xref: /linux/kernel/sys.c (revision beace86e61e465dba204a268ab3f3377153a4973)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/mm_inline.h>
11 #include <linux/utsname.h>
12 #include <linux/mman.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/kmod.h>
18 #include <linux/ksm.h>
19 #include <linux/perf_event.h>
20 #include <linux/resource.h>
21 #include <linux/kernel.h>
22 #include <linux/workqueue.h>
23 #include <linux/capability.h>
24 #include <linux/device.h>
25 #include <linux/key.h>
26 #include <linux/times.h>
27 #include <linux/posix-timers.h>
28 #include <linux/security.h>
29 #include <linux/random.h>
30 #include <linux/suspend.h>
31 #include <linux/tty.h>
32 #include <linux/signal.h>
33 #include <linux/cn_proc.h>
34 #include <linux/getcpu.h>
35 #include <linux/task_io_accounting_ops.h>
36 #include <linux/seccomp.h>
37 #include <linux/cpu.h>
38 #include <linux/personality.h>
39 #include <linux/ptrace.h>
40 #include <linux/fs_struct.h>
41 #include <linux/file.h>
42 #include <linux/mount.h>
43 #include <linux/gfp.h>
44 #include <linux/syscore_ops.h>
45 #include <linux/version.h>
46 #include <linux/ctype.h>
47 #include <linux/syscall_user_dispatch.h>
48 
49 #include <linux/compat.h>
50 #include <linux/syscalls.h>
51 #include <linux/kprobes.h>
52 #include <linux/user_namespace.h>
53 #include <linux/time_namespace.h>
54 #include <linux/binfmts.h>
55 #include <linux/futex.h>
56 
57 #include <linux/sched.h>
58 #include <linux/sched/autogroup.h>
59 #include <linux/sched/loadavg.h>
60 #include <linux/sched/stat.h>
61 #include <linux/sched/mm.h>
62 #include <linux/sched/coredump.h>
63 #include <linux/sched/task.h>
64 #include <linux/sched/cputime.h>
65 #include <linux/rcupdate.h>
66 #include <linux/uidgid.h>
67 #include <linux/cred.h>
68 
69 #include <linux/nospec.h>
70 
71 #include <linux/kmsg_dump.h>
72 /* Move somewhere else to avoid recompiling? */
73 #include <generated/utsrelease.h>
74 
75 #include <linux/uaccess.h>
76 #include <asm/io.h>
77 #include <asm/unistd.h>
78 
79 #include <trace/events/task.h>
80 
81 #include "uid16.h"
82 
83 #ifndef SET_UNALIGN_CTL
84 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef GET_UNALIGN_CTL
87 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef SET_FPEMU_CTL
90 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef GET_FPEMU_CTL
93 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef SET_FPEXC_CTL
96 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
97 #endif
98 #ifndef GET_FPEXC_CTL
99 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
100 #endif
101 #ifndef GET_ENDIAN
102 # define GET_ENDIAN(a, b)	(-EINVAL)
103 #endif
104 #ifndef SET_ENDIAN
105 # define SET_ENDIAN(a, b)	(-EINVAL)
106 #endif
107 #ifndef GET_TSC_CTL
108 # define GET_TSC_CTL(a)		(-EINVAL)
109 #endif
110 #ifndef SET_TSC_CTL
111 # define SET_TSC_CTL(a)		(-EINVAL)
112 #endif
113 #ifndef GET_FP_MODE
114 # define GET_FP_MODE(a)		(-EINVAL)
115 #endif
116 #ifndef SET_FP_MODE
117 # define SET_FP_MODE(a,b)	(-EINVAL)
118 #endif
119 #ifndef SVE_SET_VL
120 # define SVE_SET_VL(a)		(-EINVAL)
121 #endif
122 #ifndef SVE_GET_VL
123 # define SVE_GET_VL()		(-EINVAL)
124 #endif
125 #ifndef SME_SET_VL
126 # define SME_SET_VL(a)		(-EINVAL)
127 #endif
128 #ifndef SME_GET_VL
129 # define SME_GET_VL()		(-EINVAL)
130 #endif
131 #ifndef PAC_RESET_KEYS
132 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
133 #endif
134 #ifndef PAC_SET_ENABLED_KEYS
135 # define PAC_SET_ENABLED_KEYS(a, b, c)	(-EINVAL)
136 #endif
137 #ifndef PAC_GET_ENABLED_KEYS
138 # define PAC_GET_ENABLED_KEYS(a)	(-EINVAL)
139 #endif
140 #ifndef SET_TAGGED_ADDR_CTRL
141 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
142 #endif
143 #ifndef GET_TAGGED_ADDR_CTRL
144 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
145 #endif
146 #ifndef RISCV_V_SET_CONTROL
147 # define RISCV_V_SET_CONTROL(a)		(-EINVAL)
148 #endif
149 #ifndef RISCV_V_GET_CONTROL
150 # define RISCV_V_GET_CONTROL()		(-EINVAL)
151 #endif
152 #ifndef RISCV_SET_ICACHE_FLUSH_CTX
153 # define RISCV_SET_ICACHE_FLUSH_CTX(a, b)	(-EINVAL)
154 #endif
155 #ifndef PPC_GET_DEXCR_ASPECT
156 # define PPC_GET_DEXCR_ASPECT(a, b)	(-EINVAL)
157 #endif
158 #ifndef PPC_SET_DEXCR_ASPECT
159 # define PPC_SET_DEXCR_ASPECT(a, b, c)	(-EINVAL)
160 #endif
161 
162 /*
163  * this is where the system-wide overflow UID and GID are defined, for
164  * architectures that now have 32-bit UID/GID but didn't in the past
165  */
166 
167 int overflowuid = DEFAULT_OVERFLOWUID;
168 int overflowgid = DEFAULT_OVERFLOWGID;
169 
170 EXPORT_SYMBOL(overflowuid);
171 EXPORT_SYMBOL(overflowgid);
172 
173 /*
174  * the same as above, but for filesystems which can only store a 16-bit
175  * UID and GID. as such, this is needed on all architectures
176  */
177 
178 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
179 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
180 
181 EXPORT_SYMBOL(fs_overflowuid);
182 EXPORT_SYMBOL(fs_overflowgid);
183 
184 static const struct ctl_table overflow_sysctl_table[] = {
185 	{
186 		.procname	= "overflowuid",
187 		.data		= &overflowuid,
188 		.maxlen		= sizeof(int),
189 		.mode		= 0644,
190 		.proc_handler	= proc_dointvec_minmax,
191 		.extra1		= SYSCTL_ZERO,
192 		.extra2		= SYSCTL_MAXOLDUID,
193 	},
194 	{
195 		.procname	= "overflowgid",
196 		.data		= &overflowgid,
197 		.maxlen		= sizeof(int),
198 		.mode		= 0644,
199 		.proc_handler	= proc_dointvec_minmax,
200 		.extra1		= SYSCTL_ZERO,
201 		.extra2		= SYSCTL_MAXOLDUID,
202 	},
203 };
204 
205 static int __init init_overflow_sysctl(void)
206 {
207 	register_sysctl_init("kernel", overflow_sysctl_table);
208 	return 0;
209 }
210 
211 postcore_initcall(init_overflow_sysctl);
212 
213 /*
214  * Returns true if current's euid is same as p's uid or euid,
215  * or has CAP_SYS_NICE to p's user_ns.
216  *
217  * Called with rcu_read_lock, creds are safe
218  */
219 static bool set_one_prio_perm(struct task_struct *p)
220 {
221 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
222 
223 	if (uid_eq(pcred->uid,  cred->euid) ||
224 	    uid_eq(pcred->euid, cred->euid))
225 		return true;
226 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
227 		return true;
228 	return false;
229 }
230 
231 /*
232  * set the priority of a task
233  * - the caller must hold the RCU read lock
234  */
235 static int set_one_prio(struct task_struct *p, int niceval, int error)
236 {
237 	int no_nice;
238 
239 	if (!set_one_prio_perm(p)) {
240 		error = -EPERM;
241 		goto out;
242 	}
243 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
244 		error = -EACCES;
245 		goto out;
246 	}
247 	no_nice = security_task_setnice(p, niceval);
248 	if (no_nice) {
249 		error = no_nice;
250 		goto out;
251 	}
252 	if (error == -ESRCH)
253 		error = 0;
254 	set_user_nice(p, niceval);
255 out:
256 	return error;
257 }
258 
259 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
260 {
261 	struct task_struct *g, *p;
262 	struct user_struct *user;
263 	const struct cred *cred = current_cred();
264 	int error = -EINVAL;
265 	struct pid *pgrp;
266 	kuid_t uid;
267 
268 	if (which > PRIO_USER || which < PRIO_PROCESS)
269 		goto out;
270 
271 	/* normalize: avoid signed division (rounding problems) */
272 	error = -ESRCH;
273 	if (niceval < MIN_NICE)
274 		niceval = MIN_NICE;
275 	if (niceval > MAX_NICE)
276 		niceval = MAX_NICE;
277 
278 	rcu_read_lock();
279 	switch (which) {
280 	case PRIO_PROCESS:
281 		if (who)
282 			p = find_task_by_vpid(who);
283 		else
284 			p = current;
285 		if (p)
286 			error = set_one_prio(p, niceval, error);
287 		break;
288 	case PRIO_PGRP:
289 		if (who)
290 			pgrp = find_vpid(who);
291 		else
292 			pgrp = task_pgrp(current);
293 		read_lock(&tasklist_lock);
294 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
295 			error = set_one_prio(p, niceval, error);
296 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
297 		read_unlock(&tasklist_lock);
298 		break;
299 	case PRIO_USER:
300 		uid = make_kuid(cred->user_ns, who);
301 		user = cred->user;
302 		if (!who)
303 			uid = cred->uid;
304 		else if (!uid_eq(uid, cred->uid)) {
305 			user = find_user(uid);
306 			if (!user)
307 				goto out_unlock;	/* No processes for this user */
308 		}
309 		for_each_process_thread(g, p) {
310 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
311 				error = set_one_prio(p, niceval, error);
312 		}
313 		if (!uid_eq(uid, cred->uid))
314 			free_uid(user);		/* For find_user() */
315 		break;
316 	}
317 out_unlock:
318 	rcu_read_unlock();
319 out:
320 	return error;
321 }
322 
323 /*
324  * Ugh. To avoid negative return values, "getpriority()" will
325  * not return the normal nice-value, but a negated value that
326  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
327  * to stay compatible.
328  */
329 SYSCALL_DEFINE2(getpriority, int, which, int, who)
330 {
331 	struct task_struct *g, *p;
332 	struct user_struct *user;
333 	const struct cred *cred = current_cred();
334 	long niceval, retval = -ESRCH;
335 	struct pid *pgrp;
336 	kuid_t uid;
337 
338 	if (which > PRIO_USER || which < PRIO_PROCESS)
339 		return -EINVAL;
340 
341 	rcu_read_lock();
342 	switch (which) {
343 	case PRIO_PROCESS:
344 		if (who)
345 			p = find_task_by_vpid(who);
346 		else
347 			p = current;
348 		if (p) {
349 			niceval = nice_to_rlimit(task_nice(p));
350 			if (niceval > retval)
351 				retval = niceval;
352 		}
353 		break;
354 	case PRIO_PGRP:
355 		if (who)
356 			pgrp = find_vpid(who);
357 		else
358 			pgrp = task_pgrp(current);
359 		read_lock(&tasklist_lock);
360 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
361 			niceval = nice_to_rlimit(task_nice(p));
362 			if (niceval > retval)
363 				retval = niceval;
364 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
365 		read_unlock(&tasklist_lock);
366 		break;
367 	case PRIO_USER:
368 		uid = make_kuid(cred->user_ns, who);
369 		user = cred->user;
370 		if (!who)
371 			uid = cred->uid;
372 		else if (!uid_eq(uid, cred->uid)) {
373 			user = find_user(uid);
374 			if (!user)
375 				goto out_unlock;	/* No processes for this user */
376 		}
377 		for_each_process_thread(g, p) {
378 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
379 				niceval = nice_to_rlimit(task_nice(p));
380 				if (niceval > retval)
381 					retval = niceval;
382 			}
383 		}
384 		if (!uid_eq(uid, cred->uid))
385 			free_uid(user);		/* for find_user() */
386 		break;
387 	}
388 out_unlock:
389 	rcu_read_unlock();
390 
391 	return retval;
392 }
393 
394 /*
395  * Unprivileged users may change the real gid to the effective gid
396  * or vice versa.  (BSD-style)
397  *
398  * If you set the real gid at all, or set the effective gid to a value not
399  * equal to the real gid, then the saved gid is set to the new effective gid.
400  *
401  * This makes it possible for a setgid program to completely drop its
402  * privileges, which is often a useful assertion to make when you are doing
403  * a security audit over a program.
404  *
405  * The general idea is that a program which uses just setregid() will be
406  * 100% compatible with BSD.  A program which uses just setgid() will be
407  * 100% compatible with POSIX with saved IDs.
408  *
409  * SMP: There are not races, the GIDs are checked only by filesystem
410  *      operations (as far as semantic preservation is concerned).
411  */
412 #ifdef CONFIG_MULTIUSER
413 long __sys_setregid(gid_t rgid, gid_t egid)
414 {
415 	struct user_namespace *ns = current_user_ns();
416 	const struct cred *old;
417 	struct cred *new;
418 	int retval;
419 	kgid_t krgid, kegid;
420 
421 	krgid = make_kgid(ns, rgid);
422 	kegid = make_kgid(ns, egid);
423 
424 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
425 		return -EINVAL;
426 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
427 		return -EINVAL;
428 
429 	new = prepare_creds();
430 	if (!new)
431 		return -ENOMEM;
432 	old = current_cred();
433 
434 	retval = -EPERM;
435 	if (rgid != (gid_t) -1) {
436 		if (gid_eq(old->gid, krgid) ||
437 		    gid_eq(old->egid, krgid) ||
438 		    ns_capable_setid(old->user_ns, CAP_SETGID))
439 			new->gid = krgid;
440 		else
441 			goto error;
442 	}
443 	if (egid != (gid_t) -1) {
444 		if (gid_eq(old->gid, kegid) ||
445 		    gid_eq(old->egid, kegid) ||
446 		    gid_eq(old->sgid, kegid) ||
447 		    ns_capable_setid(old->user_ns, CAP_SETGID))
448 			new->egid = kegid;
449 		else
450 			goto error;
451 	}
452 
453 	if (rgid != (gid_t) -1 ||
454 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
455 		new->sgid = new->egid;
456 	new->fsgid = new->egid;
457 
458 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
459 	if (retval < 0)
460 		goto error;
461 
462 	return commit_creds(new);
463 
464 error:
465 	abort_creds(new);
466 	return retval;
467 }
468 
469 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
470 {
471 	return __sys_setregid(rgid, egid);
472 }
473 
474 /*
475  * setgid() is implemented like SysV w/ SAVED_IDS
476  *
477  * SMP: Same implicit races as above.
478  */
479 long __sys_setgid(gid_t gid)
480 {
481 	struct user_namespace *ns = current_user_ns();
482 	const struct cred *old;
483 	struct cred *new;
484 	int retval;
485 	kgid_t kgid;
486 
487 	kgid = make_kgid(ns, gid);
488 	if (!gid_valid(kgid))
489 		return -EINVAL;
490 
491 	new = prepare_creds();
492 	if (!new)
493 		return -ENOMEM;
494 	old = current_cred();
495 
496 	retval = -EPERM;
497 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
498 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
499 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
500 		new->egid = new->fsgid = kgid;
501 	else
502 		goto error;
503 
504 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
505 	if (retval < 0)
506 		goto error;
507 
508 	return commit_creds(new);
509 
510 error:
511 	abort_creds(new);
512 	return retval;
513 }
514 
515 SYSCALL_DEFINE1(setgid, gid_t, gid)
516 {
517 	return __sys_setgid(gid);
518 }
519 
520 /*
521  * change the user struct in a credentials set to match the new UID
522  */
523 static int set_user(struct cred *new)
524 {
525 	struct user_struct *new_user;
526 
527 	new_user = alloc_uid(new->uid);
528 	if (!new_user)
529 		return -EAGAIN;
530 
531 	free_uid(new->user);
532 	new->user = new_user;
533 	return 0;
534 }
535 
536 static void flag_nproc_exceeded(struct cred *new)
537 {
538 	if (new->ucounts == current_ucounts())
539 		return;
540 
541 	/*
542 	 * We don't fail in case of NPROC limit excess here because too many
543 	 * poorly written programs don't check set*uid() return code, assuming
544 	 * it never fails if called by root.  We may still enforce NPROC limit
545 	 * for programs doing set*uid()+execve() by harmlessly deferring the
546 	 * failure to the execve() stage.
547 	 */
548 	if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
549 			new->user != INIT_USER)
550 		current->flags |= PF_NPROC_EXCEEDED;
551 	else
552 		current->flags &= ~PF_NPROC_EXCEEDED;
553 }
554 
555 /*
556  * Unprivileged users may change the real uid to the effective uid
557  * or vice versa.  (BSD-style)
558  *
559  * If you set the real uid at all, or set the effective uid to a value not
560  * equal to the real uid, then the saved uid is set to the new effective uid.
561  *
562  * This makes it possible for a setuid program to completely drop its
563  * privileges, which is often a useful assertion to make when you are doing
564  * a security audit over a program.
565  *
566  * The general idea is that a program which uses just setreuid() will be
567  * 100% compatible with BSD.  A program which uses just setuid() will be
568  * 100% compatible with POSIX with saved IDs.
569  */
570 long __sys_setreuid(uid_t ruid, uid_t euid)
571 {
572 	struct user_namespace *ns = current_user_ns();
573 	const struct cred *old;
574 	struct cred *new;
575 	int retval;
576 	kuid_t kruid, keuid;
577 
578 	kruid = make_kuid(ns, ruid);
579 	keuid = make_kuid(ns, euid);
580 
581 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
582 		return -EINVAL;
583 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
584 		return -EINVAL;
585 
586 	new = prepare_creds();
587 	if (!new)
588 		return -ENOMEM;
589 	old = current_cred();
590 
591 	retval = -EPERM;
592 	if (ruid != (uid_t) -1) {
593 		new->uid = kruid;
594 		if (!uid_eq(old->uid, kruid) &&
595 		    !uid_eq(old->euid, kruid) &&
596 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
597 			goto error;
598 	}
599 
600 	if (euid != (uid_t) -1) {
601 		new->euid = keuid;
602 		if (!uid_eq(old->uid, keuid) &&
603 		    !uid_eq(old->euid, keuid) &&
604 		    !uid_eq(old->suid, keuid) &&
605 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
606 			goto error;
607 	}
608 
609 	if (!uid_eq(new->uid, old->uid)) {
610 		retval = set_user(new);
611 		if (retval < 0)
612 			goto error;
613 	}
614 	if (ruid != (uid_t) -1 ||
615 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
616 		new->suid = new->euid;
617 	new->fsuid = new->euid;
618 
619 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
620 	if (retval < 0)
621 		goto error;
622 
623 	retval = set_cred_ucounts(new);
624 	if (retval < 0)
625 		goto error;
626 
627 	flag_nproc_exceeded(new);
628 	return commit_creds(new);
629 
630 error:
631 	abort_creds(new);
632 	return retval;
633 }
634 
635 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
636 {
637 	return __sys_setreuid(ruid, euid);
638 }
639 
640 /*
641  * setuid() is implemented like SysV with SAVED_IDS
642  *
643  * Note that SAVED_ID's is deficient in that a setuid root program
644  * like sendmail, for example, cannot set its uid to be a normal
645  * user and then switch back, because if you're root, setuid() sets
646  * the saved uid too.  If you don't like this, blame the bright people
647  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
648  * will allow a root program to temporarily drop privileges and be able to
649  * regain them by swapping the real and effective uid.
650  */
651 long __sys_setuid(uid_t uid)
652 {
653 	struct user_namespace *ns = current_user_ns();
654 	const struct cred *old;
655 	struct cred *new;
656 	int retval;
657 	kuid_t kuid;
658 
659 	kuid = make_kuid(ns, uid);
660 	if (!uid_valid(kuid))
661 		return -EINVAL;
662 
663 	new = prepare_creds();
664 	if (!new)
665 		return -ENOMEM;
666 	old = current_cred();
667 
668 	retval = -EPERM;
669 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
670 		new->suid = new->uid = kuid;
671 		if (!uid_eq(kuid, old->uid)) {
672 			retval = set_user(new);
673 			if (retval < 0)
674 				goto error;
675 		}
676 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
677 		goto error;
678 	}
679 
680 	new->fsuid = new->euid = kuid;
681 
682 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
683 	if (retval < 0)
684 		goto error;
685 
686 	retval = set_cred_ucounts(new);
687 	if (retval < 0)
688 		goto error;
689 
690 	flag_nproc_exceeded(new);
691 	return commit_creds(new);
692 
693 error:
694 	abort_creds(new);
695 	return retval;
696 }
697 
698 SYSCALL_DEFINE1(setuid, uid_t, uid)
699 {
700 	return __sys_setuid(uid);
701 }
702 
703 
704 /*
705  * This function implements a generic ability to update ruid, euid,
706  * and suid.  This allows you to implement the 4.4 compatible seteuid().
707  */
708 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
709 {
710 	struct user_namespace *ns = current_user_ns();
711 	const struct cred *old;
712 	struct cred *new;
713 	int retval;
714 	kuid_t kruid, keuid, ksuid;
715 	bool ruid_new, euid_new, suid_new;
716 
717 	kruid = make_kuid(ns, ruid);
718 	keuid = make_kuid(ns, euid);
719 	ksuid = make_kuid(ns, suid);
720 
721 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
722 		return -EINVAL;
723 
724 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
725 		return -EINVAL;
726 
727 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
728 		return -EINVAL;
729 
730 	old = current_cred();
731 
732 	/* check for no-op */
733 	if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
734 	    (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
735 				    uid_eq(keuid, old->fsuid))) &&
736 	    (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
737 		return 0;
738 
739 	ruid_new = ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
740 		   !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
741 	euid_new = euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
742 		   !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
743 	suid_new = suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
744 		   !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
745 	if ((ruid_new || euid_new || suid_new) &&
746 	    !ns_capable_setid(old->user_ns, CAP_SETUID))
747 		return -EPERM;
748 
749 	new = prepare_creds();
750 	if (!new)
751 		return -ENOMEM;
752 
753 	if (ruid != (uid_t) -1) {
754 		new->uid = kruid;
755 		if (!uid_eq(kruid, old->uid)) {
756 			retval = set_user(new);
757 			if (retval < 0)
758 				goto error;
759 		}
760 	}
761 	if (euid != (uid_t) -1)
762 		new->euid = keuid;
763 	if (suid != (uid_t) -1)
764 		new->suid = ksuid;
765 	new->fsuid = new->euid;
766 
767 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
768 	if (retval < 0)
769 		goto error;
770 
771 	retval = set_cred_ucounts(new);
772 	if (retval < 0)
773 		goto error;
774 
775 	flag_nproc_exceeded(new);
776 	return commit_creds(new);
777 
778 error:
779 	abort_creds(new);
780 	return retval;
781 }
782 
783 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
784 {
785 	return __sys_setresuid(ruid, euid, suid);
786 }
787 
788 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
789 {
790 	const struct cred *cred = current_cred();
791 	int retval;
792 	uid_t ruid, euid, suid;
793 
794 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
795 	euid = from_kuid_munged(cred->user_ns, cred->euid);
796 	suid = from_kuid_munged(cred->user_ns, cred->suid);
797 
798 	retval = put_user(ruid, ruidp);
799 	if (!retval) {
800 		retval = put_user(euid, euidp);
801 		if (!retval)
802 			return put_user(suid, suidp);
803 	}
804 	return retval;
805 }
806 
807 /*
808  * Same as above, but for rgid, egid, sgid.
809  */
810 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
811 {
812 	struct user_namespace *ns = current_user_ns();
813 	const struct cred *old;
814 	struct cred *new;
815 	int retval;
816 	kgid_t krgid, kegid, ksgid;
817 	bool rgid_new, egid_new, sgid_new;
818 
819 	krgid = make_kgid(ns, rgid);
820 	kegid = make_kgid(ns, egid);
821 	ksgid = make_kgid(ns, sgid);
822 
823 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
824 		return -EINVAL;
825 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
826 		return -EINVAL;
827 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
828 		return -EINVAL;
829 
830 	old = current_cred();
831 
832 	/* check for no-op */
833 	if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
834 	    (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
835 				    gid_eq(kegid, old->fsgid))) &&
836 	    (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
837 		return 0;
838 
839 	rgid_new = rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
840 		   !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
841 	egid_new = egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
842 		   !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
843 	sgid_new = sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
844 		   !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
845 	if ((rgid_new || egid_new || sgid_new) &&
846 	    !ns_capable_setid(old->user_ns, CAP_SETGID))
847 		return -EPERM;
848 
849 	new = prepare_creds();
850 	if (!new)
851 		return -ENOMEM;
852 
853 	if (rgid != (gid_t) -1)
854 		new->gid = krgid;
855 	if (egid != (gid_t) -1)
856 		new->egid = kegid;
857 	if (sgid != (gid_t) -1)
858 		new->sgid = ksgid;
859 	new->fsgid = new->egid;
860 
861 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
862 	if (retval < 0)
863 		goto error;
864 
865 	return commit_creds(new);
866 
867 error:
868 	abort_creds(new);
869 	return retval;
870 }
871 
872 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
873 {
874 	return __sys_setresgid(rgid, egid, sgid);
875 }
876 
877 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
878 {
879 	const struct cred *cred = current_cred();
880 	int retval;
881 	gid_t rgid, egid, sgid;
882 
883 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
884 	egid = from_kgid_munged(cred->user_ns, cred->egid);
885 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
886 
887 	retval = put_user(rgid, rgidp);
888 	if (!retval) {
889 		retval = put_user(egid, egidp);
890 		if (!retval)
891 			retval = put_user(sgid, sgidp);
892 	}
893 
894 	return retval;
895 }
896 
897 
898 /*
899  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
900  * is used for "access()" and for the NFS daemon (letting nfsd stay at
901  * whatever uid it wants to). It normally shadows "euid", except when
902  * explicitly set by setfsuid() or for access..
903  */
904 long __sys_setfsuid(uid_t uid)
905 {
906 	const struct cred *old;
907 	struct cred *new;
908 	uid_t old_fsuid;
909 	kuid_t kuid;
910 
911 	old = current_cred();
912 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
913 
914 	kuid = make_kuid(old->user_ns, uid);
915 	if (!uid_valid(kuid))
916 		return old_fsuid;
917 
918 	new = prepare_creds();
919 	if (!new)
920 		return old_fsuid;
921 
922 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
923 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
924 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
925 		if (!uid_eq(kuid, old->fsuid)) {
926 			new->fsuid = kuid;
927 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
928 				goto change_okay;
929 		}
930 	}
931 
932 	abort_creds(new);
933 	return old_fsuid;
934 
935 change_okay:
936 	commit_creds(new);
937 	return old_fsuid;
938 }
939 
940 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
941 {
942 	return __sys_setfsuid(uid);
943 }
944 
945 /*
946  * Samma på svenska..
947  */
948 long __sys_setfsgid(gid_t gid)
949 {
950 	const struct cred *old;
951 	struct cred *new;
952 	gid_t old_fsgid;
953 	kgid_t kgid;
954 
955 	old = current_cred();
956 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
957 
958 	kgid = make_kgid(old->user_ns, gid);
959 	if (!gid_valid(kgid))
960 		return old_fsgid;
961 
962 	new = prepare_creds();
963 	if (!new)
964 		return old_fsgid;
965 
966 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
967 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
968 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
969 		if (!gid_eq(kgid, old->fsgid)) {
970 			new->fsgid = kgid;
971 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
972 				goto change_okay;
973 		}
974 	}
975 
976 	abort_creds(new);
977 	return old_fsgid;
978 
979 change_okay:
980 	commit_creds(new);
981 	return old_fsgid;
982 }
983 
984 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
985 {
986 	return __sys_setfsgid(gid);
987 }
988 #endif /* CONFIG_MULTIUSER */
989 
990 /**
991  * sys_getpid - return the thread group id of the current process
992  *
993  * Note, despite the name, this returns the tgid not the pid.  The tgid and
994  * the pid are identical unless CLONE_THREAD was specified on clone() in
995  * which case the tgid is the same in all threads of the same group.
996  *
997  * This is SMP safe as current->tgid does not change.
998  */
999 SYSCALL_DEFINE0(getpid)
1000 {
1001 	return task_tgid_vnr(current);
1002 }
1003 
1004 /* Thread ID - the internal kernel "pid" */
1005 SYSCALL_DEFINE0(gettid)
1006 {
1007 	return task_pid_vnr(current);
1008 }
1009 
1010 /*
1011  * Accessing ->real_parent is not SMP-safe, it could
1012  * change from under us. However, we can use a stale
1013  * value of ->real_parent under rcu_read_lock(), see
1014  * release_task()->call_rcu(delayed_put_task_struct).
1015  */
1016 SYSCALL_DEFINE0(getppid)
1017 {
1018 	int pid;
1019 
1020 	rcu_read_lock();
1021 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1022 	rcu_read_unlock();
1023 
1024 	return pid;
1025 }
1026 
1027 SYSCALL_DEFINE0(getuid)
1028 {
1029 	/* Only we change this so SMP safe */
1030 	return from_kuid_munged(current_user_ns(), current_uid());
1031 }
1032 
1033 SYSCALL_DEFINE0(geteuid)
1034 {
1035 	/* Only we change this so SMP safe */
1036 	return from_kuid_munged(current_user_ns(), current_euid());
1037 }
1038 
1039 SYSCALL_DEFINE0(getgid)
1040 {
1041 	/* Only we change this so SMP safe */
1042 	return from_kgid_munged(current_user_ns(), current_gid());
1043 }
1044 
1045 SYSCALL_DEFINE0(getegid)
1046 {
1047 	/* Only we change this so SMP safe */
1048 	return from_kgid_munged(current_user_ns(), current_egid());
1049 }
1050 
1051 static void do_sys_times(struct tms *tms)
1052 {
1053 	u64 tgutime, tgstime, cutime, cstime;
1054 
1055 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1056 	cutime = current->signal->cutime;
1057 	cstime = current->signal->cstime;
1058 	tms->tms_utime = nsec_to_clock_t(tgutime);
1059 	tms->tms_stime = nsec_to_clock_t(tgstime);
1060 	tms->tms_cutime = nsec_to_clock_t(cutime);
1061 	tms->tms_cstime = nsec_to_clock_t(cstime);
1062 }
1063 
1064 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1065 {
1066 	if (tbuf) {
1067 		struct tms tmp;
1068 
1069 		do_sys_times(&tmp);
1070 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1071 			return -EFAULT;
1072 	}
1073 	force_successful_syscall_return();
1074 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
1075 }
1076 
1077 #ifdef CONFIG_COMPAT
1078 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1079 {
1080 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1081 }
1082 
1083 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1084 {
1085 	if (tbuf) {
1086 		struct tms tms;
1087 		struct compat_tms tmp;
1088 
1089 		do_sys_times(&tms);
1090 		/* Convert our struct tms to the compat version. */
1091 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1092 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1093 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1094 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1095 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1096 			return -EFAULT;
1097 	}
1098 	force_successful_syscall_return();
1099 	return compat_jiffies_to_clock_t(jiffies);
1100 }
1101 #endif
1102 
1103 /*
1104  * This needs some heavy checking ...
1105  * I just haven't the stomach for it. I also don't fully
1106  * understand sessions/pgrp etc. Let somebody who does explain it.
1107  *
1108  * OK, I think I have the protection semantics right.... this is really
1109  * only important on a multi-user system anyway, to make sure one user
1110  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1111  *
1112  * !PF_FORKNOEXEC check to conform completely to POSIX.
1113  */
1114 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1115 {
1116 	struct task_struct *p;
1117 	struct task_struct *group_leader = current->group_leader;
1118 	struct pid *pids[PIDTYPE_MAX] = { 0 };
1119 	struct pid *pgrp;
1120 	int err;
1121 
1122 	if (!pid)
1123 		pid = task_pid_vnr(group_leader);
1124 	if (!pgid)
1125 		pgid = pid;
1126 	if (pgid < 0)
1127 		return -EINVAL;
1128 	rcu_read_lock();
1129 
1130 	/* From this point forward we keep holding onto the tasklist lock
1131 	 * so that our parent does not change from under us. -DaveM
1132 	 */
1133 	write_lock_irq(&tasklist_lock);
1134 
1135 	err = -ESRCH;
1136 	p = find_task_by_vpid(pid);
1137 	if (!p)
1138 		goto out;
1139 
1140 	err = -EINVAL;
1141 	if (!thread_group_leader(p))
1142 		goto out;
1143 
1144 	if (same_thread_group(p->real_parent, group_leader)) {
1145 		err = -EPERM;
1146 		if (task_session(p) != task_session(group_leader))
1147 			goto out;
1148 		err = -EACCES;
1149 		if (!(p->flags & PF_FORKNOEXEC))
1150 			goto out;
1151 	} else {
1152 		err = -ESRCH;
1153 		if (p != group_leader)
1154 			goto out;
1155 	}
1156 
1157 	err = -EPERM;
1158 	if (p->signal->leader)
1159 		goto out;
1160 
1161 	pgrp = task_pid(p);
1162 	if (pgid != pid) {
1163 		struct task_struct *g;
1164 
1165 		pgrp = find_vpid(pgid);
1166 		g = pid_task(pgrp, PIDTYPE_PGID);
1167 		if (!g || task_session(g) != task_session(group_leader))
1168 			goto out;
1169 	}
1170 
1171 	err = security_task_setpgid(p, pgid);
1172 	if (err)
1173 		goto out;
1174 
1175 	if (task_pgrp(p) != pgrp)
1176 		change_pid(pids, p, PIDTYPE_PGID, pgrp);
1177 
1178 	err = 0;
1179 out:
1180 	/* All paths lead to here, thus we are safe. -DaveM */
1181 	write_unlock_irq(&tasklist_lock);
1182 	rcu_read_unlock();
1183 	free_pids(pids);
1184 	return err;
1185 }
1186 
1187 static int do_getpgid(pid_t pid)
1188 {
1189 	struct task_struct *p;
1190 	struct pid *grp;
1191 	int retval;
1192 
1193 	rcu_read_lock();
1194 	if (!pid)
1195 		grp = task_pgrp(current);
1196 	else {
1197 		retval = -ESRCH;
1198 		p = find_task_by_vpid(pid);
1199 		if (!p)
1200 			goto out;
1201 		grp = task_pgrp(p);
1202 		if (!grp)
1203 			goto out;
1204 
1205 		retval = security_task_getpgid(p);
1206 		if (retval)
1207 			goto out;
1208 	}
1209 	retval = pid_vnr(grp);
1210 out:
1211 	rcu_read_unlock();
1212 	return retval;
1213 }
1214 
1215 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1216 {
1217 	return do_getpgid(pid);
1218 }
1219 
1220 #ifdef __ARCH_WANT_SYS_GETPGRP
1221 
1222 SYSCALL_DEFINE0(getpgrp)
1223 {
1224 	return do_getpgid(0);
1225 }
1226 
1227 #endif
1228 
1229 SYSCALL_DEFINE1(getsid, pid_t, pid)
1230 {
1231 	struct task_struct *p;
1232 	struct pid *sid;
1233 	int retval;
1234 
1235 	rcu_read_lock();
1236 	if (!pid)
1237 		sid = task_session(current);
1238 	else {
1239 		retval = -ESRCH;
1240 		p = find_task_by_vpid(pid);
1241 		if (!p)
1242 			goto out;
1243 		sid = task_session(p);
1244 		if (!sid)
1245 			goto out;
1246 
1247 		retval = security_task_getsid(p);
1248 		if (retval)
1249 			goto out;
1250 	}
1251 	retval = pid_vnr(sid);
1252 out:
1253 	rcu_read_unlock();
1254 	return retval;
1255 }
1256 
1257 static void set_special_pids(struct pid **pids, struct pid *pid)
1258 {
1259 	struct task_struct *curr = current->group_leader;
1260 
1261 	if (task_session(curr) != pid)
1262 		change_pid(pids, curr, PIDTYPE_SID, pid);
1263 
1264 	if (task_pgrp(curr) != pid)
1265 		change_pid(pids, curr, PIDTYPE_PGID, pid);
1266 }
1267 
1268 int ksys_setsid(void)
1269 {
1270 	struct task_struct *group_leader = current->group_leader;
1271 	struct pid *sid = task_pid(group_leader);
1272 	struct pid *pids[PIDTYPE_MAX] = { 0 };
1273 	pid_t session = pid_vnr(sid);
1274 	int err = -EPERM;
1275 
1276 	write_lock_irq(&tasklist_lock);
1277 	/* Fail if I am already a session leader */
1278 	if (group_leader->signal->leader)
1279 		goto out;
1280 
1281 	/* Fail if a process group id already exists that equals the
1282 	 * proposed session id.
1283 	 */
1284 	if (pid_task(sid, PIDTYPE_PGID))
1285 		goto out;
1286 
1287 	group_leader->signal->leader = 1;
1288 	set_special_pids(pids, sid);
1289 
1290 	proc_clear_tty(group_leader);
1291 
1292 	err = session;
1293 out:
1294 	write_unlock_irq(&tasklist_lock);
1295 	free_pids(pids);
1296 	if (err > 0) {
1297 		proc_sid_connector(group_leader);
1298 		sched_autogroup_create_attach(group_leader);
1299 	}
1300 	return err;
1301 }
1302 
1303 SYSCALL_DEFINE0(setsid)
1304 {
1305 	return ksys_setsid();
1306 }
1307 
1308 DECLARE_RWSEM(uts_sem);
1309 
1310 #ifdef COMPAT_UTS_MACHINE
1311 #define override_architecture(name) \
1312 	(personality(current->personality) == PER_LINUX32 && \
1313 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1314 		      sizeof(COMPAT_UTS_MACHINE)))
1315 #else
1316 #define override_architecture(name)	0
1317 #endif
1318 
1319 /*
1320  * Work around broken programs that cannot handle "Linux 3.0".
1321  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1322  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1323  * 2.6.60.
1324  */
1325 static int override_release(char __user *release, size_t len)
1326 {
1327 	int ret = 0;
1328 
1329 	if (current->personality & UNAME26) {
1330 		const char *rest = UTS_RELEASE;
1331 		char buf[65] = { 0 };
1332 		int ndots = 0;
1333 		unsigned v;
1334 		size_t copy;
1335 
1336 		while (*rest) {
1337 			if (*rest == '.' && ++ndots >= 3)
1338 				break;
1339 			if (!isdigit(*rest) && *rest != '.')
1340 				break;
1341 			rest++;
1342 		}
1343 		v = LINUX_VERSION_PATCHLEVEL + 60;
1344 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1345 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1346 		ret = copy_to_user(release, buf, copy + 1);
1347 	}
1348 	return ret;
1349 }
1350 
1351 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1352 {
1353 	struct new_utsname tmp;
1354 
1355 	down_read(&uts_sem);
1356 	memcpy(&tmp, utsname(), sizeof(tmp));
1357 	up_read(&uts_sem);
1358 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1359 		return -EFAULT;
1360 
1361 	if (override_release(name->release, sizeof(name->release)))
1362 		return -EFAULT;
1363 	if (override_architecture(name))
1364 		return -EFAULT;
1365 	return 0;
1366 }
1367 
1368 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1369 /*
1370  * Old cruft
1371  */
1372 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1373 {
1374 	struct old_utsname tmp;
1375 
1376 	if (!name)
1377 		return -EFAULT;
1378 
1379 	down_read(&uts_sem);
1380 	memcpy(&tmp, utsname(), sizeof(tmp));
1381 	up_read(&uts_sem);
1382 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1383 		return -EFAULT;
1384 
1385 	if (override_release(name->release, sizeof(name->release)))
1386 		return -EFAULT;
1387 	if (override_architecture(name))
1388 		return -EFAULT;
1389 	return 0;
1390 }
1391 
1392 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1393 {
1394 	struct oldold_utsname tmp;
1395 
1396 	if (!name)
1397 		return -EFAULT;
1398 
1399 	memset(&tmp, 0, sizeof(tmp));
1400 
1401 	down_read(&uts_sem);
1402 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1403 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1404 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1405 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1406 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1407 	up_read(&uts_sem);
1408 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1409 		return -EFAULT;
1410 
1411 	if (override_architecture(name))
1412 		return -EFAULT;
1413 	if (override_release(name->release, sizeof(name->release)))
1414 		return -EFAULT;
1415 	return 0;
1416 }
1417 #endif
1418 
1419 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1420 {
1421 	int errno;
1422 	char tmp[__NEW_UTS_LEN];
1423 
1424 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1425 		return -EPERM;
1426 
1427 	if (len < 0 || len > __NEW_UTS_LEN)
1428 		return -EINVAL;
1429 	errno = -EFAULT;
1430 	if (!copy_from_user(tmp, name, len)) {
1431 		struct new_utsname *u;
1432 
1433 		add_device_randomness(tmp, len);
1434 		down_write(&uts_sem);
1435 		u = utsname();
1436 		memcpy(u->nodename, tmp, len);
1437 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1438 		errno = 0;
1439 		uts_proc_notify(UTS_PROC_HOSTNAME);
1440 		up_write(&uts_sem);
1441 	}
1442 	return errno;
1443 }
1444 
1445 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1446 
1447 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1448 {
1449 	int i;
1450 	struct new_utsname *u;
1451 	char tmp[__NEW_UTS_LEN + 1];
1452 
1453 	if (len < 0)
1454 		return -EINVAL;
1455 	down_read(&uts_sem);
1456 	u = utsname();
1457 	i = 1 + strlen(u->nodename);
1458 	if (i > len)
1459 		i = len;
1460 	memcpy(tmp, u->nodename, i);
1461 	up_read(&uts_sem);
1462 	if (copy_to_user(name, tmp, i))
1463 		return -EFAULT;
1464 	return 0;
1465 }
1466 
1467 #endif
1468 
1469 /*
1470  * Only setdomainname; getdomainname can be implemented by calling
1471  * uname()
1472  */
1473 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1474 {
1475 	int errno;
1476 	char tmp[__NEW_UTS_LEN];
1477 
1478 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1479 		return -EPERM;
1480 	if (len < 0 || len > __NEW_UTS_LEN)
1481 		return -EINVAL;
1482 
1483 	errno = -EFAULT;
1484 	if (!copy_from_user(tmp, name, len)) {
1485 		struct new_utsname *u;
1486 
1487 		add_device_randomness(tmp, len);
1488 		down_write(&uts_sem);
1489 		u = utsname();
1490 		memcpy(u->domainname, tmp, len);
1491 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1492 		errno = 0;
1493 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1494 		up_write(&uts_sem);
1495 	}
1496 	return errno;
1497 }
1498 
1499 /* make sure you are allowed to change @tsk limits before calling this */
1500 static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1501 		      struct rlimit *new_rlim, struct rlimit *old_rlim)
1502 {
1503 	struct rlimit *rlim;
1504 	int retval = 0;
1505 
1506 	if (resource >= RLIM_NLIMITS)
1507 		return -EINVAL;
1508 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1509 
1510 	if (new_rlim) {
1511 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1512 			return -EINVAL;
1513 		if (resource == RLIMIT_NOFILE &&
1514 				new_rlim->rlim_max > sysctl_nr_open)
1515 			return -EPERM;
1516 	}
1517 
1518 	/* Holding a refcount on tsk protects tsk->signal from disappearing. */
1519 	rlim = tsk->signal->rlim + resource;
1520 	task_lock(tsk->group_leader);
1521 	if (new_rlim) {
1522 		/*
1523 		 * Keep the capable check against init_user_ns until cgroups can
1524 		 * contain all limits.
1525 		 */
1526 		if (new_rlim->rlim_max > rlim->rlim_max &&
1527 				!capable(CAP_SYS_RESOURCE))
1528 			retval = -EPERM;
1529 		if (!retval)
1530 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1531 	}
1532 	if (!retval) {
1533 		if (old_rlim)
1534 			*old_rlim = *rlim;
1535 		if (new_rlim)
1536 			*rlim = *new_rlim;
1537 	}
1538 	task_unlock(tsk->group_leader);
1539 
1540 	/*
1541 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1542 	 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1543 	 * ignores the rlimit.
1544 	 */
1545 	if (!retval && new_rlim && resource == RLIMIT_CPU &&
1546 	    new_rlim->rlim_cur != RLIM_INFINITY &&
1547 	    IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1548 		/*
1549 		 * update_rlimit_cpu can fail if the task is exiting, but there
1550 		 * may be other tasks in the thread group that are not exiting,
1551 		 * and they need their cpu timers adjusted.
1552 		 *
1553 		 * The group_leader is the last task to be released, so if we
1554 		 * cannot update_rlimit_cpu on it, then the entire process is
1555 		 * exiting and we do not need to update at all.
1556 		 */
1557 		update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1558 	}
1559 
1560 	return retval;
1561 }
1562 
1563 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1564 {
1565 	struct rlimit value;
1566 	int ret;
1567 
1568 	ret = do_prlimit(current, resource, NULL, &value);
1569 	if (!ret)
1570 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1571 
1572 	return ret;
1573 }
1574 
1575 #ifdef CONFIG_COMPAT
1576 
1577 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1578 		       struct compat_rlimit __user *, rlim)
1579 {
1580 	struct rlimit r;
1581 	struct compat_rlimit r32;
1582 
1583 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1584 		return -EFAULT;
1585 
1586 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1587 		r.rlim_cur = RLIM_INFINITY;
1588 	else
1589 		r.rlim_cur = r32.rlim_cur;
1590 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1591 		r.rlim_max = RLIM_INFINITY;
1592 	else
1593 		r.rlim_max = r32.rlim_max;
1594 	return do_prlimit(current, resource, &r, NULL);
1595 }
1596 
1597 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1598 		       struct compat_rlimit __user *, rlim)
1599 {
1600 	struct rlimit r;
1601 	int ret;
1602 
1603 	ret = do_prlimit(current, resource, NULL, &r);
1604 	if (!ret) {
1605 		struct compat_rlimit r32;
1606 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1607 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1608 		else
1609 			r32.rlim_cur = r.rlim_cur;
1610 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1611 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1612 		else
1613 			r32.rlim_max = r.rlim_max;
1614 
1615 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1616 			return -EFAULT;
1617 	}
1618 	return ret;
1619 }
1620 
1621 #endif
1622 
1623 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1624 
1625 /*
1626  *	Back compatibility for getrlimit. Needed for some apps.
1627  */
1628 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1629 		struct rlimit __user *, rlim)
1630 {
1631 	struct rlimit x;
1632 	if (resource >= RLIM_NLIMITS)
1633 		return -EINVAL;
1634 
1635 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1636 	task_lock(current->group_leader);
1637 	x = current->signal->rlim[resource];
1638 	task_unlock(current->group_leader);
1639 	if (x.rlim_cur > 0x7FFFFFFF)
1640 		x.rlim_cur = 0x7FFFFFFF;
1641 	if (x.rlim_max > 0x7FFFFFFF)
1642 		x.rlim_max = 0x7FFFFFFF;
1643 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1644 }
1645 
1646 #ifdef CONFIG_COMPAT
1647 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1648 		       struct compat_rlimit __user *, rlim)
1649 {
1650 	struct rlimit r;
1651 
1652 	if (resource >= RLIM_NLIMITS)
1653 		return -EINVAL;
1654 
1655 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1656 	task_lock(current->group_leader);
1657 	r = current->signal->rlim[resource];
1658 	task_unlock(current->group_leader);
1659 	if (r.rlim_cur > 0x7FFFFFFF)
1660 		r.rlim_cur = 0x7FFFFFFF;
1661 	if (r.rlim_max > 0x7FFFFFFF)
1662 		r.rlim_max = 0x7FFFFFFF;
1663 
1664 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1665 	    put_user(r.rlim_max, &rlim->rlim_max))
1666 		return -EFAULT;
1667 	return 0;
1668 }
1669 #endif
1670 
1671 #endif
1672 
1673 static inline bool rlim64_is_infinity(__u64 rlim64)
1674 {
1675 #if BITS_PER_LONG < 64
1676 	return rlim64 >= ULONG_MAX;
1677 #else
1678 	return rlim64 == RLIM64_INFINITY;
1679 #endif
1680 }
1681 
1682 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1683 {
1684 	if (rlim->rlim_cur == RLIM_INFINITY)
1685 		rlim64->rlim_cur = RLIM64_INFINITY;
1686 	else
1687 		rlim64->rlim_cur = rlim->rlim_cur;
1688 	if (rlim->rlim_max == RLIM_INFINITY)
1689 		rlim64->rlim_max = RLIM64_INFINITY;
1690 	else
1691 		rlim64->rlim_max = rlim->rlim_max;
1692 }
1693 
1694 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1695 {
1696 	if (rlim64_is_infinity(rlim64->rlim_cur))
1697 		rlim->rlim_cur = RLIM_INFINITY;
1698 	else
1699 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1700 	if (rlim64_is_infinity(rlim64->rlim_max))
1701 		rlim->rlim_max = RLIM_INFINITY;
1702 	else
1703 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1704 }
1705 
1706 /* rcu lock must be held */
1707 static int check_prlimit_permission(struct task_struct *task,
1708 				    unsigned int flags)
1709 {
1710 	const struct cred *cred = current_cred(), *tcred;
1711 	bool id_match;
1712 
1713 	if (current == task)
1714 		return 0;
1715 
1716 	tcred = __task_cred(task);
1717 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1718 		    uid_eq(cred->uid, tcred->suid) &&
1719 		    uid_eq(cred->uid, tcred->uid)  &&
1720 		    gid_eq(cred->gid, tcred->egid) &&
1721 		    gid_eq(cred->gid, tcred->sgid) &&
1722 		    gid_eq(cred->gid, tcred->gid));
1723 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1724 		return -EPERM;
1725 
1726 	return security_task_prlimit(cred, tcred, flags);
1727 }
1728 
1729 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1730 		const struct rlimit64 __user *, new_rlim,
1731 		struct rlimit64 __user *, old_rlim)
1732 {
1733 	struct rlimit64 old64, new64;
1734 	struct rlimit old, new;
1735 	struct task_struct *tsk;
1736 	unsigned int checkflags = 0;
1737 	int ret;
1738 
1739 	if (old_rlim)
1740 		checkflags |= LSM_PRLIMIT_READ;
1741 
1742 	if (new_rlim) {
1743 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1744 			return -EFAULT;
1745 		rlim64_to_rlim(&new64, &new);
1746 		checkflags |= LSM_PRLIMIT_WRITE;
1747 	}
1748 
1749 	rcu_read_lock();
1750 	tsk = pid ? find_task_by_vpid(pid) : current;
1751 	if (!tsk) {
1752 		rcu_read_unlock();
1753 		return -ESRCH;
1754 	}
1755 	ret = check_prlimit_permission(tsk, checkflags);
1756 	if (ret) {
1757 		rcu_read_unlock();
1758 		return ret;
1759 	}
1760 	get_task_struct(tsk);
1761 	rcu_read_unlock();
1762 
1763 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1764 			old_rlim ? &old : NULL);
1765 
1766 	if (!ret && old_rlim) {
1767 		rlim_to_rlim64(&old, &old64);
1768 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1769 			ret = -EFAULT;
1770 	}
1771 
1772 	put_task_struct(tsk);
1773 	return ret;
1774 }
1775 
1776 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1777 {
1778 	struct rlimit new_rlim;
1779 
1780 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1781 		return -EFAULT;
1782 	return do_prlimit(current, resource, &new_rlim, NULL);
1783 }
1784 
1785 /*
1786  * It would make sense to put struct rusage in the task_struct,
1787  * except that would make the task_struct be *really big*.  After
1788  * task_struct gets moved into malloc'ed memory, it would
1789  * make sense to do this.  It will make moving the rest of the information
1790  * a lot simpler!  (Which we're not doing right now because we're not
1791  * measuring them yet).
1792  *
1793  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1794  * races with threads incrementing their own counters.  But since word
1795  * reads are atomic, we either get new values or old values and we don't
1796  * care which for the sums.  We always take the siglock to protect reading
1797  * the c* fields from p->signal from races with exit.c updating those
1798  * fields when reaping, so a sample either gets all the additions of a
1799  * given child after it's reaped, or none so this sample is before reaping.
1800  *
1801  * Locking:
1802  * We need to take the siglock for CHILDEREN, SELF and BOTH
1803  * for  the cases current multithreaded, non-current single threaded
1804  * non-current multithreaded.  Thread traversal is now safe with
1805  * the siglock held.
1806  * Strictly speaking, we donot need to take the siglock if we are current and
1807  * single threaded,  as no one else can take our signal_struct away, no one
1808  * else can  reap the  children to update signal->c* counters, and no one else
1809  * can race with the signal-> fields. If we do not take any lock, the
1810  * signal-> fields could be read out of order while another thread was just
1811  * exiting. So we should  place a read memory barrier when we avoid the lock.
1812  * On the writer side,  write memory barrier is implied in  __exit_signal
1813  * as __exit_signal releases  the siglock spinlock after updating the signal->
1814  * fields. But we don't do this yet to keep things simple.
1815  *
1816  */
1817 
1818 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1819 {
1820 	r->ru_nvcsw += t->nvcsw;
1821 	r->ru_nivcsw += t->nivcsw;
1822 	r->ru_minflt += t->min_flt;
1823 	r->ru_majflt += t->maj_flt;
1824 	r->ru_inblock += task_io_get_inblock(t);
1825 	r->ru_oublock += task_io_get_oublock(t);
1826 }
1827 
1828 void getrusage(struct task_struct *p, int who, struct rusage *r)
1829 {
1830 	struct task_struct *t;
1831 	unsigned long flags;
1832 	u64 tgutime, tgstime, utime, stime;
1833 	unsigned long maxrss;
1834 	struct mm_struct *mm;
1835 	struct signal_struct *sig = p->signal;
1836 	unsigned int seq = 0;
1837 
1838 retry:
1839 	memset(r, 0, sizeof(*r));
1840 	utime = stime = 0;
1841 	maxrss = 0;
1842 
1843 	if (who == RUSAGE_THREAD) {
1844 		task_cputime_adjusted(current, &utime, &stime);
1845 		accumulate_thread_rusage(p, r);
1846 		maxrss = sig->maxrss;
1847 		goto out_thread;
1848 	}
1849 
1850 	flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1851 
1852 	switch (who) {
1853 	case RUSAGE_BOTH:
1854 	case RUSAGE_CHILDREN:
1855 		utime = sig->cutime;
1856 		stime = sig->cstime;
1857 		r->ru_nvcsw = sig->cnvcsw;
1858 		r->ru_nivcsw = sig->cnivcsw;
1859 		r->ru_minflt = sig->cmin_flt;
1860 		r->ru_majflt = sig->cmaj_flt;
1861 		r->ru_inblock = sig->cinblock;
1862 		r->ru_oublock = sig->coublock;
1863 		maxrss = sig->cmaxrss;
1864 
1865 		if (who == RUSAGE_CHILDREN)
1866 			break;
1867 		fallthrough;
1868 
1869 	case RUSAGE_SELF:
1870 		r->ru_nvcsw += sig->nvcsw;
1871 		r->ru_nivcsw += sig->nivcsw;
1872 		r->ru_minflt += sig->min_flt;
1873 		r->ru_majflt += sig->maj_flt;
1874 		r->ru_inblock += sig->inblock;
1875 		r->ru_oublock += sig->oublock;
1876 		if (maxrss < sig->maxrss)
1877 			maxrss = sig->maxrss;
1878 
1879 		rcu_read_lock();
1880 		__for_each_thread(sig, t)
1881 			accumulate_thread_rusage(t, r);
1882 		rcu_read_unlock();
1883 
1884 		break;
1885 
1886 	default:
1887 		BUG();
1888 	}
1889 
1890 	if (need_seqretry(&sig->stats_lock, seq)) {
1891 		seq = 1;
1892 		goto retry;
1893 	}
1894 	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1895 
1896 	if (who == RUSAGE_CHILDREN)
1897 		goto out_children;
1898 
1899 	thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1900 	utime += tgutime;
1901 	stime += tgstime;
1902 
1903 out_thread:
1904 	mm = get_task_mm(p);
1905 	if (mm) {
1906 		setmax_mm_hiwater_rss(&maxrss, mm);
1907 		mmput(mm);
1908 	}
1909 
1910 out_children:
1911 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1912 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1913 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1914 }
1915 
1916 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1917 {
1918 	struct rusage r;
1919 
1920 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1921 	    who != RUSAGE_THREAD)
1922 		return -EINVAL;
1923 
1924 	getrusage(current, who, &r);
1925 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1926 }
1927 
1928 #ifdef CONFIG_COMPAT
1929 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1930 {
1931 	struct rusage r;
1932 
1933 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1934 	    who != RUSAGE_THREAD)
1935 		return -EINVAL;
1936 
1937 	getrusage(current, who, &r);
1938 	return put_compat_rusage(&r, ru);
1939 }
1940 #endif
1941 
1942 SYSCALL_DEFINE1(umask, int, mask)
1943 {
1944 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1945 	return mask;
1946 }
1947 
1948 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1949 {
1950 	CLASS(fd, exe)(fd);
1951 	struct inode *inode;
1952 	int err;
1953 
1954 	if (fd_empty(exe))
1955 		return -EBADF;
1956 
1957 	inode = file_inode(fd_file(exe));
1958 
1959 	/*
1960 	 * Because the original mm->exe_file points to executable file, make
1961 	 * sure that this one is executable as well, to avoid breaking an
1962 	 * overall picture.
1963 	 */
1964 	if (!S_ISREG(inode->i_mode) || path_noexec(&fd_file(exe)->f_path))
1965 		return -EACCES;
1966 
1967 	err = file_permission(fd_file(exe), MAY_EXEC);
1968 	if (err)
1969 		return err;
1970 
1971 	return replace_mm_exe_file(mm, fd_file(exe));
1972 }
1973 
1974 /*
1975  * Check arithmetic relations of passed addresses.
1976  *
1977  * WARNING: we don't require any capability here so be very careful
1978  * in what is allowed for modification from userspace.
1979  */
1980 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1981 {
1982 	unsigned long mmap_max_addr = TASK_SIZE;
1983 	int error = -EINVAL, i;
1984 
1985 	static const unsigned char offsets[] = {
1986 		offsetof(struct prctl_mm_map, start_code),
1987 		offsetof(struct prctl_mm_map, end_code),
1988 		offsetof(struct prctl_mm_map, start_data),
1989 		offsetof(struct prctl_mm_map, end_data),
1990 		offsetof(struct prctl_mm_map, start_brk),
1991 		offsetof(struct prctl_mm_map, brk),
1992 		offsetof(struct prctl_mm_map, start_stack),
1993 		offsetof(struct prctl_mm_map, arg_start),
1994 		offsetof(struct prctl_mm_map, arg_end),
1995 		offsetof(struct prctl_mm_map, env_start),
1996 		offsetof(struct prctl_mm_map, env_end),
1997 	};
1998 
1999 	/*
2000 	 * Make sure the members are not somewhere outside
2001 	 * of allowed address space.
2002 	 */
2003 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
2004 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
2005 
2006 		if ((unsigned long)val >= mmap_max_addr ||
2007 		    (unsigned long)val < mmap_min_addr)
2008 			goto out;
2009 	}
2010 
2011 	/*
2012 	 * Make sure the pairs are ordered.
2013 	 */
2014 #define __prctl_check_order(__m1, __op, __m2)				\
2015 	((unsigned long)prctl_map->__m1 __op				\
2016 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
2017 	error  = __prctl_check_order(start_code, <, end_code);
2018 	error |= __prctl_check_order(start_data,<=, end_data);
2019 	error |= __prctl_check_order(start_brk, <=, brk);
2020 	error |= __prctl_check_order(arg_start, <=, arg_end);
2021 	error |= __prctl_check_order(env_start, <=, env_end);
2022 	if (error)
2023 		goto out;
2024 #undef __prctl_check_order
2025 
2026 	error = -EINVAL;
2027 
2028 	/*
2029 	 * Neither we should allow to override limits if they set.
2030 	 */
2031 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
2032 			      prctl_map->start_brk, prctl_map->end_data,
2033 			      prctl_map->start_data))
2034 			goto out;
2035 
2036 	error = 0;
2037 out:
2038 	return error;
2039 }
2040 
2041 #ifdef CONFIG_CHECKPOINT_RESTORE
2042 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2043 {
2044 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2045 	unsigned long user_auxv[AT_VECTOR_SIZE];
2046 	struct mm_struct *mm = current->mm;
2047 	int error;
2048 
2049 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2050 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2051 
2052 	if (opt == PR_SET_MM_MAP_SIZE)
2053 		return put_user((unsigned int)sizeof(prctl_map),
2054 				(unsigned int __user *)addr);
2055 
2056 	if (data_size != sizeof(prctl_map))
2057 		return -EINVAL;
2058 
2059 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2060 		return -EFAULT;
2061 
2062 	error = validate_prctl_map_addr(&prctl_map);
2063 	if (error)
2064 		return error;
2065 
2066 	if (prctl_map.auxv_size) {
2067 		/*
2068 		 * Someone is trying to cheat the auxv vector.
2069 		 */
2070 		if (!prctl_map.auxv ||
2071 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2072 			return -EINVAL;
2073 
2074 		memset(user_auxv, 0, sizeof(user_auxv));
2075 		if (copy_from_user(user_auxv,
2076 				   (const void __user *)prctl_map.auxv,
2077 				   prctl_map.auxv_size))
2078 			return -EFAULT;
2079 
2080 		/* Last entry must be AT_NULL as specification requires */
2081 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2082 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2083 	}
2084 
2085 	if (prctl_map.exe_fd != (u32)-1) {
2086 		/*
2087 		 * Check if the current user is checkpoint/restore capable.
2088 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2089 		 * or CAP_CHECKPOINT_RESTORE.
2090 		 * Note that a user with access to ptrace can masquerade an
2091 		 * arbitrary program as any executable, even setuid ones.
2092 		 * This may have implications in the tomoyo subsystem.
2093 		 */
2094 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2095 			return -EPERM;
2096 
2097 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2098 		if (error)
2099 			return error;
2100 	}
2101 
2102 	/*
2103 	 * arg_lock protects concurrent updates but we still need mmap_lock for
2104 	 * read to exclude races with sys_brk.
2105 	 */
2106 	mmap_read_lock(mm);
2107 
2108 	/*
2109 	 * We don't validate if these members are pointing to
2110 	 * real present VMAs because application may have correspond
2111 	 * VMAs already unmapped and kernel uses these members for statistics
2112 	 * output in procfs mostly, except
2113 	 *
2114 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2115 	 *    for VMAs when updating these members so anything wrong written
2116 	 *    here cause kernel to swear at userspace program but won't lead
2117 	 *    to any problem in kernel itself
2118 	 */
2119 
2120 	spin_lock(&mm->arg_lock);
2121 	mm->start_code	= prctl_map.start_code;
2122 	mm->end_code	= prctl_map.end_code;
2123 	mm->start_data	= prctl_map.start_data;
2124 	mm->end_data	= prctl_map.end_data;
2125 	mm->start_brk	= prctl_map.start_brk;
2126 	mm->brk		= prctl_map.brk;
2127 	mm->start_stack	= prctl_map.start_stack;
2128 	mm->arg_start	= prctl_map.arg_start;
2129 	mm->arg_end	= prctl_map.arg_end;
2130 	mm->env_start	= prctl_map.env_start;
2131 	mm->env_end	= prctl_map.env_end;
2132 	spin_unlock(&mm->arg_lock);
2133 
2134 	/*
2135 	 * Note this update of @saved_auxv is lockless thus
2136 	 * if someone reads this member in procfs while we're
2137 	 * updating -- it may get partly updated results. It's
2138 	 * known and acceptable trade off: we leave it as is to
2139 	 * not introduce additional locks here making the kernel
2140 	 * more complex.
2141 	 */
2142 	if (prctl_map.auxv_size)
2143 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2144 
2145 	mmap_read_unlock(mm);
2146 	return 0;
2147 }
2148 #endif /* CONFIG_CHECKPOINT_RESTORE */
2149 
2150 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2151 			  unsigned long len)
2152 {
2153 	/*
2154 	 * This doesn't move the auxiliary vector itself since it's pinned to
2155 	 * mm_struct, but it permits filling the vector with new values.  It's
2156 	 * up to the caller to provide sane values here, otherwise userspace
2157 	 * tools which use this vector might be unhappy.
2158 	 */
2159 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2160 
2161 	if (len > sizeof(user_auxv))
2162 		return -EINVAL;
2163 
2164 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2165 		return -EFAULT;
2166 
2167 	/* Make sure the last entry is always AT_NULL */
2168 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2169 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2170 
2171 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2172 
2173 	task_lock(current);
2174 	memcpy(mm->saved_auxv, user_auxv, len);
2175 	task_unlock(current);
2176 
2177 	return 0;
2178 }
2179 
2180 static int prctl_set_mm(int opt, unsigned long addr,
2181 			unsigned long arg4, unsigned long arg5)
2182 {
2183 	struct mm_struct *mm = current->mm;
2184 	struct prctl_mm_map prctl_map = {
2185 		.auxv = NULL,
2186 		.auxv_size = 0,
2187 		.exe_fd = -1,
2188 	};
2189 	struct vm_area_struct *vma;
2190 	int error;
2191 
2192 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2193 			      opt != PR_SET_MM_MAP &&
2194 			      opt != PR_SET_MM_MAP_SIZE)))
2195 		return -EINVAL;
2196 
2197 #ifdef CONFIG_CHECKPOINT_RESTORE
2198 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2199 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2200 #endif
2201 
2202 	if (!capable(CAP_SYS_RESOURCE))
2203 		return -EPERM;
2204 
2205 	if (opt == PR_SET_MM_EXE_FILE)
2206 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2207 
2208 	if (opt == PR_SET_MM_AUXV)
2209 		return prctl_set_auxv(mm, addr, arg4);
2210 
2211 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2212 		return -EINVAL;
2213 
2214 	error = -EINVAL;
2215 
2216 	/*
2217 	 * arg_lock protects concurrent updates of arg boundaries, we need
2218 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2219 	 * validation.
2220 	 */
2221 	mmap_read_lock(mm);
2222 	vma = find_vma(mm, addr);
2223 
2224 	spin_lock(&mm->arg_lock);
2225 	prctl_map.start_code	= mm->start_code;
2226 	prctl_map.end_code	= mm->end_code;
2227 	prctl_map.start_data	= mm->start_data;
2228 	prctl_map.end_data	= mm->end_data;
2229 	prctl_map.start_brk	= mm->start_brk;
2230 	prctl_map.brk		= mm->brk;
2231 	prctl_map.start_stack	= mm->start_stack;
2232 	prctl_map.arg_start	= mm->arg_start;
2233 	prctl_map.arg_end	= mm->arg_end;
2234 	prctl_map.env_start	= mm->env_start;
2235 	prctl_map.env_end	= mm->env_end;
2236 
2237 	switch (opt) {
2238 	case PR_SET_MM_START_CODE:
2239 		prctl_map.start_code = addr;
2240 		break;
2241 	case PR_SET_MM_END_CODE:
2242 		prctl_map.end_code = addr;
2243 		break;
2244 	case PR_SET_MM_START_DATA:
2245 		prctl_map.start_data = addr;
2246 		break;
2247 	case PR_SET_MM_END_DATA:
2248 		prctl_map.end_data = addr;
2249 		break;
2250 	case PR_SET_MM_START_STACK:
2251 		prctl_map.start_stack = addr;
2252 		break;
2253 	case PR_SET_MM_START_BRK:
2254 		prctl_map.start_brk = addr;
2255 		break;
2256 	case PR_SET_MM_BRK:
2257 		prctl_map.brk = addr;
2258 		break;
2259 	case PR_SET_MM_ARG_START:
2260 		prctl_map.arg_start = addr;
2261 		break;
2262 	case PR_SET_MM_ARG_END:
2263 		prctl_map.arg_end = addr;
2264 		break;
2265 	case PR_SET_MM_ENV_START:
2266 		prctl_map.env_start = addr;
2267 		break;
2268 	case PR_SET_MM_ENV_END:
2269 		prctl_map.env_end = addr;
2270 		break;
2271 	default:
2272 		goto out;
2273 	}
2274 
2275 	error = validate_prctl_map_addr(&prctl_map);
2276 	if (error)
2277 		goto out;
2278 
2279 	switch (opt) {
2280 	/*
2281 	 * If command line arguments and environment
2282 	 * are placed somewhere else on stack, we can
2283 	 * set them up here, ARG_START/END to setup
2284 	 * command line arguments and ENV_START/END
2285 	 * for environment.
2286 	 */
2287 	case PR_SET_MM_START_STACK:
2288 	case PR_SET_MM_ARG_START:
2289 	case PR_SET_MM_ARG_END:
2290 	case PR_SET_MM_ENV_START:
2291 	case PR_SET_MM_ENV_END:
2292 		if (!vma) {
2293 			error = -EFAULT;
2294 			goto out;
2295 		}
2296 	}
2297 
2298 	mm->start_code	= prctl_map.start_code;
2299 	mm->end_code	= prctl_map.end_code;
2300 	mm->start_data	= prctl_map.start_data;
2301 	mm->end_data	= prctl_map.end_data;
2302 	mm->start_brk	= prctl_map.start_brk;
2303 	mm->brk		= prctl_map.brk;
2304 	mm->start_stack	= prctl_map.start_stack;
2305 	mm->arg_start	= prctl_map.arg_start;
2306 	mm->arg_end	= prctl_map.arg_end;
2307 	mm->env_start	= prctl_map.env_start;
2308 	mm->env_end	= prctl_map.env_end;
2309 
2310 	error = 0;
2311 out:
2312 	spin_unlock(&mm->arg_lock);
2313 	mmap_read_unlock(mm);
2314 	return error;
2315 }
2316 
2317 #ifdef CONFIG_CHECKPOINT_RESTORE
2318 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2319 {
2320 	return put_user(me->clear_child_tid, tid_addr);
2321 }
2322 #else
2323 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2324 {
2325 	return -EINVAL;
2326 }
2327 #endif
2328 
2329 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2330 {
2331 	/*
2332 	 * If task has has_child_subreaper - all its descendants
2333 	 * already have these flag too and new descendants will
2334 	 * inherit it on fork, skip them.
2335 	 *
2336 	 * If we've found child_reaper - skip descendants in
2337 	 * it's subtree as they will never get out pidns.
2338 	 */
2339 	if (p->signal->has_child_subreaper ||
2340 	    is_child_reaper(task_pid(p)))
2341 		return 0;
2342 
2343 	p->signal->has_child_subreaper = 1;
2344 	return 1;
2345 }
2346 
2347 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2348 {
2349 	return -EINVAL;
2350 }
2351 
2352 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2353 				    unsigned long ctrl)
2354 {
2355 	return -EINVAL;
2356 }
2357 
2358 int __weak arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status)
2359 {
2360 	return -EINVAL;
2361 }
2362 
2363 int __weak arch_set_shadow_stack_status(struct task_struct *t, unsigned long status)
2364 {
2365 	return -EINVAL;
2366 }
2367 
2368 int __weak arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status)
2369 {
2370 	return -EINVAL;
2371 }
2372 
2373 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2374 
2375 static int prctl_set_vma(unsigned long opt, unsigned long addr,
2376 			 unsigned long size, unsigned long arg)
2377 {
2378 	int error;
2379 
2380 	switch (opt) {
2381 	case PR_SET_VMA_ANON_NAME:
2382 		error = set_anon_vma_name(addr, size, (const char __user *)arg);
2383 		break;
2384 	default:
2385 		error = -EINVAL;
2386 	}
2387 
2388 	return error;
2389 }
2390 
2391 static inline unsigned long get_current_mdwe(void)
2392 {
2393 	unsigned long ret = 0;
2394 
2395 	if (test_bit(MMF_HAS_MDWE, &current->mm->flags))
2396 		ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2397 	if (test_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags))
2398 		ret |= PR_MDWE_NO_INHERIT;
2399 
2400 	return ret;
2401 }
2402 
2403 static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2404 				 unsigned long arg4, unsigned long arg5)
2405 {
2406 	unsigned long current_bits;
2407 
2408 	if (arg3 || arg4 || arg5)
2409 		return -EINVAL;
2410 
2411 	if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2412 		return -EINVAL;
2413 
2414 	/* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2415 	if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2416 		return -EINVAL;
2417 
2418 	/*
2419 	 * EOPNOTSUPP might be more appropriate here in principle, but
2420 	 * existing userspace depends on EINVAL specifically.
2421 	 */
2422 	if (!arch_memory_deny_write_exec_supported())
2423 		return -EINVAL;
2424 
2425 	current_bits = get_current_mdwe();
2426 	if (current_bits && current_bits != bits)
2427 		return -EPERM; /* Cannot unset the flags */
2428 
2429 	if (bits & PR_MDWE_NO_INHERIT)
2430 		set_bit(MMF_HAS_MDWE_NO_INHERIT, &current->mm->flags);
2431 	if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2432 		set_bit(MMF_HAS_MDWE, &current->mm->flags);
2433 
2434 	return 0;
2435 }
2436 
2437 static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2438 				 unsigned long arg4, unsigned long arg5)
2439 {
2440 	if (arg2 || arg3 || arg4 || arg5)
2441 		return -EINVAL;
2442 	return get_current_mdwe();
2443 }
2444 
2445 static int prctl_get_auxv(void __user *addr, unsigned long len)
2446 {
2447 	struct mm_struct *mm = current->mm;
2448 	unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2449 
2450 	if (size && copy_to_user(addr, mm->saved_auxv, size))
2451 		return -EFAULT;
2452 	return sizeof(mm->saved_auxv);
2453 }
2454 
2455 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2456 		unsigned long, arg4, unsigned long, arg5)
2457 {
2458 	struct task_struct *me = current;
2459 	unsigned char comm[sizeof(me->comm)];
2460 	long error;
2461 
2462 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2463 	if (error != -ENOSYS)
2464 		return error;
2465 
2466 	error = 0;
2467 	switch (option) {
2468 	case PR_SET_PDEATHSIG:
2469 		if (!valid_signal(arg2)) {
2470 			error = -EINVAL;
2471 			break;
2472 		}
2473 		me->pdeath_signal = arg2;
2474 		break;
2475 	case PR_GET_PDEATHSIG:
2476 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2477 		break;
2478 	case PR_GET_DUMPABLE:
2479 		error = get_dumpable(me->mm);
2480 		break;
2481 	case PR_SET_DUMPABLE:
2482 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2483 			error = -EINVAL;
2484 			break;
2485 		}
2486 		set_dumpable(me->mm, arg2);
2487 		break;
2488 
2489 	case PR_SET_UNALIGN:
2490 		error = SET_UNALIGN_CTL(me, arg2);
2491 		break;
2492 	case PR_GET_UNALIGN:
2493 		error = GET_UNALIGN_CTL(me, arg2);
2494 		break;
2495 	case PR_SET_FPEMU:
2496 		error = SET_FPEMU_CTL(me, arg2);
2497 		break;
2498 	case PR_GET_FPEMU:
2499 		error = GET_FPEMU_CTL(me, arg2);
2500 		break;
2501 	case PR_SET_FPEXC:
2502 		error = SET_FPEXC_CTL(me, arg2);
2503 		break;
2504 	case PR_GET_FPEXC:
2505 		error = GET_FPEXC_CTL(me, arg2);
2506 		break;
2507 	case PR_GET_TIMING:
2508 		error = PR_TIMING_STATISTICAL;
2509 		break;
2510 	case PR_SET_TIMING:
2511 		if (arg2 != PR_TIMING_STATISTICAL)
2512 			error = -EINVAL;
2513 		break;
2514 	case PR_SET_NAME:
2515 		comm[sizeof(me->comm) - 1] = 0;
2516 		if (strncpy_from_user(comm, (char __user *)arg2,
2517 				      sizeof(me->comm) - 1) < 0)
2518 			return -EFAULT;
2519 		set_task_comm(me, comm);
2520 		proc_comm_connector(me);
2521 		break;
2522 	case PR_GET_NAME:
2523 		get_task_comm(comm, me);
2524 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2525 			return -EFAULT;
2526 		break;
2527 	case PR_GET_ENDIAN:
2528 		error = GET_ENDIAN(me, arg2);
2529 		break;
2530 	case PR_SET_ENDIAN:
2531 		error = SET_ENDIAN(me, arg2);
2532 		break;
2533 	case PR_GET_SECCOMP:
2534 		error = prctl_get_seccomp();
2535 		break;
2536 	case PR_SET_SECCOMP:
2537 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2538 		break;
2539 	case PR_GET_TSC:
2540 		error = GET_TSC_CTL(arg2);
2541 		break;
2542 	case PR_SET_TSC:
2543 		error = SET_TSC_CTL(arg2);
2544 		break;
2545 	case PR_TASK_PERF_EVENTS_DISABLE:
2546 		error = perf_event_task_disable();
2547 		break;
2548 	case PR_TASK_PERF_EVENTS_ENABLE:
2549 		error = perf_event_task_enable();
2550 		break;
2551 	case PR_GET_TIMERSLACK:
2552 		if (current->timer_slack_ns > ULONG_MAX)
2553 			error = ULONG_MAX;
2554 		else
2555 			error = current->timer_slack_ns;
2556 		break;
2557 	case PR_SET_TIMERSLACK:
2558 		if (rt_or_dl_task_policy(current))
2559 			break;
2560 		if (arg2 <= 0)
2561 			current->timer_slack_ns =
2562 					current->default_timer_slack_ns;
2563 		else
2564 			current->timer_slack_ns = arg2;
2565 		break;
2566 	case PR_MCE_KILL:
2567 		if (arg4 | arg5)
2568 			return -EINVAL;
2569 		switch (arg2) {
2570 		case PR_MCE_KILL_CLEAR:
2571 			if (arg3 != 0)
2572 				return -EINVAL;
2573 			current->flags &= ~PF_MCE_PROCESS;
2574 			break;
2575 		case PR_MCE_KILL_SET:
2576 			current->flags |= PF_MCE_PROCESS;
2577 			if (arg3 == PR_MCE_KILL_EARLY)
2578 				current->flags |= PF_MCE_EARLY;
2579 			else if (arg3 == PR_MCE_KILL_LATE)
2580 				current->flags &= ~PF_MCE_EARLY;
2581 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2582 				current->flags &=
2583 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2584 			else
2585 				return -EINVAL;
2586 			break;
2587 		default:
2588 			return -EINVAL;
2589 		}
2590 		break;
2591 	case PR_MCE_KILL_GET:
2592 		if (arg2 | arg3 | arg4 | arg5)
2593 			return -EINVAL;
2594 		if (current->flags & PF_MCE_PROCESS)
2595 			error = (current->flags & PF_MCE_EARLY) ?
2596 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2597 		else
2598 			error = PR_MCE_KILL_DEFAULT;
2599 		break;
2600 	case PR_SET_MM:
2601 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2602 		break;
2603 	case PR_GET_TID_ADDRESS:
2604 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2605 		break;
2606 	case PR_SET_CHILD_SUBREAPER:
2607 		me->signal->is_child_subreaper = !!arg2;
2608 		if (!arg2)
2609 			break;
2610 
2611 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2612 		break;
2613 	case PR_GET_CHILD_SUBREAPER:
2614 		error = put_user(me->signal->is_child_subreaper,
2615 				 (int __user *)arg2);
2616 		break;
2617 	case PR_SET_NO_NEW_PRIVS:
2618 		if (arg2 != 1 || arg3 || arg4 || arg5)
2619 			return -EINVAL;
2620 
2621 		task_set_no_new_privs(current);
2622 		break;
2623 	case PR_GET_NO_NEW_PRIVS:
2624 		if (arg2 || arg3 || arg4 || arg5)
2625 			return -EINVAL;
2626 		return task_no_new_privs(current) ? 1 : 0;
2627 	case PR_GET_THP_DISABLE:
2628 		if (arg2 || arg3 || arg4 || arg5)
2629 			return -EINVAL;
2630 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2631 		break;
2632 	case PR_SET_THP_DISABLE:
2633 		if (arg3 || arg4 || arg5)
2634 			return -EINVAL;
2635 		if (mmap_write_lock_killable(me->mm))
2636 			return -EINTR;
2637 		if (arg2)
2638 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2639 		else
2640 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2641 		mmap_write_unlock(me->mm);
2642 		break;
2643 	case PR_MPX_ENABLE_MANAGEMENT:
2644 	case PR_MPX_DISABLE_MANAGEMENT:
2645 		/* No longer implemented: */
2646 		return -EINVAL;
2647 	case PR_SET_FP_MODE:
2648 		error = SET_FP_MODE(me, arg2);
2649 		break;
2650 	case PR_GET_FP_MODE:
2651 		error = GET_FP_MODE(me);
2652 		break;
2653 	case PR_SVE_SET_VL:
2654 		error = SVE_SET_VL(arg2);
2655 		break;
2656 	case PR_SVE_GET_VL:
2657 		error = SVE_GET_VL();
2658 		break;
2659 	case PR_SME_SET_VL:
2660 		error = SME_SET_VL(arg2);
2661 		break;
2662 	case PR_SME_GET_VL:
2663 		error = SME_GET_VL();
2664 		break;
2665 	case PR_GET_SPECULATION_CTRL:
2666 		if (arg3 || arg4 || arg5)
2667 			return -EINVAL;
2668 		error = arch_prctl_spec_ctrl_get(me, arg2);
2669 		break;
2670 	case PR_SET_SPECULATION_CTRL:
2671 		if (arg4 || arg5)
2672 			return -EINVAL;
2673 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2674 		break;
2675 	case PR_PAC_RESET_KEYS:
2676 		if (arg3 || arg4 || arg5)
2677 			return -EINVAL;
2678 		error = PAC_RESET_KEYS(me, arg2);
2679 		break;
2680 	case PR_PAC_SET_ENABLED_KEYS:
2681 		if (arg4 || arg5)
2682 			return -EINVAL;
2683 		error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2684 		break;
2685 	case PR_PAC_GET_ENABLED_KEYS:
2686 		if (arg2 || arg3 || arg4 || arg5)
2687 			return -EINVAL;
2688 		error = PAC_GET_ENABLED_KEYS(me);
2689 		break;
2690 	case PR_SET_TAGGED_ADDR_CTRL:
2691 		if (arg3 || arg4 || arg5)
2692 			return -EINVAL;
2693 		error = SET_TAGGED_ADDR_CTRL(arg2);
2694 		break;
2695 	case PR_GET_TAGGED_ADDR_CTRL:
2696 		if (arg2 || arg3 || arg4 || arg5)
2697 			return -EINVAL;
2698 		error = GET_TAGGED_ADDR_CTRL();
2699 		break;
2700 	case PR_SET_IO_FLUSHER:
2701 		if (!capable(CAP_SYS_RESOURCE))
2702 			return -EPERM;
2703 
2704 		if (arg3 || arg4 || arg5)
2705 			return -EINVAL;
2706 
2707 		if (arg2 == 1)
2708 			current->flags |= PR_IO_FLUSHER;
2709 		else if (!arg2)
2710 			current->flags &= ~PR_IO_FLUSHER;
2711 		else
2712 			return -EINVAL;
2713 		break;
2714 	case PR_GET_IO_FLUSHER:
2715 		if (!capable(CAP_SYS_RESOURCE))
2716 			return -EPERM;
2717 
2718 		if (arg2 || arg3 || arg4 || arg5)
2719 			return -EINVAL;
2720 
2721 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2722 		break;
2723 	case PR_SET_SYSCALL_USER_DISPATCH:
2724 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2725 						  (char __user *) arg5);
2726 		break;
2727 #ifdef CONFIG_SCHED_CORE
2728 	case PR_SCHED_CORE:
2729 		error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2730 		break;
2731 #endif
2732 	case PR_SET_MDWE:
2733 		error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2734 		break;
2735 	case PR_GET_MDWE:
2736 		error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2737 		break;
2738 	case PR_PPC_GET_DEXCR:
2739 		if (arg3 || arg4 || arg5)
2740 			return -EINVAL;
2741 		error = PPC_GET_DEXCR_ASPECT(me, arg2);
2742 		break;
2743 	case PR_PPC_SET_DEXCR:
2744 		if (arg4 || arg5)
2745 			return -EINVAL;
2746 		error = PPC_SET_DEXCR_ASPECT(me, arg2, arg3);
2747 		break;
2748 	case PR_SET_VMA:
2749 		error = prctl_set_vma(arg2, arg3, arg4, arg5);
2750 		break;
2751 	case PR_GET_AUXV:
2752 		if (arg4 || arg5)
2753 			return -EINVAL;
2754 		error = prctl_get_auxv((void __user *)arg2, arg3);
2755 		break;
2756 #ifdef CONFIG_KSM
2757 	case PR_SET_MEMORY_MERGE:
2758 		if (arg3 || arg4 || arg5)
2759 			return -EINVAL;
2760 		if (mmap_write_lock_killable(me->mm))
2761 			return -EINTR;
2762 
2763 		if (arg2)
2764 			error = ksm_enable_merge_any(me->mm);
2765 		else
2766 			error = ksm_disable_merge_any(me->mm);
2767 		mmap_write_unlock(me->mm);
2768 		break;
2769 	case PR_GET_MEMORY_MERGE:
2770 		if (arg2 || arg3 || arg4 || arg5)
2771 			return -EINVAL;
2772 
2773 		error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2774 		break;
2775 #endif
2776 	case PR_RISCV_V_SET_CONTROL:
2777 		error = RISCV_V_SET_CONTROL(arg2);
2778 		break;
2779 	case PR_RISCV_V_GET_CONTROL:
2780 		error = RISCV_V_GET_CONTROL();
2781 		break;
2782 	case PR_RISCV_SET_ICACHE_FLUSH_CTX:
2783 		error = RISCV_SET_ICACHE_FLUSH_CTX(arg2, arg3);
2784 		break;
2785 	case PR_GET_SHADOW_STACK_STATUS:
2786 		if (arg3 || arg4 || arg5)
2787 			return -EINVAL;
2788 		error = arch_get_shadow_stack_status(me, (unsigned long __user *) arg2);
2789 		break;
2790 	case PR_SET_SHADOW_STACK_STATUS:
2791 		if (arg3 || arg4 || arg5)
2792 			return -EINVAL;
2793 		error = arch_set_shadow_stack_status(me, arg2);
2794 		break;
2795 	case PR_LOCK_SHADOW_STACK_STATUS:
2796 		if (arg3 || arg4 || arg5)
2797 			return -EINVAL;
2798 		error = arch_lock_shadow_stack_status(me, arg2);
2799 		break;
2800 	case PR_TIMER_CREATE_RESTORE_IDS:
2801 		if (arg3 || arg4 || arg5)
2802 			return -EINVAL;
2803 		error = posixtimer_create_prctl(arg2);
2804 		break;
2805 	case PR_FUTEX_HASH:
2806 		error = futex_hash_prctl(arg2, arg3, arg4);
2807 		break;
2808 	default:
2809 		trace_task_prctl_unknown(option, arg2, arg3, arg4, arg5);
2810 		error = -EINVAL;
2811 		break;
2812 	}
2813 	return error;
2814 }
2815 
2816 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2817 		struct getcpu_cache __user *, unused)
2818 {
2819 	int err = 0;
2820 	int cpu = raw_smp_processor_id();
2821 
2822 	if (cpup)
2823 		err |= put_user(cpu, cpup);
2824 	if (nodep)
2825 		err |= put_user(cpu_to_node(cpu), nodep);
2826 	return err ? -EFAULT : 0;
2827 }
2828 
2829 /**
2830  * do_sysinfo - fill in sysinfo struct
2831  * @info: pointer to buffer to fill
2832  */
2833 static int do_sysinfo(struct sysinfo *info)
2834 {
2835 	unsigned long mem_total, sav_total;
2836 	unsigned int mem_unit, bitcount;
2837 	struct timespec64 tp;
2838 
2839 	memset(info, 0, sizeof(struct sysinfo));
2840 
2841 	ktime_get_boottime_ts64(&tp);
2842 	timens_add_boottime(&tp);
2843 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2844 
2845 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2846 
2847 	info->procs = nr_threads;
2848 
2849 	si_meminfo(info);
2850 	si_swapinfo(info);
2851 
2852 	/*
2853 	 * If the sum of all the available memory (i.e. ram + swap)
2854 	 * is less than can be stored in a 32 bit unsigned long then
2855 	 * we can be binary compatible with 2.2.x kernels.  If not,
2856 	 * well, in that case 2.2.x was broken anyways...
2857 	 *
2858 	 *  -Erik Andersen <andersee@debian.org>
2859 	 */
2860 
2861 	mem_total = info->totalram + info->totalswap;
2862 	if (mem_total < info->totalram || mem_total < info->totalswap)
2863 		goto out;
2864 	bitcount = 0;
2865 	mem_unit = info->mem_unit;
2866 	while (mem_unit > 1) {
2867 		bitcount++;
2868 		mem_unit >>= 1;
2869 		sav_total = mem_total;
2870 		mem_total <<= 1;
2871 		if (mem_total < sav_total)
2872 			goto out;
2873 	}
2874 
2875 	/*
2876 	 * If mem_total did not overflow, multiply all memory values by
2877 	 * info->mem_unit and set it to 1.  This leaves things compatible
2878 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2879 	 * kernels...
2880 	 */
2881 
2882 	info->mem_unit = 1;
2883 	info->totalram <<= bitcount;
2884 	info->freeram <<= bitcount;
2885 	info->sharedram <<= bitcount;
2886 	info->bufferram <<= bitcount;
2887 	info->totalswap <<= bitcount;
2888 	info->freeswap <<= bitcount;
2889 	info->totalhigh <<= bitcount;
2890 	info->freehigh <<= bitcount;
2891 
2892 out:
2893 	return 0;
2894 }
2895 
2896 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2897 {
2898 	struct sysinfo val;
2899 
2900 	do_sysinfo(&val);
2901 
2902 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2903 		return -EFAULT;
2904 
2905 	return 0;
2906 }
2907 
2908 #ifdef CONFIG_COMPAT
2909 struct compat_sysinfo {
2910 	s32 uptime;
2911 	u32 loads[3];
2912 	u32 totalram;
2913 	u32 freeram;
2914 	u32 sharedram;
2915 	u32 bufferram;
2916 	u32 totalswap;
2917 	u32 freeswap;
2918 	u16 procs;
2919 	u16 pad;
2920 	u32 totalhigh;
2921 	u32 freehigh;
2922 	u32 mem_unit;
2923 	char _f[20-2*sizeof(u32)-sizeof(int)];
2924 };
2925 
2926 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2927 {
2928 	struct sysinfo s;
2929 	struct compat_sysinfo s_32;
2930 
2931 	do_sysinfo(&s);
2932 
2933 	/* Check to see if any memory value is too large for 32-bit and scale
2934 	 *  down if needed
2935 	 */
2936 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2937 		int bitcount = 0;
2938 
2939 		while (s.mem_unit < PAGE_SIZE) {
2940 			s.mem_unit <<= 1;
2941 			bitcount++;
2942 		}
2943 
2944 		s.totalram >>= bitcount;
2945 		s.freeram >>= bitcount;
2946 		s.sharedram >>= bitcount;
2947 		s.bufferram >>= bitcount;
2948 		s.totalswap >>= bitcount;
2949 		s.freeswap >>= bitcount;
2950 		s.totalhigh >>= bitcount;
2951 		s.freehigh >>= bitcount;
2952 	}
2953 
2954 	memset(&s_32, 0, sizeof(s_32));
2955 	s_32.uptime = s.uptime;
2956 	s_32.loads[0] = s.loads[0];
2957 	s_32.loads[1] = s.loads[1];
2958 	s_32.loads[2] = s.loads[2];
2959 	s_32.totalram = s.totalram;
2960 	s_32.freeram = s.freeram;
2961 	s_32.sharedram = s.sharedram;
2962 	s_32.bufferram = s.bufferram;
2963 	s_32.totalswap = s.totalswap;
2964 	s_32.freeswap = s.freeswap;
2965 	s_32.procs = s.procs;
2966 	s_32.totalhigh = s.totalhigh;
2967 	s_32.freehigh = s.freehigh;
2968 	s_32.mem_unit = s.mem_unit;
2969 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2970 		return -EFAULT;
2971 	return 0;
2972 }
2973 #endif /* CONFIG_COMPAT */
2974