phys(pages[i]);
1653 aux->sdb_index[i] = (unsigned long)pages[i];
1654 aux_sdb_init((unsigned long)pages[i]);
1655 }
1656 sfb->num_sdb = nr_pages;
1657
1658 /* Link the last entry in the SDBT to the first SDBT */
1659 *tail = virt_to_phys(sfb->sdbt) + 1;
1660 sfb->tail = tail;
1661
1662 /*
1663 * Initial all SDBs are zeroed. Mark it as empty.
1664 * So there is no need to clear the full indicator
1665 * when this event is first added.
1666 */
1667 aux->empty_mark = sfb->num_sdb - 1;
1668
1669 return aux;
1670
1671 no_sdbt:
1672 /* SDBs (AUX buffer pages) are freed by caller */
1673 for (i = 0; i < sfb->num_sdbt; i++)
1674 free_page(aux->sdbt_index[i]);
1675 kfree(aux->sdb_index);
1676 no_sdb_index:
1677 kfree(aux->sdbt_index);
1678 no_sdbt_index:
1679 kfree(aux);
1680 no_aux:
1681 return NULL;
1682 }
1683
cpumsf_pmu_read(struct perf_event * event)1684 static void cpumsf_pmu_read(struct perf_event *event)
1685 {
1686 /* Nothing to do ... updates are interrupt-driven */
1687 }
1688
1689 /* Check if the new sampling period/frequency is appropriate.
1690 *
1691 * Return non-zero on error and zero on passed checks.
1692 */
cpumsf_pmu_check_period(struct perf_event * event,u64 value)1693 static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1694 {
1695 struct hws_qsi_info_block si;
1696 unsigned long rate;
1697 bool do_freq;
1698
1699 memset(&si, 0, sizeof(si));
1700 if (event->cpu == -1) {
1701 qsi(&si);
1702 } else {
1703 /* Event is pinned to a particular CPU, retrieve the per-CPU
1704 * sampling structure for accessing the CPU-specific QSI.
1705 */
1706 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1707
1708 si = cpuhw->qsi;
1709 }
1710
1711 do_freq = !!SAMPL_FREQ_MODE(&event->hw);
1712 rate = getrate(do_freq, value, &si);
1713 if (!rate)
1714 return -EINVAL;
1715
1716 event->attr.sample_period = rate;
1717 SAMPL_RATE(&event->hw) = rate;
1718 hw_init_period(&event->hw, SAMPL_RATE(&event->hw));
1719 return 0;
1720 }
1721
1722 /* Activate sampling control.
1723 * Next call of pmu_enable() starts sampling.
1724 */
cpumsf_pmu_start(struct perf_event * event,int flags)1725 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1726 {
1727 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1728
1729 if (!(event->hw.state & PERF_HES_STOPPED))
1730 return;
1731 perf_pmu_disable(event->pmu);
1732 event->hw.state = 0;
1733 cpuhw->lsctl.cs = 1;
1734 if (SAMPL_DIAG_MODE(&event->hw))
1735 cpuhw->lsctl.cd = 1;
1736 perf_pmu_enable(event->pmu);
1737 }
1738
1739 /* Deactivate sampling control.
1740 * Next call of pmu_enable() stops sampling.
1741 */
cpumsf_pmu_stop(struct perf_event * event,int flags)1742 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1743 {
1744 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1745
1746 if (event->hw.state & PERF_HES_STOPPED)
1747 return;
1748
1749 perf_pmu_disable(event->pmu);
1750 cpuhw->lsctl.cs = 0;
1751 cpuhw->lsctl.cd = 0;
1752 event->hw.state |= PERF_HES_STOPPED;
1753
1754 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1755 /* CPU hotplug off removes SDBs. No samples to extract. */
1756 if (cpuhw->flags & PMU_F_RESERVED)
1757 hw_perf_event_update(event, 1);
1758 event->hw.state |= PERF_HES_UPTODATE;
1759 }
1760 perf_pmu_enable(event->pmu);
1761 }
1762
cpumsf_pmu_add(struct perf_event * event,int flags)1763 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1764 {
1765 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1766 struct aux_buffer *aux;
1767 int err = 0;
1768
1769 if (cpuhw->flags & PMU_F_IN_USE)
1770 return -EAGAIN;
1771
1772 if (!SAMPL_DIAG_MODE(&event->hw) && !sf_buffer_available(cpuhw))
1773 return -EINVAL;
1774
1775 perf_pmu_disable(event->pmu);
1776
1777 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1778
1779 /* Set up sampling controls. Always program the sampling register
1780 * using the SDB-table start. Reset TEAR_REG event hardware register
1781 * that is used by hw_perf_event_update() to store the sampling buffer
1782 * position after samples have been flushed.
1783 */
1784 cpuhw->lsctl.s = 0;
1785 cpuhw->lsctl.h = 1;
1786 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1787 if (!SAMPL_DIAG_MODE(&event->hw)) {
1788 cpuhw->lsctl.tear = virt_to_phys(cpuhw->sfb.sdbt);
1789 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1790 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1791 }
1792
1793 /* Ensure sampling functions are in the disabled state. If disabled,
1794 * switch on sampling enable control. */
1795 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1796 err = -EAGAIN;
1797 goto out;
1798 }
1799 if (SAMPL_DIAG_MODE(&event->hw)) {
1800 aux = perf_aux_output_begin(&cpuhw->handle, event);
1801 if (!aux) {
1802 err = -EINVAL;
1803 goto out;
1804 }
1805 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1806 if (err)
1807 goto out;
1808 cpuhw->lsctl.ed = 1;
1809 }
1810 cpuhw->lsctl.es = 1;
1811
1812 /* Set in_use flag and store event */
1813 cpuhw->event = event;
1814 cpuhw->flags |= PMU_F_IN_USE;
1815
1816 if (flags & PERF_EF_START)
1817 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1818 out:
1819 perf_event_update_userpage(event);
1820 perf_pmu_enable(event->pmu);
1821 return err;
1822 }
1823
cpumsf_pmu_del(struct perf_event * event,int flags)1824 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1825 {
1826 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1827
1828 perf_pmu_disable(event->pmu);
1829 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1830
1831 cpuhw->lsctl.es = 0;
1832 cpuhw->lsctl.ed = 0;
1833 cpuhw->flags &= ~PMU_F_IN_USE;
1834 cpuhw->event = NULL;
1835
1836 if (SAMPL_DIAG_MODE(&event->hw))
1837 aux_output_end(&cpuhw->handle);
1838 perf_event_update_userpage(event);
1839 perf_pmu_enable(event->pmu);
1840 }
1841
1842 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1843 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1844
1845 /* Attribute list for CPU_SF.
1846 *
1847 * The availablitiy depends on the CPU_MF sampling facility authorization
1848 * for basic + diagnositic samples. This is determined at initialization
1849 * time by the sampling facility device driver.
1850 * If the authorization for basic samples is turned off, it should be
1851 * also turned off for diagnostic sampling.
1852 *
1853 * During initialization of the device driver, check the authorization
1854 * level for diagnostic sampling and installs the attribute
1855 * file for diagnostic sampling if necessary.
1856 *
1857 * For now install a placeholder to reference all possible attributes:
1858 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1859 * Add another entry for the final NULL pointer.
1860 */
1861 enum {
1862 SF_CYCLES_BASIC_ATTR_IDX = 0,
1863 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1864 SF_CYCLES_ATTR_MAX
1865 };
1866
1867 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1868 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1869 };
1870
1871 PMU_FORMAT_ATTR(event, "config:0-63");
1872
1873 static struct attribute *cpumsf_pmu_format_attr[] = {
1874 &format_attr_event.attr,
1875 NULL,
1876 };
1877
1878 static struct attribute_group cpumsf_pmu_events_group = {
1879 .name = "events",
1880 .attrs = cpumsf_pmu_events_attr,
1881 };
1882
1883 static struct attribute_group cpumsf_pmu_format_group = {
1884 .name = "format",
1885 .attrs = cpumsf_pmu_format_attr,
1886 };
1887
1888 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1889 &cpumsf_pmu_events_group,
1890 &cpumsf_pmu_format_group,
1891 NULL,
1892 };
1893
1894 static struct pmu cpumf_sampling = {
1895 .pmu_enable = cpumsf_pmu_enable,
1896 .pmu_disable = cpumsf_pmu_disable,
1897
1898 .event_init = cpumsf_pmu_event_init,
1899 .add = cpumsf_pmu_add,
1900 .del = cpumsf_pmu_del,
1901
1902 .start = cpumsf_pmu_start,
1903 .stop = cpumsf_pmu_stop,
1904 .read = cpumsf_pmu_read,
1905
1906 .attr_groups = cpumsf_pmu_attr_groups,
1907
1908 .setup_aux = aux_buffer_setup,
1909 .free_aux = aux_buffer_free,
1910
1911 .check_period = cpumsf_pmu_check_period,
1912 };
1913
cpumf_measurement_alert(struct ext_code ext_code,unsigned int alert,unsigned long unused)1914 static void cpumf_measurement_alert(struct ext_code ext_code,
1915 unsigned int alert, unsigned long unused)
1916 {
1917 struct cpu_hw_sf *cpuhw;
1918
1919 if (!(alert & CPU_MF_INT_SF_MASK))
1920 return;
1921 inc_irq_stat(IRQEXT_CMS);
1922 cpuhw = this_cpu_ptr(&cpu_hw_sf);
1923
1924 /* Measurement alerts are shared and might happen when the PMU
1925 * is not reserved. Ignore these alerts in this case. */
1926 if (!(cpuhw->flags & PMU_F_RESERVED))
1927 return;
1928
1929 /* The processing below must take care of multiple alert events that
1930 * might be indicated concurrently. */
1931
1932 /* Program alert request */
1933 if (alert & CPU_MF_INT_SF_PRA) {
1934 if (cpuhw->flags & PMU_F_IN_USE) {
1935 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
1936 hw_collect_aux(cpuhw);
1937 else
1938 hw_perf_event_update(cpuhw->event, 0);
1939 }
1940 }
1941
1942 /* Report measurement alerts only for non-PRA codes */
1943 if (alert != CPU_MF_INT_SF_PRA)
1944 debug_sprintf_event(sfdbg, 6, "%s alert %#x\n", __func__,
1945 alert);
1946
1947 /* Sampling authorization change request */
1948 if (alert & CPU_MF_INT_SF_SACA)
1949 qsi(&cpuhw->qsi);
1950
1951 /* Loss of sample data due to high-priority machine activities */
1952 if (alert & CPU_MF_INT_SF_LSDA) {
1953 pr_err("Sample data was lost\n");
1954 cpuhw->flags |= PMU_F_ERR_LSDA;
1955 sf_disable();
1956 }
1957
1958 /* Invalid sampling buffer entry */
1959 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1960 pr_err("A sampling buffer entry is incorrect (alert=%#x)\n",
1961 alert);
1962 cpuhw->flags |= PMU_F_ERR_IBE;
1963 sf_disable();
1964 }
1965 }
1966
cpusf_pmu_setup(unsigned int cpu,int flags)1967 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1968 {
1969 /* Ignore the notification if no events are scheduled on the PMU.
1970 * This might be racy...
1971 */
1972 if (!refcount_read(&num_events))
1973 return 0;
1974
1975 local_irq_disable();
1976 setup_pmc_cpu(&flags);
1977 local_irq_enable();
1978 return 0;
1979 }
1980
s390_pmu_sf_online_cpu(unsigned int cpu)1981 static int s390_pmu_sf_online_cpu(unsigned int cpu)
1982 {
1983 return cpusf_pmu_setup(cpu, PMC_INIT);
1984 }
1985
s390_pmu_sf_offline_cpu(unsigned int cpu)1986 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
1987 {
1988 return cpusf_pmu_setup(cpu, PMC_RELEASE);
1989 }
1990
param_get_sfb_size(char * buffer,const struct kernel_param * kp)1991 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1992 {
1993 if (!cpum_sf_avail())
1994 return -ENODEV;
1995 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1996 }
1997
param_set_sfb_size(const char * val,const struct kernel_param * kp)1998 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1999 {
2000 int rc;
2001 unsigned long min, max;
2002
2003 if (!cpum_sf_avail())
2004 return -ENODEV;
2005 if (!val || !strlen(val))
2006 return -EINVAL;
2007
2008 /* Valid parameter values: "min,max" or "max" */
2009 min = CPUM_SF_MIN_SDB;
2010 max = CPUM_SF_MAX_SDB;
2011 if (strchr(val, ','))
2012 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2013 else
2014 rc = kstrtoul(val, 10, &max);
2015
2016 if (min < 2 || min >= max || max > get_num_physpages())
2017 rc = -EINVAL;
2018 if (rc)
2019 return rc;
2020
2021 sfb_set_limits(min, max);
2022 pr_info("The sampling buffer limits have changed to: "
2023 "min %lu max %lu (diag %lu)\n",
2024 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2025 return 0;
2026 }
2027
2028 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2029 static const struct kernel_param_ops param_ops_sfb_size = {
2030 .set = param_set_sfb_size,
2031 .get = param_get_sfb_size,
2032 };
2033
2034 enum {
2035 RS_INIT_FAILURE_BSDES = 2, /* Bad basic sampling size */
2036 RS_INIT_FAILURE_ALRT = 3, /* IRQ registration failure */
2037 RS_INIT_FAILURE_PERF = 4 /* PMU registration failure */
2038 };
2039
pr_cpumsf_err(unsigned int reason)2040 static void __init pr_cpumsf_err(unsigned int reason)
2041 {
2042 pr_err("Sampling facility support for perf is not available: "
2043 "reason %#x\n", reason);
2044 }
2045
init_cpum_sampling_pmu(void)2046 static int __init init_cpum_sampling_pmu(void)
2047 {
2048 struct hws_qsi_info_block si;
2049 int err;
2050
2051 if (!cpum_sf_avail())
2052 return -ENODEV;
2053
2054 memset(&si, 0, sizeof(si));
2055 qsi(&si);
2056 if (!si.as && !si.ad)
2057 return -ENODEV;
2058
2059 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2060 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2061 return -EINVAL;
2062 }
2063
2064 if (si.ad) {
2065 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2066 /* Sampling of diagnostic data authorized,
2067 * install event into attribute list of PMU device.
2068 */
2069 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2070 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2071 }
2072
2073 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2074 if (!sfdbg) {
2075 pr_err("Registering for s390dbf failed\n");
2076 return -ENOMEM;
2077 }
2078 debug_register_view(sfdbg, &debug_sprintf_view);
2079
2080 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2081 cpumf_measurement_alert);
2082 if (err) {
2083 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2084 debug_unregister(sfdbg);
2085 goto out;
2086 }
2087
2088 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2089 if (err) {
2090 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2091 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2092 cpumf_measurement_alert);
2093 debug_unregister(sfdbg);
2094 goto out;
2095 }
2096
2097 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2098 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2099 out:
2100 return err;
2101 }
2102
2103 arch_initcall(init_cpum_sampling_pmu);
2104 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2105