xref: /linux/arch/arm64/mm/pageattr.c (revision e28ddd0b7af218e1a8863c524e15918895af9ac8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2014, The Linux Foundation. All rights reserved.
4  */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/module.h>
8 #include <linux/mem_encrypt.h>
9 #include <linux/sched.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagewalk.h>
12 
13 #include <asm/cacheflush.h>
14 #include <asm/pgtable-prot.h>
15 #include <asm/set_memory.h>
16 #include <asm/tlbflush.h>
17 #include <asm/kfence.h>
18 
19 struct page_change_data {
20 	pgprot_t set_mask;
21 	pgprot_t clear_mask;
22 };
23 
set_pageattr_masks(ptdesc_t val,struct mm_walk * walk)24 static ptdesc_t set_pageattr_masks(ptdesc_t val, struct mm_walk *walk)
25 {
26 	struct page_change_data *masks = walk->private;
27 
28 	val &= ~(pgprot_val(masks->clear_mask));
29 	val |= (pgprot_val(masks->set_mask));
30 
31 	return val;
32 }
33 
pageattr_pud_entry(pud_t * pud,unsigned long addr,unsigned long next,struct mm_walk * walk)34 static int pageattr_pud_entry(pud_t *pud, unsigned long addr,
35 			      unsigned long next, struct mm_walk *walk)
36 {
37 	pud_t val = pudp_get(pud);
38 
39 	if (pud_sect(val)) {
40 		if (WARN_ON_ONCE((next - addr) != PUD_SIZE))
41 			return -EINVAL;
42 		val = __pud(set_pageattr_masks(pud_val(val), walk));
43 		set_pud(pud, val);
44 		walk->action = ACTION_CONTINUE;
45 	}
46 
47 	return 0;
48 }
49 
pageattr_pmd_entry(pmd_t * pmd,unsigned long addr,unsigned long next,struct mm_walk * walk)50 static int pageattr_pmd_entry(pmd_t *pmd, unsigned long addr,
51 			      unsigned long next, struct mm_walk *walk)
52 {
53 	pmd_t val = pmdp_get(pmd);
54 
55 	if (pmd_sect(val)) {
56 		if (WARN_ON_ONCE((next - addr) != PMD_SIZE))
57 			return -EINVAL;
58 		val = __pmd(set_pageattr_masks(pmd_val(val), walk));
59 		set_pmd(pmd, val);
60 		walk->action = ACTION_CONTINUE;
61 	}
62 
63 	return 0;
64 }
65 
pageattr_pte_entry(pte_t * pte,unsigned long addr,unsigned long next,struct mm_walk * walk)66 static int pageattr_pte_entry(pte_t *pte, unsigned long addr,
67 			      unsigned long next, struct mm_walk *walk)
68 {
69 	pte_t val = __ptep_get(pte);
70 
71 	val = __pte(set_pageattr_masks(pte_val(val), walk));
72 	__set_pte(pte, val);
73 
74 	return 0;
75 }
76 
77 static const struct mm_walk_ops pageattr_ops = {
78 	.pud_entry	= pageattr_pud_entry,
79 	.pmd_entry	= pageattr_pmd_entry,
80 	.pte_entry	= pageattr_pte_entry,
81 };
82 
83 bool rodata_full __ro_after_init = true;
84 
can_set_direct_map(void)85 bool can_set_direct_map(void)
86 {
87 	/*
88 	 * rodata_full, DEBUG_PAGEALLOC and a Realm guest all require linear
89 	 * map to be mapped at page granularity, so that it is possible to
90 	 * protect/unprotect single pages.
91 	 *
92 	 * KFENCE pool requires page-granular mapping if initialized late.
93 	 *
94 	 * Realms need to make pages shared/protected at page granularity.
95 	 */
96 	return rodata_full || debug_pagealloc_enabled() ||
97 		arm64_kfence_can_set_direct_map() || is_realm_world();
98 }
99 
update_range_prot(unsigned long start,unsigned long size,pgprot_t set_mask,pgprot_t clear_mask)100 static int update_range_prot(unsigned long start, unsigned long size,
101 			     pgprot_t set_mask, pgprot_t clear_mask)
102 {
103 	struct page_change_data data;
104 	int ret;
105 
106 	data.set_mask = set_mask;
107 	data.clear_mask = clear_mask;
108 
109 	ret = split_kernel_leaf_mapping(start, start + size);
110 	if (WARN_ON_ONCE(ret))
111 		return ret;
112 
113 	arch_enter_lazy_mmu_mode();
114 
115 	/*
116 	 * The caller must ensure that the range we are operating on does not
117 	 * partially overlap a block mapping, or a cont mapping. Any such case
118 	 * must be eliminated by splitting the mapping.
119 	 */
120 	ret = walk_kernel_page_table_range_lockless(start, start + size,
121 						    &pageattr_ops, NULL, &data);
122 	arch_leave_lazy_mmu_mode();
123 
124 	return ret;
125 }
126 
__change_memory_common(unsigned long start,unsigned long size,pgprot_t set_mask,pgprot_t clear_mask)127 static int __change_memory_common(unsigned long start, unsigned long size,
128 				  pgprot_t set_mask, pgprot_t clear_mask)
129 {
130 	int ret;
131 
132 	ret = update_range_prot(start, size, set_mask, clear_mask);
133 
134 	/*
135 	 * If the memory is being made valid without changing any other bits
136 	 * then a TLBI isn't required as a non-valid entry cannot be cached in
137 	 * the TLB.
138 	 */
139 	if (pgprot_val(set_mask) != PTE_VALID || pgprot_val(clear_mask))
140 		flush_tlb_kernel_range(start, start + size);
141 	return ret;
142 }
143 
change_memory_common(unsigned long addr,int numpages,pgprot_t set_mask,pgprot_t clear_mask)144 static int change_memory_common(unsigned long addr, int numpages,
145 				pgprot_t set_mask, pgprot_t clear_mask)
146 {
147 	unsigned long start = addr;
148 	unsigned long size = PAGE_SIZE * numpages;
149 	unsigned long end = start + size;
150 	struct vm_struct *area;
151 	int ret;
152 
153 	if (!PAGE_ALIGNED(addr)) {
154 		start &= PAGE_MASK;
155 		end = start + size;
156 		WARN_ON_ONCE(1);
157 	}
158 
159 	/*
160 	 * Kernel VA mappings are always live, and splitting live section
161 	 * mappings into page mappings may cause TLB conflicts. This means
162 	 * we have to ensure that changing the permission bits of the range
163 	 * we are operating on does not result in such splitting.
164 	 *
165 	 * Let's restrict ourselves to mappings created by vmalloc (or vmap).
166 	 * Disallow VM_ALLOW_HUGE_VMAP mappings to guarantee that only page
167 	 * mappings are updated and splitting is never needed.
168 	 *
169 	 * So check whether the [addr, addr + size) interval is entirely
170 	 * covered by precisely one VM area that has the VM_ALLOC flag set.
171 	 */
172 	area = find_vm_area((void *)addr);
173 	if (!area ||
174 	    ((unsigned long)kasan_reset_tag((void *)end) >
175 	     (unsigned long)kasan_reset_tag(area->addr) + area->size) ||
176 	    ((area->flags & (VM_ALLOC | VM_ALLOW_HUGE_VMAP)) != VM_ALLOC))
177 		return -EINVAL;
178 
179 	if (!numpages)
180 		return 0;
181 
182 	/*
183 	 * If we are manipulating read-only permissions, apply the same
184 	 * change to the linear mapping of the pages that back this VM area.
185 	 */
186 	if (rodata_full && (pgprot_val(set_mask) == PTE_RDONLY ||
187 			    pgprot_val(clear_mask) == PTE_RDONLY)) {
188 		unsigned long idx = ((unsigned long)kasan_reset_tag((void *)start) -
189 				     (unsigned long)kasan_reset_tag(area->addr))
190 				    >> PAGE_SHIFT;
191 		for (; numpages; idx++, numpages--) {
192 			ret = __change_memory_common((u64)page_address(area->pages[idx]),
193 						     PAGE_SIZE, set_mask, clear_mask);
194 			if (ret)
195 				return ret;
196 		}
197 	}
198 
199 	/*
200 	 * Get rid of potentially aliasing lazily unmapped vm areas that may
201 	 * have permissions set that deviate from the ones we are setting here.
202 	 */
203 	vm_unmap_aliases();
204 
205 	return __change_memory_common(start, size, set_mask, clear_mask);
206 }
207 
set_memory_ro(unsigned long addr,int numpages)208 int set_memory_ro(unsigned long addr, int numpages)
209 {
210 	return change_memory_common(addr, numpages,
211 					__pgprot(PTE_RDONLY),
212 					__pgprot(PTE_WRITE));
213 }
214 
set_memory_rw(unsigned long addr,int numpages)215 int set_memory_rw(unsigned long addr, int numpages)
216 {
217 	return change_memory_common(addr, numpages,
218 					__pgprot(PTE_WRITE),
219 					__pgprot(PTE_RDONLY));
220 }
221 
set_memory_nx(unsigned long addr,int numpages)222 int set_memory_nx(unsigned long addr, int numpages)
223 {
224 	return change_memory_common(addr, numpages,
225 					__pgprot(PTE_PXN),
226 					__pgprot(PTE_MAYBE_GP));
227 }
228 
set_memory_x(unsigned long addr,int numpages)229 int set_memory_x(unsigned long addr, int numpages)
230 {
231 	return change_memory_common(addr, numpages,
232 					__pgprot(PTE_MAYBE_GP),
233 					__pgprot(PTE_PXN));
234 }
235 
set_memory_valid(unsigned long addr,int numpages,int enable)236 int set_memory_valid(unsigned long addr, int numpages, int enable)
237 {
238 	if (enable)
239 		return __change_memory_common(addr, PAGE_SIZE * numpages,
240 					__pgprot(PTE_VALID),
241 					__pgprot(0));
242 	else
243 		return __change_memory_common(addr, PAGE_SIZE * numpages,
244 					__pgprot(0),
245 					__pgprot(PTE_VALID));
246 }
247 
set_direct_map_invalid_noflush(struct page * page)248 int set_direct_map_invalid_noflush(struct page *page)
249 {
250 	pgprot_t clear_mask = __pgprot(PTE_VALID);
251 	pgprot_t set_mask = __pgprot(0);
252 
253 	if (!can_set_direct_map())
254 		return 0;
255 
256 	return update_range_prot((unsigned long)page_address(page),
257 				 PAGE_SIZE, set_mask, clear_mask);
258 }
259 
set_direct_map_default_noflush(struct page * page)260 int set_direct_map_default_noflush(struct page *page)
261 {
262 	pgprot_t set_mask = __pgprot(PTE_VALID | PTE_WRITE);
263 	pgprot_t clear_mask = __pgprot(PTE_RDONLY);
264 
265 	if (!can_set_direct_map())
266 		return 0;
267 
268 	return update_range_prot((unsigned long)page_address(page),
269 				 PAGE_SIZE, set_mask, clear_mask);
270 }
271 
__set_memory_enc_dec(unsigned long addr,int numpages,bool encrypt)272 static int __set_memory_enc_dec(unsigned long addr,
273 				int numpages,
274 				bool encrypt)
275 {
276 	unsigned long set_prot = 0, clear_prot = 0;
277 	phys_addr_t start, end;
278 	int ret;
279 
280 	if (!is_realm_world())
281 		return 0;
282 
283 	if (!__is_lm_address(addr))
284 		return -EINVAL;
285 
286 	start = __virt_to_phys(addr);
287 	end = start + numpages * PAGE_SIZE;
288 
289 	if (encrypt)
290 		clear_prot = PROT_NS_SHARED;
291 	else
292 		set_prot = PROT_NS_SHARED;
293 
294 	/*
295 	 * Break the mapping before we make any changes to avoid stale TLB
296 	 * entries or Synchronous External Aborts caused by RIPAS_EMPTY
297 	 */
298 	ret = __change_memory_common(addr, PAGE_SIZE * numpages,
299 				     __pgprot(set_prot),
300 				     __pgprot(clear_prot | PTE_VALID));
301 
302 	if (ret)
303 		return ret;
304 
305 	if (encrypt)
306 		ret = rsi_set_memory_range_protected(start, end);
307 	else
308 		ret = rsi_set_memory_range_shared(start, end);
309 
310 	if (ret)
311 		return ret;
312 
313 	return __change_memory_common(addr, PAGE_SIZE * numpages,
314 				      __pgprot(PTE_VALID),
315 				      __pgprot(0));
316 }
317 
realm_set_memory_encrypted(unsigned long addr,int numpages)318 static int realm_set_memory_encrypted(unsigned long addr, int numpages)
319 {
320 	int ret = __set_memory_enc_dec(addr, numpages, true);
321 
322 	/*
323 	 * If the request to change state fails, then the only sensible cause
324 	 * of action for the caller is to leak the memory
325 	 */
326 	WARN(ret, "Failed to encrypt memory, %d pages will be leaked",
327 	     numpages);
328 
329 	return ret;
330 }
331 
realm_set_memory_decrypted(unsigned long addr,int numpages)332 static int realm_set_memory_decrypted(unsigned long addr, int numpages)
333 {
334 	int ret = __set_memory_enc_dec(addr, numpages, false);
335 
336 	WARN(ret, "Failed to decrypt memory, %d pages will be leaked",
337 	     numpages);
338 
339 	return ret;
340 }
341 
342 static const struct arm64_mem_crypt_ops realm_crypt_ops = {
343 	.encrypt = realm_set_memory_encrypted,
344 	.decrypt = realm_set_memory_decrypted,
345 };
346 
realm_register_memory_enc_ops(void)347 int realm_register_memory_enc_ops(void)
348 {
349 	return arm64_mem_crypt_ops_register(&realm_crypt_ops);
350 }
351 
set_direct_map_valid_noflush(struct page * page,unsigned nr,bool valid)352 int set_direct_map_valid_noflush(struct page *page, unsigned nr, bool valid)
353 {
354 	unsigned long addr = (unsigned long)page_address(page);
355 
356 	if (!can_set_direct_map())
357 		return 0;
358 
359 	return set_memory_valid(addr, nr, valid);
360 }
361 
362 #ifdef CONFIG_DEBUG_PAGEALLOC
363 /*
364  * This is - apart from the return value - doing the same
365  * thing as the new set_direct_map_valid_noflush() function.
366  *
367  * Unify? Explain the conceptual differences?
368  */
__kernel_map_pages(struct page * page,int numpages,int enable)369 void __kernel_map_pages(struct page *page, int numpages, int enable)
370 {
371 	if (!can_set_direct_map())
372 		return;
373 
374 	set_memory_valid((unsigned long)page_address(page), numpages, enable);
375 }
376 #endif /* CONFIG_DEBUG_PAGEALLOC */
377 
378 /*
379  * This function is used to determine if a linear map page has been marked as
380  * not-valid. Walk the page table and check the PTE_VALID bit.
381  *
382  * Because this is only called on the kernel linear map,  p?d_sect() implies
383  * p?d_present(). When debug_pagealloc is enabled, sections mappings are
384  * disabled.
385  */
kernel_page_present(struct page * page)386 bool kernel_page_present(struct page *page)
387 {
388 	pgd_t *pgdp;
389 	p4d_t *p4dp;
390 	pud_t *pudp, pud;
391 	pmd_t *pmdp, pmd;
392 	pte_t *ptep;
393 	unsigned long addr = (unsigned long)page_address(page);
394 
395 	pgdp = pgd_offset_k(addr);
396 	if (pgd_none(READ_ONCE(*pgdp)))
397 		return false;
398 
399 	p4dp = p4d_offset(pgdp, addr);
400 	if (p4d_none(READ_ONCE(*p4dp)))
401 		return false;
402 
403 	pudp = pud_offset(p4dp, addr);
404 	pud = READ_ONCE(*pudp);
405 	if (pud_none(pud))
406 		return false;
407 	if (pud_sect(pud))
408 		return true;
409 
410 	pmdp = pmd_offset(pudp, addr);
411 	pmd = READ_ONCE(*pmdp);
412 	if (pmd_none(pmd))
413 		return false;
414 	if (pmd_sect(pmd))
415 		return true;
416 
417 	ptep = pte_offset_kernel(pmdp, addr);
418 	return pte_valid(__ptep_get(ptep));
419 }
420